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Geographic variation in sexual behavior can
explain geospatial heterogeneity in the
severity of the HIV epidemic in Malawi
Laurence Palk and Sally Blower*

Abstract

Background: In sub-Saharan Africa, where ~ 25 million individuals are infected with HIV and transmission is
predominantly heterosexual, there is substantial geographic variation in the severity of epidemics. This variation has
yet to be explained. Here, we propose that it is due to geographic variation in the size of the high-risk group (HRG):
the group with a high number of sex partners. We test our hypothesis by conducting a geospatial analysis of data
from Malawi, where ~ 13% of women and ~ 8% of men are infected with HIV.

Methods: We used georeferenced HIV testing and behavioral data from ~ 14,000 participants of a nationally
representative population-level survey: the 2010 Malawi Demographic and Health Survey (MDHS). We constructed
gender-stratified epidemic surface prevalence (ESP) maps by spatially smoothing and interpolating the HIV testing data.
We used the behavioral data to construct gender-stratified risk maps that reveal geographic variation in the size of the
HRG. We tested our hypothesis by fitting gender-stratified spatial error regression (SER) models to the MDHS data.

Results: The ESP maps show considerable geographic variation in prevalence: 1–29% (women), 1–20% (men). Risk maps
reveal substantial geographic variation in the size of the HRG: 0–40% (women), 16–58% (men). Prevalence and the size
of the HRG are highest in urban centers. However, the majority of HIV-infected individuals (~75% of women, ~ 80% of
men) live in rural areas, as does most of the HRG (~ 80% of women, ~ 85% of men). We identify a significant (P < 0.001)
geospatial relationship linking the size of the HRG with prevalence: the greater the size, the higher the prevalence. SER
models show HIV prevalence in women is expected to exceed the national average in districts where > 20% of women
are in the HRG. Most importantly, the SER models show that geographic variation in the size of the HRG can explain a
substantial proportion (73% for women, 67% for men) of the geographic variation in epidemic severity.

Conclusions: Taken together, our results provide substantial support for our hypothesis. They provide a potential
mechanistic explanation for the geographic variation in the severity of the HIV epidemic in Malawi and, potentially, in
other countries in sub-Saharan Africa.

Keywords: HIV, Sexual behavior, Epidemiology, Malawi, Sub-Saharan Africa, Geostatistics

Background
Substantial geographic variation in the severity of
epidemics has been observed for many infectious diseases,
e.g., malaria, onchocerciasis, and schistosomiasis [1–4].
This variation has been shown to be the result of geo-
graphical variation in conditions that affect transmission.
Notably, there is substantial geographic variation in the

severity of HIV epidemics [5–7] in sub-Saharan Africa, but
the underlying mechanistic determinants of this variation
have not been identified. In sub-Saharan Africa, ~ 25
million individuals are infected with HIV [8], transmission
is predominantly heterosexual, and prevalence is high in
the general population. An individual’s most important risk
factor for acquiring HIV is their number of sex partners:
the greater the number of sex partners, the greater the risk.
We hypothesize that geographic variation in the size of the
high-risk group (HRG) generates geographic variation in
the severity of HIV epidemics in sub-Saharan Africa; the
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HRG is defined as the group of individuals who have a
high number of lifetime sex partners. We test our hypoth-
esis by conducting a spatial analysis of georeferenced HIV
testing and sexual behavior data collected from~ 14,000
individuals during a nationally representative population-
level survey in Malawi: the 2010 Malawi Demographic and
Health Survey (MDHS) [9].
HIV prevalence in Malawi is high; nationwide, ~ 13%

of women and ~ 8% of men are infected with the virus
[9]. Malawi is divided into three administrative regions:
Northern, Central, and Southern (Fig. 1a). Communities
are predominantly urban in the Southern region, semi-
urban in the Central region, and rural in the Northern
region. There is a major urban center in each region:
Mzuzu in the Northern region, Lilongwe (the capital) in
the Central region, and Blantyre and Zomba in the
Southern region (Fig. 1a). Lilongwe is the largest city in
Malawi, Blantyre the second largest, and Mzuzu the
third. The majority of the population of ~ 15 million
individuals live in the Central and Southern regions: 42%
and 45%, respectively. Notably, 85% of the population
lives in rural communities [10].
Previous studies have focused on developing complex

statistical models to predict the prevalence of HIV [6,
11–13]. These models include multiple risk factors (e.g.,
circumcision and condom usage) and non-causal
descriptive determinants, e.g., distance to a road. They
have shown that there can be considerable small-scale
heterogeneity in HIV prevalence and in risk behaviors.

However, none of these models tested the hypothesis
that we are proposing, nor have they identified a
mechanism that explains a significant proportion of the
geographic variation in the severity of HIV epidemics in
sub-Saharan Africa.
We conducted our analyses in three stages. First, we

used data from the MDHS to quantify the geographic
variation in the severity of the HIV epidemic in Malawi.
Specifically, we constructed gender-stratified maps of
prevalence, where prevalence is the proportion of the
population that is infected with HIV. Second, we used
data from the MDHS to construct gender-stratified risk
maps that show the geographic variation in the size of
the HRG. Finally, we tested our hypothesis by using the
MDHS data to construct gender-stratified spatial error
regression (SER) models. Data were analyzed at the level
of the district; Malawi is divided into 28 administrative
districts (Fig. 1a). The district of Likoma, which consists
of two islands in Lake Malawi, was not included in the
MDHS. Therefore, our analysis is based on data from 27
districts. The statistical models that we constructed
enabled us to identify a geospatial relationship that
quantifies the effect of the size of the HRG on increasing
(and decreasing) HIV prevalence.

Methods
Demographic mapping
We used data from the WorldPop database to construct
a demographic map of Malawi [14]. The resultant map

a b c

Fig. 1 a Map of Malawi. Background colors reflect topography; the altitude scale is in meters. Blue lines show roads. Cities and towns in Malawi
and surrounding countries are shown in red and yellow, respectively. Villages in Malawi are shown in pink, and blue-striped areas represent lakes. b
Map showing the sample cluster locations for the Demographic and Health Survey conducted in 2010 in Malawi. Rural locations are shown by
black diamonds, urban locations by red diamonds. The three administrative regions in Malawi are color-coded: North (gray), Central (yellow), and
South (blue). Black lines mark the boundaries of the 27 districts that were included in the survey. c The population density map for Malawi. The
color code shows the number of individuals per square kilometer
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shows the estimated number of individuals in each
square kilometer in Malawi.

HIV testing and behavioral data
We used georeferenced data from the 2010 MDHS [9];
these data are publicly available. The survey sample sites
are distributed, in proportion to the population, among
27 districts: red diamonds show urban sites, black show
rural (Fig. 1b). The response rate to the survey was very
high: 97% for women, 92% for men. Ninety-one percent
of eligible women and 84% of eligible men were tested
for HIV. Each individual’s HIV test results were linked
to that person’s demographic and behavioral data. We
used data from the 7396 women and 6509 men, aged
15–49 years old, who were tested for HIV. Since
response rates were so high, we did not need to adjust
the HIV prevalence results for non-participation [15].

Risk groups and HIV acquisition
We used MDHS data to calculate, for men and women,
the percentage of individuals who acquired the virus
through low-risk and high-risk behavior. For example,
we calculated the fraction of HIV-infected women in the
high-risk group, F, as follows:

F ¼ Nhq
Np

¼ hq
p

ð1Þ

where N is the number of women aged 15–49, p is the
national prevalence of HIV in women, h is the fraction
of women who are in the HRG, and q is the prevalence
of HIV in the HRG of women.
We made similar calculations for low-risk women and

for men.

Gender-stratified epidemic surface prevalence maps
To construct the maps, we spatially smoothed and inter-
polated the georeferenced HIV testing data from the
MDHS. The epidemic surface prevalence (ESP) maps
show the percentage of individuals (15–49 year olds)
who are infected with HIV. We used an adaptive
bandwidth kernel density estimation method, with a
two-dimensional Gaussian for the kernel density func-
tion, to construct the maps [16]. We chose a ring size of
200 individuals for smoothing; this ensured the smooth-
ing circle included a minimum of 200 individuals and at
least three other sampling sites. The R programming
package prevR was used for implementation [17].

Gender-stratified risk maps
To construct these maps, we used the 2010 MDHS data
and the same mapping techniques that we used to
construct the ESP maps. Each risk map shows the
percentage of 15–49 year olds who have had a high

number of sex partners over their lifetime, i.e., the size of
the HRG. We used the lifetime number of sex partners as
it represents the cumulative risk of acquiring HIV.

Gender-stratified regression models
We tested our hypothesis by fitting regression models to
the MDHS data; the data were stratified by gender and
district. HIV prevalence was the response variable, and
the size of the HRG was the explanatory variable. We
used both a SER model (Eq. 2) and an ordinary least
squares regression model (Eq. 3). The SER model
accounts for the fact that error terms that are geograph-
ically close are more likely to be similar and therefore
spatially auto-correlated [18]. We compared the fit of
the regression models to determine if the SER models
were the most appropriate for our analysis.

p ¼ Xβþ γ where γ ¼ λW γ þ u ð2Þ
p ¼ Xβþ ε ð3Þ

In both equations, p represents a vector of the preva-
lence of HIV in each district, X a vector of the size of the
HRG in each district, and β is the regression coefficient.
In the SER model (Eq. 2), γ is the spatially auto-correlated
error, λ is the auto-regressive coefficient, Wγ is the spatial
error lag term, and u specifies the non-spatial random
error with mean zero. We used Queen’s contiguity [19] to
assign spatial weights for districts; i.e., we assigned non--
zero weights to neighboring districts that share a common
edge or vertex, and zero weights to the other districts. Dif-
ferent weighting methods could be applied; we used
Queen’s contiguity, as it was the most parsimonious. In
the ordinary least squares regression model (Eq. 3), ε spe-
cifies the random error with mean zero.
We used the gender-stratified regression models to

quantify the effect of the size of the HRG on increasing
(and decreasing) HIV prevalence. We estimated the per-
centage of the geographic variation in HIV prevalence
that could be explained by the geographic variation in
the size of the HRG.

Residual maps
To show the goodness of fit of the gender-stratified
spatial regression models, we mapped the residual
values. These maps show where the models under/over-
estimate prevalence, and therefore they indicate the
areas where there may be confounders.

Results
The demographic map reveals the geospatial distribution
of all individuals living in Malawi (Fig. 1c). The map shows
the size of settlements, the settlement dispersion patterns,
and geographic variation in population density. There are
clear differences in the spatial demographics of the three
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regions. Communities are comparatively large and close
together in the Southern region, tend to be smaller and
more dispersed in the Central region, and are fairly small
and widely dispersed in the Northern region. Substantial
urban-rural differences are apparent. The population
density ranges from less than five individuals per square
kilometer in rural areas to more than 500 individuals per
square kilometer in the major urban centers: Lilongwe,
Blantyre, Zomba, and Mzuzu (Fig. 1c).
The distribution of sexual behaviors in the general

population in Malawi is shown for women (Fig. 2a) and
men (Fig. 2b). Most women (~ 85%) have only had one
or two lifetime sex partners; however, their risk of
acquiring HIV has been substantial, 7% and 17%,
respectively (Fig. 2c). We define the HRG of women as
those who have had three or more lifetime partners;
almost a third of these women have become infected
with HIV (Fig. 2c). In comparison with women, as with
all sexually transmitted diseases, men have had a lower
risk of acquiring HIV (Fig. 2c). We refer to the group of
men who have had four or more lifetime sex partners as
the HRG; ~ 14% of men in the HRG have acquired HIV

(Fig. 2c). Notably, we find that ~ 66% of HIV-infected
women and ~ 50% of HIV-infected men in Malawi ac-
quired the virus even though they were not in the HRGs;
i.e., they acquired HIV through “low-risk” behavior.
The ESP maps provide a spatial visualization of the

severity of the HIV epidemic in Malawi: Fig. 3a
(women), Fig. 3b (men). Overall, prevalence is ~ 13% in
women, ~ 8% in men. However, there is considerable
geographic variation in severity; prevalence varies from 1
to 29% in women and from 1 to 20% in men. Prevalence
is almost always higher in women than in men. Large-
scale spatial patterns are apparent, and they are more
distinct for women than for men. There is a strong
North-South trend in increasing prevalence, and a sharp
contrast between urban and rural areas in all three
regions. Prevalence is highest in Blantyre and Zomba in
the South, and Lilongwe in the Central region. Preva-
lence is also fairly high in fishing villages along Lake
Malawi and around Mzuzu in the North. Notably,
although prevalence is higher in urban centers than in
rural areas, ~ 75% of Malawi’s HIV-infected women and
~ 80% of HIV-infected men live in rural communities.
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Fig. 2 a Histogram showing the distribution of the number of lifetime sex partners for women (aged 15–49 years old). Data are from the 7396
women in the 2010 Malawi Demographic and Health Survey (MDHS) who were tested for HIV. b Histogram showing the distribution of the number of
lifetime sex partners for men (aged 15–49 years old). Data are from the 6509 men in the 2010 MDHS who were tested for HIV. c HIV prevalence (%)
stratified by number of lifetime sex partners. Data are from the 7396 women and 6509 men in the 2010 MDHS who were tested for HIV
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This is due to the fact that most of Malawi’s population
lives in rural areas.
The gender-stratified risk maps show that there is

considerable geographic variation, among communities,
in the size of the HRG: Fig. 3c (women), Fig. 3d (men).
This geographic variation results in large-scale spatial
patterns that appear similar to the patterns in the ESP
maps. The size of the HRG of women — in a commu-
nity — varies from 0 to 40%, whereas the size of the
HRG of men — in a community — varies from 16 to
58%. In almost all communities, the size of the HRG of

men is greater than the size of the HRG of women.
There are discernable large-scale spatial patterns in both
risk maps. A clear geographic trend is apparent, ranging
from the North where communities tend to only have a
small group of individuals who engage in high-risk
behavior, to the South where a high proportion of indi-
viduals in a community engage in high-risk behavior.
Urban communities throughout the country and fishing
communities around Lake Malawi have the highest
percentage of high-risk individuals. However, most indi-
viduals who belong to the HRG live in rural areas, ~ 80%

Fig. 3 a HIV epidemic surface prevalence (ESP) map for women (15–49 years old). Prevalence is shown as the percentage of women who are
infected with HIV. Data used to construct the map are from the 7396 women in the 2010 Malawi Demographic and Health Survey (MDHS) who
were tested for HIV. b HIV ESP map for men (15–49 years old). Prevalence is shown as the percentage of men who are infected with HIV. Data
used to construct the map are from the 6509 men in the 2010 MDHS who were tested for HIV. c Map showing, for women, geographic variation
in the size of the HRG. The size of the HRG is defined as the percentage of women (15–49 years old) who have had three or more lifetime sex
partners. Data used to construct the map are from the 7396 women who participated in the 2010 MDHS and were tested for HIV. d Map showing, for
men, geographic variation in the size of the HRG. The size of the HRG is defined as the percentage of men (15–49 years old) who have had four or
more lifetime sex partners. Data used to construct the map are from the 6509 men who participated in the 2010 MDHS and were tested for HIV
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of high-risk women and ~ 85% of high-risk men. This is
due to the fact that most of Malawi’s population lives in
rural areas.
The SER models were a better fit to the MDHS data

than the corresponding non-spatial models (Table 1). The
spatial models show for both women and men that, at the
level of the district, there is a significant geospatial correl-
ation between HIV prevalence and the size of the HRG: as
the size of the HRG increases, the severity of the epidemic
increases. Seventy-three percent of the geographic
variation in the severity of the epidemic in women can be
explained by geographic variation in the size of their
HRG. Slightly less, 67%, of the geographic variation in the
severity of the epidemic in men can be explained by
geographic variation in the size of their HRG.
The SER models show that HIV prevalence in women

can be expected to exceed the national average (~ 13%)
in districts where ~ 20% or more of women are in the
HRG. Similarly, the models show that prevalence in men
can be expected to exceed the national average (~ 8%) in
districts where ~ 30% or more of men are in the HRG.
The residual maps show the error of the spatial models
in estimating prevalence (Fig. 4a for women, Fig. 4b for
men). In the majority of the 27 districts (20 for women,
19 for men) the models fit extremely well; the residual is
less than one standard deviation (SD), shown by the gray
areas. The models underestimate prevalence, residual > 2
SD, for women in one district and for men in two
districts; these districts are shown in orange.

Discussion
Our study shows that there is substantial geographic
variation in the size of the HRG of both women and
men throughout Malawi, and that this variation can be
observed as large-scale geospatial patterns. We have
found similar large-scale geospatial patterns for HIV
prevalence. Most importantly, we have identified a

statistically significant geospatial relationship between
the size of the HRG and HIV prevalence. The geostatis-
tical model that we have developed shows that the larger
the size of the HRG, the more severe the epidemic. The
quantitative results from the model demonstrate the
importance of this relationship: they show that a
substantial proportion (73% for women, 67% for men) of
the geographic variation in HIV prevalence can be ex-
plained by geographic variation in the size of the HRG.
Taken together, our results provide a mechanistic
explanation for the large-scale countrywide variation in
the severity of the HIV epidemic in Malawi.
Notably, the objective of our analysis is not — as others

have done in previous studies [6, 11–13] — to construct a
model to predict prevalence. Instead, our objective is to
use geostatistical modeling to test a specific hypothesis.
Consequently, we have designed a parsimonious geostatis-
tical model that includes only one variable. To develop a
predictive model, it would be necessary to include
additional biological and behavioral variables that
geographically covary with prevalence. These could be
biological and/or behavioral cofactors, e.g., the presence of
herpes simplex virus (HSV-2) or other sexually transmit-
ted diseases, condom usage, and mobility patterns [20–
25]. Notably, the level of medical circumcision (which re-
duces the risk of men acquiring HIV) is extremely low in
Malawi; only 2.2% of men 15–49 years old are medically
circumcised. Therefore, circumcision should not be
included (as an explanatory factor) in any model for
predicting prevalence in Malawi.
Our results provide new insights into the spatial diffu-

sion of the HIV epidemic in Malawi and highlight the
importance of mobility networks. Notably, we found that
the majority of HIV-infected individuals have not en-
gaged in high-risk behaviors. Many HIV-infected women
have only had one or two lifetime sex partners. Our
maps reveal that HIV-infected individuals are dispersed

Table 1 Results from the spatial and non-spatial district-level regression models: ordinary least squares regression (OLSR) and spatial
error regression (SER). The SER model includes a spatially auto-correlated error term which accounts for the fact that variables that
are geographically close are more likely to be similar. The size of the HRG in each district, for women, is defined as the proportion of
women (15–49 years old) in the district who have had three or more lifetime sex partners (LSPs). The size of the HRG in each district,
for men, is defined as the proportion of men (15–49 years old) in the district who have had four or more LSPs

HIV prevalence, women HIV prevalence, men

OLSR SER OLSR SER

Size of the high-risk group (HRG) 0.53*** 0.33*** 0.30** 0.19***

Constant 0.04 0.06 –0.02 0.02

Lambda NA 0.63*** NA 0.73***

AIC –105 –112 –104 –120

R-squared 0.60 0.73 0.28 0.67

Lambda represents the level of auto-correlation in the error term
Asterisks denote the significance level according to the following P-values: ***P < 0.001, **P < 0.01
AIC Akaike information criterion
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throughout Malawi and live in all types of demographic
communities: urban, semi-urban, and rural. All of these
communities, at some point, must have “imported” HIV.
In Malawi, as in many other countries in sub-Saharan
Africa, populations are highly mobile, and travelers, in
comparison with non-travelers, have been shown to have
an increased risk of HIV infection [21, 26, 27]. HIV-
infected travelers are likely to have been (and continue to
be) extremely important in linking high-prevalence urban
centers and/or the fishing villages along Lake Malawi with
low-prevalence rural communities. Phylogenetic analysis
could be used to differentiate between localized and
imported strains [28–30] and determine, for any specific
community, where transmission is occurring.
The data we have used are the most appropriate for test-

ing our hypothesis, as treatment coverage in 2010 in
Malawi was fairly low; coverage is now fairly high at ~ 50%
[31–33]. Increasing coverage, by increasing survival,
increases prevalence; consequently, more recent data may
obscure the relationship between prevalence and the size
of the HRG. As with all studies, ours has limitations. We
have found a geostatistical association between the size of
the HRG and prevalence, but this does not necessitate
causation; we do not know where transmission occurred.
Sexual behavior data are not always accurate; women may
under-report, and men over-report, their number of part-
ners [34]. This can be problematic if an analysis

necessitates classifying individuals into one of many
behavioral risk groups. However, we use only two groups,
and we define the HRG based on a relatively low number
of lifetime sex partners. Consequently, we believe that it is
unlikely that individuals were misclassified. An additional
potential limitation is that female sex workers, who have
very high numbers of partners, may not have participated
in the MDHS. However, sex workers in Malawi only con-
stitute 1% of the female population [35]. Accordingly,
non-participation by sex workers is unlikely to have biased
our results. It would have had little effect on the size of
the HRG, or prevalence, in any specific location.

Conclusions
Our results have significant implications for the design
of HIV epidemic control strategies in Malawi and poten-
tially in other countries in sub-Saharan Africa. We have
found that the epidemic is the most severe in the major
urban centers in Malawi and that these areas have the
highest concentration of individuals who are in the
HRG. These results highlight the necessity of focusing
prevention efforts on urban areas, which the Joint
United Nations Programme on HIV and AIDS
(UNAIDS) has begun to address in its global “cities”
campaign [36]. However, we have shown that most HIV-
infected individuals, and the majority of women and
men who are in the HRGs, live in rural areas. These

Fig. 4 a Residuals from the spatial error regression model for women. The 20 districts where the residual is less than one standard deviation are
shown in gray. The remaining colors show the degree to which the model under/overestimates prevalence in terms of the number of standard
deviations. b Residuals from the spatial error regression model for men. The 19 districts where the residual is less than one standard deviation are
shown in gray. The remaining colors show the degree to which the model under/overestimates prevalence in terms of the number of standard deviations
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results demonstrate that the majority of resources for
treatment and interventions will need to be used in rural
areas, where the burden of disease is greatest. Due to
low population density and settlement dispersion
patterns, it will be extremely challenging to design cost--
effective HIV control strategies for Malawi.
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