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Abstract

Precision oncology has primarily relied on coding mutations as biomarkers of response to

therapies. While transcriptome analysis can provide valuable information, incorporation into

workflows has been difficult. For example, the relative rather than absolute gene expression

level needs to be considered, requiring differential expression analysis across samples.

However, expression programs related to the cell-of-origin and tumor microenvironment

effects confound the search for cancer-specific expression changes. To address these chal-

lenges, we developed an unsupervised clustering approach for discovering differential path-

way expression within cancer cohorts using gene expression measurements. The hydra

approach uses a Dirichlet process mixture model to automatically detect multimodally dis-

tributed genes and expression signatures without the need for matched normal tissue. We

demonstrate that the hydra approach is more sensitive than widely-used gene set enrich-

ment approaches for detecting multimodal expression signatures. Application of the hydra

analysis framework to small blue round cell tumors (including rhabdomyosarcoma, synovial

sarcoma, neuroblastoma, Ewing sarcoma, and osteosarcoma) identified expression signa-

tures associated with changes in the tumor microenvironment. The hydra approach also

identified an association between ATRX deletions and elevated immune marker expression

in high-risk neuroblastoma. Notably, hydra analysis of all small blue round cell tumors

revealed similar subtypes, characterized by changes to infiltrating immune and stromal

expression signatures.
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Author summary

Pediatric cancers generally have few somatic mutations. To increase the number of action-

able treatment leads, precision pediatric oncology initiatives also analyze tumor gene

expression patterns. However, currently available approaches for gene expression data

analysis in the clinical setting often use arbitrary thresholds for assessing overexpression

and assume gene expression is normally distributed. These methods also rely on reference

distributions of related cancer types or normal samples for assessing expression distribu-

tions. Often adequate normal samples are not available, and comparing matched cancer

cohorts without accounting for subtype expression overestimates the uncertainty in the

analysis. We developed a computational framework to automatically detect multimodal

expression distributions within well-defined disease populations. Our analysis of small

blue round cell tumors (including rhabdomyosarcoma, synovial sarcoma, neuroblastoma,

Ewing sarcoma and osteosarcoma) discovered a significant number of multimodally

expressed genes. Multimodally expressed genes were associated with proliferative signal-

ing, extracellular matrix organization, and immune signaling pathways across cancer

types. Expression signatures correlated with differences in patient outcomes for MYCN
non-amplified neuroblastoma, osteosarcoma, and synovial sarcoma. The low mutation

rate in pediatric cancers has led some to suggest that pediatric cancers are less immuno-

genic. However, our analysis suggests that immune infiltration can be identified across

small blue round cell tumors. Thus, further research into modulating immune cells for

patient benefit may be warranted.

Introduction

Large cancer sequencing projects, including The Cancer Genome Atlas (TCGA) and Thera-

peutically Applicable Research to Generate Effective Treatments (TARGET), have facilitated

the development of cancer gene expression compendia [1–6], but these compendia often lack

expression data from corresponding normal tissue. Without the normal comparator, Hoadley

et al. (2018) found that cell-of-origin signals drive integrative clustering of TCGA data. Strong

cell-of-origin and tumor microenvironment (TME) signals may also complicate the interpre-

tation of gene expression results for precision oncology applications, so careful modeling of

the data is necessary to infer accurate conclusions.

The TME includes tumor cells, stromal fibroblasts, immune cells, and vasculature [7]. Simi-

larities in TME composition across tumor samples have led to the identification of TME states

(e.g. inflamed, immune-excluded, immune-desert). While these states are dynamic, they can

still shed light on the immunogenicity of tumor cells and correlate with response to cancer

immunotherapies [8]. The TME cellular composition can be inferred from tumor RNA-Seq

data since host cell RNA is sequenced along with the cancer cell RNA. Tumor progression and

response to therapies is associated with features of the TME. Therefore, targeting the TME

therapeutically may improve treatment outcomes in some cancers.

Immunotherapies that activate the host immune system to eradicate tumors have been

effective in treating several cancer types, particularly cancers with a high mutation burden [9,

10]. Pediatric cancers tend to have fewer mutations than adult cancers, and while there has

been limited testing of immunotherapies in pediatric cancer patients, the currently available

data suggest lower response rates than adult cancers [11, 12]. However, improved immune

subtyping of pediatric cancers may identify subsets of patients that are candidates for powerful

immunotherapies. In addition to infiltrating immune cells, cancer-associated fibroblasts
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(CAFs) assist in extracellular matrix remodeling and activation of growth factor signaling.

CAFs facilitate tumor growth, metastasis, and resistance to some therapies, so identification of

CAF functions within a tumor may also facilitate clinical decision making. Methods are

needed to both infer and characterize gene expression subtypes that correlate with tumor

microenvironment states to accelerate the development of personalized therapies for pediatric

cancers.

Tumor/normal differential expression analysis in which a cohort of tumor tissues is com-

pared to corresponding normal tissue samples is an effective approach for identifying gene

expression biomarkers [13–15], but it is often not possible to conduct this analysis in a clinical

setting. Sufficient biological and technical replicates are limited by tumor tissue availability,

and healthy neighboring tissue often cannot be isolated. In addition, for many pediatric can-

cers, the cell-of-origin, and thus the appropriate reference normal tissue, is not known. Besides

differential expression analysis, single-sample pathway analysis can be used to identify upregu-

lation of biological gene sets in tumor subtypes. Among the most widely used pathway analysis

approaches is gene set enrichment analysis (GSEA) [16, 17]. GSEA identifies coordinated

expression of pathway genes using gene ranks and a Kolmogorov-Smirnov-like test statistic.

GSEA is usually performed on differentially expressed genes to compare two cohorts or phe-

notypes, but single-sample GSEA is also available when there is not an obvious comparator.

GSEA uses curated pathway gene sets like those in the Molecular Signatures Database

(MSigDB) [18].

Cancer gene expression subtypes are traditionally identified using unsupervised clustering

methods such as consensus clustering analysis [19–21]. These methods are generally under-

powered because the number of genes greatly exceeds the number of samples. Dimensionality

reduction approaches such as Principal Component Analysis (PCA) have been found to

underestimate the dimensionality of gene expression data [22]. Lenz at al. (2016) found two

cases in which PCA fails to identify a biological signal: when the size of the cluster is small and

when the effect size is small. Lenz et al. (2016) suggests investigating multimodally expressed

genes to improve identification of cancer subtypes. Cancer subtypes naturally lead to multi-

modal expression patterns because each subtype expresses a correlated set of genes at different

expression levels. Expression subtypes may result from dysregulated pathway expression

within cancer cells, but another source of multimodal expression comes from varying amounts

of infiltrating immune and stromal cells in the TME.

Gaussian mixture models are a powerful class of unsupervised clustering algorithms that

can be used to detect multimodally expressed genes [23–25]. A Gaussian mixture model is

appropriate when the expression data can be modeled as a mixture of two or more Gaussian

distributions [26]. One limitation of Gaussian mixture models in this context is that the num-

ber of clusters in the data is often not known beforehand, so a parameter search must be used

to identify the best-performing model. However, this is a computationally expensive approach.

This problem can be overcome by placing a Dirichlet process prior on the number of expres-

sion clusters. The number of clusters is then inferred while fitting the mixture model using

Markov chain Monte Carlo (MCMC) sampling [26]. This approach has not been widely used

in clinical cancer research because these algorithms are still computationally expensive, but

recent advances in Bayesian variational inference have made this approach scalable for preci-

sion oncology applications [27].

Here, we present the hydra framework for identifying clinically relevant expression sub-

types and classifying N-of-1 tumor samples using learned models. We provide an overview of

the hydra framework, assess performance for detecting differential pathway expression, and

apply the framework to better understand expression patterns in high-risk neuroblastoma and

other small blue round cell tumors. We apply the learned models trained on publicly available
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cancer gene expression data to the N-of-1 setting and show that this framework can identify

distinct immune and stromal expression signatures that differentiate pediatric cancer samples.

Finally, we identify recurrent tumor microenvironment signatures across pediatric cancer

types associated with differences in patient outcomes.

Materials and methods

Dirichlet process gaussian mixture model

Traditional parametric models, like the finite mixture model, use a fixed number of parameters

(i.e. number of clusters). Over- or underfitting can occur when the parametric model does not

reflect the underlying data [48]. Unlike the finite mixture model, the Dirichlet process mixture

model (DPMM) represents a theoretically infinite number of clusters and can adapt the num-

ber of clusters based on prior belief and the data [26, 48, 49].

The Dirichlet process (DP) is an infinite dimensional extension of the Dirichlet distribution

[50] and is commonly used as a prior distribution for infinite mixture models [51, 52]. The

Dirichlet process has two parameters: the concentration parameter α and centering distribu-

tion H. The concentration parameter α, where a 2 Rþ, controls the extent to which samples

from the DP resemble the centering distribution H. We model gene expression as a multivari-

ate Gaussian distribution, so our centering distribution is a normal-Wishart distribution

(NW0).

We briefly describe the stick-breaking construction of the Dirichlet process G* DP(α, H).

Consider a stick of unit length. To generate an infinite number of mixing weights π1, π2, . . ., πk
for the DPMM, first break a stick of unit length at ν 2 [0, 1] where ν is sampled from a Beta dis-

tribution, and set π1 to be the length of the first piece. We repeat this process using the remain-

der of the stick for each πk. The DP is truncated to the number of clusters K, which was shown

to accurately approximate the infinite posterior for large K [26, 48, 50, 53–55].

n � Betað1; aÞ ð1Þ

pk ¼ nk

Yk� 1

l¼1

ð1 � nlÞ ð2Þ

Next, we sample the parameters from the centering distribution H weighted by the mixing

components. If we consider a probability space Θ where y
�

k 2 Y, then H is a measure on the

partitions of Θ. For our application, we will partition the parameter space Θ into finite, mea-

surable partitions B1, B2, . . ., Bk.

y
�

k � H ð3Þ

G ¼
X1

k¼1

pkdy�k
ð4Þ

ðGðB1Þ;GðB2Þ; . . . ;GðBkÞÞ � DirðaHðB1Þ; aHðB2Þ; . . . ; aHðBkÞÞ ð5Þ

This construction generates the marginal of the Dirichlet process, which follows a Dirichlet

distribution. Samples from the marginal distribution are finite, discrete, and sum to 1 [50].

Next, we outline how the DPMM groups gene expression samples xi under cluster-specific

PLOS COMPUTATIONAL BIOLOGY Multimodal expression signatures for subtyping pediatric cancers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007753 April 10, 2020 4 / 25

https://doi.org/10.1371/journal.pcbi.1007753


parameters mzi
and Szi

where zi 2 1, 2, . . ., K is the cluster index.

xijmzi
;Szi
� N ðmzi

;Szi
Þ ð6Þ

zijp � Categoricalðp1; p2; . . . ; pkÞ ð7Þ

mzi
;Szi
jG � G ð8Þ

Gja;NW0 � DPða;NW0Þ ð9Þ

To improve our methods ability to scale to larger datasets, we incorporated the bnpy mem-

oized online variational inference algorithm (moVB) [53] into our analysis framework. The

moVB algorithm uses variational inference to approximate the posterior distribution and

interleaves birth, merge, and delete moves to avoid local optima and remove redundant clus-

ters [56]. We found that the moVB algorithm accurately identified the number of clustering

on validation datasets (S1 Fig), whereas standard MCMC sampling procedures tended to over-

estimate the number of clusters.

Hydra method

We developed a Bayesian non-parametric clustering framework for identifying biological

and technical variation in large cancer gene expression datasets without the need for a ref-

erence normal dataset. To our knowledge, this is the first reproducible and widely deploy-

able implementation of a non-parametric mixture model framework designed to overcome

the challenges of precision oncology gene expression analysis. The hydra pipeline is an

open source software tool hosted on GitHub (www.github.com/jpfeil/hydra). A Docker

container is available for deployment across environments (https://hub.docker.com/r/

jpfeil/hydra).

The hydra framework contains three main command-line tools: filter, enrich, and sweep
(Fig 1). The filter command is run first to isolate the multimodally expressed genes using a uni-

variate Dirichlet Process Gaussian Mixture Model (DP-GMM). There are two methods for

analyzing the resulting set of multimodally expressed genes. The enrich method, which subsets

to the genes found to be significantly enriched in biological pathways, and the sweep method,

which searches within user-defined gene sets for multimodal expression signatures. The

underlying analysis routines can be accessed within the Docker using Jupyter notebooks to

facilitate the development of user-defined workflows.

The filter command (Fig 1B) takes an expression matrix and filters the genes down to the

multimodally expressed genes using the DP-GMM described above. We apply a DP-GMM to

each gene, saving the model for genes with two or more expression clusters. This creates a

directory of multimodally expressed gene models which can be used to predict differential

expression in new samples. This analysis framework is a novel contribution to the precision

medicine research community. Our approach has several beneficial properties. For example,

training models on curated data sets and applying the models to new samples avoids the use of

reference distributions, which overestimate the uncertainty in the analysis by not accounting

for subtype expression. Furthermore, this approach identifies the set of most strongly differen-

tially expressed genes within a disease context, which may enrich for potential biomarkers for

precision medicine applications. The multimodally expressed genes are also used in down-

stream clustering analysis.

The enrich (Fig 1C) and sweep (Fig 1D) routines are two independent analyses to explore

multimodal expression in cancer gene expression cohorts. In addition to identifying
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expression variation within a disease context, we also found that multimodally expressed genes

that participate in a biological pathway tend to have correlated expression distributions. This

insight facilitates the detection of multimodal expression signatures by enriching for genes

that have multimodal expression distributions and participate in known biological processes.

The hydra software comes prepackaged with popular gene sets, including the Molecular Signa-

tures Database (MSigDB) [18], the Gene Ontology terms [57, 58], and the EnrichmentMap

gene sets [59]. The gene set database is configurable, so additional gene sets can be added at

runtime.

The enrich command uses a hypergeometric test [60] to discover enrichment of multimod-

ally expressed genes within a user-defined database of gene sets. This creates a list of gene sets

and a list of enriched gene set genes. The enrich method outputs a table of enriched gene sets

while also clustering samples across the genes that participate in the enriched gene sets. The

table of enriched gene sets may reveal surprising expression patterns and generate hypotheses

for further investigation of tumor subtypes.

The implementation of the enrich method includes an important parameter known as the

minimum component probability. The minimum component probability is the probability of

placing a sample within the smallest expression cluster. This is an additional filter to remove

multimodally expressed genes that influence a relatively small subset of tumor samples. This

parameter gives the user the ability to subset the enriched genes to those that influence a

Fig 1. Overview of the hydra framework tools. A: Suggested workflow for applying hydra framework tools to identify clinically relevant

gene expression subtypes. B: The hydra filter command removes unimodally distributed genes which greatly reduces the number of

genes in downstream clustering analysis. C: The hydra enrich command takes the multimodally expressed genes and returns enriched

gene sets. The enriched gene set genes are used for multivariate clustering of samples. D: The hydra sweep command looks for

multivariate normal clusters within user-defined gene sets. This can be used for the automatic detection of clusters in large gene set

databases. Abbreviations: Tumor microenvironment (TME).

https://doi.org/10.1371/journal.pcbi.1007753.g001
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greater number of patients. To aid in the exploration of minimum component thresholds, we

implemented a scan sub-routine. The scan routine tunes the analysis with respect to the con-

straints of the available data (e.g. number of samples and number of genes), which is an impor-

tant factor in pediatric cancer research since data is often difficult to obtain and so datasets are

relatively small. We recommend setting this threshold such that the number of genes is less

than the number of samples because otherwise the inference may become unstable [61].

The sweep routine identifies differentially expressed gene sets and can be used as an alterna-

tive to single-sample GSEA [16]. For each gene set, a multivariate DP-GMM is applied to

determine if more than one expression cluster is present within the gene set. This approach is

useful when curated gene sets are available for the disease of interest, but manual inspection of

each gene set is not feasible. Reducing the genes to multimodally expressed genes facilitates the

detection of differentially expressed gene sets. Existing gene set enrichment tools are known to

under-perform when the expression is correlated [62], but our approach is designed to identify

distinct correlation structures within gene expression datasets.

We have also implemented routines for cluster profiling and N-of-1 tumor analysis. These

routines are accessible within the docker container using the Jupyter notebook command.

Cluster profiling analysis of clusters derived from the enrich or sweep routines includes GSEA

[63] to identify the pathway expression that characterizes each cluster. GSEA uses all available

genes since it requires non-differentially expressed genes to assess the significance of an

enrichment score. A t-statistic is calculated for each gene, comparing gene expression values of

samples inside to those outside of a cluster. Cluster profiling GSEA uses the ranked gene-level

t-statistics to determine gene set enrichment.

The N-of-1 tumor analysis routine classifies a new gene expression profile into one of the

inferred clusters, calculates a gene-level z-score for that sample relative to the normalized

expression distribution, and performs standard GSEA using a preranked list of z-score values

[63]. This procedure can identify new gene expression signatures that may not be detectable

using the entire expression cohort as a background reference distribution. This approach is

another novel contribution to the field and may facilitate the identification of clinically rele-

vant signatures that are being overlooked in current gene expression analyses.

Synthetic data generation and validation

We first tested the hydra framework’s ability to detect differential pathway expression using

synthetic cancer data. We compared hydra sweep to two widely used gene set enrichment

tools: single-sample gene set enrichment analysis (ssGSEA) and gene set variation analysis

(GSVA) [64–66]. Both methods are implemented in the GSVA R package [65]. In order to

accurately model correlation structures within cancer cohorts, we modeled the synthetic can-

cer gene expression data as a multivariate Gaussian distribution. We used the TCGA glioblas-

toma multiforme (GBM) cohort (N = 166) to model a background mean and covariance

matrix for the synthetic data analysis. We chose TCGA GBM, a very different disease from

those analyzed in the remainder of this manuscript, to avoid overfitting the hydra method to

diseases of interest. This also enables us to demonstrate the flexibility of our method to analyze

data from a variety of cancer genome sequencing projects.

This approach allowed us to model cancer gene expression data while also controlling for

subtype-related expression variation. We downloaded the RSEM-quantified transcripts per

million (TPM) normalized gene expression measurements from the UCSC Xena Browser [3].

We focus our analysis on normalized gene expression data because this data is more widely

used in the cancer research community and fewer methods are available to analyze normalized
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counts. To reduce heteroscedasticity and the effect of outlier expression levels, we transformed

the expression data to log2(TPM + 1) [67].

We defined an expression subtype as a subset of samples with a distinct expression mean

and correlation structure compared to other samples within the disease cohort. To avoid biases

in the synthetic data generation process, we used random sampling to select MSigDB gene sets

for each subtype, the size of the subtype, and the correlation structure within the subtype. We

randomly generated a covariance matrix for the cancer subtype expression data, but used the

underlying covariance matrix of the TCGA glioblastoma multiforme dataset for the back-

ground samples. We tested the effect of having 10% and 25% of genes within a gene set being

differentially expressed (%DEG). In addition to these parameters, we tested a range of effect

sizes: 0.25 (least different), 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and 3.0 (most different). This process was

repeated twice for each gene set to create synthetic training and test data, which resulted in the

generation of 640 synthetic datasets.

We then applied the hydra framework using the hydra sweep command (Fig 1C), since this

method is directly comparable to the single-sample GSEA methods. The mean expression filter

removed any genes with a mean expression of fewer than 1.0 log2(TPM + 1). This avoids

lowly-expressed genes that may have particularly noisy expression measurements. The prior

on the hydra covariance matrix was the identity scaled by 2.0 and the prior on the number of

clusters was set to 2 because we expect there to be an activated cluster and a baseline expression

cluster. We set the over-expressing cluster to be the cluster with the largest L1 norm.

Pediatric cancer gene expression data

We downloaded pediatric cancer RNA-Seq data for neuroblastoma, osteosarcoma, Ewing sar-

coma, alveolar rhabdomyosarcoma, and embryonal rhabdomyosarcoma from the UCSC Tree-

house Compendium (https://treehousegenomics.soe.ucsc.edu/public-data/). This data was

produced using the same RNA-seq pipeline, so potential computational batch effects are mini-

mized [1, 6]. Clinical data for the TARGET neuroblastoma and osteosarcoma samples were

obtained from the TARGET Data Matrix (https://ocg.cancer.gov/programs/target/data-

matrix). We also analyzed a set of 58 synovial sarcoma microarray profiles with matching

metastasis rate data [68].

TARGET neuroblastoma analysis

We applied each hydra tool to the TARGET MYCN-non-amplified neuroblastoma cohort. We

first obtained the multimodal gene models using the hydra filter tool. The hydra filter tool

identified all genes with a multimodal expression pattern. We used the mean expression filter

to remove genes that may have unstable measurements due to low transcript abundances. We

excluded all genes with a mean expression value less than 1 log2(TPM + 1).

The hydra sweep command was applied to search for subtype expression within curated

MSigDB gene sets. We included the hallmark (n = 50), BioCarta (n = 289), KEGG (n = 186),

PID (n = 196), and Reactome (n = 1499) genesets [18]. We include all signatures with a mini-

mum component probability of 10%. For example, the smallest subtype cluster considered in

this analysis had 7 samples, since the total number of samples was 70. We investigated relation-

ships among differentially expressed gene sets by clustering the gene sets by their pairwise Jac-

card index. This created a similarity network that was then visualized using the Gephi software

tool [69].

The hydra enrich command identified correlated expression signatures using the enriched

GO term genes (FDR < 0.01). The multivariate mixture model α concentration parameter

was set to 5.0; the prior on the covariance matrix was set to the identity scaled by 2.0. The
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prior parameter for the number of clusters was set to 5. Our synthetic data analysis found

that the signal decreases below an effect size of 1.0, so we use this parameter value for all fol-

lowing analyses. We used the hydra scan routine to search a range of minimum component

probability thresholds (see Results) and found that a threshold/probability of 20% yielded the

most clusters while keeping the number of genes (p = 42) below the number of samples

(n = 70).

To validate tumor microenvironment expression subtypes, we correlated the hydra enrich
expression clusters with the results of tumor microenvironment profiling tools xCell [31],

CIBERSORT [70], and ESTIMATE [32]. We also compared the hydra enrich approach to

state-of-the-art consensus clustering methods M3C [20] and k-means clustering using the Gap

statistic to select the number of clusters [36]. Since these methods are influenced by the num-

ber of input genes, we tested a range of median absolute deviation (MAD) thresholds. The

number of clusters was assumed to be the smallest statistically significant value.

Small blue round cell tumor analysis

We then compared the clustering patterns across MYCN-NA neuroblastoma, osteosarcoma,

Ewing sarcoma, embryonal rhabdomyosarcoma, alveolar rhabdomyosarcoma, and synovial

sarcoma. We applied the TumorMap dimensionality reduction method [5] to visualize cluster-

ing of the full small blue round cell tumor gene expression matrix. We then applied the hydra

framework to explore expression variation within each disease. Each disease expression matrix

had unique statistical properties including sample size and subtype variation. This required us

to adapt the minimum probability threshold for each disease dataset using the scan routine.

The Jupyter notebooks for exploring these datasets can be found on GitHub (www.github.

com/jpfeil/hydra-paper/analysis). We used agglomerative clustering to investigate patterns in

the top 10 enriched gene sets for each disease’s expression subtypes.

Statistical analysis

A Kruskal-Wallis test was used to identify statistically significant differences across two or

more groups, and a Mann-Whitney U test was used for pairwise tests using a Holm-Sidak

correction for multiple hypothesis testing [71, 72]. We used the scipy [73] stats implementa-

tion of the Kruskal-Wallis test and the scikit-learn post hoc processing [74] implementation

of pairwise Mann-Whitney U tests. Spearman rank and Pearson correlation values were cal-

culated using the scipy library [72]. Survival analysis was done using the survminer package

[75].

H&E slide preparation and pathologist review

Pediatric tumor samples were flash frozen, embedded in OCT, and 5μm cryosections were col-

lected. Slides were hematoxylin and eosin (H&E) stained and imaged on a Leica DMi8,

equipped with a HC PL APO 40x/0.85 NA objective and DFC7000T camera. H&E slides were

reviewed by a licensed pathologist. Morphologic analysis was performed and the degree and

type of inflammation estimated from the histologic sections. Grading of inflammation was

either minimal (<10% of total nuclei consist of inflammatory cells) or moderate (20-30% of

total nuclei consist of inflammatory cells). The type of inflammation (predominantly small

mature lymphocytes or mixed inflammation consisting of small mature lymphocytes along

with plasma cells and/or eosinophils) was noted for each tumor sample.
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Results

Performance assessment using synthetic gene expression data

To assess how well hydra detects differentially expressed pathways as compared to common

pathway enrichment approaches, we applied the hydra framework to synthetically-generated

cancer gene expression data. We generated synthetic cancer gene expression data based on the

TCGA glioblastoma multiforme and the MSigDB Hallmark gene sets as described above. We

tested a range of effect sizes and percent differentially expressed genes (%DEG) within the

MSigDB gene sets. We generated receiver operator curves (ROC) and calculated the area

under the receiver operator curve (AUC) for each analysis. Overall, the hydra pipeline outper-

formed the single-sample GSEA approaches with a mean AUC of 0.93 (95% CI: 0.91—0.95).

ssGSEA had a mean AUC of 0.72 (95% CI: 0.71—0.74) and GSVA had a mean AUC of 0.67

(95% CI: 0.66—0.68) (Fig 2A).

We further investigated the performance of these methods by plotting the AUC against the

effect size at 10 and 25%DEG (Fig 2B). The hydra method performed better across all effect

sizes, achieving near perfect performance above an effect size of 2.0 and 0.75 at 10 and 25%

DEG, respectively. ssGSEA and GSVA performed similarly at low effect sizes, but ssGSEA per-

formed better than GSVA as the effect size increased. Overall, the hydra framework performed

significantly better than these standard gene set enrichment approaches, particularly at low

effect sizes. Therefore, the hydra approach is better suited for subtyping within a disease cohort

when the effect sizes are smaller and fewer genes are differentially expressed.

We performed a runtime analysis comparing hydra sweep, ssGSEA, and GSVA for identify-

ing a single differentially expressed gene set, since these methods are directly comparable.

Training the hydra model was the most computationally expensive step, but the classification

of new samples was very fast. The average runtime for the hydra sweep algorithm was similar

to ssGSEA, but the hydra runtimes were more variable across effect-sizes and number of dif-

ferentially expressed genes. The GSVA approach was faster than hydra sweep and ssGSEA, but

GSVA performed worse on the synthetic data analysis than ssGSEA and hydra. We repeated

the above analysis with an effect size of 1.0, a %DEG of 25%, and a range of sample sizes,

including 50, 100, 200, 300, 400, 500, 1000 samples. The hydra sweep and GSVA methods

scaled well to large sample sizes, but the ssGSEA runtime increased exponentially as the sample

size increased (Fig 2C & 2D).

Hydra analysis of high-risk neuroblastoma

High-risk neuroblastoma is an aggressive disease and is resistant to intensive therapy. Further

subtyping of high-risk neuroblastoma may identify novel therapeutic targets and improve risk

stratification. We hypothesized that unsupervised clustering of multimodally expressed genes

associated with enriched Gene Ontology terms would identify expression subtypes of high-

risk neuroblastoma tumors. TumorMap analysis [5] showed that the MYCN-non-amplified

(MYCN-NA) neuroblastoma samples clustered separately from MYCN-amplified (MYCN-A)

and stage 4S neuroblastoma samples (S2 Fig). We focused on the MYCN-NA neuroblastoma

tumor samples because this is the largest set of samples (N = 70) and variation within MYCN-

NA tumors is not well understood [28].

We applied the hydra filter analysis to the TARGET high-risk neuroblastoma cohort as

described above. This analysis identified 931 genes within the MYCN-NA neuroblastoma

cohort with a multimodal expression distribution. Of the 931 multimodally expressed genes,

358 genes were found to be potentially druggable by the Drug Gene Interaction Database (S1

File) and 60 genes were associated with an FDA-approved, anti-neoplastic drug [29].
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Fig 2. Hydra sweep is more sensitive than existing gene set enrichment approaches for detecting differential pathway

expression in synthetic data and scales well to large datasets. A: Mean receiver operator curves across effect sizes, percent

differentially expressed genes (%DEG), and MSigDB Hallmark gene sets. A larger area under the curve (AUC) indicates better

performance. The average AUC and 95% confidence interval for each method are in the ROC plot figure legends. B: Line plots

comparing the mean AUC across a range of effect sizes and %DEG values. C: Box plot showing mean runtimes for differential

pathway analysis where the effect size is fixed but the sample size varies. D: Line plot comparing the mean runtimes for

differential pathway analysis across a range of sample sizes.

https://doi.org/10.1371/journal.pcbi.1007753.g002
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We next examined whether unsupervised clustering of multimodally expressed genes

revealed coordinated expression of annotated gene sets within the MSigDB database. Apply-

ing the hydra sweep command to the MYCN-NA neuroblastoma cohort discovered 105 gene

sets with multimodal expression patterns. Each gene set sheds light on biological themes

that are differentially expressed within the MYCN-NA neuroblastoma cohort. We clustered

the differentially expressed gene sets to reveal these biological themes (S4 Fig). We found 6

major themes, including annotated cancer functions, cell cycle regulation, cell signaling

pathways, immune functions, extracellular matrix reorganization, and metabolic pathway

gene sets.

We applied the hydra enrich analysis to the MYCN-NA cohort to identify how the most

highly enriched gene sets interact to form expression subtypes. This analysis found 428

genes with a minor component probability greater than 20% (S1 File). Gene Ontology analy-

sis found enrichment for the following GO terms (FDR: q < 0.01): adaptive immune

response (24 genes), mesenchyme development (12 genes), steroid hormone secretion (4

genes), and response to corticosterone (4 genes). DP-GMM analysis of the 44 enriched GO

term genes identified three MYCN-NA neuroblastoma clusters (Fig 3A). The posterior prob-

ability for belonging to each cluster was 42%, 34%, and 17% for clusters 1, 2, and 3, respec-

tively. The posterior probability for a sample belonging to a new cluster was about 6% in our

analysis.

We next investigated cluster-specific expression signatures using GSEA (see Hydra Method

section). Cluster 1 was enriched for adaptive immune response gene sets, cluster 2 was

enriched for proliferative signaling gene sets, and cluster 3 was enriched for cancer-associated

fibroblast gene sets (Fig 3B). Cluster 3 shares several features of a wound healing response,

including fibroblast recruitment, extracellular matrix organization, and infiltration of immune

cells [30].

Clusters 1 and 3 were enriched for tumor microenvironment-associated gene expression.

To further validate this signal, we correlated the hydra clusters with enrichment scores from

the tumor microenvironment profiling tools xCell [31] and ESTIMATE [32]. Cluster 1 had

high average xCell enrichment scores associated with adaptive immune cell types including B-

cells, CD4+ naive T-cells, and CD8+ naive T-cells (Kruskal-Wallis: p < 0.001). Cluster 2 was

characterized by the absence of immune and stromal expression and higher tumor purity

scores than clusters 1 and 3. The average ESTIMATE tumor purity was 88%, 96% and 82% for

clusters 1, 2, and 3, respectively. Cluster 3 was enriched for fibroblast-associated expression by

xCell analysis (Kruskal-Wallis: p < 0.001). Clusters 1 and 3 had higher ESTIMATE immune-

associated expression levels than cluster 2 (average ImmuneScore per cluster: 58, -612, 56), but

cluster 3 had the highest stromal expression signature score (average StromalScore per cluster:

-1027, -1310, -135). Comparing ESTIMATE enrichment scores across clusters reveals clear

trends in broad immune and stromal expression signatures. Lastly, we found a correlation

between the hydra-identified tumor microenvironment subtype and CD274 and CTLA4
expression (S6 Fig).

We next correlated clusters with clinical features. We found no difference in patient sur-

vival outcomes across clusters (log-rank test, p> 0.05). Notably, cluster 1, which had the high-

est adaptive immune expression signal in MYCN-NA neuroblastoma, over-expresses cell-cycle

regulation genes, which was not observed in other small blue cell tumors. We investigated

associations with clinical covariates, including mutation burden, age, and tumor content as

assessed by a clinical pathologist, but found no statistically significant differences (Kruskal-

Wallis: p> 0.05). We then investigated associations between the hydra clusters and
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neuroblastoma-associated molecular aberrations and clinical features (S1 File). ATRX gene

deletions were enriched in cluster 1 (Fisher’s Exact Test: p< 0.05). MKI low tumors were

enriched in cluster 2 and 3 (Fisher’s Exact Test: p< 0.01). Chromosome 17 wild-type tumors

were enriched in clusters 2 and 3 (Fisher’s Exact Test: p< 0.01). Analysis on a larger dataset

may reveal additional clusters and correlations with clinical features.

Consensus clustering is a widely used approach for identifying tumor subtypes using gene

expression data. We applied the M3C consensus clustering method, which is a more sophisti-

cated version of consensus clustering that uses a null distribution to assess the statistical signif-

icance of the clustering [20, 21]. We used the top 5000 genes with the largest median absolute

deviation (MAD) because this threshold is routinely used in unsupervised clustering of cancer

gene expression data [33–35].

The M3C analysis resulted in the identification of two statistically significant clusters. One

M3C cluster correlated with hydra clusters 1 and 3 and the other M3C cluster correlated with

Fig 3. Hydra analysis identifies three distinct tumor microenvironment expression subtypes in MYCN non-amplified

neuroblastoma samples. A: Gene expression heatmap displaying expression profiles of hydra clusters. Heatmap columns (samples) are

ordered by hydra cluster membership. Ward hierarchical clustering applied to rows (genes) identified coordinated expression of GO

term genes. These GO term genes were originally identified by the hydra enrich command. B: GSEA performed on each cluster

identified enrichment of tumor microenvironment and proliferative signaling gene sets. C: xCell enrichment score distributions for B-

cells, CD8+ naive T-cells, and Fibroblasts, and the ESTIMATE TumorPurity score distributions for each cluster; enrichments for all cell

types are available in S1 File. Abbreviations: Normalized Enrichment Score (NES), Epithelial to Mesenchymal Transition (EMT),

Extracellular Matrix (ECM), Gene Ontology Biological Process (GOBP).

https://doi.org/10.1371/journal.pcbi.1007753.g003
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hydra cluster 2. Therefore, M3C clustering detected the tumor purity signal in the expression

data, but was not able to separate the adaptive immune cell and fibroblast infiltrated clusters

(hydra clusters 1 and 3). We also applied k-means clustering using the gap statistic approach

[36, 37] for estimating the number of clusters, but this approach grouped all samples into a sin-

gle cluster. We tested a range of MAD thresholds based on the median absolute deviation, but

found similar results across thresholds (S3 Fig). Overall, the hydra approach was more sensi-

tive at detecting distinct tumor microenvironment states than these other popular clustering

methods.

To further investigate expression patterns within the hydra-identified tumor microenviron-

ment subtypes, we performed GSEA by z-score normalizing each tumor’s gene expression

data to its tumor microenvironment cluster. This is a novel GSEA approach that uses the

tumor microenvironment state discovered by the hydra method to identify additional gene

expression signals for individual samples. This approach revealed signals not present at the

cohort level analysis (Fig 4). For example, enrichment of immune expression signatures within

cluster 2 predicted differences in overall survival such that patients with higher immune

expression had a better overall survival rate. Similarly, an elevated cell cycle signal within clus-

ter 3 predicted worse survival compared to other cluster 3 samples with lower cell cycle expres-

sion. A metastatic expression signal was identified in the analysis of cluster 1 samples, but this

signature did not correlate with a difference in survival. This approach may therefore provide

appropriate background distributions for revealing and evaluating the significance of gene

expression patterns and survival statistics within tumor subtypes.

N-of-1 tumor analysis for pediatric neuroblastoma

The command-line interface of the hydra toolkit includes a predict function for labeling sam-

ples using a pre-fit model. The MYCN-NA neuroblastoma model described above was used to

predict expression subtypes on a new set of samples. We obtained tumor gene expression data

from six stage 4, MYCN-NA neuroblastoma samples from the UCSC Treehouse gene expres-

sion compendium [5, 6]. The age at diagnosis ranged from 2 to 6 years. Four out of six samples

had a deletion in the ATRX gene.

Application of the hydra N-of-1 analysis framework clustered 4 out of the 6 samples into

cluster 1, which is characterized by adaptive immune cell expression. Three of the ATRX-

Fig 4. Gene set enrichment analysis (GSEA) of MYCN-NA neuroblastoma identifies overall survival differences

within hydra cluster 2 and cluster 3. Cluster-level GSEA separated cluster 2 into high and low immune expression

subtypes and cluster 3 into high and low cell cycle expression subtypes. A: Kaplan-Meier plot for immune expression

subtypes within cluster 2. B: Kaplan-Meier plot comparing cell cycle expression subtypes within cluster 3.

https://doi.org/10.1371/journal.pcbi.1007753.g004
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deleted samples clustered with the high adaptive immune cell expression cluster (cluster 1)

and one clustered in the low immune, high proliferative signaling cluster (cluster 2). We

showed earlier that tumors with ATRX deletions tend to have higher adaptive immune expres-

sion, and we found a similar pattern in an independent set of MYCN-NA neuroblastoma

samples.

Two of the samples with loss of ATRX came from the same patient but at different time-

points. The first sample (diagnostic sample) clustered with high adaptive immune cell expres-

sion (cluster 1), but the resection sample clustered with the low immune expression, high

proliferative signaling cluster (cluster 2). We investigated possible explanations for the change

in tumor microenvironment state. We performed GSEA comparing the samples from different

timepoints to investigate potential mechanisms leading to immune evasion in these samples.

GSEA found downregulation of the MHC Class I Antigen Processing & Presentation GO term

in the resection sample (adjusted p-value< 0.002). Loss of antigen processing functions is a

common mechanism of immune evasion across cancer types [38].

We obtained H&E stained sections for each of the hydra-identified clusters (S5 Fig). The

cluster 1 sample had moderate levels of inflammation (30-50%) consisting of mature mononu-

clear cells, plasma cells, and eosinophils. The cluster 2 sample had minimal levels of inflamma-

tion (<10%) with some scattered mature mononuclear cells throughout the tumor. The cluster

3 sample looked similar to the cluster 1 slide with moderate levels of inflammation (30-50%),

but also had regions of apparent necrosis. The inflammation and necrosis in the cluster 3 sam-

ple may correlate with the tissue remodeling/wound healing signature identified in the expres-

sion data.

Hydra analysis discovers complex tissue signatures

While the MYCN-NA neuroblastoma analysis above focused on immune and wound healing

expression signatures, the hydra enrich method is unsupervised and can therefore detect any

type of expression signature. To illustrate this, we applied the hydra filter/enrich analysis to the

TARGET osteosarcoma cohort (N = 74) and discovered enrichment of the GO striated muscle

contraction term (FDR< 0.01, Fig 5). Multivariate clustering for the GO striated muscle con-

traction gene set using the sweep routine identified two clusters. xCell analysis of the osteosar-

coma cohort found significant enrichment of skeletal muscle expression in the second cluster

(Mann-Whitney U test, p< 0.001). Surprisingly, the M3C clustering approach was not able to

detect the strong muscle signature using the 5000 genes with the largest MAD (p> 0.05). We

used the muscle expression signature to identify osteosarcoma tumors in the UCSC Treehouse

Compendium which also contained a similar expression signature. We subsequently con-

firmed with a licensed pathologist that one of the muscle-expression positive tumor samples

did contain significant muscle tissue infiltration. The hydra enrich analysis revealed expression

signatures not routinely investigated when analyzing osteosarcoma data. Nevertheless, these

signals contribute significantly to the tumor expression profile, so explaining these sources of

variation is necessary to derive clinically relevant conclusions from gene expression data.

We applied the filter method to Ewing sarcoma and discovered multimodal expression of

an important druggable gene, JAK1. Applying the multimodal expression model allowed us to

deconstruct the Ewing sarcoma distribution into three components (S7 Fig). We found that

the expression component with the highest JAK1 expression was also enriched for mast cell

expression. Therefore, overexpression of JAK1 may not correspond to activation of the JAK/

STAT signaling pathway in cancer cells but rather to the presence of mast cells within the

tumor microenvironment. Furthermore, targeted inhibition of JAK1 using ruxolitinib was

shown to inhibit essential mast cell functions, including degranulation [39]. Therefore,
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therapeutic intervention intending to inhibit JAK1 expression in cancer cells may inadver-

tently inhibit the patient’s mast cell functions. Overexpression analysis using the Ewing sar-

coma JAK1 expression distribution may identify JAK1 as an actionable lead, but further

investigation into the effect of inhibiting off-target JAK1 expression in mast cells is needed.

The hydra framework facilitates the identification of important expression signatures which

can be used to deconstruct complex tumor expression subtypes and identify potentially con-

founding expression signals.

We next quantified the number of multimodal druggable genes from the MYCN-NA neu-

roblastoma dataset that correlated with at least one xCell cell type signature. Out of the 358

druggable genes, we found that 77 correlated with a non-cancer cell type (Kruskal-Wallis test:

Holm-Sidak adjusted p-value < 0.05, S1 File). Some of the druggable genes were expected to

correlate with non-cancer cells, including the cytokines IL6 and TGFB2, which correlated with

epithelial cells and fibroblasts, respectively. Other druggable genes were surprising, like

AURKA and AURKB, which correlated with higher Th2 cell expression. Aurora kinases play

essential roles in spindle formation during mitosis and the overexpression of these genes is

associated with evading spindle formation checkpoints in cancer [40], but little is known in

how these genes correlate with infiltrating immune cells. Aurora kinase inhibitors show lim-

ited clinical activity in solid tumors, but have been shown to have a greater effect in leukemias

[40, 41].

Fig 5. Hydra analysis of TARGET osteosarcoma cohort reveals skeletal muscle signature. Hydra enrichment analysis on the TARGET osteosarcoma cohort

revealed a subset of patients with high skeletal muscle expression. A: Clustered heatmap shows the muscle signature genes identified by hydra unsupervised

enrichment analysis (purple: enriched for muscle signature; yellow: not enriched for muscle signature). B: xCell tumor microenvironment profiling identified

significant differences in skeletal muscle expression compared to background (p< 0.001). C: H&E stained tumor slide confirms presence of striated muscle tissue

within the tumor sample.

https://doi.org/10.1371/journal.pcbi.1007753.g005
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Hydra analysis reveals recurrent expression subtypes across small blue

round cell tumors

We next investigated whether similar hydra clusters could be identified across other small blue

round cell tumors. We chose to focus on extracranial solid tumors because they are among the

most common pediatric cancers, making up 20% of all pediatric cancer diagnoses [42], and

while survival rates have improved, there are few effective treatment options for the subset of

patients with relapse or refractory disease [43]. Identifying expression subtypes for these dis-

eases may improve risk stratification and discover opportunities for new therapies. These

tumors also share similar histopathological features, so we hypothesized that these tumors may

share similar gene expression subtypes, despite significant differences in the raw expression

profiles (Fig 6A).

We first performed TumorMap analysis, which is a dimensionality reduction approach

for visualizing genomic data on a 2D surface [5]. We found that small blue round cell tumor

types—MYCN-NA neuroblastoma, osteosarcoma, Ewing sarcoma, synovial sarcoma, alveolar

rhabdomyosarcoma, and embryonal rhabdomyosarcoma—all form separate TumorMap clus-

ters (Fig 6A). This suggests there is a strong cell-of-origin signal driving the clustering of these

cancer types, which is an observation that was recently made in the larger TCGA dataset of

adult cancers [44]. While pan-cancer analysis emphasized the differences across small blue

round cell tumors, we hypothesized that expression subtypes within cancer types would partic-

ipate in shared biological themes.

We next performed hydra enrich analysis within each small round blue cell cancer type and

found shared biological themes across all six small blue round tumor types. Hierarchical clus-

tering of the top 10 statistically significant gene sets for each cancer type resulted in clustering

by expression subtype and not the cancer type (Fig 6B). Common themes emerged across

Fig 6. Hydra enrich analysis of small blue round cell tumors reveals similar expression subtypes across cancer types. A: TumorMap

visualization of 6 small blue round cell tumor types. B: Hierarchically clustered heatmap for the top 10 enriched gene sets across the 21

small blue round cell tumor expression subtypes. Each column corresponds to a cancer type and an expression subtype (x-axis). Each

row corresponds to a gene set. The expression subtype was manually assigned after reviewing the most highly enriched gene sets for each

cancer expression subtype.

https://doi.org/10.1371/journal.pcbi.1007753.g006
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diseases including translational regulation, cell cycle regulation, immune effector cell signal-

ing, inflammation, extracellular matrix organization, and tissue-of-origin signals. Further-

more, these signals predicted differences in patient outcomes in osteosarcoma and synovial

sarcoma (Fig 7). In both cases, the presence of immune-associated expression correlated with

better patient outcomes compared to tumors with proliferative signaling pathways associated

with translation initiation and cell cycle regulation. Other osteosarcoma clusters were not

included in the survival analysis due to insufficient number of samples with survival data

(n< 5). Survival data were not available for the rhabdomyosarcoma and Ewing sarcoma

expression datasets.

Discussion

The hydra framework uses model-based clustering to facilitate the discovery of recurrent

expression patterns within cancer gene expression cohorts. We leveraged recent improve-

ments in model-based clustering algorithms to identify differentially expressed genes without

a matched normal distribution. We modeled differential expression as a multimodal Gaussian

distribution using nonparametric Bayesian statistics. We then enriched for biologically-anno-

tated Gene Ontology terms and performed multivariate clustering to reveal expression sub-

types. The hydra framework can be used for both identifying expression subtypes within large

cohorts and classifying new tumor gene expression profiles using the trained models. The

hydra framework outperformed standard gene set enrichment tools for identifying overex-

pression of the MSigDB Hallmark cancer gene sets in synthetic data. Application of this frame-

work to small blue round cell tumors identified shared biological themes associated with the

tumor microenvironment.

Multivariate gene expression analysis is typically underpowered because the number of

genes greatly exceeds the number of samples. To address this limitation, we propose selecting

for multimodally expressed genes before performing multivariate analysis. The hydra filter
method reduces the number of genes and enriches for genes that participate in known biologi-

cal processes, including those curated in the Gene Ontology and MSigDB databases. Selecting

for multimodally expressed genes improves separation of known clinical subtypes better than

the standard approach of using all expressed genes according to TumorMap analysis (S2 Fig).

We also showed that the hydra approach of subsetting to multimodal genes improves detection

Fig 7. Hydra analysis identifies tumor microenvironment expression subtypes that correlate with patient outcomes in

osteosarcoma and synovial sarcoma. A: Kaplan-Meier plot showing overall survival curves for osteosarcoma wound healing and

translation clusters. B: Kaplan-Meier plot showing metastasis survival curves for synovial sarcoma clusters.

https://doi.org/10.1371/journal.pcbi.1007753.g007
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of differential pathway expression, including the identification of expression subtypes associ-

ated with the TME.

Significant progress has been made in subtyping neuroblastomas and adapting therapy for

aggressive subtypes, but unexplained heterogeneity remains [28]. Failure to account for this

heterogeneity decreases the power of standard methods to detect important expression pat-

terns. Identifying biomarkers using genome-wide technology may lead to improved risk strati-

fication and the discovery of novel drug targets. Hydra analysis of the TARGET MYCN-NA

neuroblastoma cohort found differential expression of tumor microenvironment markers,

including markers of the adaptive immune response. Pediatric cancers are generally thought

to be less immunogenic because they have lower mutation burdens than adult cancers, but the

immunogenicity of pediatric cancer has not been sufficiently investigated [11, 12].

Our analysis found significant variation in immune marker expression, including markers

of response to checkpoint blockade therapy, and identified ATRX deletions as a potential bio-

marker of immune infiltrated tumors in MYCN-NA neuroblastoma. Analysis of other small

blue round cell tumors revealed similar expression signatures across tumor types, despite sam-

ples clustering by their histology in a pan-cancer TumorMap analysis. Identification of shared

expression signatures across cancer types may suggest that these patients would respond simi-

larly to therapies that target these pathways. In particular, the identification of a cross-disease

subtype associated with high expression of immune markers may warrant further investigation

of immunotherapies in small blue round cell tumors using a basket clinical trial design [45].

Hydra analysis found significant differences in tumor immune and stromal expression that

may inform precision medicine applications. The tumor microenvironment has become an

important therapeutic consideration, but few methods account for the tumor microenviron-

ment directly. Tumor purity has been identified as a confounding factor in cancer gene expres-

sion subtyping efforts [46]. For example, tumor purity and tumor microenvironment

expression have been shown to correlate with pancreatic cancer subtypes [47]. Furthermore,

Aran et al. (2018) found that tumor purity was correlated with the mesenchymal glioblastoma

subtype and recommended a differential expression approach to computationally remove the

tumor purity signal. However, standard approaches for subtracting the tumor purity effect

may not be ideal because several mechanisms may influence tumor purity, and each mecha-

nism may result in a different expression pattern. For instance, our analysis of MYCN-NA neu-

roblastoma identified two gene expression signatures that correlated with lower predicted

tumor purity. Cluster 1 had an adaptive immune expression signature and cluster 3 had a can-

cer-associated fibroblast signature. Therefore, the estimated tumor purity signal should not be

subtracted without first accounting for the different mechanisms influencing tumor purity.

We also found shared biological pathway enrichment across small blue round cell tumors.

While these diseases are related and may derive from similar cell lineages, current expression

methods often emphasize difference across these diseases (Fig 6A). Unsupervised clustering of

adult cancer types found that cell-of-origin signals strongly influence clustering of cancer gene

expression data [44]. Although these diseases have distinct expression patterns on the surface,

we discovered common themes once we subset the data to the cell-of-origin signal and applied

the hydra analysis tools.

We found at least three shared TME states: immune silent, immune infiltrated, and wound

healing subtypes. The wound healing subtypes predicted better overall survival in osteosar-

coma and delayed metastases in synovial sarcoma tumors, which suggests the involvement of

the host immune response limits the progression of these tumors. Amplification of the host

immune response may further limit tumor growth and lead to immune-mediated tumor cell

death. Additional research into immune modulating therapies is warranted in small blue

round cell tumors and may lead to improved outcomes for some patients.
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Conclusion

Precision oncology aims to differentiate tumors of the same diagnosis in order to match

patients with the best treatment. We have developed the hydra framework to discover subtle

but recurrent expression patterns within a cohort of samples with the same diagnosis, which is

a novel strategy for pediatric precision oncology research. Our approach may help to uncover

the biology underlying tumor progression and response to therapy. We have shown that hydra

is more sensitive than standard gene set enrichment approaches for detecting differential path-

way expression. Additionally, our framework provides tools to conduct unsupervised cluster-

ing analysis to discover expression subtypes. We applied the unsupervised hydra analysis to

small blue round cell tumors and discovered distinct tumor microenvironment (TME) states.

This shows that one of the strongest signals in clinical gene expression data comes from the

TME, so careful modeling of the TME is required to maximize the impact of clinical gene

expression analysis. The hydra framework provides unbiased clustering tools to characterize

these sources of variation in specific disease populations and identify shared biological themes

that can potentially be targeted therapeutically.

Supporting information

S1 Fig. Example of bnpy memoized online variational inference clustering on toy data. We

used the bnpy moVB algorithm to infer the number of clusters from synthetic data. The model

first randomly assigns clusters. Then, the model iteratively improves the model fit, creating

and destroying clusters until the model converges on the correct number of clusters at lap 16

[56].

(TIF)

S2 Fig. Enriching for multimodally expressed genes improves clustering of established

neuroblastoma subtypes. Standard TumorMap analysis of the TARGET neuroblastoma data-

set resulted in stage 4S samples clustering with stage 4 neuroblastoma samples (left). An alter-

native TumorMap based solely on 1,498 multimodally expressed genes separated the stage 4S

samples into a distinct cluster (right).

(TIF)

S3 Fig. Consensus and k-means clustering applied to TARGET MYCN-NA dataset. We

tested a range of gene expression variation thresholds based on the median absolute deviation,

but found that the clusters identified by this approach could not resolve the same clusters as

the hydra approach. The barplot shows the number of clusters and the lineplot tracks the Rand

index comparing the M3C and k-means clusters and the hydra clusters.

(TIF)

S4 Fig. Hydra sweep analysis reveals differential pathway expression within MYCN-NA

neuroblastoma without a matched cohort of normal tissue. Unsupervised clustering of mul-

timodal gene sets revealed biological themes associated with hallmark cancer functions,

including cell cycle, immune cell signaling, extracellular matrix organization, and metabolism.

(TIF)

S5 Fig. Hydra method correlates with distinct tumor features as assessed by licensed

pathologist review of tumor H&E slides. A-B: H&E sections from fresh frozen tumor tissue

from MYCN-NA neuroblastoma sample at A: 2X magnification and B: 20X magnification.

Tumor cells are medium to large with moderate amounts of cytoplasm and areas of rhabdoid

appearing undifferentiated cells. There is a moderate amount of mixed inflammation present

(30-50%) consisting mostly of mature mononuclear cells with some plasma cells and scattered
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eosinophils. C-D: H&E sections from fresh frozen tumor tissue from MYCN-NA neuroblas-

toma at C: 2X magnification and D: 20X magnification. Tumor cells are moderate to large in

size with moderate amounts of cytoplasm. There is a minimal amount (<10%) of apparent

mononuclear inflammation scattered throughout the tumor. E-F: H&E sections from fresh

frozen tumor tissue from MYCN-NA neuroblastoma sample at (E) 2X magnification and (F)

20X magnification. Tumor cells are medium to large with moderate amounts of cytoplasm

and areas of rhabdoid appearing undifferentiated cells. There are also areas of apparent necro-

sis. There is a moderate amount of inflammation present (30-50%) consisting mostly of

mature mononuclear cells with some plasma cells and scattered eosinophils.

(TIF)

S6 Fig. Hydra enrich analysis identifies correlation between expression subtypes and

checkpoint blockade markers in MYCN-NA neuroblastoma.

(TIF)

S7 Fig. Hydra analysis identified JAK1 expression clusters that correlate with mast cell

expression signature in Ewing sarcoma. A: JAK1 expression distribution for Ewing sarcoma

cohort (top) and the JAK1 expression distributions for cluster 1 (green), 2 (orange), and 3

(blue). B: Boxplot showing the xCell mast cell enrichment score for the three clusters associ-

ated with JAK1 expression.

(TIF)

S1 File. TARGET MYCN-NA neuroblastoma supplementary data.

(XLSX)

S2 File. Hydra method documentation.

(PDF)
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