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ScienceDirect
After spinal cord injury (SCI), considerable reorganization and

plasticity are necessary for behavioral recovery. Plasticity

enhancing interventions following SCI are varied and include

but are not limited to: targeting the inhibitory environment,

growth promoting transcription factors, stem cell therapy,

neuromodulation via electrical stimulation and rehabilitation

itself. These recent advances have led to extensive axonal

growth and reorganization. However, this plasticity is not

always accompanied by increased behavioral recovery. Here,

we review the most recent literature demonstrating how

combining these plasticity enhancing treatments with

rehabilitation often leads to functional behavioral recovery.

However, only few studies have attempted these combinatorial

approaches and more work is needed to determine the type

and timing of rehabilitation necessary for recovery.
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Introduction
Recovery of sensorimotor and autonomic functions after

severe spinal cord injuries (SCI) remains a formidable

challenge for clinicians and scientists alike, despite prom-

ising progress in recent decades. The diminished or

completely severed connections between areas rostral

and caudal to a spinal lesion results in several cascades

of events leading to an inability to voluntarily control

movement. In severe lesions, this ability is never recov-

ered spontaneously. Several of the mechanisms prevent-

ing such spontaneous recovery continue to be unravelled.

Among those, there is reduced expression of growth

factors combined with an up regulation of inhibitory

factors to axonal growth and lack of neurogenesis [1],
Current Opinion in Physiology 2019, 8:152–160 
resulting in insufficient compensatory plasticity and per-

manent loss of function.

Functional recovery following such severe lesions is asso-

ciated with two major factors: changes in local spinal

circuitry caudal to the lesion and/or sparing/reconnection

of supra-lesion pathways. Plasticity within the spinal cord

(caudal to the lesion) is a key mechanism associated with

functional improvements with rehabilitation. Motor

recovery following rehabilitation interventions has been

associated with changes in neurotrophic factors [2–5],

synaptic composition, and neurotransmitter availability

[6–9], ion channels and membrane receptors [10,11] and

changes in motoneurone electrophysiological parameters

[12,13]. These have been recently reviewed in Cowan

and Ichiyama [14]; however, many such mechanisms

remain under investigated.

Promising plasticity enhancing strategies have been

developed and trialled pre clinically in recent years

demonstrating some degree of axonal regeneration/

sprouting through a lesion and functional synaptogenesis.

These have been recently reviewed [15,16]. Invariably,

the major outcome measurement to test success of such

interventions is the recovery of sensorimotor function.

Therefore, reorganization of sensorimotor spinal circuits

in conditions of enhanced plasticity becomes a central

topic of interest. Previously, some of those plasticity

enhancing strategies have been combined with rehabili-

tative interventions such as locomotor training [17–20],

cycling [21,22], swimming [23] or reaching and grasping

with forelimbs [24]. In this review, we will focus on recent

evidence investigating recovery of sensorimotor function

and the crucial role rehabilitative interventions play,

especially under conditions of enhanced plasticity. We

have chosen to subdivide different interventions in broad

subclasses representing-specific mechanisms addressed

by each intervention.

Inhibitors of axonal growth
Axonal growth (regeneration or sprouting) is limited

after SCI; therefore, great focus has been given to

growth inhibitory molecules such as Nogo-A and chon-

droitin sulfate proteoglycans (CSPGs). Nogo-A sup-

pression enhances plasticity and results in functional

recovery within 2–4 weeks of treatment commence-

ment [25,26], and starting anti-Nogo-A antibody ther-

apy immediately after SCI is more efficient than delay-

ing treatment [27]. The reduced inhibition observed in

Nogo-A knockout mice is enhanced by triple knockout
www.sciencedirect.com
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of Nogo-A, myelin-associated glycoprotein (MAG), and

oligodendrocyte myelin glycoprotein (OMGp) with

greater axonal growth and improvements in open field

locomotor score while MAG and OMGp deletion alone

do not result in beneficial effects [28]. Interestingly,

when anti-Nogo-A antibody was simultaneously  com-

bined with daily locomotor training a detrimental effect

on functional recovery was observed [19]. However,

sequential (not simultaneous) administration of anti-

Nogo-A antibody followed by intensive treadmill train-

ing leads to significant corticospinal tract (CST) fiber

sprouting and superior  recovery of locomotor function

[29]. This was also the case when anti-Nogo-A antibody

was combined with intensive rehabilitation in a stroke

model [30]. Clearly, the timing of delivery for each

intervention is a critical parameter to be considered in

combinatorial approaches.

The common signaling pathway for the above inhibitory

proteins is the Rho/ROCK pathway. RhoA is a regenera-

tion inhibitor and blocking it with Cethrin increases tissue

sparing around the lesion area leading to improvements in

locomotor recovery [31]. Different Rho inhibitors are

currently being tested in phase 1 clinical trials [32,33].

A recent study found an antibody against LPAR1 (known

to activate RhoA) or overexpression of LPPR1 (a negative

regulator of LPAR1) leads to enhanced sprouting of intact

CST axons and fewer missed steps in the grid walk test

following injury [34]. ORL1 signaling can also activate

the Rho/ROCK pathway and it encodes the receptor for

the opioid related peptide, nociceptin, and leads to

increased surface expression of the Nogo receptor

Ngr1. After SCI, ORL1 antagonists improved open field

locomotor function and 5 hydroxytryptamine (5-HT)

fibers sprouting; these effects were further enhanced

when ORL1 inhibition was combined with NgR1 dele-

tion [35]. Although statistically significant behavioral

improvements were observed (grid-walk test or open field

scores), the lesions were less clinically relevant (pyrami-

dotomies or dorsal hemisections) and none of these

studies combined a rehabilitation intervention. Nonethe-

less, they illustrate new directions in this line of promising

approaches to enhance axonal sprouting after lesions.

It is well established that CSPG digestion by chondroi-

tinase ABC (ChABC) treatment improves many forms of

motor and sensory function after SCI [36–39]. Combining

ChABC with intensive voluntary forepaw motor rehabili-

tation resulted in significant improvements in manual

dexterity, while general-enriched environment increased

ladder walk recovery but had a negative effect on manual

dexterity [24]. Only the animals in the combination group

achieved significant behavioral improvements. These

results were replicated when the combination therapy

was initiated four weeks after the initial lesion [40].

Interestingly, unlike the combination with anti-Nogo-A

antibody, simultaneous delivery of ChABC and
www.sciencedirect.com 
rehabilitation did not result in detrimental effects on

behavior. Noteworthy, when both anti-Nogo-A antibody

and ChABC were combined with delayed (four weeks

after injury) reaching training the triple combination

showed the greatest recovery [41]. More recently, a

peptide mimetic was generated which blocks the dystro-

phic cone forming action of CSPGs on the receptor

protein tyrosine phosphatase s; this resulted in increased

5-HT fiber sprouting and improved behavioral recovery

following SCI [42]. The glial scar itself has long been

described to have inhibitory effects on recovery [43].

However, recent studies have shown that eliminating

reactive astrocytes resulted in tissue disruption and

severe motor deficits [44], and astrocytes seem to be vital

for axonal regeneration following SCI [45]. Although,

these latest developments have yet to be tested in com-

bination with rehabilitation interventions. In summary,

restricting inhibitory factors allows the CNS to achieve

some regeneration and behavioral recovery; understand-

ing the type and timing of rehabilitation is vital for future

combinatorial treatments.

Transcription factors and growth promotors
A variety of transcription factors (TFs) have been inves-

tigated in the context of axonal growth and their various

mechanisms have been recently review by Venkatash and

Blackmore [15]. Here, we focus on those TFs used in

recent years to promote axonal growth and/or recovery

following SCI. First, it is important to remember that not

all axonal growth leads to functional behavioral improve-

ments. Viral overexpression of the TF Sox11 (a TF

common in regenerating neurons) increased CST sprout-

ing and reduced axonal dieback following pyramidotomy

[46��]. However, Sox11 overexpression was found to

actually decrease step accuracy in a horizontal ladder

task. Combined deletion of the inhibitors phosphatase

and tensin homolog (PTEN) and Nogo led to increased

CST regeneration and sprouting but no locomotor or

behavioral improvements following dorsal hemisection

in a mouse [47�]. Numerous other studies also show

increased axonal regeneration with various TFs or other

treatments but fail to report relevant motor function data

[48–53]. It is now common to observe anatomical axonal

sprouting but lack of functional recovery, which suggests

such interventions are insufficient. Disinhibiting or pro-

moting growth is a first necessary step, but this needs to

be further guided for functional and meaningful synapses

to be (re)formed.

Many other studies have found varying (limited) degrees

of behavioral improvement along with considerable axo-

nal growth. For example, co-deletion of PTEN and

cortical suppressor of cytokine signalling 3 (SOCS3)

showed increased CST sprouting and reduced forelimb

errors on a horizontal ladder with no open field locomotor

differences following unilateral pyramidotomy [54]. Sim-

ilarly, combined treatment with insulin like growth factor
Current Opinion in Physiology 2019, 8:152–160



154 Motor control systems

T
a
b
le

1

S
tu
d
ie
s
c
o
m
b
in
in
g
p
la
s
ti
c
it
y
e
n
h
a
n
c
in
g
in
te
rv
e
n
ti
o
n
s
w
it
h
re
h
a
b
il
it
a
ti
o
n

S
tu
d
y

A
n
im

a
l

In
ju
ry

T
re
a
tm

e
n
t

T
ra
in
in
g

R
e
s
u
lt
s

C
h
e
n
e
t
a
l.
[2
9
]

R
a
t

T
9
T
-l
e
s
io
n

A
n
ti
-N

o
g
o
-A

a
n
ti
b
o
d
y
1
1
C
7

T
re
a
d
m
ill
tr
a
in
in
g
w
it
h
b
o
d
y

w
e
ig
h
t
s
u
p
p
o
rt
(B
W
S
)

In
c
re
a
s
e
d
lo
c
o
m
o
to
r
re
c
o
v
e
ry
,
im

p
ro
v
e
d
s
te
p
p
in
g
k
in
e
m
a
ti
c
s

W
e
i
e
t
a
l.
[5
9
]

R
a
t

C
4
d
o
rs
o
-l
a
te
ra
l

q
u
a
d
ra
n
t
le
s
io
n

P
K
A
in
h
ib
it
o
r

R
e
a
c
h
tr
a
in
in
g

In
c
re
a
s
e
d
s
in
g
le

p
e
lle
t
re
a
c
h
in
g
s
c
o
re
s

H
o
lli
s
e
t
a
l.
[6
0
��
]

M
o
u
s
e

C
e
rv
ic
a
l
d
o
rs
a
l
c
o
lu
m
n

le
s
io
n

R
y
K
k
n
o
c
k
o
u
t

W
e
e
k
ly

re
a
c
h
te
s
ti
n
g

In
c
re
a
s
e
d
s
in
g
le

p
e
lle
t
re
a
c
h
in
g
s
c
o
re
s

T
o
rr
e
s
-E
s
p
ı́n

e
t
a
l.
[6
1
��
]

R
a
t

C
4
d
o
rs
o
-l
a
te
ra
l

q
u
a
d
ra
n
t
le
s
io
n

L
ip
o
p
o
ly
s
a
c
c
h
a
ri
d
e

R
e
a
c
h
tr
a
in
in
g

In
c
re
a
s
e
d
s
in
g
le

p
e
lle
t
re
a
c
h
a
n
d
g
ra
s
p
s
c
o
re
s

L
iu

e
t
a
l.
[6
2
��
]

R
a
t

C
5
la
te
ra
l
h
e
m
is
e
c
ti
o
n

D
H
A

R
e
a
c
h
tr
a
in
in
g

In
c
re
a
s
e
d
re
a
c
h
in
g
s
u
c
c
e
s
s
,
n
o
c
h
a
n
g
e
in

g
ri
d
w
a
lk

re
c
o
v
e
ry

T
a
s
h
ir
o
e
t
a
l.
[7
1
��
]

M
o
u
s
e

C
h
ro
n
ic

T
9
7
0
k
d
y
n

c
o
n
tu
s
io
n

N
e
u
ra
l
s
te
m

c
e
ll
(N
S
C
)
im

p
la
n
t

T
re
a
d
m
ill
tr
a
in
in
g
w
it
h
B
W
S

In
c
re
a
s
e
d
o
p
e
n
fi
e
ld

lo
c
o
m
o
to
r
re
c
o
v
e
ry

H
w
a
n
g
e
t
a
l.
[7
2
� ]

R
a
t

T
9
2
0
0
k
d
y
n
c
o
n
tu
s
io
n

N
S
C

im
p
la
n
t

T
re
a
d
m
ill
tr
a
in
in
g

In
c
re
a
s
e
d
lo
c
o
m
o
to
r
re
c
o
v
e
ry
.
R
e
d
u
c
e
d
g
ri
d
w
a
lk

e
rr
o
rs
.

Im
p
ro
v
e
d
s
te
p
p
in
g
k
in
e
m
a
ti
c
s

A
s
b
o
th

e
t
a
l.
[8
0
]

R
a
t

T
8
/9

2
5
0
k
d
y
n
c
o
n
tu
s
io
n

5
-H

T
a
g
o
n
is
t
a
n
d
e
p
id
u
ra
l
s
ti
m
u
la
ti
o
n

T
re
a
d
m
ill
tr
a
in
in
g
w
it
h
B
W
S

In
c
re
a
s
e
d
lo
c
o
m
o
to
r
re
c
o
v
e
ry

a
n
d
s
ta
ir
-c
lim

b
p
e
rf
o
rm

a
n
c
e

P
e
tr
o
s
y
a
e
t
a
l.
[2
3
]

R
a
t

T
1
0
1
5
0
k
d
y
n
c
o
n
tu
s
io
n

N
T
3
a
n
d
s
p
in
o
-e
le
c
tr
o
-m

a
g
n
e
ti
c

s
ti
m
u
la
ti
o
n

S
w
im

m
in
g
a
n
d
w
a
lk
in
g
in

e
x
e
rc
is
e
b
a
ll

Im
p
ro
v
e
d
p
e
rf
o
rm

a
n
c
e
o
n
h
o
ri
zo

n
ta
l
la
d
d
e
r
a
n
d
n
a
rr
o
w
in
g

b
e
a
m

M
a
n
o
h
a
r
e
t
a
l.
[8
6
]

R
a
t

T
9
/1
0
fu
ll
tr
a
n
s
e
c
ti
o
n

5
-H

T
a
g
o
n
is
ts

P
a
s
s
iv
e
c
y
c
lin
g
a
n
d
a
c
ti
v
e

tr
e
a
d
m
ill
tr
a
in
in
g

In
c
re
a
s
e
in

w
e
ig
h
t
s
u
p
p
o
rt
e
d
s
te
p
s

P
ro
s
s
e
r-
L
o
o
s
e
e
t
a
l.
[8
7
]

R
a
t

C
2
u
n
ila
te
ra
l
C
S
T
le
s
io
n

A
c
u
te

in
te
rm

it
te
n
t
h
y
p
o
x
ia

L
a
d
d
e
r
tr
a
in
in
g

F
e
w
e
r
e
rr
o
rs

o
n
h
o
ri
zo

n
ta
l
la
d
d
e
r

L
o
y
e
t
a
l.
[1
0
0
� ]

M
o
u
s
e

T
8
d
o
rs
a
l
h
e
m
is
e
c
ti
o
n

N
o
th
in
g

V
o
lu
n
ta
ry

w
h
e
e
l
ru
n
n
in
g

In
c
re
a
s
e
d
ro
ta
ro
d
s
c
o
re
s
,
fe
w
e
r
e
rr
o
rs

o
n
h
o
ri
zo

n
ta
l
la
d
d
e
r
1 (IGF-1), osteopontin (OPN) and another compound 4-

aminopyridine-3-methanol (4-APmeOH) significantly

increased CST and 5-HT fiber sprouting and reduced

error rate on a horizontal ladder, but had no effect on

weight supported stepping or toe dragging following a

lateral hemisection [55]. Docosahexaenoic acid (DHA), a

well-known neurite growth enhancer [56], led to

increased axonal sprouting of the CST and 5-HT path-

ways and was accompanied by improvement in a pellet

reach task following a cervical hemisection [57]. How-

ever, no significant lasting improvement in locomotor

function was observed. Lastly, epothilone B, a neuron

targeting microtubule stabilizing drug, increased axonal

regeneration and led to improved gait regularity and

stride length and reduced footfall errors following a mild

contusion injury in rats [58�]. The inclusion of a contusion

injury in the latter study is of notice as none of the other

studies above used the more clinically relevant contusion

injury model. All of these studies reported extensive

axonal sprouting with their manipulations but limited

sensorimotor recovery. Importantly, none of those studies

introduced a rehabilitative strategy.

Combining rehabilitation with plasticity enhancing treat-

ments is vital if meaningful behavioral recovery is to be

achieved. Unfortunately, relatively few groups have done

so previously, but such studies have been increasing in

numbers more recently (Table 1). Recovery in a reaching

task was only significant following a C4 lesion when a

CST-specific protein kinase A inhibitor was combined

with reaching training [59]. Similarly, either an antibody

against or a motor cortex-specific knockout of the repul-

sive Wnt receptor RyK increased CST sprouting follow-

ing a cervical dorsal column lesion in a mouse [60��

]. However, cortical reorganization and motor improve-

ments in a reaching task were only seen if animals were

given weekly reaching testing, which repeatedly exposed

the animals to the task producing a training effect in the

long term. Rehabilitative reaching training was also found

to be vital with increased reaching accuracy and increased

CST sprouting observed when reaching training was

combined with a mild inflammatory lipopolysaccharide

following a dorsal column lesion [61��]. Lastly, DHA and

reaching training were found to have a synergistic effect

on CST and 5-HT fibers sprouting, as well as on reaching

task, but not grid walk recovery following a C5 lateral

hemisection in a rat [62��]. Similar to the anti-Nogo-A

antibody and ChABC studies combined with rehabilita-

tion, these studies clearly demonstrate the synergistic

effect of rehabilitation with axonal sprouting interven-

tions. It is also clear that further investigation on task

specificity of training is necessary as there is not always a

positive transfer of the practiced task onto other behav-

ioral outcomes, and in some cases there is even negative

transfer [24,63]. At present rehabilitation is routinely

delivered as part of treatment for SCI; therefore, further

research into combining plasticity enhancing treatments
Current Opinion in Physiology 2019, 8:152–160 www.sciencedirect.com
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with rehabilitative therapy is vital for positive transla-

tional results.

Stem cells
Research into stem cell treatments for SCI is a fast evolving

field which has expanded greatly in the past 10 years,

recently reviewed by Assinck et al. [64]. Work by Tuszynski

and others have demonstrated significant axonal sprouting

and synaptic plasticity and in some cases leading to behav-

ioral recovery. Lu et al. [65] demonstrated that combinato-

rial therapies using fibrin matrices and cocktails of growth

factors along with neural stem cell (NSC) transplantation

have been shown to increase axonal growth and lead to

recovery of hindlimb movement following a complete

thoracic transection. Using a similar protocol, multipotent

NSCs have also been shown to cause CST regeneration

following a complete transection. In the same study

improvements in a reaching task following a cervical

CST lesion were observed [66]. Other types of stem cells

have also demonstrated efficacy. Intravenous injection of

mesenchymal stem cells has led to open field locomotor

recovery and sprouting of the CST and 5-HT fibers follow-

ing a moderate contusion injury [67]. Similarly, combina-

torial NSC therapies have also shown behavioral improve-

ments including combining: a tumor necrosis factor alpha

antagonist [68], chondroitinase ABC with various growth

factors [69], and histone deacetylase inhibitor [70]. How-

ever, a common observation from most of these and previ-

ous studies is the significant but modest changes in func-

tional recovery, such as 2–3 more pellets reached or ability

to move three joints in the hindlimb extensively in open

field but not weight support, and so on. Nonetheless, these

observations strongly suggest that a window of opportunity

is opened by such interventions to modify sensorimotor

circuits.

Combination of NSCs and rehabilitative therapies have

rarely been used in SCI studies so far. One recent study

found open field locomotor improvements only in those

mice receiving both treadmill training and NSC trans-

plantation following a thoracic SCI [71��]. While this

study shows some promising results, the behavioral

improvements seen although significant, were still mod-

est, and more work is needed to achieve fuller recovery.

Treadmill training in rats receiving acute NSC transplan-

tation has also been found to increase NSC survival, 5-HT

fibers sprouting, and significant locomotor recovery com-

pared to NSC treatment alone [72�]. There is a wide field

of research using NSCs for SCI treatment, however much

more work is needed to understand their mechanisms of

action, how to combine them with rehabilitation, and

whether the secretion of growth factors, increased direct

or indirect connections, increased myelination or some

other mechanisms is leading to the results seen. Under-

lining our lack of knowledge regarding cell transplanta-

tion is a study using olfactory ensheathing glia (OEG)

following SCI. When OEG implantation was combined
www.sciencedirect.com 
with training, axonal reorganization and initial improve-

ments in plantar stepping were seen; however, retransec-

tion of the OEG implanted spinal cord after training

resulted in increased locomotor performance [20]. The

stem cell and SCI field are growing exponentially, how-

ever, confound including animals self-training in cages,

and the unknown mechanisms for many of the treatments

has led to a paucity of combinatorial treatments which

include rehabilitation.

Other treatments
There is some spontaneous axonal regeneration and

recovery following SCI. In rodent models after incom-

plete injury, habitual cage movements (self-training) are

critical for functional recovery [73]. Recently some of

these changes have been studied using previously

unavailable chemogenetic silencing techniques. Spared

dorsolateral CST sprouting [74], reticulospinal sprouting

onto propriospinal neurons [75,76], and a new rubro-raphe

pathway [77] have all been implicated in motor recovery

following incomplete SCI. Some of the studies below

attempt to tap into existing or spared circuitry in order to

overcome behavioral deficits, either via changes in local

spinal or in supraspinal connectivity.

An example of changing excitability of local spinal cir-

cuitry is spinal stimulation (direct or indirect) which is

often combined with training to increase plasticity and

result in step kinematics improvements [78,79]. A recent

study combining epidural stimulation and 5-HT agonist

treatment along with locomotor training was shown to

increase locomotor recovery and movement following a

severe contusion injury [80]. This recovery was shown to

be mediated by a cortico-reticulo-spinal pathway which

only appeared following combinatorial treatment. Simi-

larly, electromagnetic spinal stimulation and/or NT-3

treatment were only found to improve grid and beam

walking accuracy when combined with exercise training

following a thoracic contusion [23]. These neuromodula-

tion interventions have received considerable interest

and recent results from human experiments have demon-

strated their vast potential to recover standing, stepping

and voluntary control of movement even after clinically

complete lesions [81–85].

5-HT agonists have also been demonstrated to engage

spinal circuitry following severe lesions. A recent study

combined 5-HT treatment along with passive cycling,

and treadmill training demonstrating increased cortical

reorganization leading to an increase in open field loco-

motor function and increased weight supported steps

following a complete thoracic transection in a rat [86].

Increased cortical reorganization was seen in the above

combinatorial therapy and loss of this reorganization led

to elimination of the locomotor recovery previously

observed. These results certainly demonstrate positive

changes in circuitry, but the fact that behavioral tests were
Current Opinion in Physiology 2019, 8:152–160
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only completed after administration of 5-HT agonists

confounds clear interpretations of these findings. None-

theless, the key role played by rehabilitation in such

combinatorial interventions is clearly demonstrated.

Another very clear example of the need for rehabilitative

therapies was observed using acute intermittent hypoxia

(AIH) in a unilateral cervical CST lesion in a rat [87]. AIH

only improved horizontal ladder performance if combined

with task-specific ladder training.

One interesting study used a chloride potassium sympor-

ter (KCC2) agonist to inhibit inhibitory interneurons and,

therefore, allow new relay pathways to be active; these

new pathways led to an increase in open field locomotor

scores and some plantar stepping following a staggered

lesion [88]. Other research on KCC2 has implicated a

reduction in this membrane transporter as driving
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maladaptive nociceptive plasticity [89] and development

of spasticity [10] following SCI.

Other treatments to induce axonal growth after SCI with

accompanying motor recovery include epigenetic modu-

lation using histone deacetylase inhibitors [90] demon-

strating modest (1 point in BMS scale or beam walk)

behavioral recovery [91], axonal growth [92], or anti-

inflammatory actions [93]. Further anti-inflammatory tar-

gets include IL-4 and IL-10 as increasing these cytokines

leads to some behavioral improvements following SCI

[94,95]. Self-training or ‘spontaneous recovery’ induce

some compensatory sprouting and rerouting of connec-

tions. It remains to be determined whether targeted

rehabilitation and electrical, chemical, or physiological

stimulation could further enhance this compensation

leading to fuller recovery.
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Final remarks
There has been a great expansion in the amount of

plasticity enhancing interventions used to treat SCI.

The Nogo-A and CSPG fields have both been studied

extensively with still new downstream and related path-

ways being found. These have been combined with

rehabilitation in many different ways with variable results

depending on type and timing of rehabilitation [96]. A

substantial variety of TFs, growth factors, and other

plasticity enhancing treatments have been found and

tested in SCI in recent years; however, relatively few

of these have been combined with rehabilitation and of

those even fewer use the more clinically relevant contu-

sion injury model. Stem cell treatments along with growth

factor cocktails and fibrin-based hydrogels are an increas-

ingly studied field. Again, rehabilitative therapy is rarely

used alongside stem cell treatments, but there is great

potential for combinatorial treatments in this field. Other

extensively studied plasticity enhancing interventions

include spinal and cortical stimulation, acute intermittent

hypoxia, HDAC inhibitors, mild inflammation, and exer-

cise by itself. Many of these have been combined with

task specific-rehabilitation for synergistic effects on plas-

ticity and behavioral recovery.

The evidence so far strongly suggests that in conditions of

enhanced plasticity following lesions to the spinal cord,

rehabilitative interventions should be introduced to pro-

mote recovery of function and avoid development of

maladaptations (Figure 1). Unfortunately, there is very

little evidence as to the specific mechanisms associated

with such processes. We have recently demonstrated that

anti-Nogo-A antibody significantly increases muscle spin-

dle Ia afferents in the spinal cord, but locomotor training

significantly reduces those levels [29]. Modulation of Ia

afferent activity seems to be a critical component for

recovery of locomotor function [97,98] and spasticity

[99]. Clearly, further understanding of such mechanisms

forms vital targets of future studies.

It is important to remember that enhanced plasticity does

not necessarily translate into functional recovery. Mala-

daptations namely development of spasticity, neurogenic

pain, allodynia, detrusor dissynergia, autonomic dysre-

flexia, and so on, have also been reported. Unfortunately,

such effects are rarely reported although some studies

have addressed a few of these issues directly. Recovery of

sensorimotor function after SCI will depend greatly on

further understanding circuitry within the spinal cord

controlling movement. Locomotor training and exercise

alone have previously been shown to facilitate functional

recovery repeatedly. A recent study showed that volun-

tary wheel running increased CST and 5-HT fibers

sprouting and led to improvements on the horizontal

ladder and in rotarod tests following a thoracic dorsal

hemisection in a mouse [100�]. Investigations enhancing

axonal sprouting/regeneration fail to determine which
www.sciencedirect.com 
connections, if any, are reestablished. At this stage indis-

criminate sprouting of CST or 5-HT fibers are correlated

with functional motor recovery. However, it remains to be

determined how exactly the interplay among afferent,

descending, and spinal interneuronal networks are best

manipulated to achieve functional recovery.
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