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61 Summary

62 • Leaf dark respiration (Rdark), an important yet rarely quantified component of carbon 

63 cycling in forest ecosystems, is often simulated from leaf traits such as the maximum 

64 carboxylation capacity (Vcmax), leaf mass per area (LMA), nitrogen and phosphorus 

65 concentrations, in Terrestrial Biosphere Models. However, the validity of these 

66 relationships across forest types remains to be thoroughly assessed.

67 • Here we analyzed Rdark variability and its associations with Vcmax and other leaf traits 

68 across three temperate, subtropical and tropical forests in China, evaluating the 

69 effectiveness of leaf spectroscopy as a superior monitoring alternative.

70 • We found that leaf magnesium and calcium concentrations were more significant in 

71 explaining cross-site Rdark than commonly-used traits like LMA, nitrogen and 

72 phosphorus concentrations, but univariate trait-Rdark relationships were always weak 

73 (r2≤0.15) and forest-specific. Although multivariate relationships of leaf traits 

74 improved the model performance, leaf spectroscopy outperformed trait-Rdark 

75 relationships, accurately predicted cross-site Rdark (r2=0.65), and pinpointed the factors 

76 contributing to Rdark variability.

77 • Our findings reveal a few novel traits with greater cross-site scalability regarding Rdark, 

78 challenge the use of empirical trait-Rdark relationships in process models, and emphasize 

79 the potential of leaf spectroscopy as a promising alternative for estimating Rdark, which 

80 could ultimately improve process modeling of terrestrial plant respiration.

81 Key words: carbon cycling, gas exchange, leaf mitochondrial respiration, leaf spectroscopy, 

82 partial least-squares regression, plant functional traits, transferability

83
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84 Introduction

85 Land plant respiration, a major component of the global carbon (C) cycling and vegetation-

86 climate interactions (Wang et al., 2020a), releases ca. 60 Pg C/year to the atmosphere, that is 

87 six times higher than human-induced CO2 emissions (Ciais et al., 2014). About half of C 

88 released by plant respiration is derived from leaf dark respiration (Rdark – i.e., non-

89 photorespiratory mitochondrial CO2 release) that takes place during the day and night (Atkin 

90 et al., 2007; Huntingford et al., 2017), with the release of CO2 being coupled to production of 

91 energy in the form of adenosine-triphosphate (ATP) and reducing equivalents. Leaf Rdark plays 

92 an important role in nitrogen (N) assimilation, C skeleton synthesis and the regulation of redox 

93 balance (Atkin et al., 2015; Garcia et al., 2022).Because of the strong kinetic response of Rdark 

94 to temperature, Rdark is typically converted to a rate at a standardized temperature, such as 25°C 

95 (Rdark25), reflecting respiratory capacity (Atkin and Tjoelker, 2003; Atkin et al., 2007; Davidson 

96 et al., 2023b). As a result, Rdark25 has long been identified as a crucial biochemical parameter 

97 in Terrestrial Biosphere Models (TBMs) (Huntingford et al., 2017), and accurate representation 

98 of Rdark25 in TBMs greatly influences the precision of simulations of terrestrial plant 

99 productivity and carbon cycling (Schwalm et al., 2010; Atkin et al., 2015; Butler et al., 2021). 

100 However, Rdark25 is highly variable, in response to differences in energy demand among 

101 contrasting plant species, plant functional groups, ecosystem types, climate, soil conditions, 

102 and acclimation (Lambers and Oliveira, 2008; Atkin, 2011; Atkin et al., 2015; Reich et al., 

103 2016). Therefore, efficient and accurate characterization of leaf Rdark25 across ecosystems – 

104 particularly among different forest types – will be crucial if we are to improve representation 

105 of plant respiration in TBMs. The ability to rapidly quantify variation in Rdark25 is also essential 

106 if we are to develop a more thorough mechanistic understanding of the factors that drive Rdark25 

107 in nature.

108

109 Rdark25 is closely intertwined to photosynthetic metabolism through reliance of respiration on 

110 substrates from photosynthesis and demands for respiratory products (e.g., ATP) to support 

111 maintenance and export processes that are closely linked to photosynthesis (Fan et al., 2021; 
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112 Fernie et al., 2004). Because Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is 

113 the largest and most energy demanding enzyme in the photosynthetic process, TBMs 

114 commonly assume Rdark25 to be proportional to the maximum carboxylation capacity of the 

115 enzyme Rubisco standardized to a reference temperature of 25°C (Vcmax25) in TBMs (Schwalm 

116 et al. 2010; Atkin et al., 2015). An example is how Rdark25 and Vcmax25 are set by a commonly 

117 assumed coefficient (Rdark25:Vcmax25 ratio=0.015) in several TBMs (Clark et al., 2011; Atkin et 

118 al. 2017; Fan et al., 2021). Alternatively, Rdark25 can be extrapolated using its empirical 

119 relationships with other relatively easy-to-measure leaf traits, such as leaf-mass-per-area 

120 (LMA), leaf N and phosphorus (P) concentrations, which have more extensive spatial coverage 

121 (Reich et al., 1998b; Atkin et al., 2015; Rowland et al., 2016; Ren et al., 2023). However, the 

122 relationships between Rdark25 and leaf traits vary in nature, influenced by multiple biotic and 

123 abiotic variables (Wright et al., 2006; Reich et al., 2008; Atkin et al., 2015; O'Leary et al., 

124 2017), leading to uncertainties that restrict the fine-scale Rdark25 explanations and predictions 

125 within and across forest biomes.

126

127 Besides the widely studied leaf economics traits (i.e., Vcmax25, LMA, leaf N and P 

128 concentrations) that are related to Rdark25, other leaf elements might also crucially explain Rdark25 

129 variability (Atkin et al., 2011; O'Leary et al., 2017; Tcherkez et al., 2024). Magnesium (Mg), 

130 a core component of the energy transfer process in leaf respiratory metabolism, plays a crucial 

131 role in ATP synthesis and hydrolysis through the Mg-ATP/ADP complex, which can bind up 

132 to 50% of the total cellular Mg concentration (Maguire and Cowan, 2002; Cakmak and Yazici, 

133 2010; Chen et al., 2018). Manganese (Mn) shares similar ionic radii with Mg, and the two 

134 elements can substitute for each other in metal-binding sites, resulting in co-regulation of 

135 respiration rates in plants (Bloom & Kameritsch, 2017). Calcium (Ca) can affect leaf 

136 respiration processes as it acts as both the signal transduction ion that binds to a variety of 

137 respiratory-related carriers (e.g. mitochondrial aspartate/glutamate carrier and ATP-Mg/Pi 

138 carrier) (Bhosale et al., 2015; Rueda et al., 2016), and the activator of mitochondrial 

139 dehydrogenase (Satrústegui et al., 2007). Potassium (K) can differentially regulate the 
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140 activities of glycolysis and tricarboxylic acid cycle (TCA) involved in mitochondrial 

141 respiration processes (Okamoto, 1967, 1968; Cui et al., 2019). Sulphur (S) in thioredoxin 

142 participates in the redox regulation that largely affects plant respiratory function, by binding to 

143 respiratory proteins (Balmer et al., 2004; Gelhaye et al., 2004). Despite their importance for 

144 respiratory metabolism, little attention has been paid to how variation in Rdark25 is linked to 

145 differences in Mg, Mn, Ca, K and/or S abundance in leaves across terrestrial forest ecosystems.

146

147 Additionally, large-scale surveys of Rdark25 variability and mechanistic understanding of its 

148 driving factors are also greatly limited by traditional Rdark25 measurement (Garcia et al., 2022), 

149 determined by measuring the changing flux rate of oxygen or carbon dioxide concentrations in 

150 dark-adapted leaves (Long and Bernacchi, 2003; Coast et al., 2019; Lamour et al., 2021), which 

151 is often time-consuming and labor-intensive, and may be limited by canopy access. Therefore, 

152 an efficient, rapid and accurate alternative for characterization of Rdark25 variability remains 

153 particularly imperative. Leaf reflectance spectroscopy has shown a substantial potential in 

154 multi-scale monitoring of leaf trait variations within and across terrestrial ecosystems (Asner 

155 et al., 2016; Fu et al., 2020; Serbin & Townsend, 2020; Lamour et al., 2023; Liu et al., 2024). 

156 This potential arises primarily from the strong connection between the emergent continuous 

157 leaf reflectance spectrum with respect to solar radiation and a broad suite of underlying leaf 

158 structural, biochemical, and nutritional characteristics that drive the reflectance signatures 

159 through the interaction of radiation within internal leaf electronic and vibrational absorption 

160 properties (Curran, 1989; Elvidge, 1990; Kokaly et al., 2009). By employing statistical 

161 modeling methods such as partial least squares regression (PLSR) that harness the full-band 

162 leaf reflectance spectra, key signal bands related to target traits can be identified (Ollinger and 

163 Smith, 2005; Serbin et al., 2014) and the primary mechanisms underlying spectral predictions 

164 can be verified (Chavana-Bryant et al., 2016; Dechant et al., 2017; Meacham-Hensold et al., 

165 2019). Accordingly, a multitude of studies has confirmed that leaf reflectance spectroscopy can 

166 estimate a wide range of leaf morphological, biochemical to physiological traits. Leaf 

167 spectroscopy should also be efficient to estimate Rdark25, as it can effectively predict LMA and 
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168 Vcmax25 and empirically estimate leaf nutrient (N, P, K, Ca, Mg, S and Mn) concentrations, all 

169 of which are loosely associated with Rdark25 (Serbin et al., 2019; Asner et al., 2016; Yan et al., 

170 2021; Kothari et al., 2023). Recent studies have indeed revealed the potential capacity of leaf 

171 spectroscopy to predict variation in Rdark25 in wheat (Coast et al., 2019) and in a tropical forest 

172 ecosystem (Lamour et al., 2021). Therefore, we suspect that spectroscopy is likely to be a 

173 promising alternative approach for characterizing how Rdark25 varies across a large breadth of 

174 trait and spectra space and across several terrestrial ecosystems. However, the prior studies of 

175 spectra-Rdark25 models are constrained to a limited number of species and forest types, and the 

176 generalizability of spectra-Rdark25 models remains unknown across diverse forest ecosystems.

177

178 The goal of this study was to explore linkages between Rdark25 and leaf traits both within and 

179 across diverse forest types, and evaluate the performance of leaf reflectance spectroscopy as a 

180 more efficient alternative for predicting Rdark25. Specifically, we addressed the following two 

181 questions:

182 (1) How do the empirical relationships of Rdark25 with Vcmax25 and with leaf morphological 

183 and biochemical traits vary within and across forest types?

184 (2) Can leaf reflectance spectroscopy provide an efficient and robust alternative for 

185 predicting Rdark25 within and across forest types?

186 To address these questions, we collected a dataset of Rdark25, Vcmax25, LMA, leaf N, P, K, Ca, 

187 Mg, S and Mn concentrations, and leaf reflectance spectra of canopy trees from three different 

188 forest sites. These sites are located across a large latitudinal gradient, and include a temperate, 

189 mixed needle-/broad-leaved forest, a subtropical evergreen broad-leaved forest, and a tropical 

190 evergreen broad-leaved forest, hence achieving a broader comparison of species and forest 

191 types than incorporated in previous studies. Through addressing these questions, we hope this 

192 work can foster the mechanistic understanding and effective monitoring of Rdark25 variability 

193 across forest types, and improve the representation of leaf Rdark25 in TBMs to better model 

194 terrestrial plant respiration and the C cycle.

195
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196 Materials and Methods

197 Study sites and plant materials

198 This study was conducted at three forest sites in China (Fig. 1): (1) Mountain Changbai (CB; 

199 42°24'N, 128°06'E), a temperate, mixed needle- broad-leaved forest with a mean annual 

200 temperature (MAT) of 2.8°C and a mean annual precipitation (MAP) of 691 mm (He et al., 

201 2019); (2) Mountain Gutian (GT; 29°15'N, 118°07'E), a subtropical evergreen broad-leaved 

202 forest with a MAT of 15.3°C and a MAP of 1963.7 mm (Ning et al., 2013); and (3) 

203 Xishuangbanna (XSBN; 21°47'N, 101°03'E), a tropical evergreen broad-leaved forest with a 

204 MAT of 21.8°C and a MAP of 1493 mm (Shen et al., 2018). The three sites are representative 

205 of the range of forests found in China, and span a great diversity of biotic (tree species and 

206 forest types) and abiotic (temperature, precipitation, and soil properties) conditions (detailed 

207 information on soil pH, organic carbon, total nitrogen and total phosphorus are provided in 

208 Table S1). This large range in species and abiotic environmental conditions create the 

209 opportunity to investigate trait and spectral variation and evaluate more generalizable 

210 approaches (Guo et al., 2022).

211

212 In the three forest sites, Chinese Academy of Sciences operates a tower crane that we 

213 used/accessed to collect sunlit leaves from the representative canopy trees. The tower crane 

214 facilities enabled access to a 1-hectare area of each forest site, and the crane tower was 40 m 

215 high at CB, 60 m at GT and 81 m at XSBN. Specifically, 80 trees from 9 dominant canopy tree 

216 species in CB (Liu et al., 2023; Yan et al., 2021), 93 trees from 17 dominant canopy tree species 

217 in GT (Hu et al., 2005), and 95 trees from 39 dominant canopy tree species in XSBN (Liu et 

218 al., 2023; Shen et al., 2018) were selected as shown in Table S2. Sunlit branches in the upper 

219 canopy of these trees were sampled during the peak growing season (July-August) of 2023. 

220 We excised branches from the trees before dawn. The excised branches were immediately put 

221 in water and re-cut 10 cm away from the initial cut, ensuring that the branches always immersed 

222 during the sampling and measurements. These precautions were taken to avoid xylem 

223 embolisms and water stress (Wu et al., 2016) and limit the impact of excision on leaf 
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224 physiology (Verryckt et al., 2020; Akalusi et al., 2021; Ferguson et al., 2023) and spectral 

225 reflectance (Haynes et al., 2024; also see Fig. S1). On each branch, we selected mature leaves 

226 to measure leaf gas exchange, leaf reflectance spectra, and leaf morphological and biochemical 

227 traits (i.e., LMA and leaf N, P, K, Ca, Mg, Mn, and S concentrations). The statistical results of 

228 these measurements are summarized in Table S2. The detailed protocols of measurement are 

229 described as follows.

230

231 Field measurements

232 Leaf gas exchange

233 Branch samples were stored in individual buckets and placed in the shade until used for leaf 

234 gas exchange measurements. We used six portable Li-COR gas exchange systems (two LI-

235 6400XTs and four LI-6800s; Li-COR Inc., Lincoln, Nebraska, USA) simultaneously to 

236 measure the response of net assimilation rate (A) to intercellular carbon dioxide concentration 

237 (Ci) (commonly known as an A-Ci curve) and instantaneous leaf respiration in dark-adapted 

238 leaves (Rdark) between 6:00 and 17:00 each day. Our previous study has demonstrated that the 

239 type of Li-COR gas exchange system did not affect the results (Liu et al., 2023).

240

241 Measurement of A-Ci curves closely followed Rogers et al. (2017) and Yan et al. (2021) with 

242 details shown in Method S1. Measurements of Rdark followed established protocols (Lamour et 

243 al., 2021; Rowland et al., 2016). The leaf was dark-adapted to eliminate the influence of light 

244 on leaf respiration (Shapiro et al., 2004) for a period of 25 minutes, with the light source off 

245 and a dark cloth positioned on the instrument to avoid diffusion of light inside the chamber. 

246 The chamber conditions were set as follows: reference CO2 concentration at 400 ppm, 

247 exchanger temperature set at the outside temperature to prevent the risk of condensation in the 

248 instrument, and flow rate at 350 μmol s-1 to maximize the signal to noise ratio. After the dark 

249 adaptation period, CO2 exchange rates and chamber conditions were checked for stability over 

250 a 5-minutes’ window before measurements occurred. Once stable, gas exchange was measured 

251 every 5 seconds for one minute to constitute one measurement of Rdark. To enable temperature-
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252 standardized comparisons of respiration rate, we cross-compared two approaches to adjust Rdark 

253 to a reference temperature of 25°C (Rdark25). One method used an inverse Arrhenius equation 

254 (Davidson et al., 2023b), while the other method used a temperature-dependent Q10 (Tjoelker 

255 et al., 2001) based on a known rate at measured temperature (as used in Atkin et al., 2015). We 

256 found that Rdark25 calculated by these two approaches was almost identical (Fig. S2), therefore 

257 chose the widely used method described by Davidson et al. (2023b) to calculate Rdark25 

258 (Bernacchi et al., 2001, 2013; Von Caemmerer, 2013).

259

260 Leaf reflectance spectra

261 After completing the gas exchange measurements, we promptly measured the leaf reflectance 

262 spectra. A portable handheld contact-type spectrometer QualitySpec Trek (PANalytical, 

263 Boulder, Colorado, USA; spectral full-range: 400-2500 nm; spectral resolution: ≤3 nm at 700 

264 nm, ≤9.8 nm at 1500 nm, ≤8.1 nm at 2100 nm; sampling internal: 1 nm through the linear 

265 interpolation) with a leaf clip was used to measure the spectral reflectance of leaves. At 

266 instrument startup, a 99% reflective Spectralon white reference disk (Labsphere Inc., North 

267 Dutton, NH, USA) was placed on the outside of the sampling window to calibrate the 

268 reflectance. The instrument was also calibrated automatically every half hour during operation 

269 using an  internal white reference on the inside of the sampling window. Leaf spectral 

270 reflectance was calculated following the protocol by Wu et al. (2019) and Yan et al. (2021). 

271 Depending on leaf size, measurements were taken at 3 to 6 different positions on the adaxial 

272 side of each leaf, and the average reflectance for each wavelength was calculated as the 

273 reflectance spectrum of the leaf. During the collection of spectral data, issues such as spectral 

274 response saturation, instrument overheating, and abnormal spectral responses were addressed 

275 promptly according to prompts from the Trek instrument and the user manual.

276

277 Leaf biochemical and morphological traits

278 Following spectral measurements, the leaves without petiole were sampled for eight 

279 morphological and biochemical traits, including LMA, leaf N, P, K, Ca, Mg, Mn and S 
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280 concentrations. The measurements were performed via protocol in Method S2, and they 

281 provided mass-based estimates of elemental concentrations. To make it comparable with the 

282 area-based Rdark25, we convert them to area-based units for subsequent analysis.

283

284 Data analysis

285 Exploring trait-Rdark25 relationships within and across forest types

286 To investigate the relationships between Rdark25 and other leaf traits within and across the three 

287 forest sites, we conducted four analyses. Firstly, to examine the differences in leaf traits across 

288 forest types, we employed one-way analysis of variance (ANOVA) with the least significant 

289 difference (LSD) post-hoc test for multiple comparisons. To assess the individual contribution 

290 of each trait to the prediction of Rdark25 within and across forest types, we performed ordinary 

291 least squares (OLS) regression and slope tests via R (v.4.3.2, R Core Team, 2013) package 

292 smatr on the relationships between Rdark25 and other leaf traits. To rank the relative importance 

293 (RI) of each of the eight relatively easy-to-measure traits (i.e. LMA, leaf N, P, K, Ca, Mg, Mn, 

294 and S concentrations) in predicting Rdark25, the R package relaimpo (Wang et al., 2021) was 

295 used to analyze based on data from all three forest sites. We explored the collective contribution 

296 of the eight relatively easier-to-measure traits  to predicting Rdark25 through multivariate linear 

297 regression. Specifically, we employed a multiple linear regressions as: lm (Rdark25 ~ trait 

298 variables) to evaluate the predictive capability of these traits for Rdark25 within and across the 

299 forest sites. A backward stepwise regression based on the Akaike Information Criterion (AIC) 

300 was used to determine whether traits with low relative importance could be excluded from the 

301 model. To ensure the validity and comparability, we implemented a repeated double cross-

302 validation (rdCV) (Filzmoser et al., 2009; see the subsequent section on PLSR modeling) 

303 consisting of 10-fold cross-validation with 200 repetitions. This method maintains consistency 

304 with the validation strategy employed in spectroscopy modeling (Fig. S3).

305

306 Developing spectral models of Rdark25 and leaf morphological and biochemical traits
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307 To establish the spectra-trait models, we followed existing protocols (Dechant et al., 2017; Yan 

308 et al., 2021; Burnett et al., 2021). We adopted the PLSR method (Wold et al., 2001) in 

309 conjunction with a rdCV, implemented using the Python library scikit-learn (Pedregosa et al., 

310 2011), to develop the spectra-trait models. The PLSR method, similar to principal component 

311 analysis (PCA), reduces the number of predictor variables down to a set of orthogonal latent 

312 variables (Liu et al., 2023), and accommodates scenarios where the number of predictor 

313 variables greatly exceeds the number of response variables (Yan et al., 2021). This enables 

314 PLSR to summarize complex spectral data, solve the problem of collinearity of variables, and 

315 achieve direct interpretation with linear regression, capturing the relationship between 

316 reflectance and physiological traits (Burnett et al., 2021). Given these advantages, PLSR has 

317 been extensively applied in spectroscopic and chemometric analyses (Ollinger & Smith, 2005; 

318 Serbin et al., 2014, 2019). The rdCV method separates the data repeatedly and randomly 

319 through cross-validation procedures into a calibration subset (containing training and test 

320 components) and an independent validation subset, and evaluates models were conducted on 

321 independent validation subsets generated from numerous possible random splits. This method 

322 thereby possesses the advantage of decreasing the odds of good or bad outcomes solely due to 

323 chance (Wu et al., 2019). The modeling procedures have been shown by Dechant et al. (2017), 

324 Yan et al. (2021), and Liu et al. (2023b), and further modeling details are shown in Method 

325 S3, Figs. S3, S4 and S5.

326

327 Exploring the generalizability of spectra-Rdark25 relationships under different spectral modeling 

328 scenarios

329 To test the generalizability of spectra-Rdark25 model, we cross-compared PLSR model 

330 performance under two modeling scenarios: ‘site-specific’ and ‘cross-site’ scenario, and 

331 summarized the model performances in Table 1. In the ‘site-specific’ scenario, the spectra-

332 Rdark25 model was developed and evaluated using the data from each single forest site only. 

333 Each resulting PLSR model was then applied to the left-out data from the two other sites. With 

334 the ‘cross-site’ scenario, one spectra-Rdark25 model was developed and evaluated using full 
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335 dataset from the three sites. These modeling tests allowed us to assess the generalizability of 

336 spectra-Rdark25 relationships, and reveal potential scenarios and reasons for the deterioration of 

337 spectra-Rdark25 relationships.

338

339 Cross-comparison of field-measured and spectra-modelled Rdark25 variability in relation to leaf 

340 traits

341 To evaluate the influence of spectral model performance on trait-Rdark25 relationships and the 

342 drivers of Rdark25 variability, we explored the relationships between Rdark25 and values of the 

343 other eight leaf morphological and biochemical traits predicted by the ‘cross-site’ spectral 

344 models. We then cross-compared these relationships with those derived from field 

345 measurements. Furthermore, we analyzed the inter- and intra-specific variation of leaf traits 

346 within each forest site, as well as in predicted values and direct field measurements across all 

347 sites following the method proposed by Guillén-Escribà et al. (2021). We used an ANOVA-

348 based general linear model: Rdark25 ~ trait + species, and partitioned the total variance among 

349 individual leaves by using the percentage of variance explained by the species term to represent 

350 the interspecific components, with the residuals representing the intraspecific components.

351

352 Results

353 Trait-Rdark25 relationships and the relative importance of leaf traits for predicting Rdark25 

354 across forest types

355 To investigate our first question regarding trait-based methods for Rdark25 predictions, we first 

356 analyzed the variations in Rdark25, Vcmax25-Rdark25 relationships, and leaf morphological and 

357 biochemical traits within and across different forest types. We observed similar Rdark25 in 

358 tropical and subtropical forest, but significant higher Rdark25 in temperate forest compared to the 

359 other two forest types (p<0.001) (Fig. 2a). Subsequently, we found that Rdark25:Vcmax25 ratio was 

360 0.023 across the three forest sites and exhibited significant differences in these sites (p<0.001; 

361 Fig. 2b), with higher Rdark25:Vcmax25 ratio at tropical forest in Xishuangbanna (0.026), followed 

362 by subtropical forest in GT (0.024), and temperate forest in CB (0.019). In addition, we found 
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363 that LMA and multi-elemental (except Mg) concentrations showed large variability within and 

364 across the three forest sites, with Ca concentration exhibiting the similar trends as Rdark25 (Fig. 

365 S6). In addition, there were covariations among biochemical traits (Fig. S7).

366

367 To further explore the ability of traits to predict Rdark25 at our sites, we conducted both univariate 

368 and multiple linear regressions (multiple traits have no collinearity effect on Rdark25 (VIF<5)) 

369 (Figs. 3,4 & Table S3). We found that univariate trait-Rdark25 relationships were weak (r2≤0.13), 

370 and that the slope and intercept of the linear regression was site dependent (Fig. 3). Both the 

371 univariate and multivariate analyses suggested that the best predictor of Rdark25
 variation was 

372 leaf Mg concentration (r2=0.13, P<0.001; RI=23%), followed by leaf Ca (r2=0.13, P<0.001; 

373 RI=21%), N (r2=0.06, P<0.001; RI=17%), Mn (r2=0.06, P<0.001; RI=15%), S (r2=0.06, 

374 P<0.001; RI=10%), and P (r2=0.06, P<0.001; RI=8%) concentrations (Fig. 3b-c,e-h&4b). Leaf 

375 K concentration (r2=0.02, P<0.001; RI=4%) and LMA (r2=0.00, P>0.05; RI=2%) were 

376 relatively poor predictors of Rdark25 across forest types (Fig. 3a&d). Leaf K was removed from 

377 stepwise regression with AIC=22.20. Multiple linear regression models exhibited better Rdark25 

378 prediction (r2=0.30; RMSE=0.25 μmol CO2 m-2 s-1) than univariate linear models across forest 

379 types (Figs. 3a-h&4b). In opposite to other nutrients, leaf Mn concentration showed a 

380 significantly negative relationship with Rdark25 across diverse forest types (Fig. 3g).

381

382 Leaf reflectance spectroscopy outperforms leaf trait relationships in predicting Rdark25 

383 across forest types

384 We next examined the question of whether leaf reflectance spectra are sufficient to estimate 

385 Rdark25 and retrieve the trait-Rdark25 relationships across forest types. We found that our ‘cross-

386 site’ spectral models were the most robust for Rdark25 prediction (r2=0.65, RMSE=0.17 μmol 

387 CO2 m-2 s-1) and performed better than the multivariate model based on leaf traits (R2=0.30, 

388 RMSE=0.25 μmol CO2 m-2 s-1) (Figs. 4b&5). Meanwhile, the ‘cross-site’ spectral models 

389 captured the variations in all the other leaf traits including LMA (r2=0.96, RMSE=6.78 g m-2), 

390 leaf Mn (r2=0.79, RMSE=0.03 g m-2), Mg (r2=0.77, RMSE=0.04 g m-2), N (r2=0.74, 
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391 RMSE=0.20 g m-2), P (r2=0.72, RMSE=0.02 g m-2), Ca (r2=0.71, RMSE=0.21 g m-2), K 

392 (r2=0.71, RMSE=0.18 g m-2) and S (r2=0.70, RMSE=0.03 g m-2) concentrations across forest 

393 types (Fig. S8a-h). The linear relationships between spectrally derived traits and spectrally 

394 derived Rdark25 were highly consistent with those obtained from field measurements, with 

395 commensurable r2, slopes and intercepts for these two types of leaf trait relationships (Fig. S9a-

396 h). In addition, we found that while the contributions of inter- and intraspecific variation to 

397 Rdark25 variability were similar between the spectra-modelled and field-measured methods, the 

398 interspecific variation was slightly greater in the spectrally-modeled approach (Fig. 6a-d). 

399 These results verified that leaf reflectance spectroscopy provided an accurate alternative for 

400 inferring Rdark25 and trait-Rdark25 relationships across diverse forest types.

401

402 To further test the generalizability of spectra-Rdark25 relationships, we cross-compared the 

403 spectra-Rdark25 models under ‘site-specific’ and ‘cross-site’ scenarios. As shown in Fig. 5 vs. 

404 Fig. 7 and Table 1, the ‘cross-site’ model outperformed ‘site-specific’ models across different 

405 forest types (r2=0.65, RMSE=0.17 μmol CO2 m-2 s-1) (Fig. 5), followed by the ‘site-specific’ 

406 XSBN model (r2=0.56, RMSE=0.19 μmol CO2 m-2 s-1) (Fig. 7c), GT model (r2=0.28, 

407 RMSE=0.25 μmol CO2 m-2 s-1) (Fig. 7b), and CB model (r2=0.23, RMSE=0.35 μmol CO2 m-2 

408 s-1) (Fig. 7a). Importantly, as the number of species or range of Rdark25 included in the data of 

409 ‘site-specific’ model training subset decreased, the models exhibited worse performance and 

410 increased bias (as indicated by the RMSE and slopes) when applied to predict Rdark25 for the 

411 sites not involved in the spectral modeling (Fig. 7). These results suggest that an accurate and 

412 transferable spectra-Rdark25 model could be developed only when sufficient ranges of Rdark25 

413 variability and species diversity were encompassed in the PLSR modeling.

414

415 To untangle the underlying mechanism of the cross-site spectral–Rdark25 model, we identified 

416 key band for prediction by analyzing the patterns in the PLSR variable importance in projection 

417 (VIP) metrics and coefficients (Fig. 8). Specifically, our ‘cross-site’ spectra-Rdark25 model 

418 revealed the important bands as follows (VIP>1, Liu et al., 2023): 1) 400-427 nm, 519-575 nm, 
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419 and 694-700 nm in the visible band; 2) 700-800 nm in the red edge band; 3) 800-924 nm in 

420 near infrared band; and 4) short-wave infrared band of 1374-1428 nm, 1645-1672 nm, 1860-

421 1887 nm, 2156-2221 nm, and 2253-2315 nm (Fig. 8a).

422

423 Discussion

424 Leaf Rdark25, an important, complex but difficult-to-measure eco-physiological trait, 

425 significantly contributes to the whole-plant net carbon exchange, and is an important 

426 physiological parameter in many TBMs to estimate ecosystem respiration and global carbon 

427 cycling (Atkin et al., 2015; Huntingford et al., 2017; Butler et al., 2021; Ren et al., 2023). 

428 However, a coherent understanding and efficient monitoring of fine-scale Rdark25
 variability 

429 across forest types remain elusive. Here we revealed the relationships of Rdark25 with usual 

430 suspects leaf traits and leaf reflectance spectra across diverse forest types spanning large 

431 environmental gradients. We made two important findings. First, we found that leaf Mg, Ca 

432 and Mn concentrations were important in explaining Rdark25, but the relationships between 

433 Rdark25 and other leaf traits were relatively weak (r2<=0.13) and forest type-specific. Second, 

434 leaf reflectance spectroscopy could be used to create a single robust model of Rdark25 predictions 

435 across forest types (r2=0.65), with the transferability of the spectra-Rdark25 model dependent on 

436 the trait range and spectral diversity in the trait training data. Taken together, our study expands 

437 on the key determinants of Rdark25, and highlights the substantial potential of reflectance 

438 spectroscopy in fast, reliable and high-throughput monitoring of plant eco-physiological traits 

439 and carbon cycling.

440

441 Variations in Rdark25 and Rdark25:Vcmax25 ratio across diverse forest types

442 Our results revealed substantial variation in leaf Rdark25 and the Rdark25:Vcmax25 ratios within and 

443 across forest types in China spanning large environmental gradients. The observations agree 

444 with previous field-based or global-scale synthesis studies regarding the latitudinal pattern of 

445 leaf respiratory and photosynthetic traits (Reich et al., 1998b; Wright et al., 2006; Atkin et al., 

446 2015). While the large within-site variation may have weakened the effect of climate gradients 
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447 and makes Rdark25:Vcmax25 lower in temperate forests than in tropical forests, which is different 

448 from previous studies (Atkin et al., 2015). This variation may have several possible 

449 explanations, including the thermal acclimation responses of respiratory metabolism, 

450 contrasting species survival strategies and nutrient availability, which all affect the cost of 

451 investments in the respiratory apparatus and the balances between respiratory and 

452 photosynthetic metabolism (Lambers, 1985; Reich et al., 1998a; Atkin & Tjoelker, 2003; Ren 

453 et al., 2023). As a result, despite the strong functional coupling between Rdark25 and Vcmax25 

454 underpinned by chloroplast-mitochondrion interdependence, the proportionality of the two 

455 traits varies across species types and environmental conditions (Reich et al., 1998b; Atkin et 

456 al., 2015). However, despite the dynamic nature of both Rdark25 and Rdark25:Vcmax25 observed 

457 here and previously, a PFT-specific Rdark25
 value or constant Rdark25:Vcmax25 ratio still remain 

458 widely used in TBMs to simulate plant respiration (Schwalm et al. 2010; Clark et al., 2011; 

459 Fan et al., 2021). Our results show that compared to what is in some TBMs, Rdark25 at a given 

460 Vcmax25 is higher in our forest types (Rdark25:Vcmax25 ratio ranging from 0.019 to 0.026) than 

461 commonly assumed (0.015), which means the TBMs would underestimate Rdark. Therefore, we 

462 suggest incorporating more flexible parameterization schemes in TBMs to better capture the 

463 variation in large-scale terrestrial respiration, and model the associated carbon fluxes under the 

464 current and changing climate (Kyker-Snowman et al., 2022).

465

466 Biochemical traits reveal additional sources of leaf Rdark25 variability

467 Leaf trait-Rdark25 relationships are widely used to derive Rdark25 from other morphological and 

468 biochemical traits, and formulate the empirical equations to facilitate the representation of 

469 Rdark25 in TBMs (Atkin et al., 2015; Rowland et al., 2016). Among those traits, LMA, leaf N 

470 and P concentrations are often used, given their important roles in leaf construction costs, 

471 protein turnover, N assimilation, mitochondrial electron transport and glycolysis, which are 

472 functionally inter-dependent with leaf respiratory metabolism (Meir et al., 2001; Tjoelker et 

473 al., 2002; Fernie et al., 2004; Turnbull et al., 2005). Our results demonstrated weak (r2≤0.06) 

474 and forest type-specific relationships of Rdark25
 with these three traits (Fig. 3a-c), which are 
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475 consistent with previous studies that reported the moderate-to-weak trait-Rdark25 relationships 

476 across different PFTs, growth environments and biogeographical regions (Wright et al., 2006; 

477 Reich et al., 2008; Atkin et al., 2015; Wang et al., 2020a). These observed weak and dynamic 

478 trait-Rdark25 relationships within and across sites might be attributed to the differences in 

479 nutrient allocation to metabolic versus structural components, distinct species compositions, 

480 and the interactions among leaf traits (Millar et al., 2011; Atkin et al., 2015; O'Leary et al., 

481 2018; Rowland et al., 2018). Our study, together with previous findings, therefore suggest that 

482 there is no single universal scaling relationship accounting for Rdark25 over large 

483 biogeographical extents. In other words, some prevailing relationships between traits and 

484 Rdark25 observed at the global scale has limited predictability at fine-scale. This highlights the 

485 uncertainty of leveraging the conventional leaf trait relationships for characterizing cross-site 

486 Rdark25 variability.

487

488 In addition to the aforementioned three leaf traits, we further analyzed multiple leaf 

489 morphological and biochemical traits as determinants of Rdark25, and found the best predictor 

490 of cross-site Rdark25 variability was leaf Mg concentration, followed by leaf Ca, N, Mn, S and 

491 P concentrations, with minor roles of LMA and leaf K concentration (Figs. 3&4). Despite this 

492 order, together they control much of Rdark25 variability. This study quantified the relationships 

493 between multiple leaf elemental concentrations and Rdark25 over a large biogeographical scale, 

494 and highlights the important but previously unexpected roles of leaf Mg, Ca, Mn and S 

495 concentrations in explaining variability in Rdark25. Given the physiological functions of Mg, Ca, 

496 and S in mitochondrial activities (Millar et al., 2011; Bhosale et al., 2015; Rueda et al., 2016; 

497 Chen et al., 2018; Fratte et al., 2021), this may be the main reason for their positive relationship 

498 with leaf dark respiratory flux across forest types. It is worth noting that Mg and Ca, as the two 

499 most important elements affecting Rdark25, also have strong covariation (Fig. S6), suggesting 

500 that there may be a pathway between them connected through respiratory metabolism. In 

501 contrast with Mg, Ca and S, Mn was negatively correlated with Rdark25 (Fig. 3g), which has also 

502 been described in previous studies (Li et al., 2010; Takagi et al., 2021). The negative 
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503 correlation of Mn and Mg shows that there is also a competitive relationship between the 

504 utilization of the two elements by leaves not only on cell scale but on a large scale (Fig. S6), 

505 resulting in their opposite regulations on leaf respiratory metabolism (Bloom & Kameritsch, 

506 2017; Bloom & Lancaster, 2018). The Mn-induced decrease in dark respiration may suggest 

507 that the Mn concentrations observed in this study have reached a certain range of toxicity, 

508 because excessive Mn inhibits NAD-malic enzyme activity (Takagi et al., 2021) or alter 

509 stomatal and leaf anatomical development, causing stomatal dysfunction, and thus inhibit the 

510 activities of both carbon anabolism and catabolism (Li et al., 2010). Collectively, all of the 

511 examined eight leaf traits jointly contribute to 30% of cross-site Rdark25 variability, which still 

512 leaves a large proportion of unexplained Rdark25 variance, which might be associated with many 

513 other unconsidered factors, such as temperature acclimation, drought, leaf ontogeny, 

514 phylogeny, and leaf metabolic traits and metabolic status (Atkin et al., 2009, 2011; Reich et 

515 al., 2016; O'Leary et al., 2017; Yan et al., 2023). Further studies are thereby needed to reveal 

516 the mechanisms underlying the Rdark25 variability across forest types with the integration of 

517 more relevant abiotic and biotic sources.

518

519 Spectroscopy is an effective alternative for monitoring and understanding cross-site 

520 Rdark25 variability

521 Our results showed that leaf reflectance spectroscopy outperformed traditionally-used leaf trait 

522 relationships in predicting Rdark25 across sites (r2=0.65 vs. 0.30, RMSE=0.17 vs. 0.25 μmol CO2 

523 m-2 s-1; Figs. 4a and 5). To the best of our knowledge, this is the first demonstration of Rdark25 

524 prediction across forest types using hyperspectral spectra, although previous studies have also 

525 shown the efficiency of spectral models in a limited number of species or vegetation types 

526 (with relatively few species and limited size of the overall dataset) or of a single species, wheat 

527 (Doughty et al., 2011; Coast et al., 2019; Lamour et al., 2021). Our findings of the accurate 

528 (r2=0.70-0.96) cross-site spectral modeling of other eight traits also consolidated the recent 

529 studies in which leaf reflectance spectroscopy could accurately infer important leaf 

530 biochemical, morphological and physiological traits across different plant functional groups 
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531 and ecosystems (Ely et al., 2019; Nakaji et al., 2019; Kothari et al., 2023). These results 

532 therefore reinforce that leaf reflectance spectroscopy offers a viable alternative for monitoring 

533 multiple trait dimensions across diverse plant species and growth environments, and can 

534 particularly enrich trait databases to fill in the key observational gaps in those difficult-to-

535 measure physiological traits.

536

537 Given the likely lack of direct spectral absorption features by components in the respiratory 

538 systems, the spectra-Rdark25 model may rely on the absorption features that are not causally 

539 associated with the target trait, but rather indirectly via other covarying traits such as pigments, 

540 leaf structure and water content driving the spectral changes (‘constellation effects’; Chadwick 

541 and Asner, 2016; Nunes et al., 2017). The identified Rdark25-sensitive spectral bands are similar 

542 to the findings from a previous study on tropical forests (Lamour et al., 2021) and are often 

543 shown to be sensitive to leaf biochemical traits (leaf Mg, Ca, N, Mn, S and P) (Kokaly et al., 

544 2009; Osco et al., 2020; Liu et al., 2023; also see Fig. 8). The appearance of similar VIP peaks 

545 for leaf traits could be reflective of the shared functional roles. While leaf biochemical traits 

546 exhibit similar reflectance patterns to Rdark25, their weak explanatory power shown highlights 

547 the complexity of these relationships and their potential influence by additional factors. 

548 Meanwhile, these identified spectral bands are related to other leaf biochemical and 

549 physiological properties. The visible range has been connected with cell pigments; for example, 

550 chlorophyll absorbs red and blue light while reflecting green, which gives leaves their 

551 characteristic color and is closely linked to leaf nitrogen levels (Ustin et al., 2009; Wang et al., 

552 2020b). The red-edge range is associate with chlorophyll, chlorophyll fluorescence and Vcmax25 

553 (Zarco-Tejada et al., 2000; Yan et al., 2021), while the detected NIR and SWIR bands are 

554 tightly associated with water content, lignin, cellulose, and the amount of starch or lipid, which 

555 are substrates for respiration (Kokaly et al., 2009; Lamour et al., 2024). These suggest that 

556 other unmeasured traits or processes might also participate in the indirect prediction of Rdark25, 

557 and spectroscopy may have potential for simultaneously monitoring a full suite of leave traits. 

558 However, when comparing observed and spectrally predicted trait relationships, we observed 
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559 that the r² values were generally higher for spectrally predicted relationships (Fig. S9), likely 

560 due to the non-independence of the estimates, as both traits and Rdark25 are derived from spectral 

561 measurements. This may indicate that the spectra-modelled trait relationships tend to compress 

562 the variation and reduce large residuals, suggesting potential biases in the strength of the 

563 estimated trait covariance.

564

565 Another important finding was that the cross-site general spectra-Rdark25 model can be built 

566 only when leaf samples covering sufficient variability in both Rdark25 and leaf reflectance 

567 spectra are incorporated into the model development. This finding is supported by two aspects: 

568 1) the spectra-Rdark25 model under ‘cross-site’ scenario largely outperformed those under the 

569 ‘site-specific’ scenario (Figs. 5&7a-c); and, 2) the spectra-Rdark25 model under the ‘site-specific’ 

570 scenario showed much higher accuracy for its own forest site in contrast with the other two 

571 sites not involved in the model development (Table 1). Previous studies have observed that 

572 both leaf reflectance spectra and Rdark25 change remarkably with ecosystems, plant functional 

573 groups, climate conditions and leaf ages (Reich et al., 1998b; Atkin et al., 2015; Smith & Dukes, 

574 2018; O'Leary et al., 2023). However, most of these drivers of Rdark25 are still not sufficiently 

575 captured in our study. Notably that most of the variation in spectrally predicted traits appears 

576 to be interspecific rather than intraspecific (Fig. 6). This finding underscores the necessity of 

577 considering trait variability at larger taxonomic scales when developing spectra-based models 

578 (Kothari et al., 2023). Although site-specific models effectively capture variations driven by 

579 the local environmental and biological factors of specific forest types (Lamour et al., 2021), 

580 they lack the ecological heterogeneity necessary to generalize across greater biogeographical 

581 gradients. In cross-site modeling, while some precision at individual sites may be sacrificed, 

582 the model’s adaptability across different biogeographic regions is significantly enhanced. 

583 These results suggested that a more general and transferable spectra-Rdark25 model would 

584 require significantly broader and more diverse datasets, covering a wide range of leaf traits and 

585 spectra across diverse plant functional types and ecosystems (Serbin et al., 2019; Burnett et al., 

586 2021; Ji et al., 2024). However, while this step is promising, we still have some distance from 
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587 being able to rely solely on spectroscopy to predict complex traits like Rdark25 with high 

588 accuracy. Achieving this will likely involve trade-offs, such as accepting some reduction in 

589 site-specific precision in exchange for broader applicability. To effectively use spectroscopy at 

590 large scales, establishing a robust validation framework is also essential to ensure reliable 

591 predictions across diverse ecosystems.

592

593 Caveats and future directions

594 This work identifies two important next steps that need to be considered for future advances. 

595 First, our study collected leaf samples only from the top-canopy stratum of three typical forest 

596 sites at the peak of the growing season, which cover just a small fraction of Earth’s vast plant 

597 diversity and omit many other important biomes, such as tundra, grasslands, shrublands and 

598 wetlands. Therefore, to test the robustness and generalizability of the mechanistic linkages of 

599 Rdark25 to multiple leaf traits (particularly Mg, Ca, Mn and S) and leaf reflectance spectra, 

600 additional efforts would be needed to cover broader breadths of leaf trait and spectral variations 

601 (Kothari et al., 2023; Ji et al., 2024). Meanwhile, Rdark25, leaf traits and reflectance spectra vary 

602 remarkably throughout the vertical profiles within the canopy (Niinemets et al., 2015; Lamour 

603 et al., 2023), and across seasonal changes with different leaf developmental stages and 

604 environmental factors (Chen et al., 2022; Davidson et al., 2023a). Therefore, a comprehensive 

605 understanding and spectra-model evaluation of the Rdark25 across more representative field sites, 

606 vertical structural gradients and full growing season are still imperative. The continued 

607 combination of traditional leaf gas exchange measurements and reflectance spectroscopy as 

608 part of global efforts are needed to further enable the development of generalized spectra-Rdark25 

609 model that can be applied in broad conditions. This can help incorporate a spectra-based data 

610 assimilation module into ecosystem models, and revolutionize the parameterization approach 

611 by directly integrating trait information rather than relying on predefined empirical 

612 relationships between traits (Fu et al., 2020). Notably, currently a fully open database (Global 

613 Spectra Trait Initiative) for leaf-level physiological and spectral data is being assembled to 
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614 enable the continued development of spectra-trait models 

615 (https://github.com/plantphys/gsti/tree/main).

616

617 Second, given the sampling difficulties caused by canopy access have limited the measurement 

618 of Rdark25 over large spatial extents, an alternative and rapid remote sensing method based on 

619 imaging spectroscopy technology is needed to monitor large-scale Rdark25. Canopy spectra can 

620 be collected using a range of platforms including unoccupied aerial systems (UAS; Yang et al. 

621 2022), piloted airborne sensors and spaceborne satellites (Serbin & Townsend, 2020; Liu et al., 

622 2024), and it has been demonstrated to be effective in monitoring leaf traits associated with 

623 Rdark25 (e.g., Vcmax25, leaf N, P concentrations, and LMA) (Liu et al., 2023). Moreover, as the 

624 spectral variability of the canopy monitored by imaging spectroscopy mainly comes from the 

625 leaf spectrum (Asner, 1998), understanding the leaf-level spectra-Rdark25 relationships is 

626 beneficial to the spectral modeling and potential vegetation indices developing of Rdark25 at 

627 larger spatial scales (Serbin & Townsend, 2020). Therefore, future studies should explore 

628 Rdark25 using various imaging spectroscopy platforms and try to extend leaf spectral models to 

629 canopy and ecosystem scales. This will require the development of appropriate hybrid 

630 modelling and validation approaches (Fu et al., 2020). During the upscaling process across 

631 different spatial resolutions, issues including the effects of canopy structure (Liu et al., 2023) 

632 and environmental noisy (Asner, 1998; Ollinger, 2011; Cimoli et al., 2024) need to be attention. 

633 As the community addresses challenges, spectroscopy will further contribute to explanation of 

634 more detailed scale-dependent mechanisms and monitoring of terrestrial plant respiration and 

635 carbon uptake capacities over large spatiotemporal extents (Serbin et al., 2015; Jetz et al., 2016; 

636 Yan et al., 2021; Liu et al., 2024). Our ultimate hope is that by combining field data with 

637 cutting-edge remote sensing technology, we will not only expand our understanding of 

638 knowledge of plant physiological traits, but also help us better diagnose the role and fate of 

639 terrestrial ecosystems under climate change.

640
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1014 Supporting information

1015 The following Supporting Information is available for this article: 

1016 Fig. S1 Comparison of the leaf spectral reflectance from leaves on the tree and excised branch.

1017 Fig. S2 Cross-comparison of the leaf Rdark25 derived using the temperature response functions 

1018 in Atkin et al. (2015) and Davidson et al. (2022).

1019 Fig. S3 Schematic illustration of the repeated double cross-validation (rdCV) method for partial 

1020 least squares regression (PLSR).

1021 Fig. S4 The selection criterion for the optimal number of latent components in the spectral 

1022 model of leaf traits under the cross-site scenario.

1023 Fig. S5 Histogram distribution of the coefficient of determination (R2) for the PLSR spectral 

1024 models over the 200 permutations under the cross-site scenario.

1025 Fig. S6 Exploring the variabilities of leaf morphological and biochemical traits within and 

1026 across forest sites.

1027 Fig. S7 Pearson correlation analysis of leaf biochemical traits across the three forest sites.

1028 Fig. S8 Accuracy assessment for the cross-site spectral models of leaf morphological and 

1029 biochemical traits.

1030 Fig. S9 Cross-comparisons between the observed (blue color) and spectra-modelled (red color) 

1031 trait-Rdark25 relationships across the three forest sites

1032 Table S1 Soil information for the three forest sites in China.

1033 Table S2 Summary of species, leaf traits and sample size of representative canopy trees across 

1034 the three forest sites in China.

1035 Table S3 Statistical summary of the relationships between Rdark25 and the eight leaf 

1036 morphological and biochemical traits across the three forest sites.

1037 Method S1 Protocol of A-Ci curves measurement.

1038 Method S2 Protocol of the measurements of morphological and biochemical traits, including 

1039 LMA, leaf N, P, K, Ca, Mg, Mn and S concentrations.

1040 Method S3 Protocol of PLSR modeling with rdCV.
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1042 Fig. 1 The location and basic information of the three typical forest sites in China. The three 

1043 forest sites span a large latitudinal gradient, including a temperate forest in Mountain Changbai 

1044 (CB), a subtropical forest in Mountain Gutian (GT), and a tropical rainforest in Xishuangbanna 

1045 (XSBN). All the three forest sites have tower crane facilities enabling to access to the sunlit 

1046 canopy leaves. The background shows a map of the 1:1,000,000 scale vegetation distribution 

1047 of China provided by ''Environmental & Ecological Science Data Center for West China, 

1048 National Natural Science Foundation of China'' (http://westdc.westgis.ac.cn). MAT, mean 

1049 annual temperature; MAP, mean annual precipitation.
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1051 Fig. 2 The variability of Rdark25 and its relationship with Vcmax25 within and across forest sites. 

1052 (a): The differences in Rdark25 among diverse forest sites. (b): The differences in the ratio of 

1053 Rdark25
 to Vcmax25 (Rdark25:Vcmax25) among diverse forest sites. (c): Rdark25-Vcmax25 relationships 

1054 within and across forest sites. These values are gas-exchange measurements. One-way 

1055 ANOVA with the least significant difference post-hoc test was used for the comparisons among 

1056 the three forest sites. Different lower-case letters adjoining the violin plots indicate the 

1057 significant difference (P<0.05) among different groups. The fitted lines were determined by 

1058 ordinary least-squares regressions, showing significantly different slopes among the CB, GT, 

1059 and XSBN sites, which represent temperate, subtropical, and tropical forests in China, 

1060 respectively. The black line represents regression fit for all sites. r2 is the coefficient of 

1061 determination and the relationships are all significant (P<0.05).
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1063 Fig. 3 The trait-Rdark25 relationships within and across forest sites. (a-h): Pairwise relationships 

1064 between Rdark25 and eight leaf traits (i.e. LMA, and leaf N, P, K, Ca, Mg, Mn, and S 

1065 concentration). The fitted lines are determined by the ordinary least squares regression, with 

1066 colored lines representing regression fits for specific sites and black lines representing 

1067 regression fit for all sites. r2 is the coefficient of determination. All metrics and lines shown are 

1068 statistically significant (P < 0.05).
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1070

1071 Fig. 4 The performance of multiple linear models for predicting Rdark25 using all the other eight 

1072 easy-to-measure leaf traits as predictor variables, and the relative importance of these predictor 

1073 variables. (a): The relative importance of these traits on Rdark25 prediction across forest sites, 

1074 derived from their proportions of the explanation of the variance (r2) indicated by the number 

1075 adjoining the bars. (b): The performance of site-specific and cross-site model using multiple 

1076 leaf traits (i.e. LMA, leaf N, P, Ca, Mg, Mn, and S concentrations) for predicting leaf Rdark25. 

1077 The colored circles in the figure represent site-specific predictions (with Mountain CB in purple, 

1078 GT in red, and XSBN in green), the grey circles represent the predictions of the cross-site linear 

1079 mixed-effects model using site as random effects, and black line is the ordinary least squares 

1080 fit of the cross-site model.
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1082 Fig. 5 Accuracy assessment for the cross-site spectra-Rdark25 relationship. The cross-site model 

1083 used the whole data set of leaf Rdark25 and reflectance spectra from the three forest sites, and 

1084 was trained and evaluated using the repeated double cross-validation method. The black line is 

1085 the ordinary least-squares fit; the grey line indicates the 1:1 line. The colored points represent 

1086 the predictions of the cross-site PLSR model for each forest site (with CB in purple, GT in red, 

1087 and XSBN in green). n, sample size; r2, the coefficient of determination; RMSE, the root mean 

1088 square of error.
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1090 Fig. 6 Variance partitioning of leaf Rdark25 and leaf morphological (i.e. LMA) and biochemical 

1091 (i.e. leaf N, P, K, Ca, Mg, Mn and S concentrations) traits within (a-c) and across forest sites 

1092 (d). The forest sites include the temperate forest in CB, the subtropical forest in GT, and the 

1093 tropical forest in XSBN in China. The total variability for each trait was partitioned into 

1094 intraspecific and interspecific components. The grey bars denote the variance partitioning from 

1095 field-observed leaf traits, while the colored bars indicate the variance partitioning results from 

1096 leaf traits predicted from the cross-site spectra-trait models.
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1098 Fig. 7 Accuracy assessment for the spectra-Rdark25 relationship under site-specific modeling 

1099 scenarios. (a): CB model; (b): GT model; and (c): XSBN model. The site-specific models used 

1100 specific data sets of leaf Rdark25 and reflectance spectra within each of the three forest sites, was 

1101 trained and evaluated using repeated double cross-validation method, and then was applied to 

1102 the other two independent sites. The colored points and lines represent the predictions of the 

1103 PLSR model and ordinary least squares fit for each forest site (with CB in purple, GT in Red, 

1104 and XSBN in green). The number of species in CB model, GT model, and XSBN model are 

1105 10, 16, and 33, respectively.
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1107 Fig. 8 Assessing the contributions of reflectance bands to the spectral models of leaf Rdark25, 

1108 and the important Rdark25
 predictors (i.e. leaf Mg, Ca, N, Mn, S and P concentrations following 

1109 the order of relative importance in predicting Rdark25) and LMA under the ‘cross-site’ scenario. 

1110 The left panels (a-h) present the PLSR variable importance in projection (VIP), and the right 

1111 panels (i-p) present the PLSR regression coefficients. The mean values and 95% confidence 

1112 interval of the PLSR VIP spectrum and regression coefficients were indicated by central-

1113 colored lines and shaded regions, respectively. On the left panel, , the spectral regions with VIP 

1114 ≥  1 are those important for the spectral modeling of Rdark25
 and the important predictors 

1115 (Lamour et al., 2021; Liu et al., 2023). The corresponding important spectral bands for Rdark25 

1116 predictions are identified by the shaded grey regions across all subpanels. VIR, visible range 

1117 (450–700 nm); RE, red-edge range (700–800 nm); NIR, near-infrared range (800–1300 nm); 

1118 SWIR, shortwave infrared range (1300–2500 nm).
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Table 1 Performance of the two types of spectra-Rdark25 models: ‘site-specific model’ (trained 

and evaluated using the data from the single forest site respectively, and then applied to the 

other two independent sites), and ‘cross-site model’ (trained and evaluated using the data 

from all the three forest sites). The repeated double cross-validation method was used for 

training and evaluating all the models. The three diverse forest sites span large latitudinal 

gradients, including the temperate forest in CB, the subtropical forest in GT, and the tropical 

forest in XSBN.

Rdark25 (μmol CO2 m-2 s-1)

Scenarios Site n r2 RMSE

CB 146 0.67 0.16

GT 173 0.06 0.46

XSBN 151 0.07 0.35

CB model

All 470 0.23 0.35

CB 146 0.19 0.31

GT 173 0.58 0.15

XSBN 151 0.19 0.28

GT model

All 470 0.28 0.25

CB 146 0.33 0.25

GT 173 0.46 0.18

XSBN 151 0.76 0.13

XSBN model

All 470 0.56 0.19

CB 146 0.51 0.20

GT 173 0.57 0.16

XSBN 151 0.71 0.16

Cross-site model

All 470 0.65 0.17

Note: Rdark25, leaf dark respiration standardized to 25°C; n, sample size; r2, the coefficient of 

determination; RMSE, the root mean square of error.

1121

Page 51 of 49

Manuscript submitted to New Phytologist for review




