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ARTICLE

Life-Course Genome-wide Association Study
Meta-analysis of Total Body BMD
and Assessment of Age-Specific Effects
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Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly

used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants

in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along

the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD

including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with

TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance

when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed

clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system,

and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis,

enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close

proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified

influence BMD early in life and that their effect can be captured throughout the life course.
Introduction

Osteoporosis is a disease characterized by low bone mass

andmicroarchitectural deterioration of bone tissue leading

to increased risk of fracture.1 It is diagnosed through

the measurement of bone mineral density (BMD) utilizing

dual-energy X-ray absorptiometry (DXA), which is the

single best predictor of fracture.1

Bone is a dynamic tissue constantly undergoing resorp-

tion and formation. Bone mass increases steadily during
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childhood and markedly during adolescent growth.2 Peak

bone mass is attained at approximately the third decade

of life. Thereafter, until about 50 years of age, BMD remains

fairly stable, by virtue of the coupling between bone forma-

tion and resorption (e.g., bone remodeling). Subsequently,

bone resorption exceeds the rate of bone formation, result-

ing in a decrease in BMD, particularly in women after the

onset of menopause.3

The International Society for Clinical Densitometry
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the lumbar spine, femoral neck, and total hip to diagnose

osteoporosis in postmenopausal women and men who are

50yearsor older (seeWebResources).Consequently, studies

of BMD determinants are frequently based on measure-

ments at these skeletal sites. By contrast, for the assessment

of bone health in children and adolescents, total body

(excluding head) and lumbar spine are the preferred sites

to minimize measurement artifacts resulting from chang-

ing areas in growing bones (see Web Resources). Neverthe-

less, in elderly individuals degenerative changes in the

spine can give elevated BMD readings.4 Moreover, total

bodyDXAscanshave beenobtained inmanyadult research

cohorts, primarily to assess body composition. Therefore,

the total body BMD (TB-BMD) measurement is the most

appropriate method for an unbiased assessment of BMD

variation in the same skeletal site fromchildhood toold age.

To date, nearly 80 independent genetic variants have

been shown to be robustly associated with variability in
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The Ame
bone parameters.5–17 Most of these markers have been

identified in studies comprising tens of thousands of adult

and elderly individuals with DXA-derived BMD measure-

ments, although a few of them have been associated

with BMD specifically in studies of pediatric cohorts.7

Furthermore, several of the associated variants display sig-

nificant site-specific effects, possibly reflecting differences

in bone composition across skeletal sites (e.g., cortical

bone versus trabecular bone) or differential response to

mechanical loading.7 Moreover, genetic studies on mea-

sures from peripheral quantitative computed tomography

(pQCT) and bone quantitative ultrasound, which provide

additional information regarding bone size, geometry,

and (micro) architecture, identified genetic variants that

may have specific effects on bone properties that are

poorly captured by conventional DXA measurements.8,9

Given the complex physiological processes underlying

age-related changes in BMD across the life course, it is
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possible that genetic studies in more refined age groups

will reveal variants in unreported loci as well as age-specific

genetic effects. Thus, the purpose of this study was to

identify gene variants associated with TB-BMD across the

lifespan and to investigate possible differences of genetic

effects across age periods.
Subjects and Methods

TB-BMD GWAS Meta-analyses

Subjects, BMD Measurement, and Imputation

This study comprised 30 epidemiological studies

comprising �66,628 individuals from populations across

America, Europe, and Australia, with a variety of designs

(Supplemental Data; Table S1) and participant character-

istics (Table S2). In summary, most participants came

from population-based cohorts of European ancestry

(86%), two cohorts comprised African American individ-

uals (2%), and four other studies held a fraction of indi-

viduals from admixed background (14%). All research

aims and the specific measurements have been approved

by the correspondent Medical Ethical Committee of

each participating study. Written informed consent was

provided by all subjects or by their parents in the case

of children.

Total body BMD (g/cm2) was measured by DXA

following standard manufacturer protocols. As recommen-

ded by the International Society for Clinical Densitometry,

total body less head (TBLH) was the measurement used in

pediatric cohorts (see Web Resources) (e.g., 0–15 years).

Detailed information on the assessments performed by

each study can be found in Table S1.

All individuals included in this study had genome-wide

array data. Quality control of genotypes is summarized in

Table S1. To enable meta-analysis, each study performed

genotype imputation using the cosmopolitan (all ethnic-

ities combined) 1000 Genomes phase 1 v.3 (March 2012)

reference panel, yielding �30,000,000 SNPs for analysis.

Three studies used the combined 1000 Genomes and the

UK10K reference panels as presented in Table S1.

Association Analysis, Quality Control, and Assessment

TB(LH)-BMD was corrected for age, weight, height, and

genomic principal components (derived from GWAS

data), as well as any additional study-specific covariates

(e.g., recruiting center), in a linear regression model. For

studies with non-related individuals, residuals were

computed separately by sex, whereas for family-based

studies sex was included as a covariate in the model.

Finally, residuals were inverse normal transformed. The

analyses were performed in each study for the overall

population as well as in subgroups of individuals by age

strata, defined by bins of 15 years (i.e., 0–15 years, 15–30

years, 30–45 years, 45–60 years, and 60 or more years).

SNP association was tested for autosomal variants, in

which the additive effect of each SNP on the normalized

BMD residuals was estimated via linear regression.
90 The American Journal of Human Genetics 102, 88–102, January 4,
A centralized quality-control procedure implemented in

EasyQC18 was applied to all study-specific files of associa-

tion results to identify cohort-specific issues. We excluded

variants if they had missing information (e.g., missing

association p value, beta estimate, alleles, allele frequency),

nonsensical values (e.g., absolute beta estimates or

standard errors> 10, association p values> 1 or< 0, impu-

tation quality < 0, infinite beta estimates or standard

errors), minor allele frequency (MAF) less than 0.5%, or

imputation quality scores < 0.4 (Impute2) or < 0.3

(Minimac).Moreover, variantswereflagged if theyhad large

allele frequency deviations from reference populations

(>0.6 for admixed studies and >0.3 for ancestry-homoge-

neous studies).

In the first instance, no exclusion criteria based on

ancestry were applied for the meta-analysis (N ¼ 66,628).

In addition, meta-analyses were carried out across age

strata (minimum sample size per bin N ¼ 200 for each

study) comprising 0–15 years (N ¼ 11,807), 15–30 years

(N ¼ 4,180), 30–45 years (N ¼ 10,062), 45–60 years

(N ¼ 18,805), and 60 or more years (N ¼ 22,504). Further,

summary data from cohorts of European ancestry only

were meta-analyzed and used in subsequent analyses.

We discarded variants present in fewer than three

studies. Approximately 23,700,000 markers (including

SNPs and INDELS) were assessed for association. We

applied the conventional genome-wide significance level

(GWS, p < 5 3 10�8) for SNP discovery.

We selected SNPs that were suggestively (12,567 SNPs,

p < 5 3 10�6) associated with BMD in the overall meta-

analysis, present in at least two studies per age bin, and

with MAF differences across these meta-analyses lower

than 0.5. We clumped this dataset with an r2 R 0.8, using

as reference the most strongly associated SNPs with BMD

and pruning remaining SNPs within 0.7 Mb of each other.

Age-dependent effects were assessed using a meta-regres-

sion approach for 1,464 SNPs obtained after this selection

procedure. We ran a linear regression of the SNP effect

estimates onto an intercept and the median age of each

subgroup (e.g., each study stratified in age bins). As pro-

posed previously,19 standard errors of the effect estimates

of each subgroup were multiplied by the square root of

the genomic inflation factor when it was greater than 1.

We performed the meta-regression using the Metafor pack-

age,20 and any statistical evidence of linear association was

corrected for multiple testing (Bonferroni correction; 0.05/

1,464 ¼ 3.4 3 10�5). The difference between beta-esti-

mates in children versus elderly meta-analyses (Pdiff) was

tested using Easy-strata.21

Conditional analyses were undertaken based on the

meta-analysis of the studies of European ancestry only

(N ¼ 56,284). Only variants in the loci that reached

GWS in this meta-analysis were assessed. The Rotterdam

Study I (n ¼ 6,291) was used as reference for precise calcu-

lation of the linkage disequilibrium (LD) between the

analyzed markers. We used an iterative strategy as imple-

mented in GCTA22 to determine (1) independence of
2018



association signals within loci discovered in our study,

by means of stepwise model selection procedure per chro-

mosome (–massoc-slct routine) and (2) the novelty of the

association signals discovered by our meta-analysis with

regard to variants reported in previous well-powered

GWASs of different bone traits (Table S3). To this end, we

performed the association analysis conditional on 78 vari-

ants present in our data and associated with different bone

traits (–massoc-cond routine). These 78 SNPs were selected

from different GWAS publications,5–9,11–13 assuring their

independence to avoid collinearity issues.

Shared Genetic Architecture of TB-BMD Fracture and

Other Traits

LD Score Regression Analyses

We used the LD score regression package to estimate the

heritability of TB-BMD and to rule out that our results

were a product of bias (e.g., residual population stratifica-

tion or cryptic relatedness). LD score regression uses

GWAS summary statistics and assesses the SNP heritability

based on the expected relationship between LD of neigh-

boring SNPs and strength of association under a polygenic

model.23 As this methodology relies on the LD structure

throughout the genome, we restricted this analysis to sum-

mary statistics from the meta-analysis of cohorts

comprising only individuals from European ancestry. We

used the publicly available, pre-computed LD structure

data files specific to European populations of the HAPMAP

3 reference panel. An extension of this method allows

estimating the genetic correlation between two traits.24

This can be performed in the LDhub pipeline, a web

utility that gathers data from many different GWAS

meta-analysis.25 From the 199 traits, currently available

in the website, we have restricted our analysis to those

traits whose heritability z-scores were larger than 4 and

were analyzed only in European ancestry individuals

(following the recommendations in the LD score software

website [Web Resources]). Additionally, we incorporated

data from a recent GWAS meta-analysis of any type of frac-

ture in individuals from European ancestry (N ¼ 264,267;

37,778 case subjects) (K.T., unpublished data). In total,

we assessed the genetic correlation between TB-BMD and

74 traits.

Mendelian Randomization Analysis

We undertook a two-sample Mendelian randomization

approach26 to estimate the causal effect of TB-BMD on

any type of fracture in the Europeans samples. In short,

we constructed a score based on the independent genetic

variants from the TB-BMD meta-analysis (European set

and excluding secondary signals); whenever the selected

variant was not present in the fracture meta-analysis,

the second variant with the lowest p value in the locus

(p < 5 3 10�8) and r2 > 0.8 was used as proxy. Thereafter,

estimates derived from the TB-BMD summary statistics

were pooled using methods similar to inverse-variance

weighted fixed meta-analysis using the meta R-package

(Web Resources).
The Ame
Search for Biological and Functional Knowledge of the

Identified Association Regions

For all those SNPs outside a 500 kb window from previ-

ously known bone-associated SNPs, we did a literature

search in PubMed and Web of Science to evaluate whether

nearby genes (within 500 kb) were known to play a role in

bone metabolism. Also, we determined whether the anno-

tated genes underlie any humanMendelian disorder with a

skeletal manifestation, had knockout mouse models with a

skeletal phenotype, or were annotated to pathways critical

to bone metabolism. Genomic annotation for all SNPs was

made based on UCSC hg19.

DEPICT Analyses

We used DEPICT,27 a recently developed tool to prioritize

genes at the associated regions, define possible pathways

by enrichment testing, and identify tissue and cell types

in which genes from loci associated with TB-BMD. The

methodology first selects all lead SNPs below a certain

threshold with respect to a target p value. We tested both

the complete set of GWS SNPs and the subset of thosemap-

ping only to loci not previously reported. Enriched gene

sets were group based on the degree of gene overlap into

‘‘meta gene-sets’’ as proposed earlier,28 and their correla-

tion visualized using Cytoscape 3.4 (Web Resources).

Functional Annotation to MicroRNA Binding Sites

We used the PolymiRTS,28 miRdSNP,29 and microSNiPer30

databases to obtain a list of variants located in predicted

microRNA binding sites on the 30 UTRs of genes, as

described in detail elsewhere.31 In summary, index SNPs

(most associated variants) of the GWS loci were submitted

to SNAP (Web Resources) to retrieve their high LD proxy

SNPs (with r2 > 0.8, limit distance 500 kb, and CEU panel)

in the 1000Genomes project. The resulting list of SNPs was

annotated to the list of microRNA binding site variants

obtained from the above mentioned publicly available

databases.

Functional Enrichment Analysis of Trait-Associated Variants

GWAS analysis of regulatory or functional information

enrichment with LD correction (GARFIELD)32 was used

to characterize the putative functional contribution of

TB-BMD-associated variants mapping to non-coding re-

gions. GARFIELD employs a non-parametric analysis to

calculate fold enrichment values for regulatory marks, at

given significance thresholds, and then tests them for sig-

nificance via permutation testing while accounting for LD,

MAF, and local gene density.32 We used data regarding

DNase-I hypersensitive sites, transcription factor bind-

ing sites, histone modifications, and chromatin states

(ENCODE and Roadmap Epigenomics) from 424 cell

types and tissues to capture and characterize possible

cell-type-specific patterns of enrichment, as provided in

the GARFIELD software (Web Resources). Fold enrichment

statistics were tested at the four different significance

thresholds (i.e., 1 3 10�8, 1 3 10�7, 1 3 10�6, and

1 3 10�5). Multiple-testing correction was performed

on the effective number of annotations used, using the

default p value threshold of 1 3 10�4.
rican Journal of Human Genetics 102, 88–102, January 4, 2018 91



Figure 1. Manhattan Plot of Association
Statistics (�log10(p Values)) for TB-BMD
Overall Meta-analysis
Each dot represents a SNP and the x axis
indicates its chromosomal position (built
37 NCBI). Red dots represent SNPs at
GWS loci that are not within 5500 kb of
leading SNPs in previous GWASs with
different bone traits. Dashed horizontal
red and yellow lines mark the GWS
threshold (p < 5 3 10�8) and suggestive
threshold (p < 1 3 10�6), respectively.
Novel loci in the only-CEU analysis are
not shown.
Knockout Animal Models and Gene Expression in Bone

Cells

Animal Models Survey

We surveyed databases from The International Mouse Phe-

notyping Consortium33 together with The International

Knockout Mouse Consortium34 to identify knockout

models of candidate genes resulting in skeletal pheno-

types. Furthermore, we mined data from The Origins of

Bone and Cartilage Disease (OBCD) project,35 specialized

in murine skeletal phenotypes including digital X-ray

microradiography on femurs and tail vertebrae, micro-CT

analysis, femur three-point bend test load-displacement

curves, and tail vertebrae compression testing from

knockout mice and wild-type controls at 16 weeks of age.

Experiments were undertaken by the Wellcome Trust

Sanger Institute Mouse Genetics Project as part of the

IKMC and licensed by the UK Home Office in accordance

with the Animals (Scientific Procedures) Act 1986 and

the recommendations of the Weatherall report.

Gene Expression in Bone Cells

Gene expression profiles of candidate genes were exam-

ined in primary mouse osteoblasts undergoing differentia-

tion and bone marrow-derived osteoclasts. To study mu-

rine osteoblasts, pre-osteoblast-like cells were obtained

fromneonatal calvaria collected fromC57BL/6J. Next Gen-

eration RNA sequencing using an Illumina HiSeq 2000 was

used to evaluate the transcriptome every 2 days from day 2

to 18 days after osteoblast differentiation.6 Expression of

genes in murine osteoclasts was determined using publicly

available data obtained using Next-Gen RNA-sequencing

applied to bone marrow-derived osteoclasts obtained

from 6- to 8-week-old C57BL/6 mice.36 All procedures

and use of mice for the neonatal osteoblast expression

studies were approved by the Jackson Laboratory Animal

Care and Use Committee (ACUC), in accordance

with NIH guidelines for the care and use of laboratory

animals.

Gene expression profiles of candidate genes were exam-

ined in human bone marrow-derived mesenchymal stem

cells differentiated into osteoblast. Total RNA (n ¼ 3) was

isolated at day 0 (MSCs) and day 4 of osteoblast differentia-

tion.37 Also, RNAwas isolated during osteoclast differentia-

tion. Peripheral blood mononuclear cells derived from
92 The American Journal of Human Genetics 102, 88–102, January 4,
buffy coats (Sanquin) were seeded in 96-well plates

(5 3 105 cells per well) as previously described.38 Total

RNA (n ¼ 3) was isolated using Trizol at day 0 (PBMCs)

and at day 7 of osteoclast differentiation. Illumina Hu-

manHT-12 v3 BeadChip human whole-genome expression

arrays were used for expression profiling. The quality of iso-

latedRNAwas assessedona2100Bioanalyzer (AgilentTech-

nologies). Data were analyzed as described in detail previ-

ously.37 Genes were designated as being expressed when

at least one probe coding for the gene was significantly pre-

sent in at least two of the three biological replicates.
Results

TB-BMD GWAS Meta-analyses

Analyses Including All Age Strata

Our meta-analysis of TB-BMD GWAS summary statistics

(N ¼ 66,628) identified variants in 76 independent loci

associated with TB-BMD at a genome-wide significant

(GWS, p % 5 3 10�8) level (Figure 1, Table S4). Overall,

there was no evidence of a strong inflation (genomic infla-

tion factor [l] of 1.08, Figure S1). Yet, inflation was

observed in the range of common variants (0.2 > MAF <

0.5, l ¼ 1.19) due to polygenicity (LD score regression

intercept ¼ 1.007). In our results, one of the signals map-

ping to LDLRAD3 was driven entirely by individuals of

African background (MAF ¼ 0.043 in YRI panel) since the

two associated variants are monomorphic in all other

populations. The low allele frequency of this variant in

our study (MAF ¼ 0.025) and our limited statistical power

(N ¼ 6,748) in non-European samples warrants indepen-

dent replication efforts to exclude the possibility of a

false-positive association.

In addition, a meta-analysis comprising 56,284 individ-

uals of European ancestry (�84% of the study population)

identified variants in two additional GWS loci (Figures S1

and S2, Table S5). Association signals mapping to these

loci were close to the GWS threshold in the overall meta-

analysis (p ¼ 13 10�7) and showed no evidence of hetero-

geneity (phet > 0.1). One of them, in 12q24.21 (MED13L),

has not been previously associated with bone parameters

(Table 1, Figure S3), while the other in 21q22.13
2018



Table 1. Index SNPs of Loci Not Previously Associated with BMD

CHR BP rs Number Locus A1 A2 EAF Effect p N Annotation Closest Gene Notes LS-beta LS-P FN-beta FN-P

1 8422676 rs2252865 1p36.23 T C 0.32 �0.033 4.72 3 10�8 66,075 intronic RERE novel biology �0.019 0.043 �0.025 0.002

1 110475971 rs7548588 1p13.3 T C 0.61 �0.037 9.29 3 10�8 66,240 intergenic CSF1 osteoclast differentiation39 �0.030 0.001 �0.022 0.005

1 220038825 rs185048405 1q41 T C 0.54 0.042 3.07 3 10�8 66,540 intronic SLC30A10 manganese transport40 �0.035 0.076 �0.003 0.878

2 27741072 rs780096 2p23.3 C G 0.44 �0.031 4.58 3 10�8 66,578 intronic GCKR calcium regulation,41

hepatic traits42
�0.014 0.129 �0.017 0.029

2 40630678 rs10490046 2p22.1 A C 0.76 0.043 1.43 3 10�10 65,961 intronic SLC8A1 bone mineralization43 0.015 0.162 0.021 0.025

2 68962137 rs10048745 2p13.3 A G 0.25 �0.039 6.44 3 10�8 66,565 50 UTR ARHGAP25 novel biology �0.050 1.03 3 10�6 �0.036 5.21 3 10�5

2 85484818 rs11904127 2p11.2 A G 0.55 �0.032 2.65 3 10�8 66,561 intronic TCF7L1 factors in Wnt signaling44 �0.021 0.023 �0.015 0.054

2 198874006 rs1595824 2q33.1 T C 0.47 0.034 2.65 3 10�8 60,171 intronic PLCL1 negative regulation of bone
formation45

0.022 0.201 0.052 2.20 3 10�4

2 202799604 rs2350085 2q33.2 T C 0.87 �0.064 3.80 3 10�14 66,412 intergenic FZD7 factors in Wnt signaling46 �0.042 0.002 �0.044 1.96 3 10�4

2 234303405 rs838721 2q37.1 A G 0.44 �0.031 4.48 3 10�8 65,516 intronic DGKD calcium regulation41 �0.016 0.070 �0.014 0.068

5 112221869 rs818427 5q22.2 T C 0.31 0.034 2.37 3 10�8 66,592 intronic APC bone metabolism47 0.004 0.645 0.008 0.327

5 122847622 rs11745493 5q23.2 A G 0.75 0.044 7.75 3 10�12 66,597 promoter CSNK1G3 novel biology 0.010 0.326 0.025 0.005

7 27989403 rs757138 7p15.1 T G 0.69 �0.035 3.33 3 10�8 66,043 intronic JAZF1 novel biology �0.016 0.126 �0.025 0.004

7 30957702 rs28362721 7p14.3 T C 0.18 �0.059 6.71 3 10�14 66,274 intronic AQP1 bone metabolism48 �0.037 0.002 �0.049 1.39 3 10�6

7 50901491 rs1548607 7p12.1 A G 0.69 0.036 4.18 3 10�8 66,564 intergenic GRB10 novel biology 0.034 5.59 3 10�4 0.005 0.517

7 99130834 rs34670419 7q22.1 T G 0.04 �0.088 1.09 3 10�8 66,336 30 UTR ZKSCAN5 DHEAS and aging mechanisms49 �0.127 9.28 3 10�8 �0.080 8.19 3 10�5

10 112245400 rs73349318 10q25.2 A T 0.87 �0.047 2.68 3 10�8 66,341 intronic DUSP5 osteoclast differentiation50 �0.042 0.001 �0.051 8.76 3 10�6

10 124015986 rs10788264 10q26.13 A G 0.48 �0.034 2.61 3 10�8 66,565 intergenic TACC2 novel biology �0.030 9.64 3 10�4 �0.029 1.29 3 10�4

11 242859 rs55781332 11p15.5 A G 0.78 �0.055 8.07 3 10�16 66,198 intronic PSMD13 novel biology �0.046 1.76 3 10�5 �0.026 0.005

11 35083633 rs2553773 11p13 C G 0.41 �0.037 1.49 3 10�10 66,619 intergenic CD44 osteoclast activity51 �0.015 0.101 �0.015 0.054

11 35981346 rs113964474a 11p.13* A G 0.03 0.485 1.41 3 10�8 6,748 intronic LDLRAD3 novel biology – – – –

11 69299537 rs4980659 11q13.3 C G 0.52 0.033 1.16 3 10�8 66,537 intergenic CCND1 target of Wnt signaling52 0.039 1.58 3 10�5 0.023 0.003

11 121913230 rs725670 11q24.1 A G 0.38 �0.032 3.61 3 10�8 66,565 intergenic BLID novel biology �0.020 0.028 �0.011 0.172

12 90334829 rs10777212 12q21.33 T G 0.35 0.045 5.05 3 10�14 66,619 intergenic ATP2B1 calcium absorption53 0.028 0.003 0.021 0.010

12 116555786 rs73200209b 12q24.21 A T 0.80 0.045 2.51 3 10�8 51,240 intronic MED13L novel biology 0.030 0.167 0.036 0.044

13 37487021 rs556429 13q13.3 A C 0.23 0.039 1.46 3 10�8 66,504 intronic SMAD9 osteoblast differentiation54 0.023 0.027 0.013 0.135

15 38340874 rs12442242 15q14 A G 0.85 �0.051 4.94 3 10�10 66,403 intergenic TMCO5A novel biology �0.046 3.03 3 10�4 �0.047 2.26 3 10�5

15 51537806 rs2414098 15q21.2 T C 0.39 �0.033 1.99 3 10�8 66,562 intronic CYP19A1 estrogen byosynthesis55 �0.034 0.007 �0.038 0.001

(Continued on next page)
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(CLDN14) is not fully independent from the previously re-

ported hip BMD association signal12 (Table S5).

Of the 78 identified loci, variants in 35 (45%) were not

located within 500 kb of known association signals nor

in regions of extended LD with them (Table 1, Figure S4).

Index SNPs at these 35 loci were, in general, common

non-coding variants. Twenty-two of these are located in

close proximity to genes likely to influence bone meta-

bolism as shown by previous functional studies (Table 1,

Figure S3), including CSF1 (MIM: 120420), important for

osteoclast differentiation,39 and SMAD3 (MIM: 603109), a

critical component of the TGF-b signaling pathway.56

Across these 35 signals, 31 of the index SNPs were nomi-

nally associated (p < 0.05) with either lumbar spine or

femoral neck BMD in the same direction as in the previ-

ously published GEFOS GWAS meta-analysis6 (Table 1).

This comparison was not possible for the rs113964474

variant, because it was not available in the GEFOS study.

Moreover, we found directionally concordant effect esti-

mates (p < 0.05) for 73 of the 78 index SNPs of known

bone association signals (Table S3). The markers that failed

to replicate in our study were either previously associated

with lumbar spine BMD but not femoral neck BMD

(rs3905706 [MPP7, 10p12.1] and rs1878526 [INSIG2,

2q14.2]), associated specifically with the hip trochanter

and intertrochanteric sub-regions (rs1949542 [RP11-

384F7.1, 3q13.32]), or associated with BMD only in

women (rs7017914 [XKR9, 8q13.3]) or only in children

(rs754388 [RIN3, 14q32.12]).

Age-Dependent Effects

Meta-analyses across age strata resulted in the identifica-

tion of variants mapping to two additional loci that were

not detected in the overall meta-analysis (Figure S5; Table

S6). In children (age group 0–15 years), the previously

known 14q32.12 locus,7 harboring RIN3 (rs72699866,

p ¼ 1 3 10�8), and in the middle-aged (age group 45–60

years), a signal in the 19q12 locus mapping in the vicinity

of TSHZ3 (rs6510186, p ¼ 3.1 3 10�8) were identified.

The rs72699866 variant leading the RIN3 signal in the

youngest age stratum showed no evidence of association

(p ¼ 0.16) and high heterogeneity (phet ¼ 6.6 3 10�5)

in the overall meta-analysis. In fact, the effect of

rs72699866 decreased significantly with age (ptrend ¼
1.69 3 10�9) (Figure S6) and showed a significant

difference between the two extreme groups, i.e., children

versus elderly (b0-15 ¼ 0.099 [0.066, 0.134]; b>60 ¼
�0.035 [�0.060,�0.010]; pdiff¼ 4.323 10�10). In contrast,

the rs6510186 variant (19q12) showed nominal evidence

of association and heterogeneity in the overall meta-anal-

ysis (p ¼ 0.02; phet ¼ 0.03). Nevertheless, no clear pattern

of age dependency was identified (p ¼ 0.2) for this SNP

(Figure S6).

We also applied meta-regression analysis and found

that variants mapping to 42 different loci showed nomi-

nally significant age-dependent effect (p < 0.05) (Table

S7; Figure S7). In summary, 27 (64%) of the loci showed

stronger effects in the older age groups. Of these,
2018



Figure 2. Age Dependence of the Genetic Variant Effect in the Meta-regression
The panels display leading SNPs from two loci exhibiting significant evidence for age influences. Heterogeneity p values (phet) are
reported for the overall meta-analysis. In the left panels, each circle represents a study subgroup (i.e., study divided in age strata),
with the circle size proportional to the inverse variance of the SNPmain effect. In the right panels, forest plots display estimates obtained
from each age-bin meta-analysis, with the symbol size proportional to the inverse variance of the SNP main effect.
variants in the 6q25.1 (ESR1) and 13q14.11 (RANKL) loci

remained significant after multiple-testing correction

(p < 3.4 3 10�5) (Figure 2), while variants in 6p21.1

(RUNX2, rs148460475), 15q21.2 (CYP19A1, rs2414098),

17q21.31 (MEOX1, rs74835612), and 11p15.1 (SOX6,

rs11822790) were only suggestive at p < 1 3 10�3.

Conditional Association Analyses

The stepwise conditional approach included studies

comprising only individuals of European ancestry, as the

method used relies on appropriate representability of the

LD reference. Of the 76 GWS loci identified in the overall

analysis, variants in 57 (19 previously unreported) loci

were also GWS in the European-only analysis (Figure S2),

likely a consequence of the lower power in this subgroup.

We identified 81 SNPs independently associated with

TB-BMD mapping to 58 different loci (one European-spe-

cific), 18 of which depicted multiple distinct signals attain-

ing GWS (Table S8). These independent variants together

explained 10.2% of TB-BMD variance. This proportion is

slightly higher than the 7.4% TB-BMD variance explained

by the 78 known variants associated with bone traits.

Moreover, we identified independent signals in 13 of the

78 known bone loci after conditional analyses (Figure S2;

Table S8).
The Ame
Shared Genetic Architecture of TB-BMD, Fracture,

and Other Traits

SNP heritability of TB-BMD in the European samples

was estimated to be 0.259 (SE 0.017). TB-BMD was highly

genetically correlated with BMDmeasured at other skeletal

sites (r > 0.9). Among the non-BMD traits, all types

of fracture showed the highest correlation (r ¼ �0.61

[p ¼ 1.6 3 10�27]). The MR approach indicated a strong

causal relation where, per 1 standard deviation decrease

in genetically determined TB-BMD, there is 56% increase

in the risk of fracture (odds ratio 1.56 [1.50–1.62]). Other

anthropometric, metabolic, and disease traits showed sig-

nificant (yet weak) correlation with TB-BMD (Table S9,

Figure 3). In contrast, other established risk factors for oste-

oporosis such as menopause or age of menarche showed

no significant genetic correlation with TB-BMD.

Biological and Functional Knowledge of the Genes in

BMD-Associated Loci

Locinotpreviously reportedand their potential role inbone

metabolism are summarized in Table 1. Several loci harbor

genes implicated directly in bone metabolism (SLC8A1

[MIM: 182305], PLCL1 [MIM: 600597], ADAMTS5 [MIM:

605007]), affecting osteoblast or osteoclast differentiation
rican Journal of Human Genetics 102, 88–102, January 4, 2018 95



Figure 3. Genetic Correlations between TB-BMD and Other Traits and Diseases
Calculation was based on the summary statistics of the only-European meta-analysis (N ¼ 56,284) and estimated by LD score regression
implemented in LDHub. The diagram shows only traits whose correlation with TB-BMD was significant (p < 0.05).
and activity (CSF1 [MIM: 120420], DUSP5 [MIM: 603069],

SMAD3 [MIM: 603109], SMAD9 [MIM: 603295], CD44

[MIM: 107269]), participating in Wnt signaling (FZD7

[MIM: 603410], TCF7L1 [MIM: 604652]), or regulating pro-

cesses such as manganese or calcium absorption (GCKR

[MIM: 600842], DGKD [MIM: 601826], SLC30A10 [MIM:

611146]) among others;39–60 while genes in at least 14 loci

exert a potential novel role in bone biology. Rodent

knockout models of several genes in the implicated

loci show an altered skeletal phenotype (e.g., ostoepetrosis

[Csf139], increased bone resorption [Aqp1,48 Cyp19a1,55

Cd4451], impaired skeletogenesis [Apc,47Runx1,59 Smad356],

deformities in the axial skeleton [Btg1,61 Atpaf262]). An ef-

fect on bone can be inferred for genes in other associated

loci, for example, CYP19A1 (MIM: 107910) in 15q21.2 is

an estrogen synthesis gene, estrogenbeing a key compound

for bone maturation and maintenance, and ZKSCAN5

(MIM: 611272) in 7q22.1 is associated with circulating

dehydroepiandrosterone sulfate (DHEAS) levels.49 DHEAS

levels are positively correlated with BMD in adults and

post-menopausal women.63 Across these loci, not previ-

ously reported as associated with BMD variation, we iden-

tified six exonic variants associated with TB-BMD, three

of which were nonsynonymous variants all cataloged

as benign both by SIFT and PolyPhen-2. We also iden-

tified 53 GWS coding variants in known loci, of
96 The American Journal of Human Genetics 102, 88–102, January 4,
which 33 are non-synonymous (Table S10). Only a low-

frequency variant in LRP5 (MIM: 603506), rs4988321/A

(11:68174189, MAF ¼ 0.04), has a clinical annotation,

constituting a homozygous G-to-A transition variant

identified in a person with osteoporosis-pseudoglioma

syndrome (OPPG [MIM: 259770]).64

DEPICT Analyses

Based on the overall meta-analysis, 53 genes were priori-

tized (FDR < 0.05), 15 of them mapping to loci not previ-

ously described (Table S11). Cells and tissues from the

musculoskeletal system presented the largest enrichment

of gene expression within the associated loci (Figure 4).

These genes were overrepresented in 182 pathways clus-

tered in 25 ‘‘meta gene-sets’’ (Table S12). The large majority

of the clusters are involved in musculoskeletal develop-

ment and bone homeostasis (Figure 4). The most signifi-

cant of these implicated the regulation of cell growth

and the TGFB signaling pathway and its mediating

SMAD proteins.

Restricting the DEPICT analysis to the subset of not pre-

viously reported associated regions resulted in significant

enrichment of genes expressed in the musculoskeletal

and immunological systems (Figure S8). Genes mapping

to these loci were overrepresented in the SMAD binding

pathway and TGFBR2 PPI (protein-protein interaction)

subnetwork (FDR < 0.05).
2018



Figure 4. Results for Gene Set and Cell/Tissue Enrichment Analyses
Top: 25 Meta gene sets were defined from similarity clustering of significantly enriched gene sets (FDR < 5%). Each meta gene set
was named after one of its member gene sets. The color of the meta gene sets represents the p value of the member set. Interconnec-
tion line width represents the Pearson correlation r between the gene membership scores for each meta gene set (r < 0.3, no line;
0.3 % r < 0.5, narrow width; 0.5 % r < 0.7, medium width; r R 0.7, thick width). Bottom: Bars represent the level of evidence
for genes in the associated loci to be expressed in any of the 209 medical subject heading (MeSH) tissue and cell type annotations.
Highlighted in orange are these cell/tissue types significantly (FDR < 5%) enriched for the expression of the genes in the associated
loci.
Functional Annotation to MicroRNA Binding Sites

We then assessed whether the index SNPs of the 80 GWS

loci detected in the main and subsequent GWAS (or their

proxies in strong LD; r2> 0.8) were located in predictedmi-

croRNA binding sites within the genes’ 30 UTRs and thus

were expected to disrupt the regulation of gene expression

(Table S13). The index SNP within the 30 UTR of ZKSCAN5

(mapping to a locus not previously identified), rs34670419

(MAF ¼ 0.04), is predicted to create a binding site for miR-

382-3p, a microRNA that is expressed in osteocytes and

has been recently shown to be involved in osteogenic

differentiation.65 In addition, eight proxy SNPs (mapping

to PSMD13, ABCF2, GALNT3, PKDCC, REEP5, PPP6R3,

AAGAB, and TOM1L2) are predicted to influence the bind-

ing of microRNAs to transcripts of their host gene.

Functional Enrichment Analysis of Trait-Associated Variants

As typically found in GWASs, the great majority of identi-

fied associations emerged from non-coding common vari-

ants and hold no direct annotation to molecular mecha-

nisms. To assess whether there is relative enrichment of

regulatory genomic marks underlying the associated vari-
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ants in a cell-specific context, we used GARFIELD.32 We

found relative ubiquitous enrichment for TB-BMD variants

(empirical p < 2.4 3 10�4) in DNase I hypersensitive sites

across the different cell types (Figure S9). Further, we found

higher levels of fold-enrichment for enhancers (median

3.6, range [2.7, 4.4]) and promotors (median 3.2, range

[2.9, 3.5]) than for transcribed regions (median 1.8, range

[1.5, 2.2]).

Gene Expression in Bone Cells and Knockout Animal Models

From the 53 genes prioritized by DEPICT, only 49 had

a mouse ortholog (Table S14). From these genes, only

Mepe (osteocyte-specific) and Foxl1 were not expressed

in murine osteoblast or osteoclast. Moreover, 61% of

the prioritized genes were expressed in human cells

in vitro during osteoblast or osteoclast differentiation

(Table S14). AQP1 was the only prioritized gene map-

ping to a locus not previously reported showing no

expression in the human bone cells differentiation

experiments.

Knockout models were widely available in at least one

of the different databases assessed. Nevertheless, in-depth
rican Journal of Human Genetics 102, 88–102, January 4, 2018 97



bone phenotyping performed under the OBCD project

was available for only four knockout models (Table S15).

Two of these, DUSP5 and CD300LG, showed no signifi-

cant bone phenotype. The TCF7L1 knockout model

only showed lower cortical diameter in the femur

without other clear bone phenotype. Nevertheless,

TCF7L1 was shown to be expressed during osteoblasto-

genesis. Conversely, homozygous knockout for CREB3L1

showed a clear bone phenotype consisting of low BMC

both at the vertebrae and femur together with a strong

trabecular and cortical phenotype affecting bone strength

(Figure S10). CREB3L1 maps to 11p11.2, a previously

identified BMD locus5 harboring ARHGAP1 and LRP4

as candidates to underlie the GWAS signal in a region of

extended LD.
Discussion

This meta-analysis of TB-BMD comprising up to 66,000

individuals identified variants in 36 loci not previously re-

ported and replicated at GWS level several association sig-

nals identified by GWASs of diverse bone phenotypes. Bio-

informatics analyses suggest enrichment of these 36 loci

for genes expressed in the musculoskeletal system and sol-

idly represented in the SMAD binding pathway and the

TGFBR2 PPI subnetwork. We also demonstrate that for var-

iants in few loci the size of the effect is age dependent; var-

iants in two loci (RIN3 and TSHZ3) were identified only by

the age-stratified analyses despite less power (smaller sam-

ple size); while for variants in two other loci (ESR1 and

RANKL) there was significant evidence of age heterogene-

ity derived from a meta-regression of the genetic effects

with age. Our results strengthen the evidence that genetic

variants influence BMD from a young age and support the

value of peak bone mass as an important determinant of

bone health later in life.

Traditionally,DXA-BMDmeasurementsperformedat sites

of high fracture risk (i.e., femoral neck, lumbar spine and

forearm) have been used in genetic epidemiological investi-

gations of bonehealth in adults. Instead, wehave used BMD

measurements derived from total body scans. Not only do

we show a high overlap of association signals with previous

GWASs of different bone traits, including DXA, pQCT, and

ultrasoundmeasurements, but we have also identified unre-

ported loci. Five knownassociations failed to replicate in our

studies, even thoughwe cannot discard these associations as

false positives, because these results might also indicate that

variants whose effect is highly specific to skeletal sites, skel-

etal properties, sex, or age groups cannot be detected in

our TB-BMDmeta-analysis. It is plausible thatmore variants

of this type exist and will be discovered as site-specific BMD

meta-analyses are performed in increasingly powered set-

tings. Furthermore, the genetic correlation of TB-BMD

with BMD measured at other sites was close to one. Never-

theless, we found that a decrease of one standard deviation

in the genetically determined TB-BMD resulted in at least
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50% higher odds of suffering a fracture. Significant genetic

correlations with other traits (i.e., BMI, IGF1, and ulcerative

colitis) reflect the systemic context of skeletal biology and

merit further studyby future efforts to elucidate the underly-

ing mechanisms.

Genes in the associated loci were highly expressed in

the musculoskeletal system and overrepresented in gene

sets related to bone development. The prioritized gene

CREB3L1 (MIM: 616215) in 11p11.2 observed a clear

bone phenotype in ourmouse knockoutmodel, which cor-

roborates the findings of previous work showing substan-

tial rescue of CREB3L1 deficiency with bisphosphonates

and its critical role for bone formation.66 This locus,

characterized by extended LD, also harbors LRP4 (MIM:

604270) whose knockout model presents with increased

trabecular and cortical bone mass.67 This is in line with

our conditional analysis identifying multiple independent

signals in the region, making it likely that both genes are

influencing bone biology. Altogether, we demonstrated

that TB-BMD offers a powerful alternative to identify ge-

netic variants associated with bone metabolism.

Variants mapping to 14q32 harboring RIN3 (MIM:

610223) were associated only at a GWS level in children

(i.e., <15 years) and were only nominally significant in

the elderly group (i.e., >60 years). This age-related hetero-

geneity may explain why this locus has not been detected

in BMD meta-analyses in adults, although being identified

in relation to pediatric BMD7 and Paget disease (PDB [MIM:

602080]) GWASs.68 In addition, another signal mapping

to 19q12 harboring TSHZ3 (MIM: 614119) was significant

in adults aged 45–60 years but not in other age groups

analyzed or in previous studies, alluding to a false-positive

association, so replication of this finding is necessary.

Our analyses revealed variants in the 6q25.1 (ESR1) and

13q14.11 (RANKL) loci demonstrating themost compelling

evidence for age-modulation effects. The 6q25.1 locus

harboringESR1 (MIM:133430), an important genetic factor

in normal BMD variability, was not associated with BMD in

children below 15 years of age, where the largest cohorts

(i.e., Avon Longitudinal Study of Parents and Children

[ALSPAC] and the Generation R Study) comprise predomi-

nantly pre-pubertal children. As levels of estradiol before

puberty are low,69 a negligible effect of ESR1 variants on

BMD is expected. Likewise, inmousemodels the expression

of RANKL (MIM: 602642) in bone is markedly increased

with advancing age from young to adult and related to

bone loss.70 Accordingly, variants influencing RANKL

expression show a larger effect later in life. In general, a sub-

stantial heterogeneity of the genetic effects in the overall

meta-analysis was explained by age, but the inclusion of

larger sample sizes (avoiding age exclusion criteria and in-

crementing statistical power) leveled off the loss of power

due to the heterogeneity of the genetic effects.

In brief, variants with evidence of age-specific effects were

exceptional in our study. These resultsmight reflect a lack of

statistical power as only SNPs showing suggestive evidence

(p < 5 3 10�6) of association with TB-BMD in the overall
2018



meta-analysis were tested for age-specific effects. This selec-

tion criteria aimed to include SNPs whose heterogeneity

might have hampered their statistical significance in the

overall meta-analysis, and at the same time maximize the

power to discover variants with real age-dependent effects.

Alternatively, these results indicate that most of the genetic

variants identified so far, by us and others, influence BMD

from early ages onward, and their effect persist throughout

the life course. However, variants in 27 of the 42 loci (64%)

showing nominal evidence for age-dependent effects had

larger effects in the older groups. Nonetheless, this requires

careful interpretation given the uneven sample sizes be-

tween the age groups and the criteria to select markers for

the meta-regression based on significance in the overall

meta-analysis. Collectively, this argues in favor of enlarging

studies focused on younger populations—where the statisti-

cal power is still restricted—to discover additional genetic

variants influencing BMD.

Our study has some limitations. A key disadvantage of

our design is that we group the data based on age spans

rather than life stages. Crucial information for this assess-

ment, such as puberty onset in children and adolescents

or menopausal status in the adults, was not available across

the majority of the cohorts. Other strategies like using

smaller age spans will result in even less statistical power

of the discovery setting. Similarly, despite the large sample

size of our study, we identified very few variants in the low-

frequency spectrum (MAF < 5%), indicating that compre-

hensive surveys of rare variation influencing BMD still

require even larger sample sizes, on top of better resources

for imputation of the rarer variants, possibly needing pop-

ulation-specific references. Such strategies will be key to

explain a larger fraction of the genetic variability of BMD

phenotypes, as illustrated for other traits such as height

or BMI.71 Moreover, the identified SNPs are, in the vast

majority, non-coding variants, raising the possibility that

the causal genes are different from the candidate genes

we have prioritized based on the current biological knowl-

edge and bioinformatic prediction tools. Additional func-

tional studies are required to determine the potential role

of the genes in the identified loci.

In conclusion, we performed a genome-wide survey for

association with DXA-derived TB-BMD, combining data

from five age groups including children and older individ-

uals. In contrast to previous large-scale meta-analyses,5,6

we used DXA-derived TB-BMD rather than measurements

on specific skeletal sites prone to fracture to identify ge-

netic factors influencing BMD variation. We demonstrate

that TB-BMD is a valid phenotype for this purpose, as we

replicated more than 90% of the previously reported sig-

nals. Most importantly, we identify variants in 36 loci asso-

ciated with TB-BMD not previously reported by previous

GWASs of bone phenotypes. Our results show steadiness

in the magnitude of the genetic effects on BMD for most

of the BMD-associated variants. While the contrasting

skeletal physiology across different age periods is well

established (i.e., endochondral ossification, linear growth,
The Ame
modeling, remodeling, etc.), peak bone mass acquisition

remains the major determinant of variability at any age.

These findings strongly support the importance of the

bone accrual process in the definition of BMD status and

fracture susceptibility throughout the life course.
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Verhulst, A., et al. (2017). The Lrp4 R1170Q homozygous

knock-in mouse recapitulates the bone phenotype of sclero-

steosis in humans. J. Bone Miner. Res. 32, 1739–1749.

68. Albagha, O.M., Wani, S.E., Visconti, M.R., Alonso, N.,

Goodman, K., Brandi, M.L., Cundy, T., Chung, P.Y., Dargie,

R., Devogelaer, J.P., et al.; Genetic Determinants of Paget’s

Disease (GDPD) Consortium (2011). Genome-wide associa-

tion identifies three new susceptibility loci for Paget’s disease

of bone. Nat. Genet. 43, 685–689.

69. Courant, F., Aksglaede, L., Antignac, J.P., Monteau, F., Soren-

sen, K., Andersson, A.M., Skakkebaek, N.E., Juul, A., and Bizec,

B.L. (2010). Assessment of circulating sex steroid levels in pre-

pubertal and pubertal boys and girls by a novel ultrasensitive

gas chromatography-tandem mass spectrometry method.

J. Clin. Endocrinol. Metab. 95, 82–92.

70. Cao, J., Venton, L., Sakata, T., andHalloran, B.P. (2003). Expres-

sionofRANKLandOPGcorrelateswith age-relatedbone loss in

male C57BL/6 mice. J. Bone Miner. Res. 18, 270–277.

71. Yang, J., Bakshi, A., Zhu, Z., Hemani, G., Vinkhuyzen, A.A.,

Lee, S.H., Robinson,M.R., Perry, J.R., Nolte, I.M., van Vliet-Os-

taptchouk, J.V., et al.; LifeLines Cohort Study (2015). Genetic

variance estimation with imputed variants finds negligible

missing heritability for human height and body mass index.

Nat. Genet. 47, 1114–1120.
, 2018

http://refhub.elsevier.com/S0002-9297(17)30494-9/sref50
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref50
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref50
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref50
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref51
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref51
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref51
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref51
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref52
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref52
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref52
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref53
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref53
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref53
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref53
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref53
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref53
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref53
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref54
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref54
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref54
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref54
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref55
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref55
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref55
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref55
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref56
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref56
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref56
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref56
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref56
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref57
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref57
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref57
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref58
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref58
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref58
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref58
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref58
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref58
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref59
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref59
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref59
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref59
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref60
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref60
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref60
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref60
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref61
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref61
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref61
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref61
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref61
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref62
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref62
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref62
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref62
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref62
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref62
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref63
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref63
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref63
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref63
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref63
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref64
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref64
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref64
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref64
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref64
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref65
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref65
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref65
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref65
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref65
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref65
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref65
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref66
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref66
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref66
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref66
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref67
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref67
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref67
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref67
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref67
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref68
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref68
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref68
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref68
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref68
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref68
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref69
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref69
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref69
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref69
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref69
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref69
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref70
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref70
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref70
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref71
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref71
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref71
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref71
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref71
http://refhub.elsevier.com/S0002-9297(17)30494-9/sref71

	Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects
	Introduction
	Subjects and Methods
	TB-BMD GWAS Meta-analyses
	Subjects, BMD Measurement, and Imputation
	Association Analysis, Quality Control, and Assessment

	Shared Genetic Architecture of TB-BMD Fracture and Other Traits
	LD Score Regression Analyses
	Mendelian Randomization Analysis

	Search for Biological and Functional Knowledge of the Identified Association Regions
	DEPICT Analyses
	Functional Annotation to MicroRNA Binding Sites
	Functional Enrichment Analysis of Trait-Associated Variants

	Knockout Animal Models and Gene Expression in Bone Cells
	Animal Models Survey
	Gene Expression in Bone Cells


	Results
	TB-BMD GWAS Meta-analyses
	Analyses Including All Age Strata
	Age-Dependent Effects
	Conditional Association Analyses

	Shared Genetic Architecture of TB-BMD, Fracture, and Other Traits
	Biological and Functional Knowledge of the Genes in BMD-Associated Loci
	DEPICT Analyses
	Functional Annotation to MicroRNA Binding Sites
	Functional Enrichment Analysis of Trait-Associated Variants
	Gene Expression in Bone Cells and Knockout Animal Models


	Discussion
	Accession Numbers
	Conflicts of Interests
	Acknowledgments
	Web Resources
	References




