
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
BGP-ELF: Enhancing BGP To Eliminate Routing Loops and Oscillations without Using Path
Vectors

Permalink
https://escholarship.org/uc/item/4tj948z2

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2022-10-01

Data Availability
The data associated with this publication are within the manuscript.

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4tj948z2
https://escholarship.org
http://www.cdlib.org/

BGP-ELF: Enhancing BGP To Eliminate Routing
Loops and Oscillations without Path Vectors

J.J. Garica-Luna-Aceves
Computer Science and Engineering Department, University of California, Santa Cruz, CA, USA

jj@soe.ucsc.edu

Abstract—The policy mechanisms used in BGP are modified
by substituting path vectors with path labels, which results in
BGP-ELF (BGP Enhanced for Loop Freedom). BGP-ELF uses
updates, queries, and replies based on path labels to attain multi-
path loop-free and stable routing across autonomous systems
without the need for path vectors. An autonomous system
organized into clusters is required to elect a designated route
reflector to ensure that no routing loops can be formed due to
local preferences within clusters in the autonomous system. Well-
known examples of systems in which EBGP and IBGP do not
converge are used to illustrate the benefits of BGP-ELF.

I. INTRODUCTION

The Internet is organized hierarchically into autonomous
systems (AS) that consist of collections of routing prefixes un-
der the control of a single administrative authority or domain.
The topology of an AS consists of one or multiple computer
networks connected with each other, and the same set of
routing policies is used throughout the AS. There are many
protocols for routing within ASes, but the Border Gateway
Protocol (BGP) [15] is the only protocol being used for inter-
AS routing.

The Exterior Gateway (EGP) [16] was the first protocol for
routing across ASes but its reliance on an engineered Internet
topology to operate without looping made it unacceptable
as the Internet grew in size. To address the limitations of
EGP, the design of BGP incorporated the use of path vectors
to detect the occurrence of routing loops across ASes. In
theory, the use of path vectors enables all routers executing
the routing protocol to converge to valid routes to destinations;
however, BGP speakers use local preferences rather than a
global optimality criteria to select paths, which results in
looping and non-termination problems.

Griffin et al. [9], [10] have shown that relying on programs
that verify ahead of time that routing policies do not contain
policy conflicts that could prevent BGP from converging to
stable routes is not practical. Consequently, only approaches
based on modifications to the policy mechanisms or signaling
of BGP are viable in practice. We describe many of these
approaches in in [7], [8]. Related to the approach we describe,
van Beijnum et al. [17] presented an approach to support multi-
path routing in BGP by requiring BGP routers to communicate
the routes with the longest AS-paths among the routes locally
available for each destination.

The looping and non-convergence problems in interior BGP
(IBGP) has been addressed by many authors (e.g., [1], [13],
[14], [18]), and as a result the BGP specification has been

augmented [2] to account for the use of route reflectors and
has added more path attributes in an attempt to avoid routing
loops due to route reflectors. However, the proposed operation
of BGP with route reflectors in [2] is still prone to route
oscillations and loops.

Previous approaches attempting to solve the IBGP routing
problems in large ASes that are not fully meshed have focused
on either properly configuring ASes (e.g., [14]), or requiring
BGP speakers to communicate much more path information
[1], [13], which may induce excessive overhead.

Interestingly, all prior approaches focusing on solving the
looping and convergence problems of BGP assume the use of
path vectors. This is also the case for our own recent proposal
to make BGP stable and loop-free by introducing total ordering
in its policy-based mechanisms [6], [8]. By contrast, this paper
presents the first proposed redesign of BGP that eliminates
path vectors and provides stable, loop-free, multi-path routing
across ASes.

Section II presents BGP-ELF (BGP Enhanced for Loop
Freedom), which replaces the use of path vectors with path
labels. A path label consists of the number of AS hops
and the AS identifier of the first hop in the route to the
destination. BGP-ELF allows route selection to be based on
local preferences as in BGP, and routers from an AS can report
a single route to neighbor routers in other ASes even when
they use multiple local routes to destinations. Loop-freedom
is guaranteed by requiring routers in an AS to accept a route
to a destination from a neighbor AS only when the path label
reported by that AS is lexicographically smaller than the path
label currently held by the routers in the AS. ASes use a query-
response process to search and find routes with path labels that
are lexicographically smaller.

Section III discusses cases of route oscillation and non-
deterministic convergence in BGP and how BGP-ELF elimi-
nates these problems. Section IV summarizes our results.

II. BGP-ELF

A. Overview

BGP-ELF uses the same signaling and policy mechanisms
defined for BGP. Accordingly, we only describe the changes
needed to transform BGP into BGP-ELF.

We assume familiarity with BGP and the way in which
IBGP and EBGP routers operate [2], [3], [11], [15], and
describe the policy mechanisms for routing used in BGP as
consisting of: (a) An import transformation with which routes

are accepted for consideration, (b) a preference function with
which valid routes are compared and preferred routes are
selected, and (c) an export transformation with which preferred
routes are announced.

BGP-ELF makes four main changes to BGP signaling: (a)
Path vectors are replaced with labeled path lengths specified in
Definition 1; (b) ASes are classified into classes to allow route
filtering based on them; (c) a large AS organized into clusters
uses one of the route reflectors in the AS [3] as a designated
reflector to order routes within the AS; and (d) BGP-ELF uses
updates, queries, and replies that take advantage of labeled
path lengths and AS classes.

Definition 1: Labeled Path Length: The labeled path length
of P k

d (n) is denoted by `kd(n), is assigned by the routers in
AS k, and is defined to be the tuple (k, hkd(n)), where hkd(n)
is the number of AS hops in P k

d (n).
This definition transforms a path vector to its hop length and

the identifier of the first node along the path. By definition,
`o = (D, 0) is the initial labeled path length associated with
a known reachable destination d, where D is the AS of
destination d, and `∞ = (nil,∞) is the labeled path length
for an unreachable destination.

BGP-ELF uses updates, queries and replies to ensure that
the following condition L is always satisfied between a BGP-
ELF speaker and any one of its next hops to a destination
d.

Definition 2: Ordering on Labeled Path Lengths: Node a
is ordered along path P a

d (n) with respect to its next-hop node
b along that path if

L : `bd(m) ≺` `
a
d(n) ≡ (1)

[hb
d(m) < ha

d(n)] ∨ [(hb
d(m) = ha

d(n)) ∧ (b < a)]

AS Classes: BGP allows BGP speakers to filter routes
based on path information [3] to avoid cases in which an AS
forwards traffic towards a destination that does not satisfy its
local routing policies. BGP-ELF allows route filtering based
on the type of ASes traversed in a route to a destination. For
this purpose, BGP-ELF defines a number of AS classes, an
AS may be part of one or multiple classes, and nodes add a
class vector to each labeled path length to state all the AS
classes of the ASes traversed in a route to a destination.

Designated Reflector: Each AS organized into clusters
with route reflectors has a single route reflector that is either
configured or elected to be the designated reflector for the
AS. If the designated reflector is elected, the election can be
made very simple by choosing, for example, the reflector with
the smallest identifier or the smallest. cluster identifier as the
designated reflector. This can be done very quickly given that
reflectors should be fully meshed with one another.

BGP-ELF Signaling: Nodes simply send updates with
their labeled path lengths as long as they have neighbor nodes
that satisfy L for a given destination. Otherwise, a node sends
a query stating its current labeled path length to a destination
and a requested label that equals the value of its own labeled
path length prior to the input event that prompted the query.

A node that receives a query sends a reply if its next hop
along the path corresponding to its reported labeled path length
satisfies L with the value of the requested label stated in the
query. The reply from the node states its own labeled path
length and the requested label in the query. Otherwise, the
node propagates the query specifying its own labeled path
length and the requested label in the query it received.

A query is propagated towards the destination along the path
corresponding to the reported labeled path lengths.

A node that forwards a reply states its own labeled path
length and the requested label in the response it receives.
Updates and replies are sent to all neighbors, and queries may
be sent to all neighbors or a single neighbor.

Like BGP, BGP-ELF consists of Exterior BGP-ELF (E-
BGP-ELF) with which BGP-ELF speakers in different ASes
share routing information, and Interior BGP-ELF (I-BGP-
ELF) with which BGP-ELF speakers in the same AS share
routing information. We describe more details about the oper-
ation of BGP-ELF based on this two components. We have
proven that E-BGP-ELF is loop-free and that it converges
deterministically to stable routes [7].

B. Exterior BGP-ELF [7]

BGP-ELF advertises one single route to any given destina-
tion d if it has at least one loop-free path to the destination,
and sends the same routes to all or a subset of neighbor routers
in other ASes.

The labeled path length for destination d reported by the
routers in AS k is denoted by `kd[r], and defined to be `kd[r] =
(k, hkd), where hkd is the number of AS hops in the path to d.
For simplicity, `kd[r] is called the reported label by node k
for destination d.

Because each router in an AS can advertise at most one
route to any destination, a router in AS k cannot have more
than one route to destination d through a neighbor router
in another AS q. We denote by `kdq the reported label for
destination d sent by a router in AS q and maintained at the
routers in AS k.

Node node k maintains a Neighbor Table (NT k) and a
Routing Table (RT k). NT k stores the reported labels sent
by each neighbor of node k. RT k lists an entry for each
destination d and states: The reported label (`kd[r]), a reference
label (rkd), the set of next hops (Sk

d), and the next hop (skd)
along the path corresponding to `kd[r]. If there is no next hop
to d, then Sk

d = ∅ and skd = 0.
The value of the reference label rkd equals the value of

`kd[r] when node k has valid next hops to destination d, or the
smallest value of a requested label stated in a query created
or forwarded by the node. How a router in AS k uses the data
in RT k to populate its forwarding information base is outside
the scope of this paper.

An update for destination d is denoted by U(d, `kd[r]); a
query is denoted by Q(d, `kd[r], ρkd), where ρkd is a labeled path
length stated by the AS from which the the query originated;
and a reply is denoted by R(d, `kd[r], ρkd), where ρkd is copied

from the query being answered. For simplicity, we refer to ρkd
as a requested label.

1) BGP-ELF Import Transformation: BGP-ELF uses L
rather than the simple loop-detection mechanism of BGP.
Routers in an AS are allowed to accept routes for destinations
in other ASes only if they are ordered according to L, and
also order the routes they store locally according to L.

Route filtering based on AS classes is supported in BGP-
ELF by adopting a system-wide approach to the classification
of ASes into classes [7]. Each AS class is denoted by an
integer value from 1 to |C|, where |C| is the total number
of AS classes defined in the system.

A class vector with a bit for each AS class is used to denote
the fact that an AS belongs to one or multiple AS classes. The
class vector of a given AS consists of the ordered sequence
of bits {c1, c2, ..., c|C|}, where 1 ≤ i ≤ |C| and ci = 1 if the
AS belongs to the ith AS class defined in the system.

Node k has a list of unwanted types of ASes for each
destination d, which is denoted by the unwanted class vector
ukd with |C| bits. The ith bit of this vector is denoted by ukd(i)
and ukd(i) = 1 if node k does not want routes to destination
d that contain ASes belonging to AS class i.

Node k reports all its routes to all its neighbors, and those
neighbors filter out unwanted routes themselves based on their
own preferences. This way, nodes sending updates do not
have to keep track of the unwanted class vectors of all their
neighbors. The reported label from node k to destination d,
`kd[r], is augmented with an associated unwanted class vector
ukd and a class vector νkd . An update, query or reply from
node k regarding destination d includes only `kd[r] and νkd ,
because nodes need not know the unwanted class vectors of
their neighbors.

Node k stores the reported label and the class vector for
destination d reported by each neighbor node. The class vector
stored at node k and reported by node q for destination d is
by νkdq , with νkdq ← νqd .

We use ukd∩νkdq = 0̄ to denote the fact that ukd(i)∩νkdq(i) =
0 for 1 ≤ i ≤ |C|.

When a router in AS k receives an update, query or reply
from a neighbor router in AS q with a reported label `qd[r] for
destination d, the import transformation of BGP-ELF consists
of accepting `qd[r] only if the reported label is totally ordered
with respect to the current value of its own reported label
`kd[r] and does not correspond to a route with a class vector
containing any AS class that belongs to any of the unwanted
AS classes by node k. This can be stated as follows:

BEi :
(
`qd[r] ≺` `

k
d[r]

)
∧
(
ukd ∩ νkdq = 0̄

)
(2)

If BEi is true, the reported route from AS q is accepted and
`kdq ← `qd[r]. In addition, node k updates νkd with the bitwise
OR of its own class vector and the class vector of the new
route, i.e., νkd ← νkdq ∪ νkd . This way, the updates, queries
and replies sent by node k for destination d contain the most
recent class vector associated with the reported label for the
destination. On the other hand, if BEi is false, the reported
route is not accepted. In this case, `kdq ← `∞.

Once node k updates NT k, it updates RT k and takes
different steps depending on its routing state. The routing state
of routers in AS k is determined by the following condition:

T :
(
∃ q ∈ Nk

[
`kdq ≺` r

k
d

])
∨
(
∀q ∈ Nk

[
`kdq = `∞

])
(3)

A node is said to be passive if T is true and is active
otherwise. If node k is passive, then rkd ← `kd[r]. If it is active,
then rkd is not updated and equals the last value of `kd[r] when
node k was passive. Node k sends an update, a query, or a
reply depending on the the input event and whether it is passive
or active after its routing table is updated.

Node k takes the following steps to process an update
U(d, `qd[r]) or after detecting a change in the state of its link
with neighbor q:
(i) Sends U(d, `kd[r]) if it remains or becomes passive.
(ii) Originates Q(d, `kd[r], ρkd = rkd) if it becomes active.
(iii) Sends Q(d, `kd[r], ρkd = rkd) if it remains active after
the input event, at least one neighbor v has reported a finite
distance, and hkd was updated.

Node k takes the following steps to process a reply
R(d, `qd[r], ρqd) from neighbor q:
(i) Sends R(d, `kd[r], ρkd = ρqd) if it either becomes passive and
ρqd ≤ rkd , or it remains passive and either ρqd < rkd or the value
of hkd was updated.
(ii) Originates Q(d, `kd[r], ρkd = rkd) if it becomes active as a
result of the reply from q; however, if q ∈ Sk

d before the
reply made node k become active, it updates Sk

d ← {q},
hkd ← hqd + 1.
(iii) Stays silent if it was active before the reply from q and
remains active.

Node k takes the following steps to process a query
Q(d, `qd[r], ρqd) received from neighbor q:
(i) Sends R(d, `kd[r], ρkd = ρqd) if it is passive and has a
neighbor v such that `kdv ≤ ρ

q
d.

(ii) Forwards Q(d, `kd[r], ρkd = ρqd) to its next hop skd if it
remains passive and has no neighbor v such that `kdv ≤ ρ

q
d.

(iii) Forwards query Q(d, `kd[r], ρkd = ρqd) to all its neighbors
if it becomes active or remains active and ρqd < rkd , and sets
rkd ←Min{rkd , ρ

q
d}.

(iv) Stays silent if it is active before the query from q is
received and all its neighbors have sent `∞ for destination
d.

2) Multi-Path Local-Preference Function: BGP-ELF al-
lows routers to choose among accepted routes according to
local preferences defined by the local preference function,
which consists of the same steps as those taken during Phase
2 of the BGP Decision Process (Section 9.1.2.2 of RFC 4271).

Let W be the set of link weights in which each link weight
describes performance or policy-based characteristics of the
link. The weight of the link from router i to router j is denoted
by w(i, j), and we make the restriction that w(i, j) ∈ R and
w(i, j) > 0.

BGP uses path attributes in sequence to select preferred
paths as part of the Decision Process (Section 9.1 of RFC

4271). Accordingly, we define the weight of a path for BGP-
ELF in terms of a sequence of attributes as stated below.

Definition 3: Path Weight: The weight ωk
d(n) of path

P k
d (n) is defined to be a tuple with a finite number of attribute

values associated with the path.
The ordered sequence of the n attributes of a path weight is

A = {a1, a2, ..., a|A|}. The order followed in this sequence is
given by the order in which the attributes are used to determine
that a path has a smaller weight than another path, i.e., that
a path is preferred over another path. The value of the jth
attribute of path P a

d (n) is denoted by aj [P a
d (n)].

The order relation < defined for real numbers is valid for
the values of any path attribute, because we can assume that
attribute values can be expressed as integers or real numbers.

Definition 4: Path-Weight Preference: A path P b
d (m) is

preferred over path P a
d (n) if the following path-preference

condition is satisfied:

ωb
d(m) < ωa

d(n) ≡ ∃j ≤ |A|
[(

aj [P
b
d (m)] < aj [P

a
d (n)]

)
∧(

∀i < j
[
ai[P

b
d (m)] = ai[P

a
d (n)]

])]
Because at most one path to each destination is shared

across ASes and nodes maintain the set of locally-available
routes for each destination, nodes must determine the route
with the longest labeled path length among all valid routes
available locally according to Definition 5.

The set of labeled path lengths corresponding to loop-free
routes for destination d that are locally available at a router in
AS k is denoted by Lk

d , and the set of ASes directly connected
to AS k is denoted by Ak. It follows that Lk

d = {`kdq | q ∈ Ak}.
Definition 5: Longest Labeled Path Length: The longest

labeled path length in Lk
d is denoted by `kdmax and is such that

∀ `kdq ∈ Lk
d − {`kdmax}

(
`kdq ≺` `

k
dmax

)
(4)

A router in AS k takes the following steps for each
destination d: (i) Maintain the set of labels Lk

d and update
Sk
d (as next hops to d) to include those neighbors with labels

in Lk
d; and (ii) update `kdmax to be the longest label in Lk

d each
time an update is made to Lk

d .
3) BGP-ELF Export Transformation: The route reported

by a router in AS k for destination d must be the path
corresponding to the maximum label among all the routes in
Lk
d . The approach of communicating the longest route in a

policy-based routing protocol that supports multi-path routing
was originally proposed by van Beijnum et al. [17].

In BGP-ELF, the constraint imposed by the export transfor-
mation for a router in AS k to inform all or only some of its
neighbor routers of a new route for destination d (depending
on whether they are in provider, consumer or peer ASes) is:

BEe : `kd[r] = (k, 1 + |`kdmax|) (5)

where |`kdmax| is the number of hops in `kdmax.

The steps and signaling described for the import transfor-
mation of BGP-ELF are used together with the local use of

multiple routes to destinations without incurring routing loops.
This is the case because the test that L is satisfied at all times
by any route used in any AS to reach any destination is done
on the basis of the reported labels.

C. Interior BGP-ELF

We describe Internal BGP-ELF by stating the additions
needed to the ordered import transformation, ordered export
transformation, and multi-path local preference function intro-
duced for External BGP-ELF.

1) Ordering of Internal Routes: This method modifies RFC
4456, Section 8. Each BGP-ELF speaker orders the valid
routes it receives giving priority to the routes that include the
designated reflector of its own AS.

All BGP-ELF speakers know the identifier of the designated
reflector of their AS. The routes that are reflected across
clusters in an AS are all based on the choices made by the
designated reflector, rather than the local choices of clients
or reflectors in different clusters, which have different local
preferences and hence lead to conflicts.

In I-BGP-ELF, a BGP-ELF speaker reports a single route to
each destination and there is a single designated reflector in an
AS. A route reported in I-BGP-ELF is a tuple consisting of an
internal component within the AS and an external component.

We denote by λad the internal component of the route
reported by a BGP-ELF speaker a. It consists of the tuple
λad = (n, had), where had is the number of clusters traversed
by the route in the AS and n is the identifier of the route
reflector reporting the route. The external component of the
route reported by router a in AS k is the same as the labeled
path length discussed for E-BGP-ELF and is denoted by `kd .
The route to destination d reported by BGP-ELF speaker a in
AS k is the tuple ρad = [λad, `

k
d].

We use δr to denote the identifier of the designated reflector
of AS r. The methods defined for I-BGP-ELF pertain to the
internal components of routes.

Definition 6: Internal Label Ordering: A BGP-ELF
speaker in cluster a of AS r is ordered along internal route
Iad = aIbd with respect to its next hop in cluster b of the same
AS r if the following condition is satisfied:

I : λbd ≺` λ
a
d ≡ (6)[(

δr 6∈ λbd
)
∧ (δr 6∈ λad) ∧

(
hbd < had

)]
∨[(

δr ∈ λbd
)
∧
(

(δr 6∈ λad) ∨ [(δr ∈ λad) ∧ (hbd < had)]
)]

A router in cluster a of AS r can accept an internal route
ρbd = [λbd, `

r
d] reported by a router in cluster b in AS r if

condition L is satisfied by `rd and condition I in Eq. (6) is
satisfied by λbd.

If a router in cluster a accepts route ρbd from cluster b and
δr ∈ λbd, then router sets λad = (δr, h

a
d) with had = hbd + 1.

The reason for the ordering condition in Eq. (6) is that
all routes traversing clusters should be based on what the
designated reflector perceives as the best choice, rather than
what individual BGP-ELF speakers perceive in their own
clusters.

2) Multi-path Local-Preference Function: Once ordering
condition I is used to accept or reject routes in I-BGP-ELF,
the method used to implement preferences is the same as
in the multi-path local-preference function discussed for E-
BGP-ELF. Exemplary lists of of steps representing a valid
preference function are stated in [15] for BGP, and an example
for BGP-ELF is presented in [7].

III. EXAMPLES OF BGP-ELF OPERATION

We illustrate the advantages of how BGP-ELF operates
compared to BGP using a well-known example of looping and
route-oscillation problems in BGP for routing across ASes.

A. BAD-GADGET System [10]

Figure 1 depicts the operation of BGP in the BAD-
GADGET system introduced in [10] as an example of a
system in which BGP cannot converge to a stable routing
state. The lexicographic values of AS identifiers are such that
A < B < C < D < E, which we use instead of the integers
used in [10]. Destination d is assumed to be located at AS A.

Figure 1: Operation of BGP in the BAD-GADGET system

Fig. 1(a) shows the path preferences for each AS listed
in descending order next to each node representing an AS.
The path announced by each AS is indicated in bold letters.
For example, AS B prefers path BDA over the direct path
BA. Arrowheads indicate next hops along paths to destination
d. The sequence of steps starts with ASes B, C and D
announcing their direct paths to destination d. Each subfigure
shows one step of the routing state after ASes process the
updates sent in the previous step. As Figs. 1(c), 1(e), 1(f), and
1(h) show, BGP cannot prevent temporary routing loops from
occurring. Furthermore, BGP does not converge and ASes
continue to cycle through the states shown in Figs. 1(d) to
1(h) without ever converging to stable routing state.

Figure 2 depicts the operation of BGP-ELF in the BAD-
GADGET system of Figure 1 under the same assumptions.

The reported labels that routers in one AS communicate to
routers in neighboring ASes are indicated in the figure by
tuples (F, h) next to the ASes, where F is the first AS along
the route to destination d and h is the number of AS hops
traversed in the route.The path corresponding to each reported
label is also indicated. In this example, T is always satisfied
and hence routers only exchange updates for destination d
that state their reported labels. For simplicity, the updates sent
between ASes are not shown.

Figure 2: BGP-ELF operation in the BAD-GADGET system

BGP-ELF requires only two steps to converge deterministi-
cally to stable routing state after the initial updates from ASes
B, C, and D. This is because T is used to constrain the local
route preferences at each AS. AS Fig. 2(b) shows, AS B is not
able to enact the local preference of using the route announced
by AS D because BA ≡ (B, 1) ≺` (D, 1) ≡ DA. By
contrast, AS C can use the route announced by AS B because
BA ≡ (B, 1) ≺` (C, 1) ≡ CA; hence, AS C has two loop-
free routes to destination d and announces the largest labeled
path length. AS B is a possible next hop for AS D according to
T ; however, this would be an additional local preference that
was not considered in [10]. Accordingly, the route is shown
with a dashed arrowhead and AS D is assumed to have only
one route with label (D, 1). Similarly, Fig. 2(c) shows that
AS E drops the route through AS C after it processes the
update from AS C, and the corresponding route is indicated
with dashed arrowheads to adhere to the preferences assumed
in [10].

The route filtering assumed in Figs. 2(b) and 2(c) can be
enacted in BGP-ELF by taking into account the class of AS
that AS B is. The end result is that BGP-ELF converges
deterministically to the final state shown in Figure 2(c) in-
dependently of how fast updates are propagated and without
routing-table loops ever being created.

B. Link Failure in BAD-GADGET System

BGP-ELF does not suffer from any non-termination prob-
lems resulting from resource failures, because its use of total
ordering among reported and stored routes leads to loop free-
dom at every instant and deterministic convergence. Figure 3
illustrates this point using a link failure in the same example of
Figs. 1 and 2. Updates, queries, and replies are denoted without
indicating destination d. Figure 3(a) shows the initial routing
state of the system when the connection (B,A) fails. The
example follows the same assumptions made in the example
of Fig. 2.

Figure 3(b) shows that AS B must become active and send
query Q(d, `∞, (B, 1)) because [(C, 2) 6≺` (B, 1)]∧[(D, 1) 6≺`

(B, 1)]. As Figure 3(c) shows, AS D and AS C can send

a response answering the query from AS B, because they
both know that AS A has a reported label (A, 0) ≺` (B, 1).
As Figure 3(d) shows, the reply from AS D allows AS B
to become passive while adhering to the local preferences
assumed in [10]. A second valid route indicated with a
dashed arrowhead could be available to AS B through AS
C depending on local route filtering (i.e., the type of ASes
allowed in routes used by AS B). The figure also shows that
the reply from AS C provides AS E with a second route
through it.

Figure 3: BGP-ELF convergence after failures

C. Eliminating Looping and Route Oscillations within ASes

Figure 4 shows a system in which IBGP with route reflec-
tion oscillates as described in Section 3 of [1]. Arrowheads
indicate next hops along valid paths to destination d at BGP-
ELF speakers in AS 0. Only the internal component of routes
is shown, and it is assumed that stable routing is maintained
within each cluster. Thick solid arrowheads indicate the next
hops along the routes announced within. AS 0 to and from
reflector A, which is the designated reflector for AS 0.

Figure 4: I-BGP-ELF convergences deterministically and is
loop-free in ASes with route reflectors

As Figure 4 shows, I-BGP-ELF converges deterministically
to one or multiple paths at each BGP-ELF speaker. The
reason for this is that total ordering is maintained among
routes reflected across clusters, and reflectors and clients of
reflectors are required to adopt routes that include the routes
chosen by the designated reflector A. This results in route
reflectors establishing a directed tree towards the cluster of the
designated reflector, which then points out to one or multiple
paths to destinations in remote ASes. BGP-ELF speakers that
are not border routers and are not in the same cluster of the
designated reflector know only of paths to remote ASes that
go to that cluster. Border routers may know local valid paths to
destinations in remote ASes that do not involve the designated

reflector but do not propagate them. An example of this case
is router X in Fig. 4. The cluster in which the designated
reflector resides may have multiple routers with routes to a
destination (e.g., routers Y and Z in Fig. 4), but the designated
reflector propagates a single route to other clusters

IV. CONCLUSIONS

BGP-ELF is the first protocol for inter-AS routing that
is stable and loop-free at every instant without the use of
path vectors or the need to engineer routing policies. It is
based on four modifications of BGP. Eliminating loops without
using path vectors in BGP-ELF required the introduction of
queries and replies. However, the signaling in BGP-ELF is far
more efficient than signaling based on diffusing computations
[5] used in some intra-domain routing protocols like EIGRP,
because an AS can become passive with the first reply it
receives, rather than having to wait for all neighbor ASes to
reply, and queries can be forwarded towards destinations.

AS classes were introduced as an alternative mechanism to
enable route filtering based on the type of ASes along the
paths used to reach destinations, rather than the specific ASes
traversed in paths to destinations..

A detailed analysis of the performance of BGP-ELF within
and across ASes is the subject of future work.

REFERENCES

[1] A. Basu et al., “Route Oscillations in I-BGP with Route Reflection,”
Proc. ACM SIGCOMM ‘02, Aug. 2002.

[2] T. Bates, E. Chen, and R. Chandra, “BGP Route Reflection: An
Alternative to Full Mesh Internal BGP (IBGP),” RFC 4456, , April 2006.

[3] J. Durand, I. Pepelnjak, and G. Doering, “BGP Operations and Security,”
RFC 7454, Feb. 2015.

[4] L. Gao and J. Rexford, “Stable Internet Routing without Global Coor-
dination,” IEEE/ACM Trans. Networking, 2001.

[5] J.J. Garcia-Luna-Aceves, “Loop-Free Routing Using Diffusing Compu-
tations,” IEEE/ACM Trans. on Networking, Vol. 1, No. 1, 1993.

[6] J.J. Garcia-Luna-Aceves, “Stable, Loop-Free, Multi-Path Inter-Domain
Routing Using BGP,” Proc. IEEE IEEE ICC ‘22 NGN, May 2022.

[7] J.J. Garcia-Luna-Aceves, “Attaining Stable and Loop-Free Inter-Domain
Routing without Path Vectors,” Proc. 1st ACM SIGCOMM Workshop on
Future of Internet Routing & Addressing (FIRA 2022), Aug. 2022.

[8] J.J. Garcia-Luna-Aceves, “Eliminating Routing Loops and Oscillations
in BGP Using Total Ordering,” Proc. IEEE LCN ‘22, Sept. 2022.

[9] T.G. Grifin and G. Wilfong, “An Analysis of BGP Convergence Prop-
erties,” Proc. ACM SIGOMM ‘99, Aug. 1999.

[10] T.G. Grifin, F.B. Shepherd, and G. Wilfong, “The Stable Paths Problem
and Interdomain Routing,” IEEE/ACM Trans. Networking, April 2002.

[11] J. Mauch, J. Snijders, and G. Hankins, “Default External BGP (EBGP)
Route Propagation Behavior without Policies,” RFC 4271, July 2017.

[12] D. McPherson, V. Gill, D. Walton, and A. Retana, “BGP Persistent Route
Oscillation Condition,” IETF Internet Draft, March 2001.

[13] R. Musunuri and J.A. Cobb, “A Complete Solution for iBGP Stability,”
Proc. IEEE ICC ‘04, June 2004.

[14] A. Rawat and M.A. Shayman, “ Preventing Persistent Oscillations
and Loops in IBGP Configuration with Route Reflection,” Computer
Networks, Dec. 2006.

[15] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),”
RFC 4271, Jan. 2005.

[16] E. Rosen, “Exterior Gateway Protocol (EGP),” RFC 827, Oct. 1982.
[17] I. van Beijnum et al, “Loop-Freeness in Multipath BGP through Prop-

agating the Longest Path,” Proc. IEEE ICC ‘09 Workshops, 2009.
[18] D. Walton, D. Cook, A. Retana, and J. Scudder, “BGP Persistent Route

Oscillation Solution,” IETF Internet draft, May 2002.

