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ABSTRACT OF THE DISSERTATION

Analysis and Numerical Treatment of Elliptic Equations with Stochastic
Data

by

Shi Cheng
Doctor of Philosophy in Mathematics with a Specialization in Computational

Science

University of California San Diego, 2015

Professor Michael Holst, Chair

Many science and engineering applications are impacted by a significant amoun-
t of uncertainty in the model. Examples include groundwater flow, microscopic bio-
logical system, material science and chemical engineering systems. Common mathe-
matical problems in these applications are elliptic equations with stochastic data. In
this dissertation, we examine two types of stochastic elliptic partial differential equa-
tions(SPDEs), namely nonlinear stochastic diffusion reaction equations and general
linearized elastostatic problems in random media.

We begin with the construction of an analysis framework for this class of
SPDEs, extending prior work of Babuska [3] in 2010. We then use the framework both
for establishing well-posedness of the continuous problems and for posing Galerkin-
type numerical methods. In order to solve these two types of problems, single integral
weak formulations and stochastic collocation methods are applied. Moreover, a priori
error estimates for stochastic collocation methods are derived, which imply that the
rate of convergence is exponential, along with the order of polynomial increasing in
the space of random variables. As expected, numerical experiments show the expo-
nential rate of convergence, verified by a posterior error analysis. Finally, an adaptive
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strategy driven by a posterior error indicators is designed.
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Chapter 1

Introduction

Many engineering applications are affected by a relatively large amount of
uncertainty in the input data. Among them, stochastic elliptic equations are an
important area of research, such as groundwater flow with uncertain conductivity
and pressure in soils or in- and out-flow boundary conditions, microscopic systems of
brownian motion, stochastic chemical and environmental engineering systems. Appli-
cations with stochastic elliptic equations in these areas are discussed in [16, 14, 24, 23].
In material science, many stochastic mechanical behaviors of random media are rel-
evant to various engineering fields, such as composite materials, geotechnical engi-
neering and biomechanics. The reason a stochastic treatment is needed for many
phenomena of material science is insufficient data from material properties. It is
more realistic to treat them as random media rather than to approximate. One ex-
ample of random media is simulating the fault formation in an earthquake, where
stochastic treatment of ground surface is applied which consists of several layers of
not fully known properties and structures. Precise discussion on how to describe ran-
dom media in engineering examples stochastically are introduced in [1] and [28].

To study stochastic elliptic equations, a general model of stochastic elliptic
equation is given as: Let D be a convex bounded polygonal domain in Rd, and let
(Ω,F , P ) be a complete probability space where P : F → [0, 1] is a probability mea-
sure. Consider the stochastic elliptic problem: find u : Ω×D → Rd′ , such that P -a.e.

1
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in Ω the following equation holds:

L(ω, x;u) + G(ω, x;u) = f(ω, x), on D,

subject to

B(ω, x;u) = g(ω, x), on ∂D,

(1.0.1)

where x = (x1, . . . , xd) ∈ D ⊂ Rd, L is a linear differential operator, G is a nonlinear
differential operator, and B is a boundary operator. The operator B includes Dirichlet
boundary conditions on Dirichlet boundary segments and Neumann boundary condi-
tions on Neumann boundary segments. In the most general setting, the operators L
and G, as well as f and g are all able to contain randomness. Additionally, the work
[3] in 2010 is a complete introduction and analysis for solving a basic stochastic lin-
ear elliptic problem theoretically and numerically by stochastic collocation approach.
Based on the general problem setting and the framework of stochastic linear elliptic
problem, a nonlinear stochastic diffusion reaction elliptic equation and a general lin-
earized elastostatic problem in random media are analyzed in this work.

How to describe uncertainty as random data input is not major issue discussed
in this work, however it is quite important for the motivation of stochastic PDEs. Sev-
eral ways to describe uncertainty, and worst-case scenario analysis, fuzzy set theory,
evidence theory and probabilistic setting are introduced in [2, 11].

The framework of this paper is as follows. A new group of solution spaces
V p , Lp(Ω,W 1,p

0 (D)) is constructed to analyze well-posedness of weak form obtained
from stochastic elliptic problems, equiped with the norm

‖v‖V p =
(∫

Ω

∫
D
|∇xv|pdµ(x)dP (ω)

)1/p

.

It is a generalization of the solution space VP,a in [3].
Based on several assumptions, the well-possedness of the stochastic diffusion

reaction elliptic problem and general linearized elasticity in random media are able to
be proved in the solution space V p. Many useful theorems and examples of showing
well-possedness can be found in books of nonlinear functional analysis [22, 15] and a
book of elasticity foundations [17].

In this work, numerical stochastic collocation approach is employed to find the
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weak solution u of single integral formulation in subspace Pp(Γ)⊗Hh(D), and the nu-
merical solution is denoted as up,h. This numerical technique employs standard finite
element approximations in domain D and polynomial approximation in the probabil-
ity domain Γ. The collocation points chosen are zeros of tensor product orthogonal
polynomials with respect to the auxiliary probability density ρ̂. For instance, if ρ̂ = 1,
then the tensor product of zeros of one dimension legendre polynomial chaos would be
selected as collocation points. [25, 27] illustrates basic ideas of polynomial chaos and
properties of different types of polynomial chaos. [26, 3] describe the motivation and
theoretically analysis of Stochastic collocation approach. Stochastic collocation ap-
proach has already been applied for some problem simulations shown in [18, 24]. The
other two well developed numerical method for solving stochastic PDEs, Monte Car-
lo method and stochastic Galerkin methods are also introduced and compared with
collocation approach in this work. The reason why we employ stochastic collocation
method is it has several advantages as follow compared to other methods:

• It naturally results system of uncoupled deterministic problems.

• It is efficient for the case of dependent random variables by introducing auxiliary
density function ρ̂.

• It can deal with unbound random variables, such as Gaussian variables by
setting the proper density function in space Pp(Γ).

More analysis of Monte Carlo simulation and stochastic Galerkin method is intro-
duced in [4, 9]. Other recent works related to numerical methods for stochastic
partial differential equations are [19, 21, 10].

Another Main result of this paper is a priori error estimates with respect to
nonlinear stochastic diffusion reaction problem and linearized elasticity in random
media. These estimates indicate stochastic collocation approach on the target mod-
els achieves exponential convergence rate as the order of space Pp increasing in each
dimension pn, with input data are infinitely differentiable with respect to random
variables and other assumptions on growth rate of derivatives. These results of priori
error estimates actually stay with the same assumptions in [3] of linear case without
introducing extra regularity assumptions of randomness.
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The way to prove exponentially convergent error estimates is splitting the er-
ror ‖u−uh,p‖V 2

ρ
into two parts ‖u−uh‖+ ‖uh−uh,p‖, where uh is the projection of u

onto semilinear subspace Lp(Γ, Hh(D)). The bound of former term is a generalization
of finite element error analysis applied on the new solution space V p. The ideas of
finite element error analysis for nonlinear problems are described in [22, 5, 7]. The
second term is actually interpolating discrete solution along the random variables in
space Γ, theorems and details of finding interpolation bound in random space are
discussed in [6, 8, 11, 20].

Finally, a posteriori error indicator is given in order to measure the exponen-
tial rate of convergence of the error from the randomness. Based on a posteriori error
indicator, numerical experiments of a few stochastic linear, nonlinear and linearized
elastostatic problems are tested by overwriting the deterministic solver MCLite de-
veloped by Prof.Michael Holst as a stochastic collocation solver. Papers describing
the mathematical framework used in the MCLite implementation can be found at
[12, 13]. All the experiments admit the exponentially convergence as the theorems
shown. An adaptive algorithm for real computing is introduced at last.

The outline of this dissertation is as follows: In chapter 2, we introduce the
generalized solution space V p for stochastic elliptic problems. The well-posedness of
stochastic elliptic target problems are analyzed in chapter 3. In chapter 4 and 5, how
to solve the weak forms of stochastic elliptic problems by collocation method are in-
troduced. Then, we derive a priori error estimates of stochastic collocation methods
in chapter 6 and 7. In the last chapter 8, a posteriori error indicator, an adaptive
algorithm and numerical experiments of testing the exponential rate of convergence
of the error form randomness are provided.



Chapter 2

V p Space: Solution Space

2.1 V p Space

The solution space V p is a extension of Babuska’s work in [3]. Here, we intro-
duce a group of spaces in order to analyze solutions of nonlinear stochastic problem.
Let D be a convex bounded polygonal domain in Rd, and let (Ω,F , P ) be a complete
probability space where P : F → [0, 1] is a probability measure.

Definition 2.1. Let V p , Lp(Ω,W 1,p
0 (D)), equipped with the norm

‖v‖V p =
(∫

Ω

∫
D
|∇xv|pdµ(x)dP (ω)

)1/p

.

Remark, since all the derivatives discussed about are taken in D ⊂ R, then
∇xu is denoted as ∇u from now on.
Furthermore, one can define the inner product for space V 2 as,

(v, u)V 2 =
(∫

Ω

∫
D
∇v∇udµ(x)dP (ω)

)
.

Now, some properties of this group of constructed spaces are introduced.

Theorem 2.2. For 1 ≤ p <∞, V p is Banach space.

Proof. It is not hard to verify V p is normed vector space for 1 ≤ p < ∞. So, only
need to show any Cauchy sequence in V p converges.

Let {uk} is Cauchy in V p, by Poincare Inequality (A.8), it implies both {uk}

5
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and {∇uk} are Cauchy in Lp(Ω×D). Since Lp(Ω×D) are complete for any 1 ≤ p <∞,
there exist uk → u and ∇uk → v in Lp(Ω×D) for some u, v ∈ Lp(Ω×D).
Now claim ∇u = v, i.e ∀φ ∈ C∞0 (D) such that

∫
D u∇φ dµ(x) = −

∫
D vφ dµ(x) a.e in

Ω. To show this, since for any k,
∫
D uk∇φ dµ(x) = −

∫
D∇ukφ dµ(x) holds, consider

|
∫
D

(u∇φ+ vφ)dµ(x)| ≤
∫
D
|u∇φ− uk∇φ+ vφ−∇ukφ|dµ(x)

≤
∫
D
|u− uk||∇φ|dµ(x) +

∫
D
|∇uk − v||φ|dµ(x)

≤ ‖u− uk‖Lp(D)‖∇φ‖Lq(D) + ‖∇uk − v‖Lp(D)‖φ‖Lq(D),

where 1/p+1/q = 1. Notice that uk and ∇uk go to u and v in Lp(Ω×D) respectively,
which implies uk → u a.e in Ω and ∇uk → v a.e in Ω in Lp(D). Also since φ ∈
C∞0 (D) ⊂ Lq(D) for any q. Therefore, |

∫
D(u∇φ+vφ)dµ(x)| → 0 a.e in Ω, i.e ∇u = v

a.e in Ω.
Then, show the limit function u ∈ V p. This is easy to see because its weak

derivative is v ∈ Lp(Ω×D) a.e in Ω, i.e
∫

Ω
∫
D |∇u|pdµ(x)dP (ω) <∞. Finally, consider

‖u−uk‖pV p =
∫

Ω
∫
D |∇u−∇uk|pdµ(x)dP (ω) =

∫
Ω
∫
D |v−∇uk|pdµ(x)dP (ω)→ 0, hence

{uk} converges in V p implying V p is complete for 1 ≤ p <∞.

Theorem 2.3. For p = 2, V p is Hilbert space.

Proof. This is a straightforward result by definition of Hilbert space and Thm 2.2.

Theorem 2.4. V p Imbedding Theorem I. If Ω × D has finite measure and 0 <
p < q <∞, then V q ↪→ V p and ‖u‖V p ≤ C‖u‖V q where C = (P (Ω)µ(D))1/p−1/q.

Proof. If u ∈ V q, then ∇u ∈ Lq(Ω×D), thus simply apply Theorem A.1 on ∇u.

Theorem 2.5. For 2 ≤ p <∞, V p is reflexive Banach space.

Proof. It is not hard to see V 2 is Hilbert space, and hence by Theorem A.10 V 2

is reflexive Banach space. Since for V p Imbedding Theorem 2.4, one has V p are
subspaces of V 2 for 2 < p <∞. Additionally, any Banach space is closed, thus all of
them are closed subspaces of V 2. Now apply Theorem A.11, for any 2 < p <∞, V p

is reflexive.

Theorem 2.6. V p Imbedding Theorem II. For 1 ≤ p < ∞, D is a bounded set
in Rd, then

‖u‖Lp(Ω×D) ≤ C‖u‖V p , for any u ∈ V p. (2.1.1)
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Proof. For a.e in Ω, u(ω, ·) is a group of functions in W 1,p
0 (D), thus by Poincare

inequality (A.2.5), one has ‖u(ω, ·)‖Lp(D) ≤ C|u(ω, ·)|W 1,p(D) a.e in Ω. Therefore,

‖u‖pLp =
∫

Ω

∫
D
updµ(x)dP (ω)

≤ Cp
∫

Ω

∫
D
|∇u|pµ(x)dP (ω)

= C̄‖u‖pV p .

2.2 Vp Space

In order to analyze problems in vector field, V p space can be generalized as
Vp space of vector field functions as following,

Definition 2.7. Let V p , [V p]d, equipped with the norm defined in the sense of
Euclidean distance

‖v‖Vp = (
d∑
i=1
‖vi‖pV p)1/p.

The inner product for space V2 is defined as

(v, u)V2 =
d∑
i=1

(vi, ui)V 2 .

Theorem 2.8. For 1 ≤ p < ∞, Vp is Banach space, particularly V2 is a Hilbert
space.

Proof. Analogous prove as Thm 2.2 with the norm defined above.

The two imbedding Theorems 2.4 and 2.6 can be generalized as following.

Theorem 2.9. Vp Imbedding Theorem I. If Ω × D has finite measure and 0 <
p < q <∞, then Vq ↪→ Vp and ‖u‖Vp ≤ C‖u‖Vq where C = (P (Ω)µ(D))1/p−1/q.

Theorem 2.10. Vp Imbedding Theorem II. For 1 ≤ p <∞, D is a bounded set
in Rd, then

‖u‖Lp(Ω×D) ≤ C‖u‖Vp , for any u ∈ Vp. (2.2.1)



Chapter 3

Existence and Uniqueness of
Target Problems

3.1 General Stochastic Elliptic Differential Equa-

tions

The problems analyzed in [3] can be generalized as: LetD be a convex bounded
polygonal domain in Rd, and let (Ω,F , P ) be a complete probability space where
P : F → [0, 1] is a probability measure. Consider the stochastic elliptic problem: find
u : Ω×D → Rd′ , such that P -a.e. in Ω the following equation holds:

L(ω, x;u) + G(ω, x;u) = f(ω, x), on D,

subject to

B(ω, x;u) = g(ω, x), on ∂D,

(3.1.1)

where x = (x1, . . . , xd) ∈ D ⊂ Rd, L is a linear differential operator, G is a nonlinear
differential operator, and B is a boundary operator. The operator B includes Dirichlet
boundary conditions on Dirichlet boundary segments and Neumann boundary condi-
tions on Neumann boundary segments. In the most general setting, the operators L
and G, as well as f and g are all able to contain randomness. In the following, three
types of typical stochastic partial differential equations are analyzed.

8
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3.2 Linear Stochastic Poisson Problem (Babuska’s

work)

To study the stochastic elliptic equations, we start with introducing the basic
Stochastic Poisson problem which has been analyzed by the work of Babuska in
[3]. Yet many engineering applications are affected by a relatively large amount of
uncertainty in the input data. Among them, the stochastic elliptic equations is such
an important area of research, such as groundwater flow with uncertain conductivity
and pressure in soils or in- and out-flow boundary conditions, microscopic system
of brownian motion, stochastic chemical and environmental engineering systems. A
few cases of applications with stochastic equations in these areas are discussed in
[16, 14, 24, 23].

3.2.1 Problem setting

Let D be a convex bounded polygonal domain in Rd, and let (Ω,F , P ) be a
complete probability space where P : F → [0, 1] is a probability measure. Consider
the stochastic Poisson boundary value problem: find u : Ω×D → R, such that P -a.e.
in Ω the following equation holds:

−∇(a(ω, x) · ∇u(ω, x)) = f(ω, x) on D,

u(ω, x) = 0 on ∂D.
(3.2.1)

3.2.2 Existence and Uniqueness

As long as a(ω, ·) is uniformly bounded from below and there exists amin > 0,
and f ∈ V 2, then the weak from of (3.2.1),∫

D

∫
Ω
a∇u · ∇v =

∫
D

∫
Ω
fv ∀v ∈ V 2. (3.2.2)

Admits a unique solution u ∈ V 2, and is able to shown by Lax-Milgram which is
discussed in Sec 1 of [3].
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3.3 Nonlinear Stochastic Diffusion-Reaction Ellip-

tic Equation

Based on the model linear stochastic problem introduced earlier, we look at
a more complicated nonlinear problem, the nonlinear Stochastic Diffusion-Reaction
problem in this section. Our goal is to extend the results in [3] to nonlinear problems.

3.3.1 Problem setting

Let D be a convex bounded polygonal domain in Rd, and let (Ω,F , P ) be a
complete probability space where P : F → [0, 1] is a probability measure. Consider
the stochastic Poisson boundary value problem: Find u : Ω × D → R, such that
P -a.e. in Ω the following equation holds:

−∇(a(ω, x)∇u(ω, x)) + b(ω, x)u(ω, x) + c(ω, x)uα(ω, x) = f(ω, x) on D,

u(ω, x) = 0 on ∂D,
(3.3.1)

where a, b, and c are in L∞(Ω × D), here ∇u indicates ∑j
∂u
∂xj

and the power of
nonlinear term is assumed α > 1.

Let q = α + 1 > 2, the weak Galerkin formulation of (3.3.1) is: Find u ∈ V q,
such that ∫

Ω

∫
D

(a∇u∇v + buv+cuαv)dµ(x)dP (ω)

=
∫

Ω

∫
D
fvdµ(x)dP (ω), ∀v ∈ V q,

(3.3.2)

where a, b, and c are in L∞(Ω×D), f ∈ V q′ and α > 1.

Theorem 3.1. Well-defined Weak form. The weak formulation (3.3.2) is well-defined,
i.e. any term is less than infinity.

Proof. We look at weak formulation (3.3.2) term by term. For the first two terms, it
is nothing more than Theorem 2.4 and 2.6. For any u and v in V q with α > 1 and
q = α + 1,
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|
∫

Ω

∫
D
a∇u∇vdµ(x)dP (ω)| ≤ ‖a‖L∞

∫
Ω

∫
D
|∇u||∇v|dµ(x)dP (ω)

≤ ‖a‖L∞‖u‖V 2‖v‖V 2

≤ C‖a‖L∞‖v‖V q‖v‖V q

< ∞.

And,

|
∫

Ω

∫
D
buvdµ(x)P (ω)| ≤ ‖b‖L∞

∫
Ω

∫
D
|u||v|dµ(x)P (ω)

≤ ‖b‖L∞‖u‖L2‖v‖L2

≤ ‖b‖L∞‖u‖V q‖v‖V q

< ∞.

Next let’s look at the nonlinear term, notice 1/q + α/q = 1,

|
∫

Ω

∫
D
cuαvdµ(x)P (ω)| ≤ ‖c‖L∞

∫
Ω

∫
D
|uα||v|dµ(x)P (ω)

≤ ‖c‖L∞‖u‖αV q‖v‖V q

< ∞.

Finally, since f is already in the dual of V q, thus the RHS is bounded.

3.3.2 Existence and Uniqueness with odd α

Now consider the energy functional J : V q → R

J(u) =
∫

Ω

∫
D

(a2 |∇u|
2 + b

2u
2 + c

α + 1u
α+1 − fu)dµ(x)dP (ω). (3.3.3)

Theorem 3.2. Energy functional (3.3.3) is G-differentiable.

Proof. It is not hard to show limt→0
1
t
|J(u + th) − J(u) − tdJ(u+th)

dt
|t=0| = 0, hence

G-differentiable.

We are interested in the following global minimization problem:

Find u0 ∈ Vq s.t J(u0) = inf
u∈Vq

J(u). (3.3.4)
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Theorem 3.3. The solution of minimization problem (3.3.4) is also a solution to the
weak formulation (3.3.2).

Proof. It is not hard to see the weak formulation (3.3.2) is equivalent with
dJ(u+tv)

dt
|t=0 = 0. Since any global minimizer in V q will have zero G-derivative, thus a

solution of the weak formulation.

Lemma 3.4. If a ≥ r > 0 a.e, c > 0 a.e on Ω ×D and α is odd, then functional J
in (3.3.3) is proper, i.e. J(uj)→ +∞ as ‖uj‖V q → +∞, ∀uj ∈ V q.

Proof. Assume there exists a sequence {uj} with ‖uj‖V q → +∞, such that there
exists a subsequence that J(ujk) ≤ C for all k. For convenience, the subsequence is
indexed by j (subsequence will be indexed by j automatically afterwards). Consider
the rescaled sequence {vj} where vj = uj/‖uj‖V q , thus a bounded sequence. Now
divide ‖uj‖α+1

V q to the sequence J(uj) (3.3.3), one has

∫
Ω

∫
D

(a2
|∇uj|2

‖uj‖α+1
V q

+ b

2
u2
j

‖uj‖α+1
V q

+ c

α + 1
uα+1
j

‖uj‖α+1
V q
− f uj
‖u‖α+1

V q
)dµ(x)dP (ω) ≤ C

‖uj‖α+1
V q

.

Let j →∞,
lim

∫
Ω

∫
D

c

α + 1v
α+1
j dµ(x)dP (ω) ≤ 0.

We have lim ‖vj‖Lp = 0, i.e vj → 0 strongly in Lp. Then ignore the positive uα+1

term and divide by ‖uj‖2
V q to J(uj), let j →∞, Since Lp is continuously imbedding

into L2 thus |
∫
bv2
j | ≤ ‖b‖∞

∫
v2
j → 0, and hence

r

2 ≤ 0,

which is a contradiction.

Lemma 3.5. If a ≥ r > 0 a.e, c > 0 a.e, b > −C2r + ε for some ε > 0 where C
is the Poincare constant of domain D, and α is odd, then functional J in (3.3.3) is
bounded blow.

Proof. With those assumptions on the coefficients, and it is not hard to see L2(Ω ×
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D) ⊂ V p′ , one has

J(u) ≥
∫

Ω

∫
D

(a2 |∇u|
2 + b

2u
2 + c

α + 1u
α+1 − |fu|)dµ(x)dP (ω)

≥
∫

Ω

∫
D

(C
2r

2 + b

2)u2dµ(x)dP (ω)− ‖f‖L2‖u‖L2

≥ ε

2‖u‖
2
L2 − ‖f‖L2‖u‖L2

≥ −‖f‖
2
L2

2ε > −∞.

Lemma 3.6. Functional J in (3.3.3) is convex with odd α, and nonnegative coeffi-
cients a, b and c.

Proof. Since α is odd, then all the functions a
2 |∇u|

2, b2u
2, c

α+1u
α+1 and fu are convex,

hence the sum of convex functions is still convex.

Theorem 3.7. If a ≥ r > 0 a.e, b ≥ 0 a.e and c > 0 a.e, and α is odd, then the
minimization problem (3.3.4) has a solution.

Proof. Since we find the minimizer in the whole space V α+1 which is shown as a
reflexive Banach space in Theorem 2.5, and obvious it is closed and convex. Under
those assumptions of coefficient functions, the energy functional J in (3.3.3) satisfies
Lemma 3.4, 3.5 and 3.6, thus it is proper, bounded below and convex. From Theorem
3.2, we know J is a G-differentiable, thus it is weakly lower semicontinuous by The-
orem A.15 which implies lower semicontinuous. Finally, apply Theorem A.13, there
exist one solution of problem (3.3.4).

Lemma 3.8. Define
∫

Ω
∫
D cu

pv as
∫

Ω
∫
D B(u)v, where B is the nonlinear operator. If

the nonlinear operator B is monotonely increasing on V q, then for any u1, u2 ∈ V q,
one has (B(u1)−B(u2))(u1 − u2) ≥ 0.

Proof. ∀u1, u2 ∈ V q, let U+ = {(ω, x) |u1 ≥ u2} and U− = {(ω, x) |u1 ≤ u2}. Since B
is monotonely increasing, one has B(u1)− B(u2) ≥ 0 on U+ and B(u1)− B(u2) ≤ 0
on U−, thus (B(u1)−B(u2))(u1−u2) ≥ 0 on Ω×D, thus the integral of a nonnegative
function is nonnegative.
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Theorem 3.9. Existence and Uniqueness. If a ≥ r > 0 a.e, b ≥ 0 a.e, c > 0 a.e,
and α is odd, the weak problem (3.3.2) has a unique solution.

Proof. By Theorem 3.7 and Theorem 3.3, the weak problem (3.3.2) has a solution.
Therefore, the last thing remains is to show uniqueness. Assume there exist two
distinct solutions u1 and u2. Then, let v = u1 − u2 in the weak form (3.3.2), by
Lemma 3.8 one has

0 = 〈A(u1 − u2), u1 − u2〉+ (B(u1)−B(u2), u1 − u2) ≥ 〈A(u1 − u2), u1 − u2〉 ≥ 0.

Thus, u1 = u2 a.e, i.e u1 = u2 in V q.

3.3.3 Existence with even α

Since for even α, the energy functional is not bounded below or above, thus
variational method will not applied. Additionally, V p spaces do not have compact
imbedding into any Lp space, therefore fixed point argument does not work. Hence,
with more assumptions introduced, one is able to show the existence directly from
looking at those solutions of deterministic PDEs, where uω(x) ∈ Hq

0 denotes de-
terministic solution at ω. Since the deterministic solution may not be unique with
respect to each ω, we denote the set of combinations of deterministic solutions by
U = {u | u(ω, x) = uω(x) ,Ω a.e}. For even α, the nonlinear operator is no longer
monotonously increasing, thus uniqueness will be not discussed.

Theorem 3.10. For u ∈ U , if
∫
D |∇uω(x)|qdx is a random variable with finite expec-

tation, then this u is a weak solution of (3.3.2).

Proof. For any v ∈ V q, since (Ω, P ) is a complete probability space, then almost
everywhere vω is in Hq

0 , thus
∫
D a∇u∇v + buv + cuαv =

∫
D fv a.e in Ω. Since,∫

D |∇u|q has finite expectation, then u ∈ V q and it solves (3.3.2).

Although, for general probability space not many results can be derived, some
prettier results are able to obtain with further restriction on probability space.

Theorem 3.11. Assume (Ω, P ) is a complete probability space with finite many el-
ements and the set of each element is measurable, then u is a solution of (3.3.2) if
u ∈ U .
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Proof. Here, we only need to show
∫
D |∇uω(x)|qdx is a random variable with finite

expectation. Let uω = uω(x) at ω, and zero otherwise, thus
∫
D |∇uω|q are measurable.

Notice that
∫
D |
∑∇uω|q = ∑∫

D |∇uω|q, since the cross terms are zeros, one has∫
D |∇u|q is a finite sum of

∫
D |∇uω|q, which is a measurable function, i.e random

variable. Since, each uω ∈ Hq
0 , then E(

∫
D |∇uω(x)|qdx) ≤ maxω∈Ω

∫
D |∇uω(x)|qdx <

∞, thus u ∈ V q and by Theorem 3.10, u solves (3.3.2).

Theorem 3.12. Assume (Ω, P ) is a complete probability space with countable many
elements and the set of each element is measurable, if u ∈ U and ‖uω(x)‖Hq

0
is

uniformly bounded in Ω, then u is a solution of (3.3.2).

Proof. Similarly as Theorem 3.11, let uω = uω(x) at ω, otherwise zero. It is not
hard to see

∫
D |∇u|q = ∑∞

i=1
∫
D |∇uωi|q is the pointwise limit of ∑n

i=1
∫
D |∇uωi |q, thus∫

D |∇u|q is measurable, i.e a random variable. Since ‖uω(x)‖Hq
0
≤ C uniformly in Ω,

one has E(
∫
D |∇u|q) ≤ C <∞, thus u ∈ V q, and by Theorem 3.10, it is a solution of

(3.3.2).

3.4 Linearized Elastostatic Problem with Random

Media

The purpose of this section is to extend Babuska’s work to stochastic Elasticity.
Stochastic mechanical behaviors of random media is relevant to various of engineering
fields, such as composite materials, geotectonic engineering and biomechanics. The
reason why a stochastic treatment is needed for many phenomena from these fields, is
due to insufficient data from material properties. It is more realistic to treat them as
random media rather than to approximate as exact. One example of random media
is, in order to simulate the fault formation of earthquake, stochastic treatment on
ground surface is applied which consists of several layers of not fully known properties
and structures. Precise discussion on how to describe random media in engineering
examples stochastically are introduced in [1] and [28]. In this section, a general
linearized Elastostatic problem with random media is analyzed. The notations and
problem setting follows closely the classical book of Elasticity [17].
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3.4.1 Problem setting

The problem setting follows closely the classical book of Elasticity [17], and is
generalized to stochastic problems. Let D be a convex bounded polygonal domain in
R3, and let (Ω,F , P ) be a complete probability space where P : F → [0, 1] is a prob-
ability measure. Consider the linearized elastostatic problem: Find the displacement
vector u : Ω×D → R3, such that P -a.e. in Ω the following system of equations holds
for each i = 1, 2, 3:

−∂jσij(ω, x)) = fi(x) on D ,

σij(ω, x) = Aijpq(ω, x)epq(u(ω, x)) on D p, q = 1, 2, 3,

njσij(ω, x) = gi(ω, x) on ∂ND ,

ui(ω, x) = 0 on ∂DD ,

(3.4.1)

where σ is stress tensor, A ∈ C∞ is index 4 random tensor field, epq(u) = 1
2(up,q+uq,p)

is the linearized strain tensor, f is body force vector, and g ∈ L∞ is vector of the
Neumann boundary condition. All the subindex are written in the style of Einstein
summation.

Remark 3.13. One could assume A is homogeneous and isotropic, then it can be
written in the simpler form Aijpq = λδijδpq + µ(δipδjq + δiqδjp).

The weak Galerkin formulation of (3.4.1) is derived as: Find u ∈ V2, such
that∫

Ω

∫
D

(σij(u)∂jvi−fivi)dµ(x)dP (Ω)−
∫

Ω

∫
∂ND

gividµ(x)dP (Ω) = 0 ∀v ∈ V2, (3.4.2)

where the A in stress tensor is C∞, g ∈ L∞(Ω×∂ND), f ∈ V2′ and the test functions
v ∈ V2 can be represented as

v = φ1


1
0
0

+ φ2


0
1
0

+ φ3


0
0
1

 , φ1, φ2, φ3 ∈ V 2.

Furthermore, based on the assumptions of homogeneous and isotropic on A, the
(3.4.2) is equivalent to the following symmetric form: Find u ∈ V2, such that∫

Ω

∫
D

(Aijpqepq(u)eij(v)− fivi)dµ(x)dP (Ω)−
∫

Ω

∫
∂ND

gividµ(x)dP (Ω) = 0 ∀v ∈ V2,

(3.4.3)
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where the eij(v) = 1
2(vi,j + vj,i), A in stress tensor is C∞, g ∈ L∞(Ω × ∂ND) and

f ∈ V2′ .
Before looking into this weak formulation, one needs to show it is well-defined.

Theorem 3.14. Well-defined Weak form. The weak formulation (3.4.3) is well-
defined, i.e. any term is less than infinity.

Proof. We look at weak formulation (3.4.3) term by term. For any u and v in V2,
apply the Cauchy-Schwarz Inequality (A.4), one has

|
∫

Ω

∫
D
Aijpqepq(u)eij(v)dµ(x)dP (Ω)| ≤ ‖A‖C∞‖

∫
Ω

∫
D

∑
p,q

|epq(u)|
∑
i,j

|eij(v)|

≤ ‖A‖C∞‖
∑
p,q

|epq(u)|‖L2‖
∑
i,j

|eij(v)|‖L2

≤ 1
2‖A‖C∞‖

∑
p,q

(|up,q|+ |uq,p|)‖L2‖
∑
i,j

(|vi,j|+ |vj,i|)‖L2

≤ C(i, j, p, q)‖A‖C∞‖u‖V2‖v‖V2

< ∞,

where the constant C(i, j, p, q) > 0 from Cauchy-Schwarz Inequality only depends on
those four indexes.

The second term is straightforward, since f is already in the dual space of
V2. For the third term, g ∈ L∞, simply apply Holder Inequality for Vector-valued
functions A.6

|
∫

Ω

∫
∂ND

gividµ(x)dP (Ω)| ≤ ‖g‖L∞

∫
Ω

∫
D
|vi|dµ(x)dP (Ω)

≤ C‖g‖L∞‖v‖V2

< ∞.

3.4.2 Existence and Uniqueness

In order to show the solution existence and uniqueness, a few assumptions on
the equations are introduced as following
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Assumption 3.15. The index four random tensor field A is homogeneous and isotrop-
ic, that is,

Aijpq(ω) = λ(ω)δijδpq + µ(ω)(δipδjq + δiqδjp),

where λ and µ are called the Lame moduli. Furthermore, we can define Young’s
modulus as E = µ(3λ+ 2µ)/(λ+ µ) and Poisson’s ratio as ν = λ/2(µ+ λ).

Actually, we can generalize the above assumption as,

Assumption 3.16. The index four random tensor field A is isotropic in the consti-
tutive law, that is,

Aijpq(ω, x) = λ(ω, x)δijδpq + µ(ω, x)(δipδjq + δiqδjp),

where the Lame moduli λ and µ are functions of x. Furthermore, we can define
Young’s modulus as E = µ(3λ+ 2µ)/(λ+ µ) and Poisson’s ratio as ν = λ/2(µ+ λ).

Assumption 3.17. Uniformly Pointwise Stable. Let Aijpq be a classical elasticity
tensor. It is uniformly pointwise stable if there exists an constant η > 0 such that

1
2Aijpqeijepq ≥ η‖e‖2,

where the ‖ · ‖ of e is the matrix norm (∑i,j |eij|2) 1
2 .

The Assumption 3.15 and 3.16 have been applied to derive the symmetric
weak formulation (3.4.3) by the symmetry of indexes i and j. It also a stronger
condition of hyperelasticity which is Aijpq = Apqij. Thus, the bilinear form of
〈Au, v〉 =

∫
Aijpqepq(u)eij(v) is symmetric. Although, the generalized Lax-Milgram

theorem no longer requires symmetry from the bilinear form, the symmetry for bi-
linear form is still needed for many properties of A as an elliptic operator and the
equivalence between weak solutions and strong solutions. This work is not for analy-
sis of operator A, however, because this symmetry implies the fundamentals of weak
formulation, we list the assumption implying to it at beginning.

Second Assumption 3.17 is actually a stronger condition of strong ellipticity
of A which is there is an ε > 0 such that

Aijpqξiξpηjηq ≥ ε‖ξ‖2‖η‖2
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for all ξ, η ∈ Rd. The strong ellipticity also plays an important role for many results of
A as an elliptic operator like the hyperelasticity mentioned in the pervious paragraph.
The reason the stronger assumption uniform pointwise stability is listed is for the
purpose of showing the well-posedness for the symmetric weak formulation (3.4.3).
More works and results based on the weaker assumptions hyperelasticity and strong
ellipticity on A are introduced in [17].

Lemma 3.18. First Korn’s Inequality in V2. For u ∈ V2 satisfying displacement
boundary conditions on ∂D ⊂ ∂D , we have∫

Ω×D
‖e‖2 ≥ C‖u‖2

V2 ,

for a suitable constant C > 0 independent of u, where the norm ‖e‖2 is the matrix
norm ∑

i,j e
2
ij.

Proof. The proof of this lemma is actually a generalized version of First Korn’s In-
equality in H2. Consider u is a smooth displacement in R3 with compact support.
Let û(ξ) be the Fourier transform of u. Thus

ê(ξ) = 1
2(ξ ⊗ û+ û⊗ ξ).

By Plancerel’s theorem for Fourier transforms of tensor fields,∫
Ω×D
‖e‖2 =

∫
Ω×D
‖ê(ξ)‖2 = 1

4

∫
Ω×D

∑
i,j

(ξiûj + ξjûi)2.

Where, ∑
i,j

(ξiûj + ξjûi)2 =
∑
i,j

(ξ2
i û

2
j + ξ2

j û
2
i + 2ξiûiξjûj)

= 4
∑
i=j

ξ2
i û

2
i +

∑
i 6=j

(ξ2
i û

2
j + ξ2

j û
2
i ) + 2

∑
i 6=j

ξiûiξjûj

By the inequality 2ξ2
i û

2
i ξ

2
j û

2
j ≥ −(ξ2

i û
2
i + ξ2

j û
2
j), one has∑

i,j

(ξiûj + ξjûi)2 = 2
∑
i=j

ξ2
i û

2
i +

∑
i 6=j

(ξ2
i û

2
j + ξ2

j û
2
i )

= 2
∑
i,j

ξ2
i û

2
j .

Taking integral on both sides,∫
Ω×D
‖e‖2 ≥ 1

2

∫
Ω×D
‖Du‖2 = 1

2‖u‖
2
V2 ,

which implies First Korn’s Inequality in V2.
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Before showing the existence and uniqueness of the symmetric weak formula-
tion (3.4.3), let’s review the the following method for showing them.

Theorem 3.19. Generalized Lax-Milgram Theorem. Let H be a real Hilbert
space, let the bilinear form a(u, v) be bounded and coercive on H×H, and let f(u) be
a bounded linear functional on H. Then there exists a unique solution to the problem:
Find u ∈ H such that

a(u, v) = f(v), ∀v ∈ H.

Where,

(i) Boundedness of a: a(u, v) ≤M‖u‖‖v‖, ∀u, v ∈ H.

(ii) Coerciveness of a: a(u, v) ≥ m‖u‖2, ∀u ∈ H.

(iii) Boundedness of f : f(v) ≤ L‖v‖, ∀v ∈ H.

Remark 3.20. Notice that this generalization of Lax-Milgram Theorem on longer
needs symmetry of bilinear form a(u, v), and only a single Hilbert space H is involved.

Theorem 3.21. Existence and Uniqueness. If the assumptions 3.15(or 3.16) and
3.17 hold, then the symmetric weak formulation (3.4.3) has a unique solution u ∈ V2.

Proof. Firstly, let’s transform the weak form (3.4.3) into the following form, Find
u ∈ V2, such that

a(u, v) = f(v) ∀v ∈ V2,

where

a(u, v) =
∫

Ω

∫
D
Aijpqepq(u)eij(v)dµ(x)dP (Ω),

f(v) =
∫

Ω

∫
D
fividµ(x)dP (Ω) +

∫
Ω

∫
∂ND

gividµ(x)dP (Ω).

Since V2 is a Hilbert space by Thm 2.8. Then, one only needs to verify those three
conditions listed in Thm 3.19 which implies this theorem directly.

(i) Boundedness of a(u, v)
This is shown in Thm 3.1 as the first term.
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(ii) Coerciveness of a(u, v)
According to the assumption 3.17 and First Korn’s Inequality in V2 (3.18), we have
the following,

a(u, u) ≥ 2η
∫

Ω×D
‖eij(u)‖2

≥ 2Cη‖u‖2
V2 for some constant η, C > 0, ∀u ∈ V2.

(iii) Boundedness of f(v)
Since f ∈ V2′ and g ∈ L∞, one has

f(v) ≤ (‖f‖V2′ + C‖g‖L∞)‖v‖V2 .



Chapter 4

Assumption On Randomness and
Single Integral Formulation

4.1 Finite−Dimensional Noise Assumption

In many cases, randomness can be approximated by only a small number of
random variables, sometimes uncorrelated or independent. A well-known approach
to approximate the randomness is truncated KL expansion which is a finte sum of n
uncorrelated orthogonal random variables. Therefore, we make the finite-dimensional
noise assumption, which is a generation of Babuska’s assumption in [3].

Assumption 4.1. Finite-Dimensional Noise. A function r(ω, ·) with randomness
on Ω has the form

r(ω, ·) = r(Y1(ω), . . . , YN(ω), ·) on Ω,

where N is a finite positive integer and {Yn}N1 are real-valued random variables with
mean zero and unit variance.

From now on, Γn denotes the range of Yn(ω) on Ω, and Γ , ΠN
n=1Γn with ele-

ments y ∈ Γ, and furthermore it is assumed that these random variables [Y1, . . . , YN ]
have a joint probability density function ρ : Γ→ R+ with ρ ∈ L∞(Γ).

22
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4.2 Single Integral Formulation

By taking the advantage of the finite dimensional noise assumption on ran-
domness and existence and uniqueness of weak forms, the outer integral of random
domain Ω is able to be removed from the weak forms of targeting problems, the sim-
plified form is defined as single integral formulation of the original weak form, which
is introduced in [3], and generalized to a wider range of problems in this section by
us.

4.2.1 Nonlinear Stochastic Diffusion-Reaction Elliptic Equa-

tion

With Assumption 4.1, the coefficients and f used in the computations have
the form

a(ω, x) = a(Y1(ω), . . . , YN(ω), x),

b(ω, x) = b(Y1(ω), . . . , YN(ω), x),

c(ω, x) = c(Y1(ω), . . . , YN(ω), x) and

f(ω, x) = f(Y1(ω), . . . , YN(ω), x) on Ω×D,

Remark 4.2. Usually those coefficients and f are independent in terms of
a(Ya(ω), x), b(Yb(ω), x), c(Yc(ω), x) and f(Yf (ω), x), then Y can be defined as
[Ya, Yb, Yc, Yf ].

The solution u(ω, x) of stochastic problem (3.3.2) can be described by
u(Y1(ω), . . . , YN(ω), x) : Ω×D → R and furthermore u(y, x) : Γ×D → R. Thus, our
weak formulation (3.3.2) has an equivalent form which is, Find u ∈ V α+1

ρ where the
space V α+1

ρ is the analogue of V α+1 with (Ω,F , P ) replaced by (Γ,BN , ρdy),∫
Γ
ρ(y)

∫
D

(a∇u∇v + buv+cuαv)dµ(x)dy

=
∫

Γ
ρ(y)

∫
D
fvdµ(x)dy, ∀v ∈ V α+1

ρ .
(4.2.1)

For preference, one integral from the above formulation (4.2.1) can be removed and
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the single integral formulation is, Find u(y) : Γ→ W 1,q
0 (D),∫

D
(a(y)∇u(y)∇φ+ b(y)u(y)φ+c(y)u(y)αφ)dµ(x)

=
∫
D
f(y)φdµ(x), ∀φ ∈ W 1,q

0 (D), ρ− a.e. in Γ.

(4.2.2)

Remark 4.3. As long as the single integral formulation (4.2.2) have unique solutions
almost everywhere in Γ, and the original weak form (4.2.1) has unique solution, they
are equivalent to each other. The reason is because if there is a unique solution for
original weak form, it must be the unique solution for single integral formulation Γ
almost everywhere. And, the discussion of existence and uniqueness of this kind of
deterministic single integral semilinear equations with the assumptions of Theorem
3.9 is omitted since it has been well understood.

4.2.2 Linearized Elastostatic Problem with Random Media

The assumption of [3] is generalized to stochastic Elasticity in this section.
With Assumption 4.1, the index 4 random tensor field A used in the computations
has the form

A(ω, x) = A(Y1(ω), . . . , YN(ω), x).

The solution u(ω, x) ∈ V2 of stochastic linearized elastostatics (3.4.3) can be de-
scribed by u(Y1(ω), . . . , YN(ω), x) : Ω×D → R3 and furthermore u(y, x) : Γ×D → R3.
Thus, the weak formulation (3.4.3) has an equivalent form which is, Find u ∈ V2

ρ

where the space V2
ρ is the analogue of V2 with (Ω,F , P ) replaced by (Γ,BN , ρdy),∫

Γ
ρ(y)

∫
D

(Aijpqepq(u)eij(v)− fivi)dµ(x)dy−
∫

Γ
ρ(y)

∫
∂D
gividµ(x)dy = 0, ∀v ∈ V2

ρ.

(4.2.3)
For simplicity, one integral from the above formulation (4.2.3) can be removed and
the single integral formulation is, Find u(y) : Γ→ H1

0(D),∫
D

(Aijpq(y)epq(u(y))eij(φ)−fiφi)dµ(x)

−
∫
∂D
gi(y)φidµ(x) = 0, ∀φ ∈ H1

0(D), ρ− a.e. in Γ.

(4.2.4)
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Remark 4.4. The reason why the single integral formulation (4.2.4) is equivalent to
the weak form (4.2.3) is the same as the previous case nonlinear diffusion-reaction
elliptic equation.

If we suppose all coefficients, forcing term f and index 4 random tensor field A
mentioned above admit a smooth extension on ρdy-zero measure sets. Then the sin-
gle integral formulations (4.2.2) and (4.2.4) can be extended a.e. on Γ with Lebesgue
measure instead of ρdy. Now, the stochastic equations become deterministic para-
metric equations as a result of Assumption 4.1 and the well-posedness of targeting
problems.

Remark 4.5. The single integral formulations imply (4.2.1) and (4.2.3) are able to
be seen as a group of deterministic equations almost everywhere in Γ, which actually
motivates the stochastic collocation method in chapter 5.



Chapter 5

Introduction to Stochastic
Collocation Method

5.1 Generalized Stochastic Collocation Method

We generalize the Stochastic Collocation method introduced in [3] in this sec-
tion as follows. Generally speaking, to approximate the weak solution u ∈ P(Γ) ⊗
X(D) where X(D) is a Banach space on physical domain D ∈ Rd and P(Γ) is the
space of randomness with assumption 4.1. We solve the weak solution numerically in
a subspace Pp(Γ)⊗Xh(D) ⊂ P(Γ)⊗X(D) for uh,p ∈ Pp(Γ)⊗Xh(D), where

• Xh(D) ⊂ X(D) is just the finite element space discredited on D. For exam-
ple, the piecewise polynomials defined on regular triangulations Th that have a
maximum mesh spacing parameter h > 0.

• Pp(Γ) ⊂ L2
ρ(Γ) or Pp(Γ) ⊂ L2

ρ(Γ) is the span of tensor product polynomials with
degree at most p = (p1, · · · , pN), i.e. Pp(Γ) = ⊗N1 Ppn(Γn), where Ppn(Γn) =
span(ymn ,m = 0, . . . , pn), n = 1, . . . , N . Hence, the dimension of Pp is Np =
ΠN

1 (pn + 1).

Remark 5.1. This Pp(Γ) will generate a fully tensor grid. It is computationally
expensive when N is large. Therefore, some new approaches known as sparse
grid methods are developed to reduce number of grid points by considering a
subspace of fully tensor product space.
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The generalized main steps of Stochastic Collocation Method are listed in order as
below,

• Generate collocation points {yi}s.
Collocation points are actually zeros of orthogonal polynomials in Pp(Γ) with
respect to auxiliary probability density function ρ̂ : Γ → R+ that can be seen
as the joint probability of N independent random variables factorized as

ρ̂(y) = ΠN
1 ρ̂n(yn), ∀y ∈ Γ, such that ‖ρ

ρ̂
‖L∞(Γ) < ∞. (5.1.1)

The standard choices of ρ̂ are constant or Gaussian corresponding to Legendre
zeros or Hermite zeros, etc. For instance, consider in each dimension n =
1, . . . , N , the orthogonal polynomial qqn(yn) where 1 ≤ qn ≤ pn such that∫

Γn qqn(yn)r(yn)ρ̂n(yn)dyn = 0 for any r ∈ Pqn−1(Γn). Let {yknn }
qn
kn=1 be the roots

of qqn , then yk = [yk1
1 , . . . , y

kN
N ] are collocation points chosen as. The reason

of choosing collocation points as zeros of polynomial basis corresponding to
auxiliary probability density functions is to take advantages of their well known
roots and quadratrue weights which have been calculated with full accuracy.

• Solve semidiscrete approximation uh(y) : Γ → Xh(D) on collocation points
{yk}s.
uh(y) is the projection of solution u(y) : Γ → X(D) onto subspace Xh(D).
The problem needs to be solved is find uh(yk) by solving the single integral
formulation with testing functions φ ∈ Xh(D).

• Construct the discrete solution uh,p ∈ Pp(Γ)⊗Xh(D) by interpolating u(y) on
collocation points {yk}s.
Consider the Lagrange interpolation operator

uh,p(y, x) = Iρ̂uh(y, x) =
∑
k

uh(yk, x)lk(y), (5.1.2)

with the weights lk(y) = ΠN
n=1lk,n(yn), where lk,n(yn) is one-dimensional weight

function of Lagrange form on nodes yknn .

Remark 5.2. Someone may ask the single integral formulations (4.2.2) and
(4.2.4) are satisfied a.e on Γ, and the set of collocation points has measure zero,
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thus the interpolation derived from solutions on collocation points does not make
sense if some of yk are outside almost everywhere. However, this problem is
able to avoid by making a few simply reasonable assumptions on regularity of
randomness which are discussed in chapter 7.

• Compute the mean and variance of uh,p by quadrature.
The first moment and second moment can be approximated by,

E(u)(x) ≈ E(uh,p)(x) =
∫

Γ
uh,p(y, x)ρdy,

E(u2)(x) ≈ E(u2
h,p)(x) =

∫
Γ
u2
h,p(y, x)ρdy.

(5.1.3)

Next, one can employ suitable quadrature to calculate the integrals. Moreover,
if ρ

ρ̂
is smooth, it is able to take advantage of yk by using Gauss quadrature on

ρ
ρ̂
uh,p and ρ

ρ̂
u2
h,p as, ∫

Γ
uh,p(y, x)ρdy =

∑
k

wk(
ρ

ρ̂
uh,p)(yk, x),∫

Γ
u2
h,p(y, x)ρdy =

∑
k

wk(
ρ

ρ̂
uh,p)(yk, x),

(5.1.4)

where the weights wks of quadrature with respect to ρ̂ have been well calculated.

5.2 Comparison with other Methods

There are several numerical methods can be employed to solve SPDEs. Here, t-
wo well developed and popular methods, Monte Carlo method and Stochastic Galerkin
method, will be briefly introduced.

5.2.1 Monte Carlo Method

Monte Carlo method is one of the most developed methods for solving the
strong form of SPDEs directly. It generalizes K independent realizations of random
variables, and solve these K deterministic problems or K decoupled system by any
deterministic solver, although the process is straightforword, it converges asymptoti-
cally 1√

K
only introduced in [9], i.e., quadrupling the number of sampled realizations

halves the error . Steps of Monte Carlo Method are as following,
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• For a prescribed number of realizations K, generate independent and identically
distributed random variables yk = {Y i(wk)}Ni=1, for k = 1, . . . , K.

• For each k = 1, . . . , K, solve a deterministic problem with yk = {Y i(wk)}Ni=1 for
a solution uk = u(yk, x).

• Postprocess the results to evaluate the statistics of solution, for example E[u] =
1
K

∑K
k=1 uk.

Notice that, Monte Carlo method requires few regularity on random variables.

5.2.2 Stochastic Galerkin Method

Another alternative approach to solve SPDEs is Stochastic Galerkin method
discussed in [4] . This approach is a high order method. It is firstly to find a Galerkin
approximation uG = ∑Nh

n=1
∑Np
k=1 cknφ(xn)ψ(yk) with Nh × Np unknown by solving a

coupled Nh×Np by Nh×Np system, where φ(xn)s are basis functions of Xh(D) and
ψ(yk)s are basis functions of P(Γ). To solve this system, highly efficient strategies and
parallel computing are demanded. Then, postprocess the Galerkin approximation to
evaluate the statistics of solution.

5.2.3 Strengths of Stochastic Collocation Method

With the assumptions of randomness introduced in chapter 4 which are ac-
tually generalized conditions for many cases, Stochastic Collocation method has the
following advantages compared to the other two methods:

• Stochastic Collocation method is higher order method. Its convergence rate
is much higher than Monte Carlo method whose convergence rate is only 1√

K
,

and is at least as fast as the rate of Stochastic Galerkin method. With more
assumptions of regularity introduced in chapter 6, its convergence rate may be
exponential shown in Thm 7.8 and 7.17.

• Stochastic Collocation method has less computational complexity. By using
Stochastic Collocation method, Np systems with size Nh by Nh need to be
solved, while one has to solve Nh by Nh system K times by Monte Carlo method
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where K >> Np such that Monte Carlo method is able to reach the same level
of accuracy as Collocation method. Additionally, Stochastic Galerkin method
requires to solve a Np×Nh by Np×Nh system. Assume the Gaussian elimination
is applied, Galerkin method requiresN3

pN
3
h flops compared toNpN

3
h flops needed

only by Collocation method, not to mention the later may have better accuracy.

• Stochastic Collocation method can deal with unbounded random variables more
easily than Stochastic Galerkin method, see Thm 7.8 and 7.17 for details.

5.3 Stochastic Collocation Method for Nonlinear

Stochastic Diffusion-Reaction Elliptic Equation

We restrict the generale stochastic collocation method to nonlinear diffusion
reaction problem. To approximate the weak solution u ∈ V α+1

ρ or in other words
u ∈ Lα+1

ρ (Γ) ⊗ W 1,α+1(D) of (4.2.2), we solve numerically in a subspace V α+1
p,h ,

Pp(Γ)⊗Hh(D) ⊂ V α+1
ρ for uh,p ∈ V α+1

p,h , where

• Hh(D) ⊂ W 1,α+1
0 (D) ⊂ H1

0 (D) is just the finite element space discretized on D.

• Pp(Γ) ⊂ Lα+1
ρ (Γ) ⊂ L2

ρ(Γ) is the span of tensor product polynomials with
degree at most p = (p1, · · · , pN), i.e. Pp(Γ) = ⊗N1 Ppn(Γn), where Ppn(Γn) =
span(ymn ,m = 0, . . . , pn), n = 1, . . . , N .

The main steps of Stochastic Collocation Method are listed in order below,

• Generate collocation points {yi}s.
Collocation points are actually zeros of orthogonal polynomials in Pp(Γ) with
respect to auxiliary probability density function ρ̂ : Γ→ R+.

• Solve semidiscrete approximation uh(y) : Γ → Hh(D) on collocation points
{yk}s.
uh(y) is the projection of solution u(y) in (4.2.2) onto subspace Hh(D). The
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problem needs to be solved is: Find uh(yk) for each k, such that∫
D

(a(yk)∇uh(yk)∇φ+ b(yk)uh(yk)φ+c(yk)uh(yk)αφ)dµ(x)

=
∫
D
f(yk)φdµ(x), ∀φ ∈ Hh(D).

(5.3.1)

• Construct the discrete solution uh,p ∈ Pp(Γ)⊗Hh(D) by interpolating u(y) on
collocation points {yk}s, which is shown in (5.1.2).

• Compute the mean and variance of uh,p by quadrature, i.e. apply suitable
quadrature on (5.1.3).

5.4 Stochastic Collocation Method for Linearized

Elastostatic Problem with Random Media

We restrict the generale stochastic collocation method to linearized elastostatic
problem with random media. To approximate the weak solution u ∈ V2

ρ or in other
words u ∈ L2

ρ(Γ) ⊗ H1
0(D) of (4.2.4), we solve numerically in a subspace V2

p,h ,

Pp(Γ)⊗Hh(D) ⊂ V2
ρ for uh,p ∈ V2

p,h, where

• Hh(D) ⊂ H1
0(D) is just the finite element space discretized on D.

• Pp(Γ) ⊂ L2
ρ(Γ) is the span of tensor product polynomials with degree at most

p = (p1, · · · , pN), i.e. Pp(Γ) = ⊗N1 Ppn(Γn), where Ppn(Γn) = span(ymn ,m =
0, . . . , pn), n = 1, . . . , N .

The main steps of Stochastic Collocation Method are listed in order below,

• Generate collocation points {yi}s.
Collocation points are actually zeros of orthogonal polynomials in Pp(Γ) with
respect to auxiliary probability density function ρ̂ : Γ→ R+.

• Solve semidiscrete approximation uh(y) : Γ → Hh(D) on collocation points
{yk}s.
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uh(y) is the projection of solution u(y) in (4.2.4) into subspace Hh(D). The
problem need to be solved is: Find uh(yk) for each k, such that∫

D
(Aijpq(yk)epq(u(yk))eij(φ)−fiφi)dµ(x)

−
∫
∂D
gi(yk)φidµ(x) = 0, ∀φ ∈ Hh(D).

(5.4.1)

• Construct the discrete solution uh,p ∈ Pp(Γ)⊗Hh(D) by interpolating u(y) on
collocation points {yk}s, which is shown in (5.1.2).

• Compute the mean and variance of uh,p by quadrature, i.e. apply suitable
quadrature on (5.1.3) for each component of vector uh,p.



Chapter 6

Regularity Analysis

In this chapter, based on the regularity results in [3], we derive the regular-
ity results of the two new types of SPDEs, nonlinear stochastic diffusion reaction
equations and general linearized elastostatic problems. Before go through proof of
convergence, some regularity results are needed for f and ρ. Here, f represents
the right hand side of weak form for Dirichlet problem. For continence, we denote
the right hand side of mixed boundary problem as f̄ which is the sum of Dirichlet
boundary condition f and Neumann boundary condition gID, and ID is the indicator
function of domain D.
Firstly, we introduce a weight function σ(y) = ΠN

n σn(yn) ≤ 1, where

σn(yn) =

 1 if Γn is bounded,
e−βn|yn| for some βn > 0 if Γn is unbounded.

(6.0.1)

Then, we define a space of continuous functions whose growth at infinity are at most
exponential,

C0
σ(Γ;V ) , {v : Γ→ V , v continuous in y, max

y∈Γ
‖σ(y)v(y)‖V <∞},

with a Banach space V defined on D.

Assumption 6.1. Growth at Infinity. Suppose f and f̄ are continuous along y
and its growth at infinity is at most exponential, and the joint probability density
function ρ behaves like Gaussian weight at infinity.
(i) f ∈ C0

σ(Γ;L2(D)), or f̄ ∈ C0
σ(Γ; L2(D))

33
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(ii) ρ(y) ≤ Cρe
−
∑N

n=1(δnyn)2 for any y ∈ Γ, with constant Cρ > 0 and δn > 0 if Γn is
unbounded and zero otherwise.

Notice that one can select the auxiliary density ρ̂(y) = ΠN
1 ρ̂n(yn) satisfies for

n = 1, . . . , N ,

Cn
mine

−(δnyn)2 ≤ ρ̂n(yn) ≤ Cn
maxe

(δnyn)2 ∀yn ∈ Γn,

with some positive constants Cn
min and Cn

max are independent on yn, therefore
‖ρ
ρ̂
‖L∞(Γ) ≤ Cρ

ΠN1 Cnmin
< ∞ is satisfied. From this assumption, the following inclusions

hold,

Theorem 6.2. C0
σ(Γ;V ) ⊂ L2

ρ̂(Γ;V ) ⊂ L2
ρ(Γ;V ).

Proof. The brief proof is given in [3]. Here is a complete proof.
(i) For v ∈ L2

ρ̂(Γ;V )

‖v‖2
ρ̂ =

∫
Γ
ρ̂(y)‖v(y)‖2

V dy ≤ ‖v‖2
C0
σ

∫
Γ

ρ̂(y)
σ2(y)dy ≤ ‖v‖

2
C0
σ
ΠN

1 In,

where

In ≤ Cn
max|Γn| if Γ is bounded,

In ≤
∫
Γn(e2βn|yn|)Cn

maxe
−(δnyn)2

dyn

≤ Cn
maxe

(βn
δn

)2 ∫
Γn e

−(δnyn−βnδn )2
dyn = Cn

maxe
(βn
δn

)2√2π
δn

if Γ is unbounded.

(ii) For v ∈ L2
ρ(Γ;V ),

‖v‖L2
ρ(Γ;V ) ≤ ‖

ρ

ρ̂
‖

1
2
L∞‖v‖L2

ρ̂
≤
√

Cρ
ΠN

1 C
n
min

‖v‖L2
ρ̂
.

Actually, one can take σn = e(−δnyn)2/8 instead of the one defined in (6.0.1), by
doing this the space C0

σ(Γ;V ) becomes wider.

6.1 Regularity of Nonlinear Stochastic Diffusion-

Reaction Elliptic Equation

Based on the previous assumption, further more, we need to assume,
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Assumption 6.3. Continuity of coefficients. Suppose the coefficient functional
a b and c are continuous and a, b, c ∈ C0

loc(Γ;L∞(D)).

From these two assumptions 6.1 and 6.3, the first regularity result can be
derived,

Lemma 6.4. For the weak solution in (4.2.2), one has ‖u(y)‖H1
0 (D) ≤ Cfy ,

‖u(y)‖Lα+1(D) ≤ Cfy , where Cfy and Cfy are two constants only depend on
‖f(y)‖L2(D) and |D|.

Proof. Let the test function φ = u, since α is odd, so each term on the left is positive.
At last by Holder’s inequality the results can be obtained.

Theorem 6.5. Regularity of solution Assume 6.1 and 6.3, and the assumptions
in Theorem 3.9, the weak solution in (4.2.2) is satisfied
u ∈ C0

σ(Γ;H1
0 (D)).

Proof. We proof this theorem term by term. Take y1 6= y2 with any y2 ∈ Bδ(y1) such
that ‖a(y1) − a(y2)‖L∞(D) ≤ ε as well as b and c and ‖f(y1) − f(y2)‖L2(D) ≤ ε, and
let φ = u(y1)− u(y2), then subtract two equations. For convenient, the functional u
on y1 denotes as u1, and so does u2.
First look at I1 ,

∫
D(a1∇u1∇(u1 − u2)− a2∇u2∇(u1 − u2)).

I1 =
∫
D
a2[∇(u1 − u2)]2 +

∫
D

(a1 − a2)∇u1∇(u1 − u2)

≥ r‖u1 − u2‖2
H1

0 (D) −
∫
D
|(a1 − a2)∇u1∇(u1 − u2)|

≥ r‖u1 − u2‖2
H1

0 (D) − ‖a1 − a2‖L∞(D)‖u1‖H1
0 (D)‖u1 − u2‖H1

0 (D)

≥ r‖u1 − u2‖2
H1

0 (D) − εCf1‖u1 − u2‖H1
0 (D).

Similarly, the following results are able to obtained,

I2 ,
∫
D

(b1u1(u1 − u2)− b2u2(u1 − u2))

≥ −εCf1C1‖u1 − u2‖H1
0 (D), where C1 is the constant of Poincare’s Inequality.
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and since uα is monotone increasing,

I3 ,
∫
D

(c1u
α
1 (u1 − u2)− c2u

α
2 (u1 − u2))

≥ −ε‖u1‖αLα+1(D)‖u1 − u2‖Lα+1(D)

≥ −εCα
f1C2‖u1 − u2‖H1

0 (D),

where C2 is the constant of Sobolev imbedding theorem.

And the right hand side can be bounded as
∫
D(f1−f2)(u1−u2) ≤ εC1‖u1−u2‖H1

0 (D).
Therefore, by moving the negative terms from lower bound of I1, I2 and I3 to the
right, the final inequality is shown as following,

r‖u1 − u2‖2
H1

0 (D) ≤ (2Cf1 + C
α

f1 + 2C1 + C2)ε‖u1 − u2‖H1
0 (D)

=⇒ ‖u1 − u2‖H1
0 (D) ≤ Cε, with C =

2Cf1 + C
α
f1 + 2C1 + C2

r
.

Hence, u is continuous functional. The last task is to show maxy∈Γ ‖σ(y)u(y)‖H1
0 (D)

<∞, which is easy to show as follows since f ∈ C0
σ(Γ;L2(D)),

‖σ(y?)u(y?)‖H1
0 (D) = σ(y?)‖u(y?)‖H1

0 (D)

≤ Cfy?σ(y?)‖f(y?)‖L2(D)

= Cfy?‖σ(y?)f(y?)‖L2(D),

then take max on both sides, one has desired result.

Until now, the weak form (4.2.2) is able to be defined on everywhere on Γ
in the sense of ‖ · ‖V 2 , and the interpolation of semidiscrete solution of collocation
method (5.3.1) becomes reasonable.
In order to analyze the error of interpolation, the following assumption is required.

Assumption 6.6. Bounded derivatives. Assume there exists n positive γn < ∞,
such that

‖∂
k
yna(y)
a(y) ‖L∞(D) ≤ γknk! and ‖∂kynf(y)‖2

L(D)
1+‖f(y)‖2

L(D) ≤ γknk!,

for any y ∈ Γ.

Then, let Γ?n , ΠN
j 6=nΓj with y?n ∈ Γ?n, and σ?n , ΠN

j 6=nσj, the second regularity
result needed is
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Theorem 6.7. Analytic Extension of u. Under assumption 6.6 and assumption
in theorem 3.9, the solution u(yn, y?n, x) as a function of yn, u : Γn → C0

σ?n
(Γ?n;H1

0 (D))
admits an analytic extension u(z, y?n, x), z ∈ C, in the region of the complex plane
Σ(Γn; τn) , {z ∈ C, dist(z,Γn) ≤ τn} with 0 < τn < 1

2γn . Moreover, for all z ∈
Σ(Γn; τn),

‖σn(Rez)u(z)‖C0
σ?n

(Γ?n;H1
0 (D)) ≤

C1e
αnτn

amin(1− 2τnγn)(2‖f‖C0
σ(Γ;H1

0 (D)) + 1),

with the poincare constant C1.

Proof. This proof for the linear poisson problem is given in [3]. To extend his proof
into targeting nonlinear problem is straightforward. Let the bilinear form B(y;u, v) =∫
D a(y)∇u · ∇v, then

B(y; ∂kynu, ∂
k
ynu) = −

k∑
l=1

(k
l
)∂lynB(y; ∂k−lyn u, ∂kynu)−

∫
D
b(y)(∂kynu)2

−
∫
D
c(y)(∂kynu)α+1 + (∂kynf, v)

≤ −
k∑
l=1

(k
l
)∂lynB(y; ∂k−lyn u, ∂kynu) + (∂kynf, v), ∀v ∈ Hq

0(D) ⊂ H1
0 (D).

The result inequality above is the same as the one in Lemma 3.2 of [3], thus the rest
of proof is exactly the same of his.

6.2 Regularity of Linearized Elastostatic Problem

with Random Media

A further assumption is required for Linearized Elastostatic Problem, that is

Assumption 6.8. Continuity of coefficients. Suppose the coefficient functional
A continuous and A ∈ C0

loc(Γ; L∞(D)).

From these two assumptions 6.1 and 6.8, the first regularity result can be
derived,

Lemma 6.9. For the weak solution in (4.2.4), one has ‖u(y)‖H1
0(D) ≤ Cf̄y ,

‖u(y)‖L2(D) ≤ C f̄y , where Cf̄y and C f̄y are two constants only depend on ‖f̄(y)‖L2(D)

and |D |.
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Proof. Let the test function φ = u, Apply the Holder’s inequality for the right hand
side and First Korn’s Inequality (3.18) for the left hand side, then the results can be
obtained.

Theorem 6.10. Regularity of solution Assume 6.1 and 6.8, and the assumptions
in Theorem 3.21, the weak solution in (4.2.4) is satisfied
u ∈ C0

σ(Γ; H1
0(D)).

Proof. We proof this theorem term by term. Take y1 6= y2 with any y2 ∈ Bδ(y1)
such that ‖A(y1) − A(y2)‖L∞(D) ≤ ε as well as ‖f̄(y1) − f̄(y2)‖L2(D) ≤ ε, and let
φ = u(y1) − u(y2), then subtract two equations of weak form. For convenient, the
functional u on y1 denotes as u1 and A(y1) denotes as A1, and so does u2 and A2.
First look at I1 ,

∫
D(A1

ijpqepq(u1)eij(u1 − u2) − A2
ijpqepq(u2)eij(u1 − u2)). Since, e is

linear,

I1 =
∫

D
A1
ijpqepq(u1 − u2)eij(u1 − u2) +

∫
D

(A1
ijpq − A2

ijpq)epq(u2)eij(u1 − u2)

≥ C1η‖u1 − u2‖2
H1

0
−
∫

D
|(A1

ijpq − A2
ijpq)epq(u2)eij(u1 − u2)|

≥ C1η‖u1 − u2‖2
H1

0
− C2‖A1 − A2‖L∞‖u2‖H1

0
‖u1 − u2‖H1

0

≥ C1η‖u1 − u2‖2
H1

0(D) − εCf̄yC2‖u1 − u2‖H1
0
,

where C1 and η are from First Korn’s Inequality 3.18 and assumption 3.17, C2 is from
Thm 3.14 and Cf̄y is from pervious lemma 6.9.

And the right hand side can be bounded as
∫

D(f̄1− f̄2)i(u1− u2)i ≤ εC3‖u1−
u2‖H1

0
, Where C3 is the constant from Poincare’s Inequality.
Therefore, by moving the negative terms from lower bound of I1 to the right,

the final inequality is shown as following,

C1η‖u1 − u2‖2
H1

0
≤ (Cf̄y + C2 + C3)ε‖u1 − u2‖H1

0

=⇒ ‖u1 − u2‖H1
0
≤ Cε, with C =

Cf̄y + C2 + C3

C1η
.

Hence, u is continuous functional. The last task is to show maxy∈Γ ‖σ(y)u(y)‖H1
0
<∞,

which is easy to show as follows since f̄ ∈ C0
σ(Γ; L2(D)),

‖σ(y?)u(y?)‖H1
0

= σ(y?)‖u(y?)‖H1
0
≤ Cf̄y?σ(y?)‖f̄(y?)‖L2 = Cf̄y?‖σ(y?)f̄(y?)‖L2 ,

then take max on both sides, one has desired result.
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Until now, the weak form (4.2.4) is able to be defined on everywhere on Γ
in the sense of ‖ · ‖V2 , and the interpolation of semidiscrete solution of collocation
method (5.3.1) becomes reasonable.

In order to analyze the error of interpolation, the following assumption is
required.

Assumption 6.11. Bounded derivatives. Assume there exists n positive γn <∞,
such that

‖∂kynA(y)‖L∞(D) ≤ γknk! and ‖∂kyn f̄(y)‖2
L(D)

1+‖f̄(y)‖2
L(D) ≤ γknk!,

for any y ∈ Γ.

Then, let Γ?n , ΠN
j 6=nΓj with y?n ∈ Γ?n, and σ?n , ΠN

j 6=nσj, the second regularity
result needed is

Theorem 6.12. Analytic Extension of u. Under assumption 6.11 and assumption
in theorem 3.21, the solution u(yn, y?n, x) as a function of yn,
u : Γn → C0

σ?n
(Γ?n; H1

0(D)) admits an analytic extension u(z, y?n, x), z ∈ C, in the
region of the complex plane Σ(Γn; τn) , {z ∈ C, dist(z,Γn) ≤ τn} with 0 < τn <

1
2γn .

Moreover, for all z ∈ Σ(Γn; τn),

σn(yn)‖u(z)‖C0
σ∗n

(Γ∗n,H1
0(D)) ≤

C3e
βnτn

2C1η(1− 2τnγn) [(1 + C2)‖f̄‖C0
σ(Γ,L2(D) + 1]. (6.2.1)

Where C1 and η are from First Korn’s Inequality 3.18 and assumption 3.17, C2 is
from Thm 3.14 and C3 is the poincare constant.

Proof. For each point y ∈ Γ, the kth derivative of u with respect to yn satisfies the
following equation

B(y; ∂kynu, ∂
k
ynu) = −

k∑
l=1

(k
l
)∂lynB(y; ∂k−lyn u, ∂kynu) + (∂kyn f̄ , v) ∀v ∈ H1

0(D),

where the bilinear form B(y;u, v) =
∫
D Aijpq(y)epq(u)eij(v). Hence, one has

C1η‖∂kynui,j‖
2
L2 ≤

∫
D
|Aijpqepq(∂kynu)eij(∂kynu)|

≤ C2

k∑
l=1

(k
l
)‖∂lynA(y)‖L∞‖∂k−lyn ui,j‖2

L2

+ C3‖∂kyn f̄‖L2‖∂kynui,j‖L2 .
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Setting Rk = ‖∂kynui,j‖L2/k! and using the bounds of assumption 6.11, a recursive
inequality can be obtained

Rk ≤
C2

C1η

k∑
l=1

γlnRk−l + C3

C1η
γkn(1 + ‖f̄‖L2).

The generic term Rk admits the bound

Rk ≤
1
2(2γn)k( C2

C1η
R0 + C3

C1η
(1 + ‖f̄‖L2)).

Because of R0 = ‖u‖H1
0
≤ C3‖f̄‖L2 , the final estimate on the growth of the derivatives

of u is derived as

‖∂kynui,j‖L2

k! ≤ C3

2C1η
(2γn)k((1 + C2)‖f̄‖L2 + 1).

Now, we define for every yn ∈ Γn the power series u : C→ C0
σ∗n

(Γ,H1
0(D)) as

u(z, y∗n, x) =
∞∑
k=0

(z − yn)k
k! ∂kynu(yn, y∗n, x).

Therefore,

σn(yn)‖u(z)‖C0
σ∗n

(Γ∗n,H1
0(D)) ≤

∞∑
k=0

|z − yn|k

k! σn(yn)‖∂kynu(yn)‖C0
σ∗n

(Γ∗n,H1
0(D))

≤ C3

2C1η
max
yn∈Γn

{σn(yn)[(1 + C2)‖f̄‖C0
σ∗n

(Γ∗n,L2(D)) + 1]}
∞∑
k=0

(2|z − yn|γn)k

≤ C3

2C1η
[(1 + C2)‖f̄‖C0

σ(Γ,L2(D)) + 1]
∞∑
k=0

(2|z − yn|γn)k,

where we employ the fact that σn(yn) ≤ 1 for all yn ∈ Γn, and the series converges
for all z ∈ C such that |z − yn| ≤ τn < 1/(2γn). Moreover, in the ball |z − yn| ≤ τn,
by (6.0.1), one has σn(Re z) ≤ eβnτnσn(yn), and then

σn(yn)‖u(z)‖C0
σ∗n

(Γ∗n,H1
0(D)) ≤

C3e
βnτn

2C1η(1− 2τnγn) [(1 + C2)‖f̄‖C0
σ(Γ,L2(D) + 1].

Hence, the power series converges for every yn ∈ Γn as τn → 0. By a continuation
argument, the function u can be extended analytically on the whole region ∑(Γn; τn)
with estimation (6.2.1)



Chapter 7

Convergence Analysis

In this chapter, based on the results in [3] for the linear stochastic poisson
problem, we analyze the convergence of solution and as well as the first two moments
for nonlinear stochastic diffusion-reaction elliptic equations and linearized Elastostatic
problems with random media. Before showing any result for each cases, a few impor-
tant lemmas are introduced for later use. In these lemmas, the space V is defined as
same as it in (6.0.1) which is a general Banach space.

Lemma 7.1. The operator Ip : C0
σ(Γ;V )→ L2

ρ(Γ;V ) is continuous.

Proof. This proof is based on the orthogonality of polynomials, and the details of
proof are introduced in Lemma 4.2 of [3].

Lemma 7.2. Given a function v ∈ C0(Γ;V ) which admits an analytic extension in
the region of the complex plane ∑(Γ; τ) = {z ∈ C, dist(z,Γ) ≤ τ} for some τ > 0, it
holds that

min
w∈Pp⊗V

‖v − w‖C0(Γ;V ) ≤
2

%− 1e
−p log % max

z∈
∑

(Γ;τ)
‖v(z)‖V ,

where,

1 < % = 2τ
|Γ| +

√√√√1 + 4τ 2

|Γ|2 .

Lemma 7.3. Let v be a function in C0
σ(R;V ). We suppose that v admits an analytic

extension in the strip of the complex plane ∑(R; τ) = {z ∈ C, dist(z,R) ≤ τ} for
some τ > 0, and that

∀z = (y + iw) ∈
∑

(R; τ), σ(y)‖v(z)‖V ≤ Cv(τ).

41
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Then, for any δ > 0, there exist a constant C, independent of p, and a function
Θ(p) = O(√p) such that

min
w∈Pp⊗V

max
y∈R
|‖v(y)− w(y)‖V e−

(δy)2
4 | ≤ CΘ(p)e−τδ

√
p.

The proof of these two lemmas can be found in Lemma 4.4 and 4.6 of [3] which
is an immediate extension of result in [8]. Based on these lemmas and regularity
results, the following results for different problems are able to be derived.

7.1 Linear Stochastic Poisson Problem (Babuska’s

work)

The theoretical error analysis of Stochastic Collocation approach is introduced
and proved by Thm 4.1 in [3], which indicates the error goes to zero exponentially as
the order of pn increasing, where pns are the orders of polynomials in random space
⊗N1 Ppn(Γn) = Pp(Γ). The result of error analysis with respect to Linear Stochastic
Poisson problem is as following,

Theorem 7.4. Error Estimates of Collocation Approach. Under the assump-
tion 6.1, 6.3, 6.6 and assumptions in (3.2.2), there exist rn > 0, n = 1, 2, . . . , N , and
constant C1 and C2 independent of h and p, such that,

‖u− uh,p‖V 2
ρ
≤ C1 inf

∀vh∈Lα+1
ρ ⊗Hh

‖u− vh‖V α+1
ρ

+ C2

N∑
n=1

βn(pn) exp−rnp
θn
n , (7.1.1)

where

• if Γn is bounded,


θn = βn = 1

rn = log[ 2τn
|Γn|(1 +

√
1 + |Γn|2

4τ2
n

)],

• if Γn is unbounded,

 θn = 1
2 , βn = O(√pn)

rn = τnδn,

where τn is defined in Lemma 6.7 and δn is defined in Assumption 6.1.

Later on, following the same path of the result above with several further
assumptions and regularity conditions, one can show numerical solutions of nonlinear
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problem (4.2.2) and (4.2.4) by Stochastic Collocation method go to zero exponentially
too as the increasing of order pn.

7.2 Nonlinear Stochastic Diffusion-Reaction Ellip-

tic Equation

In this section, we prove the results of convergence for nonlinear stochastic
diffusion-reaction elliptic equations. Since the monotone increasing is required for
many proofs in this section, α is always assumed as odd integer. In addition, in order
to take advantage of Sobolev Imbedding theorem A.2, we assume the value of α must
satisfy H1

0 (D) ↪→ Lα+1(D), in particular 3 ≤ α < ∞ if D ∈ R2 or 3 ≤ α ≤ 6 if
D ∈ R3.

Before showing the results of error estimates, we here review the notations of
different solutions in collocation method. u ∈ V α+1

ρ is the weak solution in (4.2.2),
uh is the semidiscrete projection of u onto subspace Lα+1

ρ (Γ)⊗Hh(D) in (5.3.1), and
uh,p ∈ Pp(Γ) ⊗ Hh(D) is the discrete solution obtained from numerical approach in
(5.1.2). The error we are interested in is ‖u − uh,p‖V α+1

ρ
, however, in order to keep

the exponential convergent rate, the proof need to take advantage of orthogonality
of polynomial basis, a Hilbert space is required. Hence the error convergent rate
discussed in this section is ‖u− uh,p‖V 2

ρ
≤ C‖u− uh,p‖V α+1

ρ
where C is the imbedding

constant in Theorem 2.4.

Lemma 7.5. Interpolation Error. Under the assumption 6.1, 6.3 and 6.6, there
exist rn > 0, n = 1, 2, . . . , N , and constant C independent of h and p, such that the
interpolation error

‖uh − uh,p‖V 2
ρ
≤ C

N∑
n=1

βn(pn) exp−rnp
θn
n , (7.2.1)
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where

• if Γn is bounded,


θn = βn = 1

rn = log[ 2τn
|Γn|(1 +

√
1 + |Γn|2

4τ2
n

)],

• if Γn is unbounded,

 θn = 1
2 , βn = O(√pn)

rn = τnδn,

where τn is defined in Lemma 6.7 and δn is defined in Assumption 6.1.

Proof. This lemma is a result of two regularity theorems 6.5 and 6.7, and the previous
lemmas 7.1, 7.2 and 7.3. The tricks of proof are introduced in Thm 4.1 of [3] as
following. This error analyzed here is the interpolation error. Recall that uh has the
same regularity as the exact solution u with respect to y, and uh,p = Ipuh.

Firstly, since the zeros of auxiliary pdf are employed as collocation points, we
need to pass the error from the space L2

ρ to L2
ρ̂ by the inclusion

‖uh − Ipuh‖L2
ρ⊗H1

0
≤ ‖ρ

ρ̂
‖L∞(∞)‖uh − Ipuh‖L2

ρ̂⊗H
1
0
,

where ρ̂ chosen satisfies (5.1.1).
In this prove, we introduce a notation that is •n as a quantity relative to the

direction yn and •∗n as the analogous quantity relative to all other directions yj with
j 6= n. We focus on the first direction y1 and define an interpolation operator I1:
C0
σ1(Γ1;L2

ρ̂∗1
⊗H1

0 )→ L2
ρ̂1(Γ1;L2

ρ̂∗1
⊗H1

0 ) as

Ip1v(y1, y
∗
1, x) =

p1+1∑
k=1

v(yk1 , y∗1, x)lk(y1).

Then, the global interpolation operator Ip can be written as a composition of two op-
erators Ip = I1⊗I∗1 , where I∗1 is the interpolation operator in all directions y2, . . . , yNp

except y1 as I∗1 : C0
σ∗1

(Γ∗1;L2
ρ̂1 ⊗H

1
0 )→ L2

ρ̂∗1
(Γ∗1;L2

ρ̂1 ⊗H
1
0 ). Now, we can split the error

into two terms as

‖uh − Ipuh‖L2
ρ̂⊗H

1
0
≤ ‖uh − I1uh‖L2

ρ̂⊗H
1
0︸ ︷︷ ︸

I

+ ‖I1(uh − I∗1uh)‖L2
ρ̂⊗H

1
0︸ ︷︷ ︸

II

.

To bound the term I, by Thm 6.2, assumption 6.1 (ii) and (6.0.1), the following
inclusion holds:

C0
σ1(Γ1;V ) ⊂ C0

G1(Γ1;V ) ⊂ L2
ρ̂1(Γ1;V ),
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with a Hilbert space V = L2
ρ̂∗1

(Γ∗1) ⊗ H1
0 (D), σ1 = G1 = 1 if Γ1 is bounded and

σ1 = e−α1|y1|, G1 = e−
(δ1y1)2

4 if Γ1 is unbounded. Here we are actually analyzing the
error in a larger space with the choice of G1 instand of σ1. With the result of Lemma
7.1 and the inclusions above, the operator I1 is also continuous from C0

G1(Γ1;V ) in
L2
ρ̂1(Γ1;V ), then we can estimate

I = ‖uh − w + I1(w − uh)‖L2
ρ̂1

(Γ1;V ) ≤ C inf
∀w∈Pp1⊗V

‖uh − w‖C0
G1

(Γ1;V ),

by noticing I1(w) = w for any w ∈ Pp1⊗V . To bound the term of best approximation,
we apply Lemma 7.2 for the case of Γ1 is bounded, Lemma 7.3 for the case if Γ1 is
unbounded and the fact that u ∈ C0

σ1(Γ1;V ). Putting everything together, we have

I ≤

 Ceτ1p1 , Γ1 bounded
Cβ(p1)e−τ1

√
p1 , Γ1 unbounded.

To bound the term II, use Lemma 7.1 directly:

II ≤ Ĉ‖uh − I∗1u‖C0
σ1 (Γ1;V ).

Thus, the second bound becomes another interpolation error which could be bounded
by the same approach with respect to rest N − 1 directions.

Next, we start to look at the error from finite element approach ‖u − uh‖V 2 .
First, introduce a theorem for nonlinear finite element approach,

Theorem 7.6. Under assumptions in Theorem 3.9, if the nonlinear operator b(u) ,
cb̂(u) = cuα is monotone, and 〈b(u), v〉 is Lipschitz in weak sense, i.e

〈b(u)−b(uh), u−vh〉 ≤ K‖u−uh‖V α+1
ρ
‖u−vh‖V α+1

ρ
, ∀vh ∈ Lα+1

ρ (Γ)⊗Hh(D). (7.2.2)

Then, uh satisfied the following,

‖u− uh‖V 2
ρ
≤ C inf

∀vh∈Lα+1
ρ ⊗Hh

‖u− vh‖V α+1
ρ

. (7.2.3)

Proof. This proof is slightly changed from the proof in Thm 10.2.13 of [22]. Let
Xh = Lα+1

ρ ⊗Hh and a(u, v) be the bilinear form, consider

a(u− uh, wh) + 〈b(u)− b(uh), wh〉 = 0, ∀wh ∈ Xh,
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where wh = vh − uh ∈ Xh. This implies,

amin‖u− uh‖2
V 2
ρ
≤ a(u− uh, u− uh)

≤ a(u− uh, u− vh) + a(u− uh, vh − uh)

≤ a(u− uh, u− vh) + 〈b(uh)− b(u), vh − u〉 − 〈b(uh)− b(u), uh − u〉

≤ a(u− uh, u− vh) + 〈b(uh)− b(u), vh − u〉

≤ Ĉ‖u− uh‖V α+1ρ‖u− vh‖V α+1ρ +K‖u− uh‖V α+1
ρ
‖u− vh‖V α+1

ρ
.

Since this vh is arbitrary in Xh, we have

‖u− uh‖V 2
ρ
≤ C inf

∀vh∈Xh
‖u− vh‖V α+1

ρ
,

where C = Ĉ+K
amin

.

Then, the following lemma is able to prove,

Lemma 7.7. Error of Galerkin approximation. Under assumptions in Theorem
3.9, the Galerkin approximation has the following error estimates

‖u− uh‖V 2
ρ
≤ C inf

∀vh∈Lα+1
ρ ⊗Hh

‖u− vh‖V α+1
ρ

. (7.2.4)

Proof. In order to use Theorem 7.6, we only need to show the nonlinear operator
b(u) = cb̂(u) is Lipschitz in weak sense. In this proof, ‖w‖Lα(Γ×D) denotes as ‖w‖α.
Since

〈b(u)− b(uh), u− vh〉 ≤ ‖b(u)− b(uh)‖α+1
α
‖u− vh‖α+1, (7.2.5)

consider the Taylor expansion

b(u)− b(uh) = cb̂(1)(u)(u− uh) + · · ·+ c
1
α! b̂

(α)(ξ)(u− uh)α,

where b̂(α)(ξ) = α!, thus

‖b(u)− b(uh)‖α+1
α
≤

α∑
i=1
‖ c
i! b̂

(i)(u− uh)i‖α+1
α
.
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Let
α∑
i=1
‖ c
i! b̂

(i)(u− uh)i‖α+1
α

=
α∑
i=1

Ii, one has when i = 1, . . . , α− 1,

Ii =
(∫

Γ
ρ
∫
D
|C
i! u

α−i(u− uh)i|
α+1
α

) α
α+1

≤ ‖c‖∞
(∫

Γ
ρ
∫
D
u

(α−i)(α+1)
α (u− uh)

(α+1)i
α

) α
α+1

≤ ‖c‖∞
(∫

Γ
ρ
∫
D
uα+1

) α−i
α+1

(∫
Γ
ρ
∫
D
|u− uh|α+1

) i
α+1

≤ ‖c‖∞(Cfy + 1)α‖u− uh‖iα+1 where Cfy is the constant in Lemma 6.4

= Ĉ‖u− uh‖iα+1;

When i = α,
Iα ≤ ‖c‖∞‖u− uh‖αα+1.

Thus,
α∑
i=1

Ii ≤ αĈ

(
1− ‖u− uh‖αα+1
1− ‖u− uh‖α+1

)
‖u− uh‖α+1.

Since ‖u− uh‖α+1 ≤ Cfy , thus
(

1−‖u−uh‖αα+1
1−‖u−uh‖α+1

)
≤ C̃, and let K = αĈC̃, the expected

result is derived by substituting
α∑
i=1

Ii ≤ K‖u− uh‖α+1 back to (7.2.5).

Finally, the main result of this section is as following,

Theorem 7.8. Error Estimates of Collocation Approach. Under the assump-
tion 6.1, 6.3, 6.6 and assumptions in Theorem 3.9, there exist rn > 0, n = 1, 2, . . . , N ,
and constant C1 and C2 independent of h and p, such that,

‖u− uh,p‖V 2
ρ
≤ C1 inf

∀vh∈Lα+1
ρ ⊗Hh

‖u− vh‖V α+1
ρ

+ C2

N∑
n=1

βn(pn) exp−rnp
θn
n , (7.2.6)

where

• if Γn is bounded,


θn = βn = 1

rn = log[ 2τn
|Γn|(1 +

√
1 + |Γn|2

4τ2
n

)],

• if Γn is unbounded,

 θn = 1
2 , βn = O(√pn)

τn = τnδn,

where τn is defined in Lemma 6.7 and δn is defined in Assumption 6.1.
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Proof. Since ‖u− uh,p‖ ≤ ‖u− uh‖+ ‖uh− uh,p‖, and this theorem is direct result of
Lemma 7.5 and 7.7.

Remark 7.9. This result shows the error converges exponentially as the the increasing
of amount of collocation points. Or in another word, the interpolation error with
respect to the direction yn goes to zero exponentially as the dimension pn of polynomial
space Ppn increasing.

Remark 7.10. This estimator is analyzed in a larger space V 2
ρ ⊃ V α+1

ρ , it is enough
to analyze the error with respect to mean and variance, however the error estimates
of the exact solution space need further analysis.

7.2.1 Convergence of Moments

According to the Theorem 7.8, the error estimates of first two moments are
straightforward.

Theorem 7.11. Approximation of 1st Moment.

‖E[u− uh,p]‖L1(D) ≤ C‖u− uh,p‖V 2
ρ
. (7.2.7)

Proof. Simply apply Holder’s inequality, we have

‖E[u− uh,p]‖L1(D) ≤ C1‖u− uh,p‖L2(Γ×D) ≤ C2‖u− uh,p‖V 2
ρ
.

Theorem 7.12. Approximation of 2nd Moment.

‖E[u2 − u2
h,p]‖L1(D) ≤ C1‖u− uh,p‖V 2

ρ
+ C2‖u− uh,p‖2

V 2
ρ
. (7.2.8)

Proof. Consider,

‖E[u2 − u2
h,p]‖L1(D) =

∫
D

∫
Γ
ρ(u− uh,p)(u+ uh,p)

≤ ‖u− uh,p‖L2(Γ×D)‖u+ uh,p‖L2(Γ×D)

≤ ‖u− uh,p‖L2(Γ×D)(2‖u‖L2(Γ×D) + ‖u− uh,p‖L2(Γ×D))

≤ 2C1(Cfy)‖u− uh,p‖V 2
ρ

+ C2‖u− uh,p‖2
V 2
ρ
.

Remark 7.13. To analyze convergent property of higher order moments, more regu-
larity assumptions are required.
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7.3 Linearized Elastostatic Problem with Random

Media

In this section, we prove results of convergence for linearized Elastostatic prob-
lems with random media. Before showing the results of error estimates, we here review
the notations of different solutions in collocation method. u ∈ V2

ρ is the weak solu-
tion in (4.2.4), uh is the semidiscrete projection of u onto subspace L2

ρ(Γ)⊗Hh(D) in
(5.4.1), and uh,p ∈ Pp(Γ) ⊗Hh(D) is the discrete solution obtained from numerical
approach in (5.1.2). The error we are interested in is ‖u− uh,p‖V2

ρ
.

Lemma 7.14. Interpolation Error. Under the assumption 6.1, 6.8 and 6.11, there
exist rn > 0, n = 1, 2, . . . , N , and constant C independent of h and p, such that the
interpolation error

‖uh − uh,p‖V2
ρ
≤ C

N∑
n=1

βn(pn) exp−rnp
θn
n , (7.3.1)

where

• if Γn is bounded,


θn = βn = 1

rn = log[ 2τn
|Γn|(1 +

√
1 + |Γn|2

4τ2
n

)],

• if Γn is unbounded,

 θn = 1
2 , βn = O(√pn)

rn = τnδn,

where τn is defined in Lemma 6.12 and δn is defined in Assumption 6.1.

Proof. This lemma is a result of two regularity theorems 6.10 and 6.12, and the
previous lemmas 7.1, 7.2 and 7.3. The trick of proof is introduced in Lemma 7.5.

Next, we start to look at the error from finite element approach ‖u − uh‖V2 .
First, introduce the generalized Cea’s Lemma,

Theorem 7.15. Generalized Cea’s Lemma Let X be a Banach space, let Xh ⊂ X,
let u ∈ X be the solution to a bilinear form satisfied three conditions listed in Thm
3.19, and let uh ∈ Xh be the Glaerkin approximation satisfying

a(uh, vh) = f(vh), ∀vh ∈ Xh ⊂ X.
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Then,
‖u− uh‖X ≤ C inf

∀vh∈Xh
‖u− vh‖X .

The following lemma is straightforward based on Cea’s lemma.

Lemma 7.16. Error of Galerkin approximation. Under assumptions in Theorem
3.21, the Galerkin approximation has the following error estimates

‖u− uh‖V2
ρ
≤ C inf

∀vh∈L2
ρ⊗Hh

‖u− vh‖V2
ρ
. (7.3.2)

Proof. This theorem is a direct result by Thm 7.15.

Finally, the main result of this section is as following,

Theorem 7.17. Error Estimates of Collocation Approach. Under the as-
sumption 6.1, 6.8, 6.11 and assumptions in Theorem 3.21, there exist rn > 0, n =
1, 2, . . . , N , and constant C1 and C2 independent of h and p, such that,

‖u− uh,p‖V2
ρ
≤ C1 inf

∀vh∈L2
ρ⊗Hh

‖u− vh‖V2
ρ

+ C2

N∑
n=1

βn(pn) exp−rnp
θn
n , (7.3.3)

where

• if Γn is bounded,


θn = βn = 1

rn = log[ 2τn
|Γn|(1 +

√
1 + |Γn|2

4τ2
n

)],

• if Γn is unbounded,

 θn = 1
2 , βn = O(√pn)

τn = τnδn,

where τn is defined in Lemma 6.7 and δn is defined in Assumption 6.1.

Proof. Since ‖u− uh,p‖ ≤ ‖u− uh‖+ ‖uh− uh,p‖, and this theorem is direct result of
Lemma 7.14 and 7.16.

Remark 7.18. This result shows the error converges exponentially as the the increas-
ing of amount of collocation points. Or in another word, the interpolation error with
respect to the direction yn goes to zero exponentially as the dimension pn of polynomial
space Ppn increasing.
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7.3.1 Convergence of Moments

According to the Theorem 7.17, the error estimates of first two moments are
straightforward.

Theorem 7.19. Approximation of 1st Moment.

‖E[u− uh,p]‖L1(D) ≤ C‖u− uh,p‖V2
ρ
. (7.3.4)

Proof. Simply apply Holder’s inequality, we have

‖E[u− uh,p]‖L1(D) ≤ C1‖u− uh,p‖L2(Γ×D) ≤ C2‖u− uh,p‖V2
ρ
.

Theorem 7.20. Approximation of 2nd Moment.

‖E[u2 − u2
h,p]‖L1(D) ≤ C1‖u− uh,p‖V2

ρ
+ C2‖u− uh,p‖2

V2
ρ
. (7.3.5)

Proof. Consider,

‖E[u2 − u2
h,p]‖L1(D) =

∑∫
D

∫
Γ
|ρ(u− uh,p)(u+ uh,p)|

≤ ‖u− uh,p‖L2(Γ×D)‖u+ uh,p‖L2(Γ×D)

≤ ‖u− uh,p‖L2(Γ×D)(2‖u‖L2(Γ×D) + ‖u− uh,p‖L2(Γ×D))

≤ 2C1(Cf̄y)‖u− uh,p‖V2
ρ

+ C2‖u− uh,p‖2
V2
ρ
.

Remark 7.21. To analyze convergent property of higher order moments, more regu-
larity assumptions are required.



Chapter 8

Numerical Results

8.1 Error indicators

Based on the error indicators employed in [3], we generalize them as an muti-
dimension extrapolation type error indicator, and further apply it for all the target-
ing problems. In the following numerical results, the computational results are in
accordance with the convergence rate shown in the chapter 7. To study the compu-
tational error, we estimate it along each direction i corresponding to a multi-index
p = (p1, . . . , pi, . . . , pN) by calculating the L1 norm of the mean of computational
error ‖E[e]‖L1 = ‖E[uh,p − uh,p]‖ , EEi where p = (p1, . . . , pi + 1, . . . , pN).

Here we use an extrapolation type estimator with the help of a priori er-
ror estimates in Thm 7.4, Lemma 7.5 and 7.14. Assume the interpolation error
‖E[uh − Eh,p]‖ = ‖E[uh − Ipuh]‖ ≈

∑
nCne

−pn , i.e. ‖uh − Ipnuh‖ ≈ Cne
−pn for each

direction yn with n = 1, . . . , N . Then, we have

EEi = ‖E[uh,p − uh,p]‖ ≥ ‖E[uh,p − uh]‖ − ‖E[uh − uh,p]‖

≈
N∑
n=1

Cne
−pn −

N∑
n=1,n6=i

Cne
−pn − Cie−pi

≈ Cie
−pi(1− e−1)

≈ (1− e−1)‖E[uh − Ipiuh]‖.

(8.1.1)

Thus, if the computational error ‖E[uh,p−uh,p]‖ goes to zero exponentially as expect-
ed, it implies the interpolation error along direction yi is decreasing exponentially.

52
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Similarly, the second order moment is approximated by ‖E[u2
h,p − u2

h,p]‖L1 . In
order to verify the exponential convergence rate with respect to pi, we stay in the
same semidiscrete space Hh while increasing pi only. The L1 norms are approximated
by applying quadrature for the inner integral and trapezoidal method for the outer
integral,

EEi = ‖E[uh,p − uh,p]‖L1 =
∫
D
|
∫

Γ
(u− uh,p)|

≈
∑
i

ai|
∑
j

wjuh,p(yj, x)−
∑
k

wkuh,p(yk, x)|,
(8.1.2)

with the quadrature weights wj, wk and weights of trapezoidal method ai.
As desired, the error decreases exponentially as the polynomial order pi in-

creasing for both mean and second order moment.

8.2 Adaptive Algorithm

Recall the upper bound of the error and consider the result obtained from
(8.1.1),

‖E[u− uh,p]‖ ≤ ‖E[u− uh]‖+ ‖E[uh − uh,p]‖

≤ ‖E[u− uh]‖+
N∑
n=1
‖E[uh − Ipnuh]‖

≤ C1 inf
∀vh∈Lα+1

ρ ⊗Hh
‖u− vh‖V α+1

ρ
+

N∑
n=1

EEn

(1− e−1) ,

the first term of error is determined by the semidiscrete space Hh only and the second
term is a sum of errors from each direction n = 1, . . . , N . Thus, in real computing, by
incresing the degree of one direction i only, the convergence rate will be dominated
by the error induced by the accuracy of deterministic solver and other direction along
yj, with j 6= i. To avoid this, an adaptive algorithm with anisotropic strategy is
described briefly as following:

1. Set up a semidiscrete space Hh.

2. Increase the order of polynomial along ith direction as much as possible.

3. Increase the other directions j 6= i as much as possible one by one.
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4. Refine the semidistrete space and continue step 2 and 3.

The deterministic solver employed in this section is MCLite developed by
Prof.Michael Holst introduced in [12, 13], and is overwritten by Mr.Shi(Fox) Cheng
for stochastic collocation approach. MCLite is a FEM deterministic solver employed
piecewise linear element and Newton’s method for nonlinearity, and is extended to
be a stochastic collocation solver. The extended routines to generate stochastic col-
location points are introduced in chapter A.5.

8.3 Numerical Examples

In the following numerical examples, three types of problems setting are test-
ed, and for each setting, Gaussian probability density Γ = [−∞,∞]N with Hermite
zeros and uniform probability density Γ = [−1, 1]N with Legendre zeros are applied.
For more types of density function ρ, please refer to works [25, 27].

Setting 1. Consider a stochastic problem on domain D = [0, 1]× [0, 1] and (Y1, Y2) ∈
Γ is 2 dimensional probability space with collocation points as tensor product of Leg-
endre or Hermite polynomial zeros. The coefficient of diffusion is

a = 1 + exp((Y1 + Y2) exp(−1/8)).

And exact solution is

u = sin(πx) sin(πy)(exp(Y1)− exp(1)/2 + exp(−1)/2)(cos(Y2)− sin(1)),

with zero boundary condition. The corresponding RHS f can be calculated by PDE
itself then.

Setting 2. Consider a stochastic problem on domain D = [0, 1]× [0, 1] and (Y1, Y2) ∈
Γ is 2 dimensional probability space with collocation points as tensor product of Leg-
endre or Hermite zeros. The coefficient of diffusion is

a = 1 + exp((Y1 + Y2) exp(−1/8)).
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And exact solution is

u = 1
8 sin(πx+ Y 1) sin(πy + Y 2)(−2Y1 + 1

4)(−2Y2 + 1
3) exp(Y1/4 + Y2/3),

with nontrival boundary condition. The corresponding RHS f can be calculated by
PDE itself then.

Setting 3. Consider a stochastic linearized Elasticity problem on a piece of 2D
ground surface section D = [0, 10]× [0, 1] formed by material with random properties
described by (Y1, Y2) ∈ Γ which is a 2 dimensional probability space with collocation
points as tensor product of Legendre or Hermite zeros. The index four random tensor
field Aijpq is isotropic in the constitutive law with the property shown in Assumption
3.16. The exact solution is not explicit.

8.3.1 Linear Stochastic Poisson Problem.

Consider the following linear problem, find u(y, x) : D × Γ→ R such that

−∇(a(y, x) · ∇u(y, x)) = f(y, x) on D × Γ,

u(y, x) = ∂u on ∂D.
(8.3.1)

Denote the order of polynomials used in Γ as [p1, p2]. In order to observe the expo-
nential decaying proved in Thm 7.4, only one of p1 or p2 will increase. The numerical
results based on Setting 1 and Setting 2 are shown as following,

Table 8.1: Linear Problem with Setting 1 and Legendre zeros, errors with increasing
p1.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 2.11251707e− 05 7.04736282e− 07
[3, 2] 1.80162053e− 07 2.64285614e− 08
[4, 2] 8.13689743e− 10 4.84046708e− 10
[5, 2] 2.27600348e− 12 5.40067729e− 12
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Table 8.2: Linear Problem with Setting 1 and Hermite zeros, errors with increasing
p1.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 2.20656612e− 03 1.89202414e− 03
[3, 2] 1.11852927e− 04 4.41652912e− 04
[4, 2] 4.02916383e− 06 6.68041141e− 05
[5, 2] 1.12606911e− 07 7.64250708e− 06

Table 8.3: Linear Problem with Setting 2 and Legendre zeros, errors with increasing
p2.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 4.16896969e− 03 7.02491798e− 03
[2, 3] 5.94854479e− 05 7.54632251e− 04
[2, 4] 4.11014569e− 07 3.03637355e− 05
[2, 5] 1.62821741e− 09 6.40541102e− 07

Table 8.4: Linear Problem with Setting 2 and Hermite zeros, errors with increasing
p2.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 2.55732820e− 02 3.27609015e− 02
[2, 3] 2.08748127e− 03 2.01452560e− 02
[2, 4] 1.12479700e− 04 6.20045682e− 03
[2, 5] 4.38754653e− 06 1.28904335e− 03
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Figure 8.1: Error convergence with respect to linear problem. Left: Setting 1. Right:
Setting 2.

Obviously, for above linear problem, the mean and 2nd order moment goes to
zero exponentially as p1 or p2 increasing, which accords with the result from [3].
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8.3.2 Nonlinear Stochastic Problem with Nonlinearity u3.

Consider the following nonlinear problem, find u(y, x) : D×Γ→ R such that

−∇(a(y, x) · ∇u(y, x)) + λu(y, x)3 = f(y, x) on D × Γ,

u(y, x) = ∂u on ∂D.
(8.3.2)

Where λ = exp(Y1 + Y2). Numerical results are as following

Table 8.5: Nonlinear Problem with nonlinearity u3, Setting 1 and Legendre zeros,
errors with increasing p2.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 2.14866983e− 05 7.16250061e− 03
[2, 3] 1.75710454e− 07 3.07709305e− 04
[2, 4] 3.91734984e− 09 5.93994847e− 06
[2, 5] 2.39519408e− 08 6.76712198e− 08

Table 8.6: Nonlinear Problem with nonlinearity u3, Setting 1 and Hermite zeros,
errors with increasing p2.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 2.02914348e− 03 4.23150905e− 02
[2, 3] 1.00737768e− 04 1.00782435e− 02
[2, 4] 3.99244913e− 06 1.46724560e− 03
[2, 5] 2.65266585e− 07 1.61882410e− 04

Table 8.7: Nonlinear Problem with u3, Setting 2 and Legendre zeros, errors with
increasing p1.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 3.89331194e− 03 6.61852538e− 03
[3, 2] 5.32283183e− 05 6.84436527e− 04
[4, 2] 3.44940534e− 07 2.57631839e− 05
[5, 2] 1.47536345e− 08 5.16144546e− 07

Table 8.8: Nonlinear Problem with u3, Setting 2 and Hermite zeros, errors with
increasing p1.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 2.37577431e− 02 2.98363043e− 02
[3, 2] 1.86305410e− 03 1.78092770e− 02
[4, 2] 9.32958060e− 05 5.24491294e− 03
[5, 2] 3.49452921e− 06 1.01535255e− 03
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Figure 8.2: Error convergence with respect to problem with u3. Left: Setting 1.
Right: Setting 2.
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Figure 8.3: Numerical solutions with respect to problem with u3. Top: Setting 1.
Bottom: Setting 2.

Obviously, for above problem with nonlinearity, the mean and 2nd order mo-
ment goes to zero exponentially as p1 or p2 increasing, which accords with the result
of Thm 7.8.

8.3.3 Nonlinear Stochastic Problem with Nonlinearity eu.

Consider the following nonlinear problem, find u(y, x) : D×Γ→ R such that

−∇(a(y, x) · ∇u(y, x)) + λeu = f(y, x) on D × Γ,

u(y, x) = ∂u on ∂D.
(8.3.3)

Where λ = exp(Y1 + Y2). Numerical results are as following
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Table 8.9: Nonlinear Problem with eu, Setting 1 and Legendre zeros, errors with
increasing p1.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 2.11487378e− 05 7.04829626e− 07
[3, 2] 1.75980245e− 07 2.64196560e− 08
[4, 2] 1.41498782e− 08 5.79322270e− 10
[5, 2] 9.93568951e− 09 4.07054200e− 11

Table 8.10: Nonlinear Problem with eu, Setting 1 and Hermite zeros, errors with
increasing p1.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 2.20668482e− 03 1.89227538e− 03
[3, 2] 1.11833481e− 04 4.41696139e− 04
[4, 2] 4.02761297e− 06 6.68022392e− 05
[5, 2] 1.12269765e− 07 7.64084823e− 06

Table 8.11: Nonlinear Problem with eu, Setting 2 and Legendre zeros, errors with
increasing p2.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 4.16902571e− 03 7.02515778e− 03
[2, 3] 5.94867536e− 05 7.54667475e− 04
[2, 4] 4.11142904e− 07 3.03647307e− 05
[2, 5] 1.62546605e− 09 6.40561495e− 07

Table 8.12: Nonlinear Problem with eu, Setting 2 and Hermite zeros, errors with
increasing p2.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 2.55735984e− 02 3.27619389e− 02
[2, 3] 2.08745399e− 03 2.01463602e− 02
[2, 4] 1.12500315e− 04 6.20065297e− 03
[2, 5] 4.39050137e− 06 1.28905295e− 03
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Figure 8.4: Error convergence with respect to problem with eu. Left: Setting 1.
Right: Setting 2.
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Figure 8.5: Numerical solutions with respect to problem with eu. Top: Setting 1.
Bottom: Setting 2.

Although, the above problem with nonlinearity eu is not included in Thm 7.8,
its mean and 2nd order moment goes to zero exponentially as fast as the problem
with u3.

8.3.4 Linearized Stochastic Elasticity in random media.

Consider a linearized Elasticity problem based on Setting 3 similar as the
test problem in [28], find u(y, x) : D × Γ→ R2 such that

−∂jσij(y, x)) = fi(x) on D × Γ,

σij(y, x) = Aijpq(y, x)epq(u(y, x)) on D × Γ p, q = 1, 2

njσij(y, x) = gi(y, x) on ∂ND × Γ,

ui(y, x) = 0 on ∂DD ,

(8.3.4)
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with isotropic material in the constitutive law. It indicates that Poisson’s ratio ν
and Young’s modulus E are the only two variables required to fully define the index
four random tensor field A shown in Assumption 3.16. The gravity is considered
as the body force f , an stochastic fourier series as vertical boundary force from the
bottom of the ground section and a constant horizontal boundary force is imposed by
Neumann boundary condition g. For simplicity, the Poisson’s ratio ν is assumed to
be a constant 0.28, and the Young’s modulus is described by a first order truncated
KL expansion

E(y, x) = 21 +
√
λ1ξ(y)cos(γ1x1) cos(γ1x2)

1 + sin(2γ1)/2γ1
,

where λ1 = ( 2b
b2γ2

1+1)2 with b = 16, γ1 is the first positive root of equation γ tan(γ)−
1/b = 0, ξ(y) = Y1Y2 is the product of first order Legendre and Hermite polynomial.
Numerical results are as following,

Table 8.13: Linearized Elasticity with Setting 3 and Legendre zeros, errors with
increasing p1.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 6.08150935e− 03 4.61749358e− 02
[3, 2] 5.21193888e− 05 1.56682957e− 03
[4, 2] 2.35511221e− 08 2.85760595e− 05
[5, 2] 6.56227638e− 10 3.21547894e− 07

Table 8.14: Linearized Elasticity with Setting 3 and Hermite zeros, errors with
increasing p2.

[p1, p2] ‖E[uh,p − uu,p]‖L1 ‖E[u2
h,p − u2

h,p]‖L1

[2, 2] 1.00755241e− 02 4.82492099e− 02
[2, 3] 4.93341702e− 04 8.73378120e− 03
[2, 4] 1.72877005e− 05 1.19259559e− 03
[2, 5] 4.73011838e− 07 1.28182196e− 04
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Figure 8.6: Error convergence with respect to problem of linearized Elasticity.

Figure 8.7: Numerical solutions with respect to linearized Elasticity problem. Top:
Legendre zeros. Bottom: Hermite zeros.
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Clearly, for above problem of linearized Elasticity, the mean and 2nd order
moment goes to zero exponentially as p1 or p2 increasing, which accords with the
result of Thm 7.17.

Remark 8.1. Although, the model of linearized Elasticity is only suitable for problems
with very small forces, we still apply large boundary forces in our testing problems in
order to observe the behavior of numerical solutions by the front figures. For the real
model with large boundary forces, the nonlinear Elasticity model should be applied.



Chapter 9

Conclusion

In this dissertation, the wellpossedness of the nonlinear stochastic diffusion
reaction problem and the general linearized elastostatic problem in random media
are analyzed in a newly solution space V p under certain assumptions.

The a priori error estimates for solving the nonlinear stochastic diffusion re-
action problem and general linearized elastostatic problem in random media by s-
tochastic collocation approach is derived. The error goes to zero exponentially as the
order pn increasing in space of polynomial chaos ⊗N1 Ppn(Γn), which keeps the same
convergent rate as stochastic linear possion problem. Hence, we successfully gener-
alize stochastic collocation approach to a much wider region of elliptic problems. As
desired, the theoretical result is admitted by the numerical experiments verified by a
posterior error estimator.

For real computing, in order to solve the stochastic equations by collocation
method one must actually solve Np decouple deterministic equations, and this can
fit into a parallel strategy naturally. The demand of more efficient solver to solve s-
tochastic problems is realistic because a number of deterministic equations need to be
solved or a number of extra unknowns are introduced into the original deterministic
problem. Therefore, a parallel solver designed with the adaptive strategy described
in this work is a significant task to implement.

To generalize the analysis and numerical treatments to wider types of elliptic
problems or even time depending equations is still ongoing research. Any numerical
approach for solving stochastic problems with better performance than Monte Carlo
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simulation is needed, since for most practical problems, the only trusted numerical
approach is still Monte Carlo simulation which is slow and computationally expensive.



Appendix A

A.1 Imbedding Theorems of Lp and Sobolev Space

Theorem A.1. LP Imbedding. If µ(X) < ∞ and 0 < p < q ≤ ∞, then Lp(µ) ⊃
Lq(µ) and ‖f‖p ≤ C‖f‖q, where C = µ(X)1/p−1/q.

Theorem A.2. Sobolev Imbedding. Let Ω = Rn
+ or an open set of class C1 with

bounded boundary ∂Ω. Then we have the continuous inclusions

• if 1 ≤ p < n, then W 1,p(Ω) ↪→ Lp?(Ω), where p? = np
n−p ,

• if p = n, then W 1,p(Ω) ↪→ Lq(Ω) for all q ∈ [n,∞)

• if p > n, then W 1,p(Ω) ↪→ L∞(Ω)

and further, in the latter case, u is Holder continuous of exponent α = 1 − n/p. In
particular, W 1,p(Ω) ⊂ C(Ω), p > n.

Theorem A.3. Rellich-Kondrasov. Let Ω ⊂ Rn be a bounded open set of class
C1, then the above continuous inclusions in Theorem A.2 are compact.

A.2 Useful Inequalities

Theorem A.4. Cauchy-Schwarz Inequality. Here introduce the compact written
of Cauchy-Schwarz Inequality. For vectors x, y ∈ Rd, one has

|
d∑
i=1

xiȳi|2 ≤
d∑
j=1
|xj|2

d∑
k=1
|yk|2. (A.2.1)
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Theorem A.5. Holder’s Inequality. Suppose 1 < p <∞ and p−1 + q−1 = 1. If f
and g are measurable functions on X, then

‖fg‖L1 = ‖f‖p‖g‖q. (A.2.2)

Theorem A.6. Holder’s Inequality for Vector-valued functions. Suppose 1 <
p < ∞ and p−1 + q−1 = 1. If f and g are vector valued measurable functions on
X → Rd, then ∫

X

d∑
i=1
|figi| ≤ (

∫
X

d∑
i=1
|fi|p)1/p(

∫
X

d∑
i=1
|gi|q)1/q. (A.2.3)

Theorem A.7. Minkowski’s Inequality for Integrals. Suppose that (X,M, µ)
and (Y,N , ν) are σ-finite measure spaces, and let f be an (M⊗N )-measurable func-
tion on X × Y ,

[ ∫ ( ∫
f(x, y)dν(y)

)p
dµ(x)

]1/p

≤
∫ [ ∫

f(x, y)pdµ(x)
]1/p

dν(y). (A.2.4)

Theorem A.8. Poincare’s Inequality. Let Ω be a bounded open set in Rn. Then
there exists a positive constant C = C(Ω, p) such that for 1 ≤ p <∞

‖u‖Lp ≤ C|u|W 1,p for every u ∈W1,p
0 (Ω). (A.2.5)

A.3 Reflexive Banach Space

Definition A.9. Reflexive Space. Suppose X is a normed vector space, and the
mapping J : X → X ′′ defined by J(x)(φ) = φ(x) for every x ∈ X and φ ∈ X ′ is
bijective, then the space X is called reflexive.

Theorem A.10. All Hilbert spaces are reflexive.

The proof of above theorem is based on Riesz Representation Theorem.

Theorem A.11. Any closed subspace of reflexive space is reflexive.

The proof of above theorem is based on Hahn-Banach theorem.
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A.4 Variational Methods in Banach Spaces

Let X be a Banach space, and U be a subset of X, consider the minimization
problem of a energy functional J : U ⊂ X → R:

Find u0 ∈ U ⊂ X s.t J(u0) = inf
u∈U

J(u). (A.4.1)

Some of the simplest and most general results which guarantees the existence of a
solution to the minimization problem (A.4.1) is following.

Theorem A.12. Let X be are flexive Banach space, let U be a weakly closed sub-
set of X, and let J : U ⊂ X → R be a proper, bounded below, and weakly lower
semicontinuous on U . Then there exists a solution to problem (A.4.1).

Theorem A.13. Let X be a reflexive Banach space, let U be a closed convex subset
of X, and let J : U ⊂ X → R be a proper, bounded below, convex, and lower
semicontinuous on U . Then there exists a solution to problem (A.4.1). Moreover, if
J is strictly convex, the solution is unique.

Here two sufficient conditions of weakly lower semicontinous are provided.

Theorem A.14. Let X be a Banach space, let U ⊂ X be a closed convex subset, and
J : U ⊂ X → R be convex and lower semicontinuous on U . Then J is weakly lower
semicontinuous on U .

Theorem A.15. Let X be a Banach space, let U ⊂ X be a closed convex subset, and
J : U ⊂ X → R be convex on U . If J is G-differentiable on U . Then J is weakly
lower semicontinuous on U .

A.5 Collocation Points Generator of MCLite

The stochastic collocation points generator are built by three files which are
collocationpoints.m, HermiteZero.m and LegendreZero.m.

To generate collocation points, simply call collocationpoints.m at the be-
ginning of go.m(the driver script controller of MCLite package) as
Zero = collocationpoints[type,n,p1,p2]
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where type==1 is for Hermite zeros, type==2 is for Legendre zeros, n is the dimension
of random space Pp, and p1, p2 are the order of polynomials with respect to the first
dimension and second dimension of space Pp. The corresponding HermiteZero.m

or LegendreZero.m will be called in by collocationpoints.m, and the collocation
points matrix Zero is the output. Then, go.m will solve the stochastic problem by a
loop of each collocation point generated.
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