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ABSTRACT OF THE THESIS

Enhancing the Electromagnetic Design Process with Explanation Algorithms

by

David Ho

Master of Science in Materials Science and Engineering

University of California, Los Angeles, 2021

Professor Aaswath Pattabhi Raman, Chair

Designing photonic structures and obtaining optimal responses is still a difficult task. A large

number of gradient based algorithms and adjoint solvers are used, and the results have been effective

in that complex free form geometries of devices are capable of being created. The fact remains,

however, that many solvers still tend to be black boxes, and there is very little transparency in

how the solver comes to its conclusion. Furthermore, because many of these solvers are gradient

based, additional knowledge of the device is needed, otherwise the solver can get trapped in a local

minimum and not reach the true optimal geometry. To this end, an inverse design framework that

combines adjoint optimization, automated machine learning (AutoML), and explainable artificial

intelligence (XAI) is presented in order to determine both the relation between device structure

and performance and also minimize the effect of local minima trapping. This framework is used

in the inverse design of waveguides and achieves an average of 43% increase in performance.

Consequently, this study portrays how to extend beyond traditional inverse design solvers in terms

of both performance and ability to elucidate the solvers’ decisions.
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Chapter 1

INTRODUCTION TO PHOTONIC DEVICES

1.1 Background

The understanding of the manner in which light interacts with matter still has deep potential

for advancement. The study of photonics involves creating devices that can manipulate, detect, or

create light [1]. This field has paved the way for numerous inventions that have vastly improved

quality of life, such as the laser, which helped enable technologies such as photolithography for

semiconductor manufacturing and laser surgery, the light emitting diode, which is used in everyday

lighting and digital displays, the photovoltaic cell, which gave way to the solar cell and the potential

for increased renewable energy, and much more [2][3][4].

Photonics has helped shape the world so far, and it has the potential to continue doing so.

More recent advancements in the field of photonics involve photonic integrated circuits (PICs)

that are used for fiber­optic communication, and metasurfaces, artificial sheet­like materials with

sub­wavelength thicknesses that can modulate the behavior of electromagnetic waves through a

desired boundary condition set by the designer [1][5]. In fact, sub­wavelength silicon­on­insulator

(SOI) PICs have the potential to make CMOS electronics have reductions in size, cost, and energy

consumption [6][7]. As a result, there is a great amount of potential waiting to be unlocked in this

field if these devices can be easily designed.

1.2 Basic Principles

There are multiple approaches in which photonic devices have been designed, and one of the

first ways to do so is through solving Maxwell’s Equations, and in order to do so, many computa­

tionally expensive and tedious numerical simulations must be performed due to the complexity of
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the device.

∇ ⋅ 𝐸 = 𝜌
𝜖0

(1.1)

∇ ⋅ 𝐻 = 0 (1.2)

∇ × 𝐸 = −𝜕𝐻
𝜕𝑡 (1.3)

∇ × 𝐻 = 𝜇0(𝐽 + 𝜖0
𝜕𝐸
𝜕𝑡 ) (1.4)

Equations 1.1 through 1.4 are the differential equations that make up Maxwell’s Equations, and

they relate the electric field vector (E), the magnetic field vector (H), permittivity of free space

𝜖0, permeability of free space 𝜇0, electric charge density 𝜌, and electric current density J to one

another. Equation 1.1 is commonly known as Gauss’s Law, which relates the gradient of the electric

field vector to the charge density, and this can then be used to derive other laws such as Coulomb’s

Law. Equation 1.2 is a special form of Gauss’s Law for magnetic fields, stating that the gradient

of the magnetic field is equal to zero, which dictates this magnetic vector field as being solenoidal.

Equation 1.3 is known as the Maxwell­Faraday law, which dictates that a time varying magnetic

field results in a spatially varying electric field. Equation 1.4 is the Ampere­Maxwell law which

relates a time varying electric field to a spatially varying magnetic field.

1.3 FDTD Method

Maxwell’s equations are central to photonic device design, but a key roadblock is in the lack

of analytical solutions to these equations. A common method that is used is known as the Finite

2



Difference Time Domain (FDTD) method, which is also known as Yee’s Method [8]. The FDTD

method is predicated on the observation that any time change in electric field is related to the spatial

change in the magnetic field, and vice versa. The method is similar to other numerical methods in

that it uses finite differences to approximate the spatial and temporal derivatives seen in Ampere’s

law and Faraday’s law [ref]. The finite differences work in the following manner: consider the

Taylor Expansion of 𝑓 (𝑥) expanded about 𝑥0 with an offset of ±𝛿/2 [9]:

𝑓 (𝑥 + 𝛿
2 ) = 𝑓 (𝑥0) + 𝛿

2 𝑓 ′(𝑥0) + 1
2!(

𝛿
2 )2𝑓 ″(𝑥0) + 1

3!(
𝛿
2 )3𝑓 ‴(𝑥0) + ... (1.5)

𝑓 (𝑥 − 𝛿
2 ) = 𝑓 (𝑥0) − 𝛿

2 𝑓 ′(𝑥0) + 1
2!(

𝛿
2 )2𝑓 ″(𝑥0) − 1

3!(
𝛿
2 )3𝑓 ‴(𝑥0) + ... (1.6)

These two equations differ from one another in the even terms (second and fourth term of Equa­

tion 1.5 is positive whereas the second and fourth term of Equation 1.6 is negative). By subtracting

Equation 1.5 from Equation 1.6 and then dividing by 𝛿, the following equation comes to light:

𝑓 (𝑥 + 𝛿
2 ) − 𝑓 (𝑥 − 𝛿

2 )
𝛿 = 𝑓 ′(𝑥0) + 1

3!
𝛿2

22 𝑓 ‴(𝑥0) (1.7)

Equation 1.7 is very familiar looking, in that it is the equation for the derivative of the function

f(x) alongside a higher order term that includes a 𝛿2 value as well. There are many other higher

order derivatives included in this equation(fifth, seventh, etc.), but they end up including terms of

𝛿4, 𝛿6, and so on, which results in these terms being negligible. If 𝛿 becomes sufficiently small,

then the following equation is formed:

lim
𝛿→0

𝑓 (𝑥 + 𝛿
2 ) − 𝑓 (𝑥 − 𝛿

2 )
𝛿 ≈ 𝑓 ′(𝑥0) (1.8)

This is known as the central difference approximation. Thus, equation 1.8 allows for an ap­
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proximation of 𝑓 ′(𝑥) at x = 𝑥0 even though the function is never sampled there, but rather at the

nearby points x + 𝛿/2 and x ­ 𝛿/2. If 𝛿 becomes exactly zero, then the approximation becomes the

exact definition of the derivative of 𝑓 (𝑥) at 𝑥 = 𝑥0.

The FDTD/Yee Method uses the central difference approximation to execute the following:

Replace the various spatial and temporal derivatives and Ampere’s and Faraday’s laws with the

central difference approximation, discretize space and time in order for the electric and magnetic

fields to be staggered both spatially and temporally, solve the difference equations to obtain equa­

tions that express future fields in terms of past fields, evaluate both of the fields one time step into

the future which then provides the spatial component as well, and continue to do so until the fields

have been solved for the desired time [9].

In 3D Cartesian coordinates, this method is supplemented by the Yee Cell, which illustrates

the distribution of electric and magnetic field components as the whole area being worked with is

now discretized into small cells. In Figure 1.1, a cell with side lengths Δ𝑥, Δ𝑦, and Δ𝑧 is formed

Figure 1.1: Yee Cell Geometry with the Field Vector Distributions

with an electric field vector being placed at an edge midpoint, whereas the magnetic field vector

is placed at a face midpoint, and this cell demonstrates what it means to stagger the electric and

magnetic fields by both half a spatial step and half a time step.

As stated previously, the next step would be to solve the difference equations in order to obtain

4



equations. By shifting the vectors by half a step both spatially and temporally, the derivatives can

now be approximated with the central difference. This can first be shown in a 1D case of Faraday’s

Law for simplicity’s sake. If there are only variations in the z direction, and the electric field only

exists in the x direction, then this law can be written as follows:

∣∣∣∣∣∣∣∣

̂𝑖 ̂𝑗 𝑘̂

0 0 𝜕/𝜕𝑧

𝐸𝑥 0 0

∣∣∣∣∣∣∣∣

= 𝜕𝐸𝑥
𝜕𝑧

̂𝑗 = −𝜕𝐻
𝜕𝑡 (1.9)

Ampere’s Law can now also be written in the 1D case as a result of what is seen in Equation

1.9, and it is evident that the only time varying magnetic field component is in the y­direction.

∣∣∣∣∣∣∣∣

̂𝑖 ̂𝑗 𝑘̂

0 0 𝜕/𝜕𝑧

0 𝐻𝑦 0

∣∣∣∣∣∣∣∣

=
𝜕𝐻𝑦
𝜕𝑧

̂𝑖 = −𝜇0(𝐽 + 𝜖0
𝜕𝐸𝑥
𝜕𝑡 ) (1.10)

Next, the derivatives in Equation 1.9 and Equation 1.10 get replaced with finite differences

derived earlier as time and space become discretized now, as seen in Figure 1.1. An example of

Faraday’s Law written with finite differences will be as follows with the 𝛿 variable now being

changed to Δ𝑥, Δ𝑦, or Δ𝑧, or Δ𝑡 depending on whether a spatial or temporal derivative is being

taken:
𝐸𝑥(𝑧 + Δ𝑧, 𝑡) − 𝐸𝑥(𝑧 − Δ𝑧, 𝑡)

Δ𝑧 =
𝐻𝑦(𝑦, 𝑡 + Δ𝑡) − 𝐻𝑦(𝑦, 𝑡 − Δ𝑡)

Δ𝑡 (1.11)

This method results in something known as the leapfrog method [8]. The temporal and spatial

offsets that arise mean that in order to approximate Maxwell’s Equations, one must calculate the

electric field values, and then the magnetic field values where if all of the electric field values are

calculated at time 𝑛Δ𝑡, where n is the time step in the algorithm (1,2,3 etc.), then the magnetic field

values will be calculated at time 𝑛 − (1/2)Δ𝑡 and 𝑛 + (1/2)Δ𝑡. Thus, one can solve for a future

magnetic field value that contains a past magnetic field value and the current electric field value.
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This is known as an update equation:

𝐻(𝑛+1/2)(𝑦) = 𝐻(𝑛−1/2)(𝑦) + Δ𝑡(𝐸𝑛(𝑧 + 1/2) − 𝐸𝑛(𝑧 − 1/2)
Δ𝑧 ) (1.12)

The update equation for the electric field is found in a similar fashion, but instead starts with

Ampere’s Law. The combination of these two equations now allows many more E&M problems

to be solvable.

1.4 FDTD Simplifications

There are also ways to simplify the FDTD calculations. One way to do so is to introduce

the Perfectly Matched Layer (PML) as a boundary condition. When using the FDTD method,

Maxwell’s equations must be solved in a discretized space, but there is a work­around to do so

for a theoretically boundless space. The PML is an artificial absorbing layer that perfectly absorbs

outgoing waves and does not reflect any of them back into the interior of the design space [10].

Nonethless, the PML has its own set of shortcomings. One large problem comes from the fact that

Figure 1.2: Perfectly Matched Layer Boundary

the mediummust be invariant in the orthogonal direction to the boundary, thus this approach cannot

be applied to photonic crystals [11]. Another issue arises in exotic materials that display negative

6



refractive index, and as a result exponential growth occurs rather than exponential decay, which is

the exact opposite of what the PML intends to do [12].

1.5 FDTD Strengths and Limitations

As we can see, there are obvious strengths to the FDTD Method, but there also weaknesses.

Some strengths involve its intuitiveness where users can understand the method and know what

to expect from a given model, it is a time domain method, the user can specify the material at all

given points in the domain and a large number of both linear and nonlinear dielectric and magnetic

materials can be modeled, and the FDTD Method directly uses electric and magnetic fields, there­

fore requiring no additional conversions following the simulation [13]. Weaknesses of the FDTD

approach involve problems such as the entire computational domain being placed into a grid, and

thus all the discrete steps in the method need to be small enough to resolve the smallest feature size

and the smallest wavelength in the model, and this results in very large computational domains with

incredibly long solution run times with an example of a difficult to model system being a long thin

wire, and the FDTD approach must satisfy the Courant­Friedrichs­Lewy Condition for numerical

solutions to partial differential equations [14][15].

The challenges that occur upon using the FDTD Method are significant, because the 1D case

shown is simply not practical for any development in technologies, and as a result further investi­

gation into optimization algorithms have been explored for photonics design problems.

7



Chapter 2

OPTIMIZATION ALGORITHMS

2.1 Motivations

The first advancement towards creating photonic devices was to find a practical solution via

numerical algorithms that could approximate solutions to Maxwell’s Equations, and the natural

progression from there would be to then optimize these algorithms in such a way for the run time

and computational complexity to decrease. This desire for increased efficiency extends far be­

yond that of the photonics realm. Optimization problems began as simply as the calculus of vari­

ations’ brachistochrone problem which was solved by numerous mathematicians such as Newton

and Bernoulli, or the classical mechanics’ principle of least action which was proposed by Mauper­

tuis and then Euler [16][17]. More recent photonic/nanophotonic optimization involves algorithms

that perform structural optimization of photonic devices, such as determine the width of a SiON

core for a SiO2 on SiON waveguide, or optimize the bandgap of a structure through determining

the proper composition of dielectric material in the system [18][19]. These attempts to create more

efficient algorithms stem from the following: existing design methods depend on intuition, which

means that non­intuitive solutions are unlikely to be considered even if the result can exceed that

of what has already been achieved, device requirements are becoming more complex, such as non­

linear capabilities which coincides with a new lack of intuition for these devices, and brute force

methods are not only computationally expensive, but can also miss global optima [20].

2.2 Background

Optimization techniques are beneficial in that any new technique can automatically determine

the best design. These algorithms can either be classified as heuristic or meta­heuristic. Heuristic

algorithms are approaches that are ”problem designed” so to speak in that the algorithm would

only be applicable to one specific problem. Heuristic algorithms are fast and efficient, but besides
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the narrowness of their application, they also sacrifice optimality, accuracy and precision [21]. A

famous example of a heuristic algorithm is the Traveling Salesman Problem, in which the problem

asks: ”Given a list of cities and the distances between each pair of cities, what is the shortest

possible route that visits each city exactly once and returns to the origin city?” [22]. The nearest

neighbor heuristic approach helps turn what was once a O(n!) problem into a O(𝑛2) problem. In

this paper, meta­heuristic algorithms will be more thoroughly discussed, because they are designed

to be general solvers that can be applied and adapted to various problems. Certain types of meta­

heuristic algorithms include ones that are swarm­based, trajectory­based, or evolutionary [21].

Figure 2.1: Breakdown of Optimization Algorithms
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2.2.1 Evolutionary Algorithms

Evolutionary algorithms are a subsection of meta­heuristic algorithms inspired by real life bio­

logical processes, and they mimic the process of natural evolution where an individual in a certain

population is affected by both the other individuals in the population and the environment. The

overall fitness of the individual determines the chance that this individual will have offspring that

will also inherit increased levels of fitness [23]. Over each generation, the result is a recombina­

tion of preferable characteristics that make up the entire population. Evolutionary algorithms have

been applied to photonic design, with an example being two­dimensional photonic crystals with

large bandgaps that saw a 12.5% increase in comparison to what humans were designing at the

time [24]. Evolutionary algorithms were suitable for this case, because of the large and open ended

design space that lacked smooth gradients [24].

One type of evolutionary algorithm is known as a swarm algorithm. Swarm­based algorithms

differentiate themselves from the rest of themeta­heuristic algorithms bymimicking the behavior of

a group of animals that are searching for food. Each iteration of this algorithm, solutions are formed,

based on historical information that was obtained by prior generations. This makes swarm­based

algorithms a type of genetic algorithm. Particle swarm has seen photonics applications in that it

optimized 2x2 power splitters in a silicon photonic platform [25].

2.2.2 Trajectory Algorithms

Trajectory algorithms make up another subsection, and these algorithms are very commonly

spread in not only photonics, but also in classical mechanics, robotics, and other forms of artifi­

cial intelligence [26]. The essence of a trajectory algorithm is that there is an initial solution, and

the solution is adjusted by moving it towards a neighboring solution within this design space. An

example of a trajectory algorithm is gradient descent, which is the backbone of machine learning al­

gorithms. In photonics, trajectory algorithms have seen usage to describe the dynamics of quantum

systems such as photonic crystals [27]. This optimization technique is very susceptible to being

caught in a local minimum and not be able to find the global minimum, because oftentimes not all

optimizable functions can be perfectly convex.
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2.2.3 Adjoint­Based Optimization

Recently, adjoint optimization has seen a surge in usage due to its superior generality, degrees

of design freedom, and computational efficiency, especially when compared to prior optimization

methods [20]. The adjoint method computes the gradient of an objective function with respect to

all degrees of design freedom using simply two full­field simulations [28]. The equation of the

adjoint method is as follows:

( 𝛿𝑀
𝛿𝜓(𝑥))†𝜆(𝑥) = 𝛿𝐹

𝛿𝜓(𝑥) (2.1)

M represents an optimization­specific constraint equation, 𝜓 is a field that F is optimized rel­

ative to, † is the adjoint operator, and F is an objective functional. At this point, determining 𝜆(𝑥)

simply consists of one single solve, because the right hand side of the equation is just a number

for each instance of 𝜓(𝑥). Inverting M can be tedious, however, if the constraint equations can be

linear in 𝜓(𝑥), then this makes determining 𝜆(𝑥) much easier.

The adjointmethod has proven its usefulness to the point of it being integrated into a commercial

FDTD solver that has been widely implemented for designs such as silicon­on­insulator (SOI) Y­

splitters [28]. The design of Y­splitters as a result of adjoint­based optimization will be the primary

focus of this study, as this methodwill be extended through the implementation ofmachine learning.

2.3 Machine Learning Algorithms

In recent years, machine learning (ML) has shown promise in solving inverse design problems

alongside the aforementioned metaheuristic algorithms. For instance, ML methods have been used

in recent years to design the cross section of silicon dioxide/titanium dioxide multi­layered core

shell nanoparticles, and convolutional neural networks (CNNs) have been used to map physical

geometries to spectral properties [29][30]. ML has been extremely useful in that it can provide

solutions that lack intuition to most people, but the tradeoff is in its lack of transparency. ML has

traditionally been seen as a ”black box” of sorts [31]. In a nutshell, the way that machine learning

models work is in that they receive input data and output data and attempt to find the underlying

relation between the input and output. For instance, one of the simplest machine learning methods
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is known as the perceptron algorithm, which takes inspiration from biological neurons [32]. The

perceptron algorithm is a simple supervised learning binary classifier in which there is a separable

labelled dataset, and attempts to find the decision boundary hyperplane that perfectly classifies the

two types of labelled data. The perceptron algorithm performs as follows:

Algorithm 1: Perceptron Algorithm
Data: 𝑥 = 𝑥1, 𝑥2...𝑥𝑛 ∈ 𝑅𝑛, and where 𝑦𝑖 ∈ ­1,1
𝑤0 ← 0 ∈ 𝑅𝑛;
for each example in dataset do

if 𝑦𝑝𝑟𝑒𝑑 = 𝑠𝑔𝑛(𝑤𝑇𝑥) ≠ 𝑦𝑖 then
𝑤𝑡+1 = 𝑤𝑡 + 𝑟(𝑦𝑖, 𝑥𝑖) where r is the learning rate ;
go back to the 0th index example of the dataset (restart process);

else
if 𝑦𝑝𝑟𝑒𝑑 = 𝑠𝑔𝑛(𝑤𝑇𝑥) = 𝑦𝑖 then

continue;
end

end
end
return Final weight vector when the entire dataset is properly classified

This algorithm is a fundamental building block for current day machine learning, because the

neural network architectures that are used are also known as multi­layered perceptrons. Rather

than just having a single perceptron working, there are many perceptrons that are organized into

three different layers that act in conjunction with one another: the input layer, the hidden layer, and

the output layer. A simple neural network architecture looks as follows: The input layer contains

nodes that correspond to key features in a dataset, or the x vector that was mentioned previously.

The hidden layer nodes help provide the proper weight for the vectors, and the output layer nodes

ultimately perform the classification task. Unlike the single perception mentioned at the start, the

artificial neural network typically does not use the heaviside step function as the activation function.

Instead, functions such as the Rectified Linear Unit (ReLU), sigmoid (logistic curve), and tanh

(hyperbolic tangent). The forms of all these activation functions are as follows:

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.2)
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Figure 2.2: Vanilla Artificial Neural Network Architecture

𝑓 (𝑥) = 1
1 + 𝑒−𝑥 (2.3)

𝑓 (𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 (2.4)

This artificial neural network architecture is very useful, however, this is not suitable for com­

plex materials design, because that would require image recognition.
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2.3.1 Convolutional Neural Networks

Within the umbrella of artificial neural networks, there is a class known as the convolutional

neural network (CNN). CNNs have been proven to be extremely useful in analyzing images, and the

name of this architecture derives from the convolution operation that is done rather than the usual

matrix multiplication in one of the layers [33]. An example of a CNN architecture for an image

from the MNIST (Modified National Institute of Standards and Technology) dataset is shown in

the following: In this figure, the image of the digit zero is the input, and it gets passed in as a tensor

Figure 2.3: Convolutional Neural Network Architecture

with a shape that corresponds to: how many pixels tall, how many pixels wide, number of inputs,

and number of channels.

Within the convolutional layer, the image, which is now represented as a tensor that is a certain

number of pixels tall and wide, then has its pixels convolved. Filters are used, and they are applied

across the data in a sliding window. For every sliding action, the process involves an element­wise

multiplication and then summing these values. In short, the input is the image itself, and the result

is a convolved feature, which is a typically a matrix of a lower dimensionality.

Next is the activation layer, which in this case uses ReLu. ReLu is used because it mitigates the

’vanishing gradient’ problem because it has a constant gradient for all of its positive inputs [33].
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The next layer is called the pooling layer. Pooling layers summarize the presence of features

in pieces on the feature map that was already created as a result of the convolutional filter. Con­

volutional filter feature maps run into the issue where small movements in the position of features

in the input image create a vastly different feature map. The pooling layer down samples, which

essentially uses a lower resolution of the image and thus summarizes the presence of features. The

pooling layer is typically 2x2 pixels with a stride of 2 pixels. What this means is that this layer

will reduce the size of a feature map by 2, and thus the number of total pixels is quartered. There

are two types of pooling: max and average. Max pooling takes the 2x2 and outputs the maximum

value out of the 4 values, whereas average pooling aptly takes the average of the 4 values.

Lastly, there is the fully connected layer. This flattens the matrix that is created following the

pooling layer, and then the values get summed up accordingly depending upon the weights of all

the values. Another activation function is used, and then the CNN can create some sort of output,

and in our MNIST case, the CNN can determine from a choice of 10 outputs what the handwritten

input is.

This idea of using a CNN is pertinent to this study, because it is somewhat similar to the idea

of a handwritten digit having a number 0 through 9 affiliated with it. In this study’s case, the input

image will be a device geometry, and then the affiliated value with the device geometry will be a

numerical value that characterizes the device performance. Ultimately, CNNs will greatly enhance

this study.
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Chapter 3

CNN TRAINING OF ADJOINT BASED OPTIMIZATION

STRUCTURES

3.1 Creation of Training Data

In order to use a CNN, one must first obtain a training dataset of images. This was done by per­

forming adjoint based optimizations on a starting Y­splitter design. A widely implemented method

of this adjoint optimization that is integrated into a common FDTD solver was used [28].

Figure 3.1: Initial Y­Splitter Geometry

The investigated system is defined as a silicon waveguide with silicon dioxide cladding, 220 nm

thick, the black andwhite pixels represent the respective permittivities of silicon and silicon dioxide,

and the optimizable geometry is the area between the input and output ports while keeping the port

sizes themselves to be fixed. Each optimization was run at a different wavelength, varying from 1.3

𝜇m to 1.8 𝜇m in increments of 0.1 𝜇m. The result of all of these optimizations is a large amount

of device geometries with gradual performance increases with 6 different target wavelengths.

The performance of the device was shown via a specific figure of merit (FOM), and improve­

ments correlated with a decreasing FOM. Each design consisted of simulations that were done in the

forward direction (typical forward design) and in the backwards direction (adjoint/inverse design).

The simulation would halt once the device geometry obtains an optimal FOM, and this would differ
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for all of the target wavelengths (i.e. the simulation at 1.3 𝜇m is not guaranteed to run for as many

iterations as at 1.4 𝜇m). This application of the adjoint simulations uses an FOM that represents

the power coupling of the guided modes, and the equation is as follows:

𝐹𝑂𝑀 = 1
𝑃(𝜆) ∫ |𝑇0(𝜆) − 𝑇(𝜆)|𝑑𝜆 (3.1)

In this equation, 𝑃 is the source of power, 𝑇0 is the ideal power transmission, 𝑇 is the realized

power transmission, and𝜆 is the wavelength at which this simulation occurs. In essence, an optimal

FOM is one that minimizes the difference of the power transmission of the input and output.

The result of the simulation once the FDTD solver determines the optimal geometry for a min­

imized FOM can look as follows:

Figure 3.2: FDTD Optimization Report

This figure details the final device geometry, which is in this case the 18th, the sparse pertu­

bation gradient fields, and the forward fields, along with the evolution of the FOM, the evolution

of the parameters, and the evolution of the gradient. The initial FOM was approximately 0.36, and

the final iteration was approximately 0.14. The simulation is programmed to halt once the percent

difference between the final iteration and the one prior is less than 1E­5.

Unique geometries are achieved at each target wavelength, and as a result, the FOM also differs.

The results of all the simulations performed at each target wavelength are as follows:

In Figure 3.3, the starting design is shown to be constant for all of the simulations, and even
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Figure 3.3: Final Device Geometries for Each Target Wavelength

after the first simulation the geometries are already distinct from one another. After N iterations,

where N differs for each of the six geometries, the final geometries differ wildly, with the simulation

for target wavelength 1.3 𝜇m being thin and having spikes near the input, whereas the simulation

for target wavelength 1.8 𝜇m is thicker and does not have such sharp features.

In Figure 3.4, there is a noticeable trend where the higher performing device geometries (i.e.

lower FOM values) also iterated longer for its respective simulation. Target wavelength = 1.3 𝜇𝑚,

for instance, plateaus much earlier than any of the other 5 optimization runs. It is possible that for

this target wavelength, the simulation ran into the issue that most gradient based algorithms have:

local minima trapping due to a non ideal starting value during the optimization process. As a result,

additional techniques may need to be used in order to further lower this figure of merit to the order

of magnitude that target wavelength = 1.8 𝜇𝑚 has.
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Figure 3.4: Figure of Merit vs Design Iteration Across All Optimization Runs

Target Wavelength (𝜇m) Figure of Merit Number of Iterations

1.3 0.13889 17
1.4 0.047326 34
1.5 0.058932 27
1.6 0.013458 50
1.7 0.020481 26
1.8 0.0063360 50

Table 3.1: Final Figure of Merit Values For Each Target Wavelength

Table 3.1 shows the exact final FOM values alongside the exact number of iterations each

simulation ran for. Target wavelength = 1.3 𝜇𝑚 ran the least amount of times (17), and ended with

an FOM = 0.13889, whereas Target wavelength = 1.8 𝜇𝑚 ran the most amount of times (50) and

ended with an FOM = 0.0063360.

3.2 CNN Problem Definition

Having all of the optimized structures means that there is now sufficient training data for a

CNN to use in order to obtain a relation between the structure and the FOM. Because the initial

geometry for each simulation is the same, those were left out of the training dataset in order to have

strictly unique images. As mentioned previously, the target wavelength and FOM are coupled with

one another with respect to the device geometry, thus one neural network was designed for an input
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of one Y­Splitter geometry (128 x 64 pixels or 2.5 x 1.25 𝜇𝑚2), and the output will be an FOM

value (between 0 and 1) and a target wavelength value. This problem is simultaneously a regression

(FOM) and classification (target wavelength) problem. This design space includes 192 input and

output pairs created for the neural network. In order for the neural network to easily classify the

target wavelength, they were all converted into categorical labels as a 6 x 1 vector. For instance,

if the target wavelength was 1.3 𝜇𝑚, then its associated vector was 𝑇1.3 = [1, 0, 0, 0, 0, 0]. An

additional way to state the target wavelength is simply 𝑎𝑟𝑔𝑚𝑎𝑥(𝑇𝜆).

3.3 Autokeras

90% of the data was used for training, whereas 10 % of the data was used for validation.

Rather than manually tuning hyperparameters through trial and error, a neural network architecture

searcher known as Autokeras was used in this study. Autokeras uses image blocks that automate

the deep learning process through testing differing models across various trials [34]. The optimal

architecture was found following 17 trials, and the validation loss was 8.6 × 10−5, and the training

and validation losses both strongly converged towards one another, displaying neither overfitting

nor underfitting. As a result, the neural architecture has likely found the relation between structure

and device performance.

Figure 3.5: Training and Validation Loss of AutoML Optimized Architecture
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3.4 Verifying CNN Results

The next step is in verifying the efficacy of the model in predicting target wavelength and FOM

when given an image of a device geometry, which has its own set of ’ground truth’ values that came

from the FDTD solver. An example of the level of efficacy of this model is as follows:

Figure 3.6: CNN Prediction Compared Against FDTD Simulation

Figure 3.6 simultaneously compares the regression (FOM) and classification (Target Wave­

length) aspects of the model. For this one instance, it is clear that the CNN knows that it is looking

at a device geometry optimized for 1.8 𝜇𝑚 while also predicting an FOM that is very near the

ground truth.

CNN Prediction FDTD Simulation Ground Truth

0.01875806 0.0261579
­0.00986289 0
­0.01770346 0
­0.00149331 0
0.01118828 0
­0.00134203 0
1.0101404 1

Table 3.2: CNN Prediction Vector vs FDTD Ground Truth Vector

In knowing the exact values that the CNN outputs, it is then possible to calculate the mean
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squared error (MSE). MSE is defined as follows:

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖
(𝑌 − 𝑌̂)2 (3.2)

Where N is the number of sample data points (in this case N = 7), Y is the observed value

(FDTD Simulation) and 𝑌̂ is the predicted value (CNN). For this particular example, the MSE =

9.96E­5. Thus, the CNN has likely learned the relationship between structural geometry and high

performance.
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Chapter 4

EXPLANATION ALGORITHM IMPLEMENTATION

4.1 Introduction to Explainable Artificial Intelligence

CNNs have proven to be incredibly useful, and in this instance seem to be capable of determin­

ing the relation between structure and performance, but at the end of the day, CNNs tend to be a

’black box’ of sorts. That is to say, there is very little understanding as to how a CNN makes its

predictions. It is incredibly difficult to fully grasp what a CNN is doing due to the fact that the deep

learning process is an optimization of thousands to millions of weights and biases that derive from

both the decided neural architecture, and also the training data itself [35]. This is a key limitation in

ML, because it can be difficult to trust a model that lacks transparency. As a result, explainable arti­

ficial intelligence (XAI) has become a growing field that attempts to elucidate what is occurring in

said black box. XAI is used in this study in order to unveil what the CNN has actually discovered

as the relation between structure and performance, and use this knowledge to potentially further

increase device performance.

4.2 Shapley Additive Explanations

In this study, the XAI of interest is known as Shapley Additive Explanations (SHAP). SHAP

is a post­hoc explanation method that derives from game theory, and it attempts to explain features

through a heat map in order to highlight the most relevant contributions [36]. Each feature in an

image will have an associated SHAP value, and these SHAP values are calculated via the following

equation:

Φ𝑖 = ∑
𝑧′⊆𝑥′

|𝑧′|!(𝑀 − |𝑧′|! − 1)
𝑀! (𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′\𝑖) (4.1)

Φ𝑖 is the SHAP value, |𝑧′| is the number of nonzero entries in 𝑧′, 𝑥′ is a simplified unit of the
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original input x, M is the amount of simplified features, 𝑓𝑥(𝑧′) is a model trained with that specific

feature present, and 𝑓𝑥(𝑧′\𝑖) is a model trained without that specific feature present. Essentially, the

SHAP algorithm withholds a specific feature, and then iterates throughout all the possible subsets

for the image. By removing any specific feature, a change in the output is then calculated, which

in turn allows for the algorithm to determine whether that specific feature contributes positively or

negatively to the output.

In this implementation of SHAP, the heatmap uses red pixels to highlight features that con­

tribute negatively towards device performance and blue pixels to highlight features that contribute

positively towards device performance. These values range from ­1 to 1. While the structures are

predominantly blue, there are significant pockets of red that still exist in the structure that sup­

posedly negatively impact the device performance. The device structure for target wavelength =

1.3𝜇𝑚 seemingly has the most amount of red pixels, but this does make sense due to it also hav­

ing the worst FOM of the 6 structures. While pockets of red pixels do exist within the center of

the structures, the only pixels that will be manipulated will be those along any of the SOI bound­

aries due to the nature of the original FDTD simulations only manipulating the boundaries of the

structures.

After having defined the blue pixels as a a positive contribution and red pixels as a negative

contribution, a boundary extraction algorithm was created in order to adjust the shape of the device.

The overall spirit of the algorithm was inspired specifically by the device with target wavelength =

1.3𝜇𝑚. SHAP is seemingly suggesting that if the large spikes are removed from the device, then

the structure should perform far better than what it is already capable of.

4.3 SHAP Redesigns

The next step is to use these explanations, and manipulate the images to decrease their red pixel

content. An initial filtering process is implemented upon the SHAP images, and this helps idenfity

the transition points from red to blue along the boundaries of the images. Next, a binarization

function is used to convert the image to either show existing or non­existing elements, and the
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Figure 4.1: SHAP Values Across Various Designs

function is represented by a step function:

𝜌(𝑥, 𝑦) =

⎧{{{
⎨{{{⎩

1 for Φ(𝑥, 𝑦) ≤ 0

0 for Φ(𝑥, 𝑦) > 0
(4.2)

Whenever the function is equal to 1, this is representative of an existing element, whereas

the function equalling 0 represents non­existing elements. Next, a boundary is drawn around the

existing elements, and is represented by 𝜂(𝑥, 𝑦) = [𝑋𝑖, 𝑌𝑖]. 𝑋𝑖 = [𝑥1, 𝑥2, 𝑥3, ...𝑥𝑖] and 𝑌𝑖 =

[𝑦1, 𝑦2, 𝑦3, ...𝑦𝑖] are both vectors of length i. Ultimately, i determines the resolution of the shape,

and in order to keep this design to be feasibly fabricable, i is set to be 20. This spaces the points

by 100 nm, which is within typical CMOS lithography resolution [37]. The manner in which the

y­coordinates are determined will be described as follows (further details in Appendix).

The image was rastered from top to bottom across all the values in 𝑋𝑖, and then the algorithm
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found the first instance of an existing element where 𝜌(𝑥, 𝑦) = 1, and this is marked as a point to

be added to 𝑌𝑖. Furthermore, a hyperparameter denoted as 𝛼 is implemented in the algorithm in

order to improve robustness of the image, and mitigate the amount of sharp edges in the structure.

Figure 4.2: Workflow for Structure Redesign

Figure 4.2 is a schematic of the workflow where the SHAP values are first determined for an

image in order to create a heatmap, next the image is filtered between existing and non­existing ele­

ments, and then the new explanation­optimized boundary is drawn and compared with the adjoint­

optimized boundary.

Figure 4.3: Explanation Optimized Structures for Each Target Wavelength

Figure 4.3 highlights all of the structures that are reoptimized due to the SHAP explanations.
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There are subtle improvements for all the devices that had high performance, but it can be seen that

for 𝜆 = 1.3𝜇𝑚, the large spike that was highlighted red by SHAP no longer exists following the

explanation­optimized boundary finder. In fact, any sort of large extrusion near the input port is

reduced down as a result of SHAP.

4.4 Simulating Explanation­Optimized Structures

After having obtained new device geometries for all of the target wavelengths, the natural pro­

gression would be to use these images as a starting point for another round of adjoint optimization

in the FDTD solver. Depending on whether the removal of specific features results in a noticeable

change in FOM, then it can be stated whether the CNN truly has learned the structure­performance

relation and whether SHAP also pointed towards the correct features to remove or not.

Figure 4.4: Two Stage Figure of Merit Optimization for Waveguide Geometry

Figure 4.4 displays the two stage optimization, with the red arrows in each optimization run

being where the optimizations with the SHAP­explained images start. It can be seen that improve­

ments occurred for all 6 of the target wavelengths, and the final FOM improved drastically for

𝜆 = 1.3𝜇𝑚.

Every optimization improved as a result of the initial starting geometry coming from the SHAP

explanations. All of the FOM values improved by at least 15%, and for 𝜆 = 1.3𝜇𝑚, the FOM
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Target Wavelength (𝜇𝑚) Original Final FOM New Final FOM Percent Change

1.3 0.13889 0.038114 72.6
1.4 0.047326 0.029936 36.7
1.5 0.058932 0.035341 40.0
1.6 0.013458 0.011252 16.4
1.7 0.020481 0.011259 45.0
1.8 0.0063360 0.0033349 47.4

Table 4.1: Comparison of Original and New FOM Values

improved by nearly 73%. The fact that the first optimization improved by such a drastic amount

suggests that the initial FDTD simulation was caught in a local minimum, and by changing the

initial starting geometry, one can get out of this local minimum and improve the FOM. It is noted

that this process only requires two optimization runs per target wavelength: the initial run and the

SHAP explained run. This is far superior to other methods, which typically include repeatedly

running optimizations with random starting points in hope of finding the optimal starting point.

These methods can definitely take more than two optimization runs in order to discover the optimal

starting point, whereas SHAP seemingly immediately uncovers this more optimal starting point.

Furthermore, these changes to the device geometry are targeted due to feature relevance (or

lack thereof), and are not simply stochastic perturbations. In order to prove this, all of the first

stage structures were all randomly modified (further explained in Appendix E) and the second

stage optimization was then performed using these new structures. 5 random perturbations were

made to each device geometry, and this results in 30 new test data points to compare with the

SHAP reoptimized structures. None of the new 30 modified structures were able to obtain an FOM

superior to that of SHAP’s design, and thus the SHAP design is not simply stochastic. If anything,

a stochastic perturbation can even drive towards an even worse FOM due to changing the starting

location and driving the optimization even further into a local minimum that is even farther away

from the true global minimum.

Next, this design process should also prove to be generalizable outside of this specific photonic

design problem. Rather than simply study SOI waveguides, the goal is to then extend this problem

to other materials. The decision to look into generalizing via materials selection stems from the

fact that past XAI endeavors have already been studied for other nanophotonic structures, such

as metasurfaces or cross resonators and were shown to be capable of tuning spectral properties

28



[38]. Thus, one possibility was to change the waveguide material system, and replace the silicon

with silicon nitride. Silicon nitride is a material of interest for waveguides due to it being a low

loss material that can handle high optical power and be used for both linear and nonlinear optical

functions [39]. Thus, a 2 stage optimization was done with this setup where the Y­splitter geometry

was kept constant, but instead silicon nitride is used (a number of optical constants will obviously

change as a result). Nonetheless, the 2 stage optimization once again provided a final FOM that

was superior to just the FDTD simulations (this is detailed further in Appendix F). Consequently,

the shown design process is generalizable to other material classes for electromagnetic design using

adjoint optimization.
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Chapter 5

CONCLUSIONS

In conclusion, this study presents an inverse design framework that extends beyond the current

capabilities of gradient and topology optimization in that it provides a succinct manner in which

the effects of local minima trapping can be mitigated. This study combines adjoint optimization,

convolutional neural networks, neural network architecture searchers, and explainable artifical in­

telligence in order to enhance the performance of Y­splitter devices power transmittance by an

average of 43%. When using solely adjoint optimization, the algorithm does plateau, but SHAP

explanations elucidate the features of the device geometry that contribute positively and negatively

towards an optimal FOM. By altering the device according to the SHAP explanations, the adjoint

optimization algorithm was able to break out of the local minimum it found, and approached a

minimum much closer to that of the global minimum due to the improved FOM. This method in

total only required two adjoint optimization simulations, which is potentially more efficient than

other techniques that may randomly search for whatever the optimal starting point is for this sort

of gradient­based algorithm. Hopefully, combining conventional optimization solvers with data

driven approaches such as SHAP will enhance additional inverse design problems and lead to other

discoveries about the relationship between structure and performance in photonics.
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Appendix A

FDTD SIMULATIONS

Asmentioned in Chapter 1, the FDTDmethod is critical in determining electromagnetic behav­

ior. The FDTD algorithm is cumbersome to display mathematically, but writing a script to perform

the algorithm is instead quite feasible, and open source FDTD algorithms can easily be found to

give simple working examples [40].

First, several constants need to be defined for the problem setup, such as Planck’s constant, the

speed of light, or even just the time lapse of the simulation.

Figure A.1: 1D FDTD Parameters

Other important values include free space permeability and permittivity, the speed of light, and

the Courant factor, which is an important stability factor when solving partial differential equations

numerically.

Next, a source should be defined, and in this case it is a Gaussian envelope, which is the product

of a sinusoid and a decaying exponential function.
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Figure A.2: E­Field Source Parameters

Constants for the PML boundary condition also need to be defined as shown below. This in­

cludes the conductivity array, the width of the layer, the allowed reflectivity, and other important

values that represent the attenuation and wave decay.

Figure A.3: Perfectly Matched Layer Parameters

With this in mind, the actual FDTD algorithm can be built, and it can be seen that the E­fields

and H­fields depend on one another as they are solved simultaneously in the leapfrog manner (the

two fields are offset from another by one) throughout the duration of the defined time.
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Figure A.4: FDTD Function

Figure A.5: 1D FDTD E­Field Exaxmple
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Appendix B

DEVICE STRUCTURE GEOMETRY EVOLUTION

The following is an example of the entire evolution of device geometry throughout one specific

adjoint optimization. The first image is shown to be ’iteration 0’ because all of the optimizations

start with this initial geometry, and the optimization ends when it is apparent that there is no further

improvement to be had. And in showing the entire device evolution, the growing of the spike

throughout the iterations can be seen. For this specific optimization, the FDTD solver ran until the

17th iteration.

Figure B.1: Adjoint Optimization Structure Evolution Target Wavelength = 1.3 𝜇𝑚
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Appendix C

AUTOKERAS IMPLEMENTATION

Rather than tuning hyperparameters in a neural network architecture manually, a neural ar­

chitecture searcher known as Autokeras was used, and it did so using image blocks in hopes of

finding the optimal blocks to output the 7 point vector (6 points associated with classifying the

target wavelength and 1 point regression for the FOM). The optimal architecture was determined

after 17 trials, which had a validation loss equal to 8.6 × 10−5. The two separate losses follow one

another relatively well, thus neither underfitting nor overfitting is in play.

Figure C.1: Training and Validation Losses with respect to Autokeras Trials

The image block progression is also shown, where the very first trial uses two convolutional

blocks with 32 and 64 filters and an initial loss of 3.4×10−2. The final trial improved the loss by 3

orders of magnitude by using 4 convolutional blocks with 512,64,32, and 32 filters. The activation
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function was always leaky ReLu, and batch normalization and max pooling layers were kept as

constant.

Figure C.2: Autokeras Image Block/Model Architecture Evolution
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Appendix D

BOUNDARY FINDER ALGORITHM

The SHAP explanations created a heatmap that determined what features contributed positively

to the FOM, as well as the features that contributed negatively. A boundary algorithm was created

that took advantage of this fact, and accordingly adjusted the shape of the device. The algorithm

performs as follows:

Algorithm 2: Boundary Finder Algorithm
Data: Filtered image array P with pixel values 𝜌(𝑥, 𝑦)
for x ∈ 𝑋𝑖 do

for y = 0:L, where L is the vertical length of the image do
if 𝜌(𝑥, 𝑦) = 1 & 𝑦𝑖 − 𝑦𝑖−1 < 𝛼, where 𝛼 is a hyperparameter that enhances
image robustness then
Append(𝑦𝑖) to list 𝑌𝑖;

else
Append(𝑦𝑖−1) to list 𝑌𝑖 ;

end
end

end

This algorithm searches through the image and finds the first instance of an existing element

within that column, and adds this to the array of y­point values that are used to form the new

boundary of the device geometry. The hyperparameter ensures that there are minimal sharp features

in the device.
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Appendix E

DEVICE RANDOM PERTURBATIONS

To ensure that SHAP is learning something about the fundamental geometry of the device, and

not simply arbitrarily highlighting features as positive or negative, an effort was made to modify

the initial device geometries, and then rerun the FDTD solver optimization in order to compare

the results of random perturbations and SHAP’s explanations. 5 random modifications were done

to each of the 6 optimization tests, meaning that there are 30 new data points in total to compare

against SHAP. The 5 modifications decision comes from the final array of y­values for the design is

of length 10. 2 values get changed at a time for an array of length 10, thus yielding 5 modifications

for one design at one specific target wavelength. The values in the y­array are modified by adding

300 nm.

Algorithm 3: Random Perturbations Algorithm
Data: Design parameters (Y­values) of all the final design optimizations
for i ∈ Design Parameters do

New Array = Copy of Design Parameters Array;
for j = 0:length of design parameters array/2 do

New Array[2j]= New Array[2j]+3e­7;
New Array[2j+1]= New Array[2j+1]+3e­7;
Append(New Array) to list Random Changes;
New Array = Copy of Design Parameters Array;

end
end

The randomly modified structures always produced FOMs higher than that which SHAP pro­

vided. The majority of the new random structures also yielded FOM values that were higher than

the initial optimized design, thus showing that randomly perturbing the device geometry can not

only be incapable of finding the optimal starting point, but also push towards a far inferior starting

point.
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Figure E.1: Comparison of Random Perturbation vs. SHAP
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Appendix F

SILICON NITRIDE WAVEGUIDE OPTIMIZATION

The generalizability of this study is also of concern, thus it was expanded towards silicon nitride

waveguides as well (the main focus of this research is on SOI) and the Y­splitter geometry was

kept constant. The two­step optimization was done, with the red arrow in the figure below marking

where the second optimization starts, and the second stage of the optimization following SHAP

provided lower FOMs for each target wavelength. Thus, this approach is generalizable for multiple

applications that require the adjoint method in optimization.

Figure F.1: Silicon Nitride Two Stage Optimization
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