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Abstract: Immunotherapy remains to be an appealing treatment option for prostate cancer with some documented 
promise. Prostate cancer is traditionally considered as an immunologically “cold” tumor with low tumor mutation 
burden, low expression of PD-L1, sparse T-cell infiltration, and a immunosuppressive tumor microenvironment 
(TME). Sipuleucel-T (Provenge) is the first FDA approved immunotherapeutic agent for the treatment of asymptom-
atic or minimally symptomatic metastatic castrate resistant prostate cancer (mCRPC); demonstrating a benefit in 
overall survival. However various clinical trials by immune checkpoint inhibitors (ICIs) and their combinations with 
other drugs have shown limited responses in mCRPC. Up to now, only a small subset of patients with mismatch 
repair deficiency/microsatellite instability high and CDK12 mutations can clinically benefit from ICIs and/or their 
combinations with other agents, such as DNA damage agents. The existence of a large heterogeneity in genomic 
alterations and a complex TME in prostate cancer suggests the need for identifying new immunotherapeutic targets. 
As well as designing personalized immunotherapy strategies based on patient-specific molecular signatures. There 
is also a need to adjust strategies to overcome histologic barriers such as tissue hypoxia and dense stroma. The 
racial differences of immunological responses between men of diverse ethnicities also merit further investigation to 
improve the efficacy of immunotherapy and better patient selection in prostate cancer.

Keywords: Prostate cancer, immunotherapy, immune checkpoint inhibitors, tumor microenvironment, African 
American, Race, European American

Introduction

Prostate cancer is the most commonly diag-
nosed cancer in men, and the second most 
diagnosed disease for men in the U.S. As of 
2022, the estimated new cases of prostate 
cancer in the U.S is said to be 268,490 [1]. This 
makes up nearly 21% of all cancer cases in 
men. Alongside an estimated 34,500 deaths 
that year has made it the second most com-
mon form of cancer related death in the United 
States after lung and bronchus cancer [1]. With 
the advancement of detection methods such 
as the prostate health index, urine prostate 
cancer antigen 3 (PCA3) test, and magnetic 
resonance imaging (MRI) fusion prostate biop-
sy [2-4], diagnosis of this disease has greatly 
improved over the past few decades. However, 

the mortality rate of the disease remains very 
high despite modern day treatments. 

A few forms of immunotherapy have become 
part of standard care over the past few years. 
Novel immunotherapy approaches utilize a wide 
variety of immune response mechanisms to  
target malignant cells. This treatment method 
has shown promising results in patients with 
aggressive cancers. Some of these agents have 
been able to produce deep and long-term 
remission in malignancies with otherwise limit-
ed treatment options. Advancements in immu-
nology as well as the approval of drugs such as 
sipuleucel-T and ICIs provide a viable alterna-
tive treatment modality for castration-resistant 
prostate cancer (CRPC) to prevalent methods 
such as androgen suppression therapy and 
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chemotherapy [5, 6]. The goal of immunothera-
py is to target cancer cells through the recogni-
tion by T-cells or antibodies; essentially encour-
aging an immune response to cancer, but it has 
been shown to be less effective against pros-
tate cancer when compared to results from 
other cancers including non-small-cell lung 
cancer (NSCLC) [7], renal cell carcinoma (RCC) 
[8, 9], urothelial cancer [10, 11], head and neck 
cancer [12], and melanoma [13, 14]. The strong 
immunosuppressive tumor microenvironment 
(TME), lower infiltration of T-cells, and lower 
mutation burden in prostate cancer have 
resulted in lowered efficacy of treatment 
through immunotherapy [15]. Nevertheless, a 
subset of prostate cancer exhibits immunogen-
ic phenotype. A special subgroup of patients 
with high PD-L1 tumor expression, CDK12 
mutations, high tumor mutational burden, or 
tumors with high microsatellite instability (MSI) 
and mismatch repair-deficient (dMMR) have 
recently demonstrated excellent responses to 
immune checkpoint inhibitors (ICIs) and/or 
their combinations with other agents [15, 16]. 
Therefore, immunotherapy remains to be an 
appealing treatment option for prostate cancer 
to optimize the management of this disease. 
This review will summarize the current state  
of immunotherapy usage, including immune 
checkpoint blockade therapy, vaccine-based 
treatments, adoptive cell therapy and bispecific 
T cell engager (BiTE) therapy in prostate cancer 
treatment. In addition, we will discuss current 
mechanisms of resistance or responses to ICIs, 
and the immunological differences between 
African American (AA) and European American 
(EA) men with prostate cancer.  

ICIs based therapy

Ipilimumab is the first FDA approved immune 
check point inhibitor. Ipilimumab is a monoclo-
nal antibody that works to upregulate immune 
response by targeting the immune downregu-
lating receptor, CTLA-4 [17]. Activated T cells 
induce CTLA-4 expression to send out inhibito-
ry signal to T cells [18]. In addition, CTLA-4 is 
constitutively expressed in regulatory T cells to 
control cytotoxic T-cell activation [18]. When 
administered as a monotherapy, ipilimumab 
was shown to noticeably increase the ratio of 
regulator effector T lymphocytes present in the 
TME [17]. In a phase I trial, two out of fourteen 
patients with mCRPC who received a single 

intra-venous dose of Ipilimumab exhibited pros-
tate specific antigen (PSA) decreases of > or 
=50% and treatment was well tolerated [19].  
In another Phase I trial of tremelimumab (a 
humanized anti-CTLA-4 antibody) in combina-
tion with androgen deprivation using bicalu-
tamide in PSA recurrent prostate cancer 
patients without radiographic evidence of met-
astatic disease, three out of eleven patients 
experienced an extension in PSA doubling time 
[20]. Phase I trial combining ipilimumab with a 
vaccine containing transgenes for PSA and for 
a triad of costimulatory molecules (PROSTVAC) 
in patients with mCRPC showed a PSA decline 
in 14 out of 24 (58%) chemotherapy-naïve 
patients [21]. A combination of evofosfamide, a 
prodrug that alleviates hypoxia, with ipilimum-
ab resulted in 3 (16.7%) partial response and 
12 (66.7%) stable disease in 18 patients with 
measurable disease at baseline [22]. These 
responsive patients had improved peripheral 
T-cell proliferation and increased intra-tumoral 
T-cell infiltration [22]. In a phase I trial of ipilim-
umab at escalating doses in combination with 
a fixed dose of GM-CSF, 24 patients with 
mCRPC were treated and three of six patients 
treated at the highest dose level had PSA 
declines of >50% [23]. The combined therapy 
induced the expansion of activated effector 
CD8 T cells and tumor-associated antigens 
specific T cells [23]. In phase I/II study in 
patients with metastatic CRPC (mCRPC), 50 
patients received ipilimumab alone or as in 
combination with radiotherapy. Eight had PSA 
declines of ≥50%, one had complete response, 
and six had stable disease [24]. 

In a double-blind, phase 3 trial, 799 mCRPC 
patients were randomly assigned to palliative 
radiotherapy followed by ipilimumab or placebo 
[6]. There was a statistically significant improve-
ment in progression-free survival but no statis-
tically significant difference in overall survival 
(OS) between ipilimumab vs. placebo groups. 
However in long term follow-up study, OS rates 
in the ipilimumab versus placebo arms are 
25.2% vs. 16.6% at 2 years, 15.3% vs. 7.9% at 
3 years, 10.1% vs. 3.3% at 4 years, and 7.9% 
vs. 2.7% at 5 years. Approximately two to three 
times higher survival benefit after three years 
was identified in the ipilimumab arm [25]. Beer 
reported an increase in median progression-
free survival in the ipilimumab arm (5.6 months) 
versus placebo arm (3.8 months) and a higher 



Prostate cancer immunotherapy

212	 Am J Clin Exp Urol 2022;10(4):210-233

PSA response rate (23% in the ipilimumab  
arm vs. 8% in the placebo arm) in a trial of ipili-
mumab versus placebo as monotherapy in 
asymptomatic/oligo-symptomatic chemo-naïve 
mCRPC [26]. 

Nivolumab is a human IgG4 monoclonal anti-
body for blocking PD-1. PD-1 interaction with its 
ligand prevents activation of T cells from attack-
ing the cancer [27-29]. In the phase II clinical 
trial CheckMate 650, which investigated com-
bined effects of ipilimumab and nivolumab in 
patients with mCRPC who had developed resis-
tance to androgen receptor (AR)-targeted thera-
pies, the combination resulted in 25% of objec-
tive response rate and was associated with 
considerable side effects leading to discontinu-
ation of the therapy in the population [29]. In 
another phase II trial of nivolumab and ipilim-
umab combination, patients with ARV7 positive 
mCRPC were treated with or without enzalu-
tamide. In the arm without enzalutamide, there 
was 13% (2/15) PSA response, and the objec-
tive response rate (ORR) was shown to be 25% 
(2/8). In the arm with enzalutamide, PSA 
response rate and ORR were shown to be 0% 
(0/15) and 0% (0/9) in those with measurable 
disease. 20% (3/15) patients without enzalu-
tamide and 26.7% (4/15) patients with enzalu-
tamide reached a durable progression-free sur-
vival more than two years. The results did not 
justify further studies in unselected patients 
[30]. 

Pembrolizumab is an anti-PD1 antibody. In a 
multiple cohort phase II trial (the KEYNOTE- 
199), a pembrolizumab monotherapy was uti-
lized in 258 patients with Response Evaluation 
Criteria in Solid Tumours (RECIST)-measurable 
and bone-predominant mCRPC who were pre- 
viously treated with docetaxel and targeted 
endocrine therapy. This study showed an ORR 
of 5% in PD-L1-positive RECIST-measurable 
patients and 3% in PD-L1-negative RECIST-
measurable. Median OS was 9.5 months in 
PD-L1-positive RECIST-measurable patients, 
7.9 months in PD-L1-negative RECIST-measur- 
able patients, and 14.1 months in patients with 
bone-predominant disease regardless of PD-L1 
expression [31]. Another nonrandomized phase 
Ib KEYNOTE-028 trial of pembrolizumab in 
PD-L1-positive, mCRPC patients who received 
at least two prior therapies showed an ORR of 
17.4%, median progression-free survival (PFS) 
and OS of 3.5 and 7.9 months, respectively 
[32]. 

In the Phase 1b/2 KEYNOTE-365 study (NCT- 
02861573), pembrolizumab plus docetaxel 
and prednisone demonstrated a 34% PSA 
response rate, 23% ORR, 8.5 months of medi-
an radiographic PFS (rPFS), and 20.2 months of 
OS in chemotherapy-naïve mCRPC patients 
who were treated with abiraterone or enzalu-
tamide before [33]. The multicenter, random-
ized, double-blind Phase III study, KEYNOTE- 
921, is now ongoing for further evaluating the 
therapeutic efficacies of pembrolizumab plus 
docetaxel and prednisone or prednisolone ver-
sus a placebo plus docetaxel in this patient 
population with primary endpoints of OS and 
rPFS [34].

A single-arm phase II trial of pembrolizumab  
in combination with enzalutamide was carried 
out in 28 men with mCRPC progressing on 
enzalutamide alone. The trial achieved a PSA 
response rate of 18% (5/28), ORR of 25% 
(3/12), median PSA PFS of 3.8 months, OS of 
21.9 months in all patients and OS of 41.7 
months in the responders [35]. Among the 
three responders, one is MSI high, and none 
had detectable PD-L1 expression in their base-
line biopsy tissues [35]. A multicenter, random-
ized, double-blind, Phase III KEYNOTE-641 
study is now ongoing to further evaluate the 
efficacy and safety of pembrolizumab plus 
enzalutamide versus enzalutamide plus place-
bo in estimated 1200 patients with mCRPC 
(NCT03834493) [36]. Similar studies have 
been performed with other ICIs and some of 
the phase III trials are being completed [37]. 

Phase I and II trials of pembrolizumab in combi-
nation with ADXS31-142 [a cancer vaccine con-
taining a live-attenuated strain of the Gram-
positive bacterium Listeria monocytogenes 
encoding a fusion protein consisting of PSA  
and a fragment of the immunostimulant listeri-
olysin O (LLO) protein], MVI-816 (a DNA vaccine 
encoding prostatic acid phosphatase) or cryo-
therapy were carried out in patients with pro-
gressive mCPRC or newly diagnosed oligometa-
static hormone-sensitive prostate cancer 
[38-41]. These trials observed durable respons-
es of the combined therapies in a subset of 
prostate cancer patients [38-41]. However 
future randomized clinical trials are needed to 
validate these findings.

The usage of atezolizumab, avelumab, and dur-
valumab to target PD-L1 and to block the inter-
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action of PD-L1 with the PD-1 has also been 
explored as an option in treatment of advanced 
prostate cancer [42-49]. In the randomized pha- 
se III trial IMbassador 250 (no. NCT03016312), 
atezolizumab in combination with enzalutamide 
was compared to enzalutamide alone in 759 
patients with mCRPC or locally advanced CRPC 
patients who had progressed on abiraterone, 
and docetaxel did not reach the primary end-
point for a better OS in the combination arm 
[43]. The results also suggested that atezoli-
zumab plus enzalutamide might be useful in 
selected patients with pre-existing immunity, 
such as high PDL1 expression and high levels 
of CD8+ T cells [43]. A phase II study of ave-
lumab with stereotactic ablative body radio-
therapy in 31 men with progressive mCRPC 
treated previously with anti-androgen agents 
exhibited an ORR of 31%, rPFS of 8.4 months 
and median OS of 14.1 months [44]. In another 
phase II trial of avelumab in 15 men with pro-
gressive neuroendocrine or aggressive-variant 
metastatic prostate cancer (NEPC/AVPC) one 
man (6.7%) with MSH2 somatic mutation and 
MSI-high NEPC achieved complete remission 
for 2 years [48]. Seventeen patients with previ-
ously treated mCRPC with or without altera-
tions in DDR genes who received durvalumab 
and olaparib combination were reported to 
have median rPFS of 16.1 months and a radio-
graphic and/or PSA response of 53% [49]. 

Other trials for testing PD-1 blockade in combi-
nation with anti-IL6, TGF-β blockage, and IDO1 
inhibitor, as well as other immune checkpoint 
targets, such as B7-H3 inhibitors enoblituzum-
ab, LAG-3, OX40, and 4-1BBL are in various 
stages of clinical development for phase I and II 
trials in mCRPC [50-55] (NCT03821246, NCT- 
02628535, NCT02923180, NCT01391143). 
Clinical trials of a variety of prostate cancer im- 
mune therapies were summarized as Table 1. 

Current mechanisms underly ICIs responses in 
prostate cancer

A small subset (3-5%) of mCRPC patients with a 
microsatellite instability (MSI) and dMMR phe-
notype exhibit high-tumoral mutation burden 
and higher levels of tumor infiltrating lympho-
cytes (TILs). It has been reported that some 
cancer patients with dMMR, including mCRPC, 
colorectal, and endometrial cancers display 
exceptional responses to the anti-PD-1 pem-
brolizumab [56-58]. These results led to the 
approval of pembrolizumab by FDA for the treat-

ment of all MMR-deficient metastatic tumors, 
which was based on a predictive biomarker 
alone, but not on tumor histology.

Biallelic loss of CDK12 represents another 
novel subtype of prostate cancer, which holds 
significant promise for immunotherapy and is 
genetically, transcriptionally, and phenotypical-
ly distinct from tumors with homologous recom-
bination repair defects (HRD) and dMMR [59, 
60]. CDK12 mutations occur in 2%-4% of pri-
mary prostate cancers and in 4.7%-11% of 
mCRPCs and associated with a high rate of 
metastases and short overall survival [61-67]. 
CDK12-mutated prostate cancer is character-
ized with focal tandem duplications (FTDs) 
leading to increased gene fusions and genomic 
rearrangements, the formation of fusion-relat-
ed immunogenic neoantigens, and increased 
tumor-infiltrating lymphocytes and/or clonal 
expansion [59, 60, 68]. Wu [67] reported that 2 
of 4 patients with biallelic CDK12 mutation 
exhibited an exceptional PSA response to anti-
PD1 antibody. Other studies also found excep-
tional responses of two mCRPC patients to 
DNA-damaging therapies (bipolar androgen 
therapy that consist of periodical oscillation 
between castration levels and supraphysiologi-
cal levels of testosterone and radium-223) 
after or in combination with immunotherapy 
(nivolumab and sipuleucel-T) [69, 70]. The 
anecdotal evidence suggests that a subset of 
prostate cancer patients with CDK12 muta-
tions may favorably respond to PD-1 immuno-
therapy. However, recent studies using immu-
nohistochemistry analysis of TIL landscape 
revealed that human prostate tumors with bial-
lelic CDK12 aberrations were predominantly 
enriched for immunosuppressive CD4+FOXP3-  
T lymphocytes but not for CD4+FOXP3+ or 
CD8+TILs [71, 72]. This result suggests that 
immunotherapeutic strategies for better add- 
ress the immunosuppressive tumor microenvi-
ronment are needed. 

Other molecular alterations in prostate cancer 
may also affect the immune responses, which 
are clinically relevant. Calagua [73] reported 
that prostate tumors in a subset of aggressive 
localized prostate cancer cases express PD-L1 
along with a high density of tumor infiltrating 
lymphocytes but without high microsatellite 
instability or CDK12 alterations. Exhausted 
progenitor CD8+ T cells and differentiated 
effector T cells as indicated by positive PD-1 
and transcription factor TCF1 (encoded by 
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Table 1. Clinical Trials of varying treatment plans for mCRPC and other forms of carcinoma
Treatment N Target Dosing Interval Data Collection method Results Article
Ipilimumab 399 to 400 mCRPC that has progressed 

post docetaxel chemo therapy
10 mg/kg every 3 weeks Intention-to-treat analysis No significant difference [6]

Nivolumab 854 Non-small-lung cancer 3 mg/kg every 2 weeks Kaplan-Meier method 9%-15% increase in overall survival 
rates compared to docetaxel

[7]

Nivolumab 821 Advanced clear cell renal-cell 
carcinoma

3 mg/kg every 2 weeks Kaplan-Meier method Roughly 5 month increase in 
survival

[8]

Nivolumab plus Ipilimumab 1096 Advanced clear cell renal-cell 
carcinoma

1 mg/kg every 3 weeks RECIST evaluation 15% increased survival rate [9]

Pembrolizumab alone or with chemotherapy 1010 Advanced urothelial carci-
noma

200 mg every 3 weeks Comparisons of non-
inferiority and superiority

No significant difference [10]

Ramucirumab 530 Advanced or metastatic 
urothelial carcinoma

10 mg/kg every 3 weeks Intention-to-treat analysis Average 1.5 month increased 
survival

[11]

Avelumab 697 Advanced squamous cell  
carcinoma of head and neck

10 mg/kg every 2 weeks Response Evaluation 
Criteria in Solid Tumors

No significant difference [12]

Ipilimumab and Nivolumab 14 Melanoma 3 dose per kg every 3 weeks ECOG 8.9 month OS vs. 2.9 months [13]

Tremelimumab 11 PSA recurrent prostate cancer 150 mg of bicalutamide for 28 days 
followed by temelimumab on 29th day

Flow cytometric analysis No significant adverse effects 
reported

[20]

Ipilimumab with PSA transgene vaccine 30 mCRPC Varying doses of ipilimumab every 
2 weeks with monthly vaccination 
booster

Flow cytometry
And Kaplan-Meier method

Trending towards associations 
of longer overall survival with no 
conclusive data

[21]

Evofosfamide with Ipilimumab 22 Patients with mCRPC, pancre-
atic cancer, and/or head and 
neck cancer

400-640 mg/m2 evofosfamide and 3 
mg/kg ipilumumab every 3 weeks

RECIST Evaluation
ECOG evaluation

No significant observations [22]

CTLA4 blockade with GM-CSF combination 24 mCRPC Escalating doses of ipilumumab with 
fixed dose of GM-CSF given every 4 
weeks

Flow cytometry >50% PSA decline in 3 patients 
with no significant observations in 
the rest

[23]

Ipilimumab 50 mCRPC Varying doses of ipilimumab from 
3-10 mg/kg every 3 weeks

RECIST >50% PSA declines amongst some 
patients receiving 10 mg/kg doses

[24]

Ipilimumab 799 mCRPC One dose of radiotherapy followed by 
10 mg/kg ipilumumab every 3 weeks

Two sided log-rank test 
stratified by ECOG 

Overall increased survival rates for 
patients given ipilumumab

[25]

Ipilimumab 598 Asymptomatic mCRPC 10 mg/kg every 3 weeks Two sided log-rank test 
stratified by ECOG

No significant difference in overall 
survival rates

[26]

Nivolumab plus Ipilimumab 78 mCRPC 1 mg/kg nivolumab + 3 mg/kg ipilim-
umab followed by 480 mg nivolumab 
every 4 weeks

ECOG Reported consistent safety [28]

Nivolumab plus Ipilimumab 15 AR-V7 expressing mCRPC 1 mg/kg ipilimumab + 3 mg/kg 
nivolumab every 3 weeks

ECOG No significant observations [30]

Pembrolizumab 258 mCRPC 200 mg every 3 weeks RECIST
ECOG

Median overall survival rate of 14.1 
months with acceptable safety

[31]

Pembrolizumab 23 Advanced prostate adenocar-
cinoma

10 mg/kg every 2 weeks RECIST Overall survival of 7.9 months [32]

Pembrolizumab plus Docetaxel and  
Prednisone

104 mCRPC 200 mg pembrolizumab and 75 mg/
m2 docetaxel every 3 weeks, 5 mg 
prednisone BID

RECIST Overall survival of 29.2 months, 
reported acceptable safety

[33]
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Pembrolizumab plus Docetaxel ~1000 mCRPC Every 3 weeks RECIST
TFST

Ongoing phase 3 trial [34]

Pembrolizumab plus Enzalutamide 28 mCRPC 200 mg pembrolizumab every 3 
weeks with 4 doses with enzalu-
tamide

RECIST Overall survival of 41.7 months [35]

Pembrolizumab plus Enzalutamide ~1200 mCRPC 200 mg pembrolizumab every 3 
weeks 160 mg/day enzalutamide

PCWG3 modified RECIST Ongoing phase 3 trial [36]

Pembrolizumab plus MV1-816 25 mCRPC Every 3 weeks RECIST Overall survival of 22.9 months [38]

pTVG-HP (MVI-816) Vaccine 99 mCRPC 200 μg 6 times every 2 weeks, then 
quarterly for 2 years

PCWG3 modified RECIST No significant change [39]

Pembrolizumab plus ADXS31-142 37 mCRPC 200 mg with monotherapy every 3 
weeks

RECIST Overall survival of 16.0 months [40]

Pembrolizumab with Cryotherapy 12 mCRPC 200 mg every 3 weeks with eight 
months cryotherapy

Kaplan Meier Overall survival of 17.5 months [41]

Atezolizumab 35 mCRPC Every 3 weeks Kaplan Meier Overall survival of 14.7 months 
with acceptable safety profile

[42]

Atezolizumab with Ezalutamide 759 mCRPC Every 3 weeks - Ongoing study [43]

Atezolizumab with Radium-223 45 mCRPC 840 mg every 2 weeks, Radium-223 
every 4 weeks

RECIST Overall survival of 16.3 months [44]

Atezolizumab with Sipuleucel-T 37 mCRPC 1200 mg azetolizumab every 3 
weeks, sipuleucel-T every 2 weeks

RECIST Overall survival of 23.6 months [45]

Atezolizumab with Cabozantinib 580 mCRPC 1200 mg atezoliumab followed by 40 
mg cabozantinib PO QD

RECIST Ongoing study [46]

Avelumab with Stereotactive Ablative Body 
Radiotherapy

31 mCRPC 10 mg/kg every 2 weeks for 24 
weeks

Clopper-Pearson Overall survival of 14.1 months [47]

Avelumab 15 mCRPC 10 mg/kg every 2 weeks RECIST Overall survival of 7.4 months [48]

Durvalumab with Olaparib 17 mCRPC 1500 mg durvalumab every 4 weeks, 
300 mg olaparib PO BID

RECIST Overall survival of 16.1 months [49]

Ieramilimab plus spartalizumab 255 Advanced or metastatic 
tumors

1 mg/kg every 2 weeks RECIST Acceptable safety profile [53]

RhoC Vacccine 22 Prostate cancer 9.1 mg every 2 weeks for 6 cycles fol-
lowed by every 4 weeks for 5 cycles

Flow cytometry CD4 T-Cell response lasting 10 
months and generally well tolerated

[54]

Nivolumab plus Ipilimumab 90 mCRPC 1 mg/kg nivolumab and 3 mg/kg 
ipilimumab IV followed by 480 mg 
nivolumab every 4 weeks

RECIST Overall survival of 19.0 months [80]
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TCF7) staining were founded in the tumor infil-
trating lymphocytes, which are expandable by 
ICIs [74, 75]. Areas within tumor tissue with 
MHC-II+ cells and CD8+TCF1+ T cells were  
also identified to be comparable with prostate 
cancer cases with dMMR, suggesting the exis-
tence of sufficient antigen-presenting cells 
(APC) niches. In addition, genomic losses of 
RB1, BRCA2, and CHD1 are common features 
of this subset of prostate cancer cases with 
potential immunogenicity. 

Speckle-type pox virus and zinc finger protein 
(SPOP) are mutated in about 6-15% of locali- 
zed and metastatic prostate cancer [76, 77]. 
Evolution from SPOP-mutated to CHD1-deleted 
prostate cancer is considered a unique molecu-
lar subtype of prostate cancer [78]. SPOP is a 
component of a cullin-RING-based BCR (BTB-
CUL3-RBX1) E3 ubiquitin-protein ligase com-
plex that promotes the ubiquitination and deg-
radation of PD-L1 [79]. Expression of Mutated 
SPOP would stabilize PD-L1. Prostate tumors 
with SPOP mutation exhibited increased PD-L1 
expression and fewer tumor TILs [79]. Kaur 
also reported that homologous recombination 
deficiency scores but not pathogenic germline 
BRCA2- and ATM-mutations were associated 
with higher numbers of TIL, including both cyto-
toxic and regulatory T-cells. It is also interesting 
to test novel immunotherapeutic strategies in 
SPOP mutant prostate cancer.

Potentially underlying mechanisms for resis-
tance to ICIs in prostate cancer

Most prostate cancer patients are resistant to 
immunotherapies, especially to immune check-
point inhibitors. It has been estimated that 
about 5%-17% of unselected mCRPC patients 
respond to pembrolizumab monotherapy [29]. 
An ORR of 10% and 26% was only observed in 
mCRPC patients with and without previous tax-
ane-based chemotherapy, respectively, after 
nivolumab plus ipilimumab treatment in a 
mCRPC phase II trial (CHECK MATE-650) [79].  
A lower infiltration of T-cells, Low tumor muta-
tional burden (TMB), low PD-L1 expression, and 
immunosuppressive TME have been consid-
ered as major hindrances of successful immu-
notherapy in prostate cancer. 

TMB is the number of non-synonymous muta-
tions present per megabase (mut/Mb) and has 
been used as biomarker for predicting response 

to ICIs. Although prostate cancer is character-
ized with a high rate of genomic instability and 
chromosomal rearrangements, TMBs in both 
localized and metastatic prostate cancer were 
estimated to be about 0.7~1.0 and 2.3~4.4 per 
Mb, respectively, which are significantly lower 
compared to other ICIs responsive cancers, 
such as bladder (7.1 per Mb) and melanoma 
(12.1 per Mb) [80-83]. Only 3-8.3% of meta-
static prostate cancer tumors have a high TMB 
[84-86]. A low TMB in prostate cancer was 
associated with fewer mutated peptides (35 
mutated peptides in prostate cancer versus 
197 and 276 mutated proteins in lung adeno-
carcinoma and melanoma) [87, 88], suggesting 
a poor collection of neoepitopes in prostate 
tumor may lead to less immune cell attraction 
to the tumor sites, epitope-MHC interactions 
and activation of TILs by APC. Therefore, a low 
TMB represents a significant hurdle for improv-
ing the efficacy of ICIs based immunotherapies 
in prostate cancer.

Compared to high-responsive tumors, such as 
melanoma and non-small cell lung carcinoma, 
for immunotherapies, the tumor immune micro-
environment (TIME) in prostate cancer is gener-
ally featured with low frequency of TILs and 
high frequency of tumor-associated macro-
phages (TAMs). A unique and highly complex 
TIME in prostate cancer consists in different 
types of immune cells, working together to 
resist T-cell infiltration, even under treatment  
of ICIs [89]. Immune cell types estimated by 
deconvolution of RNA sequencing data from 
The Cancer Genome Atlas (TCGA) using by 
CIBERSORT algorithm revealed that total infil-
trating T cells and mast cells were relatively 
less and infiltrating B cells, nature killer (NK) 
cells, macrophages and neutrophils are more 
compared with benign tissues [90]. Fewer infil-
trating CD8+ T cells were consistently identified 
in prostate tumor tissues in several studies 
[90-92]. 

Local infiltration of CD8+ T cells in several types 
of tumors was shown to be associated with 
clinical benefits of ICIs with improved survival 
of cancer patients [93-97]. However a role of 
intratumoral CD8+ T cell density for predicting 
the clinical outcomes of prostate cancer 
patients remains debatable [98]. Previous 
studies have shown that a higher intratumoral 
CD8+ T cell density was associated with a poor 
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prognosis of prostate cancer patients [99, 
100]. However most recent studies indicated 
that high levels of CD8+ T cell infiltration in radi-
cal prostatectomy specimens predicted a bet-
ter survival and lower risks of biochemical 
recurrence and metastasis of prostate cancer 
patients [101, 102]. 

In addition, increased number of immunosup-
pressive cells including TAMs, regulatory T cells 
(Tregs), and myeloid-derived suppressor cells 
(MDSC) affect the antitumor response of CD8+ 
T cells [103-110]. Macrophages consist of 30 
to 50% of infiltrating immune cells in tumor 
microenvironment. A subset of macrophages, 
such as M2-tumor associated macrophages 
(M2-TAMs) have shown to promote resistances 
to immunotherapy, chemotherapy, and radio-
therapy through secretion of soluble factors 
and remodeling of cell matrix for promoting  
proliferation, angiogenesis, immunosuppres-
sion and tumor cell migration and invasion 
[103-110]. Several studies have shown that 
increased M2-TAM infiltration in prostate can-
cer TME was associated with worst clinicopath-
ological features and prognosis or with more 
aggressive diseases with an estimated odds 
ratio of 1.93 (95% confidence interval: 1.23-
3.03) [103-110]. Inhibition of androgen recep-
tor (AR) signaling induces major changes in the 
immune landscape of prostate tumors, includ-
ing increased infiltration of TAMs [111-116]. 
The increased numbers of TAMs in AR signal- 
ing inhibitors treated tumors predicted tumor 
recurrence and treatment resistance [111-
116]. TAMs express PD-L1 and PD-1 leading to 
a decreased phagocytosis activity [118, 119]. 
The decreased phagocytosis activity can be 
rescued by PD-1/PD-L1 blockade. M1 macro-
phages that are often stimulated by LPS or IFN-
γ, etc. produce pro-inflammatory cytokines. 
Anti-PD-1/PD-L1 blockade induced an M1 mac-
rophage polarization to reduce tumor burden 
[120, 121]. MMR-deficient prostate cancer has 
been shown to have higher densities of TILs 
compared to MMR-proficient tumors [122]. 
Sena [123] reported that MMR-deficient pros-
tate cancer with parenchymal brain metasta-
ses exhibited very few CD8+ tumor-infiltrating 
lymphocytes but highly enriched macrophages. 
Studies also showed that reduction of Tregs by 
anti-CTLA-4 antibodies in tumors was associ-
ated with tumor regression and dependent on 
FcγRIV-expressing macrophage-mediated cell 

depletion [124-128]. Taken together, these 
studies suggest that macrophages may also 
significantly contribute to the efficacies of ICIs 
based immunotherapies. 

In addition, prostate tumors expressed high 
levels of chemokines, CCL2, CCL22, and 
CXCL12, to attract MDSCs, Tregs, and low lev-
els of CTL/NK/Th1 cells-recruiting chemokines 
(CCL5, CXCL9, CXCL10). MDSCs also emerge  
in the context of castration resistance (129). 
MDSCs could be additional mechanism of 
resistance to ICIs in advanced CRPC. 

The blockade of PD-1 and PD-L1 between 
CD8+ T cells and tumor cells is expected to 
restore antitumor responses induced by tumor-
infiltrating CD8+ T cells [130]. Therefore, low 
level of PD-L1 expression in prostate cancer 
could also significantly limit efficacy of anti-PD1 
based immunotherapy [131]. Due to tumor het-
erogeneity and different antibody clone selec-
tion, immunohistochemistry protocols, and 
scoring system, there is a large variability of 
PD-L1 expression in prostate tumor tissues. 
One study reported that 29% of acinar prostate 
cancer, 7% ductal prostate carcinoma and 46% 
of neuroendocrine carcinomas were PD-L1-
positive [132-148]. While different cut-off val-
ues for positivity were used, 1369/4708 (29%) 
prostate cancer cases were overall positive. 
687/2676 (26%) cases were PD-L1-positive if 
at least ≥1% of tumor cells were counted as 
positive, 93/1062 (9%) were positive for ≥5% of 
stained tumor cells, and 9/523 (2%) cases 
expressed PD-L1 on >50% of tumor cells [132-
148]. In contrast to lower levels of PD-L1, the 
levels of PD-L2 expression were significantly 
higher across all 9393 radical prostatectomy 
samples. [149]. In addition, other immune 
checkpoints or targets may be clinically rele-
vant in prostate cancer such as v-domain Ig 
suppressor of T-cell activation (VISTA), Poly 
(ADP-ribose) polymerase (PARP), MSH2 and 
MSH6 mutations, etc. [150-155]. To improve 
the immunogenicity of the “cold” prostate 
tumor cells, multiple targeting and combination 
approaches may be needed. 

Racial difference in immune response in 
prostate cancer

Although prostate cancer is diagnosed at an 
earlier age and more aggressive in AA men 
[156-158], accumulating evidence suggest 
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that AA prostate cancer respond favorably to 
immunotherapies, and specifically to cancer 
vaccines [159, 160]. In the PROCEED trial/reg-
istry, AA men with mCRPC who were treated 
with the cancer vaccine, Sipuleucel-T, had a 
median nine-month of overall survival advan-
tage over EA men [159, 160]. Hawley [161] 
compared levels of circulating immune markers 
in AA and EA men with mCRPC who received 
sipuleucel-T. The results showed that AA men 
had statistically significantly higher levels of 
Th2-type (IL-4, IL-10, and IL-13) and inflamma-
tory cytokines (IL-2, IL-12, and IL-6) compared 
with prostate-specific antigen-matched EA men 
both at baseline and 52 weeks after sipuleucel-
T and that there are no differences in the anti-
gen-specific T-cell response and the humoral 
responses to the immunizing antigen PA2024 
and select secondary antigens.

A study performed by Calagua [73] showed a 
significant association between AA and PD-L1 
overexpression in prostate cancer (26% in AA 
vs. 12% in EA), suggesting that AA men with 
prostate cancer may respond more favorably to 
anti-PD1 based immunotherapies. AA men 
were also shown to have lower DNA damage 
repair (DDR) activity compared to EA men [162-
165]. Defective DNA damage responses are 
associated with improved radiation response 
and tumor immunogenicity [46, 166], which 
may implicate a combined approach of radio-
therapy and immune therapy in AA men. 

Prominent differences in tumor immunobiology 
between AA vs. EA men have been reported in 
several independent gene expression profiling 
studies [167-169]. For example, the gene 
expression study by Wallace revealed signifi-
cantly different profiles of immune-related 
genes when comparing 69 tumors from AA and 
EA patients; autoimmune disease modulators, 
such as PTPN22 and components of the HLA 
complex, and key genes in antigen presenta-
tion were expressed at higher levels in AA 
tumors [168]. Kinseth [169] examined the dif-
ferences in gene expression between AA and 
EA PCa by matching for age and pathological 
stage or Gleason scores as well as tumor-cell 
content and stroma-cell content. Striking differ-
ences in gene expression were observed in the 
stroma of AA patients relative to EA; 1016 
genes with significant differences between the 
expression of EA and AA patients were obser- 
ved. The vast majority (82%) of significant dif-

ferences were downregulated. The down-regu-
lated genes included many immune cell modu-
lators compared to EA stroma such as inter- 
leukins (IL) -2, -4, -5, -6, -7, -10, -13, -15 and -22. 
Emerging data also have shown that levels of 
cytokines, IFNα, IFNγ, and TNFα signaling, ILs, 
and epithelial to mesenchymal (EMT) transition 
signaling, as well as tumor infiltrating lympho-
cytes were elevated in AA men, which suggest 
uniquely inflammatory phenotype in AA pros-
tate cancer [163]. Weiner identified an enrich-
ment of plasma cells in primary prostate tumors 
of AA men or men of African ancestry and ele-
vated expression of NK cell activity markers 
and IgG [170], suggesting role of plasma cells 
in immune responses of AA men. Awasthi and 
his colleagues [163] have analyzed whole tran-
scriptome data from the Decipher GRID registry 
and found that differentially expressed genes 
in major immune pathways were significantly 
enriched in AA compared to EA prostate can-
cer. In addition, IFN-induced transmembrane 
protein 3 (IFITM3) was validated in TCGA data 
base as a biomarker that was significantly 
associated with increased risk of prostate can-
cer recurrence for AA men. Tang [171] reported 
that AA prostate cancer patients with IFNL4 
rs368234815-DG and IFNL4 rs12979860-T 
germline variants have poorer overall survival 
after prostatectomy surgery and that IFNL4 
rs368234815-DG germline variant was associ-
ated with IFN-related DNA damage resistance 
signature.

Although many clinical trials of ICIs or in combi-
nation with other therapeutic approaches are 
ongoing, AA men are currently underrepresent-
ed in most of the clinical trials [172, 173]. There 
is a need for enhancing accrual of more AA men 
to clinical trials via prespecified enrolling clini-
cal sites and by overcoming socioeconomic and 
cultural barriers [172, 173]. Clinical trials that 
specifically focused on the treatment response 
of AA men with metastatic prostate cancer will 
greatly facilitate our understanding of racial dif-
ferences in the immune response. There are 
ongoing NCI efforts with sponsoring trials for 
enrollment of minority groups of patients. 

Vaccine based treatments

The majority of immunotherapy vaccinations 
available for prostate cancer can be consid-
ered to be experimental. Sipuleucel-T currently 
the only FDA approved vaccine designated for 
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usage towards prostate cancer and be said the 
most effective in clinical usage [174, 175]. 
Sipuleucel-T is an autologous active cellular 
immunotherapy vaccine that primarily consists 
of autologous peripheral-blood mononuclear 
cells with APCs which are activated when 
exposed to PA2024, a recombinant fusion pro-
tein of PAP and costimulatory GM-CSF. A pha- 
se III trial (IMPACT: NCT00065442) in mCRPC 
patients demonstrated an improved OS by  
4.1 months and a 22% reduction of relative 
mortality risk. However, only minimal antitumor 
responses were observed [175]. 

DNA vaccines have been examined largely in 
animals as a potential treatment for cancer. 
Their use in human remains controversial given 
the risk vs. benefit [176]. They offer a new 
approach over other anti-tumor vaccinations in 
terms of ease of use and the absence of infec-
tious agents. Presently various phase 1 clinic 
trials are underway for prostate cancer DNA, 
namely NCT02411786 by Madison Vaccines 
Inc which encodes androgen receptors pTVG-
AR, MVI-118 [177]. INO-5150 by Inovio Phar- 
mceuticals is a dual-antigen DNA vaccine that 
utilizes parts of prostate-specific membrane 
antigen and the prostate specific antigen, 
which underwent phase I/II trial in biochemi-
cally relapsed prostate cancer patients [178]. 

PROSTVAC is an off the shelf vaccine that uses 
a recombinant strain of vaccinia paired with 
foxpowl vector boosts, transgenes, and co-
stimulatory molecules to elicit an immune 
response from the body [179]. Patients that 
were treated with PROSTVAC have shown an 
increase in PSA-specific T-cell levels [179]. Two 
phase II studies of PROSTVAC have demon-
strated its potential efficacy in treating mCRPC 
patients. One hundred twenty-five patients with 
mCRPC and a Gleason score of ≤7 were ran-
domly given either PROSTVAC, or a placebo 
[180]. Patients treated with PROSTVAC demon-
strated a median survival rate of 24.4 months; 
while patients treated with the placebo had a 
survival rate of 16.3 months [180]. A recent 
phase III study of PROSTVAC was conducted to 
follow up on this hypothesis but did not show 
any significant clinical benefit [181, 182]. The 
vaccine was reported to be well tolerated and 
eliciting an immune response, however there 
was minimal survival benefit [182]. 

GVAX uses the whole prostate cancer cell 
genetically modified to secrete the immune 

stimulatory cytokine granulocyte-macrophage 
colony-stimulating factor and allows the tumor 
cells themselves to be used as the antigen 
source for immunotherapy [183]. GVAX has 
shown to be a safe and potent cytokine and has 
elicited a high immune response dependent  
on the dosage. Patients only exhibited flu-like 
symptoms and a fever when treated. However, 
considering several failed phase 3 trials of this 
vaccination, further experimentation on it has 
largely been abandoned [184, 185]. 

Adoptive cell therapy

Adoptive Cell Therapy (ACT) has been shown to 
be effective in treating metastatic melanoma 
[186, 187]. This treatment involves the usage 
of T-lymphocytes specifically engineered to tar-
get specific viruses or tumors. Through the iso-
lation and modification of patient T-lymphocytes 
with specific antigen receptors, followed by 
subsequent reinfusion, it is possible for pati- 
ents produce an immunization-like response 
towards specific cancer antigens. Chimeric 
antigen receptors (CAR) allow for the produc-
tion of artificial T-cell receptors for the purpos-
es of ACT [188]. 

Epithelial cell adhesion molecule (EpCAM) tar-
geting T-cells modified with CAR have shown to 
be effective in a wide range of cancer immuno-
therapies involving this stem cell antigen [189]. 
Studies performed on human prostate cancer 
cells with low expression levels of EpCAM have 
shown significant effectiveness in inhibiting 
tumor growth both in vitro and in vito [189].  
The Natural Killer Group 2D (NKG2D) receptor 
has also been shown to a promising target for 
CAR T-cell therapy. When paired with the IL-7 
gene it is shown to be effective in prostate can-
cer treatment [190]. To target prostate cancer 
more specifically, CAR-T cells were commonly 
generated against prostate-specific membrane 
antigen (PSMA). In a first in-human phase 1 trial 
of PSMA targeting CAR T cells armored with a 
dominant-negative TGF-β receptor (NCT0308- 
9203) in CRPC patients, 5 of 13 patients de- 
veloped cytokine-release (CRS) at grade 2 or 
higher and 4 had decreases of ≥30% in PSA. 
One patient reached a >98% reduction in PSA 
with evidence of substantial clonal CAR T cell 
expansion. However, this one patient devel-
oped enterococcal sepsis 30 days after infu-
sion, leading to multi-organ dysfunction and 
death [191]. Another ongoing clinical trial of 
PSMA-targeting CAR in mCRPC patients, 3 of 9 
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patients reached decreases of >50% in PSA 
and improvements in PSMA positron-emission-
tomography imaging [192]. Three patients had 
CRS of grades 1-2 [192]. One patient experi-
enced a complete clearance of measurable dis-
ease for over 5 months [192]. The results from 
these studies are promising, but CAR-T cell 
therapy still face many challenges or difficul-
ties. Overcoming the immunosuppressive TME 
that are enriched with immunosuppressive 
cytokines and growth factors, TAMs, Treg, and 
MDSC and potential toxicities are some of the 
major limitations in CAR-T therapy. 

Another method of ACT can be seen in TIL ther-
apy, which involves the examination of specific 
lymphocytes located around the tumor. T-cells 
that best identify malignant tumor cells are 
treated and encouraged to proliferate around 
the tumor. Due to the T-cell exclusive nature of 
prostate cancer, it is often challenging to effec-
tively incorporate TILs based immunotherapy 
into prostate cancer treatments [193]. This can 
be attributed to a lack of genomic complexity 
within prostate cancer cells compared to other 
cancers [194, 195]. Recent experiments on 
TILs in prostate cancer have indicated the 
potential for the viable extraction of functional 
and tumor reactive TIL within prostate cancer. 
In a study, twenty-eight prostate-TIL cultures 
were successfully extracted and expanded in a 
laboratory setting. The extracted TIL displayed 
an expansion frequency of roughly 50% across 
all samples. Analysis revealed a clear expres-
sion of chemokine receptors after expansion. 
Further studies into this form of therapy can 
potentially open more modalities in patient 
treatment [196]. 

A major challenge in CAR T-cell and TILs therapy 
is proliferating for long periods of time in immu-
nosuppressive environments. As such, there is 
a push towards research that increases surviv-
al rates of CAR T-cells; notably through the 
incorporation of the TILs 4-1BB and CD137 
receptor respectively [197, 198]. The inclusion 
of such therapies into patient care provides an 
efficient treatment method that suffers from 
fewer side effects associated with other meth-
ods of cancer treatment.

Bispecific T cell engager 

Bispecific T cell engager (BiTE) antibodies can 
target PSMA on prostate cancer cells and 

engage T cell via CD3 receptor leading to T cell 
activation. AMG 212 (pasotuxizumab) demon-
strated encouraging results in a phase I trial 
with dose-dependent PSA reductions and mea-
surable tumor responses in approximately one-
third of the 68 patients who were enrolled after 
progression on androgen deprivation therapy 
with abiraterone or enzalutamide and at least 
one taxane chemotherapy [199]. Limitation of 
this study included development of drug-neu-
tralizing antibodies with subcutaneous injec-
tion and short serum half-life of the molecule. 
In order to overcome these limitations, AMG212 
has been modified to AMG 160 with ongoing 
studies using IV formulation (NCT04631601) 
and half-life extended BiTE molecule [200].

Other target candidates on prostate cancer 
cells for BiTE therapy are being evaluated 
including the six-transmembrane epithelial 
antigen of prostate (STEAP), human carcinoem-
bryonic antigen-related cell adhesion molecule 
5 (CEACAM5, also known as CEA) and delta-like 
protein 3 (DLL3), which are upregulated in dif-
ferent subtypes of prostate cancer [201, 202]. 

Conclusion

Prostate cancer exhibits many immunosup-
pressive characteristics associated with TME, 
low TMB, low expression of PD-L1 and sparse 
T-cell infiltration and therefore, prostate cancer 
has been considered as an immunologically 
“cold” tumor. Nevertheless, immunotherapy 
remains to be a promising treatment at least in 
a subset of prostate cancer patients. Prostate 
cancer tumors with high MSI/dMMR or CDK12 
mutations can be more responsive to ICIs in 
clinics. Clinical data suggests higher degree of 
benefit in AA patients with prostate cancer 
treated with Sipuleucel-T. CAR-T therapy and 
BiTEs have shown some early encouraging clini-
cal results with ongoing clinical trials evaluating 
the role of these treatments. Understanding 
resistant mechanisms to ICIs related to pros-
tate TME and identification of new immune tar-
gets, could bring a new promising immune ther-
apeutic approach for advanced prostate cancer 
and lead to extension of patent’s lifespan. 
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