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Causal Induction:
The Power PC Theory versus the Rescorla-Wagner Model

Marc J. Buehner
Universitdt Regensburg
Glockengasse 3
93047 Regensburg, Germany
marc.buehner@psychologie.uni
regensburg.de

Abstract

Two experiments compared the influence of the probability
of the effect given the absence of the candidate cause on the
causal judgments of candidate causes with the same AP,
defined as the difference between the probability of the
effect in the presence of a candidate cause and that in its
absence. Our results strongly support the power PC theory
(Cheng, 1997) but contradict the Rescorla-Wagner model
(1972) and the traditional AP model.

Introduction

Causal induction allows humans and other intelligent
systems to explain, predict, and control their environment,
making it a critical tool in an otherwise chaotic world. How
do people discover the causes of events? A long-standing
proposal (e.g., Jenkins & Ward, 1965) for candidate causes
and effects that can be represented by binary variables is that
causal judgments are based on

AP = P(elc) — P(el~c), (1)
where ¢ is a candidate cause, e is the effect in question, P(elc)
is the probability of e given the presence of ¢, and P(el~c) is
the probability of e given the absence of ¢. AP is a measure
of the extent to which ¢ and e covary (i.e., are both present
or both absent), and has variously been called the
contingency or contrast. The conditional probabilities are
estimated by the respective relative frequencies of the events
for which e occurs in the presence and in the absence of ¢. If
AP is noticeably positive, ¢ is a generative or facilitatory
cause, and if it is noticeably negative, ¢ is a preventive or
inhibitory cause. If AP does not noticeably differ from zero,
¢ is independent of e and is noncausal.

Rescorla-Wagner Model

An influential connectionist model that under some
conditions asymptotically computes a variant of AP is the
Rescorla-Wagner (1972) model (RWM).  Although this
model was originally proposed for describing Pavlovian
conditioning, it has often been adopted to explain causal
induction (e.g., Dickinson, Shanks, & Evenden, 1984;
Wasserman, Elek, Chatlosh, & Baker, 1993). Using the
RWM to explain causal induction implies reducing causal
learning to associative learning. According to this model,
learning proceeds by changes in the strength of a connection
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between a conditioned stimulus ¢ (e.g., a flash of light) and
an unconditioned stimulus e (e.g.. a shock). In causal
terms, c is a candidate cause and e is the effect. This change
in the strength of ¢, AV, is specified by the learning rule

AV, =a B (A, -3 V) ©
where ¢, and B, are rate parameters that, respectively, depend
on the salience of ¢ and e, and A, is the actual outcome of
the trial. If e is present, this value is typically set to 1; if e
is absent, it is set to 0. ZV is the expected outcome, which
is the sum of the strengths of all candidate causes present on
that trial. Learning thus occurs by reducing the discrepancy
between the actual outcome A, and the expected outcome IV
until this discrepancy (A,— £V ) approximates zero. Note
that AP from the contingency model and AV in RWM do
not both represent causal strength: whereas AP in the
contingency model represents causal strength, AV in RWM
is the change in strength on a trial. When AV approximates
zero (when learning has reached asymptote), the weight of
the link from a candidate cause to the effect represents its
causal strength. These asymptotic weights are traditionally
obtained by computer simulation, but they can also be
obtained mathematically for many experimental designs (see
Cheng, 1997).

When there is only one varying candidate cause in a
context, the RWM asymptotically computes AP as the
measure of associative strength when B, is assumed to
remain constant across trials on which e does and does not
occur (Chapman & Robbins, 1990). However, if S, is
assumed to be larger on trials with e present, RWM makes
predictions different from the contingency model: RWM
then predicts the (absolute) magnitudes of the judged causal
strengths to be smaller as P(e) increases for any fixed
positive or negative AP (see Wasserman et al., 1993). It
is difficult to motivate why 8, might be smaller on trials
with e present (and researchers applying the RWM hardly if
ever make this assumption), but if this assumption is made,
RWM would predict the opposite trend: the (absolute)
magnitudes of the judged causal strengths should be larger as
P(e) increases for any fixed positive or negative AP
Regardless of assumptions about fB,, RWM predicts the
same influence of P(e) on the absolute causal strengths of
candidates with same positive AP as for those with the same
negative AP.  Also regardless of assumptions about f,,
RWM predicts judged causal strength to be zero when AP =
0.
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Power PC Theory

As many have noted, covariation is insufficient as a
criterion for inferring causality. For example, one would
not infer from the covariation between a drop in the
barometric reading and the approach of a storm that a
barometric drop causes the approach of storms.  This
example fails to satisfy one of the putative boundary
conditions for inferring causality from covariation -- that
alternative causes of the effect (e.g., changes in atmospheric
pressure) are controlled. To explain this and other boundary
conditions for inferring causality from covariation, Cheng
(1997) proposed the power PC theory (a causal power theory
of the probabilistic contrast model of Cheng and Novick,
1990). According to this theory, the causal reasoner's goal
1s to optimally estimate the unobservable causal power of a
candidate cause from observable events. This theory
assumes that rhe reasoner believes that there are such rhings
in the world as causes that have the power to generate an
effect and causes that have the power to prevent an effect,
and that only such things influence the occurrence of an
effect (cf. Kant, 1781/1965). Applying this assumption in
a probabilistic form to explain Equation 1, this theory
shows (1) the conditions under which AP_. provides an
estimate of causal power and (2) how well it does so under
those conditions. Cheng (1997) reviews a diverse range of
phenomena supporting this theory over other models. One
of the mathematical consequences of this theory is that when
causes alternative to the candidate cause ¢ are controlled and
AP as defined by Equation 1 is nonnegative, p., the causal
power of candidate ¢ to generate effect e is

AR 3)

I—- P(e I c)
Analogously, when causes alternative to the candidate cause
¢ are controlled and AP is nonpositive, the causal power of
candidate ¢ to prevent effect e is

—AF,
P(e | c)
The predictions of the theory are assumed to be only ordinal.

Thus, whereas the traditional contingency model (Equation
1), and the RWM under the assumption that f, remains
constant across trials on which the effect does and does not
occur, each predicts AP to be the sole source of judged
causality, the power PC Theory predicts that equal levels of
AP, with different values of P(el~c) (and hence also different
values of P(elc)) should not yield equal causal judgments.
When alternative causes are controlled, Equation 3 applies
and predicts that candidate causes with the same positive AP,
should be judged to have increasingly large generative power
as P(el~c) increases, but does not equal 1. When P(el~c)=1,
the generative power of the candidate cause is undefined.
That is, a reasoner cannot draw any conclusion about the
causal strength of ¢ generating e if e occurs all the time
regardless of whether ¢ occurs.

In contrast, Equation 4 predicts that as P(el~c) increases,
candidate causes with the same negative AP, should be
judged to have increasingly small preventive power. Note
that (1) P(el~¢) influences the (absolute) magnitude of
estimated generative and prevenlive powers in opposite

P

p. = 4)
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directions, and (2) the direction of these influences are not
dependent on any parameter settings. The power PC theory
and the RWM differ on both of these points. When
P(el~c)=0, the preventive power of the candidate cause is
undefined according to Equation 4. That is, one cannot
make inferences about the strength of ¢ preventing e, if e
never occurs in the first place.

Finally, Equations 3 and 4 both predict that when AP, =0,
the power of ¢ should remain at 0 and be uninfluenced by
P(el~c) as long as the denominator in the relevant equation is
not 0.

Consider a concrete illustration of the power PC theory's
predictions. Suppose a researcher wants to evaluate the
preventive power of a new drug against headaches. In a
study involving 16 participants, 8 receive treatment with the
drug (candidate present), and 8 receive a placebo (candidate
absent). Now suppose neither the 8 participants who
received drug treatment nor the 8 participants who received
the placebo report headaches. In this case AP, equals zero.
Yet the researcher would not infer that the drug is ineffective
(i.e., noncausal). Since headaches did not occur even in the
control group, how then could a preventive candidate prevent
them in the drug group? The researcher simply cannot draw
any causal inferences. This intuition is captured by the
special case in which preventive power in Equation 4 is
undefined.

Now consider two studies that involve the same nonzero
AP_ but different P(el~c). In the first study, all of the 8
participants in the control group have headaches, whereas
only 6 of the 8 participants who received the drug have
headaches. In this case, AP, = P(elc) — Pel~¢c) = .75 - 1.00
—.25. Assuming that all alternative causes producing or
preventing headaches are constant across the two groups, the
researcher would assume that if not for the drug, all 8
participants in the drug group, just as in the control group,
would have had headaches. The drug therefore has a small
preventive power, preventing headaches with a probability of
.25. In a second study, 4 of the 8 participants in the control
group report headaches and 2 of the 8 participants receiving
drug treatment report headaches (i.e., P(elc) — P(el~c)= .25 —
50 = -.25). Again, assuming that the composite of
alternative causes remains constant between groups, the
composite would have produced headaches in 4 of the 8
participants in the drug group, just as in the control group.
The drug therefore prevents headaches in 2 of the remaining
4 participants, yielding a probability of .50. Thus, although
AP, =—-.25 here as in the preceding study, the researcher
would attribute a higher preventive power to the latter
candidate. Equation 4 formalizes this intuition.

Analogous intuitions about when the generative power of
a candidate cause is undefined and about the causal power of
candidate causes with the same positive AP, but different
P(el~c) are captured by Equation 3.

The present paper presents a preliminary report of some
experimental tests of the traditional contingency model, the
Rescorla-Wagner model, and the power PC theory. We
report the results of two experiments that discriminate
between the predictions of these three accounts. We tested
candidates with positive, negative, and zero APs to evaluate
the full range of predictions of the power PC theory. An



additional reason for doing so was to cover all possible
consistent parameter settings of the RWM. Recall that
although the RWM can predict causal judgments for
candidates with the same non-zero AP that are either positive
or negative functions of P(el~c), or not a function of P(el~c),
it cannot predict a positive function in one cxperimental
condition and a negative function in another condition unless
its parameter settings are reversed across conditions.

A test of the predictions of the three accounts would
involve varying levels of P(elc) and P(el~c). Although many
previous experiments have manipulated these variables, and
the available results support the power PC theory (see
review in Cheng, 1997), these experiments either tested too
few levels of these variables to evaluate this prediction
systematically (e.g., Allen & Jenkins, 1983; Anderson &
Sheu, 1995; Baker, Berbrier, & Vallée-Tourangeau, 1989;
Dickinson et al., 1984; Shanks, 1987), or they used an
effect that occurred in continuous time rather than in discrete
entities (e.g., Wasserman et al., 1993), in which case the
power PC theory does not directly apply. In the
experiments we report, we therefore tested combinations of
many levels of P(elc) and P(el~c) and used a binary effect
that occurs in discrete trials. We adapted Wasserman et al.'s
(1993) design (the most comprehensive study of this nature
to date), in which 5 levels of P(elc) and of P(el~c) are
independently combined within-subject. Our first experiment
presented subjects with a relatively small number of
individual events, and the second experiment presented a
larger number of events in a visual summary format.
Within each experiment, conditions involving negative APs
were tested separately from those involving positive APs,
and the former conditions are reported before the latter. Both
parts of each experiment included conditions with zero APs.

Experiment 1a
Method

Subjects. 13 male and 44 female students in
undergraduate psychology classes at the University of
California, Los Angeles, served as subjects in exchange for
course credit.

Design and Procedure. Subjects were given a cover
story in which they were asked to pretend they were
virologists testing several new vaccines against viruses.
They were asked to evaluate the outcome of studies
performed on laboratory rats which had all been infected with
certain viruses. For every subject, there was one practice
condition and 15 experimental conditions, with each
condition consisting of 16 laboratory records (i.e., learning
trials). Each record provided information about whether one
particular rat was vaccinated prior to virus exposure and
whether the rat developed the disease related to the virus.
The 15 different experimental conditions represented 15
independent studies on different viruses and vaccines.
Because Experiment la examined the evaluation of
preventive causal power, 5 levels of the two conditional
probabilities, P(elc) and P(el~c) -- 1.00, .75, .50, .25, and
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.00 -- were combined to yield 5 levels of nonpositive APs:
-1.00, -.75, -.50, —.25, and .00. These combinations
yielded a total of 15 conditions (see Figure 1).

The 16 laboratory records in each condition consisted of 8
for which ¢ was present (the rat was vaccinated) and 8 for
which ¢ was absent (no vaccination given). The 15
conditions and the laboratory records within each condition
were both presented in random order. After studying the 16
records in each condition, subjects were asked to evaluate the
effectiveness of the studied vaccine at preventing the disease
related to the virus in question. They were asked to give a
rating on a scale from 0 to 100, where 0 meant that the
vaccine does not prevent the disease at all and 100 meant
that the vaccine prevents the disease every time.

Results and Discussion. Figure 1 displays
subjects's mean ratings of the preventive power of the
candidate cause. On the abscissa are the 5 levels of P(el~c).
For Figure 1 and subsequent analogous figures, the lines
connect data points with the same level of AP, except for
the point with the zero AP that has undefined causal power
according to the power PC theory (and intuition). This
point is displayed separately. The corresponding values for
P(elc) follow from each combination of AP and P(el~c). The
power PC theory predicts decreasing estimates of preventive
power with increasing P(el~c) for candidates with equal
negative APs. A trend analysis was performed over each set
of conditions with the same AP. A linear negative trend
was highly reliable for each level of AP, #(56) = 4.1, p <
001 for AP =-.75, 1(112) = 9.5, p < .001 for AP = -.50,
1(168) = 13.3, p < .001 for AP = -.25, and 1(224) = 7.6, p
< .001 for AP = 0.0.

The reliable negative trends for candidates with the same
negative APs contradict the traditional contingency model.
They also contradict the RWM if S, is assumed to be either
constant across trials or smaller on trials in which e occurs
than those in which e does not occur. They support the
RWM if B, is assumed to be larger on trials in which e
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Figure 1: Mean judgments of preventive causal power for
each AP level in Experiment la.

occurs. They also support the power PC theory.

The reliable trend for AP =.00 replicates the observation
in many previous studies, but contradicts the asymptotic
predictions of all three accounts considered in this paper.
The single data point for AP = —1.00 is irrelevant to our
evaluation of alternative accounts.



Experiment 1b

Experiment |b is the analogue of Experiment la for the
evaluation of generative causal power.

Method

Subjects. 23 male and 29 female students in
undergraduate psychology classes at the University of
California, Los Angeles, participated in exchange for course
credit.

Design and Procedure. The procedure was the same as
in Experiment la. This time the cover story asked the
subjects to imagine they were microbiologists studying how
ray exposure influences the mutation of viruses. The
subjects studied laboratory records that provided them with
information about whether or not a petri dish with viruses
was exposed to certain rays and whether or not mutation
occurred. The design was exactly symmetrical to that in
Experiment la, yielding only nonnegative APs with values
.00, .25, .50, .75, and 1.00. After studying the laboratory
records relevant to a certain virus and ray combination,
subjects gave a rating of how strongly they thought the
particular rays cause mutation. The scale ranged from 0 to
100, where O meant that the rays do not cause the virus to
mutate at all and 100 meant that the rays cause the virus to
mutate every time.

Results and Discussion. Subjects’s mean ratings of
causal power are shown in Figure 2. As before, the data
points with equal levels of AP are connected. Recall that for
the evaluation of generative causal power, the power PC
theory predicts a positive linear trend for candidates with
equal levels of positive AP with increasing P(el~c). As
before, a trend analysis was performed to check for positive
linear trends in equal levels of AP. For AP = .75 the
positive linear trend fell just short of significance, #«(51) =
1.99, p = .052. For AP = .50 the positive trend was highly
significant, 1(102) = 3.72, p < .001; as was the linear
positive trend for AP = .25, t(153) = 3.91, p < .001.

As for the evaluation of preventive power, both RWM
with constant f§ and the traditional AP model predict flat
lines connecting candidates with equal levels of AP. While
assigning larger values to f for trials where e occurs allows
the RWM to explain the negative trends found in
Experiment la, this modification also predicts negative
trends for positive APs. The observed positive trends in
Experiment 1b contradict this prediction of the RWM but
support the power PC theory.

For zero APs, all three accounts considered predict
noncausal judgments. However, subjects did not rate zero
APs as noncausal: We unexpectedly also found sloping
trends in the zero AP conditions. Why were there such
trends?

A possible explanation is that our subjects conflated
reliability with causal strength. For example, in the
generative experiment, in the 0/8-0/8 condition (P(elc) =
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Figure 2: Mean judgments of generative causal power for
each AP level in Experiment 1b.

P(el~c) = 0) e neither occurred in any of the 8 trials given the
presence of ¢ nor in those given its absence. Assuming that
alternative causes were constant, it follows that ¢ had 8 trials
to "prove" its generative power, and it failed to do so. In the
6/8-6/8 condition (P(elc) = P(el~c) = .75), however, e would
be expected to be produced by alternative causes on 6 of the
8 trials when ¢ was present, just as when c was absent.
This leaves only 2 out of the 8 trials for ¢ to prove its
causal power, and it failed to do so. Because there were
more (rials on which ¢ could have but in fact failed to prove
its power in the former condition than in the latter, subjects
might be more confident of a noncausal judgment in the
former condition, leading to a rating closer to O in that
condition. Providing subjects with a constant number of
trials across conditions thus yields varying reliability of the
information presented.

An analogous explanation applies to
conditions of the preventive experiment.

This explanation does not apply to non-zero APs. First,
note that unlike noncontingent candidates, which all produce
e with the same causal power (i.e., probability) of 0,
candidates with the same non-zero AP do not produce ¢ with
the same causal power. For example, for preventive
candidates that all have AP = —.5, in the 0/8—4/8 condition,
pc= 1.0; in the 2/8-6/8 condition, p.= .67; and in the 4/8-
8/8 condition, p.=.5. Their causal ratings therefore would
not reflect reliability alone. Second, if one were to ignore
the varying causal powers, and consider reliability alone,
then the 3 conditions just mentioned should have
increasingly greater reliability: The 0/8-4/8 condition had
only 4 trials to reveal preventive power, the 2/8-6/8
condition had 6 trials, and the 4/8—8/8 condition had 8 trials.
Therefore, given that these candidates have non-zero
preventive power, reliability predicts increasing preventive
ratings for these 3 conditions, contrary to the observed
ratings, which were in the decreasing order predicted by their
causal powers. That is, reliability cannot explain the trends
observed for candidates with equal non-zero APs.

the zero AP

Experiments 2a and 2b

The goal of Experiments 2a and 2b was to reduce the
possibility of wvarying reliability by presenting the
information in summary format involving a large number of
trials as opposed to a small number of individual trials. We



expect the new format to reduce the slopes for the zero AP
conditions only.

Method
Subjects. 79 (Experiment 2a) and 74 (Experiment 2b)
students in undergraduate psychology classes at the

University of California, Los Angeles, participated in
exchange for course credit.

Design and Procedure. Subjects were given the same
cover stories as in Experiments la and 1b. As before, they
were asked to evaluate the outcome of studies performed on
rats (Experiment 2a) and on petn-dishes of viruses
(Experiment 2b). There was one practice condition and 15
within-subject experimental conditions in both Experiment
2a and 2b. The 15 experimental conditions represented 15
independent studies that had to be evaluated by the subjects.
The same conditional probabilities and levels of AP as in
the previous experiments were used to create nonpositive
APs (Experiment 2a) and nonnegative APs (Experiment 2b).

Ophtlic Virus - exposed to Kappa rays

Vins dd NOT
mulale

Virus mutated

Ophtlic Virus NOT exposed to Kappa rays

Vins did NOT

Vs mutated
muate

Figure 3: Example of Data Presentation in Experiment 2b

The main difference between Experiments 2a and 2b and
the previous experiments was that this time subjects did not
study individual laboratory reports but were rather presented
with visual summaries of the outcome of performed studies.
This was realized by presenting subjects with two pie charts
containing information about relative frequencies of the
cffect, given the presence or the absence of the candidate.
Subjects were informed that each chart summarizes the
results for 100 cases.

Figure 3 represents an example summary as used in
Experiment 2b. For each of these summaries, subjects were
asked to give a rating for how strongly they think a vaccine
prevents the disease (Experiment 2a) or for how strongly
they think certain rays cause mutation to a virus
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(Experiment 2b). As before, subjects were asked to give
ratings from O to [00. Additionally, this time subjects also
had the opportunity to give no answer when they thought
they could not draw a conclusion.

Results and Discussion.
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Figure 4: Mean judgments of preventive causal power for
each AP level in Experiment 2a.

Figure 4 displays subjects's mean ratings of preventive
power in Experiment 2a. Visual examination of Figure 4
shows the same trends for the negative APs as in
Experiment 1. But this time the line representing the zero
APs appears flatter. As predicted by the power PC Theory,
subjects were not sure about their causality ratings for the
P(elc)=P(el~c)=.00 condition: 35% of the subjects said they
were unable to give a rating, compared to at most 14% of
the same subjects in the other conditions. We therefore
excluded this data point from further analysis.

A wend analysis for AP =00 still shows a significant
linear trend #(129)= 2.6, p < .02. However, this trend
appears to be solely due to the difference between the
P(elc)=P(el~c)=1.0 condition and the other 3 conditions (for
which causal power is defined). The linear trend for the
other 3 zero AP conditions alone was not reliable, 1(86)=
.85, p > .05.

All other levels of AP yielded highly significant linear
trends: #(76)= 5.5, p < .001 for AP= .75, (150) =8.68, p <
001 for AP= .50 and 1(225)=10.7, p < .001 for AP =.25.

Figure 5 shows the results of Experiment 2b. Analogous
to Experiment 2a, the line representing the zero APs is
flatter than that in Experiment 1b. In Experiment 2b, 22%
of the subjects claimed to be unable to give a causal rating
for the P(elc)=P(el~c)=1.00 condition, which is undefined
according to the power PC Theory. As in Experiment 2a,
this data point was excluded from the trend analysis.
Despite  the flatter line, the zero APs still yielded a
significant linear trend, 1(195)= 2.67, p < 0.002. As in
Experiment 2a, however, this trend appears to be entirely
due to the lower mean rating for the P(elc)=P(el~c)=.00
condition. The trend analysis for the remaining 3 conditions
was not reliable, 1(130)=.25, p > .05.

In contrast, the linear trends for two of the nonzero AP
conditions were highly reliable. AP = .75 resulted in a
highly significant linear trend, #72)= 3.17, p < .003. AP=
.50 did not produce a significant trend, with 1(142)= 1.69, p



< 1. But AP= .25 showed a reliable trend, with
1(198)=2.20, p < .05.
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Figure 5: Mean judgments of generative causal power for
each AP level in Experiment 2b.

In summary, to reduce the possibility that subjects
conflate reliability with strength, Experiments 2a and b
presented the same information as Experiments 1a and b, but
with a large number of replications across all conditions.
We found reliable positive and negative trends for the non-
zero AP conditions despite this change in procedure. For the
zero AP conditions, the trends were still reliable, but they
appear to be reduced and were due solely to the difference
between the condition with an extreme P(e) and the rest of
the conditions, which were not influenced by P(el~c).

General Discussion

The two experiments reported in this paper clearly
contradict both the traditional contingency ..10del and RWM
as descriptions of human causality judgments. In
Experiment la we showed that subjects’s mean judgments of
preventive causal power for conditions with equal levels of
AP showed a significant negative linear trend as P(el~c)
increased. The traditional contingency model, which holds
AP as the only determinant of judged causality, erroneously
predicts no trend. RWM with constant values of 3 across
trials also predicts no trend. By assuming higher values of 8
for trials on which the effect is present than on trials on
which it is absent, the RWM can explain the negative trends
for candidates with equal negative APs. But this assumption
also predicts negative trends for candidates with equal
positive APs. Experiment 1b shows that, to the contrary,
the trends were positive for such candidates.

The negative trends for candidates with equal negative APs
observed in Experiment la and the positive trends for
candidates with equal positive APs observed in Experiment
1b both support the power PC theory.

Subjects’s ratings for zero APs in Experiments la and 1b
systematically deviated from the predictions of the accounts
considered in this paper. A negative trend was found for the
evaluation of preventive power; a positive trend was found
for the evaluation of generative power. A possible
explanation is that subjects conflated reliability with causal
strength.

In Experiment 2a and 2b we attempted to eliminate this
conflation by presenting the information in a visual format
summarizing a large number of trials, thereby increasing

reliability across all conditions. We still found the
respective negative and positive trends for candidates with
equal negative and positive APs, but we found flat lines for
the candidates with zero APs except for the condition with
an extreme P(e). Except for this extreme condition, this
pattern of results supports the power PC theory but
contradicts the RWM and the traditional AP model. It is
unclear why, contrary to all 3 accounts considered, the
extreme conditions received mean ratings different from the
other zero AP conditions.

In conclusion, the experiments reported in this paper
clearly favor the power PC theory over either the RWM or
the traditional contingency model as a description of human
causal induction.
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