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Abstract

Singular stochastic differential equations with elliptic and hypoelliptic diffusions

by

Kyeongsik Nam

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Fraydoun Rezakhanlou, Chair

In this thesis, the well-posedness of stochastic differential equations (SDEs) with
singular coefficients is discussed. First, it is proved that SDEs with elliptic diffusion
possess a unique solution when drift vector fields belong to the Orlicz-critical space.
Then, it is shown that SDEs with degenerate and hypoelliptic diffusion are well-
posed for a large class of singular drifts. A basic theory on Lorentz spaces and the
analysis on the homogeneous Carnot group will also be introduced.
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Chapter 1

Introduction

1.1 Singular stochastic differential equations
A theory of the stochastic differential equation (SDE){

dXt = b(t,Xt)dt+ σ(t,Xt)dBt,

X0 = x.

(Bt denotes a standard Brownian motion) has been central in the probability the-
ory due to its broad applications to the analysis, in particular fluid mechanics. In
fact, SDEs provide a nice Lagrangian point of view to study various types of partial
differential equations in fluid mechanics such as Euler equations and Navier-Stokes
equations. For instance, there is a nice stochastic Lagrangian representation of in-
compressible Navier-Stokes equations. It is proved in [CI] that for a sufficiently
smooth divergence-free vector field u0, if the pair (u,X) satisfy the following stochas-
tic system:

dX = udt+
√

2dBt,

u = EP
[
∇T (X−1)(u0 ◦X−1)

]
,

(P is the Leray-Hodge projection on divergence-free vector fields), then u satisfies
the incompressible Navier-Stokes equations

ut + (u · ∇)u = −∇p+ ∆u

with an initial data u0 and some pressure p.
In addition, a theory of SDE provides the well-posedness result of the transport

equations. For example, consider the following stochastically perturbed transport
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equation:{
dtu(t, x) + b(t, x) ·Du(t, x)dt+

∑d
i=1 ei ·Du(t, x) ◦ dBi

t = 0,

u(0, ·) = u0 ∈ L∞
(1.1.1)

(ei’s are standard vectors in the Euclidean space and ◦ denotes the Stratonovich
integral). It is proved [FGP] that for singular vector fields b on Rd satisfying

b ∈ L∞([0, T ], Cα
x ), divb ∈ Lp([0, T ]× Rd)

with α ∈ (0, 1) and p ∈ (2,∞), the equation (1.1.1) admits a unique L∞-weak
solution. This result can be interpreted as an regularization effect by the noise since
in the absence of randomness, the classical transport equation{

dtu(t, x) + b(t, x) ·Du(t, x)dt = 0,

u(0, ·) = u0 ∈ L∞

may have several weak solutions under the same condition on b.
Authors in [FGP] first established the fact that SDE with the additive noise

and a Hölder continuous drift b ∈ L∞([0, T ], Cα) admits a unique strong solution,
and this solution possesses an improved regularity. Then, they translated this well-
posedness result of SDE to the well-posedness result of the stocastically perturbed
transport equation (1.1.1). The aforementioned examples show that the qualitative
properties of SDEs possessing singular coefficients can be usefully applied to study
various PDEs in fluid mechanics.

The primary step to study qualitative properties of SDEs is establishing the well-
posedness. In the absence of randomness, SDE becomes the ordinary differential
equation (ODE), and its well-posedness theory has been well-established so far. It
is a classical fact that the ODE

x′(t) = b(t, x(t)),

x(t0) = x0

admits a unique solution x(t) if the vector field b(t, x) is uniformly Lipschitz contin-
uous in x and continuous in t. This is the optimal condition in the sense that the
existence or uniqueness may not hold without the Lipschitz continuity in x.

A breakthrough progress in this context was made by Diperna and Lions [DL].
They introduced the theory of a Lagrangian flow, which generalizes the notion of a
classical flow associated with ODE. Here, X : [0, T ] × Rd → Rd is called a regular
Lagrangian flow if it satisfies the following properties:
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1. For Leb-a.e. x, t 7→ X(t, x) is an absolutely continuous integral solution.

2. There exists a constant C > 0 such that X(t, ·)#Leb ≤ CLeb.

Here, Leb denotes the Lebesgue measure on Rd. They proved that under a suitable
integrability condition on b and divb, which is weaker than Lipschitz continuity, it is
possible to construct a Lagrangian flow. More precisely, for singular vector fields b
satisfying

b ∈ L1((0, T ),W 1,1(Rd)), divb ∈ L1((0, T ), L∞(Rd))

with a suitable growth condition, there exists a unique regular Lagrangian flow asso-
ciated to the ODE with drift b. This result was extended to the bounded variation
(BV) vector fields by Ambrosio [A]. Here, a function u ∈ L1 is said to be bounded
variation if

sup{
∫
u(x)divφ(x)dx : φ ∈ C1

c , ‖φ‖∞ ≤ 1} <∞.

Surprisingly, ODE becomes well-posed for a larger class of singular drifts b once
it is perturbed by a Brownian motion. Consider the stochastic differential equation:{

dXt = b(t,Xt)dt+ dBt, 0 ≤ t ≤ T,

X0 = x.
(1.1.2)

It is known that SDE (1.1.2) has a unique solution provided that coefficients are suffi-
ciently regular: for instance, if b is Lipschitz continuous. There have been numerous
works regarding the well-posedness for a broad class of singular coefficients. For
example, Krylov and Röckner [KR] established the well-posedness of SDE (1.1.2)
under the condition:

b ∈ Lq([0, T ], Lpx), for
2

q
+
d

p
< 1, 1 < p, q <∞, (1.1.3)

where d denotes the dimension of the underlying Euclidean space.
After this groundbreaking work, lots of the well-posedness results have been es-

tablished for the various types of non-degenerate diffusion coefficients under the
condition of type (1.1.3). For instance, Zhang [Z1, Z2] proved that SDE:{

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T,

X0 = x.
(1.1.4)

admits a unique local strong solution if σ is non-degenerate and b satisfies (1.1.3).
Here, σ being non-degenerate means that the infinitesimal generator of SDE (1.1.4)
is elliptic.
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On the other hand, at the supercritical regime:

b ∈ Lq([0, T ], Lploc), for
2

q
+
d

p
> 1, 1 < p, q <∞, (1.1.5)

SDE (1.1.2) may not be well-posed in general. In fact, if b given by

b(t, x) = −β x

|x|2
1x 6=0, β >

1

2
, (1.1.6)

the corresponding SDE (1.1.2) with the initial condition X0 = 0 does not admit a
solution [BFGM]. Since a singular drift b in (1.1.6) satisfies

b ∈ L∞([0, T ], Lploc)

for any p < d, this shows that SDE (1.1.2) is in general ill-posed at the supercritical
regime (1.1.5). Therefore, the qualitative properties of SDE depend delicately on the
integrability condition on the singular drift b.

However, only little is known at the critical regime:

b ∈ Lq([0, T ], Lpx), for
2

q
+
d

p
= 1, 1 < p, q <∞. (1.1.7)

The weak type of well-posedness result is proved at the critical regime [BFGM].
It is shown that for almost all realization w, there exists a stochastic Lagrangian
flow associate with SDE (1.1.2). Here, φ : [0, T ]×Rd×Ω→ Rd is called a stochastic
Lagrangian flow to (1.1.2) if it satisfies the following conditions:

1. w-almost surely, φ(·, ·, w) − Bt(w) is a Lagrangian flow to the random ODE:
x′(t) = bw(t, x(t)), where bw(t, x) = b(t, x+Bt(w)).

2. φ is weakly progressively measurable with respect to Ft ( Ft by a natural
filteration of the Brownian motion Bt).

However, the well-posedness in the classical sense is not known at the critical
regime. In this thesis, we establish the classical well-posedness of SDE (1.1.2) at the
critical regime. More precisely, we prove that SDE (1.1.2) admits a unique strong
solution if the Lebesgue-type Lq integrability in a time variable is improved to the
slightly stronger Lorentz-type Lq,1 integrability condition:

b ∈ Lq,1([0, T ], Lpx) for
2

q
+
d

p
= 1, 1 < p, q <∞. (1.1.8)

We refer to the condition (1.1.8) as Orlicz-critical condition. More precisely, Lorentz
spaces are defined by:
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Definition 1.1.1. (Lorentz spaces). A complex-valued function f defined on the
measure space (X,µ) belongs to the Lorentz space Lp,q(X, dµ) if the quantity

‖f‖Lp,q(X) := p
1
q

∥∥∥tµ(|f | ≥ t)
1
p

∥∥∥
Lq(R+, dt

t
)

(1.1.9)

is finite.

The basic properties of Lorentz spaces will be discussed in Chapter 2. The crucial
fact is that Lp,1 is properly included in the standard Lebesgue space Lp for p > 1.

In this thesis, we show that SDE (1.1.2) admits a unique solution for singular
vector fields b satisfying the Orlicz-critical condition (1.1.8).

Theorem 1.1.2. Suppose that the drift b satisfies:

b ∈ Lq,1([0, T ], Lpx) for
2

q
+
d

p
= 1, 1 < p, q <∞. (1.1.10)

Then, there exists a unique strong solution to SDE (1.1.2) for any x ∈ Rd.

Using this theorem, it is possible to study some singular PDEs such as transport
equations discussed before. For instance, using the strategy developed in [FGP],
one can deduce the well-posedness of the stochastically perturbed transport equation
(1.1.1) for Orlicz-critical drifts b with some additional assumptions.

In the standard Lebesgue critical spaces (1.1.7), there are some technical diffi-
culties to show the well-posedness of SDE. For instance, the well-posedness of the
associated Kolmogorov PDE may break down. However, if the time integrability is
improved to the Orilcz-critical condition (1.1.10), then we obtain the well-posedness
for the corresponding SDE. In particular, we establish the Orlicz-critical Sobolev
embedding theorem and the well-posedness of Kolmogorov PDE under the condition
(1.1.10), which will be discussed in Chapter 2.

So far, we have discussed a class of singular SDEs with additive noise for which
there exists a unique solution. A natural question is to extend this well-posedness
result to singular SDEs with degenerate noise. Consider the following Stratonovich
SDE with hypoelliptic diffusion:{

dXt = b(t,Xt)dt+
∑m

i=1 Zi(Xt) ◦ dBi
t,

X0 = x0.
(1.1.11)

Here, Bi’s are independent standard one dimensional Brownian motions. Stratonovich
formulation has a nice control theoretical interpretation according to Stroock-Varadhan
support theorem [SV]: if we denote xh by a solution of the following ODE:

dxht = b(t, xht )dt+
m∑
i=1

Zi(x
h
t )dh

i,
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then the support of the law of a solution Xt of SDE (1.1.11) is the closure of a set
{xh | dh

dt
∈ L2([0, T ],Rd)} in Cα topology. Under Hörmander’s condition [H]

Lie(Z1, · · · , Zm)(x) = TxR
d,

the regularization effect happens in that the law of a solution possesses a smooth
density. See [H] for an analytical approach and [M] for a probabilistic approach,
known as Malliavin Calculus.

It is crucial to understand the qualitative properties of SDE (1.1.11) with the
hypoelliptic diffusion since it appears naturally in various areas of mathematics such
as sub-Riemannian geometry as well as phase space problems. For instance, several
properties such as Log-Sobolev inequalities and the heat kernel estimates for the hy-
poelliptic diffusions have been established in [B, BB, BBBC, BGM]. Therefore, it
is natural and important to develop a qualitative theory for a broad class of hypoel-
liptic diffusions since it provides the understanding of diffusion on sub-Riemannian
manifolds. The first step to accomplish this is to establish the well-posedness result
of hypoelliptic SDEs (1.1.11) for a large class of singular drifts.

In this thesis, we provide a large class of singular drifts b for which SDE (1.1.11)
with hypoelliptic diffusions admits a unique solution. We consider the SDEs with
singular drifts on the homogeneous Carnot group. We assume that vector fields
Z1, · · · , Zm in SDE (1.1.11) are left-invariant and form a basis of the first layer of
stratified Lie algebra. In the terminology of sub-Riemannian geometry, the diffusion
part of SDE (1.1.11) is called the horizontal Brownian motion, and it is hypoelliptic.
We refer to Section 3.1 for more details.

Consider the homogeneous Carnot group G = (RN , ◦, D(λ)), where {D(λ)}λ>0

denotes the dilation structure. Assume that G has a homogeneous dimension Q,
nilpotency r, and Zi’s (1 ≤ i ≤ m) are left invariant vector fields that form a basis of
the first layer of the Lie algebra g (see Section 3.1 for details). Consider the following
Stratonovich SDE on the homogeneous Carnot group G:{

dXt = b(t,Xt)dt+
∑m

i=1 Zi(Xt) ◦ dBi
t,

X0 = x0.
(1.1.12)

Here, G is identified with RN and Zi’s (1 ≤ i ≤ m) are regarded as vector fields on
RN . Also, suppose that two exponents p and q satisfying

2

q
+
Q

p
< 1, 1 < p, q <∞, (1.1.13)

are given, and that the drift b satisfies

b ∈ span{Z1, Z2, · · ·Zm}, (1.1.14)
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ZIb
i ∈ Lq([0, T ], Lp(G)) for 1 ≤ i ≤ m, |I| ≤ r − 1. (1.1.15)

Here, ZIf denotes Zi1 · · ·Zikf (distribution derivatives) for a multi-index I = (i1, · · · , ik),
1 ≤ i1, · · · , ik ≤ m, and bi’s (1 ≤ i ≤ m) are given by the expression:

b =
m∑
i=1

biZi.

Our main result Theorem 1.1.3 below claims that one can construct a (unique)
solution to SDE (1.1.12) for a broad class of singular drifts b.

Theorem 1.1.3. Let (G, ◦, D(λ)) and {Zi|1 ≤ i ≤ m} be as above. Assume that a
singular drift b satisfies the conditions (1.1.14) and (1.1.15) for the exponents p, q
satisfying (1.1.13). Then, for some open set U containing x0, there exists a unique
strong solution Xt to SDE (1.1.12) before the time at which Xt exits U .

Remarkably, Theorem 1.1.3 provides a beautiful intermediate well-posedness re-
sult between ODE case (absence of the randomness) and SDE with the additive noise
case [KR]. Recall that as explained in the introduction, SDE with an additive noise
(σ = Id):

dXt = b(t,Xt)dt+ dBt, X0 = x0, (1.1.16)

admits a unique strong solution if a singular drift b satisfies the condition (1.1.3).
This result can be regarded as a special case of Theorem 1.1.3. In fact, if we consider
the homogeneous Carnot group given by

(G, ◦) = (Rd,+), Zi =
∂

∂xi
(1 ≤ i ≤ d),

with a standard dilation structure, then the homogeneous dimension Q is equal to d
and nilpotency r is equal to 1. Also, SDE (1.1.12) becomes the additive noise SDE.
Therefore, by comparing (1.1.3) with the conditions (1.1.13)-(1.1.15), Theorem 1.1.3
can be regarded as a considerable generalization of the well-posed result of singular
SDEs from the non-degenerate diffusion case r = 1 to the degenerate diffusion cases
r > 1.

In addition, one can formally check that in the limit r → ∞, Theorem 1.1.3
covers the classical well-posed result in the ODE theory. Note that if we write W k,p

for the standard Sololev spaces and Sk,p for the Sobolev spaces with respect to vector
fields {Zi|1 ≤ i ≤ m}:

Sk,p(G) := {f |ZIf ∈ Lp(G), |I| ≤ k},
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then for 1 < p <∞, the following relation holds:

W k,p
loc ⊂ Sk,ploc ⊂ W

k/r,p
loc (1.1.17)

(see [F3]). Also, it is obvious that under the conditions (1.1.14) and (1.1.15), each
Euclidean coordinate of a singular drift b belongs to the space Lq([0, T ], Sr−1,p

loc ). Thus,
using this fact and the relation (1.1.17), one can conclude that

b ∈ Lq([0, T ],W
r−1
r
,p

loc ).

Thus, if the noise becomes more degenerate in the sense that r →∞, it follows that
Q→∞, and thus we have

r − 1

r
→ 1, p→∞,

due to the condition (1.1.13). Since the space L∞([0, T ],W 1,∞
x ) is the class of drifts

for which the corresponding ODE

x′(t) = b(t, x(t)), x(0) = x0

is well-posed, the formal limit r → ∞ in Theorem 1.1.3 covers the classical well-
posedness result in the ODE theory.

Theorem 1.1.3 provides a new perspective to study a large class of singular hy-
poelliptic SDEs. It is an important task to extend this theorem to more general
class of hypoelliptic SDEs. Further interesting directions include the regularity of a
solution and the heat kernel estimate.

Remark 1.1.4. Since Theorem 1.1.3 is a local statement, throughout this thesis, we
assume that each bi has a compact support, which is uniform in t. Note that in the
case r = 1, we have (G, ◦) = (RN ,+) and Zi = ∂

∂xi
for 1 ≤ i ≤ N , which corresponds

to the additive noise case, and this case is considered in [KR]. Therefore, throughout
this paper, we only consider the case r > 1 which corresponds to the degenerate
diffusion case.

The condition (1.1.15) implies that bi(t, ·) ∈ Sr−1,p(G) for t-a.e. Since (r− 1)p ≥
p > Q under the condition (1.1.13) and r > 1, according to the Sobolev embdding
theorem (see Theorem 3.1.4), there is a version of b such that b(t, ·) is continuous for
t-a.e. In this paper, we prove Theorem 1.1.3 for such drifts.

1.2 Organization of thesis
Chapters 2 and 3 include the author’s work of arXiv postings [N1] and [N2],

respectively. Chapter 2 is devoted to the study of singular stochastic differential
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equations possessing elliptic diffusion. A basic theory of stochastic differential equa-
tions and Lorentz spaces will be discussed in Section 2.1. In Section 2.2, we obtain
the existence of weak solution to SDE under the Orlicz-condition. We study the
associated Kolmogorov PDE in Section 2.3. In Section 2.4, uniqueness of the strong
solution is discussed. In Section 2.5, we finally prove the well-posedness of SDEs
under the Orlicz-condition, and construct a stochastic flow.

The singular stochastic differential equations possessing hypoelliptic diffusion are
discussed in Chapter 3. In Section 3.1, we provide a basic hypoelliptic theory. The
Kolmogorov PDE associated with hypoelliptic SDE will be studied in Section 3.2.
Finally, the main result will be proved in Section 3.3.

Throughout this thesis, Bt denotes the standard Brownian motion on a filtered
space (Ω,F ,Ft, P ) with the filtration Ft = σ{Br|0 ≤ r ≤ t}. Also, Bx

t denotes the
Brownian motions starting from x. We denote ∇, ∆, andM by gradient, Laplacian,
and the Hardy-Littlewood maximal function.

For two Banach spaces X and Y , [X, Y ]θ,q denotes a real interpolation of X and
Y with parameters 0 < θ < 1 and q ∈ [1,∞]. Also, f .α g means that f ≤ Cg for
some constant C = C(α). We say f ∼α g provided that f .α g, g .α f . Finally, for
d× d matrix A, |A| denotes a Hilbert-Schmidt norm.
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Chapter 2

Singular stochastic differential
equations with elliptic diffusion

2.1 Preliminaries: stochastic differential equations
and Lorentz spaces

In this section, we explain some key lemmas in the probability theory and some
properties of Lorentz spaces.

Stochastic processes and stochastic differential equations

First, we explain notions of a weak solution and a strong solution to the SDE:

Definition 2.1.1. Consider SDE of the following form:

dXt = bt(X·)dt+ σt(X·)dBt. (2.1.1)

Here, b and σ are progressive functions defined on R+ × C(R+,Rd) equipped with
the canonical filtration Ft = σ{xs|s ≤ t}. For a given filtered probability space
(Ω,F ,Ft, P ), Ft-Brownian motion B, and an F0-measurable random variable ξ, X
is a strong solution to SDE if it is a Ft-adapted process with X0 = ξ solving (2.1.1)
almost surely. For a given initial distribution µ, a weak solution consists of the
filtered probability space (Ω,F ,Ft, P ), Ft-Brownian motion B, and a Ft-adapted
process X with P ◦X−1

0 = µ satisfying (2.1.1) almost surely.
We say that weak existence holds for the initial distribution µ if there exists a weak

solution (Ω,F ,Ft, P, B,X) satisfying (2.1.1). Strong existence is said to hold for the
initial distribution µ if there exists a strong solution X for every (Ω,F ,Ft, P, B, ξ)
satisfying P ◦ ξ−1 = µ.
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We say that strong uniqueness holds for the initial distribution µ provided that
for any solutions X and Y to (2.1.1) on the common filtered probability space with a
given Brownian motion such that X0 = Y0 a.s. with a distribution µ, X = Y almost
surely. Finally, weak uniqueness is said to hold for the initial distribution µ if each
weak solution X has the same distribution.

The following theorem proved by Watanabe and Yamada [YW1, YW2] is crucial
to prove the existence of a strong solution to SDE.

Theorem 2.1.2 (Yamada-Watanabe Principle, [YW1, YW2]). Consider the fol-
lowing SDE:

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (2.1.2)

with a given initial condition. Suppose that a weak solution to (2.1.2) exists and a
strong solution to (2.1.2) is unique. Then, the strong existence and weak uniqueness
hold as well.

The celebrated Itô formula states how the diffusion process is changed under the
transformation: if the one-dimensional process Xt satisfy

dXt = µtdt+ σtdBt,

then

df(t,Xt) = (ft + µtfx +
1

2
σ2
t fxx)dt+ σtfxdBt.

The similar result holds in the high dimension as well.
The following lemma is crucially used throughout this thesis.

Lemma 2.1.3 ([P]). Let Xt (0 ≤ t ≤ T ) be a nonnegative stochastic process adapted
to Ft. Assume that for any 0 ≤ s ≤ t ≤ T ,

E
[ ∫ t

s

Xrdr
∣∣∣Fs] ≤ f(s, t)

holds for some deterministic function f(s, t) satisfying

• f(s1, t1) ≤ f(s2, t2) for [s1, t1] ⊂ [s2, t2],

• limh→0+ sup0≤s≤t≤T,|t−s|≤h f(s, t) = α ≥ 0.

Then, for arbitrary c < α−1 (when α = 0, α−1 is defined by α−1 :=∞),

E exp
[
c

∫ T

0

Xrdr
]
<∞. (2.1.3)
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Lorentz spaces

In this section, we study some useful properties about the Lorentz spaces. The
concept of Lorentz spaces is introduced in [L]. These spaces can be regarded as
generalizations of the standard Lebesgue Lp(X, dµ) spaces. In the case when q = p,
Lp,p coincides with the standard Lp spaces, and when q = ∞, Lp,∞ coincides with
the weak Lp spaces. Lorentz spaces are quasi-Banach spaces in the sense that for
some constant c = c(p, q) > 1,

‖f + g‖Lp,q ≤ c(‖f‖Lp,q + ‖g‖Lp,q) (2.1.4)

for any f, g ∈ Lp,q, and it is complete with respect to ‖·‖Lp,q . Also, Lorentz spaces
are real interpolation spaces between two Lp spaces:

(L1, L∞)θ,q = Lp,q

with 1
p

= 1− θ.

Remark 2.1.4. From the definition of Lorentz spaces, we can easily check that the
following property holds: if p <∞, then for any ε > 0, there exists δ > 0 such that

‖f‖Lp,q(A) < ε

for all measurable set A ⊆ X satisfying µ(A) < δ. Also, one can check that for any
two disjoint measurable sets A,B ⊆ X and f ∈ Lp,q(X),

‖f‖Lp,q(A) + ‖f‖Lp,q(B) ∼p,q ‖f‖Lp,q(A∪B) .

The following lemma is useful throughout this thesis, which follows from the
direct computation.

Lemma 2.1.5. Let us denote P (t, x) by the standard heat kernel. Then, ∇P ∈
Lq,∞(R, Lpx) for any exponents p, q ∈ (1,∞) satisfying 2

q
+ d

p
= d+ 1.

There are counterparts of Hölder’s and Young’s inequalities for the Lorentz spaces.
Hölder’s inequality for the Lorentz spaces claims that for 1 ≤ p1, p2, p < ∞ , 0 <
q1, q2, q ≤ ∞ satisfying

1

p
=

1

p1

+
1

p2

,
1

q
=

1

q1

+
1

q2

,

we have

‖fg‖Lp,q(X,dµ) ≤ C(p, q, p1, q1, p2, q2) ‖f‖Lp1,q1 (X,dµ) ‖g‖Lp2,q2 (X,dµ) .
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O’Neil’s convolution inequality claims that for 1 < p1, p2 < ∞, 0 < q1, q2 < ∞
satisfying

1 +
1

p
=

1

p1

+
1

p2

,
1

q
=

1

q1

+
1

q2

,

we have

‖f ∗ g‖Lp,q(Rd,dx) ≤ C(p, q, p1, q1, p2, q2) ‖f‖Lp1,q1 (Rd,dx) ‖g‖Lp2,q2 (Rd,dx) .

One can extend O’Neil’s convolution inequality to the mixed-norm Lorentz spaces.
We in particular consider the case p = q =∞ for our purposes.

Proposition 2.1.6. Suppose that p1, p2, q1, q2 ∈ (1,∞) and r1, r2, s1, s2 ∈ [1,∞]
satisfy

1

p1

+
1

p2

=
1

q1

+
1

q2

= 1,
1

r1

+
1

r2

=
1

s1

+
1

s2

= 1.

Then, for any f ∈ Lq1,r1(R, Lp1,s1(Rd)) and g ∈ Lq2,r2(R, Lp2,s2(Rd)),

‖f ∗ g‖L∞t,x ≤ C(p1, p2, q1, q2, r1, r2, s1, s2) ‖f‖Lq1,r1t (L
p1,s1
x ) ‖g‖Lq2,r2t (L

p2,s2
x ) .

Proof. Note that

|f ∗ g|(t, x) ≤
∫
R

∫
Rd
|f(s, y)g(t− s, x− y)|dyds

= ‖f(·, ·)g(t− ·, x− ·)‖L1
t (L

1
x) .

Since ‖g‖Lq2,r2t (L
p2,s2
x ) is invariant under the operations g(·) 7→ g(c + ·) and g(·) 7→

g(−·), it suffices to prove that

‖fg‖L1
t,x
≤ C ‖f‖Lq1,r1t (L

p1,s1
x ) ‖g‖Lq2,r2t (L

p2,s2
x ) .

Using Hölder’s inequality for the Lorentz spaces, we obtain

‖fg‖L1
t,x

=

∫
R

∫
Rd
|f |(t, x)|g|(t, x)dxdt

≤ C

∫
R
‖f(t, ·)‖Lp1,s1x

‖g(t, ·)‖Lp2,s2x
dt

≤ C ‖f‖Lq1,r1t (L
p1,s1
x ) ‖g‖Lq2,r2t (L

p2,s2
x ) .
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Finally, we state the fixed point theorem for the quasi-Banach space.

Proposition 2.1.7. Suppose that X is a quasi-Banach space, and for some c > 1,

‖x+ y‖ ≤ c(‖x‖+ ‖y‖)

hold for any x, y ∈ X. Also, assume that for some θ > 0 satisfying cθ < 1, a map
T : X → X satisfy that for any x, y ∈ X,

|T (x)− T (y)| ≤ θ|x− y|.

Then, T has a unique fixed point.

Proof. Choose an arbitrary x0 ∈ X and let us define xn := T (xn−1) inductively for
n ≥ 1. It is obvious that

d(xn+1, xn) ≤ θnd(x1, x0).

Using a quasi-norm property of X, for any m > n,

d(xm, xn) ≤ cd(xm, xn+1) + cd(xn+1, xn)

≤ c2d(xm, xn+2) + c2d(xn+2, xn+1) + cd(xn+1, xn)

≤ · · ·

≤ cm−(n+1)d(xm, xm−1) +

m−(n+1)∑
k=1

ckd(xn+k, xn+k−1)

≤
[
cm−(n+1)θm−1 +

m−(n+1)∑
k=1

ckθn+k−1
]
d(x1, x0)

< ((cθ)m−1c−n + (1− cθ)−1c−(n−1))d(x1, x0).

This implies that {xn} is a Cauchy sequence, thus it converges to a limit x∗ in X
since (X, d) is complete. Since T is continuous, we can readily check that x∗ is a
fixed point.

Uniqueness follows immediately.

Some useful lemmas

In this section, we introduce some useful lemmas frequently used in the thesis.
First, we introduce the notion of Hardy-Littlewood maximal function.
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Definition 2.1.8. For the locally integrable function f : Rd → R, the Hardy-
Littlewood maximal function is defined as follows.

Mf(x) = sup
r

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy.

Here, B(x, r) is the ball of radius r centered at x, and |B(x, r)| denotes the d-
dimensional Lebesgue measure of B(x, r).

The celebrated Hardy-Littlewood maximal inequality states that M is bounded
as a sublinear operator from the Lp for any p > 1. In other words,

‖Mf‖p ≤ Cp,d ‖f‖p

with some constant Cp,d > 0.
Also, the following weak (1,1)-type estimate holds as well:

|{Mf > λ}| < Cd
λ
‖f‖1 .

The aforementioned Hardy-Littlewood maximal inequality can be used to derive
Lebesgue differentiation theorem and Rademacher differentiation theorem.

In the next proposition, we state a useful inequality involving the Hardy-Littlewood
maximal operatorM. It provides a way to control the difference |u(x)− u(y)|.

Proposition 2.1.9. There exists a constant N = N(d) such that the following prop-
erty holds: for any u ∈ C∞(Rd) and x, y ∈ Rd,

|u(x)− u(y)| ≤ N |x− y|(M|∇u|(x) +M|∇u|(y)).

The last proposition is a useful criteria to derive a global bijectivity of the map,
which is called the Hadamard lemma.

Proposition 2.1.10. Suppose that a Ck(k ≥ 1) map F : Rd → Rd satisfies the
following properties:
(i) ∇F (x) is non-singular for every x ∈ Rd,
(ii) lim|x|→∞ |F (x)| =∞.
Then, F is a Ck diffeomorphism from Rd to itself.

2.2 Existence of a weak solution to SDE
From now on, we construct a unique strong solution to SDE (1.1.2) under the

Orlicz-critical condition (1.1.10). According to the Yamada-Watanabe principle
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[YW1, YW2], it reduces to establish the existence of a weak solution and the
uniqueness of a strong solution to SDE. We prove both of them separately under the
Orlicz-critical condition (1.1.10).

In this section, we construct a weak solution to SDE under the Orlicz-critical
condition (1.1.10). First, we recall the following key lemma by Khasminskii [K1]:

Lemma 2.2.1. Suppose that a nonnegative function f satisfies

sup
x∈Rd

E
∫ T

0

f(s, Bx
s )ds = M < 1.

Then, we have

sup
x∈Rd

E e
∫ T
0 f(s,Bxs )ds ≤ 1

1−M
.

The quantity supx∈Rd E
∫ T

0
f(s, Bx

s )ds can be controlled for a large class of func-
tions:

Proposition 2.2.2. Suppose that two exponents p, q ∈ (1,∞) satisfying 2
q

+ d
p

= 2

are given. Then, for any f ∈ Lq,1([0, T ], Lpx),

sup
x∈Rd

E
∫ T

0

f(s, Bx
s )ds < C ‖f‖Lq,1([0,T ],Lpx)

holds for some constant C = C(p, q) independent of f and T .

Proof. Let p′, q′ be the conjugate exponents of p, q, respectively. Then,

E
∫ T

0

f(s, Bx
s )ds =

∫ T

0

∫
Rd

(2πs)−
d
2 f(s, x+ y)e−

|y|2
2s dyds

≤
∫ T

0

(2πs)−
d
2 ‖f(s, ·)‖Lpx

∥∥∥∥e− |·|22s

∥∥∥∥
Lp
′
x

ds

= K

∫ T

0

‖f(s, ·)‖Lpx s
d/2p′−d/2ds

≤ C ‖f‖Lq,1([0,T ],Lpx)

∥∥∥s− d2 (1− 1
p′ )
∥∥∥
Lq′,∞([0,T ])

= C ‖f‖Lq,1([0,T ],Lpx) .

Here, we used the fact that ∥∥∥∥e− |·|22s

∥∥∥∥
Lp
′
x

= K · s
d

2p′
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for some universal constant K. Also, we applied Hölder’s inequality for the Lorentz
spaces in the fourth line. In addition, we used the fact d

2
(1 − 1

p′
) = 1

q′
to conclude

that ∥∥∥s− d2 (1− 1
p′ )
∥∥∥
Lq′,∞([0,T ])

= 1.

The preceding proposition, combined with the Markov property and Lemma 2.2.1,
implies the following proposition.

Proposition 2.2.3. Suppose that f ∈ Lq,1([0, T ], Lpx) for p, q ∈ (1,∞) satisfying
2
q

+ d
p

= 2. Then, the following quantity is finite:

sup
x∈Rd

E e
∫ T
0 f(s,Bxs )ds. (2.2.1)

Proof. Without loss of generality, we assume that f ≥ 0. In order to apply Lemma
2.2.1, let us divide the interval [0, T ] into several intervals [Ti−1, Ti], 0 = T0 < T1 <
· · · < Tk < Tk+1 = T , such that

sup
x∈Rd

E
∫ Ti−Ti−1

0

f(Ti−1 + s, Bx
s )ds ≤ α

holds for some α < 1. Applying Lemma 2.2.1, we obtain

sup
x∈Rd

E e
∫ T
0 f(s,Bxs )ds = sup

x∈Rd
E e

∫ T1
0 f(s,Bxs )ds . . . e

∫ T
Tk
f(s,Bxs )ds

= sup
x∈Rd

E
[
e
∫ T1
0 f(s,Bxs )ds . . . e

∫ Tk
Tk−1

f(s,Bxs )ds
E(e

∫ T
Tk
f(s,Bxs )ds|FTk)

]
= sup

x∈Rd
E
[
e
∫ T1
0 f(s,Bxs )ds . . . e

∫ Tk
Tk−1

f(s,Bxs )ds
E e

∫ T−Tk
0 f(Tk+s,Bys )ds|y=BxTk

]
≤ 1

1− α
sup
x∈Rd

E e
∫ T1
0 f(s,Bxs )ds . . . e

∫ Tk
Tk−1

f(s,Bxs )ds

≤ . . .

≤ (
1

1− α
)k+1.

Now, as an application of Girsanov theorem, one can derive the existence of
a weak solution. We first briefly recall Girsanov theorem, which describes how the
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stochastic processes are transformed under the change of underlying probability mea-
sure. Suppose that Bt is a Brownian motion with respect to the measure P, and Zt
is a measurable process adapted to the natural filtration of the Brownian motion Bt.
Then,

Bt − [B,Z]t

is a Brownian motion under the new measure Q given by
dQ
dP

∣∣∣
Ft

= exp(Zt −
1

2
[Z]t).

Now, we briefly state Novikov condition, which provide a sufficient condition for
a process, which is the Radon-Nikodym derivative in Girsanov theorem, to be a
martingale. Under the same assumption as above, assume that

Ee
1
2

∫ T
0 |Zt|

2dt <∞

is satisfied. Then, the process

t 7→ e
∫ t
0 ZsdBs−

1
2

∫ t
0 Z

2
sds

is a martingale under the measure P.
We are now ready to prove the existence of weak solution.

Theorem 2.2.4. Suppose that b satisfies the condition (1.1.10). Then, SDE (1.1.12)
admits a weak solution. More precisely, we can construct processes Xt and Bt for
0 ≤ t ≤ T on some filtered space (Ω,F ,Ft, P ) such that Bt is a standard Ft-Brownian
motion and almost surely,

Xt = x+

∫ t

0

b(s,Xs)ds+Bt (2.2.2)

holds for all 0 ≤ t ≤ T .

Proof. LetXt be a Brownian motion starting from x on the probability space (Ω,G, Q),
equipped with a natural filtration Ft. Then, using Proposition 2.2.3, one can con-
clude that

αt = exp
[ ∫ t

0

b(s,Xs)dXs −
1

2

∫ t

0

|b(s,Xs)|2ds
]

is a Q-martingale since Novikov condition is satisfied. Thus, a process defined by

Bt = Xt −
∫ t

0

b(s,Xs)ds− x

is a Ft-Brownian motion starting from the origin with respect to the new probability
measure dP (w) = αT (w)dQ(w) on FT due to Girsanov theorem.
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2.3 Kolmogorov elliptic PDE
In this section, we study the following Kolmogorov PDE:{

ut − 1
2
∆u+ b · ∇u+ f = 0, 0 ≤ t ≤ T,

u(0, x) = 0,
(2.3.1)

for singular functions b and f that belong to the Orlicz-critical space (1.1.10). This
PDE plays a crucial role to prove the strong uniqueness of SDE since the infinitesimal
generator of SDE (1.1.2) is given by

Lu =
1

2
∆u+ b · ∇u.

The PDE (2.3.1) is well-understood when singular coefficients b and f belong
to the subcritical Lebesgue space (1.1.3). On the other hand, PDE (2.3.1) is not
well-understood if b and f belong to the Orlicz-critical space due to the lack of nice
embedding properties of the mixed-norm parabolic Sobolev spaces at the critical
regime.

In this section, we obtain the parabolic Sobolev embedding properties when a
slightly stronger Lorentz integrability condition is imposed on the time variable. Also,
we establish the well-posedness result of PDE (2.3.1) with Orlicz-critical coefficients,
and then obtain a priori estimate.

For 1 < p, q <∞, and S ≤ T , let us define a function space Xq,p([S, T ]) to be a
collection of functions satisfying

u, ut,∇u,∇2u ∈ Lq,1([S, T ], Lpx).

Note that derivatives are interpreted as a distribution sense. Its norm is defined by

‖u‖Xq,p([S,T ])

:= ‖u‖Lq,1([S,T ],Lpx) + ‖ut‖Lq,1([S,T ],Lpx) + ‖∇u‖Lq,1([S,T ],Lpx) +
∥∥∇2u

∥∥
Lq,1([S,T ],Lpx)

.

One can easily check thatXq,p([S, T ]) is a quasi-Banach space. The following theorem
establishes the well-posedness of PDE (2.3.1).

Theorem 2.3.1. Assume that b satisfies (1.1.10). Then, there exists T0 ≤ T sat-
isfying the following properties: for any f ∈ Lq,1([0, T0], Lpx), there exists a unique
solution u ∈ Xq,p([0, T0]) to (2.3.1) for 0 ≤ t ≤ T0, and the estimate

‖u‖Xq,p([0,T0]) ≤ C ‖f‖Lq,1([0,T0],Lpx) (2.3.2)

holds for some constant C depending only on ‖b‖Lq,1([0,T0],Lpx).
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The first step to establish this theorem is to obtain an a priori estimate for the
Lq,1([0, T ], Lpx)-norm of the following heat equation:{

ut − 1
2
∆u = f, 0 ≤ t ≤ T,

u0 = 0.
(2.3.3)

Proposition 2.3.2. For any p, q ∈ (1,∞) and f ∈ Lq,1([0, T ], Lpx), there exists a
unique solution u ∈ Xq,p([0, T ]) to PDE (2.3.3). Also, there exists some constant
C = C(p, q) independent of T such that for any f ∈ Lq,1([0, T ], Lpx),∥∥∇2u

∥∥
Lq,1([0,T ],Lpx)

≤ C ‖f‖Lq,1([0,T ],Lpx) , (2.3.4)

‖u‖Xq,p([0,T ]) ≤ C max{1, T} ‖f‖Lq,1([0,T ],Lpx) . (2.3.5)

Proof. Let us first prove the estimate (2.3.4). For f ∈ C∞c ([0, T ]×Rd), let us define

u(t) =

∫ t

0

Tt−sf(s)ds,

where Tt denotes the semigroup generated by 1
2
∆. Obviously, u is a classical solution

to the heat equation. According to [K2], for any p, q ∈ (1,∞), there exists some
constant C = C(p, q) independent of T such that for any f ∈ Lq([0, T ], Lpx),∥∥∇2u

∥∥
Lq([0,T ],Lpx)

≤ C ‖f‖Lq([0,T ],Lpx) .

Note that Lq,1t (Lpx) can be realized as a real interpolation space of two mixed-norm
Lebesgue spaces: for 0 < θ < 1 satisfying

1

q
=

1− θ
q1

+
θ

q2

,

we have

[Lq1([0, T ], Lpx), L
q2([0, T ], Lpx)]θ,1 = Lq,1([0, T ], Lpx),

Thus, we obtain the estimate (2.3.4). Also, using the estimate (2.3.4), for some
constant C1 = C1(p, q) independent of T ,

‖ut‖Lq,1([0,T ],Lpx) ≤ C1 ‖f‖Lq,1([0,T ],Lpx) .

Using Minkowski’s integral inequality, Hölder’s inequality and the trivial inequality

u(t, x) ≤
∫ T

0

|ut(s, x)|ds,
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it follows that for some constant C2 = C2(p, q) independent of T ,

‖u‖Lq,1([0,T ],Lpx) ≤ C2T ‖f‖Lq,1([0,T ],Lpx) .

Furthermore, using the interpolation inequality

‖∇u‖Lpx . ‖u‖Lpx +
∥∥∇2u

∥∥
Lpx

and the aforementioned results, we readily obtain (2.3.5).
The existence of a solution u ∈ Xq,p([0, T ]) to the heat equation (2.3.3) can

be established via a standard approximation argument and the estimate (2.3.5).
Uniqueness immediately follows from the estimate (2.3.5).

In order to obtain (2.3.2) for the PDE (2.3.1), we need to control the first order
term ‖b · ∇u‖Lq,1([0,T ],Lpx). In order to accomplish, we need the embedding theorem for
the mixed-norm parabolic Sobolev spaces. This type of Sobolev embedding theorem
was obtained in [K1]: ∇u is bounded and Hölder continuous in (t, x) provided that

ut,∇2u ∈ Lq([0, T ], Lpx)

for 1 < p, q <∞ satisfying the subcritical condition 2
q

+ d
p
< 1.

However, in general, ∇u may not be bounded under the critical condition 2
q

+
d
p

= 1. It turns out that when a slightly stronger Lorentz integrability condition
is imposed on the time variable, the boundedness of ∇u can be established at the
critical regime 2

q
+ d

p
= 1:

Proposition 2.3.3. Suppose that u ∈ Xq,p([0, T ]) with u(0) = 0, and the exponents
1 < p, q <∞ satisfy the condition:

2

q
+
d

p
= 1.

Then, we have ∇u ∈ L∞([0, T ]× Rd). Also, there exists some constant C = C(p, q)
independent of T such that for any u ∈ Xq,p([0, T ]),

‖∇u‖L∞([0,T ]×Rd) ≤ C(‖ut‖Lq,1([0,T ],Lpx) +
∥∥∇2u

∥∥
Lq,1([0,T ],Lpx)

). (2.3.6)

Proof. Let us define f := ut−∆u. One can represent ∇u in terms of the heat kernel:

∇u(t, x) =

∫ t

0

∫
Rd
∇(

1

sd/2
e−|y|

2/4s) · f(t− s, x− y)dyds.
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If we denote p′, q′ by the conjugate exponents of p, q, respectively, then according to
Lemma 2.1.5, we have

∇(
1

td/2
e−|x|

2/4t) ∈ Lq′,∞([0, T ], Lp
′

x ).

Thus, using Proposition 2.1.6,

‖∇u‖L∞([0,T ]×Rd) ≤ C

∥∥∥∥∇(
1

td/2
e−|x|

2/4t)

∥∥∥∥
Lq′,∞([0,T ],Lp

′
x )

‖f‖Lq,1([0,T ],Lpx)

≤ C(p, q)(‖ut‖Lq,1([0,T ],Lpx) +
∥∥∇2u

∥∥
Lq,1([0,T ],Lpx)

).

Note that the estimate Proposition 2.1.6 is global in time, whereas the above in-
equality is integrated only over [0, T ]. This subtle problem can be easily overcome
by extending two functions g(s, y) = ∇( 1

sd/2
e−|y|

2/4s) and f(s, y) to the whole real
line by setting f, g = 0 outside [0, T ].

Now, we are ready to study the Kolmogorov PDE (2.3.1).

Proof of Theorem 2.3.1. We use a fixed point theorem for the quasi-Banach spaces
to prove the existence of a solution. For u ∈ Xq,p([0, T ]), we have ∇u ∈ L∞([0, T ]×
Rd) according to Proposition 2.3.3. Therefore, for b, f ∈ Lq,1([0, T ], Lpx), we have
f + b · ∇u ∈ Lq,1([0, T ], Lpx). Using Proposition 2.3.2, define w = F (u) ∈ Xq,p([0, T ])
to be a unique solution of the following PDE:{

wt − 1
2
∆w = −(f + b · ∇u), 0 ≤ t ≤ T,

w(0, x) = 0.

Using the estimates (2.3.5) and (2.3.6), for some constants C,C1 independent of T ,

‖F (u1)− F (u2)‖Xq,p([0,T ]) ≤ C max{1, T} ‖b · ∇(u1 − u2)‖Lq,1([0,T ],Lpx)

≤ C max{1, T} ‖b‖Lq,1([0,T ],Lpx) · ‖∇(u1 − u2)‖L∞([0,T ]×Rd)

≤ C1 max{1, T} ‖b‖Lq,1([0,T ],Lpx) · ‖(u1 − u2)‖Xq,p([0,T ]) .

Let us denote c = c(q, 1) > 1 by a constant from (2.1.4), and choose a sufficiently
small T0 satisfying

‖b‖Lq,1([0,T0],Lpx) <
1

2cC1 max{1, T0}
.

Then, a map F : Xq,p([0, T0])→ Xq,p([0, T0]) satisfies

|F (x)− F (y)| < 1

2c
|x− y|.
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Therefore, applying a fixed point theorem for the quasi-Banach spaces, there exists
u ∈ Xq,p([0, T0]) satisfying PDE for 0 ≤ t ≤ T0.

Now, let us prove the estimate (2.3.2). Using (2.3.5) and (2.1.4), for some con-
stants C,C1,

‖u‖Xq,p([0,T0]) ≤ C max{1, T0} ‖f + b · ∇u‖Lq,1([0,T0],Lpx)

≤ C1 max{1, T0}(‖f‖Lq,1([0,T0],Lpx) + ‖b‖Lq,1([0,T0],Lpx) ‖u‖Xq,p([0,T0])).

Therefore, for sufficiently small T0 satisfying

‖b‖Lq,1([0,T0],Lpx) <
1

C1 max{1, T0}
, (2.3.7)

we obtain the estimate (2.3.2). Note that a constant C in (2.3.2) can be chosen
depending only on ‖b‖Lq,1([0,T0],Lpx).

Remark 2.3.4. From the proof of Theorem 2.3.1, one can check that for any b with
sufficiently small ‖b‖Lq,1([0,T ],Lpx), there exists a unique solution u to PDE (2.3.1) for
0 ≤ t ≤ T satisfying:

‖u‖Xq,p([0,T ]) ≤ C(‖b‖Lq,1([0,T ],Lpx) , p, q) ‖f‖Lq,1([0,T ],Lpx) .

For these b’s, one can easily derive a stability property of PDE (2.3.1). More precisely,
there exist a constant C0 depending on T satisfying the following statement: for any
bi and fi, i = 1, 2, satisfying

‖fi‖Lq,1([0,T ],Lpx) , ‖bi‖Lq,1([0,T ],Lpx) < C0,

define ui to be a solution to PDE (2.3.1) with bi and fi in place of b and f , respectively.
Then, for some constant C̄ > 1 depending on C0,

‖u1 − u2‖Xq,p([0,T ]) , ‖u1 − u2‖L∞([0,T ]×Rd) , ‖∇(u1 − u2)‖L∞([0,T ]×Rd)

≤ C̄

2
(‖b1 − b2‖Lq,1([0,T ],Lpx) + ‖f1 − f2‖Lq,1([0,T ],Lpx)). (2.3.8)

In particular, when fi = bi, the RHS of (2.3.8) can be written as C̄ ‖b1 − b2‖Lq,1([0,T ],Lpx).

Assume that b satisfies (1.1.10), and T0 is from Theorem 2.3.1. According to
Theorem 2.3.1, there exists a unique solution ũ ∈ Xq,p([0, T0]) to the following PDE:{

ut + 1
2
∆u+ b · ∇u+ b = 0, 0 ≤ t ≤ T0,

u(T0, x) = 0.
(2.3.9)

The following proposition plays an essential role in Section 2.4.
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Proposition 2.3.5. There exists a sufficiently small T1 such that the following holds:
if ũ is a solution to (2.3.9) with T1 in place of T0, then there exists a version u of ũ,
which is continuous in (t, x), such that Φ(t, x) := x + u(t, x) satisfies the following
conditions:
(i) Φ(t, ·) is a C1 diffeomorphism from Rd to itself for each 0 ≤ t ≤ T1.
(ii) For each 0 ≤ t ≤ T1,

1

2
≤ ‖∇Φ(t, ·)‖L∞(Rd) ≤ 2,

1

2
≤
∥∥∇Φ−1(t, ·)

∥∥
L∞(Rd)

≤ 2.

Here, we say u1 is a version of u2 if u1 = u2 for (t, x)-a.e.

Proof. Let us first prove that there exist a version u of ũ which is C1 in x. Choose
a smooth approximation un of ũ in Xq,p([0, T0]) norm. Using Proposition 2.3.3,

‖∇(un − um)‖L∞t,x([0,T0]×Rd) ≤ C ‖un − um‖Xq,p([0,T0]) .

Therefore, ∇un converge uniformly to some continuous function w. Since un converge
uniformly to some continuous function u which is a version of ũ, u is differentiable
in x and its spatial derivative is w. Since w is continuous, u is C1 in x.

Now, let us show that for sufficiently small T1, ∇Φ(t, x) is non-singular for each
0 ≤ t ≤ T1. Note that using the estimates (2.3.5) and (2.3.6), for some constants
C,C1, C2 independent of T ,

‖∇u‖L∞([0,T ]×Rd) ≤ C ‖u‖Xq,p([0,T ])

≤ C1 max{1, T} ‖b · ∇u+ b‖Lq,1([0,T ],Lpx)

≤ C2 max{1, T}(‖b‖Lq,1([0,T ],Lpx) ‖∇u‖L∞([0,T ]×Rd) + ‖b‖Lq,1([0,T ],Lpx)).

Therefore, if we choose sufficiently small T1 so that ‖b‖Lq,1([0,T1],Lpx) is small enough,
then

‖∇u‖L∞([0,T1]×Rd) ≤
1

2
.

This immediately implies the first inequality in the condition (ii). From this, we
obtain the non-singularity of ∇Φ(t, ·), and lim|x|→∞ |Φ(t, x)| =∞ for each t ∈ [0, T1].
Therefore, according to the Hadamard’s Lemma, Φ(t, ·) is a global diffeomorphism
for each t ∈ [0, T1], which concludes the proof of the first property.

The second inequality in (ii) follows from the identity

∇Φ−1(t, x) = [∇Φ(t,Φ−1(t, x))]−1 = [I +∇u(t,Φ−1(t, x))]−1,
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and the fact

sup
t∈[0,T1]

‖∇u‖L∞(Rd) ≤
1

2
.

Throughout this thesis, we use the notations u(t, x), Φ(t, x), and T1 from the
above Proposition.

2.4 Uniqueness
In this section, we prove the uniqueness of a strong solution to SDE (1.1.2) up to

time T1. The following proposition claims that a strong solution to (1.1.2) yields a
new strong solution to the auxiliary SDE which contains no drift terms. It is called
the Zvonkin’s transformation method [Z3].

Proposition 2.4.1. Suppose that b satisfies (1.1.10), and Xt is a strong solution to
SDE (1.1.2) up to time T1. Then, Yt defined by Yt = Φ(t,Xt) is a strong solution to
the following SDE: {

dYt = σ̃(t, Yt)dBt, 0 ≤ t ≤ T1,

Y0 = Φ(0, x) = y,
(2.4.1)

for σ̃ defined by
σ̃(t, x) = I +∇u(t,Φ−1(t, x)). (2.4.2)

Proof. One can check that the standard Itô’s formula

f(t,Xt)− f(0, X0) =

∫ t

0

(ft + b∇f +
1

2
∆f)(s,Xs)ds+

∫ t

0

∇f(s,Xs)dBs

holds for any functions f ∈ Xq,p([0, T ]) with p, q satisfying 2
q

+ d
p

= 1. Thus, applying
Itô’s formula to a function u, we have

u(t,Xt) = u(0, X0) +

∫ t

0

(ut + b · ∇u+
1

2
∆u)(s,Xs)ds+

∫ t

0

∇u(s,Xs)dBs

= u(0, X0)−
∫ t

0

b(s,Xs)ds+

∫ t

0

∇u(s,Xs)dBs

= u(0, X0)−Xt +X0 +Bt +

∫ t

0

∇u(s,Xs)dBs.
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Therefore, we obtain

Yt − Y0 = Φ(t,Xt)− Φ(t,X0)

=

∫ t

0

∇u(s,Xs)dBs +Bt

=

∫ t

0

∇u(s,Φ−1(s, Ys))dBs +Bt.

Let us call SDE (2.4.1) by a conjugated SDE. Before proving the strong uniqueness
of SDE (1.1.2), we prove the following two lemmas which will be used frequently.

Lemma 2.4.2. For any λ1, λ2 ∈ R and b1, b2 satisfying the condition

b1, b2 ∈ Lq,1([0, T ], Lpx) for
2

q
+
d

p
= 1, 1 < p, q <∞,

we have

sup
x

E exp
[
λ1

∫ T

0

b1(s, Bx
s )dBx

s + λ2

∫ T

0

b2
2(s, Bx

s )ds
]
<∞. (2.4.3)

Proof. Let us first briefly recall the basic property of Doléans-Dade exponential.
Recall that Doléans-Dade exponential E (M)t of a semimartingale Mt is defined to
be the solution Zt to the stochastic differential equation

dZt = ZtdMt

with initial condition Z0 = 1. Applying Itô formula to the function f(Z) = logZ,
we have

d logZt =
1

Zt
dZt −

1

2Z2
t

d[Z]t = dMt −
1

2
d[M ]t.

Taking exponential, we obtain

Zt = exp(Mt −M0 −
1

2
[M ]t).

In particular, when Mt is given by

Mt =

∫ t

0

NtdBt,
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Doléans-Dade exponential of Mt is given by

E (M)t = exp(

∫ t

0

NsdBs −
1

2

∫ t

0

N2
s ds).

The crucial property of Doléans-Dade exponential is that E (M)t is a local martingale
if Mt is a local martingale.

Now, let us prove the lemma. By Hölder’s inequality,

E exp
[
λ1

∫ T

0

b1(s, Bx
s )dBx

s + λ2

∫ T

0

b2
2(s, Bx

s )ds
]

≤
[
EE
[ ∫ T

0

2λ1b1(s, Bx
s )dBx

s

]]1/2[
E exp

[ ∫ T

0

(2λ2
1b

2
1 + 2λ2b

2
2)(s, Bx

s )ds
]]1/2

.

(2.4.4)

Since b1, b2 ∈ Lq,1([0, T ], Lpx), it follows that b2
1, b

2
2 ∈ Lq/2,1/2([0, T ], L

p/2
x ). Letting

q̃ = q
2
and p̃ = p

2
, we have b2

1, b
2
2 ∈ Lq̃,1([0, T ], Lp̃x) with 2

q̃
+ d

p̃
= 2. Therefore, the

second term of (2.4.4) is finite according to Proposition 2.2.3. The first term of
(2.4.4) is equal to 1 since Novikov’s condition is satisfied.

Lemma 2.4.3. Let Xt be a solution to SDE (1.1.12) with b satisfying the condition
(1.1.10). Then, for arbitrary λ ∈ R and f ∈ Lq,1([0, T ], Lpx),

sup
x

E exp
[
λ

∫ T

0

f 2(s,Xs)ds
]
<∞. (2.4.5)

Proof. By Girsanov formula, LHS of (2.4.5) equals to

sup
x

E
[

exp
[
λ

∫ T

0

f 2(s, Bx
s )ds

]
· exp

[ ∫ T

0

b(s, Bx
s )dBx

s −
1

2

∫ T

0

b2(s, Bx
s )ds

]]
.

Since both b and f belong to Lq,1([0, T ], Lpx) with 2
q

+ d
p

= 1, Hölder’s inequality and
Lemma 2.4.2 conclude the proof. In fact, by (2.4.4),

E exp
[
λ

∫ T

0

f 2(s,Xs)ds
]
≤
[
E exp

[ ∫ T

0

(b2 + 2λf 2)(s, Bx
s )ds

]]1/2

. (2.4.6)

Remark 2.4.4. It is proved in [FF3, F] that under the subcritical condition (1.1.3),
quantities (2.4.3) and (2.4.5) can be controlled by ‖b‖Lq([0,T ],Lpx). At the Orlicz-critical
regime (1.1.10), these quantities can be controlled by ‖b‖Lq,1([0,T ],Lpx) in some weak
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sense. In fact, one can show that there exists a constant K = K(p, q, λ1, λ2) and
functions C1, C2 : R→ R such that the following holds: for any f and b satisfying

‖f‖Lq,1([0,T ],Lpx) , ‖b‖Lq,1([0,T ],Lpx) < K,

we have

sup
x

E exp
[
λ1

∫ T

0

b(s, Bx
s )dBx

s + λ2

∫ T

0

b2(s, Bx
s )ds

]
≤ C1(K),

and

sup
x

E exp
[
λ1

∫ T

0

f(s,Xs)dB
x
s + λ2

∫ T

0

f 2(s,Xs)ds
]
≤ C2(K). (2.4.7)

If we denote Xµ
t by a solution to SDE (1.1.2) with the initial distribution µ, then

(2.4.7) implies that

sup
µ

E exp
[
λ1

∫ T

0

f(s,Xµ
s )dBx

s + λ2

∫ T

0

f 2(s,Xµ
s )ds

]
≤ C2(K) (2.4.8)

(sup takes over all of the probability measures on Rd). This is because if we denote
Px by a law of {Xt | 0 ≤ t ≤ T} which is a solution of (1.1.2) starting from x, then
Pµ =

∫
Pxdµ(x) is a law of {Xµ

t | 0 ≤ t ≤ T}.
Also, by letting λ1 = 0 and λ2 = 1 in Lemma 3.1.7 and using the inequality

1 + x ≤ ex, one can conclude that there exists a function C : R → R such that for
any f and b satisfying

‖f‖Lq,1([0,T ],Lpx) , ‖b‖Lq,1([0,T ],Lpx) < K(p, q, 0, 1),

we have

sup
x

E
∫ T

0

f 2(s,Xs)ds < C(K).

Now, we are ready to prove the strong uniqueness of SDE (1.1.2) under the
condition (1.1.10). Proof follows the argument in [FF3].

Proposition 2.4.5. A strong solution to SDE (1.1.2) is unique up to T1.

Proof. Let X1
t and X2

t be strong solutions to SDE (1.1.2) starting from x1 and x2,
respectively. According to Proposition 2.4.1, if we define Y i

t = Φ(t,X i
t), then Y i

t is
a solution to the conjugated SDE (2.4.1) starting from yi = Φ(0, xi), respectively.
Thus, we have

d(Y 1
s − Y 2

s ) = [σ̃(s, Y 1
s )− σ̃(s, Y 2

s )]dBs. (2.4.9)
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For any r ∈ (1,∞), using Itô’s formula,

d|Y 1
s − Y 2

s |r

=
r(r − 1)

2
Trace

(
[σ̃(s, Y 1

s )− σ̃(s, Y 2
s )][σ̃(s, Y 1

s )− σ̃(s, Y 2
s )]T

)
|Y 1
s − Y 2

s |r−2ds+ dMs

≤ r(r − 1)

2
|σ̃(s, Y 1

s )− σ̃(s, Y 2
s )|2|Y 1

s − Y 2
s |r−2ds+ dMs

= |Y 1
s − Y 2

s |rdAs + dMs

for some martingale Ms with zero mean (the martingale property can be checked as
in [F1]). Here, we introduced an auxiliary process At (0 ≤ t ≤ T1) satisfying

r(r − 1)

2

∫ t

0

|σ̃(s, Y 1
s )− σ̃(s, Y 2

s )|2ds =

∫ t

0

|Y 1
s − Y 2

s |2dAs, (2.4.10)

and for any c > 0,
E ecAt <∞ (2.4.11)

Thus, applying the product rule,

d(e−As|Y 1
s − Y 2

s |r) = −e−As|Y 1
s − Y 2

s |rdAs + e−Asd|Y 1
s − Y 2

s |r ≤ e−AsdMs.

Integrating this inequality in time and then taking the expectation, we have

E[e−At|Y 1
t − Y 2

t |r] ≤ |y1 − y2|r.

Therefore, using Hölder’s inequality,

E |Y 1
t − Y 2

t |r/2 = E e
−At
2 |Y 1

t − Y 2
t |r/2e

At
2

≤ [E e−At |Y 1
t − Y 2

t |r]1/2[E eAt ]1/2

≤ |y1 − y2|r/2[E eAt ]1/2,

which implies that for each t ∈ [0, T1],

E |Y 1
t − Y 2

t |r/2 ≤ C|y1 − y2|r/2. (2.4.12)

In particular, when x1 = x2, we have E |Y 1
t − Y 2

t |r/2 = 0. Since trajectories are
continuous and Φ(t, ·) is bijective, we obtain the strong uniqueness of SDE (1.1.2).

Theorem 2.4.6. Existence and uniqueness of a strong solution to SDE (1.1.2) holds
up to time T1.

Proof. We have already proved the weak existence and the strong uniqueness. There-
fore, according to the Yamabe-Watanabe principle [YW1, YW2], we obtain the
existence and uniqueness of a strong solution to SDE (1.1.2) up to time T1.

In the next section, we construct a strong solution to SDE (1.1.2) up to time T .
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2.5 Construction of stochastic flow
In this section, we conclude the proof of main theorem, and construct a stochastic

flow associated with SDE. Let us first define a stochastic flow.

Definition 2.5.1. (Stochastic flow). A map (s, t, x, w) → φ(s, t, x)(w), 0 ≤ s ≤
t ≤ T is called a stochastic flow associated to the stochastic differential equation
(1.1.2) on the filtered space with a Brownian motion (Ω,F ,Ft, P, Bt) provided that
it satisfies:
(i) For any x ∈ Rd and 0 ≤ s ≤ T , the process Xs

t,x = φ(s, t, x) for s ≤ t ≤ T is a
Fs,t-adapted solution to SDE (1.1.2). Here,

Fs,t := σ(Bu −Br|s ≤ r ≤ u ≤ t).

(ii) w-almost surely, φ(s, t, x) = φ(u, t, φ(s, u, x)) holds for any 0 ≤ s ≤ u ≤ t ≤ T
and x ∈ Rd.

We refer to [K3] for the classical theory of stochastic flows. This classical theory
has been extended to a large class of SDEs with singular coefficients. For instance,
Flandoli et al. [FGP] constructed a regular stochastic flow when the SDE with
additive noise possess a low Hölder regularity of drift.

In this section, we prove that a stochastic flow associated with SDE (1.1.2) exists
under the Orlicz-critical condition (1.1.10).

Theorem 2.5.2. There exists a stochastic flow φ to (1.1.2) up to time T .

The main ingredient to prove Theorem 2.5.2 is the Kolmogorov regularity theo-
rem. Thanks to Proposition 2.4.1, there exists a strong solution Y y

t , 0 ≤ t ≤ T1, to
(2.4.1). We first prove the Hölder regularity of Y y

t .

Proposition 2.5.3. There exists some constant C such that for any 1 ≤ r < ∞,
0 ≤ t < s ≤ T1, and x, y ∈ Rd,

E |Y x
t − Y x

s |r ≤ C|t− s|
r
2 , E |Y x

t − Y
y
t |r ≤ C|x− y|r.

Proof. The proof heavily uses Burkholder-Davis-Gundy inequality, so we briefly re-
call it. Burkholder-Davis-Gundy inequality provides the bound for the maximum
of a martingale in terms of the quadratic variation. More precisely, if Mt is a local
martingale with M0 = 0, then for any p ≥ 1,

E( sup
0≤t≤T

Mt)
p ≈ E[M ]

p/2
T .



31

Now, using Burkholder-Davis-Gundy inequality, let us prove the first inequality.
Applying Burkholder-Davis-Gundy inequality and using the fact that ‖∇u‖L∞([0,T1]×Rd)

is finite, one can conclude that

E |Y y
t − Y y

s |r = E |
∫ t

s

(I +∇u(σ,Φ−1(r, Y x
σ )))dBσ|r

≤ C E |
∫ t

s

|I +∇u(σ,Φ−1(σ, Y x
σ ))|2dσ|

r
2

≤ C|t− s|
r
2 .

We have already obtained the second inequality in (2.4.12).

Now, one can prove Theorem 2.5.2 by applying Kolmogorov regularity theorem.
We briefly review Kolmogorov regularity theorem, which states that the stochastic
process for which the moments of its increments are well-controlled possesses a certain
regularity. More precisely, if a stochastic process Zt satisfies

E|Zs − Zt|α ≤ C|s− t|1+β

for some α, β > 0, then there exists a modification Z̃ of Z which is γ-Hölder contin-
uous for every 0 < γ < β

α
.

Proof of Theorem 2.5.2. Since both Φ and Φ−1 are continuous in (t, x), we first prove
the same statement for the conjugated SDE (2.4.1). Thanks to Kolmogorov regularity
theorem, one can construct a stochastic flow ψ associated with SDE (2.4.1) up to time
T1, which is a version of Y y

t , satisfying the following property: almost surely, ψ(s, ·, ·)
is (α, β)-Hölder continuous for each 0 ≤ s ≤ T1 and any 0 < α < 1

2
, 0 < β < 1.

In order to construct a stochastic flow of SDE (1.1.2), let us define

φ(s, t, x) := Φ−1(t, ψ(s, t,Φ(s, x)))

for 0 ≤ s ≤ t ≤ T1. It is obvious that φ is a stochastic flow associated with (1.1.2)
up to time T1, and almost surely, φ(s, ·, ·) is continuous for each 0 ≤ s ≤ T1.

Now, we extend this construction globally up to time T . Divide [0, T ] into the
finite number of intervals [Tk−1, Tk], 1 ≤ k ≤ N , such that the stochastic flow φ
of SDE (1.1.2) on each [Tk−1, Tk] can be constructed. More precisely, we take a
sufficiently small interval [Tk−1, Tk] such that the following property holds: if uk is a
solution to PDE{

ukt + 1
2
∆uk + b · ∇uk + b = 0, Tk−1 ≤ t ≤ Tk,

uk(Tk, x) = 0,
(2.5.1)
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then uk satisfies the conditions in Proposition 3.1.4. In other words, Φk(t, x) =
x+ uk(t, x) is a global diffeomorphism for each Tk−1 ≤ t ≤ Tk and

1

2
<
∥∥∇Φk(t, x)

∥∥
L∞([Tk−1,Tk]×Rd)

,
∥∥∇−1Φk(t, x)

∥∥
L∞([Tk−1,Tk]×Rd)

< 2. (2.5.2)

Repeating the arguments mentioned before, one can construct a stochastic flow
φ(s, t, x) associated with SDE (1.1.2) for Tk−1 ≤ s ≤ t ≤ Tk. Then, we can glue
them together as follows: for each 0 ≤ s ≤ t ≤ T , choose the indices i and j
satisfying

Ti−1 ≤ s < Ti < · · · < Tj < t ≤ Tj+1,

and then define

φ(s, t, ·) = φ(Tj, t, ·) ◦ φ(Tj−1, Tj, ·) ◦ · · · ◦ φ(s, Ti, ·). (2.5.3)

Here, composition happens in the spatial variable. It is obvious that φ satisfies the
properties of the stochastic flow.
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Chapter 3

Singular stochastic differential
equations with hypoelliptic diffusion

3.1 Analysis on the nilpotent Lie group
In this section, we briefly overview the theory of analysis on the homogeneous

Carnot group.

Preliminaries : homogeneous Carnot group

Definition 3.1.1. We say that G = (RN , ◦, D(λ)), endowed with a Lie group struc-
ture by the composition law ◦, is called a homogeneous group if it is equipped with
a one parameter family {D(λ)}λ>0 of automorphisms of the following form

D(λ) : (u1, u2, · · · , uN) 7→ (λα1u1, λ
α2u2, · · · , λαNuN)

for some exponents 0 < α1 ≤ · · · ≤ αN . Homogeneous dimension Q of G is defined
by

Q = α1 + · · ·+ αN .

For 1 ≤ i ≤ N , let Zi be a left-invariant vector field which coincides with ∂
∂xi

at
the origin. If Lie algebra generated by Z1, · · · , Zm, which are 1-homogeneous left-
invariant vector fields, is the whole Lie algebra g of G, then G = (RN , ◦, D(λ)) is
called a homogeneous Carnot group.

If G is a homogeneous Carnot group, then its Lie algebra g has a natural strati-
fication. In fact, if αj = 1 for j ≤ m and

V1 = span(Z1, Z2, · · · , Zm),
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Vi+1 = [Vi, V1], i > 1,

then there exists r, which is called a nilpotency of G, satisfying

g = V1 ⊕ V2 ⊕ · · · ⊕ Vr.

We assume for a moment that G = (RN , ◦, D(λ)) is a homogeneous group with a
homogeneous dimension Q. One can associate the homogeneous norm ‖·‖ : G → R
to G, smooth away from the origin, satisfying

‖u‖ ≥ 0, ‖u‖ = 0⇐⇒ u = 0, ‖D(λ)u‖ = λ ‖u‖ .

If we denote | · | by a Euclidean norm, then it satisfies

|x| = O(‖x‖)

as x → 0. The Lebesgue measure on G = RN is a bi-invariant haar measure, and
once we make a change of coordinate

x = D(λ)y,

we have

dx = λQdy.

This implies that the homogeneous group G can be regarded as a homogeneous
space in the sense of Coifman and Weiss [CW]. This fact plays an important rule
in developing a singular integral theory on the homogeneous group.

Function spaces on the homogeneous Carnot group

In this section, we introduce function spaces on the homogeneous Carnot group.
First, let us define the kernels of type α and the operators of type α. A function f
is said to be homogeneous of degree α provided that for λ > 0,

f(D(λ)x) = λαf(x).

Definition 3.1.2. [F3] K is called a kernel of type α (α > 0) if it is smooth away
from the origin and homogeneous of degree α − Q. Also, K is called a singular
integral kernel if it is smooth away from the origin, homogeneous of degree −Q, and
satisfies ∫

a<|x|<b
K(x)dx = 0
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for any 0 < a < b <∞. T is called the operator of type α (0 ≤ α < Q) if T is given
by

T : f → f ∗K

for some kernel K of type α. In the case α = 0, convolution is understood as a
principal value sense.

From now on, we assume that G = (RN , ◦, D(λ)) is a homogeneous Carnot group
with a homogeneous dimension Q and nilpotency r. Recall that Z1, · · · , Zm is a
(linear) basis of V1, and define the sub-Laplacian L by

L = Z2
1 + · · ·+ Z2

m.

According to the result by Folland [F2], there exists a fundamental solution of ∂
∂t
−L,

which is called the heat kernel. It turns out that the heat kernel p possesses a nice
Gaussian upper bound (see [J]).

Theorem 3.1.3. For any k ≥ 0 and indices I = (i1, · · · , is) with |I| = s ≥ 0,

|∂kt ZIp(t, x)| ≤ C(k, I)t−k−
s+Q
2 e−c‖x‖

2/t (3.1.1)

holds for some constant c independent of k, s, i1, · · · , is.

Let us now define Sobolev spaces Sk,p(G) associated with vector fields {Zi|1 ≤
i ≤ m}:

Sk,p(G) := {f |ZIf ∈ Lp(G), |I| ≤ k},

and the associated norm ‖·‖Sk,p by

‖f‖Sk,p =
∑
|I|≤k

‖ZIf‖Lp .

Note that ZIf is understood as a distributional sense. Like the standard Sobolev
embedding theorems in the Euclidean spaces, Sk,p(G) enjoy the embedding theorems
as well. Let us define Lipschitz spaces Γα(G) as follows: for 0 < α < 1,

Γα(G) :=
{
f ∈ Cb(G)

∣∣∣ sup
x,y∈G

|f(x ◦ y)− f(x)|
‖y‖α

<∞
}
,

Γ1(G) :=
{
f ∈ Cb(G)

∣∣∣ sup
x,y∈G

|f(x ◦ y) + f(x ◦ y−1)− 2f(x)|
‖y‖

<∞
}
.

For α = n+ α′ with a nonnegative integer n and 0 < α′ ≤ 1, define Γα(G) by

Γα(G) := {f ∈ Γα
′
(G) | XIf ∈ Γα

′
(G) for |I| ≤ n}.

We state the Sobolev embedding theorem for the spaces Sk,p(G):
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Theorem 3.1.4. [F3] Suppose that l ≤ k. Then, the space Sk,p(G) is continuously
embedded into Sl,q(G) for 1 < p < q <∞ satisfying

k − l = Q(
1

p
− 1

q
).

Also, the space Sk,p(G) is continuously embedded into Γα(G) for

α = k − Q

p
> 0.

Remark 3.1.5. Let us define a different version of Lipschitz spaces Γ̃α(G) (0 < α <
1):

Γ̃α(G) :=
{
f ∈ Cb(G)

∣∣ sup
x,y∈G

|f(y ◦ x)− f(x)|
‖y‖α

<∞
}
.

Then, it is not hard to check that Γαloc(G) ⊂ Γ̃
α/r
loc (G). In fact, if we define the

Euclidean Lipschitz spaces Λα(G) (0 < α < 1):

Λα(G) :=
{
f ∈ Cb(G)

∣∣∣ sup
x,y∈G

|f(x+ y)− f(x)|
|y|α

<∞
}
,

then according to [F3],

Γαloc(G) ⊂ Λ
α/r
loc (G).

Also, from the fact |x| = O(‖x‖), we can deduce that

Λ
α/r
loc (G) ⊂ Γ̃

α/r
loc (G).

Thus, we obtain

Γαloc(G) ⊂ Γ̃
α/r
loc (G).

Analysis on the homogeneous Carnot group

In this section, a basic theory on the analysis on the homogeneous Carnot group
will be introduced. Recall that Z1, · · · , ZN are left-invariant vector fields. Now, let
us denote ZR

i (1 ≤ i ≤ N) by a right-invariant vector field which coincides with ∂
∂xi

at the origin. Then, we have

(Zif) ∗ g = f ∗ (ZR
i g).
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Using the fact that the lie algebra of Z1, · · · , Zm generates the whole tangent space,
there exist homogeneous functions βji of degree αj − 1 (1 ≤ i ≤ m, 1 ≤ j ≤ N) such
that the following holds: for each 1 ≤ i ≤ m and any test functions u,

Ziu =
N∑
j=1

ZR
j (βjiu). (3.1.2)

It is also obvious that for any 1 ≤ i, j ≤ N ,

[ZR
i , Z

R
j ] = −[Zi, Zj]

R. (3.1.3)

The properties (3.1.2) and (3.1.3) will be crucially used to obtain the higher order
estimate for PDE on the homogeneous Carnot group.

Calderón-Zygmund theory

In this section, we briefly review the Calderón-Zygmund theory. A singular in-
tegral of convolution type is an operator T defined by convolution with a kernel K
that is locally integrable on Rn\{0}:

T (f)(x) = lim
ε→0

∫
|y−x|>ε

K(x− y)f(y)dy

Suppose that K satisfies the following conditions:

• The Fourier transform of K is essentially bounded.

• For some constants c, C > 1,

sup
y

∫
|x|>c|y|

|K(x− y)−K(x)|dx ≤ C

Then, T is bounded on Lp for any p ∈ (1,∞).
In practical, lots of kernels K satisfy the following cancellation property: for any

r < R, ∫
r<|x|<R

K(x) = 0.

It is known that if the second condition above and the cancellation property as well
as the size condition

sup
R

∫
R<|x|<2R

|K(x)|dx < C
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are satisfied, then the first condition above holds.
There is a useful criteria to verify the second condition above. In fact, K satisfies

the above second condition if K satisfies the following two conditions:

• K ∈ C1(Rn\{0})

• |∇K(x)| ≤ C
|x|n+1 .

Examples that enjoy the above property include the Hilbert and Riesz transforms.
Finally, it is known that if T is already bounded on Lp for some p ∈ (1,∞) and

K satisfies the second condition above, then T is bounded on Lq for any q ∈ (1,∞).
Note that similar results also hold if K is vector valued.

Mixed-norm parabolic Sobolev spaces

In this section, we define the mixed-norm parabolic Sobolev spaces with respect
to vector fields {Zi|1 ≤ i ≤ m} and study their properties. Note that if (G, ◦, D(λ))
is a homogeneous group with a homogeneous dimension Q and a homogeneous norm
‖·‖, then the homogeneous group structure on R×G can be endowed as follows:

(s, x)◦̃(t, y) = (s+ t, x ◦ y)

and

D̃(λ)(t, x) = (λ2t,D(λ)x).

Also, the homogeneous dimension of (R×G, ◦̃, D̃(λ)) is equal to Q+ 2. In addition,
the norm

‖(t, x)‖ :=

√
|t|+ ‖x‖2

defines a homogeneous norm on R×G.

Definition 3.1.6. For 1 ≤ p, q ≤ ∞ and the integer k ≥ 0, let us define (inhomo-
geneous) mixed-norm Sobolev spaces Sk,(q,p)([0, T ]×G) with respect to vector fields
{Zi|1 ≤ i ≤ m}:

Sk,(q,p)([0, T ]×G) := {f ∈ Lq([0, T ], Lp(G)) | ZIf ∈ Lq([0, T ], Lp(G)), |I| ≤ k}.

The corresponding norm is defined by

‖f‖Sk,(q,p)([0,T ]×G) :=
∑
|I|≤k

‖ZIf‖Lq([0,T ],Lp(G)) .
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One can also define the homogeneous mixed-norm Sobolev spaces Ṡk,(q,p)([0, T ]×G)
and the corresponding norm

‖f‖Ṡk,(q,p)([0,T ]×G) :=
∑
|I|=k

‖ZIf‖Lq([0,T ],Lp(G))

similarly.

From now on, we assume that G = (RN , ◦, D(λ)) is a homogeneous Carnot group
with a homogeneous dimension Q and nilpotency r. We first study the boundedness
properties of the operators of type 0 in the mixed-norm spaces. It is the classical
theory that the operators of type 0 are bounded on Lp(R × G) for 1 < p < ∞ (see
[F3]). One can generalize this result to the mixed-norm spaces Lq(R, Lp(G)) using
Calderón-Zygmund theory mentioned before.

Theorem 3.1.7. Operators T of type 0 are bounded in Lq(R, Lp(G)) for any 1 <
p, q <∞.

Proof. Let us denote K(t, x) by a singular integral kernel of T . For t ∈ R, let us
define the operator Pt : Lp(G)→ Lp(G) by

Ptf(x) =

∫
G
K(t, x ◦ y−1)f(y)dy.

Then, Tf can be written as

Tf(t, x) =

∫
R
Psf(t− s, ·)(x)ds.

Since the operators of type 0 are bounded in Lp for 1 < p < ∞ according to [F3],
T is bounded in Lp(R, Lp(G)). In order to extend this to the general cases q 6= p, it
suffices to prove the following inequality: for some constant c > 0 independent of s,∫

|t|≥c|s|
‖Pt − Pt−s‖Lp→Lp dt ≤ C <∞, (3.1.4)

according to the aforementioned Calderón-Zygmund theory. One can represent Pt−
Pt−s in terms of the singular integral kernel K:

(Pt − Pt−s)f(x) =

∫
G

[K(t, x ◦ y−1)−K(t− s, x ◦ y−1)]f(y)dy. (3.1.5)
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Let us define a homogeneous norm ‖·‖ on R × G by ‖(t, x)‖ :=
√
|t|+ ‖x‖2. Since

the singular integral kernel K(t, x) is homogeneous of degree −(Q + 2), there exist
constants C, δ > 0 such that whenever C ‖(s, y)‖ ≤ ‖(t, x)‖,

|K((t, x) ◦ (s, y))−K(t, x)|+ |K((s, y) ◦ (t, x))−K(t, x)| ≤ C
‖(s, y)‖δ

‖(t, x)‖Q+2+δ
.

Therefore, for some constant C1 depending on δ, whenever |t| > C2|s|,

‖K(t, x)−K(t− s, x)‖L1(G) ≤
∥∥∥∥ |s|δ/2

(|t|+ ‖x‖2)δ/2+(Q+2)/2

∥∥∥∥
L1(G)

= |s|δ/2
∫
G

|t|Q/2

|t|δ/2+(Q+2)/2(1 + ‖z‖2)δ/2+(Q+2)/2
dz

= C1
|s|δ/2

|t|δ/2+1
.

Thus, applying Young’s convolution inequality to (3.1.5),

‖Pt − Pt−s‖Lp→Lp ≤ C1
|s|δ/2

|t|δ/2+1
.

Integrating this in t, we obtain∫
|t|≥C2|s|

‖Pt − Pt−s‖Lp→Lp dt ≤ C1

∫
|t|≥C2|s|

|s|δ/2

|t|δ/2+1
dt ≤ 4C1

δCδ
,

which immediately implies (3.1.4).

We now focus on the following parabolic equation, involving the sub-Laplacian
L: {

ut − Lu = f, 0 ≤ t ≤ T,

u(0, x) = 0.
(3.1.6)

We establish the well-posedness result of the equation (3.1.6) in the mixed-norm
parabolic Sobolev spaces. We introduce the auxiliary function spaces: for 1 ≤ p, q ≤
∞ and k ≥ 2, u belongs to the function space S̃k,(q,p)([0, T ]×G) when

u ∈ Sk,(q,p)([0, T ]×G), ut ∈ Sk−2,(q,p)([0, T ]×G). (3.1.7)

The corresponding norm ‖·‖S̃k,(q,p) is defined by

‖u‖S̃k,(q,p)([0,T ]×G) := ‖u‖Sk,(q,p)([0,T ]×G) + ‖ut‖Sk−2,(q,p)([0,T ]×G) .

One can prove the well-posedness result of the PDE (3.1.6) in the class S̃k,(q,p)([0, T ]×
G):
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Theorem 3.1.8. Suppose that 1 < p, q <∞. Then, for any f ∈ Sk,(q,p)([0, T ]×G),
there exist a unique solution u ∈ S̃k+2,(q,p)([0, T ] × G) to PDE (3.1.6). Also, there
exists some constant C independent of T such that for any f ∈ Sk,(q,p)([0, T ]×G),

‖u‖Ṡk+2,(q,p)([0,T ]×G) ≤ C ‖f‖Ṡk,(q,p)([0,T ]×G) , (3.1.8)

‖u‖S̃k+2,(q,p)([0,T ]×G) ≤ C max{T, 1} ‖f‖Sk,(q,p)([0,T ]×G) . (3.1.9)

Proof. Throughout the proof, we use a notation P for the heat kernel in order to
avoid a confusion with the exponent p. Also, Pt denotes a semigroup generated by
the sub-Laplacian L. For test functions f ∈ C∞c (R×G), let us define

Qf(t, x) :=

∫ t

−∞
Pt−sf(s)(x)ds. (3.1.10)

Note that u := Qf is a classical solution to the equation

ut − Lu = f.

Step 1. A priori estimate on ‖Qf‖Ṡk+2,(q,p)([0,T ]×G): let us first prove that

‖Qf‖Ṡk+2,(q,p)(R×G) ≤ C ‖f‖Ṡk,(q,p)(R×G) (3.1.11)

for any test functions f . In the case of k = 0, Theorem 3.1.7 immediately implies
(3.1.11). In fact, for any 1 ≤ i1, i2 ≤ m, we have a representation formula:

Zi1Zi2Qf = f ∗ Zi1Zi2P

(convolution acts on R×G), and note that Zi1Zi2P is a singular kernel.
Now, let us prove (3.1.11) when k = 1. Recalling that each Zj (1 ≤ j ≤ N) can

be written as a commutator of Zi’s (1 ≤ i ≤ m) with order αj, using (3.1.3), we have

ZR
j =

∑
l,I

ZR
jlZ

R
jI ,

where each Zjl is one of Zi’s (1 ≤ i ≤ m), and each ZR
jI is of the form ZR

s1
· · ·ZR

sαj−1

for 1 ≤ s1, · · · , sαj−1 ≤ m. Therefore, applying this to (3.1.2), for any indices
1 ≤ i2, i3 ≤ m,

f ∗ Zi2Zi3P = f ∗ (
N∑
j=1

ZR
j (βji2Zi3P )) =

N∑
j=1

∑
l,I

Zjlf ∗ (ZR
jI(βji2Zi3P ))
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(convolution acts on R×G). Differentiating this in Zi1 (1 ≤ i1 ≤ m) direction,

Zi1Zi2Zi3u =
N∑
j=1

∑
l,I

Zjlf ∗ (Zi1Z
R
jI(βji2Zi3P )).

Recall that P is a kernel of type 2, βji2 is homogeneous of degree αj − 1, ZR
jI is a

differential operator of order αj − 1, and Zi2 , Zi3 are differential operators of order
1. From this, it follows that Zi1ZR

jI(βji2Zi3P ) is a singular integral kernel. Since the
operators of type 0 are bounded in Lq(R, Lp(G)) according to Theorem 3.1.7, we
have

‖Zi1Zi2Zi3u‖Lq(R,Lp(G)) ≤ C
∑

1≤i≤m

‖Zif‖Lq(R,Lp(G)) .

This concludes the proof when k = 1. Similar arguments work for general k as well.
Step 2. A priori estimate on ‖Qf‖S̃k+2,(q,p)([0,T ]×G): we prove that

‖Qf‖S̃k+2,(q,p)([0,T ]×G) ≤ C max{T, 1} ‖f‖Sk,(q,p)([0,T ]×G) (3.1.12)

for any test functions f . Since u(t) := Qf(t) with 0 ≤ t ≤ T depends only on f(s)
with s ≤ t, according to the estimate (3.1.11), for any 0 ≤ l ≤ k,

‖u‖Ṡl+2,(q,p)([0,T ]×G) ≤ C ‖f‖Ṡl,(q,p)([0,T ]×G) .

Note that the constant C can be chosen independently of T due to the existence of
scaling u(t, x) 7→ u(λ2t,D(λ)x) for λ > 0. Summing these inequalities over 0 ≤ l ≤ k,

k∑
l=0

‖u‖Ṡl+2,(q,p)([0,T ]×G) ≤ C ‖f‖Sk,(q,p)([0,T ]×G) . (3.1.13)

From the equation ut − Lu = f and the estimate (3.1.13), we have

‖ut‖Sk,(q,p)([0,T ]×G) ≤ C ‖f‖Sk,(q,p)([0,T ]×G) . (3.1.14)

Applying this to the trivial inequality u(t, x) ≤
∫ T

0
|ut(s, x)|ds, we obtain

‖u‖Lq([0,T ],Lp(G)) ≤ T ‖ut‖Lq([0,T ],Lp(G)) ≤ CT ‖f‖Sk,(q,p)([0,T ]×G) . (3.1.15)

Also, the interpolation type inequality allows us to obtain

‖u‖Ṡ1,(q,p)([0,T ]×G) ≤ C max{T, 1} ‖f‖Sk,(q,p)([0,T ]×G) . (3.1.16)
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Thus, using (3.1.13), (3.1.14), (3.1.15), and (3.1.16), we obtain (3.1.12).
Step 3. Existence of a solution: it can be proved by a standard approximation

argument thanks to the estimate (3.1.12). Also, (3.1.8) and (3.1.9) hold for any
f ∈ Sk,(q,p)([0, T ]×G).

Step 4. Uniqueness of a solution: it suffices to prove that if u ∈ S̃k+2,(q,p)([0, T ]×
G) is a solution to the equation (3.1.6) with f = 0, then u = 0. Choose the
approximation un, each of which is smooth and has compact support, converging to
u in S̃k+2,(q,p)([0, T ]×G) norm. It follows that

‖(un)t − Lun‖Sk,(q,p) → 0

as n→∞. Since un = Q((un)t − Lun), according to the estimate (3.1.12), we have

‖un‖S̃k+2,(q,p)([0,T ]×G) → 0

as n→∞. Thus, ‖u‖S̃k+2,(q,p)([0,T ]×G) = 0, which concludes the proof.

Mixed-norm parabolic Sobolev embedding theorem

In this subsection, we obtain the parabolic Sobolev embedding theorem for the
spaces Sk,(q,p)([0, T ] × G). This is a key ingredient to establish the well-posedness
result of the Kolmogorov PDE possessing singular coefficients.

Theorem 3.1.9. Suppose that u satisfies u(0, x) = 0 and

u ∈ Sk+2,(q,p)([0, T ]×G), ut ∈ Sk,(q,p)([0, T ]×G).

Also, assume that for l = k, k + 1, exponents p, q, p1, q1 satisfy

1 ≤ p ≤ p1 ≤ ∞, 1 ≤ q ≤ q1 ≤ ∞,
2

q
+
Q

p
< (k + 2− l) +

2

q1

+
Q

p1

. (3.1.17)

Then, u ∈ Sl,(q1,p1)([0, T ]×G). Also, if we denote α := 1
2

[
(k+2−l+ 2

q1
+ Q
p1

)−(2
q
+Q

p
)
]
,

then for some constant C independent of T and u,

‖u‖Sl,(q1,p1)([0,T ]×G) ≤ CTα(‖u‖Sk+2,(q,p)([0,T ]×G) + ‖ut‖Sk+2,(q,p)([0,T ]×G)). (3.1.18)

Proof. It suffices to prove the estimate (3.1.18) for all test functions u.
Step 1. The case l = k: for any indices |I| ≤ l, let us define w = ZIu. Then, for

any indices 1 ≤ i, j ≤ m,

w, wt, Zi, ZiZjw ∈ Lq([0, T ], Lp(G)).
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If we denote f := wt + Lw, then we have the representation formula:

w(t, x) =

∫ t

0

∫
G
p(s, y)f(t− s, x ◦ y−1)dyds. (3.1.19)

From this, we prove the estimate

‖w‖Lq1 ([0,T ],Lp1 (G)) ≤ CT
1
2

[(2+ 2
q1

+ Q
p1

)−( 2
q

+Q
p

)] ‖f‖Lq([0,T ],Lp(G)) . (3.1.20)

Let us define a new function p̃(t, x) defined on R×G via{
p̃(t, x) = p(t, x) 0 ≤ t ≤ T,

p̃(t, x) = 0 otherwise,

and f̃(t, x) similarly. Then, from (3.1.19), we have

|w(t, x)| ≤
∫
R

∫
G
p̃(s, y)|f |(t− s, x ◦ y−1)dyds = (p̃ ∗ |f |)(t, x) (3.1.21)

(convolution acts on R×G). Note that for any 1 ≤ a <∞,∥∥∥e−c‖·‖2/t∥∥∥
La(G)

= C0t
Q/2a

∥∥∥e−c‖·‖2∥∥∥
La(G)

= CtQ/2a, (3.1.22)

and
∥∥∥e−c‖·‖2/t∥∥∥

L∞(G)
= 1. Thus, using the heat kernel estimate (3.1.1), for any

1 ≤ a ≤ ∞,

‖p(t, ·)‖La(G) ≤ C
1

tQ/2

∥∥∥e−c‖·‖2/t∥∥∥
La(G)

= Ct−
Q
2

(1− 1
a

). (3.1.23)

Let us choose two exponents 1 ≤ r, s ≤ ∞ such that

1

q1

+ 1 =
1

q
+

1

r
,

1

p1

+ 1 =
1

p
+

1

s
. (3.1.24)

According to the condition (3.1.17), we have Qr
2

(1 − 1
s
) < 1. Therefore, due to

(3.1.23),

‖p̃‖Lr(R,Ls(G)) = ‖p‖Lr([0,T ],Ls(G)) ≤ C0[

∫ T

0

t−
Qr
2

(1− 1
s

)dt]1/r = CT
1
r
−Q

2
(1− 1

s
).

Thus, applying the convolution inequality for the mixed-norm spaces to (3.1.21),

‖w‖Lq1 (R,Lp1 (G)) ≤ ‖p̃‖Lr(R,Ls(G))

∥∥∥f̃∥∥∥
Lq(R,Lp(G))
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= CT
1
r
−Q

2
(1− 1

s
)
∥∥∥f̃∥∥∥

Lq(R,Lp(G))
= CT

1
2

[(2+ 2
q1

+ Q
p1

)−( 2
q

+Q
p

)]
∥∥∥f̃∥∥∥

Lq(R,Lp(G))
.

Thus, we obtain (3.1.20), which immediately implies (3.1.18).
Step 2. The case l = k + 1: proof is almost same as the previous case. Applying

the heat kernel estimate (3.1.1): for each 1 ≤ i ≤ m,

|Zip(t, x)| ≤ Ct−(1+Q)/2e−c‖x‖
2/t (3.1.25)

to the following representation formula

Ziw(t, x) =

∫ t

0

∫
G
Zip(s, y)f(t− s, x ◦ y−1)dyds, (3.1.26)

we can derive the conclusion as before.

Heat kernel estimates

In this subsection, we provide useful estimates related to the semigroup generated
by the sub-Laplacian L. Let us first derive the Lp-estimate on the derivatives of a
heat kernel:

Lemma 3.1.10. Suppose that f is a homogeneous function with degree k and 1 ≤
p < ∞, |I| = a ≥ 0. Then, there exists some constant C depending on f such that
for any t > 0,

‖fZIpt‖Lp(G) ≤ Ct
Q
2p

+
k−(Q+a)

2 .

Here, for a multi-index I = (i1, · · · , ia) with 1 ≤ i1, · · · , ia ≤ m, ZI denotes
Zi1 · · ·Zia.

Proof. Recall that under the change of variable x = D(
√
t)y, we have dx = tQ/2dy.

Using this fact and the heat kernel estimate (3.1.1), we have

‖fZIpt‖Lp(G) ≤ C
[ ∫

G

(
f(x)t−

Q+a
2 e−c‖x‖

2/t
)p
dx
]1/p

= Ct
k−(Q+a)

2

[ ∫
G

(
f(y)e−c‖y‖

2)p
tQ/2dy

]1/p

= Ct
Q
2p

+
k−(Q+a)

2 .

Using the previous lemma, we obtain the following lemma, which is a key ingre-
dient in the proof of Proposition 3.2.2:
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Lemma 3.1.11. Suppose that 1 < p <∞. Then, for any |I| = a ≥ 1, f ∈ Sa−1,p(G),
and t > 0,

‖f ∗ ZIpt‖L∞(G) ≤ Ct−( Q
2p

+ 1
2

) ‖f‖Sa−1,p(G) . (3.1.27)

Proof. Using the heat kernel estimate (3.1.1) and the convolution inequality, (3.1.27)
immediately follows when a = 1. Key idea of the proof when a ≥ 2 is transferring
the directional derivative ZI from pt to f . By the argument in the proof of Theorem
3.1.8, for each 1 ≤ i ≤ m and any smooth functions g,

f ∗ Zig = f ∗ (
N∑
j=1

ZR
j (βjig)) =

N∑
j=1

∑
l,I

Zjlf ∗ (ZR
jI(βjig)). (3.1.28)

Let us first prove (3.1.27) when a = 2, and assume that ZI = Zi1Zi2 , 1 ≤ i1, i2 ≤ m. If
we denote p′ by the conjugate exponent of p, then applying the convolution inequality
to (3.1.28),

‖f ∗ ZIpt‖L∞(G) = ‖f ∗ Zi1(Zi2pt)‖L∞(G) ≤ C ‖f‖S1,p(G)

∑
j,l,I

∥∥ZR
jI(βjiZi2pt)

∥∥
Lp′ (G)

.

(3.1.29)

Note that each ZR
i , 1 ≤ i ≤ m, can be written as

ZR
i u =

N∑
j=1

Zj(γjiu)

for some homogeneous functions γji of degree αj − 1 (1 ≤ j ≤ N). Thus, applying
the product rule, ZR

jI(βjiZi2pt) can be written as the (finite) sum of hkZIkpt’s for
some homogeneous functions hk of degree k − 1 and |Ik| = k. Note that according
to Lemma 3.1.10, each term ‖hkZIkpt‖Lp′ (G) is bounded by

Ct
Q
2p′+

k−1−(Q+k)
2 = Ct−( Q

2p
+ 1

2
).

Thus, combining this with (3.1.29), we obtain (3.1.27) in the case a = 2.
The aforementioned argument works for a > 2 as well. In fact, differentiating

(3.1.28) in Zi directions (1 ≤ i ≤ m) and then using (3.1.2), we can deduce that

‖f ∗ ZIpt‖L∞(G) ≤ C ‖f‖Sl−1,p(G) ‖h‖Lp′ (G) ,

where h is the sum of finitely many hkZIkpt’s for some homogeneous functions hk
of degree k − 1 and |Ik| = k. As mentioned above, ‖h‖Lp′ (G) ≤ Ct−( Q

2p
+ 1

2
), which

concludes the proof.
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3.2 Kolmogorov hypoelliptic PDE
In this section, we establish the well-posedness result of the following Kolmogorov

PDE: {
ut − 1

2
Lu+

∑m
i=1 b

iZiu+ λu = f, 0 ≤ t ≤ T,

u(0, x) = 0.
(3.2.1)

on the homogeneous Carnot group G for singular functions b, f and λ ∈ R. The
solution u to Kolmogorov PDE (3.2.1) plays a crucial role in proving the uniqueness
of a strong solution to SDE (1.1.12). In fact, this PDE appears when we apply the
Zvonkin’s transformation method [Z3] to obtain an auxiliary SDE. From now on, for
any Banach spaces X, let us define

‖b‖X :=
m∑
i=1

‖bi‖X .

Theorem 3.2.1. Assume that b satisfies the conditions (1.1.14) and (1.1.15) for
exponents p and q satisfying (1.1.13). Then, for any f ∈ Sr−1,(q,p)([0, T ]×G), there
exists a unique solution u ∈ S̃r+1,(q,p)([0, T ] × G) to PDE (3.2.1). Furthermore, we
have the following estimate:

‖u‖Sr+1,(q,p)([0,T ]×G) + ‖ut‖Sr−1,(q,p)([0,T ]×G) ≤ C(b, λ) ‖f‖Sr−1,(q,p)([0,T ]×G) (3.2.2)

Proof. Let us first prove an a priori estimate (3.2.2). For 0 ≤ t ≤ T , let us define

I(t) = ‖u‖q
Sr+1,(q,p)([0,t]×G)

+ ‖ut‖qSr−1,(q,p)([0,t]×G)
.

Then, using the estimate (3.1.9), we have

I(t) ≤ C

∥∥∥∥∥
m∑
i=1

biZiu+ λu+ f

∥∥∥∥∥
q

Sr−1,(q,p)([0,t]×G)

. (3.2.3)

Since p and q satisfy (1.1.13), according to the parabolic Sobolev embedding Theorem
3.1.9,

‖u‖q
Sr,(∞,∞)([0,t]×G)

≤ C(‖u‖q
Sr+1,(q,p)([0,t]×G)

+ ‖ut‖qSr−1,(q,p)([0,t]×G)
) = CI(t).

Therefore, one can deduce that for each 1 ≤ i ≤ m,

∥∥biZiu∥∥qSr−1,(q,p)([0,t]×G)
=

∫ t

0

∥∥biZiu(s)
∥∥q
Sr−1,p(G)

ds
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≤
∫ t

0

∥∥bi(s)∥∥q
Sr−1,p(G)

‖Ziu(s)‖qL∞(G) ds

≤ C

∫ t

0

∥∥bi(s)∥∥q
Sr−1,p(G)

I(s)ds. (3.2.4)

Also, using Minkowski’s integral inequality,

‖λu‖q
Sr−1,(q,p)([0,t]×G)

ds ≤ Cλq
∫ t

0

[ ∫ s

0

‖ut(l)‖qSr−1,p(G) dl
]
ds

≤ Cλq
∫ t

0

I(s)ds. (3.2.5)

Therefore, applying (3.2.4) and (3.2.5) to (3.2.3),

I(t) ≤ C

∫ t

0

(‖b(s)‖qSr−1,p(G) + λq)I(s)ds+ C ‖f‖Sr−1,(q,p)([0,T ]×G) .

Using Grönwall’s inequality, for each 0 ≤ t ≤ T ,

I(t) ≤ C ‖f‖Sr−1,(q,p)([0,T ]×G) exp
[
C ‖b‖q

Sr−1,(q,p)([0,t]×G)
+ Ctλq

]
.

In particular, the case t = T implies (3.2.2).
Once a priori estimate (3.2.2) is obtained, the existence and uniqueness of a

solution to the PDE (3.2.1) immediately follows from the standard method of conti-
nuity.

Assume that b satisfies the conditions (1.1.14), (1.1.15) for the exponents p, q
satisfying (1.1.13). Also, suppose that a function f ∈ Sr−1,(q,p)([0, T ] × G) taking
values in G = RN is given. This means that each Euclidean coordinate of f belongs
to Sr−1,(q,p)([0, T ]×G). Let us now consider the following PDE:{

ut + 1
2
Lu+

∑m
i=1 b

iZiu− λu = f, 0 ≤ t ≤ T,

u(T, x) = 0.
(3.2.6)

u being a solution to PDE (3.2.6) means that (3.2.6) holds in each Euclidean coor-
dinate. According to Theorem 3.2.1, by reversing time, one can deduce that PDE
(3.2.6) has a (unique) solution ũλ ∈ S̃r+1,(q,p)([0, T ] × G) taking values in G = RN .
We introduce an auxiliary function Φλ in the next proposition, which plays a crucial
role in Section 3.3.

Proposition 3.2.2. There exist an open set Ω containing x0, λ ∈ R, and a version
uλ of ũλ such that Φλ(t, x) := x+ uλ(t, x) satisfies the following properties:
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(i) Φλ is continuous in (t, x) and Φλ(t, ·) is C1 for each 0 ≤ t ≤ T .
(ii) Φλ(t, ·) is a C1 diffeomorphism from Ω onto its image for each 0 ≤ t ≤ T .
(iii) For each 0 ≤ t ≤ T ,

1

2
≤
∥∥∇Φλ(t, ·)

∥∥
L∞(Ω)

≤ 2,
1

2
≤
∥∥∇(Φλ)−1(t, ·)

∥∥
L∞(Φλ(t,Ω))

≤ 2.

Proof. Throughout the proof, in order to simplify the notation, we use ũ and Φ
instead of ũλ and Φλ, respectively.

Step 1. Proof of the property (i): let us prove that there exists a continuous
version u of ũ such that u(t, ·) is C1 for each t. It suffices to show that for the
arbitrary bounded and open set U in RN , there exists a version u of ũ such that u
is continuous on [0, T ]× U and u(t, ·) ∈ C1(U). Choose a smooth approximation un
converging to ũ in S̃r+1,(q,p)([0, T ] × G) norm. According to Theorem 3.1.9, for any
indices |I| ≤ r,

‖ZI(un − um)‖L∞([0,T ]×G) ≤ C ‖un − um‖S̃r+1,(q,p)([0,T ]×G) . (3.2.7)

Since each standard vector field on RN can be written as commutators of Zi’s up to
order r, it follows from (3.2.7) that

‖∇(un − um)‖L∞([0,T ]×U) ≤ C ‖un − um‖S̃r+1,(q,p)([0,T ]×G) .

for some constant C = C(U). This implies that there exists w ∈ Cb([0, T ]×U) such
that

‖w −∇un‖L∞([0,T ]×U) → 0 (3.2.8)

as n → 0. Also, since the sequence {un} is Cauchy in L∞([0, T ] × G) norm by
Theorem 3.1.9, there exists u ∈ Cb([0, T ]×G), which is a version of ũ, such that as
n→∞,

‖u− un‖L∞([0,T ]×G) → 0. (3.2.9)

Thanks to (3.2.8) and (3.2.9), for each t, u(t, ·) is C1 on U and its spatial derivative
is w(t, ·).

Step 2. Estimate on ‖u‖Sr,(∞,∞) : from now on, we denote u by a function selected
in the Step 1. We now claim that for arbitrary ε > 0, there exists a sufficiently large
λ such that

‖ZIu‖L∞([0,T ]×G) ≤ ε (3.2.10)

holds for all indices |I| ≤ r. We have the following representation formula for u:

u(t) =

∫ T

t

e−λ(s−t)Ps−t(f +
m∑
i=1

biZiu)(s)ds.
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Differentiating this in ZI (|I| ≤ r) directions,

ZIu(t) =

∫ T

t

e−λ(s−t)ZIPs−t(f +
m∑
i=1

biZiu)(s)ds. (3.2.11)

Note that for g ∈ Sr−1,p(G), according to Lemma 3.1.11,

‖ZIPtg‖L∞(G) = ‖g ∗ ZIpt‖L∞(G) ≤ Ct−( Q
2p

+ 1
2

) ‖g‖Sr−1,p(G)

for each 0 ≤ t ≤ T and any indices |I| ≤ r. Therefore, applying this to (3.2.11), we
have∑
|I|≤r

‖ZIu(t)‖L∞(G) ≤
∑
|I|≤r

∫ T

t

e−λ(s−t)

∥∥∥∥∥ZIPs−t(f +
m∑
i=1

biZiu)(s)

∥∥∥∥∥
L∞(G)

ds

≤ C

∫ T

t

e−λ(s−t)(s− t)−( Q
2p

+ 1
2

)

∥∥∥∥∥(f +
m∑
i=1

biZiu)(s)

∥∥∥∥∥
Sr−1,p(G)

ds

≤ C

∫ T

t

e−λ(s−t)(s− t)−( Q
2p

+ 1
2

)
(
‖f(s)‖Sr−1,p(G) + ‖b(s)‖Sr−1,p(G)

∑
|I|≤r

‖ZIu(s)‖L∞(G)

)
ds.

Using the modified version of Grönwall’s inequality (see [FF3]), we obtain∑
|I|≤r

‖ZIu(t)‖L∞(G) ≤ α(t) +

∫ T

t

α(s)βt(s) exp
[ ∫ s

t

βt(l)dl
]
ds, (3.2.12)

where α(s) and βt(s) are defined by

α(s) = C

∫ T

s

e−λ(l−s)(l − s)−( Q
2p

+ 1
2

) ‖f(l)‖Sr−1,p(G) dl,

βt(s) = Ce−λ(s−t)(s− t)−( Q
2p

+ 1
2

) ‖b(s)‖Sr−1,p(G) .

If we denote q′ by a conjugate exponent of q, then by Hölder’s inequality,

α(t) = C

∫ T

t

e−λ(s−t)(s− t)−( Q
2p

+ 1
2

) ‖f(s)‖Sr−1,p(G) ds

≤ C
[ ∫ T

0

e−q
′λss−q

′( Q
2p

+ 1
2

)ds
]1/q′

‖f‖Sr−1,(q,p)([0,T ]×G) .

Since the condition (1.1.13) implies that q′( Q
2p

+ 1
2
) < 1, one can easily check that

lim
λ→∞

∫ T

0

e−q
′λss−q

′( Q
2p

+ 1
2

)ds = 0,
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which implies that

lim
λ→∞

[
sup

0≤t≤T
α(t)

]
= 0. (3.2.13)

Similarly, applying Hölder’s inequality as above,∫ T

t

βt(s)ds ≤ C ‖b‖Sr−1,(q,p)([0,T ]×G) <∞. (3.2.14)

Therefore, (3.2.12), (3.2.13), and (3.2.14) imply that for sufficiently large λ, (3.2.10)
holds for all indices |I| ≤ r.

Step 3. Proof of the properties (ii) and (iii): since each standard vector field on
RN can be written as a linear combination of commutators of Zi’s with order ≤ r, for
any bounded set U in RN containing x0, there exists a constant C = C(U) satisfying

‖∇u‖L∞([0,T ]×U) ≤ C ‖u‖Sr,(∞,∞)([0,T ]×U) .

Therefore, thanks to the claim (3.2.10) proved in Step 2, for sufficiently large λ, we
have

‖∇u‖L∞([0,T ]×U) ≤
1

2
, (3.2.15)

which immediately implies the first inequality in the condition (iii). Since ∇Φ(t, ·)
is continuous and non-singular on U , there exists an open set Ω ⊂ U containing x0

such that Φ(t, ·) is C1 diffeomorphism from Ω onto its image according to the inverse
function theorem. Also, using (3.2.15) and the identity

∇Φ−1(t, x) = [∇Φ(t,Φ−1(t, x))]−1 = [I +∇u(t,Φ−1(t, x))]−1,

we obtain the second inequality in the condition (iii). This concludes the proof.

Remark 3.2.3. Since we assumed that bi’s have compact support (see Remark
1.1.4), and Zi’s are smooth vector fields, each Euclidean coordinate of b belongs to
Sr−1,(q,p)([0, T ] × G). Thus, Proposition 3.2.2 is applicable for f = b. In fact, there
exists u ∈ S̃r+1,(q,p)([0, T ]×G) taking values in RN , which is C1 in x, satisfying{

ut + 1
2
Lu+

∑m
i=1 b

iZiu− λu = −b, 0 ≤ t ≤ T,

u(T, x) = 0.
(3.2.16)

Also, there exist λ ∈ R and an open set Ω in RN containing x0 such that

Φ(t, x) = x+ u(t, x)
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satisfies (i), (ii), and (iii) in Proposition 3.2.2. From now on, we use these notations
u, Φ, and Ω.

Finally, we choose versions of ut, Ziu (1 ≤ i ≤ m), Lu such that t-a.e., ut(t, ·),
Ziu(t, ·) (1 ≤ i ≤ m), Lu(t, ·) are continuous. In fact,

ut, Ziu, Lu ∈ Sr−1,(q,p)([0, T ]×G),

which implies that

ut(t, ·), Ziu(t, ·), Lu(t, ·) ∈ Sr−1,p(G)

for almost every t, and thus such versions can be obtained according to Theorem
3.1.4. Since the left hand side of (3.2.16) and b(t, ·) are both continuous in x for t-a.e
(see Remark 1.1.4), it follows that t-a.e, the equation (3.2.16) is satisfied for every
x ∈ G.

3.3 Proof of the main theorem
In this section, we prove the main result Theorem 1.1.3. We identify the space

G with the Euclidean space RN , and then we do a stochastic calculus. Throughout
this section, we add a time parameter t to the time independent vector fields Zi’s,
i.e. Zi(t, x) = Zi(x) for 0 ≤ t ≤ T .

Itô’s formula for singular functions

In order to prove the strong uniqueness of SDE (1.1.12), we use the Zvonkin’s
transformation method [Z3] to obtain an auxiliary SDE. This auxiliary SDE is more
tractable than the original SDE (1.1.12) since it possesses a more regular drift coef-
ficient. When we use the Zvonkin’s transformation method, a function to which we
apply Itô’s formula is not as regular. In order to overcome this problem, we need to
establish Itô’s formula for a large class of singular functions.

The key ingredient to obtain Itô’s formula for non-smooth functions is a Krylov-
type estimate [K1]. This type of estimate has been used successfully to prove the
well-posedness of a singular SDE with the non-degenerate noise. In next proposition,
we establish a Krylov-type estimate for the degenerate diffusion case (1.1.12). Since
we are working on the homogeneous Carnot group and the SDE (1.1.12) possesses
the degenerate diffusion, the proof involves some technical difficulties.

Proposition 3.3.1. Assume that b satisfies the conditions (1.1.14), (1.1.15) for the
exponents p, q satisfying (1.1.13). Suppose that Xt is a solution to SDE (1.1.12).
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Then, for each 0 ≤ s ≤ t ≤ T , the estimate

E
[ ∫ t

s

f(r,Xr)dr
∣∣∣Fs] ≤ C(t− s)1−( 2

q
+Q
p

) ‖f‖Lq/2([0,t],Lp/2(G)) (3.3.1)

holds for any f ∈ Lq/2([0, t], Lp/2(G)) such that f(r, ·) is continuous for a.e. r ∈ [0, t].
Here, a constant C is independent of s, t, and a function f .

Proof. It suffices to prove (3.3.1) for non-negative f ∈ Lq/2([0, t], Lp/2(G)) such that
f(r, ·) is continuous for a.e. r ∈ [0, t].

Step 1. The auxiliary PDE result: let us prove that for any f ∈ Lq/2([0, t], Lp/2(G)),
one can find a solution w ∈ S̃2,(q/2,p/2)([0, t]×G) to the equation:{

wt + 1
2
Lw +

∑m
i=1 b

iZiw = f, in [0, t]×G,
w(t, x) = 0,

(3.3.2)

satisfying that for some constant C,

‖w‖S̃2,(q/2,p/2)([0,t]×G) ≤ C ‖f‖Lq/2([0,t],Lp/2(G)) . (3.3.3)

For u ∈ S̃2,(q/2,p/2)([0, T ]×G) (see (3.1.7) for definition), let us consider the following
PDE: {

wt + 1
2
Lw = f −

∑m
i=1 b

iZiu, in [0, t]×G,
w(t, x) = 0.

(3.3.4)

Note that according to Hölder’s inequality and the parabolic Sobolev embedding
Theorem 3.1.9, for each 1 ≤ i ≤ m,∥∥biZiu∥∥Lq/2([0,t],Lp/2(G))

≤
∥∥bi∥∥

Lq([0,t],Lp(G))
‖Ziu‖Lq([0,t],Lp(G))

≤ CT
1
2

[1−( 2
q

+Q
p

)]
∥∥bi∥∥

Lq([0,t],Lp(G))
‖u‖S̃2,(q/2,p/2)([0,t]×G) .

Therefore, the right hand side of PDE (3.3.4) belongs to Lq/2([0, T ], Lp/2(G)). Ap-
plying Theorem 3.1.8, let us define

F (u) := w ∈ S̃2,(q/2,p/2)([0, t]×G)

to be a unique solution to the PDE (3.3.4). For u1, u2 ∈ S̃2,(q/2,p/2)([0, t] × G),
according to the estimate (3.1.9), we have

‖F (u1)− F (u2)‖S̃2,(q/2,p/2)([0,t]×G)

≤ C max{t, 1}t
1
2

[1−( 2
q

+Q
p

)] ‖b‖Lq([0,t],Lp(G)) ‖u1 − u2‖S̃2,(r,s)([0,t]×G) .
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It follows that for a small enough t, a map u → F (u) is a strict contraction on
S̃2,(q/2,p/2)([0, t]×G). Thus, for a sufficiently small 0 < T1 ≤ t,

F : S̃2,(q/2,p/2)([t− T1, t]×G)→ S̃2,(q/2,p/2)([t− T1, t]×G)

has a unique fixed point u (note that (3.3.4) is a backward PDE). For such T1 and
u, we have

‖u‖S̃2,(q/2,p/2)([t−T1,t]×G) ≤ C max{T1, 1}

∥∥∥∥∥f −
m∑
i=1

biZiu

∥∥∥∥∥
Lq/2([t−T1,t],Lp/2(G))

≤ C max{T1, 1}(‖f‖Lq/2([t−T1,t],Lp/2(G))

+ CT
1
2

[1−( 2
q

+Q
p

)]

1 ‖b‖Lq([t−T1,t],Lp(G)) ‖u‖S̃2,(q/2,p/2)([t−T1,t]×G))

For small enough T1, we have the estimate (3.3.3) with u in place of w on the interval
[t−T1, t]. We then redefine u(t−T1, x) = 0, and repeat the aforementioned argument
to obtain a solution defined on the whole interval [0, t] and the estimate (3.3.3).

Step 2. Regularization processes: since w is not smooth in general, the standard
Itô’s formula is not applicable to a function w. In order to overcome this problem,
we take a nonnegative test function ϕ ∈ C∞c (G), and introduce mollifiers

ϕn(x) := nQϕ(D(n)x).

Then, define regularized functions

wn(t, x) := (ϕn ∗ w)(t, x) =

∫
G
ϕn(x ◦ y−1)w(t, y)dy.

If we denote fn by

fn := (wn)t +
m∑
i=1

biZiwn +
1

2
Lwn, (3.3.5)

then by Itô’s formula, we have

wn(t,Xt)− wn(s,Xs)

=

∫ t

s

((wn)t +
m∑
i=1

biZiwn +
1

2
Lwn)(r,Xr)dr +

∫ t

s

m∑
i=1

Ziwn(r,Xr)dB
i
r

=

∫ t

s

fn(r,Xr)dr +

∫ t

s

m∑
i=1

Ziwn(r,Xr)dB
i
r. (3.3.6)
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Note that using (3.3.3) and Theorem 3.1.9, one can deduce that Ziw ∈ Lq([0, t], Lp(G))
for each 1 ≤ i ≤ m. Thus, if we denote p′ by a conjugate exponent of p, then for
each n,

‖Ziwn‖qLq([0,t],L∞(G)) =

∫ t

0

‖ϕn ∗ Ziw‖qL∞(G) dr

≤
∫ t

0

‖ϕn‖qLp′ (G)
‖Ziw‖qLp(G) dr

< ‖ϕn‖qLp′ (G)
‖Ziw‖qLq([0,t],Lp(G)) <∞ (3.3.7)

(note that ‖Ziwn‖Lq([0,t],L∞(G)) may not be uniformly bounded in n). This implies
that for each n, a stochastic process r → Ziwn(r,Xr) is square-integrable on [0, t]
since q > 2 (see the condition (1.1.13)) and

E
[ ∫ t

0

|Ziwn(r,Xr)|2dr
]
≤
∫ t

0

‖Ziwn(r, ·)‖2
L∞(G) dr = ‖Ziwn‖2

L2([0,t],L∞(G)) <∞.

Therefore, one can deduce that

E
[ ∫ t

s

m∑
i=1

Ziwn(r,Xr)dB
i
r

∣∣∣Fs] = 0.

Using this and taking a conditional expectation with respect to Fs in (3.3.6), we
obtain

E
[ ∫ t

s

fn(r,Xr)dr
∣∣∣Fs] = E[wn(t,Xt)− wn(s,Xs)|Fs]

≤ 2 sup
r∈[s,t]

‖wn(r, ·)‖L∞(G)

≤ C(t− s)1−( 2
q

+Q
p

)(‖wn‖S2,(q/2,p/2)([0,t]×G) + ‖(wn)t‖Lq/2([0,t],Lp/2(G)))

≤ C(t− s)1−( 2
q

+Q
p

)(‖w‖S2,(q/2,p/2)([0,t]×G) + ‖wt‖Lq/2([0,t],Lp/2(G)))

≤ C(t− s)1−( 2
q

+Q
p

) ‖f‖Lq/2([0,t],Lp/2(G)) . (3.3.8)

Here, we used Theorem 3.1.9 in the third line, convolution inequality in the fourth
line, and (3.3.3) in the last line (note that wn(t, x) = 0).

Now, we establish the commutator estimate. For a.e. r ∈ [s, t] and any x ∈ G,
we have that for some 0 < β < 1,

|ϕn ∗ (biZiw)− biZi(ϕn ∗ w)|(r, x)
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=
∣∣∣ ∫

G
(bi(r, y−1 ◦ x)− bi(r, x))Ziw(r, y−1 ◦ x)ϕn(y)dy

∣∣∣
≤ C

∫
G

∥∥bi(r, ·)∥∥
Sr−1,p(G)

‖y‖β |Ziw(r, y−1 ◦ x)||ϕn(y)|dy

≤ C
∥∥bi(r, ·)∥∥

Sr−1,p(G)
‖Ziw(r, ·)‖L∞(G)

∥∥∥‖y‖β ϕn(y)
∥∥∥
L1(G)

.

(3.3.9)

Here, we used Sobolev embedding Theorem 3.1.4 and Remark 3.1.5 in the third line
(we have (r − 1)p > Q: see Remark 1.1.4), and Hölder’s inequality in the last line.

Therefore, integrating (3.3.9) in time and then applying Hölder’s inequality,∥∥ϕn ∗ (biZiw)− biZi(ϕn ∗ w)
∥∥
L1([s,t],L∞(G))

≤ C
∥∥∥‖y‖β ϕn(y)

∥∥∥
L1(G)

∥∥bi∥∥
Lq([s,t],Sr−1,p(G))

‖Ziw‖Lq′ ([s,t],L∞(G)) (3.3.10)

(q′ is the conjugate exponent of q). Note that q′ < 2 since q > 2 (see the condition
(1.1.13)). This implies that

2

q/2
+

Q

p/2
< 2 < 1 +

2

q′
.

Thus, since w ∈ S̃2,(q/2,p/2)([0, t]×G) and according to Theorem 3.1.9,

‖Ziw‖Lq′ ([s,t],L∞(G)) <∞. (3.3.11)

Also, it is obvious that∥∥∥‖y‖β ϕn(y)
∥∥∥
L1(G)

= nQ
∫
G
‖y‖β ϕ(D(n)y))dy

= n−β
∫
G
‖z‖β ϕ(z)dz,

where the last identity is obtained by the change of variable D(n)y = z. Since
ϕ ∈ C∞c (G), ∫

G
‖z‖β ϕ(z)dz <∞,

which implies that

lim
n→∞

∥∥∥‖y‖β ϕn(y)
∥∥∥
L1(G)

= 0. (3.3.12)
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Therefore, using (1.1.15), (3.3.10), (3.3.11), and (3.3.12), we have

lim
n→∞

∥∥ϕn ∗ (biZiw)− biZi(ϕn ∗ w)
∥∥
L1([s,t],L∞(G))

= 0. (3.3.13)

Step 3. Proof of the estimate (3.3.1): since f(r, ·) is continuous for r-a.e.,

(ϕn ∗ f)(r, x)→ f(r, x)

everywhere in x ∈ G for r-a.e. This implies that r-a.e.,

(ϕn ∗ f)(r,Xr)→ f(r,Xr)

for any realization ω ∈ Ω. Since we assumed that f is non-negative and ϕ ≥ 0, it
follows that ϕn ∗ f ≥ 0. Thus, according to the Fatou’s lemma, for any realization
ω ∈ Ω, ∫ t

s

f(r,Xr)dr ≤ lim inf
n→∞

∫ t

s

(ϕn ∗ f)(r,Xr)dr. (3.3.14)

Applying Fatou’s lemma for the conditional expectation,

E
[

lim inf
n→∞

∫ t

s

(ϕn ∗ f)(r,Xr)dr
∣∣∣Fs] ≤ lim inf

n→∞
E
[ ∫ t

s

(ϕn ∗ f)(r,Xr)dr
∣∣∣Fs]. (3.3.15)

From (3.3.14) and (3.3.15), we have

E
[ ∫ t

s

f(r,Xr)dr
∣∣∣Fs] ≤ lim inf

n→∞
E
[ ∫ t

s

(ϕn ∗ f)(r,Xr)dr
∣∣∣Fs]. (3.3.16)

On the other hand, it is easy to check that ϕn ∗ f can be written as

ϕn ∗ f = fn +
m∑
i=1

(ϕn ∗ (biZiw)− biZi(ϕn ∗ w)).

Therefore, using this, (3.3.8), (3.3.13), and (3.3.16), we obtain

E
[ ∫ t

s

f(r,Xr)dr
∣∣∣Fs] ≤ lim inf

n→∞
E
[ ∫ t

s

(ϕn ∗ f)(r,Xr)dr
∣∣∣Fs]

≤ lim sup
n→∞

E
[ ∫ t

s

fn(r,Xr)dr
∣∣∣Fs]

+
m∑
i=1

E
[ ∫ t

s

(ϕn ∗ (biZiw)− biZi(ϕn ∗ w))(r,Xr)dr
∣∣∣Fs]

≤ C(t− s)1−( 2
q

+Q
p

) ‖f‖Lq/2([0,t],Lp/2(G)) .

This concludes the proof.



58

Remark 3.3.2. Let us denote Xt by a solution to SDE (1.1.12). It is a priori not
clear whether or not the integral

∫ t
0
f(s,Xs)ds depends on the version of f . In other

words, it is not obvious whether or not∫ t

0

f(s,Xs)ds =

∫ t

0

g(s,Xs)ds

holds when f = g a.e. In Proposition 3.3.1, we proved the estimate (3.3.1) for
continuous functions f in order that (ϕn ∗ f)(r,Xr) converges to f(r,Xr) for any
realization, which enables us to apply the Fatou’s lemma in Step 3 of the proof.
Note that in general (ϕn ∗ f)(r, ·) converges to f(r, ·) only at the Lebesgue point of
f(r, ·), and it is not a priori clear whether or not (ϕn ∗f)(r,Xr) converges to f(r,Xr)
almost surely.

Since Theorem 1.1.3 is a local statement, we introduce the following notion of a
solution, which is useful for our purpose:

Definition 3.3.3. Suppose that τ is a Ft-stopping time. Xt is called a τ -solution
to SDE

dXt = b(s,Xs)ds+ σ(s,Xs)dBs, 0 ≤ t ≤ T

if w-almost surely,

Xt −X0 =

∫ t∧τ

0

b(s,Xs)ds+

∫ t∧τ

0

σ(s,Xs)dBs

holds for all 0 ≤ t ≤ T .

Note that if Xt is a solution to SDE (1.1.12) and τ is any Ft-stopping time, then
Yt := Xt∧τ is a τ -solution to SDE (1.1.12). The notion of τ -solution is useful when
we consider a stochastic process before the time at which the process exits a certain
region.

Remark 3.3.4. For Ft-stopping time τ , let us denote Gt := Ft∧τ . Assume that b
satisfies the conditions (1.1.14), (1.1.15) for the exponents p, q satisfying (1.1.13),
and Xt is τ -solution to SDE (1.1.12). Following the proof of Proposition 3.3.1, one
can conclude that for any f ∈ Lq/2([0, t], Lp/2(G)) such that f(r, ·) is continuous for
a.e. r ∈ [0, t],

E
[ ∫ t∧τ

s∧τ
f(r,Xr)dr

∣∣∣Gs] ≤ C(t− s)1−( 2
q

+Q
p

) ‖f‖Lq/2([0,t],Lp/2(G)) . (3.3.17)
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Thus, the estimate (3.3.1) is a special case of (3.3.17) with τ =∞. The Krylov-type
estimate (3.3.17) is useful to prove the strong uniqueness of SDE (1.1.12) in Section
3.3.

Similarly, one can also prove that for any f ∈ Sr−1,(q,p)([0, t]×G) such that f(r, ·)
is continuous for a.e. r ∈ [0, t],

E
[ ∫ t∧τ

s∧τ
f(r,Xr)dr

∣∣∣Gs] ≤ C(t− s)1−( 2
q

+Q
p

) ‖f‖Lq([0,T ],Lp(G))

≤ C(t− s)1−( 2
q

+Q
p

) ‖f‖Sr−1,(q,p)([0,T ]×G) . (3.3.18)

Using the Krylov-type estimate (3.3.18), one can derive Itô’s formula for the
mixed-norm parabolic Sobolev spaces S̃r+1,(q,p)([0, T ]×G).

Theorem 3.3.5. Suppose that assumptions in Theorem 1.1.3 are satisfied, and Xt

is a τ -solution to the SDE:

dXt = b(t,Xt)dt+
m∑
i=1

Zi(t,Xt) ◦ dBi
t, 0 ≤ t ≤ T.

Then, for any f ∈ S̃r+1,(q,p)([0, T ]×G) satisfying

f continuous in (t, x),

(ft +
m∑
i=1

biZif +
1

2

m∑
i=1

Z2
i f)(t, ·), Z1f(t, ·), · · · , Zmf(t, ·) continuous in x for t-a.e.,

a process f(t,Xt) is a τ -solution to

df(t,Xt) = (ft +
m∑
i=1

biZif +
1

2

m∑
i=1

Z2
i f)(t,Xt)dt+

m∑
i=1

Zif(t,Xt)dB
i
t, 0 ≤ t ≤ T.

Proof. Since t→ f(t,Xt) is continuous, it suffices to check that for each t,

f(t ∧ τ,Xt∧τ )

=

∫ t∧τ

0

(ft +
∑
i

biZif +
1

2

∑
i

Z2
i f)(s,Xs)ds+

∫ t∧τ

0

∑
i

Zif(s,Xs)dB
i
s (3.3.19)

holds almost surely. Let us approximate f by smooth functions fn in S̃r+1,(q,p)([0, T ]×
G) norm. More precisely, for a mollifier ϕn(x) := nQϕ(D(n)x) with ϕ ∈ C∞c (G), let
us define fn := ϕn ∗ f . Then,

(fn)t +
∑
i

biZifn +
1

2

∑
i

Z2
i fn → ft +

∑
i

biZif +
1

2

∑
i

Z2
i f in Sr−1,(q,p).
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Since for t-a.e., both
[
(fn)t +

∑
i b
iZifn + 1

2

∑
i Z

2
i fn

]
(t, ·) and (ft +

∑
i b
iZif +

1
2

∑
i Z

2
i f)(t, ·) are continuous, using the estimate (3.3.18), one can conclude that

lim
n→∞

E
∣∣∣ ∫ t∧τ

0

((fn)t+
∑
i

biZifn +
1

2

∑
i

Z2
i fn)(s,Xs)ds

−
∫ t∧τ

0

(ft +
∑
i

biZif +
1

2

∑
i

Z2
i f)(s,Xs)ds

∣∣∣ = 0. (3.3.20)

Also, since for t-a.e., both Zifn(t, ·) and Zif(t, ·) are continuous, using the Itô’s
isometry and (3.3.18), we have

lim
n→∞

E
∣∣∣ ∫ t∧τ

0

∑
i

Zifn(s,Xs)dB
i
s −

∫ t∧τ

0

∑
i

Zif(s,Xs)dB
i
s

∣∣∣2
= lim

n→∞
E
∫ t∧τ

0

[∑
i

Zi(fn − f)
]2

(s,Xs)ds

≤ C lim
n→∞

∥∥∥∥∥[∑
i

Zi(fn − f)
]2

∥∥∥∥∥
Sr−1,(q,p)

≤ C lim
n→∞

‖fn − f‖2
Sr,(2q,2p)

≤ C lim
n→∞

‖fn − f‖2
S̃r+1,(q,p) = 0. (3.3.21)

Note that parabolic Sobolev embedding Theorem 3.1.9 is applicable in the last line
since 2

q
+ Q

p
< 1 + 2

2q
+ Q

2p
. Furthermore, according to Theorem 3.1.9 again,

‖fn − f‖L∞ ≤ ‖fn − f‖Sr,(∞,∞) ≤ C ‖fn − f‖S̃r+1,(q,p) .

Therefore,

lim
n→∞

|fn(t ∧ τ,Xt∧τ )− f(t ∧ τ,Xt∧τ )| ≤ lim
n→∞

‖fn − f‖L∞ = 0. (3.3.22)

Since fn’s are smooth, Itô’s formula yields that

fn(t ∧ τ,Xt∧τ )

=

∫ t∧τ

0

((fn)t +
∑
i

biZifn +
1

2

∑
i

Z2
i fn)(s,Xs)ds+

∫ t∧τ

0

∑
i

Zifn(s,Xs)dB
i
s.

(3.3.23)

Therefore, sending n→∞ along the appropriate subsequence using (3.3.20), (3.3.21),
and (3.3.22), we obtain (3.3.19).
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Conjugated SDE

In this section, we derive an auxiliary SDE transformed by the original SDE
(1.1.12), which is called a conjugated SDE. The advantage of this new SDE over
the original SDE is that it possesses a more regular drift coefficient. This idea goes
back to the Zvonkin’s work [Z3], and has been successfully used to prove the well-
posedness of SDEs with the additive noise. In the next proposition, as in [FF3, Z1],
we obtain an auxiliary SDE using a function u. Recall that functions u, Φ, and the
open set Ω are defined in Remark 3.2.3.

Proposition 3.3.6. For 0 ≤ t ≤ T and x ∈ Φ(t,Ω), let us define vector fields b̃ and
σ̃i (1 ≤ i ≤ m) via

b̃(t, x) = [λu+
1

2

m∑
i=1

Z ′iZi](t,Φ
−1(t, x)), σ̃i(t, x) = (Zi + Ziu)(t,Φ−1(t, x))

(Z ′i : RN → RN×N is a standard derivative of the map Zi : RN → RN , and Z ′iZi is
interpreted as a product of N × N matrix Z ′i and a vector Zi ∈ RN). Suppose that
Xt is a τ -solution to SDE (1.1.12) for a Ft-stopping time τ such that Xt ∈ Ω for
0 ≤ t ≤ T . Then, Yt = Φ(t,Xt) is a τ -solution to the following SDE:{

dYt = b̃(t, Yt)dt+
∑m

i=1 σ̃i(t, Yt)dB
i
t,

Y0 = Φ(0, x0).
(3.3.24)

Proof. In order to alleviate notations, we omit the summation symbol
∑

i. Recall
that u(t, x) is continuous, (∂tu+ biZiu+ 1

2
Lu)(s, ·), Ziu(s, ·) are continuous for s-a.e.

(see Remark 3.2.3), and u ∈ S̃r+1,(q,p)([0, T ]×G). Therefore, using Itô’s formula for
non-smooth functions Theorem 3.3.5, we have

u(t,Xt) = u(0, X0) +

∫ t∧τ

0

(∂tu+ biZiu+
1

2
Lu)(s,Xs)ds+

∫ t∧τ

0

Ziu(s,Xs)dB
i
s

= u(0, X0)−
∫ t∧τ

0

(b− λu)(s,Xs)ds+

∫ t∧τ

0

Ziu(s,Xs)dB
i
s

= u(0, X0)−Xt +X0 +

∫ t∧τ

0

λu(s,Xs)ds

+

∫ t∧τ

0

Zi(Xs) ◦ dBi
s +

∫ t∧τ

0

Ziu(s,Xs)dB
i
s

= u(0, X0)−Xt +X0 +

∫ t∧τ

0

[λu+
1

2
Z ′iZi](s,Xs)ds+

∫ t∧τ

0

(Zi + Ziu)(s,Xs)dB
i
s.
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Since Xt ∈ Ω for 0 ≤ t ≤ T , Yt ∈ Φ(t,Ω). Therefore,

Yt − Y0 = Φ(t,Xt)− Φ(t,X0)

=

∫ t∧τ

0

[λu+
1

2
Z ′iZi](s,Xs)ds+

∫ t∧τ

0

(Zi + Ziu)(s,Xs)dB
i
s

=

∫ t∧τ

0

[λu+
1

2
Z ′iZi](s,Φ

−1(s, Ys))ds+

∫ t∧τ

0

(Zi + Ziu)(s,Φ−1(s, Ys))dB
i
s

=

∫ t∧τ

0

b̃(s, Ys)ds+

∫ t∧τ

0

σ̃i(s, Ys)dB
i
t.

Strong uniqueness

Using the conjugated SDE (3.3.24), one can prove that a strong solution to SDE
(1.1.12) is unique:

Theorem 3.3.7. Suppose that X1
t , X2

t are τ -solutions to (1.1.12) for a Ft-stopping
time τ such that X1

t , X
2
t ∈ Ω′ for 0 ≤ t ≤ T . Then, X1

t = X2
t almost surely.

Proof. Let us define Y k
t = Φ(t,Xk

t ) for k = 1, 2. Then, according to Proposition
3.3.6, Y k

t is a τ -solution to SDE (3.3.24), and Y k
t ∈ Φ(t,Ω) for each t. Thus,

Y 1
t −Y 2

t =

∫ t∧τ

0

[b̃(s, Y 1
s )− b̃(s, Y 2

s )]ds+
m∑
i=1

∫ t∧τ

0

[σ̃i(s, Y
1
s )− σ̃i(s, Y 2

s )]dBi
s. (3.3.25)

Let us first check that b̃(t, ·) is Lipschitz continuous on Φ(t,Ω) uniformly in t. Note
that ‖∇u‖L∞([0,T ]×Ω) ≤

1
2
(see Step 3 of the proof of Proposition 3.2.2) and a map

x→ Z ′iZiu(x) is smooth on RN . Thus, applying a chain rule, we obtain the uniform
Lipschitz continuity of b̃(t, ·) since ‖∇Φ−1(t, ·)‖L∞(Φ(t,Ω)) is uniformly bounded in t
(see Proposition 3.2.2).

Therefore, using this fact and applying Itô’s formula to (3.3.25), for any a > 2,

d|Y 1
t − Y 2

t |a

≤ (L|Y 1
s − Y 2

s |a +
a(a− 1)

2
|σ̃(s, Y 1

s )− σ̃(s, Y 2
s )|2|Y 1

s − Y 2
s |a−2)1[0,τ ]ds+Ws1[0,τ ]dBs

(3.3.26)

for some constant L > 0 and the process Ws satisfying

|Ws| ≤ C|Y 1
s − Y 2

s |a−1|σ̃(s, Y 1
s )− σ̃(s, Y 2

s )|. (3.3.27)
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Here, σ̃ denotes a N ×m matrix whose columns consist of σ̃i’s. In order to deal with
the right hand side of (3.3.26), we need the following lemma, motivated by [FF3]
and [KR].

Lemma 3.3.8. There exists a continuous and Ft-adapted process At satisfying

a(a− 1)

2

∫ t

0

|σ̃(s, Y 1
s )− σ̃(s, Y 2

s )|21[0,τ ]ds =

∫ t

0

|Y 1
s − Y 2

s |2dAs (3.3.28)

and
E ecAs <∞ (3.3.29)

for any c > 0.

Proof. Let us define a process At by

At :=
a(a− 1)

2

∫ t

0

1Y 1
s 6=Y 2

s

|σ̃(s, Y 1
s )− σ̃(s, Y 2

s )|2

|Y 1
s − Y 2

s |2
1[0,τ ]ds.

Then, it is obvious that At satisfies (3.3.28), and it suffices to prove the estimate
(3.3.29). Note that since Y k

t ∈ Φ(t,Ω), using the property (iii) in Proposition 3.2.2,

|X1
t −X2

t | = |Φ−1(t, Y 1
t )− Φ−1(t, Y 2

t )| ≤ 2|Y 1
t − Y 2

t |.

Using this, we have

At ≤ C
∑
i

∫ t

0

1Y 1
s 6=Y 2

s

|(Zi + Ziu)(s,X1
s )− (Zi + Ziu)(s,X2

s )|2

|Y 1
s − Y 2

s |2
1[0,τ ]ds

≤ C
∑
i

∫ t

0

1X1
s 6=X2

s

|(Zi + Ziu)(s,X1
s )− (Zi + Ziu)(s,X2

s )|2

|X1
s −X2

s |2
1[0,τ ]ds. (3.3.30)

Here, we used the Lipschitz continuity of Φ−1(t, ·) (see Proposition 3.2.2). For mol-
lifiers ρn(x) := nNρ(nx) with ρ ∈ C∞c (RN), let us first prove that for any c ∈ R,

lim sup
n

E exp
[
c

∫ t∧τ

0

1X1
s 6=X2

s

· |[(Zi + Ziu) ∗ ρn](s,X1
s )− [(Zi + Ziu) ∗ ρn](s,X2

s )|2

|X1
s −X2

s |2
ds
]
<∞. (3.3.31)

Here, ∗ denotes the standard convolution operator on the Euclidean spaces: (f ∗
g)(x) =

∫
RN f(x− y)g(y)dy. Let us choose a cutoff function φ ∈ C∞c (RN) such that

φ = 1 on Ω, and denote K := supp(φ). Also, denote M by a Hardy-Littlewood
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maximal operator with respect to the Euclidean distance and Lebesgue measure on
RN . Since Xk

t ∈ Ω, we have

|[(Zi + Ziu) ∗ ρn](s,X1
s )− [(Zi + Ziu) ∗ ρn](s,X2

s )|2

|X1
s −X2

s |2

=
|φ · {(Zi + Ziu) ∗ ρn}(s,X1

s )− φ · {(Zi + Ziu) ∗ ρn}(s,X2
s )|2

|X1
s −X2

s |2

≤ C(|M∇[φ · {(Zi + Ziu) ∗ ρn}]|2(s,X1
s ) + |M∇[φ · {(Zi + Ziu) ∗ ρn}]|2(s,X2

s )).
(3.3.32)

Here, we used the fact that for some constant C = C(N), the inequality

|f(x)− f(y)| ≤ C|x− y|(M∇f(x) +M∇f(y)) (3.3.33)

holds for any f ∈ C∞(RN). On the other hand, using the fact that φ has compact
support K and u ∈ Sr+1,(q,p), for any n,

‖∇[φ · {(Zi + Ziu) ∗ ρn}]‖Lq([0,T ],Lp(RN ))

≤ ‖φ · {[∇(Zi + Ziu)] ∗ ρn}‖Lq([0,T ],Lp(RN )) + ‖∇φ · {(Zi + Ziu) ∗ ρn}‖Lq([0,T ],Lp(RN ))

≤ C
(
‖∇(Zi + Ziu)‖Lq([0,T ],Lp(K)) + ‖Zi + Ziu‖Lq([0,T ],Lp(K))

)
≤ C(1 + ‖u‖Sr+1,(q,p)([0,T ]×RN )).

Here, we used the convolution inequality in the second line. Also, in the third line,
we used

‖∇(Ziu)‖Lq([0,T ],Lp(K)) ≤ C(K) ‖u‖Sr+1,(q,p)([0,T ]×RN )

(recall that each standard vector field on RN can be written as a linear combination
of commutators of Zi’s with order ≤ r).

Therefore, we obtain

lim sup
n

∥∥|M∇[φ · {(Zi + Ziu) ∗ ρn}]|2
∥∥
Lq/2([0,T ],Lp/2(RN ))

≤ C lim sup
n

∥∥|∇[φ · {(Zi + Ziu) ∗ ϕn}]|2
∥∥
Lq/2([0,T ],Lp/2(RN ))

<∞ (3.3.34)

since the maximal operatorM is bounded in Lp(RN). SinceM∇[φ · {(Zk + Zku) ∗
ρn}](s, ·) is continuous s-a.e, using (3.3.17), one can conclude that

lim sup
n

E
[ ∫ t∧τ

s∧τ
|M∇[φ · {(Zi + Ziu) ∗ ρn}]|2(r,Xk

r )dr
∣∣∣Gs]
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≤ C(t− s)1−( 2
q

+Q
p

) lim sup
n

∥∥|M∇[φ · {(Zi + Ziu) ∗ ρn}]|2
∥∥
Lq/2([0,t],Lp/2(RN ))

.

(3.3.35)

Therefore, using (3.3.32), (3.3.34), (3.3.35), we obtain the estimate (3.3.31).
Finally, let us check that (3.3.31) implies (3.3.29). Since (Zi + Ziu)(s, ·) is con-

tinuous for s-a.e, [(Zi + Ziu) ∗ ρn](s, ·) converges to (Zi + Ziu)(s, ·) pointwisely in
x ∈ RN for s-a.e. Thus, using (3.3.30), (3.3.31), and the Fatou’s lemma, we obtain
(3.3.29).

Let us go back to the proof of Theorem 3.3.7. Applying Lemma 3.3.8 to (3.3.26),
we have

e−At |Y 1
t − Y 2

t |a =

∫ t

0

−e−As|Y 1
s − Y 2

s |adAs +

∫ t

0

e−Asd|Y 1
s − Y 2

s |a

≤
∫ t

0

Le−As|Y 1
s − Y 2

s |a1[0,τ ]ds+

∫ t

0

e−AsWs1[0,τ ]dMs. (3.3.36)

Let us define a Ft-stopping time τl by

τl = inf{0 ≤ t ≤ T | |Y 1
t | > l or |Y 2

t | > l},

and τl = T if the above set is empty. Then, by (3.3.36),

e−At∧τl |Y 1
t∧τl − Y

2
t∧τl |

a

≤
∫ t

0

Le−As|Y 1
s − Y 2

s |a1[0,τ ]1[0,τl]ds+

∫ t

0

e−AsWs1[0,τ ]1[0,τl]dMs. (3.3.37)

Let us check that that σ̃ is bounded on Φ(t,Ω) uniformly in t. Since u ∈ S̃r+1,(q,p)

(see Remark 3.2.3), according to Theorem 3.1.9, Ziu ∈ L∞([0, T ] × RN). Also, it is
obvious that Zi(·) is bounded on Ω. These facts imply the uniform boundedness of
σ̃(t, ·) on Φ(t,Ω).

Thus, since |Y 1
s |, |Y 2

s | ≤ l for s ∈ [0, τl], for some constant C,

|Y 1
s − Y 2

s |a−1|σ̃(s, Y 1
s )− σ̃(s, Y 2

s )| < Cla−1

for any s ∈ [0, τl]. From this and (3.3.27), it follows that s 7→ e−AsWs1[0,τ ]1[0,τl] is a
square-integrable process. Therefore, taking the expectation in (3.3.37),

E[e−At∧τl |Y 1
t∧τl − Y

2
t∧τl |

a] ≤ L

∫ t

0
E[e−As|Y 1

s − Y 2
s |a1[0,τ ]1[0,τl]]ds.
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Sending l→∞ and applying the Fatou’s lemma,

E[e−At |Y 1
t − Y 2

t |a] ≤ L

∫ t

0
E[e−As|Y 1

s − Y 2
s |a1[0,τ ]]ds.

Applying Grönwall’s inequality, we obtain

E[e−At |Y 1
t − Y 2

t |a] = 0.

Using Hölder’s inequality,

E |Y 1
t − Y 2

t |a/2 ≤ [E e−At |Y 1
t − Y 2

t |a]1/2[E eAt ]1/2 = 0

since E eAt is finite (see the estimate (3.3.29)). Thus, we have

E |Y 1
t − Y 2

t |a/2 = 0.

Since trajectories are continuous in time and Φ(t, ·) is bijective from Ω onto Φ(t,Ω)
for each t, proof is concluded.

Conclusion of the proof of Theorem 1.1.3

In this section, we finally complete the proof of the main result Theorem 1.1.3.
We show the weak existence and strong uniqueness separately, and then apply the
Yamada-Watanabe principle. Since we have already proved the uniqueness of a
solution in Section 3.3, it suffices to derive the existence of a weak solution. Let us
first recall the well-known fact about the existence of a weak solution:

Theorem 3.3.9. Suppose that b(t, ·) and σ(t, ·) are continuous in x and have linear
growth for each 0 ≤ t ≤ T . Then, SDE{

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T,

X0 = x0,

admits a weak solution.

Since Theorem 1.1.3 is a local statement, we localize coefficients of SDE (1.1.12),
and then apply Theorem 3.3.9. More precisely, choose a cutoff function ψ ∈ C∞c (RN)
such that ψ = 1 on Ω, and consider the following SDE:{

dXt = (ψb)(t,Xt)dt+
∑m

i=1(ψZi)(t,Xt) ◦ dBi
t, 0 ≤ t ≤ T,

X0 = x0.
(3.3.38)



67

Corollary 3.3.10. There exists a weak solution to SDE (3.3.38).

Proof. Recall that b(t, ·) is continuous for t-a.e (see Remark 1.1.4) and ψ is a cutoff
function. Thus, according to Theorem 3.3.9, SDE (3.3.38) has a weak solution.

Now, we are ready to conclude the proof of the main result Theorem 1.1.3.

Proof of Theorem 1.1.3. Let us consider the following SDE:{
dXt = bt(X·)1t<τ(X·)dt+

∑m
i=1(Zi)t(X·)1t<τ(X·) ◦ dBi

t, 0 ≤ t ≤ T,

X0 = x0.
(3.3.39)

Here, bt(x·), (Zi)t(x·) are RN -valued progressive functions on the space [0, T ] ×
C([0, T ],RN), equipped with the canonical filtration Ft = σ{xs|s ≤ t}, defined
by bt(x·) := b(t, xt), (Zi)t(x·) := Zi(t, xt). Also, Ft-stopping time τ is defined by
τ(x·) := inf{t ≤ T | xt 6∈ Ω} and τ(x·) = T if the set is empty. Uniqueness of a
strong solution to SDE (3.3.39) follows from Theorem 3.3.7, and the existence of a
weak solution follows from Corollary 3.3.10. Therefore, Yamada-Watanabe principle
(see Theorem 2.1.2) concludes that a unique strong solution exists to SDE (3.3.39).
This concludes the proof of Theorem 1.1.3.
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