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University of California Irvine, Irvine, CA 92697

Email: {yuhangy5, syed}@uci.edu ∗

Abstract

The Σ-QMAC problem is introduced, involving S servers, K classical (Fd) data streams, and
T independent quantum systems. Data stream Wk, k ∈ [K] is replicated at a subset of servers
W(k) ⊂ [S], and quantum system Qt, t ∈ [T ] is distributed among a subset of servers E(t) ⊂ [S]
such that Server s ∈ E(t) receives subsystem Qt,s of Qt = (Qt,s)s∈E(t). Servers manipulate their
quantum subsystems according to their data and send the subsystems to a receiver. The total
download cost is

∑
t∈[T ]

∑
s∈E(t) logd |Qt,s| qudits, where |Q| is the dimension of Q. The states

and measurements of (Qt)t∈[T ] are required to be separable across t ∈ [T ] throughout, but for
each t ∈ [T ], the subsystems of Qt can be prepared initially in an arbitrary (independent of
data) entangled state, manipulated arbitrarily by the respective servers, and measured jointly
by the receiver. From the measurements, the receiver must recover the sum of all data streams.
Rate is defined as the number of dits (Fd symbols) of the desired sum computed per qudit of
download. The capacity of Σ-QMAC, i.e., the supremum of achievable rates is characterized for
arbitrary data and entanglement distributionsW, E . For example, in the symmetric setting with
K =

(
S
α

)
data-streams, each replicated among a distinct α-subset of [S], and T =

(
S
β

)
quantum

systems, each distributed among a distinct β-subset of [S], the capacity of the Σ-QMAC is
1
βT

∑min(α,β)
γ=(α+β−S)+ min(β, 2γ)·

(
α
γ

)
·
(
S−α
β−γ

)
. Coding based on the N -sum box abstraction is optimal

in every case. Notably, for every S 6= 3 there exists an instance of the Σ-QMAC where S-party
entanglement is necessary to achieve the fully entangled capacity.

∗Presented in part at IEEE GLOBECOM 2023.
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1 Introduction

Entanglement is arguably the most counter-intuitive aspect of quantum systems. Quantum entan-
glement enables correlations that are classically impossible. These correlations can be exploited
for improvements in the efficiency of quantum communication and computation networks. Un-
derstanding the fundamental limits of quantum entanglement phenomena is therefore essential to
gauge the potential of the much-anticipated quantum internet of the future [2–4]. However, even
quantifying the amount of entanglement is highly non-trivial, especially when the entanglement is
distributed among many parties. Unlike bipartite entanglement which is relatively well understood
— a fundamental understanding of multi-party1 entanglement remains elusive. Numerous funda-
mentally distinct measures have been explored thus far [5], including the Schmidt measure [6, 7],
the trace-squared or the entropy of the reduced density matrix [8], the tangle [9], the entanglement
of formation [10], majorization-based entanglement monotones [11,12], geometric measures [13–15],
and specialized notions such as absolute maximal or genuine multiparty entanglement [16,17].

Given the lack of a universal measure, an alternative is to quantify multi-party entanglement
indirectly in terms of its utility as a resource [18], e.g., by the gains in communication efficiency2

that are made possible by quantum entanglement for accomplishing various classical multiparty
computation tasks. Much effort has traditionally been aimed at finding tasks that gain a lot from
quantum entanglement in terms of communication complexity measures [20,21]. A limitation of this
approach is that the tasks thus identified may turn out to be artificial. For example, the celebrated
Deutsch-Jozsa algorithm [22] translates into a computation task in a 2 user quantum SMP setting
[23,24] where entanglement shows an exponential advantage. However, such a computation task is
seldom encountered in practice.

A complementary approach that we explore in this work, is to focus instead on some elementary
computation tasks that are quite natural, such as linear computations, and explore the gains in
efficiency due to quantum entanglements for such tasks. Specifically, we study an elemental setting,
called the Σ-QMAC, to be described shortly, where the computation task is simply a finite-field
summation task, over an ideal (noise-free) quantum multiple access network with arbitrarily dis-
tributed inputs and entanglements. Since the gains may be modest, a finer accounting of efficiency,
such as the exact information theoretic capacity, is needed.

The pursuit of exact capacity faces numerous challenges – 1) sharp capacity characterizations are
quite rare even for classical communication networks when many parties are involved, 2) computa-
tion networks tend to be even less tractable than communication networks for information theoretic
analysis, and 3) the quantum setting further compounds the difficulty of any such endeavor. Indeed
the foremost challenge in pursuing this direction is to identify formulations that are both insightful
from a multiparty quantum entanglement perspective and also information theoretically tractable.
Our choice of the Σ-QMAC setting draws inspiration from the following observations — 1) the
many-to-one (multiple access (MAC)) setting is among the most tractable in network information
theory, 2) the capacity of finite field linear computations in noiseless settings, while still open in
general, has seen much progress in the network coding literature, in particular elegant solutions
have been found for the case of scalar linear computations (i.e., sum computations) [25–29], and 3)
the stabilizer formalism [30–32] from quantum error correction lends itself nicely to linear black-box
abstractions for the quantum multiple access channel (QMAC) [33], and has been instrumental to

1We refer to entanglement among N -parties as bipartite if N = 2, and multiparty if N > 2.
2Indeed, it is conjectured that communication efficiency may provide a concise information-theoretic axiomatic

basis for characterizing quantum mechanics [19].
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recent advances in quantum private information retrieval (QPIR) [33–38] that implicitly involve
optimal specialized linear computations. The Σ-QMAC setting is described next.

(Server S1)

A,B

(Server S2)

A,C

(Server S3)

B,C

(Server S4)

D

Alice

Quantum system Q1

Initial state: ρ1

Quantum system Q2

Initial state: ρ2

Q1,1 Q1,2 Q2,2 Q2,3 Q2,4

Y1 Y2

(A` + B` + C` + D`)`∈[L]

Figure 1: A Σ-QMAC setting, with K = 4 data streams (A,B,C,D), S = 4 servers (S1,S2,S3,S4),
and T = 2 quantum systems (Q1,Q2). The data replication map W = ({1, 2}, {1, 3}, {2, 3}, {4})
specifies that data stream A is replicated at Servers S1,S2; B at S1,S3; C at S2,S3; and data stream
D is available only at S4. The entanglement distribution map E = ({1, 2}, {2, 3, 4}) is such that
entangled subsystems of Q1 are distributed to Servers S1,S2, and entangled subsystems of Q2 are
distributed to Servers S2, S3 and S4.

In a Σ-QMAC setting (see Section 4 for a formal definition), a user, say Alice, wants to compute
the sum of K classical data streams (comprised of d-ary symbols (dits) from a finite field Fd) that
are replicated across various subsets of S servers (cf. graph-based replication [39–41]) according
to an arbitrary data replication map (W). Independent of the data streams, T quantum systems
are prepared, and subsystems of each quantum system are distributed to various subsets of servers
(called cliques) according to an arbitrary entanglement distribution map (E). The states and the
eventual measurements of different quantum systems must remain separable throughout, but the
subsystems of each quantum system are in general entangled even as they are distributed to different
servers within that clique, thus allowing such a clique of servers to exploit their quantum entangle-
ment. The servers locally encode their classical data into their quantum subsystems, maintaining
separation among different quantum systems associated with different cliques, and send them to
Alice, who does separate measurements on each quantum system. From the measurement outcome,
Alice must be able to recover the desired sum. The computation rate is the number of dits of the
desired sum computed by Alice per qudit of download.3 An example is illustrated in Fig. 1. If Alice
is able to compute L dits of the desired sum (A + B + C + D in Fig. 1) with total communication
cost N qudits then the rate achieved is L/N (dits/qudit). The capacity C is the supremum of
achievable rates.

In order to quantify the utility of multiparty quantum entanglements, the key figure of merit in
the Σ-QMAC is the multiplicative gain in capacity that is enabled by entanglement, relative to the

3In contrast to a dit, which is a classical d-ary symbol, a qudit, short for a quantum-dit, represents a d-dimensional
quantum system. For d = 2 these are the common ‘bit’ and ‘qubit,’ respectively.
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corresponding unentangled setting. In the literature such a gain is known as distributed superdense
coding gain [18,33–37,42–46]. Quantifying the utility of multiparty entanglements by characterizing
the distributed superdense coding (DSC) gain in the Σ-QMAC is the immediate focus of this work.
The broader motivation is that success in the Σ-QMAC setting may pave the way for future studies
of general linear computation tasks that shed further light on the fundamental limits of the utility
of multiparty quantum entanglement.

2 Significance of the Σ-QMAC and relationship to prior works

2.1 Relationship to prior works

Connection to Simultaneous Message Passing (SMP): The underlying quantum multiple
access (QMAC) communication model in the Σ-QMAC is similar to what is known in the literature
as simultaneous message passing (SMP) model with quantum messages [21,24,47] . A noteworthy
distinction is that the SMP model is typically studied from a communication complexity perspective
which does not allow batch processing, whereas since our perspective is information theoretic,
batch processing is not only allowed, it is essential to our problem formulation. For brevity, and
to underscore the information theoretic perspective, we say QMAC when we mean an SMP model
with quantum messages and batch processing.
Connection to Quantum Metrology: The Σ-QMAC is conceptually related to various physi-
cally motivated and commonly studied models in the active area of distributed quantum sensing
and quantum metrology. A general theme in this area is how the entanglement across quantum sen-
sors allows higher precision (approaching the Heisenberg limit) in the computation of a function of
distributed classical parameters, than what is possible without entanglement (the standard Quan-
tum limit) [48]. For example, note the similarity of Fig. 1 and the quantum metrology protocol
illustrated in [49]. In the quantum metrology protocol, entangled quantum systems are distributed
to sensors (which take the role of servers in Fig. 1), classical parameters are encoded into them
through quantum transducers, and the quantum systems are sent to a central receiver where the
desired function is estimated by a joint measurement. As noted in [50], the gains in capacity due to
quantum entanglement in an elemental QMAC can be harnessed to yield gains in measurement pre-
cision. Entanglement is particularly useful if the goal is to estimate a global function of distributed
parameters rather than a separate estimation of each parameter [51, 52]. The function of parame-
ters to be computed could be the average value, essentially a sum of parameters as in [53], similar
to the Σ-QMAC. Remarkably, establishing the utility of multipartite entanglement by explicitly
accounting for the partitioning of entangled systems as illustrated in Fig. 1, is also of interest in
quantum metrology [54]. While our current focus is limited to finite fields, a successful capacity
characterization of the Σ-QMAC could perhaps be a stepping stone to the much more challenging
problem of determining the fundamental limits of stochastic computations over continuous random
variables as is often needed in quantum metrology.
Connection to Quantum Private Information Retrieval (QPIR): The Σ-QMAC model over
finite fields is essential in the context of QPIR [34–37]. In QPIR, classical messages (possibly in
coded forms) are stored at servers that have entangled quantum systems distributed among them.
Based on a query submitted by a user, each server encodes its classical answer into its quantum
system, sends it to the user through an elemental QMAC, and the user retrieves the desired message
by a joint measurement. As in the Σ-QMAC, the desired computation is typically a linear function
of the servers’ classically coded inputs.
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Connection to N-sum Box: The Σ-QMAC is also immediately related to the N -sum box [33],
which is a black box abstraction of stabilizer based linear computations. The DSC gains in many
previously studied settings, including recent applications in quantum private information retrieval
(QPIR), can be realized through the N -sum box abstraction [18, 34–37, 43–46]. Nonetheless, it is
important to note that the Σ-QMAC capacity formulation does not limit the coding schemes to the
N -sum box, or to stabilizer based constructions in general. Indeed, the Σ-QMAC allows arbitrary
entangled states to be shared among the servers, and stabilizer states are a very small fraction of
those states. Similarly, the Σ-QMAC allows servers to perform arbitrary unitary transformations,
whereas the N -sum box is limited to X and Z gates, which represent a very small fraction of all
possible unitaries. Whether the stabilizer based N -sum box suffices to achieve the capacity of the
Σ-QMAC in all cases is another fundamental question to be answered in this work.
Connection to Network Function Computation: While different from the traditional multiple
access channel, the capacity formulation for the Σ-QMAC is quite standard in the broad area of
classical network function computation [55–57], from where it is inherited. In network function
computation, capacity is defined in terms of the communication cost incurred per instance of a
desired function computation in a distributed setting. The network function computation paradigm
finds numerous applications in private information retrieval, coded computing, distributed storage
repair and learning [58]. In particular the capacity of sum-networks, where the goal is to compute
the sum of distributed inputs as in the Σ-QMAC, has been a topic of much interest [25–29]. As
a quantum extension of an elemental classical sum-network setting, the Σ-QMAC brings together
classical and quantum information theoretic perspectives. The interplay of quantum theoretic
ideas like quantum entanglement, superdense coding and the stabilizer formalism with classical
information theoretic ideas such as network coding and interference alignment offers a promising
arena from which new insights may emerge.

2.2 Significance of Key Assumptions

In the Σ-QMAC the inputs are prior-free, the desired output is exact, the channel is idealized, and
the number of servers can be arbitrarily large. The significance of these assumptions is explained
as follows. The prior-free model is desirable for computation problems, because unlike conventional
communication problems where independent messages can be separately compressed to their en-
tropy limit to yield uniform data, for computation problems the compression of inputs cannot be
taken for granted as it changes the nature of the computation. The prior-free model is also quite
robust as the results are not limited to one data distribution or another. Exact computation goes
hand-in-hand with the assumption of prior-free inputs, because probabilistic bounds on errors are
less meaningful when no particular distribution is assumed on the data. The Σ-QMAC setting is
chosen to be elemental, i.e., the channels through which the quantum systems are conveyed from
the servers to Alice are elementary — they are simply assumed to be noise-free. The assumption
of an idealized channel is important to ensure that the capacity of the Σ-QMAC reflects only the
fundamental limitations of the multipartite quantum-entanglements for the chosen task, and not
other artifacts that arise out of channel imperfections and not directly from entanglement per se.
Furthermore, since we wish to explore multi-partite entanglements among a large number of par-
ties it is important that we explore Σ-QMAC settings with arbitrarily large number of entangled
servers. These considerations highlight the essential distinctions that separate our work from other
interesting research directions pursued, for example in [59], [60] and [61], that explore ε-error sum
computation over a QMAC with correlated data streams and noisy quantum channels, albeit with
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only 2 servers (transmitters).
In the Σ-QMAC we allow arbitrary entanglements across the subsystems of each quantum

system, but quite importantly, we do not allow entanglements across systems. We require that
strict separation between quantum systems be preserved throughout. The significance of this
assumption is that it allows us to determine whether multiparty entanglement is in fact necessary
to achieve the DSC gain for a given Σ-QMAC setting. For example, suppose we wish to determine
the DSC gain achievable in a Σ-QMAC with only bipartite entanglements. To this end we allow
every pair of servers to share unlimited amount of bipartite entanglements, but no multiparty
entanglements are initially provided to the servers. Without the separate processing constraint
it may still be possible for the Σ-QMAC capacity to benefit from multiparty entanglement, e.g.,
due to implicit or explicit fusion [62] among bipartite quantum systems through joint processing
and measurements. The DSC gain thus achieved could not be categorically attributed to only
bipartite entanglement. With the separate processing constraint on the other hand, the resulting
DSC gain can only be attributed to bipartite entanglements. In fact, it is crucial for our motivation
of understanding fundamental limits of multiparty entanglements that we are able to convincingly
determine whether the DSC gains necessarily require multiparty entanglement, and furthermore to
be able to distinguish between DSC gains possible with β-party entanglement from those possible
with β′-party entanglements, for β 6= β′.

In the Σ-QMAC no prior entanglement is allowed between the servers and the receiver Alice.
Recall that entanglement between transmitter and receiver is required in the original setting where
superdense coding is introduced [42]. This essential distinction also separates our work from prior
efforts to classify entanglements according to their utility for DSC gains in [18], where the tasks cho-
sen were simple communication tasks and prior entanglements between transmitters and receivers
were allowed. In the Σ-QMAC setting since there is no prior entanglement between the servers and
Alice, it follows from the Holevo bound that no DSC gain is possible for the direct communication
task where each server wants to send an independent message to Alice. Thus, computation is
essential to our setting which provides a richer space to explore multipartite entanglements.

In the Σ-QMAC the data streams may be replicated across multiple servers. The significance
of this assumption is explained as follows. Without data-replication, the summation (Σ) is a total
function of the computing parties’ inputs, but with replication it is only a partial function. Ar-
bitrarily large (e.g., exponential in the size of inputs) gains have been established for the exact
computation of certain partial functions [21, 63] in the SMP model, i.e., without batch process-
ing. The QMAC model, with batch processing, also allows arbitrarily large DSC gains for certain
partial functions (see Appendix A). On the other hand, the largest observed DSC gain for exact
computation of total functions thus far is only 2 in the SMP setting [24] with or without batch
processing [18, 24, 33, 34]. To the best of our knowledge, DSC gains larger than 2 for exact com-
putations of total functions, while unlikely, have not been formally ruled out. Specifically for our
purpose, it is interesting that both directions are open for exact linear computations, i.e., there are
no known instances of linear computations over the QMAC that achieve DSC gain larger than 2,
nor is it known that gains larger than 2 are impossible in such settings.

3 Overview of Contribution

The ability to precisely quantify useful multiparty entanglements via DSC gains over a QMAC
boils down to following three requirements that must be simultaneously satisfied. 1) the desired
computation must represent a natural task, 2) the exact capacity must be tractable, and 3) the
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capacity must in general require genuine multiparty entanglements, e.g., bipartite entanglements
must not be sufficient to achieve the capacity in general. We show that the Σ-QMAC problem
formulation satisfies all 3 criteria. Since sum-computation with distributed data is obviously a
natural task, what remains is to show that the capacity is tractable and sensitive to genuine
multiparty entanglement.

The tractability of capacity is established by an explicit capacity characterization in Theorem 1.
The key ideas that make the capacity tractable include the capacity of sum-networks from network
coding [25–29], the N -sum box abstraction [33], dual GRS codes [64], stabilizer based CSS code
constructions [31,32], and quantum-information theoretic converse arguments [65–67]. The capacity
depends on both the data replication and entanglement distribution maps. For example, Corollary
4 shows that in the symmetric setting with K =

(
S
α

)
data-streams, each replicated among a distinct

α-subset4 of [S], and T =
(
S
β

)
quantum systems, each distributed among a distinct β-subset of [S],

the capacity of the Σ-QMAC is 1
βT

∑min(α,β)
γ=(α+β−S)+

min(β, 2γ) ·
(
α
γ

)
·
(
S−α
β−γ
)
.

For the motivating example in Fig. 1, let us explicitly state the capacity results for various
entanglement distribution maps. It will be useful to adopt a more intuitive notation by denoting
the servers S1,S2,S3,S4 as Sab,Sac,Sbc,Sd, respectively. The entanglement as shown in Fig. 1
can then be described as ({Sab,Sac}, {Sac,Sbc,Sd}), reflecting the fact that there are 2 quantum
systems, Q1,Q2, such that entangled subsystems of Q1 are distributed to the servers Sab,Sac, and
entangled subsystems of Q2 are distributed to the servers Sac,Sbc,Sd. The capacity for this, and
various other entanglement distribution maps, is listed in Table 1.

Entanglement distribution map Capacity

({Sab,Sac,Sbc,Sd}) 4/5

({Sab,Sac,Sbc}, {Sab,Sac,Sd}, {Sab,Sbc,Sd}, {Sac,Sbc,Sd}) 3/4

({Sab,Sac}, {Sab,Sd}, {Sac,Sd}, {Sbc,Sd}) 3/4

({Sab,Sac}, {Sac,Sbc,Sd}) 2/3

({Sab,Sac}, {Sac,Sbc}, {Sac,Sd}, {Sbc,Sd}) 2/3

({Sab}, {Sac,Sbc,Sd}) 2/3

({Sab}, {Sac,Sbc}, {Sac,Sd}, {Sbc,Sd}) 2/3

({Sab,Sac,Sbc}, {Sd}) 1/2

({Sab,Sac}, {Sab,Sbc}, {Sac,Sbc}, {Sd}) 1/2

({Sab,Sac}, {Sbc,Sd}) 1/2

({Sab}, {Sac}, {Sbc}, {Sd}) 2/5

Table 1: Capacity of the Σ-QMAC in Fig. 1 for various entanglement distribution maps

Note that the last row of the table corresponds to the unentangled case, i.e., with no entan-
glements allowed between servers. The unentangled capacity of the Σ-QMAC for a given data
replication map W is the same as the classical capacity for the corresponding setting. In this case,
the unentangled capacity is 2/5 computations/qudit, meaning that without quantum entanglement
the fundamental limit dictates that each instance of the desired sum A + B + C + D requires 5/2
qudits (5/2 dits in the classical case) to be sent to Alice. The first row represents the opposite
extreme, the fully entangled case that allows all 4 servers to be entangled, and we note that the

4An α-subset of [S] is a subset of {1, 2, · · · , S} that has cardinality α.
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capacity in this case is 4/5 computations/qudit. For each specified entanglement distribution map
the DSC gain is the ratio of the capacity for that case to the unentangled capacity. The DSC gain
for the fully entangled setting is called the maximal distributed superdense coding gain. In this
case, the maximal DSC gain is 2.

In terms of the main motivation of quantifying useful genuine multiparty entanglements via
DSC gains, the capacity analysis allows us to draw various insights. Some of these are highlighted
below along with pointers to relevant results in the paper.

1. The maximal DSC gain of Σ-QMAC5 is 2. The maximal DSC gain of 2 is achievable in the
fully entangled Σ-QMAC if and only if the unentangled capacity is not more than 1/2 (com-
putations/qudit). When the unentangled capacity is not less than 1/2, the fully entangled
Σ-QMAC has DSC gain exactly equal to the reciprocal of the unentangled capacity. These
observations are implied by Corollary 3 of Section 5.

2. Bipartite (2-party) entanglement is in general insufficient to achieve the maximal DSC gain
in the Σ-QMAC, even if unlimited bipartite entanglement is made available to every pair of
transmitters. In other words, multiparty entanglement is necessary in general. This can be
seen from Table 1 — the capacity is 2/3 if only bipartite entanglement is allowed, whereas the
capacity is 4/5 with entanglement allowed across all four servers. The necessity of multiparty
entanglements is also evident from Corollary 4 in Section 5.

3. If each data-stream is only available to a unique server, then bipartite entanglement suffices
to achieve the maximal DSC gain. This observation is based on Corollary 6 in Section 5.

4. The symmetric setting in Corollary 4 reveals that both extremes of too much data replication
and too little data replication require relatively little entanglement to achieve their maximal
DSC gain, rather the intermediate regimes of data replication are the ones that require the
most entanglement. See discussion in Section 6.3.

5. The minimal entanglement-size β such that β-party entanglement is necessary to achieve
a desired (feasible) DSC gain value in a Σ-QMAC can be determined from the capacity
characterizations. For example, from Table 1 we note that 4-party entanglement is neces-
sary to achieve maximal DSC gain. The best DSC gain with 3-party entanglements is only
(3/4)/(2/5) = 15/8 which can also be achieved with 2-party entanglements

6. 3-party entanglement is never necessary to achieve the capacity of the Σ-QMAC. Any 3-party
entanglement can be replaced by 2-party entanglements with the capacity unchanged. This
observation is based on Corollary 7 of Section 5. An example is presented in Section 6.5.

7. For every S 6= 3, there is a Σ-QMAC setting with S servers where S-party entanglement is
necessary to achieve the maximal DSC gain. In such settings, even with unlimited S−1 party
entanglements among all (S−1)-subsets of servers, the DSC gain is strictly smaller than that
with S-party entanglement. This observation is based on Corollary 8 of Section 5. Related
discussion is provided in Section 6.6.

8. Entanglements restricted to stabilizer states, along with Pauli operations (X and Z gates)
at the servers (i.e., coding via the N -sum box abstraction) suffice to achieve the capacity

5The possibility of DSC gains larger than 2 for vector linear computations over the QMAC remains open.
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of the Σ-QMAC. Thus, while the capacity formulation does allow non-stabilizer states and
general unitary operations, neither of those can improve the DSC gains in the Σ-QMAC. This
observation emerges from the proof of achievability of Theorem 1.

Notation: N denotes the set of positive integers. Z+ = {0} ∪ N. For n ∈ N, [n] denotes the
set {1, 2, · · · , n}. For n1, n2 ∈ N, [n1 : n2] denotes the set {n1, n1 + 1, · · · , n2} if n1 ≤ n2 and ∅
otherwise. For a set X , define X n , X × X × · · · × X as the n-fold Cartesian product. Define
compact notations A[n] , (A(1), A(2), · · · , A(n)) and A[n] , (A1, A2, · · · , An). Fd denotes the finite
field with d = pr a power of a prime. R denotes the set of real numbers. R+ denotes the set of
non-negative real numbers. C denotes the set of complex numbers. For a field F, Fa×b denotes the
set of a× b matrices with elements in F. tr(M) denotes the trace of a matrix M . For a matrix M
with elements in C, M † denotes its conjugate transpose. Ia denotes the a×a identity matrix. 0a×b
denotes the zero matrix with size a × b. Pr(E) denotes the probability of an event E. Pr(E1|E2)
denotes the conditional probability of E1 given E2. (x)+ , max(x, 0). For m,n ∈ Z+,m ≤ n,(
n
m

)
, n!

m!(n−m)! denotes the binomial coefficient. For a set N , the set of its cardinality-m sub-sets

is denoted as
(N
m

)
, {A ⊂ N | |A| = m} if |N | ≥ m. The notation 2N denotes the power set of N .

The notation f : A 7→ B denotes a map f from A to B. If f is a bijection from A to B, we write
f : A ↔ B and denote the inverse of f as f−1. The dimension of a quantum system Q is denoted
as |Q|.

4 Problem Formulation

4.1 Σ-QMAC

The Σ-QMAC problem is specified by a 6-tuple
(
Fd, S,K, T,W, E

)
. Fd is a finite field of order

d with d = pr being a power of a prime. S is the number of servers. K is the number of
independent classical data-streams, denoted as W1,W2, · · · ,WK . The kth data stream, Wk, is

comprised of symbols W
(`)
k ∈ Fd, ` ∈ N. T is the number of independent quantum resources,

denoted as Q1,Q2, · · · ,QT . The data replication map is a mapping W : [K]→ 2[S] that identifies
W(k) ⊂ [S] as the subset of servers where Wk is available. The entanglement distribution map
is a mapping E : [T ] → 2[S] that identifies E(t) ⊂ [S] as the subset of servers among which the
quantum system Qt is distributed. Such a subset of servers is referred to as a clique in this paper.
The quantum system Qt is partitioned into entangled subsystems Qt,s, s ∈ E(t) such that Server s
receives the quantum subsystem Qt,s from the quantum system Qt = (Qt,s, s ∈ E(t)).

4.2 Feasible Quantum Coding Schemes

A quantum coding scheme is specified by a 6-tuple(
L, ((δt,s)s∈E(t))t∈[T ], ρ[T ], ((Φt,s)s∈E(t))t∈[T ], ({Mt,y}y∈Yt)t∈[T ], Ψ

)
. (1)

L ∈ N is the batch size, which is the number of sums to be computed by the coding scheme,
i.e., the coding scheme allows Alice to compute WΣ(`) for all ` ∈ [L]. For k ∈ [K], denote the

first L instances of the kth data stream as W
[L]
k =

(
W

(1)
k ,W

(2)
k , · · · ,W(L)

k

)
∈ FLd , and the desired

computation at Alice as W
[L]
Σ =

(
W

(1)
Σ ,W

(2)
Σ , · · · ,W(L)

Σ

)
∈ FLd , where WΣ(`) ,

∑K
k=1 Wk(`), ∀` ∈ [L].

For t ∈ [T ] and s ∈ E(t), δt,s ∈ Z+ specifies the dimension of the quantum subsystem Qt,s, i.e.,
|Qt,s| = δt,s. For t ∈ [T ], say the tth clique is E(t) = {s1, s2, · · · , s|E(t)|}. The quantum system
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Qt = Qt,s1Qt,s2 · · · Qt,s|E(t)| is prepared in the initial state ρt ∈ C|Qt|×|Qt|. Q1,Q2, · · · ,QT are
unentangled with each other. Without loss of generality, we assume that the initial state of the
composite system is a pure state, and thus it can be written as ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρT . For t ∈ [T ],

Server s ∈ E(t) applies a unitary operator Ut,s = Φt,s(W
[L]
k , k : s ∈ W(k)) to Qt,s. Thus, the

resulting state of Qt is ρ′t = Utρt U
†
t , where Ut , Ut,s1 ⊗ Ut,s2 ⊗ · · · ⊗ Ut,s|E(t)| . Note that since

Q1,Q2, · · · ,QT are unentangled initially, and separate operations are done for Q1,Q2, · · · ,QT ,
they remain unentangled after the servers apply the operations. All subsystems are then sent to
Alice, who performs separate quantum measurements (POVM) on each of the T quantum systems.
Specifically, for t ∈ [T ], the set of operators for the measurement of Qt is specified as {Mt,y}y∈Yt by
the coding scheme. The output of the measurement is denoted as Yt, which is a random variable
with realizations in Yt. Finally, the function Ψ : Y1 ×Y2 · · · × YT → FL×1

d maps the outputs of the

measurements Y[T ] = (Y1, Y2, · · · , YT ) to the desired computation (sum), i.e., W
[L]
Σ = Ψ(Y1, · · · , YT ).

Any feasible coding scheme must work for all dKL realizations of
(
W

[L]
1 ,W

[L]
2 , · · · ,W[L]

K

)
. Let C

denote the set of such coding schemes.

4.3 Feasible Region and Capacity

For the Σ-QMAC
(
Fd, S,K, T,W, E

)
, the download-cost per computation (qudits/dit) tuple,

∆ = (∆t,s)t∈[T ],s∈E(t) ∈ RΓ
+, Γ ,

∑
t∈[T ]

|E(t)|, (2)

is said to be feasible, if there exists a coding scheme(
L, ((δt,s)s∈E(t))t∈[T ], ρ[T ], ((Φt,s)s∈E(t))t∈[T ], ({Mt,y}y∈Yt)t∈[T ], Ψ

)
∈ C

such that

∆t,s ≥
logd |Qt,s|

L
=

logd δt,s
L

, ∀t ∈ [T ], s ∈ E(t). (3)

Define D as the closure of the set of all feasible download-cost tuples ∆ so that any ∆ inside D
is feasible, and any ∆ outside D is not feasible. In terms of computation rates (dits of computa-
tion/qudit of download), a rate R is feasible if there exists a coding scheme in C such that

R ≤ L∑
t∈[T ],s∈E(t) logd |Qt,s|

=
L∑

t∈[T ],s∈E(t) logd δt,s
. (4)

Define

C , sup
C
R (5)

as the computation capacity. Note that a capacity C characterization is implied by a characteri-
zation of D because C = (min∆∈D

∑
t∈[T ],s∈E(t) ∆t,s)

−1. Since S,K, T can be inferred from W, E , a
Σ-QMAC problem is fully specified by the parameters (Fd,W, E). As our first result (Theorem 1)
will show, the capacity is independent of Fd (which reflects the merit of using qudit to measure the
cost). Therefore the capacity C(W, E) is only a function of (W, E). While comparing capacities of
problems that have the same data replication map but different entanglement distribution maps,
the data replication map W may be occasionally omitted for brevity when it is clear from the
context.
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4.4 Fully-entangled, Fully-unentangled and Fully-β-party-entangled Capacities

Symmetric entanglement distribution maps can be especially insightful because the symmetry fa-
cilitates compact capacity descriptions that are easier to compare. To prepare for discussions of
symmetric entanglements, let us define the fully-β-party-entangled setting as the entanglement
distribution map comprised of all cliques of size β. Note that this allows genuine multiparty en-
tanglement to be established among every subset of servers containing no more than β servers.
Formally, fully-β-party-entangled setting6 refers to the bijective entanglement distribution map,

E(β) : [

(
S

β

)
]↔

(
[S]

β

)
. (6)

For example, with S = 4 servers, fully-2-party-entangled setting means that
(

4
2

)
= 6 separate

quantum systems are available, each comprised of 2 entangled subsystems that are distributed
among a distinct pair (2-clique) of servers. E(2) is a bijection from {1, 2, · · · , 6} to the set of
all 2-subsets of [4], i.e., {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 3}, {2, 4}}. For example, E(2)(1) = {1, 2},
E(2)(2) = {2, 3}, E(2)(3) = {3, 4}, E(2)(4) = {4, 1}, E(2)(5) = {1, 3}, E(2)(6) = {2, 4}). Given a data
replication map W, the fully-β-party-entangled capacity is correspondingly defined as,

C(β)(W) , C(W, E(β)). (7)

Extreme cases of fully-β-party-entangled capacity include the β = S setting, known simply as
the fully-entangled capacity C fullent(W) = C(S)(W), and the β = 1 setting, known simply as the
fully-unentangled capacity Cunent(W) = C(1)(W).

4.5 Distributed Superdense Coding (DSC) Gain

Given data replication map W and entanglement distribution map E , the distributed super dense
coding (DSC) gain is defined as the ratio

C(W, E)/Cunent(W), (8)

which indicates the multiplicative gain, compared to the fully-unentangled capacity Cunent(W), that
is enabled by quantum entanglement subject to the entanglement distribution map E . The maximal
DSC gain for data replication map W is defined as C fullent(W)/Cunent(W), which is the ratio of the
fully-entangled capacity to the fully-unentangled capacity.

5 Results

The exact capacity of the Σ-QMAC is fully characterized in the following theorem.

Theorem 1 (Σ-QMAC). The capacity of the Σ-QMAC
(
Fd, S,K, T,W, E

)
, is

C(W, E) =

 min
∆∈D(W,E)

∑
t∈[T ],s∈E(t)

∆t,s

−1

(9)

6We may shorten ‘fully-β-party-entangled’ to simply ‘β-party-entangled’ in subsequent discussions when the con-
text is obvious.
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with the feasible download-cost region characterized as (Γ ,
∑

t∈[T ] |E(t)|),

D(W, E) =
{

∆ ∈ RΓ
+

∣∣∣ ∑t∈[T ] min
{∑

s∈E(t) ∆t,s,
∑

s∈E(t)∩W(k) 2∆t,s

}
≥ 1,∀k ∈ [K]

}
. (10)

The proof of Theorem 1 appears in Sections 7 and 8. Note that Theorem 1 characterizes the
capacity of the Σ-QMAC in terms of the solution of a linear program that finds the minimum
download cost over the feasible region D that is explicitly characterized. The capacity does not
depend on the field Fd. In fact the capacity depends only on the data replication and entanglement
distribution maps (W, E) since the remaining parameters S,K, T can be inferred from W, E .

The remainder of this section identifies a few interesting corollaries that follow from Theorem 1.
We start with the specializations for the opposite extremes, fully-entangled and fully-unentangled
capacities, stated as corollaries next.

Corollary 1 (Fully-entangled). The fully-entangled capacity for a data replication map W is,

C fullent(W) =

 min
(∆1,··· ,∆S)∈Dfullent(W)

∑
s∈[S]

∆s

−1

, (11)

where

Dfullent(W) =

(∆1, · · · ,∆S) ∈ RS+

∣∣∣∣∣∣
∑
s∈[S]

∆s ≥ 1,
∑

s∈W(k)

∆s ≥ 1/2,∀k ∈ [K]

 . (12)

Corollary 2 (Fully-unentangled). The fully-unentangled capacity for a data replication map W is,

Cunent(W) =

 min
(∆1,··· ,∆S)∈Dunent(W)

∑
s∈[S]

∆s

−1

(13)

where

Dunent(W) =

{
(∆1, · · · ,∆S) ∈ RS+

∣∣∣∣ ∑s∈W(k)
∆s ≥ 1, ∀k ∈ [K]

}
. (14)

From Corollary 1 and Corollary 2 we have the following characterization of the maximal DSC
gain for any data replication map W.

Corollary 3 (Maximal DSC gain). The maximal distributed superdense coding gain for the data
replication map W is,

C fullent(W)/Cunent(W) = min
(
2, 1/Cunent(W)

)
. (15)

The proof of Corollary 3 is relegated to Appendix B.
Next we explore a class of Σ-QMAC settings with symmetric data replication and entanglement

distribution maps. A symmetric setting is specified by three parameters, S, α and β. The data
replication map is fully symmetric, so that for each α-subset of [S] there is a unique data stream
replicated among this subset of servers. The goal is to characterize explicitly the fully-β-party-
entangled capacity for such data replication maps. The explicit characterization is provided next.
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Corollary 4 (Symmetric). If α ∈ [S], K =
(
S
α

)
, T =

(
S
β

)
, and W : [K]↔

(
[S]
α

)
and E : [T ]↔

([S]
β

)
are bijective mappings, then the Σ-QMAC capacity (denoted as C

(β)
α ) is

C(β)
α =

1

βT

min(α,β)∑
γ=(α+β−S)+

min(β, 2γ) ·
(
α

γ

)
·
(
S − α
β − γ

)
(16)

=
2α

S
− 1

βT

min(α,β)∑
γ=max(α+β−S,dβ/2e)

(2γ − β) ·
(
α

γ

)
·
(
S − α
β − γ

)
(17)

= 1− 1

βT

min(α,bβ/2c)∑
γ=(α+β−S)+

(β − 2γ) ·
(
α

γ

)
·
(
S − α
β − γ

)
(18)

The proof of Corollary 4 is relegated to Appendix C.
The next corollary sheds light on C(2), i.e., the capacity with only bipartite entanglements.

Let us first provide the necessary context before presenting the next corollary. Given a Σ-QMAC
problem P with data replicationW, S servers andK data streams, we want to explicitly characterize
the 2-party-entangled capacity C(2)(W). To do so, let us construct another hypothetical Σ-QMAC

problem referred to as P̃ with data replication map W̃,
(
S
2

)
servers and the same K data streams

as in P. Now let us specify W̃. Each server in P̃ is indexed by a 2-element set {i, j} ⊂ [S].
Server S{i,j} in P̃ has the access to the data streams that are available to Servers Si or Sj in P.

In other words, a data stream is available to Server S{i,j} in P̃ if and only if that data stream is

available to either Server Si or Server Sj (or to both) in P. Mathematically, W̃(k) =
{
{i, j} ∈(

[S]
2

) ∣∣ ({i, j} ∩W(k)
)
6= ∅
}

for k ∈ [K]. Now we are ready to present the next corollary.

Corollary 5 (Fully-2-party-entangled capacity). C(2)(W) = Cunent(W̃). In addition, it can be
shown that C(2)(W) can always be achieved by a scheme that involves only the 2-sum protocol.7

The proof of Corollary 5 is relegated to Appendix D. In plain words, Corollary 5 states that the 2-
party-entangled capacity for the data replication map W is equal to the fully-unentangled capacity
for the data replication map W̃, comprised of a new set of servers that are obtained by merging
pairs of original servers.

Corollary 6 (Disjoint data). Given data replication map W with S servers and K data streams,
if S ≥ 2 and each data-stream is available to only one server, i.e., |W(k)| = 1 for all k ∈ [K], then
C fullent(W) = C(2)(W) = 2/S.

In other words, if no data stream is replicated across more than one server, then genuine
multiparty entanglement (between more than 2 parties) is not needed, i.e., the fully-entangled
capacity is equal to the 2-party-entangled capacity. Together with Corollary 5, this implies that
2-sum protocol based schemes suffice to achieve the fully-entangled capacity in this case.

Proof. Since each server can locally add the data streams and regard the sum as one data stream,
it suffices to consider K = S data streams such that each server has a unique data stream. The

7Schemes that only apply the 2-sum protocol are special cases of the quantum coding schemes formulated in
Section 4.2 when T =

(
S
2

)
and E : [T ] ↔

(
[S]
2

)
. In other words, each of the T quantum systems Q1,Q2, · · · ,QT is

available to a unique pair of the S servers.

13



reduced setting belongs to the symmetric settings specified in Corollary 4 with S servers and α = 1.

It can then be verified by (17) that C
(2)
1 = C

(S)
1 = 2/S.

Corollary 7 (3-party entanglement is unnecessary). Given any Σ-QMAC problem with data repli-
cation map W and entanglement distribution map E that identifies a 3-party clique, say E(t) =
{s1, s2, s3} for some t ∈ [T ], consider another entanglement distribution map E ′, which is created
by first making a copy of E, and then replacing the 3-party clique {s1, s2, s3} with three 2-party
cliques {s1, s2}, {s1, s3} and {s2, s3}. Then we always have C(W, E) = C(W, E ′).

The proof of Corollary 7 is relegated to Appendix E. It shows that any 3-party entanglement can
be substituted by 2-party entanglements established by the same three servers, for the purpose
of Σ-QMAC capacity (not necessarily for other function computations). Note that it immediately
follows that C(3)(W) = C(2)(W) for any data replication map W.

Corollary 8 (Necessity of multiparty entanglements). For any S ≥ 2 and S 6= 3, there exists a
data replication map W with S servers for which C(S)(W) > C(S−1)(W).

The proof of Corollary 8 is relegated to Appendix F. The corollary states that given the number
of servers S, if S ≥ 2 and S 6= 3, there is a data replication map W with S servers for which the
fully-entangled capacity C fullent(W) is strictly greater than the (S − 1)-party-entangled capacity
C(S−1)(W). In other words, in order to attain the maximal DSC gain for the Σ-QMAC with this
data replication map, one must allow the entanglement to be established among all S servers. A
concrete example for this corollary can be found in Section 6.6.

6 Examples

In this section we present examples to illustrate the results.

6.1 Example: Achieving Fully-Entangled Capacity C fullent for the Data Replica-
tion Map of Fig. 1

Consider the data replication mapW as in Fig. 1. Let us sketch the solution for the fully-entangled
setting, i.e., E = {{1, 2, 3, 4}}. There are 4 data-streams, denoted by A,B,C and D. For intuitive
notation, let us use subscripts ab, ac, bc, d to represent 1, 2, 3, 4, respectively, reflecting the data-
streams available at the corresponding servers. For example, we indicate Server S1 as Sab, making
it explicit that this server has data-streams A,B. Similarly, Server S2 has data-streams A,C, and
is thus denoted as Sac. The other two servers are Sbc and Sd accordingly. The corresponding
normalized download costs are denoted as ∆ab,∆ac,∆bc and ∆d. With these notations, the feasible
region in Corollary 1 is,

D∗ =

(∆ab,∆ac,∆bc,∆d) ∈ R4
+

∣∣∣∣∣∣∣∣∣∣
∆ab + ∆ac + ∆bc + ∆d ≥ 1,
∆ab + ∆ac ≥ 1/2,
∆ab + ∆bc ≥ 1/2,
∆ac + ∆bc ≥ 1/2,
∆d ≥ 1/2.

 . (19)

From the converse standpoint, let us note informally that of the 5 bounds that appear in (19), the
first bound says that the normalized total download cost is at least 1 qudit/dit. This is because
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there is no entanglement between the servers and Alice, so it follows from the Holevo bound [65]
that one qudit cannot carry more than one dit of information. The remaining four bounds are
typical cut-set arguments, by separating the parties (servers and Alice) into two groups such that
the servers that know one of the data streams are collectively regarded as the transmitter, while
the other servers join Alice as the receiver. Since now entanglement can be established between the
transmitter and the receiver, it follows from (e.g., [18, 68]) that the one qudit can carry at most 2
dits of information, yielding the factor 1/2 on the RHS of the other four bounds.

Minimizing ∆ab +∆ac +∆bc +∆d over D leads to a linear program with optimal value 5/4, thus
establishing the fully-entangled capacity for this example as C fullent = 4/5. To show the achievability
of 4/5, we specify a coding scheme that allows Alice to recover L = 4 instances of the desired sums,
denoted as A[4] + B[4] + C[4] + D[4], based on an (N = 5)-sum box in Fd so that in the 5-sum box
Server Sab controls 1 pair of inputs x1, x6; Server Sac controls 1 pair of inputs x2, x7; Server Sbc
controls 1 pair of inputs x3, x8; and Server Sd controls 2 pairs of inputs x4, x5, x9, x10. Let us denote
the transfer matrix corresponding to the 5-sum box as M, which can be chosen freely in F5×10

d , as
long as MJ10M

T = 05×5. Denote the input of the box as x = [x1, x2, · · · , x10]T and the output of
the box as y ∈ F5×1

d , and thus y = Mx can be measured at Alice. Since Server Sab knows only A
and B, (x1, x6) must be determined by A[4] and B[4]. Similarly, (x2, x7) must be determined by A[4]

and C[4]; (x3, x8) must be determined by B[4] and C[4]; (x4, x5, x9, x10) must be determined by D[4].
Aside from the use of the 5-sum box, our scheme uses linear precoding and decoding at the servers
and the receiver. Specifically, the mapping from (A[4],B[4],C[4],D[4]) to x is linear, and the mapping
from y to the desired sum A[4] + B[4] + C[4] + D[4] is also linear. As an example, the precoding

at Server Sab is represented as [x1, x6]T = V a
abA[4] + V b

abB[4], where V a
ab, V

b
ab are precoding matrices

with appropriate size and elements chosen in Fd. The precoding matrices at the other servers are
denoted in a similar fashion. The decoding at Alice is represented as Vdecy, which must be equal
to A[4] + B[4] + C[4] + D[4]. Fig. 2 illustrates the precoding and decoding operations.

A[4] B[4] C[4] D[4]

V a
ab V b

ab V a
ac V c

ac V b
bc V c

bc V d
d

y = Mx

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Vdec : 4× 5

(Comm. Cost: 5 qudits) y1 y2 y3 y4 y5

A[4] + B[4] + C[4] + D[4]

Figure 2: Precoding and decoding structure to achieve fully-entangled capacity C fullent for the data
replication map of Fig. 1.

For the general proof of achievability in Section 8 we only need to show the existence of appro-
priate encoders and decoders, so the specific choices will not be explicitly stated. For this example,
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however, let us explicitly write a 5× 10 transfer matrix M, the precoding matrices V a
ab, V

b
ab, · · · , V d

d

and the decoding matrix Vdec, such that they yield the desired relationships.
The choice of M: The transfer function of the 5-sum box is M ∈ F5×10

d specified as,

M =


1 0 0 0 0 0 1 1 0 1
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 1 0 0 1 0
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 1 1 0 1 0

 . (20)

It is easily verified that MJ10M
T = 05×5 and thus it is a valid 5-sum box.8

The choice of Vdec: To the output y ∈ F5×1
d , Alice applies a 4× 5 decoding matrix Vdec specified

as,

Vdec =


0 1 0 1 1
0 0 0 1 1
1 0 0 0 1
0 0 1 1 1

 . (21)

The choice of the precoding matrices: Due to the data dependency, the input vector x ∈ F10×1
d

can be written as,

x =


x1

x2

...
x10

 =



V a
ab,1

V a
ac,1

01×4

02×4

V a
ab,2

V a
ac,2

01×4

02×4




A1

A2

A3

A4


︸ ︷︷ ︸
A[4]

+



V b
ab,1

01×4

V b
bc,1

02×4

V b
ab,2

01×4

V b
bc,2

02×4




B1

B2

B3

B4


︸ ︷︷ ︸
B[4]

+



01×4

V c
ac,1

V c
bc,1

02×4

01×4

V c
ac,2

V c
bc,2

02×4




C1

C2

C3

C4


︸ ︷︷ ︸
C[4]

+



03×4

V d
d,1

V d
d,2

03×4

V d
d,3

V d
d,4



D1

D2

D3

D4


︸ ︷︷ ︸
D[4]

(22)

which indicates the precoding operations at each server with an encoding matrix V −− . For example,
Server Sab, precodes the L×1 = 4×1 vector of data stream A (denoted as A[4]) with the 2Nab×L =

2× 4 precoding matrix V a
ab, whose ith row is denoted by V a

ab,i. Similarly, Server Sab precodes data

stream B with the 2 × 4 precoding matrix V b
ab. The precoded symbols are then mapped to the

inputs controlled by Server ab, i.e., x1, x6, so that we have,[
x1

x6

]
= V a

abA[4] + V b
abB[4]. (23)

Each server similarly precodes the data streams available to it with its corresponding precoding
matrices.

The precoding matrices are now specified as,[
V a
ab

V a
ac

]
=
(
VdecM(1,6,2,7)

)−1
,

[
V b
ab

V b
bc

]
=
(
VdecM(1,6,3,8)

)−1
,[

V c
ac

V c
bc

]
=
(
VdecM(2,7,3,8)

)−1
, V d

d =
(
VdecM(4,5,9,10)

)−1
. (24)

8In fact, any M ∈ FN×2N
d of the form [IN ,SN ] where SN = STN satisfies MJ2NM = 0N×N and is therefore a valid

N -sum box [33].
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where M(i1,i2,··· ,in) is an N × n submatrix of M comprised of the (i1, i2, · · · , in)th columns of M.
It is easy to verify that det(VdecM(1,6,2,7)) = det(VdecM(2,7,3,8)) = 1 and det(VdecM(1,6,3,8)) =
det(VdecM(4,5,9,10)) = −1, thus all 4 inverses in (24) exist.
Correctness: With all choices explicitly specified, it is similarly easy to verify that we have,

Vdecy = VdecMx = A[4] + B[4] + C[4] + D[4]. (25)

Thus, Alice is able to compute 4 instances of the desired sum, with the total download cost of 5
qudits. The coding scheme achieves the rate 4/5 qudits/computation, matching the capacity of
this Σ-QMAC setting.

6.2 Example: Symmetric Σ-QMAC with S = 8

Setting S = 8, for α, β ∈ {1, 2, · · · , 8}, we show the values of C
(β)
α in the following table according to

Corollary 4. The first column (β = 1) corresponds to the fully-unentangled capacities. The second

Table 2: C
(β)
α for S = 8.

α

C
(β)
α β

1 2 3 4 5 6 7 8

1 1/8 1/4 1/4 1/4 1/4 1/4 1/4 1/4

2 1/4 13/28 13/28 1/2 1/2 1/2 1/2 1/2

3 3/8 9/14 9/14 5/7 5/7 3/4 3/4 3/4

4 1/2 11/14 11/14 61/70 61/70 13/14 13/14 1

5 5/8 25/28 25/28 27/28 27/28 1 1 1

6 3/4 27/28 27/28 1 1 1 1 1

7 7/8 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1

column (β = 2) corresponds to the 2-party-entangled capacities. The capacities in this column
are achievable by the 2-sum protocol. The last column (β = 8) corresponds to the fully-entangled
capacities. Comparing the columns corresponding to β = 1 and β = 8, note that the DSC gain is 2
provided that the capacity does not exceed 1 dit/qudit. Also, note that the bipartite entanglement
(i.e., β = 2) is in general not enough to achieve the maximal DSC gain.

6.3 Example: Minimizing the Maximal Entanglement

Maintaining entanglement across many parties tends to be increasingly challenging, as more parties
become involved. So it is desirable to have smaller cliques without losing the capacity, motivating
the problem of identifying entanglement distribution maps E , with the maximal clique size as small
as possible such that the capacity achieved with E is the same as C fullent. Mathematically, the
problem is to find β∗ , min{β | C(β) = C fullent} for a fixed data replication map. For example,
consider the data distribution W shown in Fig. 1. We can see from Table 1 that the smallest value
of β for this example is 4, same as S, i.e., all servers need to be entangled, because even if every
subset of 3 of the 4 servers has an entangled system, the capacity is still only 3/4, which is still less
than C fullent = 4/5. However, as evident from Table 2, where the data replication map is symmetric,
it is in general not necessary to have all servers entangled in order to achieve the fully-entangled
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capacity C fullent. For example, for S = 8 servers and α = 3, we have C
(6)
3 = C∗3 = 3/4, which means

that it suffices to have β = 6 in order to achieve the fully-entangled capacity. Therefore, based on
Table 2, for the cases with symmetric data replication, i.e., K =

(
S
α

)
and W : [K]↔

(
[S]
α

)
, we have

β∗ = 2, 4, 6, 8, 6, 4, 2, 1 for α = 1, 2, 3, 4, 5, 6, 7, 8. From Corollary 4 it can further be verified that
for general S,

β∗ =


2α, α ≤ bS/2c,
2(S − α), dS/2e ≤ α ≤ S − 1,

1, α = S.

(26)

The proof of (26) can be found in Appendix C. The intuition that emerges from this is that both
extremes of too much data replication (large α) and too little data replication (small α) require
relatively little entanglement (small β∗) to achieve their maximal DSC gain, rather the intermediate
regimes of data replication are the ones that require the most entanglement to maximize their DSC
gain.

6.4 Example: 2-sum Protocol Based Coding for Fig. 1

The main purpose of this example is to illustrate Corollary 5. Note that there are two Σ-QMAC
problems involved in Corollary 5. In this example, let us again consider the data replication map
defined in Fig. 1. We consider the following two Σ-QMAC problems.

1. P: The Σ-QMAC problem with data replication mapW as shown in Fig. 1. Specifically, there
are four data streams, denoted as A,B,C and D. The four servers are denoted as Sab,Sac,Sbc
and Sd. We wish to find the 2-party-entangled capacity C(2)(W).

2. P̃: The (hypothetical) Σ-QMAC problem with data replication map W̃. Specifically, there are(
4
2

)
= 6 servers, each has the data streams that are available to a unique pair of servers in P.

Therefore, the data streams available to the servers in P̃ are ABC,ABC,ABD,ABC,ACD,BCD,
respectively. Without loss of generality, the three servers that know ABC can be considered
as one server. We refer to the server that has data streams ABC as Sabc, and similarly we
define the rest 3 servers as Sabd,Sacd and Sbcd. We wish to find the fully-unentangled capacity
Cunent(W̃).

According to Corollary 5, these two Σ-QMAC problems have the same capacity, i.e., C(2)(W) =

Cunent(W̃), both equal to 3/4 by Corollary 2. A scheme for the problem P̃ is illustrated in Table
3. Note that in P̃, no entanglement across different servers is allowed, and our scheme in Table 3

Server Transmission

Sabc Yabc = (A1 − A2 + A3) + (B1 − B2) + C1

Sabd Yabd = (A2 − A3) + B2 + D1

Sacd Yacd = A3 + C2 + (D2 − D1)

Sbcd Ybcd = B3 + (C3 − C2) + (D3 − D2 + D1)

Table 3: Coding scheme for P̃

simply treats qudits as dits. Since Yabc +Yabd = A1 +B1 +C1 +D1, Yabd +Yacd = A2 +B2 +C2 +D2
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and Yacd + Ybcd = A3 + B3 + C3 + D3, the scheme allows Alice to compute L = 3 instances of the
desired sum with a total cost of 4 qudits (Yabc, Yabd, Yacd and Ybcd each costs one qudit). The
capacity 3/4 is thus achieved.

Fig. 3 shows that a scheme thats achieve C(2)(W) = 3/4 in the problem P can be deduced from
Table 3, which allows Alice to compute 6 instances of the sum in the problem P, with 4 uses of
the 2-sum protocols, thus achieving the rate 6/8 = 3/4. Note that each use of the 2-sum protocol

ABC ABD ACD BCD

Yabc

Yabd Yacd

Ybcd

Rate: 3
(1+1+1+1)

(dits/dit)

AB AC BC D

2-sum 2-sum 2-sum 2-sum

Yabc

Yabd Yacd
Ybcd

Rate: 6
2(1+1+1+1)

(dits/qudit)

Figure 3: A comparison of the schemes that achieve Cunent(W̃) = 3/4 in the problem P̃ (LHS)
and C(2)(W) = 3/4 in the problem P (RHS). In RHS, each of Yabc, Yabd, Yacd and Ybcd contains

two instances, e.g., Yabc =
(
Y

(1)
abc , Y

(2)
abc

)
, where Y

(1)
abc is the function of (Ai,Bi,Ci,Di)

3
i=1 as shown in

Table 3 and Y
(2)
abc is the corresponding function of (Ai,Bi,Ci,Di)

6
i=4.

transmits 2 instances of the symbol that is sent by a server in the problem P̃. Specifically, for
example, the two servers Sab and Sac in the problem P use the 2-sum protocol once, with the two
inputs at Sab specified as (A1 − A2 + A3) and (A4 − A5 + A6), the two inputs at Sac specified as

(B1 − B2) + C1 and (B4 − B5) + C4, so that Alice gets Y
(1)
abc = (A1 − A2 + A3) + (B1 − B2) + C1 and

Y
(2)
abc = (A4 − A5 + A6) + (B4 − B5) + C4.

6.5 3-party entanglement is not necessary in Σ-QMAC

As an example to illustrate Corollary 7, let us once again consider the data replication map in Fig.
1. One can quickly check from Table 1 that for any capacity that is associated with an entangle-
ment distribution map that contains a 3-party clique, the same capacity is achievable for another
entanglement distribution map where the 3-party clique is replaced with three 2-party cliques,
each containing a unique pair of servers in the 3-party cliques. Another example is the symmetric
settings with S = 8 servers as shown in Table 2. Note that in each row, the 3-party-entangled
capacity is always equal to the 2-party-entangled capacity, meaning that 3-party entanglement is
not necessary for achieving a higher capacity.

6.6 The necessity of S-party entanglement for Σ-QMAC (S 6= 3)

The symmetric setting in Section 6.2 may support the intuition that β-partite entanglement is un-
necessary for odd β, i.e., C(β)(W) = C(β−1)(W), because the columns corresponding to odd values
of β in Table 2 are identical to their preceding columns. The intuition may even be strength-
ened by Corollary 7 which shows that indeed C(3)(W) = C(2)(W) for any W. Perhaps surpris-
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ingly then, Corollary 8 reveals that β = 3 is only an exception and it is not generally true that
C(β)(W) = C(β−1)(W) for all data replication patterns W if β is an odd number.

Leaving the proof of Corollary 8 to Appendix F, let us consider here the case β = S = 5 to see
that indeed there exists a data replication pattern W such that C(5)(W) > C(4)(W). Let A,B,C,D
and E denote K = 5 data streams. The data replication map W is such that Server S1 has A,B,C,
Server S2 has A,B,D, Server S3 has A,C,D, Server S4 has B,C,D and Server S5 has E. If we only
look at the first 4 servers, this is the symmetric data replication map with 4 data streams, each
being replicated in a unique subset of 3 servers. The asymmetry comes from the additional data
stream, E, that is only available at server S5. It can be verified by Theorem 1 that for this data
replication map, C fullent(W) , C(5)(W) = 6/7 and C(4)(W) = 5/6, which together show that the
5-partite entanglement is necessary for this W.

7 Proof of Theorem 1: Converse

Our converse bound for proving Theorem 1 is based on the cut-set argument with the capacity
result of classical-quantum communication channel (e.g., [18, 68]). The definitions of quantum
coding schemes, feasible region, capacity and the DSC gain follow from those of the Σ-QMAC.

7.1 Prerequisite: Dense Coding Capacity

Consider a point to point quantum communication setting with a sender, Bob, and a receiver,
Alice. Quantum systems QA and QB are provided to Alice and Bob, respectively. We use |Q|
to denote the dimension of a quantum system Q. The composite system QBQA is in the initial
state ρBA, described by the density operator. Independent of ρBA there is a random variable X, so
that with probability pX(x), Bob applies a unitary operation Ux on QB. The resulting state of the

system QBQA is thus ρBA
′

x = (UB ⊗ IA)ρBA(U †B ⊗ IA) for X = x. Then Bob sends QB to Alice,
which allows Alice to measure QBQA and obtain the outcome Y . The dense coding capacity [18],
defined as the maximum amount of information that Alice can learn about X from Y , is equal to
max I(X;Y ) where the maximum is taken over all pX and all possible measurement at Alice. This
value can be strictly larger than logd |QB| (dits), in which case the coding scheme is called a dense
coding. As shown by [18], max I(X;Y ) = logd |QB| + S(ρA) − S(ρBA) (dits), where S(·) denotes
the von Neumann entropy and ρA is the reduced density operator for QA. Due to the inequalities
|S(ρA) − S(ρB)| ≤ S(ρBA), S(QA) ≤ logd |QA| and non-negativity of von Neumann entropy, we
obtain that

I(X;Y ) ≤ min(logd |QBQA|, 2 logd |QB|) dits. (27)

7.2 Proof of Converse

Consider any feasible coding scheme specified by(
L, ((δt,s)s∈E(t))t∈[T ], ρ[T ], ((Φt,s)s∈E(t))t∈[T ], ({Mt,y}y∈Yt)t∈[T ], Ψ

)
. (28)

Lemma 1 (Conditional Independence). Given any feasible scheme, Y1,Y2, · · · ,YT are mutu-

ally independent conditioned on the event (W
[L]
1 = w1,W

[L]
2 = w2, · · · ,W[L]

K = wK) for any
w1, w2, · · · , wK ∈ FLd .
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Proof. Recall that Alice receives the quantum systemQt in the state ρ′t = (⊗s∈E(t)Ut,s)ρt(⊗s∈E(t)Ut,s)
†

for t ∈ [T ]. Thus, for any w1, w2, · · · , wK ∈ FLd ,

Pr(Yt = yt |W[L]
1 = w1, · · · ,W[L]

K = wK) = tr(ρ′tMt,yt), ∀t ∈ [T ] (29)

and

Pr
(
Y1 = y1, · · · ,YT = yT |W[L]

1 = w1, · · · ,W[L]
K = wK

)
= tr

(
(ρ′1 ⊗ · · · ⊗ ρ′T )(M1,y1 ⊗ · · · ⊗MT,yT )

)
(30)

= tr
(
(ρ′1M1,y1)⊗ · · · ⊗ (ρ′TMT,yT )

)
(31)

=

T∏
t=1

tr(ρ′tMt,yt) (32)

=

T∏
t=1

Pr(Yt = yt |W[L]
1 = w1, · · · ,W[L]

K = wK) (33)

where the last step uses (29). It follows that Y1,Y2, · · · ,YT are conditionally independent.

Let
(
W

(`)
1 ,W

(`)
2 , · · · ,W(`)

K

)
be the `th instance of the data streams. Since any feasible scheme

must guarantee successful decoding for all realizations of
(
W

(`)
1 ,W

(`)
2 , · · · ,W(`)

K

)
∈ FKd for all `, it

must still guarantee successful decoding if we assume
(
W

(`)
1 ,W

(`)
2 , · · · ,W(`)

K

)
to be uniform over

FKd for any ` ∈ [L], and independent over ` ∈ [L]. For t ∈ [T ], let us account for the separate
measurement corresponding to clique E(t). Following a regular cut set argument, for k ∈ [K],
denote At,k ,

(
[S]\W(k)

)
∩ E(t) and let Servers s ∈ At,k join Alice as the receiver by bringing

their quantum resource and data. Let Bt,k , E(t)\At,k = E(t)∩W(k) and consider Servers s ∈ Bt,k
collectively as the transmitter. Denote the subsystem of Qt that is sent from Servers s ∈ Bt,k as
QB and the quantum subsystem of Qt that is brought from Servers s ∈ At,k as QA. Since the K

data streams are mutually independent, conditioned on W
[L]
[K]\{k}, it follows from (27) that,

I
(
W

[L]
k ;Yt

∣∣ W[L]
[K]\{k}

)
≤ min

(
logd |QBQA|, 2 logd |QB|

)
(34)

= min
(

logd
∏
s∈E(t)

|Qt,s|, 2 logd
∏
s∈Bt,k

|Qt,s|
)

(35)

= min
( ∑
s∈E(t)

logd |Qt,s|, 2
∑
s∈Bt,k

logd|Qt,s|
)

(36)

where Yt denotes the result after measuring the quantum system QBQA, i.e., the composite system
comprised of QB and QA.

We then have ∑
t∈[T ]

I
(
W

[L]
k ;Yt

∣∣ W[L]
[K]\{k}

)
=
∑
t∈[T ]

H
(
Yt
∣∣ W[L]

[K]\{k}
)
−
∑
t∈[T ]

H
(
Yt
∣∣ W[L]

[K]

)
(37)
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≥ H
(
Y[T ]

∣∣ W[L]
[K]\{k}

)
−
∑
t∈[T ]

H
(
Yt
∣∣ W[L]

[K]

)
(38)

= H
(
Y[T ]

∣∣ W[L]
[K]\{k}

)
−
∑
t∈[T ]

H
(
Yt
∣∣ W[L]

[K],Y[t−1]

)
(39)

= H
(
Y[T ]

∣∣ W[L]
[K]\{k}

)
−H

(
Y[T ]

∣∣ W[L]
[K]

)
(40)

= I
(
W

[L]
k ;Y[T ]

∣∣ W[L]
[K]\{k}

)
(41)

= H
(
W

[L]
k

∣∣ W[L]
[K]\{k}

)
(42)

= H
(
W

[L]
k

)
(43)

= L (dits) (44)

where Step (39) makes use of the conditional independence of Y1,Y2, · · · ,YT as implied by Lemma

1. Step (42) holds because conditioned on W
[L]
[K]\{k}, Alice must be able to recover W

[L]
k from Y[T ].

Combining (36) and (44), we obtain that for any k ∈ [K],∑
t∈[T ]

min
( ∑
s∈E(t)

logd |Qt,s|, 2
∑
s∈Bt,k

|Qt,s|
)
≥ L (dits). (45)

Dividing by L on both sides gives us

∑
t∈[T ]

min

 ∑
s∈E(t)

∆t,s,
∑
s∈Bt,k

2∆t,s

 ≥ 1, ∀k ∈ [K], (46)

which matches the condition of the feasible region in Theorem 1.

8 Proof of Theorem 1: Achievability

8.1 Prerequisite: The N-sum Box

Building on the stabilizer formalism and quantum error correction literature on stabilizer codes, an
implicit generalization of the 2-sum protocol is presented in [35], and subsequently crystallized as an
N -sum box abstraction in [33]. The N -sum box has 2N classical inputs, labeled x1, x2, · · · , x2N ∈
Fd, and N classical outputs y1, y2, · · · , yN ∈ Fd, related by a MIMO MAC channel formulation as, y1

...
yN

 =

M1,1 · · · M1,2N

...
...

...
MN,1 · · · MN,2N


 x1

...
x2N

 (47)

which can be represented compactly as y = Mx. The N -sum box abstraction represents the setting
where N entangled qudits are distributed among K transmitters, such that each transmitter can
perform conditional quantum X,Z gate operations on its qudit(s) to encode classical information.
The transmitter that has the nth qudit controls the inputs xn and xN+n of the N -sum box. For
example, if Qudits 1 and 3 are given to Transmitter 1, then in the N -sum box abstraction the inputs
x1, x1+N , x3, x3+N are the inputs available to Transmitter 1. The N outputs are the result of the
quantum measurement performed by Alice. Since the N qudits are sent to Alice for the quantum
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measurement, the N -sum box has a quantum communication cost of N qudits. Now let us consider
the channel matrix M. Different choices of entanglement states and quantum-measurement bases
produce different channel matrices. Depending on the desired computation task a suitable M may
be chosen from the set of feasible choices. The channel matrices that can be obtained from the
stabilizer-based construction are precisely those (see [33]) that are strongly self-orthogonal, i.e.,
that satisfy the following two conditions,

rk(M) = N, MJ2NMT = 0N×N (48)

where J2N =
(

0 −IN
IN 0

)
and IN is the N × N identity matrix. Designing quantum-codes for the

Σ-QMAC using the N -sum box abstraction entails a choice of not only which N -sum boxes to use,
how many of the inputs of each N -sum box to assign to each transmitter, and how to precode at
each transmitter in the MIMO MAC for the desired computation, but in contrast to conventional
(wireless) MIMO MAC settings where the channels are randomly chosen by nature, here we also
have the freedom to design suitable channel matrices M for the desired computation task, within
the class of feasible choices. The N -sum box abstraction then guarantees that corresponding to
these choices there exist initial quantum entanglements, quantum-coding operations at the trans-
mitters, and quantum-measurement operations at the receiver, that achieve the desired MIMO
MAC functionality, at the communication cost of N qudits for each N -sum box utilized by the
coding scheme.

8.2 Proof of Achievability

Our proof of achievability combines a series of results in network coding literature, together with the
N -sum box formulation. Therefore, let us first summarize these results into the following lemmas
to facilitate the proof. Consider the following setup. Let K ∈ N. For k ∈ [K], let Hk ∈ Fn×mkq . Let
W and Wk, k ∈ [K] be sources generating symbols in Fq. Let us define the following two network
coding type problems.
Sum-network: There is a MIMO multiple access channel with K transmitters and one receiver.
The input at Transmitter k is Xk ∈ Fmk×1

q . The output at the receiver is Y =
∑

k∈[K] HkXk.
Transmitter k knows Wk. The receiver wants to know W1 + W2 + · · · + WK . A feasible coding

scheme can be described by (L,N, φ[K], ψ) so that the encoders φk map W
[L]
k to X

[N ]
k ,∀k ∈ [K],

and the decoder ψ maps Y [N ] to
∑

k∈[K] W
[L]
k . A rate R is achievable if there exists a scheme so

that R ≤ L/N .
Multicast: There is a MIMO broadcast channel with one transmitter and K receivers. The input
at the Transmitter is X̃ ∈ Fn×1

q . The output at Receiver k is Ỹk = HT
k X̃. The transmitter knows

a message W. All K receivers want to decode W. A feasible coding scheme can be described

by (L,N, φ̃, ψ̃[K]) so that the encoder φ̃ maps W[L] to X̃ [N ], and the decoders ψ̃k map Ỹ
[N ]
k to

W[L], ∀k ∈ [K]. A rate R is achievable if there exists a scheme so that R ≤ L/N .

Lemma 2 (Duality [25]). If (L,N, φ[K], ψ) is a feasible linear coding scheme9 for the sum-network,

then there exists a feasible linear coding scheme (L,N, φ̃, ψ̃[K]) for the corresponding multicast
problem, and vice versa.

9If the coding functions φ[K] and decoding function ψ are linear functions, the scheme is said to be linear. The
linearity for the Multicast setting is similarly defined.

23



Lemma 3 (Multicast Capacity [69]). The capacity (supreme of achievable rates) of the multicast
problem is mink∈[K] rk(Hk), and it can be achieved by linear coding schemes.

We only need the achievability side of Lemma 3. Although the idea essentially follows from
[69,70], since our formulation here is slightly different, we provide an alternative proof of this lemma
in Appendix G. Based on these two lemmas, the next corollary becomes obvious.

Corollary 9. The rate R = mink∈[K] rk(Hk) is achievable by a linear coding scheme in the sum-
network.

Going back to the proof, our achievable scheme is essentially based on the achievable scheme
of a sum-network, which is constructed by the N -sum box formulation. Recall that there are in
total T cliques (sets of servers that are allowed to share an entangled quantum system). For the
tth clique (t ∈ [T ]), we let the servers E(t) implement an Nt-sum box in Fq = Fdz , so that Server
s ∈ E(t) controls 2Nt,s inputs in Fq, by using a quantum subsystem Qt,s with dimension specified
to δt,s = qNt,s . Equivalently, Qt,s can be considered as Nt,s q-ary quantum subsystems, or Nt,sz
qudits. z ∈ N is free to be chosen later.

For t ∈ [T ], the transfer matrix of the tth box is denoted as Mt ∈ FNt×2Nt
q . Recall that for

k ∈ [K], each data stream Wk generates symbols in Fd. Equivalently, we can consider these symbols
as in Fq where q = dz for any z ∈ N, by regarding each z symbols as one super-symbol in Fq. Since
we do not put any constraint on the batch size L, let Wk ∈ FL′×1

q denote the first L′ symbols of

Wk considered in Fq (which correspond to L = L′z symbols in the original field Fd, or W
(L′z)
k ).

Next let us define the input and the output of the tth box. The input of the tth box is xt ∈ F2Nt×1
q ,

and therefore the output of the tth box is yt = Mtxt ∈ FNt×1
q . xt consists of the Nt,s pairs of inputs

controlled by Servers s ∈ E(t). It is then obvious that the tth box is a MIMO-MAC channel with
all symbols defined in Fq, and the input of each server s ∈ E(t) corresponds to some 2Nt,s columns
of Mt. We will also say that these 2Nt,s columns are controlled by Server s. A column of Mt is
said to be accessible by a data stream Wk, k ∈ [K] if and only if this column is controlled by some
server s ∈ E(t) that also knows this data stream, i.e., s ∈ E(t) ∩W(k).

For k ∈ [K], define Mt,k as the set of columns of Mt that are accessible by the kth data stream.
Note that Mt,k can be empty for some k, if the tth clique does not contain any server that knows
Wk. We claim that the output of the tth box can be made as yt =

∑
k∈[K] Mt,kφt,k(Wk), where

φt,k maps Wk to a vector in Fq with length
∑

s∈E(t)∩W(k) 2Nt,s.

To prove the claim, for any t ∈ [T ], k ∈ [K], let φkt,s : FL′×1
q 7→ F2Nt,s×1

q describe a map if

s ∈ E(t)∩W(k), and let the input for any one use of the tth MIMO-MAC channel (i.e., the tth box)
at Server s ∈ E(t) be specified as

∑
k:s∈W(k) φ

k
t,s(Wk). The output of the tth box is then determined

as yt ∈ FNt×1
q such that,

yt = Mtxt =
∑
k∈[K]

Mt,k


φkt,s1(Wk)

φkt,s2(Wk)
...

φkt,sn(Wk)


︸ ︷︷ ︸

φt,k(Wk)

(49)

where {s1, s2, · · · , sn} = E(t)∩W(k), and Mt,k is a submatrix of Mt comprised of
∑

s∈E(t)∩W(k) 2Nt,s

columns of Mt that are accessible by Wk. Therefore, we obtain the general expression of the output
yt as in (49).
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Note that we have in total T boxes and therefore T MIMO-MAC channels. We can equivalently
consider the T channels as one big channel, and the output of the big channel (for one channel use)
can be written as

y =


y1

y2

...
yT

 =
∑
k∈[K]


M1,k 0 · · · 0

0 M2,k · · · 0
...

...
. . .

...
0 0 · · · MT,k


︸ ︷︷ ︸

Mk


φ1,k(Wk)
φ2,k(Wk)

...
φT,k(Wk)


︸ ︷︷ ︸

φk(Wk)

. (50)

Note that there is no restriction on φk except the dimensions of its input and output. (50) thus
describes the input-output relation of a K-transmitter MIMO MAC with the kth transmitter know-
ing only Wk. According to Corollary 9, the receiver of this channel (Alice) can compute the sum∑

k∈[K] Wk (in Fq) at the rate mink∈[K] rkq(Mk) (per channel). This is saying that with each use of

the big channel, Alice is able to get mink∈[K] rkq(Mk)z sums in Fd. Recall that each use of the big

channel corresponds to the use of quantum subsystem Qt,s with its dimension equal to δt,s = qNt,s

for all t ∈ [T ], s ∈ E(t). Since q = dz, it follows that logd δt,s = Nt,sz and that the following set of
tuples are feasible,

closure

{
∆ ∈ RΓ

+

∣∣∣∣ Nt,s ∈ N, ∀t ∈ [T ], s ∈ E(t),

∆t,s ≥ Nt,s/mink∈[K] rk(Mk), t ∈ [T ], s ∈ E(t)

}
. (51)

For fixed Nt,s, t ∈ [T ], s ∈ E(t), we would like mink∈[K] rk(Mk) to attain its largest possible value
to obtain the largest feasible set. According to (50), it suffices to let Mt,k have full rank for all
t ∈ [T ], k ∈ [K]. This can be done by letting M1,M2, · · · ,MT be ‘Half-MDS’, which is defined as
follows.

Definition 1 (Half-MDS). Say M = [Ml,Mr] ∈ FN×2N
q is the transfer matrix of an N -sum box

operating in Fq. Ml ∈ FN×Nq denotes the left half and Mr ∈ FN×Nq denotes the right half. Let
i1, i2, · · · , in ∈ N be n ≤ N distinct indices not greater than N . We say M is half-MDS if for
all such indices, rk

([
Ml

(i1,··· ,in),M
r
(i1,··· ,in)

])
= min{2n,N}, where M(i1,i2,··· ,in) denotes the N × n

submatrix of M comprised of the (i1, i2, · · · , in)th columns of M. As an example, consider feasible
transfer matrices for 2-sum boxes,

M1 =

[
1 1 0 0
0 0 1 1

]
, M2 =

[
1 0 1 0
0 1 0 0

]
. (52)

Note that M1 is half-MDS while M2 is not. The submatrix comprised of the 2nd and 4th columns
of M2 has rank 1 < 2.

Lemma 4 (Half-MDS N -sum box). If q ≥ N , then there exists an N -sum box with transfer matrix
M ∈ FN×2N

q that is half-MDS.

The proof of Lemma 4 is presented in Appendix H.
Recall that we are free to choose z. Therefore, if we choose z > logd(maxt∈[T ]Nt) =⇒ q =

dz > maxt∈[T ]Nt, then Mt can be made half-MDS for all t ∈ [T ]. Now that Mt is half-MDS, the

rank of Mt,k is equal to min(Nt,
∑

s∈E(t)∩W(k) 2Nt,s). Due to the diagonal block structure of Mk,
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the rank of Mk is equal to
∑

t∈[T ] min
(
Nt,
∑

s∈E(t)∩W(k) 2Nt,s

)
. Plugging this value into (51) we

further obtain that the following set of tuples are feasible,

closure

∆ ∈ RΓ
+

∣∣∣∣∣∣∣∣∣
Nt,s ∈ N, ∀t ∈ [T ], s ∈ E(t),
R ∈ N,∑

t∈[T ] min
(
Nt,
∑

s∈E(t)∩W(k) 2Nt,s

)
≥ R, ∀k ∈ [K],

∆t,s ≥ Nt,s/R, t ∈ [T ], s ∈ E(t).

 (53)

=
{

∆ ∈ RΓ
+

∣∣∣ ∑t∈[T ] min
(∑

s∈E(t) ∆t,s,
∑

s∈E(t)∩W(k) 2∆t,s

)
≥ 1, ∀k ∈ [K]

}
, (54)

which is the same as the region D specified in Theorem 1.

Remark 1. We remark that the initial quantum state that is used when constructing a half-MDS
N -sum box is an absolutely maximally entangled (AME) state [16]. Specifically, say a quantum
system Q of N qudits is in a pure state |ψ〉. Then the state is absolutely maximally entangled if
for any partition of the system into QA with k ≤ bN/2c-qudits and QB with the remaining N − k
qudits, we have S(ρA) = S(ρB) = k (dits), where ρA and ρB denote the reduced density matrices of
QA and QB, respectively. S(·) denotes the von Neumann entropy. According to [33], the generator
matrix of the stabilizer code when constructing the box with the transfer matrix M = [Ml,Mr] is

G =
(
−MT

r

MT
l

)
. Denote the initial state for this maximal stabilizer code as |G〉. [71] shows that |G〉

is equivalent to a graph state under local Clifford operations. [17] then shows that the graph state is
maximally entangled if GT is the generator matrix of an [[n, k, d]] quantum MDS (stabilizer) code
with n = 2k. This is satisfied because M is half-MDS, and so is GT . Since local Clifford operations
do not affect the property of AME, we conclude that the initial state corresponding to the box M is
an AME state.

9 Conclusion

A sharp capacity characterization for the Σ-QMAC bodes well for future generalizations, that
include in particular, the Linear Computation QMAC (LC-QMAC). As the quantum extension
of the LC-MAC, which is the counterpart of the LCBC (linear computation broadcast) problem
studied in [72, 73], the LC-QMAC assumes S servers, K data streams of Fd symbols, and a user
(Alice) who wants to compute an arbitrary Fd linear function of the data streams. For example,
with data streams W1,W2, · · · ,WK represented as vectors over Fd, Alice wants to compute F =
V1W1 + V2W2 + · · · + VKWK for arbitrary linear transformations (matrices) V1, V2, · · · , VK that
are specified by the problem. Note that if V1, V2, · · · , VK are invertible square matrices then the
problem reduces to the Σ-QMAC, whose capacity is found in this work. This is because without
loss of generality each ViWi can be defined to be a data stream W̃i over an extension field, leaving
Alice only with the task of computing the sum, i.e., the Σ-QMAC setting. The general LC-QMAC
setting, however, allows arbitrary matrices V1, V2, · · · , VK . In addition, the LC-QMAC specification
includes arbitrary side-information at Alice of the form F′ = V ′1W1 +V ′2W2 + · · ·+V ′KWK , which can
be quite useful for improving the communication efficiency of linear computation. Furthermore,
the LC-QMAC allows the data available to each server to be arbitrary linear functions of the data
streams, i.e., Server s has data of the form U ′1sW1 + U ′2sW2 + · · · + U ′KsWK , which adds another
layer of both conceptual and combinatorial complexity. Indeed the capacity of even the classical
LCMAC setting is not yet fully known. For example, consider an LC-QMAC setting over F3, with
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K = 2 data streams A,B, and 3 servers that have (A), (B), (A + 2B) respectively. Say Alice has no
side-information and only wants to compute A + B. The capacity of this LC-MAC is not known
to the best of our knowledge, but the corresponding quantum setting is trivial, i.e., the rate R = 1
qudit/dit is achieved simply if any two servers apply the 2-sum protocol. Similarly, there are QPIR
settings where the capacity is known, while the corresponding classical cases remains open [34–37].
Thus, quantum settings can be tractable even when their classical counterparts are not. The
sufficiency of the N -sum box abstraction for the LC-QMAC is an especially intriguing question.
Aside from the LC-QMAC, generalizations in other directions, e.g., towards noisy quantum channels
and correlated inputs as in [59–61], other forms of decoding locality restrictions as in [74], and to
non-linear computations as in [75,76] are also of interest.
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A Arbitrarily large DSC Gain over QMAC

Here we show that the DSC gain in the QMAC for certain partial function computations can be
arbitrarily large by providing an example. The construction of this example largely relies on a
bound of the chromatic number of the power of a family of graphs (referred to as the quarter-
orthogonality graphs) presented in [77] that is based on earlier results in zero-error information
theory such as [78, 79], together with insights from quantum communication complexity literature
such as [23,24].

Let κ = 4pr for an odd prime p and a positive integer r. For two vectors v1, v2 with the same
length, let h(v1, v2) denote the Hamming distance between them, i.e., the number of positions
where their elements are distinct. Let A,B be data streams with realizations in {+1,−1}κ such
that h(A,B) ∈ {0, κ/2}. There are 2 servers in the QMAC. Server A knows only A and Server B
knows only B. The function to compute at Alice is defined as F = h(A,B). Note that due to the
dependence between A and B, the function to compute has binary output.

Let us first consider the capacity of the fully-unentangled case, Cunent. Denote by QA a quantum
system of dimension δA that is sent from Server A and by QB a quantum system of dimension δB
that is sent from Server B. Since our QMAC formulation does not allow the POVMs to depend on
the data, and since there is no entanglement established between the two servers, without loss of
generality, consider that Server A sends to Alice a state that is picked from a set of orthogonal states
{|a〉A}a∈[δA] and that Server B sends to Alice a state from a set of orthogonal states {|b〉B}b∈[δB ],

which let Alice to perfectly recover (a, b). Suppose a genie provided Alice with A[L]. She would
still need to recover F[L] from (b,A[L]). Let Gκ(V,E) be the orthogonality graph with vertices
V uniquely mapping to {+1,−1}κ and for v1 6= v2 ∈ V , (v1, v2) ∈ E if and only if h(v1, v2) =
κ/2. Let Hκ−1(V ′, E′) be the quarter-orthogonality graph with vertices V ′ uniquely mapping to
the vectors in {+1,−1}κ−1 that have an even number of “−1” entries, and for v′1 6= v′2 ∈ V ′,
(v′1, v

′
2) ∈ E′ if and only if h(v′1, v

′
2) = κ/2. The quarter-orthogonality graph Hκ−1 is a subgraph of

the orthogonality graph Gκ [77]. Similar to the reasoning in [78], δB ≥ χ(G�Lκ ) where � denotes
the strong product of graphs10 and χ(·) denotes the chromatic number. [77, Cor. 5.8] shows that

10For graphs G and H with respective vertex sets V (G) and V (H), define G �H as the strong product of G and
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χ(H�Lκ−1) ≥ 2(0.154κ−1.154)L. Since Hκ−1 is a subgraph of Gκ, H�Lκ−1 is a subgraph of G�Lκ . It

follows that χ(G�Lκ ) ≥ 2(0.154κ−1.154)L as the chromatic number of a graph cannot be less than
the chromatic number of its subgraph. Thus, we obtain that log2 δB/L ≥ 0.154κ − 1.154. Due to

symmetry between the two servers, we obtain that Cunent ≤ supL→∞
L

log2 δA+log2 δB
≤ 1/2

0.154κ−1.154

(computations per qubit).

Next, we show that the fully-entangled capacity C fullent ≥ 1/2
log2 κ

. Thus, the DSC gain is at

least 0.154κ−1.154
log2 κ

, which can be made arbitrary large by choosing κ large enough. The scheme that

achieves 1/2
log2 κ

only needs batch size L = 1. The scheme is a generalization of the scheme in the

problem referred to as the distributed Deutsch-Jozsa problem [23,24] where p = 2 (but here we need
p to be an odd prime). Let Server A and Server B share an entangled state |GHZ〉 = 1√

κ

∑
x∈[κ] |xx〉.

Let UA = diag(A) be a κ× κ diagonal matrix with the elements of vector A on the main diagonal.
Similarly let UB = diag(B). Note that UA and UB are unitary matrices. Let Server A apply
the unitary operator UA and Server B apply the unitary operator UB to their respective quantum
subsystems. Then the resulting state is (UA⊗UB) |GHZ〉 = 1√

κ
vec(UTBUA), where vec(·) denotes the

column-major vectorization function11. Note that we used the identity vec(ABC) = (CT⊗A)vec(B)
[80] along with the fact that |GHZ〉 = 1√

κ
vec(Iκ). Alice measures the quantum system by a PVM

with two projectors P1 = |GHZ〉 〈GHZ| and P2 = Iκ − P1. The measurement result being 1
(associated with P1) has probability tr(UTBUA)/κ = BTA/κ, which is equal to 1 if h(A,B) = 0, and
equal to 0 if h(A,B) = κ/2. This means that Alice is able to distinguish the two possibilities of
h(A,B) with certainty.

B Proof of Corollary 3

Let Dunent
1/2 , {(∆1/2, · · · ,∆S/2) | (∆1, · · · ,∆S) ∈ Dunent} and D1 ,

{
(∆1, · · · ,∆S) |

∑
s∈[S] ∆s ≥ 1

}
.

Then Corollaries 1 and 2 together imply that

Dfullent = Dunent

1/2 ∩ D1. (55)

Let (∆∗1, · · · ,∆∗S) be a solution of arg min(∆1,··· ,∆S)∈Dunent

∑
s∈[S] ∆s. It follows that (∆∗1/2, · · · ,∆∗S/2) is

a solution of arg min(∆1,··· ,∆S)∈Dunent
1/2

∑
s∈[S] ∆s. Consider two cases.

1. If
∑
s∈[S] ∆∗s/2 ≥ 1, i.e., Cunent ≤ 1/2, then (∆∗1/2, · · · ,∆∗S/2) ∈ D1 and thus (∆∗1/2, · · · ,∆∗S/2) ∈

Dfullent. It follows that (∆∗1/2, · · · ,∆∗S/2) is a solution of arg min(∆1,··· ,∆S)∈Dfullent

∑
s∈[S] ∆s.

This implies that C fullent = (
∑
s∈[S] ∆∗s/2)−1 = 2(

∑
s∈[S] ∆∗s)

−1 = 2Cunent.

2. Otherwise, if
∑
s∈[S] ∆∗s/2 < 1, i.e., Cunent > 1/2, there exists (∆′1, · · · ,∆′S) such that ∆′s ≥

∆∗s/2,∀s ∈ [S] and
∑
s∈[S] ∆′s = 1. Note that (∆′1, · · · ,∆′S) ∈ Dunent

1/2 by the definition of Dunent

(Corollary 2) and the definition of Dunent

1/2 . Since
∑
s∈[S] ∆′s = 1, we have (∆′1, · · · ,∆′S) ∈ D1 and

therefore (∆′1, · · · ,∆′S) ∈ Dfullent. This implies that C fullent ≥ 1 (and thus C fullent = 1 as C fullent is
also upper bounded by 1).

H such that the vertex set of G�H is the Cartesian product V (G)× V (H); and distinct vertices (u, u′) and (v, v′)
are adjacent in G�H if and only if: u = v and u′ is adjacent to v′, or u′ = v′ and u is adjacent to v, or u is adjacent
to v and u′ is adjacent to v′. G�L is then defined as G�G� · · ·�G︸ ︷︷ ︸

L

.

11vec(A) , [a1,1, · · · , am,1, a1,2, · · · , am,2, · · · , a1,n, · · · , am,n]T , where ai,j represents the element in the ith row
and jth column of A.
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Combining the two cases, we have C fullent = min(1, 2Cunent) and thus C fullent/Cunent = min(2, 1/Cunent).

C Proof of Corollary 4

C.1 Proof of (16)

Recall that for the symmetric settings, K =
(
S
α

)
, T =

(
S
β

)
and W : [K]↔

(
[S]
α

)
, E : [T ]↔

([S]
β

)
. We

want to find

F ∗ , min
∆∈D

∑
t∈[T ]

∑
s∈E(t)

∆t,s, (56)

where the feasible region D here is determined by Theorem 1 for the symmetric data replication and

entanglement distribution maps. C
(β)
α immediately follows as 1/F ∗. Due to symmetry, the minimal

value of
∑

t∈[T ]

∑
s∈E(t) ∆t,s is achieved by ∆t,s = ∆o ∈ R+,∀t ∈ [T ], s ∈ E(t). Again by symmetry,

the K conditions in D are identical in the form f(α, β)∆o ≥ 1, where f(α, β) ∈ Z+ is a function
of (α, β). Next we derive f(α, β). Consider the value k such that W(k) = {1, 2, · · · , α} = [α]. We
have

f(α, β) =
∑
t∈[T ]

min
(
|E(t)|, 2|E(t) ∩ [α]|

)
(57)

=
∑
B∈([S]β )

min
(
β, 2|B ∩ [α]|

)
(58)

=

min(α,β)∑
γ=(α+β−S)+

min(β, 2γ) ·
∣∣∣{B ∈ ([S]

β

) ∣∣ |B ∩ [α]| = γ
}∣∣∣ (59)

=

min(α,β)∑
γ=(α+β−S)+

min(β, 2γ) ·
(
α

γ

)
·
(
S − α
β − γ

)
. (60)

It follows that F ∗ = βT
f(α,β) and therefore C

(β)
α = 1/F ∗ = f(α,β)

βT .

C.2 Proof of (17)

We can rewrite C
(β)
α as

C(β)
α =

1

βT

min(α,β)∑
γ=(α+β−S)+

(
2γ − (2γ − β)+

)
·
(
α

γ

)
·
(
S − α
β − γ

)
(61)

=
2

βT

min(α,β)∑
γ=(α+β−S)+

γ ·
(
α

γ

)
·
(
S − α
β − γ

)
− 1

βT

min(α,β)∑
γ=(α+β−S)+

(2γ − β)+ ·
(
α

γ

)
·
(
S − α
β − γ

)
(62)

=
2α

βT

min(α,β)∑
γ=(α+β−S)+

(
α− 1

γ − 1

)
·
(
S − α
β − γ

)
− 1

βT

min(α,β)∑
γ=(α+β−S)+

(2γ − β)+ ·
(
α

γ

)
·
(
S − α
β − γ

)
(63)

=
2α

βT
·
(
S − 1

β − 1

)
− 1

βT

min(α,β)∑
γ=max(α+β−S,dβ/2e)

(2γ − β) ·
(
α

γ

)
·
(
S − α
β − γ

)
(64)
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=
2α

S
− 1

βT

min(α,β)∑
γ=max(α+β−S,dβ/2e)

(2γ − β) ·
(
α

γ

)
·
(
S − α
β − γ

)
(65)

C.3 Proof of (18)

Alternatively, we can rewrite C
(β)
α as

C(β)
α =

1

βT

min(α,β)∑
γ=(α+β−S)+

(
β − (β − 2γ)+

)
·
(
α

γ

)
·
(
S − α
β − γ

)
(66)

=
1

T

min(α,β)∑
γ=(α+β−S)+

(
α

γ

)
·
(
S − α
β − γ

)
− 1

βT

min(α,β)∑
γ=(α+β−S)+

(β − 2γ)+ ·
(
α

γ

)
·
(
S − α
β − γ

)
(67)

=
1

T

(
S

β

)
− 1

βT

min(α,bβ/2c)∑
γ=(α+β−S)+

(β − 2γ) ·
(
α

γ

)
·
(
S − α
β − γ

)
(68)

= 1− 1

βT

min(α,bβ/2c)∑
γ=(α+β−S)+

(β − 2γ) ·
(
α

γ

)
·
(
S − α
β − γ

)
(69)

C.4 Proof of (26)

The case when α = S is trivial. For α ≤ bS/2c, let us make use of (17). It is not difficult to

obtain that C
(β)
α = 2α

S when β ≥ 2α, as 0 ≤ 2γ − β ≤ 2α − β ≤ 0 for dβ/2e ≤ γ ≤ α, so either
2γ − β = 0 or γ does not take any value in the summation term. On the other hand, if β < 2α,
we have α ≥ dβ/2e and thus min(α, β) ≥ max(α+ β − S, dβ/2e), so γ must take at least one value

in the summation. It follows that C
(β)
α < 2α

S because 2 min(α, β) − β > 0. Since C
(S)
α = 2α

S for
α ≤ bS/2c, we obtain that β∗ = 2α for these cases.

For dS/2e ≤ α ≤ S − 1, let us make use of (18). It is not difficult to obtain that C
(β)
α = 1 when

β ≥ 2(S − α), as 0 ≤ β − 2γ ≤ 2(S − α) − β ≤ 0 for bβ/2c ≤ γ ≤ 2(S − α), so either β − 2γ = 0
or γ does not take any value in the summation term. On the other hand, if β < 2(S − α), we have
dβ/2e ≤ S − α =⇒ bβ/2c ≥ α+ β − S and thus min(α, bβ/2c) ≥ (α+ β − S)+, so γ must take at

least one value in the summation. It follows that C
(β)
α < 1 because β − 2(α + β − S)+ > 0. Since

C
(S)
α = 1 for dS/2e ≤ α ≤ S − 1, we obtain that β∗ = 2(S − α) for these cases.

D Proof of Corollary 5

First let us note that there are two Σ-QMAC problems involved in the corollary, summarized as
follows.

1. The original problem P has data replication mapW, S servers and K data streams. We refer
to the S servers in P by Si for i ∈ [S]. We are interested in the 2-party-entangled capacity
C(2)(W).
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2. The hypothetical problem P̃ has data replication map W̃,
(
S
2

)
servers and the same K data

streams as in P. We refer to the
(
S
2

)
servers in P̃ by S{i,j} for {i, j} ∈

(
[S]
2

)
. S{i,j} has the

access to the data streams that are available to either Si or Sj in P. We are interested in the

fully-unentangled capacity Cunent(W̃).

Our goal is to prove that C(2)(W) = Cunent(W̃). The proposition is comprised of two bounds,

C(2)(W) ≤ C̃o(W̃) and C(2)(W) ≥ Cunent(W̃). To prove C(2)(W) ≤ Cunent(W̃), consider any rate
R that is achievable in the problem P with only bipartite entanglement, i.e., any clique contains
at most 2 servers. The output state corresponds to any clique {i, j} ∈

(
[S]
2

)
of this scheme can

always be generated by the server S{i,j} in the problem P̃, since this server has the access to all

data streams that are available to either Si or Sj in the problem P. In the problem P̃, a scheme

can let S{i,j} directly transmit this state to Alice. Therefore, R must be achievable in P̃ as well,

which shows that C(2)(W) ≤ Cunent(W̃).

To prove C(2)(W) ≥ Cunent(W̃), we need an intermediate result of Theorem 1 that coding based
on the N -sum box abstraction is optimal in every case. For the unentangled case, this means that
each server is simply treating qudits as classical dits. Additionlly, Lemma 3 implies that the optimal
scheme is also linear. With this knowledge, given that R is achievable in the problem P̃, let us

consider a linear scheme that achieves this R, where the coders V{i,j} ∈ FN{i,j}×Ld at the server S{i,j}
takes as input L symbols of all its accessible data streams, i.e., Wk, k ∈ W̃({i, j}), and outputs a

vector Y{i,j} ∈ FN{i,j}×1

d . In this linear scheme, symbols are considered in the field Fd. Say S{i,j}
transmits N{i,j} qudits to inform Alice of Y{i,j}. Upon receiving the

∑
{i,j}∈([S]2 )N{i,j} , N qudits,

Alice computes L instances of sum. The scheme satisfies that L
N ≥ R by definition. What we will

do next is to convert this scheme to a scheme in the problem P with the use of 2-sum protocols
that achieves the same rate. Recall that the 2-sum protocol behaves the same as an Fd additive
channel, in the way that the receiver is able to get one sum of the two Fd inputs from the two
transmitters with the cost of one qudit on average. We also point out that each use of the 2-sum
protocol is equivalent to use such an additive channel twice, i.e., the receiver gets two dimensions
of the sums at a cost of 2 qudits.

Now let us look at the original problem P. Let us construct a scheme with batch size 2L,
so that Alice is able to compute 2L instances of the sum by using the 2-sum protocol N times,
at a cost of 2N qudits, thus achieving the same rate as in the problem P̃. Recall that Y{i,j}

denotes the transmission from the server S{i,j} in the problem P̃. Since Y{i,j} ∈ FN{i,j}×1

d is a linear
function of the data streams that are known to either Si or Sj in the problem P, we can represent

Y{i,j} = Y{i,j},i + Y{i,j},j , where Y{i,j},i ∈ FN{i,j}×1

d can be computed by Si, and Y{i,j},j ∈ FN{i,j}×1

d

can be computed by Server Sj in the problem P. Therefore, with N{i,j} use of the binary additive
channel in Fd between Si and Sj , the two servers can transmit the sum Y{i,j} to Alice. To apply the
2-sum protocol, we only need to consider two parallel instances of Y{i,j}, so that with N{i,j} uses
of the 2-sum protocol between Si and Sj , Alice is able to get 2 instances of Y{i,j}. Taking all pairs
of servers into account, for the converted scheme in the problem P, the 2-sum protocol (in Fd) is
used

∑
{i,j}∈([S]2 )N{i,j} = N times in total, allowing Alice to compute 2N instances of the sum in

Fd.
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E Proof of Corollary 7

We show that for any data replication mapW, and entanglement distribution map E where |E(t)| =
3 for some t, the clique E(t) can be replaced by three bipartite cliques (that contain only two servers)
without decreasing the capacity. Formally, let E be such an entanglement distribution map and
without loss of generality, E(1) = {1, 2, 3}. Let Ẽ be another entanglement distribution map such
that Ẽ(1) = {2, 3}, Ẽ(2) = {1, 3}, Ẽ(3) = {1, 2}, and Ẽ(t) = E(t− 2) for t ≥ 4. Let P, P̃ denote the
respective Σ-QMAC problems with entanglement distribution maps E , Ẽ , and both problems have
data replication map W. For the problem P, we use ∆t,s to denote the (normalized) download
cost associated with Clique E(t) and Server s ∈ E(t), and we use ∆ to denote the download cost
tuple. To avoid confusion, in the problem P̃, we use ∆̃t,s to denote the download cost associated

with Clique Ẽ(t) and Server s ∈ Ẽ(t), and we use ∆̃ to denote the download cost tuple. Since
E(1) = {1, 2, 3} is our main focus, in the following we let ∆s , ∆1,s, s ∈ {1, 2, 3} for brevity. Our

goal is to show that C(W, Ẽ) ≥ C(W, E) and thus C(W, Ẽ) = C(W, E) because any coding scheme
allowed in the problem P̃ is also allowed in the problem P.

Consider any feasible download tuple ∆ (in the feasible region implied by Theorem 1) for the
problem P. To focus on the clique E(1), Theorem 1 implies that ∆ is feasible if and only if,

min{∆1 + ∆2 + ∆3, 2∆1} ≥ c1

min{∆1 + ∆2 + ∆3, 2∆2} ≥ c2

min{∆1 + ∆2 + ∆3, 2∆3} ≥ c3

min{∆1 + ∆2 + ∆3, 2∆1 + 2∆2} ≥ c12

min{∆1 + ∆2 + ∆3, 2∆1 + 2∆3} ≥ c13

min{∆1 + ∆2 + ∆3, 2∆2 + 2∆3} ≥ c23

∆1 + ∆2 + ∆3 ≥ c123

(70)

where c1, c2, · · · , c123 are determined by W and
(
∆t,s

)
t≥2,s∈E(t)

, i.e., the (normalized) download

costs associated with the other remaining cliques in E .
Let us note that it is without loss of generality to consider such feasible tuples with ∆i ≤ ∆j+∆k

for {i, j, k} ∈ {{1, 2, 3}, {2, 1, 3}, {3, 1, 2}} if we are only interested in their sum ∆1 + ∆2 + ∆3,
because otherwise (say ∆1 > ∆2 + ∆3) we can let∆′1

∆′2
∆′3

 =

(∆1 + ∆2 + ∆3)/2
(∆1 + ∆2 −∆3)/2

∆3

 (71)

so that (70) is also satisfied if we replace (∆1,∆2,∆3) with (∆′1,∆
′
2,∆

′
3). Note that ∆′1 +∆′2 +∆′3 =

∆1 + ∆2 + ∆3 but now ∆′1 = ∆′2 + ∆′3.

Now let us study the problem P̃. Note that by definition, Ẽ(t) = E(t − 2) for t ≥ 4. Then by
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Theorem 1, the download cost tuple ∆̃ is feasible if and only if

∆̃t,s = ∆t−2,s, ∀t ≥ 4, s ∈ Ẽ(t)

min{∆̃2,1 + ∆̃2,3, 2∆̃2,1}+ min{∆̃3,1 + ∆̃3,2, 2∆̃3,1} ≥ c1

min{∆̃1,2 + ∆̃1,3, 2∆̃1,2}+ min{∆̃3,1 + ∆̃3,2, 2∆̃3,2} ≥ c2

min{∆̃1,2 + ∆̃1,3, 2∆̃1,3}+ min{∆̃2,1 + ∆̃2,3, 2∆̃2,3} ≥ c3

min{∆̃1,2 + ∆̃1,3, 2∆̃1,2}+ min{∆̃2,1 + ∆̃2,3, 2∆̃2,1}+ ∆̃3,1 + ∆̃3,2 ≥ c12

min{∆̃1,2 + ∆̃1,3, 2∆̃1,3}+ ∆̃2,1 + ∆̃2,3 + min{∆̃3,1 + ∆̃3,2, 2∆̃3,1} ≥ c13

∆̃1,2 + ∆̃1,3 + min{∆̃2,1 + ∆̃2,3, 2∆̃2,3}+ min{∆̃3,1 + ∆̃3,2, 2∆̃3,2} ≥ c23

∆̃1,2 + ∆̃1,3 + ∆̃2,1 + ∆̃2,3 + ∆̃3,1 + ∆̃3,2 ≥ c123

(72)

where c1, c2, · · · , c123 are the same as those in (70). Now, consider the download cost tuple ∆̃ in
the problem P̃, such that

∆̃t,s = ∆t−2,s, ∀t ≥ 4, s ∈ Ẽ(t)

and

∆̃1,2

∆̃2,1

∆̃3,1

 =

∆̃1,3

∆̃2,3

∆̃3,2

 =

(∆2 + ∆3 −∆1)/2
(∆1 + ∆3 −∆2)/2
(∆1 + ∆2 −∆3)/2

 . (73)

Then it can be verified that the download cost tuple ∆̃ is feasible in P̃ if ∆ is feasible in P, because
(72) is satisfied if (70) is satisfied. Therefore, the feasibility of ∆ in the problem P implies the
feasibility of ∆̃ in the problem P̃. Since ∆̃1,2 +∆̃1,3 +∆̃2,1 +∆̃2,3 +∆̃3,1 +∆̃3,2 = ∆1 +∆2 +∆3 and∑

t≥4,s∈Ẽ(t)
∆̃t,s =

∑
t≥2,s∈E(t) ∆t,s by (73), ∆ and ∆̃ have the same (normalized) sum download

costs. Since it holds for any feasible download cost tuple ∆ in the problem P, it follows that
C(W, E ′) ≥ C(W, E).

F Proof of Corollary 8

When S is even, this corollary can be easily shown with the symmetric data replication maps as
defined in Corollary 4. Consider the Σ-QMAC with the symmetric data replication maps with

α = S/2. Then (26) says that β∗ = S =⇒ C
(S)
S/2 > C

(S−1)
S/2 .

When S is odd, let us consider the data replication map W =
([S−1]
S−2

)
∪ {S}. Without loss of

generality, say W(S) = {S}. We first apply Corollary 1 to show that C fullent(W) ≥ 2S−4
2S−3 . Let ∆s

be the normalized download cost from Server s for s ∈ [S]. Writing down the feasible region by
Corollary 1 explicitly for this setting, we have

Dfullent(W) =


(∆1, · · · ,∆S) ∈ RS+

∣∣∣∣∣∣∣∣∣∣∣∣∣

∆1 + ∆2 + · · ·+ ∆S ≥ 1
2(∆1 + ∆2 + · · ·+ ∆S−1 + ∆S−2) ≥ 1
2(∆1 + ∆2 + · · ·+ ∆S−3 + ∆S−1) ≥ 1
...

2(∆2 + ∆3 + · · ·+ ∆S−2 + ∆S−1) ≥ 1
2∆S ≥ 1


.
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It can be verified that

(∆1, · · · ,∆S−1,∆S) =

 1

2(S − 2)
, · · · , 1

2(S − 2)︸ ︷︷ ︸
S−1

,
1

2

 ∈ Dfullent(W). (74)

We thus obtain that ∆1 + ∆2 + · · · + ∆S = S−1
2(S−2) + 1

2 = 2S−3
2S−4 . It then follows that C fullent(W) =(

min(∆1,··· ,∆S)∈Dfullent(W)

∑
s∈[S] ∆s

)−1
≥ 2S−4

2S−3 .

Next we show that C(S−1)(W) ≤ 2S−5
2S−4 by Theorem 1. Note that for the entanglement distri-

bution map E =
( [S]
S−1

)
, the region specified in Theorem 1 contains Γ = S(S − 1) variables. This

is because there are T = S cliques and the size of each clique is S − 1. Also note that for this
setting we have E(i) 6= E(j) for i 6= j. Therefore, whenever it is needed to explicitly identify the
servers in a specified clique, we use ∆E(t),s to replace ∆t,s, so that it becomes clear which servers

are contained in the clique. Also, let ∆E(t) ,
∑

s∈E(t) ∆E(t),s. By Theorem 1, the feasibility of ∆
implies that

∆{1,2,··· ,S−1} + ∆W(k)∪{S} +
∑

A∈([S−1]
S−2 )\{W(k)}

∑
s∈(A∪{S})∩W(k)

2∆A∪{S},s ≥ 1, ∀k ∈ [S − 1], (75)

which can be simplified as

∆{1,2,··· ,S−1} + ∆B∪{S} +
∑

A∈([S−1]
S−2 )\{B}

∑
s∈A∩B

2∆A∪{S},s ≥ 1, ∀B ∈
(

[S − 1]

S − 2

)
, (76)

where we use B to substitute W(k) and note that W(k) ∩ {S} = ∅ for any k ∈ [S − 1]. For the
last data stream, since W(S) = {S}, data stream WS is not available to any server in the clique
{1, 2, · · · , S − 1} and thus the feasibility of ∆ implies that∑

A∈([S−1]
S−2 )

2∆A∪{S},S ≥ 1. (77)

Therefore,

2S − 4

= (S − 1) + (S − 3) (78)

≤
∑

B∈([S−1]
S−2 )

∆{1,2,··· ,S−1} + ∆B∪{S} +
∑

A∈([S−1]
S−2 )\{B}

∑
s∈A∩B

2∆A∪{S},s

+ (S − 3)
∑

A∈([S−1]
S−2 )

2∆A∪{S},S

︸ ︷︷ ︸
Ξ1

(79)

= (S − 1)∆{1,2,··· ,S−1} +
∑

B∈([S−1]
S−2 )

∆B∪{S}

︸ ︷︷ ︸
Ξ2

+
∑

B∈([S−1]
S−2 )

∑
A∈([S−1]

S−2 )\{B}

∑
s∈A∩B

2∆A∪{S},s + Ξ1 (80)
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= Ξ1 + Ξ2 +
∑

B∈([S−1]
S−2 )

∑
A∈([S−1]

S−2 )

∑
s∈A∩B

2∆A∩{S},s −
∑

B∈([S−2]
S−1 )

∑
s∈B

2∆B∪{S},s (81)

= Ξ1 + Ξ2 +
∑

A∈([S−1]
S−2 )

∑
B∈([S−1]

S−2 )

∑
s∈A∩B

2∆A∩{S},s −
∑

B∈([S−2]
S−1 )

∑
s∈B

2∆B∪{S},s (82)

= Ξ1 + Ξ2 + (S − 2)
∑

A∈([S−1]
S−2 )

∑
s∈A

2∆A∪{S},s −
∑

B∈([S−2]
S−1 )

∑
s∈B

2∆B∪{S},s (83)

= Ξ1 + Ξ2 + (S − 3)
∑

A∈([S−1]
S−2 )

∑
s∈A

2∆A∪{S},s (84)

= Ξ2 + (S − 3)
∑

A∈([S−1]
S−2 )

∑
s∈A∪{S}

2∆A∪{S},s (85)

= Ξ2 + (S − 3)
∑

A∈([S−1]
S−1 )

2∆A∪{S} (86)

= (S − 1)∆{1,2,··· ,S−1} +
∑

A∈([S−1]
S−2 )

(
1 + 2(S − 3)

)︸ ︷︷ ︸
2S−5

∆A∪{S} (87)

≤

(
2S − 5

)∆{1,2,··· ,S−1} +
∑

A∈([S−1]
S−2 )

∆A∪{S}

 (88)

= (2S − 5)
∑
t∈[T ]

∆E(t) (89)

= (2S − 5)
∑
t∈[T ]

∑
s∈E(t)

∆t,s (90)

Step (79) is by (76) and (77). To see Step (83), the term 2∆A∪{S},s is counted S − 2 times for any

specified A ∈
([S−1]
S−2

)
and s ∈ A, because there is exactly one B ∈

([S−1]
S−2

)
such that s 6∈ A ∩ B,

which is B = [S − 1]\{s}. Therefore, there are (S − 2) B ∈
([S−1]
S−2

)
for which s ∈ A ∩ B. Step (88)

is because (S − 1) < 2S − 5 and ∆{1,2,··· ,S−1} ≥ 0.

Since C(S−1)(W) =
(

min∆∈D
∑

t∈[T ],s∈E(t) ∆t,s

)−1
, we conclude that C(S−1)(W) ≤ 2S−5

2S−4 .

G Proof of Lemma 3

The converse is obvious, as when there is only one receiver, the capacity cannot exceed rk(H1). Next
let us consider the achievability. We want to design a scheme with batch size L and N channel uses
such that L/N = mink∈[K] rkq(Hk). Note that since we use the channel N times, we can consider

the input X̃ ∈ Fn×1
qN

and Ỹ ∈ Fmk×1
qN

. Let L,N be such integers that qN > K mink∈[K] rk(Hk) and

L = N mink∈[K] rk(Hk), i.e., L/N = mink∈[K] rk(Hk). Take L symbols from the data stream W

and regard it as a vector W ∈ FL/N×1

qN
. For each k ∈ [K], since rk(Hk) ≥ L/N , there exist matrices

Uk ∈ FL/N×mk
qN

, Vk ∈ Fn×L/N
qN

such that UkH
T
kVk = IL/N . Now consider a matrix V ∈ Fn×L/N

qN

whose elements are variables in FqN with values yet to be determined. Note that Pk , det(UkMkV)
is a polynomial of degree L/N in these variables, and it is not a zero polynomial because setting
V = Vk yields the valuation Pk = det(IL/N ) = 1. It follows that P ,

∏
k∈[K] Pk is a non-zero

polynomial with degree KL/N . By Schwartz-Zippel Lemma, the probability of P evaluating to
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zero is not more than KL/N
qN

=
K mink∈[K] rk(Hk)

qN
< 1. Therefore, there exists a realization of V for

which the evaluation of P is non-zero =⇒ UkH
T
kV is invertible for all k ∈ [K] for this realization

of V. Now let Uk , (UkH
T
kV)−1Uk. We obtain that UkH

T
kV = IL/N for all k ∈ [K]. Now, let

the input at the transmitter be X̃ = VW. Receiver k ∈ [K] then hears Ỹk = HT
k X̃ = HT

kVW.

The decoding at Receiver k is then UkỸk = UkH
T
kVW = W, which is L symbols (considered in

Fq) of the data stream. Thus, the scheme achieves L/N = mink rk(Hk).

H Proof of Lemma 4

The proof is by construction. We make use of the Generalized Reed Solomon (GRS) code. Let Fq
be a field. n, k ∈ N such that k ≤ n. α = (α1, · · · , αn) ∈ Fnq , u = (u1, · · · , un) ∈ Fnq , such that
αi 6= αj for i 6= j and ui 6= 0 for i ∈ [n]. This requires that q ≥ n. Define

GRSqk,n(α,u) ,


u1 u2 u3 · · · un
u1α1 u2α2 u3α3 · · · unαn
u1α

2
1 u2α

2
2 u3α

2
3 · · · unα

2
n

...
...

...
...

...

u1α
k−1
1 u2α

k−1
2 u3α

k−1
3 · · · unα

k−1
n

 ∈ Fk×nq (91)

as the generator matrix of an [n, k] GRS code over Fq. GRS codes have the following properties [64].

1. GRS codes are MDS. Any k columns of the matrix GRSqk,n(α,u) are Fq linearly independent.

2. The dual code of a GRS code is also a GRS code. In particular, there exists v = (v1, v2, · · · , vn) ∈
Fnq , vi 6= 0 for i ∈ [n] such that

GRSqk,n(α,u) ·GRSqn−k,n(α,v)T = 0k×(n−k). (92)

Note that dN/2e+ bN/2c = N . Define

M =

[
GRSqdN/2e,N (α,u) 0dN/2e×N

0bN/2c×N GRSqbN/2c,N (α,v)

]
∈ FN×2N

q . (93)

We claim that this M is half-MDS and it is a valid transfer matrix of an N -sum box. Note that
the idea of placing the generator matrices of two codes that are dual to each other on the diagonal
to construct a SSO matrix follows the CSS construction [31,32]. Now we have,

(MJ2N )MT

=

[
0dN/2e×N −GRSqdN/2e,N (α,u)

GRSqbN/2c,N (α,v) 0bN/2c×N

][
GRSqdN/2e,N (α,u) 0dN/2e×N

0bN/2c×N GRSqbN/2c,N (α,v)

]T
(94)

=

[
0dN/2e×dN/2e −GRSqdN/2e,N (α,u) ·GRSqbN/2c,N (α,v)T

GRSqbN/2c,N (α,v) ·GRSqdN/2e,N (α,u)T 0bN/2c×bN/2c

]
(95)

= 0N×N (96)

Finally, since GRS codes are MDS, it follows that the M constructed in (93) is half-MDS. Therefore,
if the field size q ≥ N , there exists an N -sum box operating in Fq that has a half-MDS transfer
matrix.
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