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Abstract This study investigates the relationship between

variability in cortical surface area and thickness of the pars

opercularis of the inferior frontal gyrus and motor-in-

hibitory performance on a stop-signal task in a longitudi-

nal, typically developing cohort of children and

adolescents. Linear mixed-effects models were used to

investigate the hypotheses that (1) cortical thinning and (2)

a relatively larger cortical surface area of the bilateral pars

opercularis of the inferior frontal gyrus would predict

better performance on the stop-signal task in a cohort of

110 children and adolescents 4–13 years of age, with one

to four observations (totaling 232 observations). Cortical

thickness of the bilateral opercular region was not related

to inhibitory performance. However, independent of age,

gender, and total cortical surface area, relatively larger

cortical surface area of the bilateral opercular region of the

inferior frontal gyrus was associated with better motor-

inhibitory performance. Follow-up analyses showed a

significant effect of surface area of the right pars opercu-

laris, but no evidence for an effect of area of left pars

opercularis, on motor-inhibitory performance. These find-

ings are consistent with the previous work in adults

showing that cortical morphology of the pars opercularis is

related to inhibitory functioning. It also expands upon this

literature by showing that, in contrast to earlier work

highlighting the importance of cortical thickness of this

region in adults, relative cortical surface area of the pars

opercularis may be related to developing motor-inhibitory

functions during childhood and adolescence. Relationships

between cortical phenotypes and individual differences in

behavioral measures may vary across the lifespan.

Keywords Motor inhibition � Cortical surface area �
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Abbreviations

ADHD Attention deficit hyperactivity disorder

GNG Go/no-go

IFG Inferior frontal gyrus

fMRI Function magnetic resonance imaging

SSRT Stop-signal reaction time

SSD Stop-signal delay

MRI Magnetic resonance imaging

Introduction

Research has long focused on the neural substrates of

psychiatric disorders. However, in recent years, there has

been a greater shift toward identifying neurobiological

correlates of basic behavioral phenotypes that can be

measured dimensionally and cut across disorders (Insel

et al. 2010). One behavioral phenotype that has received

attention is response inhibition (Casey et al. 1997; Liddle

et al. 2001; Johnstone et al. 2007; Forstmann et al. 2008;

Tamm et al. 2002; Newman et al. 2015a; Madsen et al.

2010). Motor response inhibition is typically defined as the

ability to withhold a planned motor response to a stimulus

or to stop an ongoing response (Aron et al. 2004).

Impairment in this basic process has been most commonly

associated with attention-deficit/hyperactivity disorder

(ADHD) (Barkley 1997), though it has been associated

with other psychiatric disorders as well, such as anxiety

and mood disorders (Wright et al. 2014), and schizophrenia

(Ethridge et al. 2014).

Response inhibition is most often measured using stan-

dardized, continuous-performance tasks such as the stop-

signal paradigm (Logan and Cowan 1984) or a variant of

the go/no-go task (GNG) (Conners et al. 2003; Rosvold

et al. 1956). The ability to inhibit a preplanned motor

response has been linked to a highly interconnected, pre-

dominantly right-lateralized circuit involving frontal,

motor, and striatal regions (Chambers et al. 2009).

According to one model, the inferior frontal gyrus (IFG) is

thought to be the origin of a ‘‘stop’’ signal, inhibiting the

motor response via direct stimulation of the subthalamic

nucleus and resulting in inhibition of motor output of the

thalamus (Chambers et al. 2009). This description of the

neural system underlying response inhibition is supported

by functional magnetic resonance imaging (fMRI) studies.

Functional studies, both in adults and in clinical popula-

tions, implicate the IFG as a region involved in successful

response inhibition (Aron and Poldrack 2006; Eagle et al.

2008). Some previous investigations into the functional

correlates of cognitive control and response inhibition

suggest gender differences in regional activation (Bell et al.

2006; Garavan et al. 2006; Liu et al. 2012; Weiss et al.

2003) and age by gender interactions during adolescence

(Rubia et al. 2010, 2013).

Despite the extensive work on brain functional corre-

lates of response inhibition in healthy populations, research

on the relationship between response inhibition and cortical

morphology is limited, particularly in developing children

and adolescents. Several studies have addressed this indi-

rectly by examining neuroanatomical differences between

children with ADHD and comparison groups. The previous

studies comparing children and adolescents with and

without ADHD symptoms found thinner cortex in ADHD

and a relationship between increased rate of cortical thin-

ning and the severity of ADHD symptoms (Shaw et al.

2011, 2013; Batty et al. 2010; Proal et al. 2011). Shaw and

colleagues argued their findings supported a dimensional

approach to ADHD, where the disorder is considered one

extreme of a continuum of a behavioral phenotype. In other

words, rather than simply investigating binary groups of

participants with or without a diagnosis, a better approach

to studying typical development and the development of

clinical disorders would be examining the entire range of

cognitive and behavioral performance.

Madsen et al. (2010) used diffusion-weighted imaging to

examine associations between stop-signal reaction time

(SSRT) performance, which is operationally defined as the

ability to withhold or cancel an initiated motor response,

and white matter microstructure in children. They found

that after controlling for age, better response inhibition was

associated with higher fractional anisotropy in the white

matter underlying the IFG. However, no studies have

examined relationships of SSRT to both thickness and

surface area of the IFG in this age group. In a study of

young adults with or without a childhood diagnosis of

ADHD, our group found that thinner cortex in the oper-

cular region was related to better performance on a Go/No-

go task, independent of ADHD status (Newman et al.

2015a, b). However, cortical surface area of the same

region was unrelated to performance.

The relationships among surface area, thickness, and

response inhibition observed in adults may not translate

directly to brain–behavior relationships in children. Corti-

cal surface area and cortical thickness show distinct

developmental trajectories, which may be mediated by

distinct developmental processes and distinct genetic

influences (Panizzon et al. 2009; Brown et al. 2012;

Jernigan et al. 2011; Chen et al. 2012). It is, therefore, also

necessary to begin to investigate differences in these rela-

tionships as a function of age (Casey et al. 2014). Our

group recently took this approach to determine neural

architectural correlates of anxiety in typically developing

children and adolescents (Newman et al. 2015b). We found

that higher anxiety was associated with thinner cortex
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globally and decreased relative surface area of the ven-

tromedial prefrontal cortex, but that the strength of these

associations diminished with age. It is, therefore, reason-

able to consider whether a similar age interaction may be

present in any association between response inhibition and

cortical morphology. In addition, our group found that

relatively larger surface area of the anterior cingulate was

positively related to better performance on a flanker task in

children less than 12 years of age, but this relationship was

not present in older adolescents examined in the same

study (Fjell et al. 2012). Thus, it is reasonable to hypoth-

esize that in our younger developing cohort, there may be a

relationship between regional surface area and motor-in-

hibitory performance.

The current project aims to build on and extend our

previous findings in adults (Newman et al. 2015a) by

examining the relationship between both cortical thickness

and cortical surface area and motor-inhibitory performance

in typically developing children and adolescents. Due to

the distinct developmental trajectories of cortical surface

area and thickness (Brown et al. 2012; Wierenga et al.

2014), we may observe a different pattern of results rela-

tive to adults. Our primary hypotheses were (1) that

apparent thinning of the pars opercularis of the inferior

frontal gyrus would correspond to better performance,

independent of age and gender, and (2) that a relatively

larger surface area of the same region would correspond to

better response inhibition, independent of age and gender.

Given the inconsistent laterality of previous findings, we

did not have strong hypotheses about laterality, and so for

both primary hypotheses, we examined the bilateral pars

opercularis. Contingent upon finding significant effects in

the bilateral region of interest and in light of previous

findings suggesting that these associations may differ as a

function of age and/or gender, follow-up analyses exam-

ined age and gender interactions. Finally, we examined

associations with the right and left pars opercularis

separately.

Methods

Participants

Participants were part of the Pediatric Longitudinal Imag-

ing, Neurocognition, and Genetics study at the University

of California, San Diego. Prior to participation, participants

under 7 years old provided verbal assent, participants over

7 years old provided written assent, and parents or guar-

dians provided written consent after an oral description of

the study was provided. Participants were required to

understand directions presented in English and have nor-

mal or corrected-to-normal hearing and vision. Potential

participants with neurological disorders, significantly pre-

term birth, a diagnosis of autism spectrum disorder, mental

retardation, and/or head trauma with loss of consciousness

lasting more than 30 min, or daily drug or alcohol use by

the mother during pregnancy, were excluded.

The sample consisted of 110 typically developing chil-

dren (59 male) between the ages of 4 and 13 years. Of

these 110 participants, 82 had complete measurements for

two visits, 32 had three visits, and 8 had four visits taken at

approximately 1-year intervals, for a total of 232 visits. The

average age of participants at the first visit was 6.9 years

(SD 1.57 years, n = 110). At the second visit, the average

age was 7.90 years (SD 1.45 years, n = 82), at the third

visit 9.07 years (SD 1.31 years, n = 32), and the fourth

visit 9.71 years (SD 1.30 years, n = 8) (see Table 1;

Fig. 1).

Stop-signal reaction time (SSRT)

We administered the stop-signal task from the Cambridge

Neuropsychological Test Automated Battery (CANTAB,

Cambridge Cognition Ltd., Cambridge, UK; Fray et al.

1996). While seated at a computer, participants rested the

index finger of each hand on left and right response but-

tons. A fixation circle was presented for 500 ms, after

which an arrow appeared in the center pointing either right

or left. The participant was instructed to respond with the

relevant response key (right or left) corresponding to the

direction of the arrow, as quickly as possible. The stop-

signal task is made up of ‘go’ trials (75%) and ‘stop’ trials

(25%) presented over five blocks of 64 trials each. On the

‘stop’ trials, a tone is presented at a variable delay after the

‘go’ signal, indicating that the participant should withhold

the response. A participant’s stop-signal delay (SSD) is the

delay at which he/she can successfully withhold his/her

response 50% of the time. The stop-signal reaction time

(SSRT) is calculated for each participant by subtracting the

SSD from the median reaction time on ‘go’ trials. This

measure indicates the time each individual participant

needs to refrain from executing a preplanned motor action

upon presentation of a stop signal, with lower reaction

times indicating better performance. For all behavioral and

structural analyses, the logarithm of stop-signal reaction

time was used as a variance stabilizing transformation. The

log(SSRT) measure was then inverted, so that higher scores

correspond to better performance allowing for more intu-

itive interpretation of results (see Fig. 2a, b).

Neuroimaging

All neuroimaging data were collected at UC San Diego

using the PING protocol (see Jernigan et al. 2016b for

details). This is a multiple modality, high-resolution
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magnetic resonance imaging (MRI) protocol during which

participants underwent a 1-h imaging session including

acquisition of TI, T2, and diffusion-weighted images. All

data were evaluated for quality at multiple stages during

processing, including registration, motion correction, and

removal of artifacts. Automated protocols available in

Freesurfer (Fischl 2004) in addition to analyses developed

at UC San Diego Multimodal Imaging Laboratory were

used for processing and morphometric analysis. The right

and left pars opercularis were extracted using the Desikan

atlas available in Freesurfer (Desikan et al. 2006). To

create the bilateral pars opercularis thickness region of

interest, the right and left pars opercularis measures were

averaged. To create the bilateral pars opercularis surface

area region of interest, the right and left pars opercularis

areas were added together (see Fig. 3). Post hoc cortical

surface-based mapping analyses relied upon nonlinear,

surface-based registration constrained by cortical folding

patterns (Fischl et al. 1999), and used surface-constrained,

Fig. 1 Summary of repeated-measures. Age is plotted on the x-axis,

grouped by subject on the y-axis. Female participants are shown in

red; male participants in light blue

Table 1 Summary of

demographic and repeated-

measures data

Demographics Total Male Female

Number of participants 110 59 51

Age [mean (SD) in years]

Baseline (N = 110) 6.9 (1.57) 6.92 (1.41) 6.87 (1.76)

Time point 2 (N = 82) 7.90 (1.45) 7.95 (1.29) 7.85 (1.63)

Time point 3 (N = 32) 9.07 (1.31) 9.26 (1.27) 8.90 (1.37)

Time point 4 (N = 8) 9.71 (1.30) 9.83 (0.00) 9.69 (1.41)

Stop-signal reaction time [mean (SD) in ms]

Baseline (N = 110) 298.62 (114.33) 316.06 (129.68) 278.45 (90.64)

Time point 2 (N = 82) 258.50 (95.04) 267.00 (99.84) 248.65 (89.46)

Time point 3 (N = 32) 232.77 (98.38) 241.52 (121.76) 225.05 (75.13)

Time point 4 (N = 8) 232.47 (112.52) 238.80 (0.00) 231.56 (121.51)

Handedness (R/L/Amb/NA)a 83/14/9/4

Race/ethnicityb

Caucasian 54

African American 5

Hispanic/Latino 36

Asian 13

Pacific Islander 1

American Indian 1

Mixed race 22

Other 3

Number of participants, age, and stop-signal reaction time are outlined for the overall sample and also by

male/female subgroups. Age and stop-signal reaction time means and standard deviations (SD) are given

for each time point for the overall sample and by male/female subgroups. Handedness is reported for the

overall sample (R right handed, L left handed, Amb ambidextrous, NA not reported). Race and ethnicity are

reported for the overall sample
a Four participants did not identify handedness
b Participants were free to mark whichever race/ethnicity options they chose: if multiple races were

checked, s/he was categorized as ‘‘Mixed race’’; if none was selected, s/he was categorized as ‘‘Other’’.

Some participants marked only ‘‘Hispanic/Latino’’, while others marked ‘‘Hispanic/Latino’’ in addition to a

race. Therefore, the total number reported in each category does not sum to the total number of participants
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iterative smoothing with 705 iterations, equivalent to

*33 mm full width at half maximum (Hagler et al. 2006).

Analysis

We tested the primary hypotheses with two separate

region-of-interest analyses using longitudinal mixed-

effects regression models to predict inverted log(SSRT)

scores from cortical thickness and surface area of the

pars opercularis. Analyses were carried out using the

nlme package in R with a covariance structure of

AR(1). Bilateral pars opercularis thickness and surface

area were both centered (demeaned) prior to analysis

and entered as fixed effects. Preliminary analyses

investigating age and gender effects on stop-signal

performance indicated an effect of gender, which was

then included in all primary models investigating

region-of-interest effects. Age and gender were cen-

tered (with female coded as negative and male as

positive) and entered as fixed effects in the model,

while subject ID was entered as a random effect. Total

cortical surface area was centered and also included as

a covariate in the surface area model to estimate the

effect of relative surface area of the pars opercularis.

Scanner was included as a covariate of no interest. For

each of the two main hypotheses, a Bonferroni-cor-

rected p value of 0.025 was used as the threshold for

significance.

If either of the primary models examining bilateral pars

opercularis was significant, interactions between age,

gender, and the bilateral pars opercularis were included in a

later model to determine if significant interactions were

present. Finally, the left and right pars opercularis were

examined in separate models.

Fig. 2 a Stop-signal reaction time (SSRT) as a function of age.

Lower SSRT scores indicate better performance (i.e., faster reaction

times). The blue line is smooth loess fit to the raw data, with shaded

95% confidence intervals around the mean at each point. b Inverted

log(SSRT) scores as a function of age, where higher scores indicate

better performance. Inverted log(SSRT) scores were used as the

dependent measure in all models

Fig. 3 Bilateral pars opercularis surface area is shown on the y-axis

and age is shown on the x-axis. The blue line is smooth loess fit to the

raw data, with shaded 95% confidence intervals for the mean at each

point
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Results

The average stop-signal reaction time (SSRT) for all par-

ticipants at baseline was 298.62 ms (SD 114.33 ms,

n = 110). At the second visit, the average score was

258.50 ms (SD 95.04 ms, n = 82), at the third visit, the

average score was 232.77 ms (SD 98.38 ms, n = 32), and

at the fourth visit, the average score was 232.47 ms (SD

112.52 ms, n = 8) (see Table 1).

The hypothesis that cortical thickness in the bilateral

pars opercularis would significantly predict inverted

log(SSRT) scores was tested using a linear mixed-effects

model covarying for age and gender (Table 2). Age and

gender were both significant predictors of inverted

log(SSRT) scores, with older participants (t = 7.62,

p\ 0.001) and females (t = -2.09, p = 0.04) performing

better. However, there was no significant relationship

between bilateral pars opercularis thickness and inverted

log(SSRT) scores (t = -1.33, p = 0.19).

The hypothesis that relative surface area in the bilateral

pars opercularis would significantly predict inverted

log(SSRT) scores was tested with a similar linear mixed-

effects model with total surface area as an additional

covariate (Table 3). We found a significant, positive rela-

tionship between bilateral pars opercularis surface area and

inverted log(SSRT) scores (t = 2.53, p = 0.01), where

larger surface area was associated with better performance

on the stop-signal reaction time task. Consistent with the

thickness model, older participants (t = 7.76, p\ 0.001)

performed better. Total cortical surface area was not rela-

ted to inverted log(SSRT) scores.

Because the model examining bilateral pars opercularis

surface area was significant, an additional follow-up anal-

ysis examined interactions between age, gender, and

bilateral pars opercularis surface area (Table 4). In a model

including all interactions between age, gender, and bilateral

pars opercularis surface area, there were no significant

interaction terms. We then performed follow-up analyses

investigating left and right pars opercularis surface area

separately (Table 5). Right pars opercularis surface area

was positively related to better SSRT performance

(t = 2.60, p = 0.01), but the effect of left pars opercularis

surface area was not significant (t = 1.21, p = 0.23). Of

note, we had two main a priori hypotheses regarding both

bilateral pars opercularis surface area and thickness, and

thus, we corrected for two statistical tests (see ‘‘Analysis’’,

above). The additional models exploring interactions

between age, gender, and bilateral pars opercularis surface

area and then left and right pars opercularis were not cor-

rected for multiple comparisons as they were post hoc tests

contingent upon prior significant effects.

To visualize the relationship between age and surface

area, we created post hoc, vertex-wise maps of (uncor-

rected) t-statistics for the surface area effects on inverted

log(SSRT) scores, controlling for age, gender, total cortical

surface area (which were all demeaned, as above), and

scanner. For this visualization, we used the baseline

observations only (N = 110). The color scale codes t-

statistic values, ranging from -5 to 5 with the boundary

between warm and cool colors at zero. As reported above,

there appears to be an association between relative surface

area of the pars opercularis and SSRT performance. In

addition, the visualization suggests that there may be

modest positive and negative associations across both the

left and right cortical surfaces in other regions (see Fig. 4).

Table 2 Inverted log(SSRT) scores were predicted using a linear

mixed-effects model

Fixed effects B value t value p value

Agea 0.10 7.62 0.0000***

Gendera -0.11 -2.09 0.0389*

Bilateral pars opercularis thicknessa -0.27 -1.33 0.1853

Scanner 0.12 1.37 0.1682

Predictors included bilateral pars opercularis thickness and covariates

were age, gender, and scanner. Where noted, predictors were centered

(demeaned)

Random effect: subject
a Predictor has been centered (demeaned), *p\.05, ***p\.001

Table 3 Inverted log(SSRT)

scores were predicted using a

linear mixed-effects model

Fixed effects B value t value p value

Agea 0.10 7.76 0.0000***

Gendera -0.11 -1.94 0.0553

Bilateral pars opercularis surface areaa 0.00 2.53 0.0127*

Total cortical surface areaa -0.00 -0.84 0.4049

Scanner 0.10 1.15 0.2535

Predictors included bilateral pars opercularis surface area, and covariates were age, gender, total cortical

surface area, and scanner. Where noted, predictors were centered (demeaned)

Random effect: subject
a Predictor has been centered (demeaned), *p\.05, ***p\.001
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Discussion

This study investigated the relationship between variation

in regional cortical morphology and performance vari-

ability on a response-inhibition task in a longitudinal,

typically developing cohort. Based on the previous work,

we focused our analyses on the pars opercularis of the

inferior frontal gyrus (Aron and Poldrack 2006; Chambers

et al. 2009; Eagle et al. 2008; Newman et al. 2015a). The

primary finding from this study was that greater relative

cortical surface area in the bilateral pars opercularis was

associated with better response inhibition. Thickness in this

region showed no significant relationship with inhibitory

functioning.

These results stand in contrast to a recent study in an adult

sample showing that cortical thickness in this region, but not

surface area, was associated with response inhibition.

Specifically, better inhibitory functioning was associated

with thinner cortex in the IFG. A number of methodological

differences could contribute to the differences observed in

these two studies. First, the previous study used percentage

of commission errors on a go/no-go task to measure response

inhibition, whereas the current study used an estimate of time

needed to successfully inhibit a response on a stop-signal

task. Second, the previous sample was comprised entirely of

young adults, whereas the current sample was comprised of

children ranging in age from 4 to 13. Third, the sample in the

previous study was comprised of individuals diagnosed with

ADHD as well as comparison participants, and, therefore,

reflected wide variability in inhibitory functioning. The

current sample was of typically developing children.

While there are differences in task demands between the

go/no-go and stop-signal tasks, functional studies have

linked both to the function of the IFG (Chikazoe et al.

2007; Chikazoe 2010; Aron et al. 2015). It may be that age

plays a larger role in the different relationships observed

between the pars opercularis and performance observed in

these two studies. In a recent cross-sectional study linking

anxiety to regional cortical morphology in children and

adolescents, our group found that regional surface area, but

not regional thickness, predicted behavior (Newman et al.

2015b). Specifically, greater relative surface area expan-

sion of the ventromedial prefrontal cortex was associated

with lower self-reported anxiety.

Table 4 Inverted log(SSRT)

scores were predicted using a

linear mixed-effects model

Fixed effects B value t value p value

Agea 0.10 7.20 0.0000***

Gendera -0.11 -1.97 0.0516

Bilateral pars opercularis surface areaa 0.00 2.27 0.0250*

Total cortical surface areaa -0.00 -0.91 0.3664

Agea 9 gendera 0.04 1.53 0.1289

Agea 9 bilateral pars operca -0.00 -0.56 0.5780

Gendera 9 bilateral pars operca 0.00 0.81 0.4191

Agea 9 gendera 9 bilateral pars operca 0.00 1.49 0.1384

Scanner 0.10 1.14 0.2574

Predictors included bilateral pars opercularis surface area and covariates were age, gender, total cortical

surface area, and scanner. All interaction terms for age, gender, and bilateral pars opercularis surface area

were included. Where noted, predictors were centered (demeaned)

Random effect: subject
a Predictor has been centered (demeaned), *p\.05, ***p\.001

Table 5 Inverted log(SSRT) scores were predicted using linear

mixed-effects models

B value t value p value

(a) Left pars opercularis model

Agea 0.11 7.92 0.0000***

Gendera -0.12 -1.98 0.0505

Left pars opercularis surface areaa 0.00 1.21 0.2295

Total cortical surface areaa 0.00 0.10 0.9196

Scanner 0.11 1.18 0.2399

(b) Right pars opercularis model

Agea 0.10 7.75 0.0000***

Gendera -0.10 -1.62 0.1084

Right pars opercularis surface areaa 0.00 2.60 0.0106*

Total cortical surface areaa -0.00 -0.73 0.4659

Scanner 0.11 1.23 0.2214

(a) Surface area of the left pars opercularis with covariates age,

gender, total cortical surface area, and scanner. (b) Surface area of the

right pars opercularis with covariates age, gender, total cortical sur-

face area, and scanner. Where noted, predictors were centered

(demeaned)

Random effect: subject
a Predictor has been centered (demeaned), *p\.05, ***p\.001
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Recent studies have shown that there is very little

overlap between the genetic factors that influence surface

area and thickness, although they are both highly herita-

ble (Chen et al. 2011, 2012; Panizzon et al. 2009), and their

developmental trajectories are markedly different (Brown

et al. 2012; Jernigan et al. 2016a). On average, surface area

increases steadily until middle childhood and begins to

taper off in adolescence and early adulthood, and these

changes occur at different rates in different regions of the

cortex. In contrast, cortical thickness decreases consistently

and continuously over the course of development (Brown

et al. 2012; Walhovd et al. 2016). Therefore, future work

should aim to assess the differential contributions of

regional surface area and thickness to cognitive perfor-

mance in developing cohorts.

The exploratory vertex-wise surface maps of the relation-

ship between regional surface area and response inhibition

show the predicted bilateral effect in the pars opercularis.

These maps provide additional information to readers about

the degree of variability across the cortical surface in the

direction and magnitude of the relationship between relative

surface area expansion and SSRT performance.

Conclusions and limitations

In this study, we examined a large number of typically

developing children in a longitudinal cohort to determine

whether we could confirm an association between regio-

nal morphology of the inferior frontal gyrus and perfor-

mance on the stop-signal task. The results suggested a

relationship between regional cortical surface area of the

pars opercularis and performance on this motor-inhibitory

task. In contrast to our group’s earlier work highlighting

the relationship between the cortical thickness of this

region and inhibitory control task performance in adults

(Newman et al. 2015a), it appears that the relative cortical

surface area of the pars opercularis may be especially

important for the development of inhibitory control,

although directly assessing this relationship requires fur-

ther examination. This highlights the possibility that dif-

ferent cortical phenotypes may show differential or

unique relationships to behavioral functions at different

points during development. However, among the many

possible influences on developing brain structure and

response inhibition, this study evaluated only age and

gender as covariates. In addition to age and gender, there

is evidence that genetics, experience, socioeconomic sta-

tus, and many other factors could affect both measures of

brain structure and cognitive performance (Chen et al.

2012; Noble et al. 2015). Future analyses should also

evaluate other covariates thought to relate to both struc-

tural brain development and response inhibition to form a

more complete picture of the factors influencing these

relationships.
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