Lawrence Berkeley National Laboratory
Recent Work

Title
AN INSTRUMENT CONTROL AND DATA ANALYSIS PROGRAM FOR NMR IMAGING AND
SPECTROSCOPY

Permalink

https://escholarship.org/uc/item/4tq150t7|

Authors

Roos, M.S.
Mushlin, R.A.
Veklerov, E.

Publication Date
1988

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/4tq150t7
https://escholarship.org
http://www.cdlib.org/

LBL-24707

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

r

. .
Op— é.g':-'—“""’_ -

NEC
P ul’.":%\/ﬁ;b
LAWRENCE
BERKELEY LABORATORY

APR1 91988

Presented at the Fifth Annual Meeting of the LiERARY AND
Society of Magnetic Resonance in Medicine, DOCUMENTS SECTION
Montreal, Quebec, Canada, August 19-22, 1986, and

to be published in IEEE Transactions on Medical Imaging

An Instrument Control and Data Analysis Program for
NMR Imaging and Spectroscopy

M.S. Roos, R.A. Mushlin, E. Veklerov, J.D. Port,

C. Ladd, and C.G. Harrison / s ™~

January 1988

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

- Donner L

which may be borrowed for two weeks.

R

Prepared for the U.S. Department of Energy under Contract DE-A003-76_SF00098

{.')

SN

Lolthe 1477

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not nccessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

An Instrument Control and Data Analysis Program for NMR

Imaging and Spectroscopy

Mark S. Roos*, Richard A. Mushlin!, Eugene Veklerov*, John D. Port!, Carol Ladd?,
and Colin G. Harrison!
*Lawrence Berkeley Laboratory,
University of California, Berkeley, CA 94720
'IBM Corporation, Armonk, NY 10504

This work was supported by the IBM Corporation.

Address correspondence to:
Mark S. Roos
Lawrence Berkeley Laboratory
1 Cyclotron Rd. MS 55-121
Berkeley, CA 94720

Roos et.al.: NMR Instrument Control Program 1

Abstract ‘

We describe a software environment created to support real-time instrument control
and signal acquisition as well as array-processor based signal and image processing
in up to five dimensions. The environment is configured for NMR imaging and in
vivo spectroscopy. It iﬁ designéd to provide flexible tools for implementing novel NMR
experiments in the research laboratory. Data acquisition and processing operations are
programmed in macros which are loaded in assembled form to minimize instruction
overhead. Data arrays are dynamically allocated for efficient use of memory and can
be mapped directly into disk files. The command set includes primitives for real-time
control of data acquisiton, scalar arithmetic, string manipulation, branching, a file
system and vector operations carried out by an array processor.

Keywords: NMR instrumentation, real time software, signal processing, image pro-

cessing

1 Motivation

Modern instrument systems rely on computers for nearly every aspect of their operation.
Complex instruments are characterized by large sets of control parameters, intricate opera-
tion sequences, critical timing requirements, diverse data structures, and highly cooperative
functional elements with multiple processors. The control software stands between the user
and this inherent complexity, and must minimize demands on the user while maintaining
access to the full capabilities of the instrument system. In a research environment it is
essential that limits be set by the inherent characteristics of the hardware and not by the
forsight of the apphcat:on programmer. This paper describes a software envu'onment in
which the degree of complexity, as seen by the user, can be tailored to that user’s xndlwdual
needs and level of expertise.

Most application software is run by commands. The functionality of a program is often

described in terms of the commands available. For control of complex instrument systems,

Roos et.al.: NMR Instrument Control Program 7 2

however, it is impractical to have a separate command for every combination of operations
that the system can perform. Thqs the command set usually consists of simple operations
and a method of grouping sequences of commands together, saving the group under a
single name, and executing the group as a whole. These command groups are called by
various names including procedures, automa.;ion sequences, and macros. The term macro
will be used henceforth.

The performance and personality of a program of this type are determined to a large
degree by the command set and the sophistication of the data flow and execution control
in macros. Traditional approaches to the design of instrument control programs have often

had several of the characteristics listed below:

e Large command sets contain individual commands to implement sophisticated data

acquisition and processing tasks.
o Interpretive executives control the execution of commands in a macro.

e Parameters are passed by value to a macro when it is run and substituted for dummy

symbols.
"o Data are stored in static structures under control of the program.

e Variables internal to the program are not acessible to the user for computation and

program control.
The program described herein has somewhat different characteristics:

o The command set is smaller, consisting of commands that perform primitive func-
tions, so that several may need to be grouped together to perform the task of one

command in a program with a large command set.

o The macros are processed when they are loaded into the computer so that all symbols

(commands and arguments) are resolved into addresses. This pre-processing, called

Roos et.al.: NMR Instrument Control Program ' 3

assembly, greatly increases the speed of the executive at run-time. Unlimited nesting

of macros is allowed.

~ e Parameters are passed to macros by reference (that is, the address is passed). This is
consistent with the assembly strategy,-and allows large data structures to be passed

efficiently among macros.
¢ Data structures (arrays) are dynamically allocated under user control.

e Internal variables used to describe the state of the hardware are available to the user,
although their values may only be changed by executing approproate commands.
These ‘hooks’ into the control program are useful for controlling branching in macros,
writing macros that interact with the graphics display, and for documentation such

as header files and display annotation.

The functionality of a complex command set can be equalled or exceeded by éombi-
nations of a few more primitive commands. The cost is that some of the control and
parameter passing operations that would have been executed within a command in the
(compiled) implementation language of the program will happen instead under control
of the macro executive. An assembled scheme, rather than the much slower command
interpreter, is ca.lled for to minimize the command execution overhead due to the macro
executive.

The low execution overhead (less than 200 usec per command in this application) has
additional advantages in a real-time syétem: several commands in a macro may perform
an operation requiring on the order of one msec to complete. In an interpreted scheme,
such an operation needs to be coded within a single command, and so can not be modified
by users that do not have access to the program source code. With control of more of the
time-critical functions of the instrument the user can customize real-time operations (such

as control parameter updating and data transfer) for the specific application.

Roos et.al.: NMR Instrument Control Program | 4

The software is designed for users with a broad range of requirements and programming
proficiency that can be distinguished into four groups, each interacting with a different level
of software. The casual user wishfng to run established protocols invokes turn-key macros
from a macro library. Different macro libraries are built to satisfy the requirements of
different users (imagers or spectroscopists, for example). The macro nesting feature allows
these libraries to be loaded on top of more basic macros that provide functions needed
by a.ll Other users want to develop and test new experiments. They typically write new
macros that include existing macros and command primitives. A few sophisticated users
will require new commands to be written in the implementation language and installed
into the program. Finally, fundamental changes in the system that involve modification
of the control program executive and the low level code of the various instruments are the
province of the applications programmer. A well defined interface exists for each level of
interaction, facilitating simultaneous development by more than one programmer.

The program is designed for general purpose signal processing operations, such as data
scaling, type converstion, FFT and matrix maniipulations; and for instrument control.
In addition, the command set is configured for the specific applications of NMR imaging
and spectroscopy. Both require facilities for developing and running pulse programs and
interactive one dimensional graphics. I:ﬁaging experiments require additional capabilities :
to generate complex waveforms, and to display and manipulate images. The data transfer
rates between spectrometer and memory are much more rapid in imaging, typically on
thé order of 10,060 complex words (80,000 bytes) per second. The architecture of the
spectrometer determines the maxmum permissible response time of the control program.
In this application , the spectrometer consists of several instruments, each with its own
control processor. The most rapid response required of the control program is about 1

msec; all faster control functions are handled by local processors in the instruments.

Roos et.al.: NMR Instrument Control Program | 5
2 Target System

The instrument control and data analysis program was built to operate spectrometers
designed at the Francis Bitter National Magnet Laboratory at MIT [1]. Each broadband
(5 to 500 MHz) spectrometer consists of four instruments: an averager, RF electronics, a
pulse programmer, and a waveform generator, as diagrammed in Figure 1. Each instrument
has a local Z80 control processor and its own instruction set, and communicates with the
host over a common IEEE 488 bus. The program supervises the processors and handles
data transfer during an experiment in a synchronous fashion, with ovérall experiment
timing controlled by the pulse programmer, with a timing resolution of 0.1 usec. The host
is a general purpose microcomputer, the Motorola 68000 based IBM S/9000 (IBM Corp.,
Arinonk, NY), equipped with a SKYMNK array processor (Sky Computers, Inc., T..oweu.,
MA). Graphics displays a.ppéa.r on the IBM S/9000 screen, while images are sent to a
separate display unit (an IBM PC-AT with a 1024 x 1024 pixel ixﬂage display by Imagraph
Corp., Woburn, MA). Host systems may have 2 to 8 Mbytes of memory, with the larger
sizes required for imaging applications that are too rapid to allow data acquisition to disk.
Resident code, intrinsic data structures and macro storage space requires about 1 Mbyte,
leaﬁﬁg the remainder available for user allocated dynamic data structures. The code is
written in Pascal and 68000 assembly language, and makes extensive use of multi-tasking,
inter-task communication channels, and memory-mapped inter-task communication. The
code is transportable to other computers with real-time operating systems that support

such features.

3 Program Architecture and Implementation

Execution of a command or macro is controlled by an executive, which is also responsi-
ble for management of user defined variables. To respond quickly enough to control data

acquisition from a high-level user defined macro, command primitives (henceforth com-

Roos et.al.: NMR Instrument Control Program - 6

mands) must be resident in memory when invoked. Commands are Pascal subroutines
conipiled and linked into the program, with their start addresses stored in a command
table. Parameters are not passed to the commands using the intrinsic Pascal argument
passing mechanism, but rather through a set of global argument pointer variables. When a
command is invoked from the keyboard, it is located in the command table, its arguments
are parsed by the executive, resolved, and the argument pointers are set. Execution then
jumps to the start address of the command. Error detection is incorporated in each com-
~ mand subroutine, which may also write responses on the screen and prompt for missing
arguments.

Macros consist of data structure declarations and a sequence of commands (including
branching and looping instructions). They reside on disk as text files and may be edited
from within the program. Our experience indicated that a simple interpretive batch com-
mand processor would not be fast enough for real-time control. At the time a macro is
loaded into memory, all symbolic references to primitive commands, other macros, param-
eters, variables of local or global scope, and constants are resolved and stored in compact
form. The macro storage data structure is a linked list of records, one record per instruc-
tion. When the user invokes the macro, the executive simply loads the argument pointers
for the first command, jumps to the start address, and repeats the process on return un-
til the macro is completed. This approach yields a command execution overhead (in a
macro) of about 150 usec. There is no limitation on macro nesting, but recursive calls are
prohibited.

In the case of nested macros, the called macros must be loaded before the calling macro
so that their start addresses in the macro table can be included in the executable code of
the calling macro. This is not a pra,ctiéa.l restriction, but does prevent system initialization
from a macro, because a macro cannot be both loaded (that is, assembled) and called by
a another macro (because the calling macro could not be loaded). A simple batch utility

is included for this purpose that executes commands and macros sequentially, just as if

Roos et.al.: NMR Instrument Control Program 7

| they were typed from the keyboard. Thus a batch file can load a set of macros and also
execute some of them to put the spectrometer into a specified state. Batch files are useful
for customizing the environment z;.t program startup.

" The program is currently implemented with two tasks: the main task and the ac-
quisition task, as illustrated in Figure 2. 'fhe main and acquisition tasks are controlled -
by almost identical executives of the type described above. The main task receives its
input from the keyboard, while the acquisition task receives input from an inter-task com-
muntication channel (ITC) connecting it with the main task. When the string invoking a
command or macro is typed from the keyboard, it is parsed and the macro and command
tables are searched for the symbol corresponding to the instruction token. Main task ta-
bles are searched first. If the macro or command is not found the token is passed over the
ITC to the acquisition task executive, and the acquisition task tables are searched. By
this mechanism, main task macros méy invoke macros and commands in both tasks, while
acquisition task macros (executed exclusively by the acquisition task) may only contain
references to commands and macros in the acquisition task tables. This asymmetric two
task structure allows acquisition task macros to be run independently of the main task, in
what is referred to as detached mode. While a detached acquisition macro is executing,
the user may continue to execute main task commands and macros. The acquisition task
runs at much higher priority than the main task, so that user activities on the main task
during an experiment do not disrupt its timing. The main and acquisition tasks each have
a window on the console display screen so that the user can conduct independent dialogs
if desired. The most common application of this feature is for the acquisition task to post
information on the progress of an experiment while data processing or other activities are
performed by the main task. The tasks can be synchronized, if necessary, using global
variables. | |

The run-time environment provided by the executive for each task includes error han-

dling, debugging tools and a macro termination command. Errors detected within prim-

Roos et.al.: NMR Instrument Control Program ' 8

itive commands result in messages and calls to the executive’s error handling routine,
with a parameter indicating the severity of the error. When the error handler is invoked,
the macro line being executed is disa.ssembled and printed on the console screen, along
with the macro name, line number, and the symbols or values assigned to each argument.
Depending on the parameter passed to the error handler, execution may resume or stop,
jumping out of all nested macros in the latter case. The line number reported was assigned
at load time, and may be compared with a listing file. The executive may be placed in a
single step mode for debugging, wherein a message similar the the error handler’s appears
on the screen for each line executed, with stepping controlled by the return key. Finally,
executing macros are stopped by typing Control-Break, which produces a query asking
which task to stop.

User defined variables are stored in a variable table accessible to both tasks, with each
entry having scope, type and protection fields. The scope field indicates that the variable
belongs to either a loaded macro, the global scope (which may be created and modified
from the keyboard or a macro), or the null scope (indicating that the record in the table in
not assigned to any variable). Variables of the global scope are used for storing results that
must be available after a macro has completed, as well as for setting flags between the main
task and an executing acquisition task macro. For.most purposes parameter passing is the
preferred method for communicating among macros. The type field determines what values
the variable can assume and the operations that can be performed on it. The requirement
of type compatibility detects many programmer errors. A number of data types speciﬁc;
to the NMR application include: unsigned bytes for image display, and complex typés
~ consisting of pairs of 16 and 32 bit integers for data acquisition. Data types are listed in
Table 1. Variables are entered in the table either by executing a command or during macro
- loading, where they are specified by variable declaration statements with syntax similar to .
Pascal. Parameters required by a macro are also declaréd at load time. When the macro

is run the executive sets the entry in the variable table corresponding to each parameter

Roos et.al.: NMR Instrument Control Program 9

to point to the specified argument. Variable storage and parameter passing are described
in Figure 3. ‘

A particularly inconvenient shortcoming of many spectrometer control programs is that
variables internal to the commands are not accessible to user macros. Examples of such
variables include shot counters, pulse lengths, the spectrometer frequency, cursor positions,
and display scales. We have included a construct called the system variable, or SYSVAR,
which is a global variable in the variable table pointing to a Pascal variable in the primitive
command code. Such variables are generally assigned read-only protection so that the user
can only modify such internals by executing the corresponding command, but can observe
their state and use the variable in a macro.

In addition to scalar variables, the program supports dynamic allocation of array stor-
age under user control. A special type of variable is used as a pointer, containing in its
value field the address of a multidimensional array descriptor called a buffer control block,
or BCB. The BCB specifies the data type and dimensional information of the array and
contains the start address of a data space that is allocated when the buffer is created
(Figure 4). Buffer size is limited only by available system .memory. Six buffer data types
accomodate fixed and floating point data. Buffers may be created and deleted at will,
limite‘d only by system memory size. The same data in memory can be simutaneously
accessed under different buffer descriptors, as illustrated in Figure 5. This allows in-place
type conversions, as well as customizing the data structure to match the operation. For
example, a multi-echo image data array will generally be acquired as a two dimensional
structure: the echo train from each excitation pulse sequence (a.ndv phase encoding gra-
dient value) is stored following transfer from the averager to the host. For processing it
.is convenient to view the data as a three dimensional structure so that an image may be
reconstructed for each echo. Equivalent buffers result in several pointers to a given data
array which all have equal priority. The data space remains allocated until all pointers to

_ it are deleted. |

Roos et.al.: NMR Instrument Control Program | 10

A file system allows storage of buffers on disk with the same multidimensional struc-
tures. As with buffers, the type and dimensions of files are specified when they are created.
Read and write access to subspacés of the data file is supported, with the minimum trans-
fer size being one row of the array. Files of text may also be read and written, and the
contents of variables converted from the internal representation to ascii (and the reverse).
This feature is most often used for header files that describe the state of the machine
during a particular experiment. The state of the machine, including user defined variables,

can be restored by reading such files.

4 The Command Set

The command set contains over 200 primitives. Some primitives exist in only the main or
;«),cquisition task, while some are duplicated as shown diagramatically in Figure 6. Scalar
arithmetic, bra.ﬁching, operations involving creation of variables, buffers and files, and
graphics display operations are all performed by the IBM S/9000 and are available in either
task. Commands involving buffer arithmetic are implemented using the array processor and
are contained exclusively in the main task. All commands requiring direct communication
with the spectrometer instruments are installed in the acquisition task.

The basic instruction set shared by the tasks has a syntax similar to assembly language,
i.e. an operation followed by several source and destination arguments. The instructions
execute very rapidly with the simple macro assembler. The lack of an expression evaluator
is not a great inconvenience for the instrument control and (mostly vector) data processing
applications of this program.

An extensive set of commands for mathematical ma.nipulétion of buffers is implemented
in the main task using the SKY a;rray processor, supplemented with some assembly code
for byte operations. Special functions for NMR and almost all the routines in ‘the SKY

subroutine library are installed as commands. A syntax was developed that uses wildcard

Roos et.al.: NMR Instrument Control Program 11

characters to support vector operations with implied loops over multiple array dimensions.

An illustrative example is

BSMUL A AND BUF1 % * TO BUF2 * 1« ,

wherein the two dimensional buffer BUF1 is multiplied by the scalar A and the result
placed in a subspace of the three dimensional buffer BUF2. Here the deepest nested loop
is specified by the leftmost *. This syntax frees the user from continuously typing range
| specifications, and facilitates writing general purpose macros which operate on buffers of
arbitrary size. A similar syntax with wildcards that signify loop depth (*1,%2,...%5) is used
for file operations and buffer transposes. A proposed extension would permit operations
on a part of a row or column of a data buffer, with the wild card replaced by special type
of variable. |
The primitives controlling data acquisition are divisible into two categories: those that
communicate directly with the instrument Z-80 microprocessors and those that do not. All
commands of the first type exist exclusively in the acquisition task and perform such func-
tions as moving data from the averager; loading waveforms, synthesizer tables, and pulse
programs, and starting experiménts. These commands directly initiate communications
over the IEEE 488 bus which need to be carefully synchronized to insure correct exper-
imental results and rapid data throughput. Since the commands are in the acquisition
task only, they are inaccessible from the keyboard or main task macros while a detached
acquisition task ﬁmcro is running so that unintentional interference with a running ex-
periment is prevented. Commands that communicate with the instruments indirectly set
experimentai parameters from both the main and acquisition tasks. These parameters,
for example pulse lengths, amplitudes and phases, need to be adjusted while detached
acquisition macros are running. When commands of this type are executed, packets of
update information are assembled and queued for transmission to the various instruments.

A primitive of the first type (acquisition task only) causes these queues to be flushed. The

Roos et.al.: NMR Instrument Control Program 12

timing of all IEEE 488 bus transactions is determined by the sequence of commands in a
(detachable) acquisition task macro written by the user.

Synchronization of the acquisition task with a running pulse program is accomplished
through commands of the first type. The a.f:quisition task sends an instruction requiring
a reply from the Z-80 when a condition is satisfied, such as ‘tell me when recycle delay
is over’, followed by a request to read on the IEEE 488 bus. The acquisition task will
then be suspended by the operating system until the read request is satisfied. If an illegal
condition exists, such as issuing the above command after recycle delay when the next shot
has already begun, an error condition is returned. Thus it is the burden of the acquisition
task to keep up with the pulse program. Because the acquisition task runs at higher
priority and task switching is rapid, main task activities do not interfere with acquisition
activities. If the acquisition is very demanding the inain task may receive few processor

cycles and run very slowly.

5 The experiment development tools

The user wishing to develop new experiments must be able to write pulse programs, de-
scribe waveforms, and create macros for acquiring and processing data. The pulse program
compiler and many of the commands for spectrometer control were derived from a pro-
gram for spectroscopy designed by D. Ruben of MIT. Most modifications to this code, and
parallel changes in the Z-80 instrument control code, were motivated by the speed and
data transfer requirements of imaging.

The pulse program compiler is installed as a command in the acquisition task. A pulse
program is created as a text file using the internal editor (or any external editor). The pulse
program object code is automatically.c';ueued for downloading to the pulse programmer
Z-80 following compilation. When an experiment is run, the Z-80 merges the object code
with updated parameters for each shot and downloads it to the pulse programmer hardware

Roos et.al.: NMR Instrument Control Program _ 13

for execution. This is how parameters are changed on the fly.

The waveform compiler allows complex waveforms to be expressed in a Fortran-like
syntax. It is adapted from a compiler written by D. States for IBM. Because this compiler
has an expression evaluator, waveforms are coded in a more compact and intuitive form
than if they were specified directly in the ;na.cro language. Waveforms are downloaded
directly after compilation to the waveform generator Z-80, which subsequently loads the
values into FIFO’s for D-A conversion (clocked by the pulse programmer) during experi-
ment execution. The hardware incorporates waveform scaling and offset controls which are
adjustable on the fly using aquisition primitives of the second category described above.

Frequency switching during multislice experiments is done in a manner similar to wave-
form generation. A buffer of table values is generated by a macro (taking the place of the
waveform compiler) and downloaded to the spectrometer control Z-80 by an acquisition
command of the first type. Synthesizer frequencies are switched under pulse programmer |
control.

The flexibility of high level acquisition macros is nicely illustrated in the case of moving
data from the averager to a buffer in the host. For simple experiments with long recycle
delays, typical of spectroscopy, a command to get the data can simply be issued during the
recycle delay and the data sent immediately over the IEEE 488 bus. In order to optimize
concurrent use of the Z-80’s and IEEE 488 transfers, command primitives are also available
to perform the transfer in two steps: move the data from the averager memory to the Z-80
memory, and subsequently move the data from Z-80 memory to host memory. The first
operation can take place during a short recycle delay while the IEEE 488 bus is fully -
occupied with setting up the next shot, and the second step can be done during pulsing,
which is typically quite long and without IEEE 488 traﬁie. The choice of one method or
another only involves the high level commands in the acquisition macro.

As examples of the programming environment described herein, an acquisition macro

and a processing macro are included in Figure 7,8.

Roos et.al.: NMR Instrument Control Program 14
6 Conclusion

The spectrometer control and data processing enﬁronment described above, and libraries
of macros designed to support imaging and in vivo spectroscopy, are currently in use at
the Lawrence Berkeley Laboratory, the Massachusetts Institute of Technology, and the
Brigham and Women'’s Hospital. Systems ranging from a 4.7 T animal spectrometer to a
0.5 T whole body imager are supported by this software. Experiments which have been
successfully implemented include multi-slice, multi-echo imaging, fast steady state free pre-
cession imaging, FLASH, ISIS, and 3'P spectroscopy. The flexibility of the programming
structure allowed very rapid development of these diverse and specialized macro libraries.
This work demonstrates that instrumentation developed around standard hosts, buses
and operating systems can yield research tools with performance comparable to very spe-
cialized systems. The combination of low macro instruction overhead, provision for access
to system internals and a set of primitive commands for controlling basic acquisition and
processing funétions provides a foundation upon which libraries of macros may be built to
serve a broad range of users, perhaps more effectively than a system with many specialized
commands and a more limited batch processor. Well defined program interfaces for in-
stalling primitive commands, as well as the ability to modify instrument control code (host
and Z-80) significantly broadens the range of experiments accessible to the researcher.
The program described herein runs on a single host in a multi-tasking environment,
but can be easily extended to systems with two or more processors. The intertask com-
munication channels would then utilize network software, a feature available under several
commercially available operating systems. System performance could be improved with
one processor running the main task and another running the acquisition task, with choice
of processors and operating systems dptimized for each task. One can readily imagine the
main task running under a UNIX derivate with the acquision task running under a real

time operating system, or integration of the main task with rule-based instrument control -

Roos et.al.: NMR Instrument Control Program

software.

15

Roos et.al.: NMR Instrument Control Program 16
References

1) Haberkorn, RA, Ruben DJ, McCue P, Barklay H, Thakkar A, Neuringer LJ, Scientific
Program, SMRM Third Annual Meeting, p.292, 1984.

Roos et.al.: NMR Instrument Control Program

Name

)

H m g o 2 X Q o~ 9 m

Description
long integer
byte
.boolean
real
integer
character
string
complex floating point |
complex long integer
complex integer
buffer pointer

data file pointer

text file pointer

Table 1: Data Types

17

Roos et.al.: NMR Instrument Control Program | 18
Figure Captions

Figure 1: Schematic representation of the spectrometer hardware, data buses (medium and
large arrows), and control signals (small arrows) of the target system. Each subsystem is
installed in a separate Multibus crate, and communicates with the host over an IEEE 488

bus.

Figure 2: System resources are allocated to two tasks according to task function: the
main task handles data processing, the keyboard and system utilities; the acquisition task
controls the spectrometer. The shaded area shows resources shared between the main
and acquisition tasks. Commands are transmitted among the tasks over an intertask

communication channel (ITC), while data is passed through shared memory.

Figure 3: Each record reserved for data storage has six fields. The name and type fields
are self explanatory. Variables may be assigned several levels of protection. Most variables
Nallow read and write access, but system variables are generally read only. Each variable is
either global or assigned to a particular macro. This is reflected in the scope field, which is
used in macro assembly and for variable table cleanup. The address field may point to the
value field in the same record (a) or to the value field in a different record (b). Parameters
are passed to macros through this mechanism. The address field of the formal parameter
is set equal to that of the actual parameter (in the calling statement) when the macro is
called.

Figure 4: Buffers are addressed via a pointer variable. The value field of the pointer is
set to the address of a buffer descriptor, or BCB. This record contains type, size and
dimensional information describing the buffer, which may have up to five dimensions. The

start address and skip factors are used to access the data, which is stored sequentially in

Roos et.al.: NMR Instrument Control Program ' 19

dynamically allocated memory.

Figure 5: This example illustratés the mechanism of buffer referencing for a hypothetical
macro. A global buffer pointer is passed as a parameter to a macro, so the address field
of the parameter is set to point to the data field of the global variable on entry. When
a command in the macro allocates memory for the buffer, a BCB (BUF1) is created and
the memory obtained from the heap. If another buffer, BUF2, is set equivalent to BUF1
during execution, another BCB with different structure or type pointing at the same data
will result. This BCB must be removed before the end of macro execution. The data
will remain accessible via the global pointer variable until it is deleted. When no pointers

remain the memory is released.

Figure 6: The command set is divided among the main and acquisition tasks as shown,

with commands duplicated in both tasks listed in the darker region.

Figure 7: The simple acquisition macro ZG (for zero and go) runs an experiment for a
specified number of iterations, displaying the cumulative signal after each shot. The results
are returned in a buffer passed to the macro through the buffer pointer SGDATA. The
function of this macro is analogous to the GO command in some familiar spectroxheter
control languages. The definition section of a macro extends from the MACRO statement
to the START statement. The PAR statement defines the buffer pointer to be passed
by reference when the macro is run, and the VAR statement defines internal variables.
BREAK QUIT causes a jump to the label QUIT when a CTRL-BREAK condition is
detected. The CTRL-BREAK condition can be set by the error handler w'hen an error is
detected by the executive or within a command or by pressing the key. TASK informs the
macro loader that this is an acquxsxtxon task macro, and may be run deta.ched followmg

the DETACH command. Vana.bles preceded by a % sxgn have global scope, and some

Roos et.al.: NMR Instrument Control Program 20

are SYSVARs. The loop defined by the LOOP label and the BEQ %AVDONE LOOP
statement is repeated until the specified number of shots are acquired. Each iteration of
the loop must be completed before the pulse programmer starts the subsequent shot, or
a fiming error is reported. The timing of thﬁs loop can be optimized for various types of
experiments by selecting one of several strategies for data buffering, traﬁsfer, and (optional)

display.

Figure 8: The macro SPECTRUM computes the power spectrum of the buffer passed by
the buffer pointer FID. An equivalent buffer is created for type conversion and a new buffer

is allocated to receive the spectrum.

21

graphics display
array processor

data communication

Fig. 1

—P> 280 H averager —
280 receiver > re-am
IEEE synthesizer controller [4——7p——9 synthesizer
488 Multibus T
synthesizer controller [€¢——1—— - synthesizer
transmitter | P> rf amplifier
i
g
—’ 280 <—-’ pulse programmer
<
rf
e = 280 ‘—-’ waveform X P gradient
! | generator z g > power
< N supplies
IBM S/9000 parallel IBM PC-AT etherhet
e keyboard 4—P| imago display |[@—> other hosts

KEYBOARD)

PC-AT

parallel image display
data communication

MAIN TASK

user interface
utilities

data processing

parameter setting

MAIN TASK
TEXT WINDOW

DISK BASED GRAPHIC

MEMORY MAPPED
DATA STRUCTURES DATA
variables STRUCTURES \[/)vIuS\:;%)sz
buffers files sl
SRR
ACQUISITION
TASK
WINDOW
ACQUISITION TASK
instrument control —
experiment timing EEE - SPECTROMETER
data transfer 488
pulse programmer
averager

pulse program compiler

waveform compiler
waveform generator

RF electronics

(a)

actual parameter

' formal parameter

: (b)

Fig. 3

Dynamically allocated data array

1048576 elements X 4 bytes/element
= 4194304 bytes

Fig. 4

Fig. 6

26

.LOOP

.QUIT

MACRO ZG

PAR SGDATA:P

VAR DISBUF:P AVGSIZ:L

BREAK QUIT
TASK

START

MUL %SIZE %NSAM AVGSIZE

ALLOC DISBUF 'M AVGSIZE

SET %PPQUIT %FALSE
DETACH

PREP
RUNPP 1

CHECKAV

NEXTSHOT

GAV 1 TO DISBUF =
DISP DISBUF =

BNE %PPQUIT QUIT
BNE %AVEDONE LOOP

GAV 1 TO SGDATA =»
DISP SGDATA =

SET %PPQUIT %FALSE
BD DISBUF

Fig. 7

27

/cycle spectrometer and get data
/argl = signal buffer pointer
/declare formal parameter
/declare local variables

/jump to QUIT if CTRL-BREAK

/assemble as an acquisition task macro

/begin executable commands
/calculate size of data from system
/variables %SSIZE and %NSAM
/allocate a buffer for display
/clear global quit flag

/run independent of the main task

/initialize pulse programmer

/run pulse programmer and put data
/in averager block 1

/verify data valid

/prepare for next shot

/get data from spectrometer
/display data

/check quit flag

/have enough shots been acquired?
/transfer data to passed buffer
/display final result

/reset quit flag
/delete buffer

.END

MACRO SPECTRUM

PAR FID:P

VAR XBUF:P POINTS:L BSIZE:L
VAR RBUF:P LBUF:P

BREAK END

START

BDIM FID 1 BSIZE
EQUIV FID * TO XBUF =
BL2R FID = TO XBUF =
DIV BSIZE 8 POINTS

28

/process data to power spectrum
/and display
/argl = input buffer pointer

/declare formal parameter
/declare local variables

/jump to END if CTRL-BREAK

/begin executable commands
/get buffer dimension

/make equivalent type 'X buffer
/convert to type 'X (in place)
/calculate size of intervals to be
/used for baseline correction

BBC POINTS AND POINTS AND XBUF = TO XBUF =

BFT XBUF » TO XBUF =
ALLOC RBUF 'R BSIZE
BMGSQ XBUF » TO BSIZE

BSQRT RBUF * TO RBUF =

EQUIV RBUF TO LBUF 'L BSIZE
BR2L RBUF * TO LBUF =*
DISP LBUF =

BD XBUF

BD RBUF
BD LBUF

Fig. 8

/baseline correct

/FFT (in place)

/allocate type 'R buffer
/calculate magnitude squared
/square root (in place)

/make equivalent type 'L buffer
/convert to type 'L for display
/display

/delete local buffers

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

