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Executive Summary 
This document summarizes the activities and outcomes of the Long Program “New Mathematics 
for the Exascale: Applications to Materials Science” which was held at the Institute of Pure and 
Applied Mathematics (IPAM) from March 13 to June 16, 2023. It briefly explores some of the 
current open questions and future directions in the field of exascale computing with applications 
to materials sciences. The program included a series of tutorials followed by four focused 
workshops: 

● “New Mathematics for the Exascale: Applications to Materials Science Tutorials” provided 
an introduction to major themes of the entire program, in order to build a foundation for 
the participants who have diverse scientific backgrounds. 

● “Workshop I: Increasing the Length, Time, and Accuracy of Materials Modeling Using 
Exascale Computing” focused on recent development of new mathematical approaches 
to intensive calculations at massive scale, particularly new ways to improve scalability 
(both weak and strong) and extend the size, time, and accuracy of simulations. 

● “Workshop II: Scale-Bridging Materials Modeling at Extreme Computational Scales” 
focused on new mathematical approaches to multiscale/multiphysics modeling, with a 
particular emphasis on theoretical and numerical challenges faced at the exascale. 

● “Workshop III: Complex Scientific Workflows at Extreme Computational Scales” was 
aimed at developing new mathematical and computational approaches that enable the 
inclusion of massive-scale computing into complex scientific workflows. 

● “Workshop IV: Co-design for the Exascale and IPAM Hackathon” brought together code 
developers, mathematicians, method developers, computer scientists, and engineers from 
the computer vendors for a week of discussion, hands-on development, and 
implementation of the new ideas generated during the program. 

In addition to these workshops, several working groups were formed which met regularly 
throughout the program, focusing on different topics such as electronic structure theory, multi-
fidelity long-timescales simulations, model reduction, co-design of molecular dynamics, neural 
networks for partial differential equations, workflows for exascale computing, and co-design of 
machine-learned interatomic potentials. 

This document is organized around the key topics that were identified by the program’s 
participants. They reflect areas where we believe the convergence of mathematical advances, 
new computational science tools and practices, and domain sciences expertise are essential. 
These topics are: 

● Workflows for the Exascale: We expect that exascale machines will be heavily used to 
carry out complex workloads composed of coupled tasks where decision-making will be 
required at runtime. Specialized tools are required to enable the efficient concurrent 
execution of such workloads without human intervention.   

● Multiphysics Simulations: Multiscale/physics/fidelity modeling is an accepted paradigm in 
materials modeling that could greatly benefit from exascale computing. Automating the 
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exchange of information between models while retaining control of the uncertainties 
remains an important challenge. 

● Co-Design for Exascale Architectures: Upcoming exascale computers rely heavily on 
hardware accelerators for performance. This places unique constraints on the type of 
simulations that can efficiently execute on these machines. 

● Materials Informatics at the Exascale: Exascale computers will generate massive amounts 
of data, which presents unique opportunities to materials informatics approaches, but also 
serious challenges. 

● Making the Exascale Accessible for its Expected Users: The heterogeneity, scale, and 
complexity of exascale computers present serious challenges to non-expert domain users, 
such as graduate students. 

We note that this document does not aim at providing an exhaustive review of the field. It reflects 
the subjective opinion of the participants, which was formed throughout the program. As such, 
references were intentionally omitted.  

1. Introduction 
Background 
Computing resources, such as those provided to the community by the U.S. National Science 
Foundation (NSF) and Department of Energy (DOE), are exponentially growing, both in capacity 
and in capability. As we enter the exascale era, the most powerful computing systems will deliver 
in excess of 1018 operations per second. Such a tremendous amount of computer power has the 
potential to revolutionize the role of computational approaches in the scientific enterprise, e.g., by 
allowing for the purely in silico development of new materials. Yet many (most!) computational 
scientists do not benefit from this technological revolution and continue to compute at modest 
scales, or employ parallel computers in a capacity-computing framework, i.e., to carry out a large 
number of small calculations. Indeed, more than 84% of calculations carried out at NERSC at 
Lawrence Berkeley National Laboratory used only 1 node, and close to 94% less than 10 nodes. 
While a few users are able to leverage thousands of nodes, the overwhelming majority uses 
supercomputers much like they would a departmental cluster. 

One of the key reasons for this is that broadly-used computational tools are often unable to scale 
to massive computational resources. These limitations are not simply due to practical 
programming issues that could easily be solved; instead, they often fundamentally stem from the 
way problems are mathematically posed and solved. Scalability depends on problem formulations 
and on solution strategies that are intimately aware of architectural constraints, in terms of data 
locality, use of memory hierarchies, communication costs, vectorizability, etc. This requires a 
dramatic rethinking of the types of problems that should be pursued, of how they are 
mathematically formulated, of how they are solved, and of how these solutions are implemented 
on actual hardware. Only then can extreme-scale computing make a profound scientific impact 
on the community. In other words, scalability to extreme scales cannot be an afterthought, but 
has to be considered from the very infancy of the development of a research program. 
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As eloquently stated by DOE’s Applied mathematics research for exascale computing working 
group: “Advances in applied mathematics, in areas such as mathematical modeling, numerical 
analysis, and adaptive algorithms, will be essential in order to produce high-performance exascale 
applications and will provide key input to application scientists and computer scientists.” Further, 
they point out that addressing this challenge cannot be achieved by the different communities in 
isolation: “Domain scientists must work with mathematicians to formulate problems, […]. 
Mathematicians must work with computer scientists and engineers to develop new algorithms and 
implementations that can efficiently harness architectural features. Computer scientists must 
collaborate with domain scientists and mathematicians to ensure that programming environments 
[…] provide functionality relevant to their needs.”  

Our program was designed to address the challenges posed by the exascale in the materials 
simulation community, as computations there have been playing a critical role for decades, 
creating a considerable pool of domain expertise.  

Historical perspective 

 The first petascale 
supercomputer was Los Alamos 
National Laboratory (LANL)’s 
Roadrunner, which also 
introduced the era of 
accelerated supercomputing by 
combining general-purpose 
CPUs with specialized 
accelerators. Installed in 2008, 
Roadrunner was followed by 
other petascale platforms using 
the general-purpose graphical 
processing units (GPGPUs) 
pioneered by NVIDIA, as well as 
homogeneous many-core 
processor-based systems, most 
notably the IBM BlueGene 
series.  As soon as the 
petascale era had arrived, a 
series of workshops and reports 

focused on the challenges and opportunities for the exascale era that was anticipated to arrive a 
decade or so later.  The common belief at the time was that these two “swim lanes” would 
compete, and that the first exascale machine would either be based on many-core processors or 
on GPUs. A 2009 report predicted that a many-core-based exascale machine would require 
1,000,000 nodes, while a GPU-based one would require “only” 100,000 nodes.  Concurrency, the 
latency and bandwidth of both memory accesses and internode communication, and resilience 
were anticipated to be the major challenges.   

 

Figure 1: Node diagram on the Frontier exascale 
supercomputer at ORLN. Each node contains one AMD 
EPYC CPU and 4 AMD Radeon GPUs, which provide the 
bulk of the computing power of the system. The almost 
10,000 nodes of the machine are connected by a fast 
interconnect. Note the non-uniform memory access: DDR 
RAM cannot be directly accessed by the GPUs.  
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The exascale era arrived only 14 years later with ORNL’s Frontier supercomputer, which achieved 
1.102 Exaflop/s in the June 2022 Top500 list. The many-core swimlane had ended a few years 
earlier, leaving the field open to GPU-based systems. With nodes composed of AMD EPYC CPUs 
and MI250x GPUs, and a novel Slingshot interconnect, As of this writing (June 2023), Frontier 
remains the only exascale supercomputer, but is expected to be joined by Argonne National 
Laboratory (ANL)’s Aurora (with Intel Sapphire Rapids CPUs and Ponte Vecchio GPUs) and 
LLNL’s El Capitan (with AMD MI300A Accelerated Processing Unit (APU), integrating CPUs and 
GPUs in a single package) by the end of 2024.  Each of these systems relied on relatively few 
(O(104)) very powerful and heterogeneous nodes, far exceeding the computational performance 
of two swimlanes predicted more than a decade earlier. The massive multilevel concurrency 
presents tremendous opportunities for algorithms which can exploit it, but also tremendous 
challenges to many traditional approaches. 

Indeed, exascale architectures pose stringent conditions on scientific applications, which must: 

● efficiently leverage GPUs, which deliver the vast majority of the computing power, 
● explicitly handle heterogeneity, in the form of hardware accelerators, memory hierarchies, 

storage hierarchies, etc., and 
● carefully balance communication and computation, as computation becomes increasingly 

cheap compared to data motion.  

The goal of this program is to tackle these challenges to learn to leverage the exascale to solve 
extremely computationally intensive complex, multi-physics, multi-scale problems in materials 
science, through the development of novel mathematical approaches. This requires progress on 
the development of scalable single-scale solvers (e.g., molecular dynamics (MD), density 
functional theory (DFT), discrete dislocation dynamics, phase field, finite element, etc.), of novel 
ways to couple and bridge the scales (both at the level of mathematical formalisms and of 
implementation), and of ways to orchestrate massive online workflows and dataflows. Our focus 
is specifically on “big-compute”, i.e., on developing new paradigms for computing at scale, and 
on developing strategies for efficiently harnessing the output of such massive scale simulations. 

2. Workflows for the Exascale 
Computational workflows in materials science are graph networks of interconnected nodes. These 
graph nodes can be heterogeneous simulation codes, real-time experimental data analysis, and 
scientific libraries. Bringing these tools together accomplishes greater outcomes not achievable 
by any individual software tool alone. With the rise of exascale computing most individual software 
tools cannot be upscaled to arbitrarily large and heterogeneous computational resources. Rather, 
divide-and-conquer approaches are required for connecting individual tools to realize multi-scale 
and multi-physics simulations as well as virtual replicas of real-world materials or systems that 
mimic their behavior and response to various conditions (digital twins). A computational workflow 
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allows a direct representation of such applications by connecting and orchestrating the input and 
output of the individual workflow nodes.  

Scientific opportunities 
The fundamental challenge of materials science is coupling different time and length scales to 
predict microscopic and macroscopic material properties which can be used to identify new 
strategies in materials design. Consequently, workflows in materials science are often intrinsically 
hierarchical and couple simulation codes developed by different communities. These 
communities bring in their specific expertise on a specific scale or of a certain physical aspect in 
highly domain-specific simulation codes. Starting from parameter-free ab-initio calculations and 
propagating results and uncertainties computed by the various simulation codes across scales 
enables highly accurate quantitative predictions of material properties that often rival experimental 
measurements. These novel workflows enable inverse materials design and digital twins. To 
develop workflows that efficiently utilize the resources and capabilities of exascale computers the 
availability of a formal language that describes the complex simulation protocols is crucial. Such 
a language which is applicable for both theoretical and experimental workflows should address 
the following three aspects:  

● Virtual Lab: It should provide an intuitive and user-friendly interface for developing 
workflows which naturally and efficiently support the heterogeneous architecture of the 
up-coming generation of exascale computers.  

● Composability: It should define standardized and interoperable interfaces for 
heterogeneous simulation codes and scientific libraries which are easily integrable with 
the individual components. This would enable reusability of codes, reproducibility of 
results and avoid repeated implementations of standard operations. 

● FAIR: It should provide the necessary infrastructure to develop FAIR (Findable,  
Accessible, Interoperable, and Reusable) workflows and workflow nodes. Such FAIR 
workflow nodes could be shared directly by multiple workflows, providing code reusability.  

While the availability of such a language is not specific to materials science, it is particularly 
essential for the hierarchical, multi-scale and multi-physics workflows discussed in the Section 3 
below, which require the integration and connection of simulation codes that are not inherently 
interoperable and describe very different domain sciences. 

Current state-of-the-art 
Currently, material science workflows can be broadly classified into two categories. First, there 
are high-throughput simulations performed for a single level of physics (e.g. electronic structure) 
but going over a large number of chemical compositions, structures, material properties etc. 
Second, there are workflows coupling multiple tools. For both cases, state-of-the-art workflows 
are typically implemented as either monolithic highly specialized codebases that subdivide the 
workload across available resources or as collections of scripts that “glue” together the desired 
tools. The tools are tailored to the specific materials science challenge and the HPC hardware on 
which they are executed.  
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From this, workflow systems have recently emerged and they allow computational materials 
scientists to create useful abstractions, which help to organize and codify such scripts. Examples 
of generic software frameworks for such abstractions are Snakemake, Dask and Parsl.  Within 
the materials science community, specialized workflow managers and tools have been developed 
and enabled high-throughput computation, with frameworks such as ASE, pymatgen, 
fireworks,  Aiida, and pyiron.  

State-of-the-art platforms for workflow design tend to be highly linear in execution, typically 
following if, then, else forms in terms of task chains. Examples of this type of task coupling include 
e.g. machine learning interatomic potential training with iterative schemes flowing from structure 
generation, to UQ analysis, to high-level theory querying, to re-training of machine learning 
interatomic potentials. 

 

Outstanding challenges  
A major challenge in exascale materials computation is the combination and coupling of 
simulation codes. Typically, the inputs and outputs of such codes differ semantically but often 
they are also conceptually different. A recurring issue is coupling one level of theory (e.g. 
interatomic potentials) with simulations performed at other levels of theory (e.g. electronic 
structure). Similarly,  the increasing complexity of data analysis algorithms brings the need to 
utilize simulations to refine and drive data processing steps. For example, workflows that combine 
the analysis of experimental data with simulations to spawn a digital twin of an experiment could 
be used to distinguish between competing hypotheses in real-time to close the loop between 
experiment and theory. 

Another outstanding challenge is the separation of the workflow graph and the execution of the 
corresponding tasks and having unified schemes that can handle the asynchronous execution 
and different levels of parallelization. For example, many materials science workflows combine 
highly optimized internally-MPI-parallelized, serial, and gpu-optimized codes. Scheduling and 
distributing these workflow tasks among the heterogeneous architecture of  exascale machines 
is critical and remains a challenge for existing workflow frameworks. Workflows in the framework 
of experimental studies, for example at future light sources, require real-time interpretation of data 
to inform experimental operations and design, to enable increased knowledge extraction from 
spectroscopy and scattering studies at light sources. Complex workflows that encompass the 
experimental and the computational facility, and the network connecting them, will be needed to 
orchestrate the resources, stream the data, and perform the analysis. 

Finally, workflows for exascale machines should efficiently distribute and evaluate their highly 
diverse tasks across the heterogeneous computational architecture available on a given machine. 
Thus, support for synchronous task execution independent of the complex simulation protocols 
has to be provided by next-generation exascale materials workflow frameworks. Furthermore, 
optimizing the usage of resources requires advanced automated decision-making strategies 
based on mathematical theory, as discussed in Section 5. Beyond these computational 
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challenges, experimental workflows additionally face the challenge of being distributed over 
multiple facilities, which adds an additional level of complexity for coordinating the individual steps 
of the workflows as well as data motion. 

Progress at IPAM 

 To separate the workflow graph and 
its nodes from the execution of the 
individual workflow tasks, a task 
manager has been developed, which 
distributes tasks over heterogeneous 
architectures. This task manager 
handles both serial and parallel 
simulation codes as well as codes, 
regardless of whether they provide a 
programmatic python interface or 
not. Each task submitted to the task 
manager is executed 
asynchronously, providing a full 
separation of the physics 
implemented in the workflow graph 
from the task execution.   

This novel interface, which has been 
developed at IPAM, is based on the 
Flux hierarchical resource manager. 
In combination with additional 
developments to support the 
seamless integration of serial and 
parallel python tasks these 
developments resulted in the 
development of a python library - 
pympipool. This novel interface has 
been, as part of this IPAM activity, 

integrated in the pyiron framework. To make it easily accessible to up-coming exascale 
computers, as well as to simplify the migration of existing simulation protocols developed with the 
pyiron framework, a conda package has been provided. The interface for the pympipool 
library has been kept general and can be straightforwardly extended to other workflow solutions. 
It is applicable for both domain scientists as well as mathematicians and provides timings to 
quantify and predict the computational costs of individual tasks.  

 

 

Figure 2: Illustration of a workflow conceptualization as 
developed at IPAM with (upper) workflows defined as 
graphs, (middle) a task manager to distribute tasks 
created by workflow graph nodes (N1 to N6), and 
(lower) resource manager to distribute tasks (T1 to T3) 
to the CPU and GPU-based hardware present. The 
developed approach enables maximum usage of the 
hardware resources.  
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Vision statement 
Enabling the full potential of exascale computing power requires complex workflows that can 
combine a multitude of domain-specific simulation tools and mathematical libraries. In the future, 
it will be increasingly important that the computing codes are optimized for hybrid parallel 
architectures.  Ideally, codes should be interoperable and composable to reduce communication 
barriers between various tasks in a workflow. This could be realized by computing codes providing 
the option of being called as libraries rather than requiring reading and writing to file systems. In 
practice, since code developers come from different communities, it is unlikely that the necessary 
standardization will happen soon on the level of the code. With workflow frameworks materials 
science can be significantly advanced by achieving the following short-term and intermediate 
milestones: 

● Design active-learning enabled, resource-aware workflows that queue the tasks in a way 
that maximizes the knowledge gain at fixed computational costs. Developments in data 
science and machine learning could leverage this task by utilizing collected statistics of 
computing cost and knowledge information.  

● Generate standardized wrappers around existing scientific codes that extract the key 
information and bring it into a generic format. The generic input/output format will allow for 
connecting tools, which originally are not interoperable and without any human 
intervention to build complex workflows. These wrappers make workflow nodes FAIR, 
enabling integration into a generic workflow. A crucial aspect of such wrappers is that they 
need to include comprehensive error handling specific to individual codes. 

● Develop uncertainty quantification and computational cost estimation of the individual 
workflow nodes to enable the speculative execution of workflows to predict knowledge 
gain.  

● Enable publication of FAIR workflows that are reproducible, transferable and extendable.  
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3. Multiphysics Simulations  
Scientific opportunities  
 

The widely embraced Materials 
Genome Initiative (MGI) framed the 
critical role of computations in 
accelerating the design cycle of new 
materials, which is of considerable 
importance to economic 
competitiveness. Indeed, the time 
between the discovery of a new 
class of materials in the lab and its 
deployment in industrial 
applications averages about 20 
years, which makes it difficult to 
respond to emerging challenges 
(e.g., clean energy, alternatives to 
rare earth materials, etc.) , in a 
timely manner. The US Department 
of Commerce estimates that 
reducing this development cycle by 
half would result in improvements in 
direct R&D efficiency of about $60B 
per year, on top of an economic 
impact of about $150B per year 

resulting from improved R&D outcomes. The MGI has led to the explosion of high-throughput 
computing efforts that often consume hundreds of millions of CPU hours per year. While this 
approach has been very successful for functional materials, where performance can often be 
inferred from small first-principle calculations, predicting the performance of structural materials 
(like steels for nuclear applications or lightweight alloys for high-efficiency vehicles) is qualitatively 
more complex. Indeed, performance prediction is an intrinsically multiscale problem where the 
structure of the material at the atomic, nano, meso, and micro-scales can be critical. In this case, 
performance prediction relies on integrating information from simulations carried out at multiple 
physical scales, with multiple levels of fidelity, capturing different physics; an approach we will 
generically refer to as multiphysics modeling in the following, although it also encompasses 
methods that are traditionally referred to as multiscale or multifidelity methods. 

Multiphysics modeling is a well-established paradigm in materials modeling and various variants 
have been demonstrated over the years. E.g., Fig. 3 presents a notional multiphysics approach 
to the design of plasma-facing materials for future fusion reactors. It combines multiple physics 
(electronic structure simulations, thermodynamics and kinetics, plasma modeling, etc) operating 

 

Figure 3: Prototypical illustration of a multiphysics 
modeling framework for fusion-energy materials. From 
Wirth and Whyte (unpublished).  
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at multiple time and length physical scales (from the angstroms to meters and from femtoseconds 
to minutes). The amount and diversity of calculations that are required to make predictions at 
engineering scales will clearly require the availability of colossal amounts of computing which 
makes this type of problem an ideal target for exascale platforms.  
 

Current state-of-the-art  
Multiphysics modeling frameworks have been successfully demonstrated for a broad range of 
applications in the past; see e.g., Fig. 3 for an illustration of an application to fusion materials. Of 
particular interest to our program are methods such as (i) the use of ab initio electronic structure 
calculation to parameterize interatomic potentials for molecular dynamics, (ii) the use of molecular 
dynamics to discover reaction pathways for Kinetic Monte Carlo simulations, (iii) the use of Kinetic 
Monte Carlo simulations to parameterize continuum cluster-dynamics/phase fields models of 
microstructural evolution of the material. The unifying theme for most of these approaches is that 
the scale-bridging is primarily carried out offline and sequentially. Manual intervention is typically 
required to select, set up, execute, and analyze the simulations. 

Concurrent multiscale methods, where different methodologies/codes are coupled at run-time 
(e.g. density-functional theory calculations embedded into classical MD, or classical MD 
embedded into finite element simulations) are exceptions to this rule. Concurrent approaches are 
however typically limited to the coupling of a small number of methods. We note that parametric 
sensitivity analysis of the output of large-scale codes parameterized from lower-scale simulations 
have also been demonstrated. 

 

Outstanding challenges  
While the current-state-of-the-art described above has produced a number of successful 
outcomes, it suffers from many limitations that precludes the use of massive-scale computing 
resources to accelerate the design and qualification of new materials: 

1. Human intervention is required at every step. As the availability of massive amounts of 
computing power increases, humans can become the rate-limiting step. It is therefore 
essential to automate as many steps as possible, ideally completely removing human 
intervention. The specifics of this idea will be discussed in Section 5, but in general this 
requires the development of automated methods to manage simulations and to exchange 
information between the different scales and codes. This automation is key to maximally 
exposing computational parallelism in the upscaling chain and hence the amount of 
computing resources that can be efficiently leveraged. To fully realize this, as much of the 
computational workload as possible should be executed concurrently, enabling the 
seamless exchange of information. However, enabling efficient concurrency requires 
addressing the challenge of principled resource allocation between the different tasks so 
as to minimize the uncertainty on the target quantities of interest. Solving this problem will 
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require new methods for seamless and scalable uncertainty quantification across scales 
which are free of poorly justified simplifying assumptions (the i.i.d. Gaussian priors, perfect 
model specification, conjugate priors, etc.). 
 

2. A key limiting factor in the development of a multiphysics approach is the fact that the 
representation of the physics in the different formalisms can be difficult to reconcile. 
Developing mappings between representations typically involves human intervention and 
the introduction of simplifying assumptions that are often made for computational 
convenience. These discontinuous changes in representation across scales can introduce 
errors that are difficult to quantify. This calls for the development of a new generation of 
UQ methods that go beyond parametric sensitivity to include model misspecification and 
for AI/ML methods such as physics-informed ML or operator learning, that are able to learn 
the most adequate functional form of the higher-scale models themselves. Another 
important source of uncertainty stems from the limited amount of sampling that can be 
carried out at each scale. At least in theory, the question of completeness can be 
addressed using known numerical analysis tools such as numerical continuation and 
deflation. These approaches remain mostly unused in the materials community and, at 
least in their standard form, come with a number of restrictions, e.g., the need for Hessian 
information, that should be addressed before their use can be generalized in production.  
 

3. The need for concurrency will also mandate the use of scalable computational frameworks 
for workflow execution that make dynamic resource allocation possible in contexts where 
the computational workload varies strongly in time. These frameworks should also provide 
reproducibility and data provenance to ensure that the massive amount of information 
generated can easily be shared with the community. Furthermore, the heterogeneous 
nature of exascale computers requires the execution frameworks to be aware of the affinity 
between computational tasks and hardware units (e.g., certain codes can make efficient 
use of GPUs, while others can’t). These challenges are discussed in Section 2. 

 

Progress at IPAM  
During the IPAM program, we took important steps towards addressing some of the outstanding 
challenges described above. The group identified the most pressing needs as the quantification 
of uncertainty as information is transferred between fidelity levels, and the use of this information 
to steer the allocation of computing resources, a currently overlooked aspect. During the program, 
we developed a novel methodology for UQ when moving from high-fidelity quantum calculations 
to low(er)-fidelity atomistic simulations which rely on machine-learning interatomic potentials to 
provide reliable confidence intervals on the predictions of the low-fidelity models. With this 
capability in place, we considered a motivating application to demonstrate how high-fidelity 
quantities of interest, in our case the diffusion tensor of defects in bulk materials, can be obtained 
at a much lower computational cost compared to a direct brute-force calculation at high-fidelity. 
In particular, the framework relies on low-fidelity atomistics to explore the local potential energy 
landscape of a defect in a bulk material. The low-fidelity model is ideal for this purpose as it is 
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comparatively inexpensive. However, inaccuracies in the state-to-state dynamics of defect 
transport calculated with the low fidelity atomistics, as characterized using UQ, can lead to 
exponentially inaccurate defect diffusion properties, which can be corrected by carrying out 
targeted high-fidelity simulations. 

 

The final ingredient was the 
development of a decision-
making process to balance 
allocating computational 
resources between low and high-
fidelity calculations. To do so, we 
developed a figure of merit that is 
an explicit function of the UQ 
metrics which can be optimized 
by carrying out either additional 
low or high-fidelity simulations. 
This approach makes it possible 
to optimally assign work to 
different fidelities so as to 
maximize the improvement in the 
figure of merit per unit 
computational cost. This method 
is expected to be inherently 
scalable and able to optimally 
allocate massive amounts of 
computing resources. A 
schematic representation of the 
prototype workflow is outlined in 
Figure 4 and seeks to generate a 
high accuracy defect diffusion 
constant from the reaction-
diffusion equation by invoking a 
number of multi-physics 
approaches throughout the 
modeling spectrum of Figure 3. 

The other aspect that the group 
decided to focus on was 

addressing the challenge of employing numerical continuation and deflation tools in atomistic 
simulations to identify critical point configurations, aiming at efficiently exploring the potential 
energy landscape in a way that could increase confidence on the completeness of higher-scale 
models. A proof-of-concept implementation was developed as a wrapper around LAMMPS, 
allowing us to trace continuous curves of critical points, including saddle points. Importantly, the 

 

Fig 4: Schematic of the implemented multi-physics workflow 
that generates high-accuracy defect diffusion constants. 
Low-fidelity methods provide an abstract graph 
representation of state-to-state defect kinetics, which is 
upscaled into reaction-diffusion equations. Medium-fidelity 
methods involve a machine-learned interatomic potential to 
explore the energy landscape and provide an initial 
approximation of the energy barriers connecting states. 
Finally, a high-fidelity calculation methodology can provide 
refinement of the key calculations, increasing the accuracy 
of the quantity of interest, albeit at a very high computational 
cost. Crucially, the uncertainty quantification (UQ) 
considers (on an equal footing) the uncertainty derived from 
multiple fidelity levels, providing an on-the-fly coupling 
between these levels and enabling optimal resource 
allocation at scale. 
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tool is entirely Hessian-free and is very general - it takes a few lines of code to adapt it to work 
with other systems and different continuation parameters. It has already proven to provide insight 
that is near impossible to capture with known dynamical approaches. Furthermore, we proposed 
a prototype deflation saddle point search technique, which acts to modify the potential energy 
landscape when conducting saddle point searching methods in order to bias the searching 
method away from previously discovered saddle points.  The prototype, employed on a number 
of analytically defined surfaces, produces promising results and will now be applied to real 
atomistic simulations. Both of these methods are highly parallelizable and are envisioned to 
supplement known tools for exploring the potential energy landscape of atomistic systems, such 
as MD simulations coupled with nudged elastic band and dimer method calculations.  

Vision statement  
As discussed, the paradigm of multi-physics modeling is a tried and tested approach to tackling 
complex scientific problems. However, current approaches typically entail multidisciplinary 
collaborations that span many years, which drastically limit the ability of these methods to explore 
the chemical space of possible materials. The vision of the program participants is that exascale 
computing could enable a qualitative change in our ability to design better materials by decreasing 
the timescale for the prediction of performance for a new structural materials candidate from years 
to days. This could potentially have a transformative societal impact that could drive, e.g., the 
green economy revolution. 

With the introduction of methods such as those developed during IPAM, the community can begin 
to consider integrated workflows which incorporate, in an online way, different levels of physics. 
The participants have identified research directions that should be prioritized over the next 5 
years: 

● The development of rigorous and ultra-scalable UQ methods for multiphysics modeling 
● The development of high-performance frameworks that enable the deployment of complex 

computational workflows required for multi-physics applications 
● The development of new physics-informed mathematical formalism for scale-bridging 

which would allow for the control of model-discrepancy errors 

4. Co-Design for Exascale Architectures 
Scientific opportunities 
1. Fast and Accurate Atomistic Materials Simulations 

Understanding materials behavior and designing novel materials requires efficient, accurate, 
large-scale, and long-time simulations of complex materials. Atomistic simulation methods, 
including molecular dynamics (MD) and structural relaxation, are an indispensable tool for 
computational experiments of materials behavior, enabling in silico discovery of new materials. 
Atomic forces calculated as a function of atomic positions are a critical input, and can be obtained 
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from quantum mechanical ab initio methods such as Density Functional Theory (DFT).  However, 
ab initio methods are computationally expensive and have unfavorable scaling with system size, 
and are incapable of reaching the length and time scales required for many applications. Much 
progress has been made in the past decade in the development of machine-learning interatomic 
potentials (MLIPs), which are high-accuracy computationally efficient machine learning 
surrogates for ab initio forces. The cost of simulations with these MLIPs scales linearly with the 
number of atoms.  Moreover, the high computational intensity gives excellent strong scaling on 
leadership computing platforms.  This comes at the cost of design complexity, both in the MLIP 
training process and implementation in production software. The co-design of MLIPs and the 
resulting atomistic simulations for the exascale will enable quick development of models, and 
efficient deployment in large-scale simulations, enabling scientific discoveries in a variety of 
important applications. 

2. Training Data Sampling 

There exists a need to effectively sample training configurations to train interatomic potentials and 
bridge the gap between DFT and MLIPs. Domain-expert researchers typically possess significant 
prior knowledge that can inform ML potential training. For example, researchers may be interested 
in obtaining the lowest energy configuration of a system for property prediction or the minimum 
energy pathway between different states to estimate the transition rates for a kinetic Monte Carlo 
simulation. In these scenarios, it is of interest to sample training configurations from the relaxation 
pathway. Alternatively, many researchers desire to obtain potentials that are dynamically robust 
under certain atomistic simulation processes. This can include a wide variety of user-defined 
simulation protocols, such as successive and repeated sequences of relaxation pathways, 
melting, quenching, compression, that replicate physically and technologically important materials 
processing conditions. 

3. Multiple Simulations on a Single GPU 

The emerging exascale computing machines are composed of large numbers of heterogeneous 
hardware devices (GPUs), each containing a large number of concurrent processors allocated to 
a single runtime process. Possibilities to effectively utilize these resources for atomistic 
simulations are poorly understood. To provide sufficient parallel work to fully saturate all of the 
processing power of the device with a single simulation may require many millions of atoms. 
However, many useful atomistic simulation methods require relatively small atom counts with 
limited parallelism that will leave most of the GPU sitting idle.  New hardware and software 
methods are needed to enable large numbers of independent simulations to run efficiently on a 
single device. 

Current state-of-the-art 
This IPAM program began with a rich foundation of state-of-the-art models and tools that were 
available for us to improve upon. Regarding our first challenge of fast and accurate atomistic 
materials simulations, we note that many ML potential models and fitting packages existed at the 
start of the program. The ML models supported by these packages did not provide easy portability 
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to new architectures. Furthermore, existing packages primarily supported a rigid workflow, such 
as simply fitting a model to a given data set of ab initio computed energies and forces. Such 
rigidity prevents the exploitation of active learning strategies that can sample training 
configurations dynamically. For example, there is a need to sample along minimization paths and 
during dynamical processes like compression/decompression. Since the aforementioned 
methods make use of DFT calculations for training, it is important to note current numerical 
methods in DFT lack robustness for complex material systems, such as heterogeneous and 
magnetic systems. Finally, regarding maximum use of exascale resources, current GPU 
acceleration abilities in LAMMPS and other packages do not support multiple simulations on a 
single GPU. 

Progress at IPAM 
An example of improvements in code portability achieved at IPAM during this program was the 
initial LAMMPS/Kokkos implementation of the Ultra-Fast Force Field (UF3). In addition, we 
established a protocol and obtained the initial results for a benchmark study looking at the trade-
off of prediction accuracy and computational efficiency of several MLIPs. The initial benchmarks 
(Figure 5) show that UF3 gives the best performance for low to moderate accuracy while the 
quadratic Spectral Neighbor Analysis potential (QSNAP) gives the best performance at high 
accuracy. The simplicity of the UF3 model allowed the LAMMPS/Kokkos implementation to be 
completed in just a few weeks during the IPAM program. 
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Figure 5: (a) The figure shows the force prediction errors on a hold-out test set for silicon as a 
function of computational cost. The markers represent the respective ML potential while the 
color indicates the system size i.e. number of atoms. The solid lines represent the Pareto front 
for the given system size. (b) Close-up of 2D MoS2 twisted bi-layer quasicrystal approximant 
(θ=29.98864°) supercell with 45,378 atoms. (Anikeya Aditya, University of Southern California). 
(c)  Our general active learning workflow with core abstractions that allow modularity and 
extensibility. The core abstractions are represented as blocks, with adjacent text highlighting 
examples that could be used for each module. (d) Surface of total efficiency (z-axis) for multiple 
simulations running on a single GPU device with combined over-subscription models (x and y 
axis). 

Additional advances in electronic-structure predictions at the exascale were made. Our efforts at 
IPAM focused on using the Frontier exascale machine to study quasiperiodic systems that require 
large length-scales to accurately capture the relevant physics. Apart from the target application, 
the broader question we seek to answer is whether the length-scales and accuracy achievable 
by the state-of-art large-scale DFT codes with systematically convergent basis sets are sufficient 
for general studies of quasicrystal properties. In particular, we used the exascale ready DFT-FE 
code, a massively parallel adaptive finite-element based Kohn-Sham DFT code to compute the 
planar electrical and thermal conductivities of a twisted bi-layer MoS2 system near the quasicrystal 
magic angle of θ=30°. While thermal conductivity can be adequately described by a classical 
interatomic potential, calculations of electronic conductivity require DFT. We have so far 
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performed structural relaxation and Kubo-Greenwood electrical conductivity calculations with 
8000 atoms (70,000 electrons).  

To tackle the challenge of efficiently sampling configurations for training MLIPs, we 
conceptualized the abstractions needed to implement a general active learning workflow, 
illustrated in Figure 5c. Our active learning framework starts with the structure generator module. 
This abstract module generates configurations of atoms, which may be achieved in different ways 
such as molecular dynamics, sampling from a large pool of entropy maximized structures, or 
sampling the relaxation trajectory of structures produced in saddle point searches. After the 
structure generator, the feature calculator extracts structural descriptors which are used by an 
indicator (UQ) to determine whether a newly seen structure is uncertain or not. If an uncertain 
threshold is met, an ab initio calculation is launched and the model is retrained. One example of 
this loop we explored is critical point searches, such as geometry optimizations and saddle 
searches. Preliminary results obtained from this long program suggests that a 5x reduction in DFT 
evaluations may be feasible. A refactoring of the FitSNAP library also allowed flexible active 
learning workflows like shown in Figure 5c. 

In order to address the GPU undersaturation challenge, two different approaches for running 
multiple simulations on a single GPU were explored during the program. The first approach used 
the hardware specific Multi-Process Service (MPS) to assign multiple LAMMPS instances to a 
single GPU. The second approach uses a single LAMMPS script to initialize many independent 
replicas in the same simulation box. A modified LAMMPS neighbor list was invoked to turn off 
interactions between replicas. The LAMMPS source code was modified to improve efficiency.  Both 
of these over-subscription methods improved GPU utilization and computational throughput to 
some extent. Furthermore, combining both methods yielded additional GPU utilization increases. 
For example, for a system containing 13,000 EAM atoms, we were able to run 13 LAMMPS MPS 
instances each with 13 independent replicas.  The 169 simulations running on a single GPU 
achieved a total performance of 210 Matom-step/s, which translates to 5.5 µs of simulated time 
per day. Without these methods developed here at IPAM we would only be able to run a single 
replica per GPU, with roughly 100x less simulated time per GPU per day. 

Outstanding challenges 
On the active learning front, it is not surprising to note that a majority of the time is spent in DFT 
calculations. The general active learning workflow we described is sequential in nature; we check 
model uncertainty metrics every few timesteps, run DFT calculations, and fit to the results. The 
nature of this procedure requires waiting for a DFT calculation to complete before more progress 
on configurational sampling and training is made. To overcome this challenge, we require 
asynchronous active learning workflows whereby multiple active learning trajectories can be 
launched in parallel. This capability could be achieved with asynchronous methods described in 
the chapter on “Workflows for the Exascale”. Effective sampling of configurations can also be 
aided with descriptor signal processing tools described in the chapter on “Material Informatics at 
the Exascale”. 
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Robust convergence of DFT calculations is increasingly becoming a major challenge, particularly 
for material systems with complex features such as reactive chemistry, solid-liquid interfaces, 
extended defects, magnetic effects and net electric charge. Another emerging challenge in the 
exascale era is the increasing use of automated workflows generating large numbers of parallel 
DFT calculations.  These would significantly benefit from robust and efficient numerical methods 
such as preconditioners to ensure reliable accuracy, especially for magnetic systems. 

A continuing challenge is how to fully utilize hardware devices for simulations without arbitrarily 
increasing the system size or the arithmetic intensity of the MLIP. One solution explored at IPAM 
was running multiple simulations on a single GPU. An additional need on this front is better 
profiling to help users determine how effectively they utilize individual hardware devices. This 
would promote efficient use of resources when performing complex workflows, such as needed 
in a variety of applications and in active learning contexts. 

Vision statement 
The landscape of MLIPs and hardware will continue to evolve.  In the case of hardware, we can 
expect greater complexity, but at the same time we will see the emergence of standardized 
programming models, such as support for Kokkos in the C++ standard.  For MLIPs, we can 
expect growth in model complexity (e.g., equivariant descriptors, message-passing models, new 
physics).  At the same time, carefully benchmarking will help identify compact models like UF3 
that achieve expedient tradeoffs between accuracy and cost. We envision that the combination 
of all these factors will lead to greater choice for users of exascale software resources, enabling 
them to find the best combination of model and hardware for their science application.  Alongside 
this ability to port new models to emerging architectures quickly, we envision a revolution in the 
way computational materials scientists utilize exascale resources. In the future, workflow 
managers will utilize vendor-specific tools to most efficiently pack many independent simulations 
on a single accelerator device. For example, it will be possible to run thousands of active learning 
trajectories on one device, allowing the most efficient dynamical sampling of training structures 
for fixed computing resources. 

Our ultimate vision for the active learning workflow is that it matures into a general framework 
whereby users can obtain potentials for a variety of applications on exascale machines in under 
a day simply by letting the procedure run and make its own decisions. The vision of such a mature 
framework requires intelligent use of resources across the wide variety of computational tasks 
shown in Fig. 5c This includes mathematical methods and hardware-aware implementation 
advances in fast and large-scale ab initio calculations, allowing routine calculations of system 
sizes consisting of a few thousand atoms along with robust convergence for material systems 
with complex features. Further, we envision being able to conduct very large-scale DFT 
calculations reaching 50,000 atoms (500,000 electrons). This will allow validation of our trained 
potentials on much larger scales, such as with extended defects and solid-liquid interfaces. Our 
vision is that all of these tasks will be executed asynchronously to achieve maximal use of 
available resources. Such an advance will use new tools developed in “Workflows for the 
Exascale” and mathematical modeling strategies further discussed in “Materials Informatics at the 
Exascale”.  
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In summary, we have identified 3 outstanding challenges that warrant more investigation in the 
next few years: 

● A systematic investigation and mathematical analysis of the efficiency/accuracy tradeoff 
in ML potentials for materials 

● The development of new tools and algorithms that intra and inter-device parallelization  
● The development of UQ-driven workflows at scale to systematize the parameterization 

and assessment of ML potentials for materials 

5. Materials Informatics at the Exascale 
With the first exascale computing systems now a reality, we are in an era where an unprecedented 
level of computational resources are available. Scientists are presented with new opportunities to 
conduct simulations at unprecedented scale and fidelity. On the other hand, this abundance of 
resources brings its own set of challenges: processing exabytes of data manually/offline to 
advance scientific understanding has become a bottleneck. Several months of data analysis 
followed by inferences to perform new simulations severely limits the possibility to exploit the full 
potential of exascale machines.  

As such, complex software workflows to increase the automation are required, as discussed and 
introduced in Sections 2 and 3. In this section, we discuss the need for the testing, extension and 
development of new mathematical tools to inform the data handling for exascale materials science 
simulation as part of these workflows. We address the possibilities of developing mathematical 
models and efficient data analysis algorithms that can process the data generated in such a 
manner that it replaces low-level human decision-making, enabling effective utilization of 
resources. In addition, we also discuss the need to develop mathematical methods that give an 
effective way to store data. Addressing both of these challenges is essential to fully leverage the 
new generation of exascale machines. 

 

Scientific opportunities 
Over recent decades, a series of mathematical methods have been proposed within 
computational materials science to encode the key features of atomistic configurations in three-
dimensional space. These approaches propose “descriptors'' which integrate out physical 
symmetries, providing efficient bases to represent the environments around individual atomic 
nuclei. Examples of such descriptors discussed during the programme include the UF3 potential 
descriptors, Spectral Neighbour Analysis Potential (SNAP) descriptors, and the Atomic Cluster 
Expansion (ACE) descriptors. Currently, these descriptors are primarily used to fit machine 
learning interatomic potentials (MLIPs) to achieve forces with quantum theoretic accuracy but at 
a much lower cost. Each set of descriptors is governed by “hyperparameters”. Development of 
mathematical approximation theory for these descriptors is at an early stage, but over the next 
decade, will likely play an important role in guiding hyperparameter selection.  
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Alongside these recent domain-specific developments, there are long-standing approaches in 
mathematics and data science for the reduction of generic data vectors and time series. Some 
important examples include Principal Component Analysis (PCA); random projection or sketching 
methods; Tucker decomposition; diffusion maps and the Mori–Zwanzig formalism. Given the need 
for high-levels of communication in any implementation of these approaches, algorithms need 
adaptation to address new challenges in computational materials science at the exascale, and 
recent developments in this area were discussed during Workshops I and II of the program. 

 

Outstanding challenges 
We have identified a number of both scientific and technical challenges in the long program at 
IPAM including hyperparameter identification, automatic decision making, exascale workflow 
optimization, and applications of mathematical and statistical algorithms. 

Firstly, as explained above, descriptors allow the development of more accurate machine-learned 
interatomic potentials. However, their usage in the context of post-processing and statistical 
inference and the choice of suitable hyperparameters is less well understood, but appears to be 
ripe for possible development. Calibration of suitable space of hyperparameters and selection of 
relevant algorithms for decision-making based on particular objectives is an open challenge, but 
one which may be promising to help further automate exascale workflows.  

A second challenge is the need to develop mathematical techniques for data storage that ensure 
efficient memory usage while enabling fast data retrieval. One specific application is the search 
for chemical structures within a simulation-generated database in order to expedite the simulation. 
For instance, the bottleneck of adaptive kinetic Monte Carlo (AKMC) simulations is the calculation 
of saddle points. Thus, previously calculated saddle points are stored in a kinetic database (KDB) 
along with corresponding atomic positions of reactant state and are used during simulation. 
During AKMC simulations, the code queries the KDB for similar atomic environments to find the 
saddle points on-the-fly by utilizing a neighbor list matching process. However, this can become 
very time-consuming and computationally-expensive when the database increases in size. During 
IPAM we showed that atomic environment descriptors can be used in changepoint detection (c.f. 
Progress at IPAM) which is a similar problem in nature to using atomic environment descriptors 
to describe and search for a chemical configuration in a database. Therefore, using atomic 
environment descriptors to store chemical structures and query processes based on them to find 
on-the-fly reaction paths and kinetics is a promising approach. 

From the perspective of scale-bridging, i.e. using atomistics to inform higher order mesoscale 
models (e.g. crystal plasticity), exascale architectures can serve as ideal platforms to perform 
atomistic simulations on the order of billions of atoms and beyond, hence making massively 
parallel atomistic simulations routine. However, effectively automating the decision-making 
process for both the generation and post-processing of long and large-scale trajectories of data 
is an open problem. Developing new exascale-compatible materials informatics is therefore 
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crucial to enable on-the-fly multi-scale simulations, leveraging the full potential of exascale 
platforms. 

Turning to data-reduction and representation, the development of statistical learning methods 
usually relies on probabilistic assumptions of the dynamics and parameters, which are rather 
difficult to justify in reality. Careful method selection is therefore required to apply existing 
statistical learning methods to material science data in the exascale. Moreover, traditional 
statistical learning methods are not suitable for truly massive data sets. Existing algorithms and 
approaches must be adapted to be efficient for parallel implementation on exascale machines. 

Finally, to ensure workflow efficiency, automated decision-making methods must be developed 
to allow exascale allocations to be used effectively without significant human intervention. A first 
step towards designing automated approaches requires methods such as online event detection, 
so that only the data points with the highest information content are identified in the extremely 
high-dimensional space of atomic trajectories. In the longer term, the development of 
mathematical models to inform workflow management using approaches such as queuing theory 
and Bayesian optimization will be crucial. The massive availability of computational resources on 
exascale machines is a new paradigm for these theories, and accordingly requires the 
development of novel mathematical theory. 

Progress at IPAM 
During this IPAM long program, we explored the possibility of reducing trajectory data generated 
from MD simulations to only events of interest, allowing us to manipulate data during simulations, 
and hence minimizing communication overheads which are critical bottlenecks for exascale 
architectures. In particular, we focused on exploring methods to remove the need for human input 
to identify events as a natural first step towards the automation of decision-making within a 
workflow. Concurrently, we analyzed existing atomic descriptors with the aim of data reduction: 
we discuss each of these briefly below. 

 

Figure 6: (a) Offline changepoint detection algorithms from ruptures package. (b) Posterior 
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predictive probability-based Bayesian online change point detection. 

It is desired to replace human decision-making by algorithm-based decision-making. In particular, 
we look at labeling of when and where events of interest occur while the simulation is running. 
Using both synthetic data and real MD simulation data, we explored different “change-point” 
detection algorithms in Jupyter Notebooks. The algorithms use signal processing techniques to 
detect major changes in data, and can be broadly classified as online or offline. Offline in this 
context means that the whole time series needs to be known to detect a change point. Online 
methods on the other hand receive the data point by point as it is generated and can detect 
changes in this continuous stream based on recursive posterior estimates. Alongside this, we 
explored the impact of both varying descriptor hyperparameters combined with the PCA algorithm 
as a way to efficiently reduce data while still identifying events. Many of the leading descriptors 
used in computational materials science hyperparameters governing the level of nonlocality in 
space, the level of regularity, and the order of approximation. By exploring this hyperparameter 
space, we began developing a new understanding of the robustness of these descriptors for 
information compression, and this study will continue after the program has concluded, extending 
the community’s understanding of these powerful new tools. 

Vision Statement 
The achievement of these goals requires a concerted cross-disciplinary effort, with 
communication between software developers, domain experts, mathematicians and data 
scientists, and the highest standards of openness and collaborative sharing of best-practice. We 
believe that success in these aims will enable us to accelerate advances in our understanding of 
problems in materials science by deepening our understanding of the underlying mathematics 
and materials science, allowing more efficient data sharing and re-use, and ultimately optimizing 
the use of both human and machine resources. 

As a research community we believe the most pressing challenges which must be addressed are 
the development of: 

● New techniques to effectively compress and store high-value data generated from 
exascale simulations; and 

● Robust mathematical models and techniques which enable us to inform low-level decision-
making for complex scientific workflows. 

6. Making the Exascale Accessible for its 
Expected Users 
Computing in general, but even more so exascale computing, entails some challenges for the 
individuals that operate it. Solving at least two problems is essential to enable effective use of the 
vast power that exascale platforms offer: 
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(1) User interface: Can the user interface to exascale computing be designed in a way to 
allow fast and efficient access to the scientific community at large, especially to those 
without a sophisticated computational background? 

(2) Knowledge extraction: How to ensure that the essential knowledge from the vast stack of 
information generated by an exascale simulation actually reaches the human who 
requested it? 

Both questions are critical, considering the sheer cost of an exascale simulation. For instance, 
the US Department of Energy’s first exascale computer Frontier was built at a $600 million cost. 
Thus, assuming a lifetime of 5 years (i.e., around 43,800 hours), one hour of simulation time on 
the full machine costs $13,700, excluding costs for power, operating staff, etc. This is not a low 
amount. Ensuring that this time is used wisely is important (even given the context of “research”, 
which, by necessity, must allow for failed experiments).  

The challenge is that the users in question may be domain scientists, for whose applications the 
computer was actually purchased, and often students. Computer systems need to be manageable 
by these users in order to maximize productivity achieved by these powerful resources. Workforce 
development and training of these users on the exascale systems in question, as well as a focus 
on ease of use of the machines, are critical to maximize the value of the exascale investment. For 
the ideal users of the exascale, deep domain knowledge and simultaneous expertise in advanced 
computer technologies must go hand in hand. 
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Current state-of-the-art 

 Figure 7 shows a schematic illustration of a portion of an exascale computer - typically, thousands 
of individual compute nodes, connected by fast communication networks. At the hardware level, 
each node will contain multicore CPUs (around 100 cores per node are typical), working memory 
(actually, levels of memory of different latency), as well as accelerators, commonly referred to as 
GPUs. This hardware layer is, in principle, transparent, but the complexity of the software 
ecosystem associated with each different machine can pose major challenges for end users. 
Libraries that are typically visible to user codes include message passing interface (MPI) libraries 
and shared libraries that perform system-specific, hardware-optimized tasks such as linear 

algebra and other mathematical 
tasks. These libraries are linked 
to user codes via compilers that 
support CPU execution, GPU 
execution, or both.  

The point of Fig. 7 is that these 
are not simple systems for any 
user. Unfortunately, the different 
possible versions of each 
component (hardware or 
software) are ubiquitous, as are 
different vendor specific 
abstraction layers and standards 
that hide different pieces from 
their users. Incompatible 
software layers pose major 
problems for users who are 
frequently faced with a 
combinatorial explosion of 
possible environment settings. 
These are issues that were 
known challenges for the 
Exascale already at the outset (in 
the 2000s) but they nonetheless 
remain pertinent issues. 

Science and even engineering 
students in the U.S. frequently are rarely exposed to computational education beyond simple 
scripting languages, e.g., python, i.e., the underpinnings of modern high-performance computing 
are largely not known to university graduates (arguably, already at a rather high and specialized 
level of education) in the STEM disciplines. Yet, the population that uses HPC resources is 
recruited from this group.  

 

Figure 7: Schematic image of present-day exascale 
architectures. Multicore CPUs and multiple GPUs are 
integrated in individual compute nodes, connected by fast 
network interfaces (NI). User codes on these machines 
build on machine-specific shared libraries, which will vary in 
implementation and versions from machine to machine. For 
cross-node communication, the message passing interface 
(MPI) protocol is typically essential, however, this 
technology relies itself on further layers of software and 
drivers. Overall, a combinatorial explosion of moving pieces 
results that are rarely included in full when training expected 
users. 



 

27  

 

 

Outstanding challenges 
User Interface and User Training - the Input Side of the Exascale 

How do we train individuals or integrated research teams interested in science (i.e., in the results 
of computation, rather than in the science of the computer itself) to understand the machine - a 
research tool of immense power - sufficiently well to operate it meaningfully (i.e. to provide the 
right input information so the machine is doing exactly what the user is wanting and expecting it 
to do)? 

This is not a trivial question, since scientists are usually, and for good reason, already busy delving 
into complex scientific topics in their own domains, rather than, e.g., the latest innovations of the 
networking layer underlying their MPI library. Simply mapping the full complexity of the 
computational resources, which reflects the state of the art at many centers today, cannot be the 
only pathway forward.  

 
Interpreting Data - the Output Side of the Exascale 

Even assuming that the complexity of the Exascale is mastered by a user: how do we train 
humans to learn and understand the fairly complex scientific concepts underlying the powerful 
workflows that they now have at their disposal? 

Eugene Wigner famously remarked “It is nice to know that the computer understands the problem. 
But I would like to understand it too.” This is certainly true for exascale simulations that generate 
a tremendous amount of data. In a simulation of plasticity, for instance, we may see how a material 
deforms from an initial to a final state - however, pinpointing exactly why and where a material 
failed (and maybe how to prevent that failure) is buried somewhere in the data. Understanding 
this still requires a human to interpret and sift through an overwhelming amount of data, ideally 
with the help of state-of-the-art tools such as those discussed in Sections 5. 

To avoid major data misinterpretation, good practice should include an informed forecast of the 
expected results - at least the reasonable computational order of the results should be known to 
the user. This sounds trivial but is really also a matter of good workflow design, minimizing 
complexity while keeping the essential pieces, and training. To be able to do so, it is essential to 
understand the science behind the simulation.  

Understanding the essential science behind a simulation 

We may increasingly find ourselves in the situation where the human operating the computer may 
not themselves have the training to understand the science behind the simulation that they just 
ran. Our workflows tend to embody increasingly sophisticated, complex and realistic theories that 
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may themselves require several college-level courses and a few textbooks beyond the college 
level to understand fully. How can we guide real-world users, often advanced students, to ensure 
that the theory is understood and trivial but costly mistakes are avoided? 

It is certainly true that knowing every last detail of a simulation is not necessarily desirable or even 
feasible when the objective is to extract meaningful scientific output from the result of 1018 
mathematical operations per second. For example, few in materials science need to know how a 
spherical harmonic function is computed, as long as the computer does that math correctly. 
However, things are different when the scientific formalism that was employed itself runs into its 
limits for a given task and gives a physically wrong result. Running a simulation of a solid that 
cannot, for instance, deform plastically because the underlying approximation to the potential 
energy surface was limited is perhaps possible, but generally not helpful to understand the 
behavior of a real material.  

Progress at IPAM 
Much of the above problems are not new, but they nevertheless remain open challenges. The 
work summarized in this document reflects some preliminary solution to the challenge that is the 
exascale: Creation of infrastructures that facilitate effective code design, creation of software tools 
that enable more efficient extraction of the critical science insights from the vast amounts of data 
generated by an exascale simulation, creation of workflows - via jupyter notebooks - that abstract 
and centralize the most complex machine specific decision making processes and allow a user 
to follow their project tasks step by step in a visual way, while retaining full control of their user 
segment of the computer. 

A key opportunity from those workflows, though rarely realized, would be to embed scientific 
training into the workflows themselves - that is, ensure that critical science steps are explained 
alongside a workflow, for users who are not already familiar with the background. Much of the 
science embodied in the workflows of interest in materials science requires one or more graduate 
level courses, e.g., in physics. In a workflow, the execution steps of those scientific tasks are 
already separated from their derivation/explanation, encouraging the frequently catastrophic habit 
of black-box usage of what may be hundreds of thousands of dollars worth of computing 
resources. Working towards guided workflows that convey essential understanding to a user, 
along with the results, could address this.  

 

Vision Statement 
It should be acknowledged that the assembly, operation and maintenance of pre-exascale and 
exascale machines is itself a major challenge. While such challenges are largely outside the 
scope of this document, as users of HPC environments, we are impacted by downtime or other 
issues that may come up as these new machines come online. Perhaps one takeaway from 
dealing with such issues, is that clear lines of communication need to be available between those 
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standing-up pre-exascale and exascale facilities so that users can both understand what 
challenges exist on the hardware side, while also making clear their needs and desires. 

The user interface side, however, i.e., teaching all users the basics of the computers they are 
about to use and how to maximize sensible productivity on these machines will remain perhaps 
the number one challenge to be solved, in order to realize the full potential of this technology.  

● Simplicity, without oversimplification, must be a guiding principle of exascale architectural 
design. Transparent user interfaces without pitfalls matter, even if the basic interface is 
the command line. Software layers that hide essential decisions pose risks the heart of an 
exascale computer lies the hardware layer and the details of that hardware layer must be 
accessible and transparent to a user.  

● It follows that teaching the basics of computer architectures and how their components 
interact should be part of STEM education, and in principle, it might be helpful if any user 
of a HPC system, particularly exascale, were asked to be trained on the basic principles 
of the machine before being granted access. While this creates a bureaucratic obstacle, 
the reality is that training is currently optional or outsourced to the grass-roots base of 
science users of exascale type machines (whose scientific output justifies the existence 
of these machines in the first place). Ensuring sound, basic training of all users can go a 
long way to maximize the benefit of exascale machines. 

● Can we use workflows to teach the essential pieces science of a given problem along with 
the user executing the workflow? E.g., can we incorporate links that explain the essential 
equations, their derivation, approximations made and their limits to a user as the workflow 
progresses along? This might greatly lower the entry barrier for new users and newcomers 
to exascale computing. 
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Appendix: A Non-Human Perspective 
Lazy Human: What are the challenges and opportunities for computational materials science at 
the exascale? 

ChatGPT: Computational materials science at the exascale presents both challenges and 
opportunities. Here are some of the key challenges and opportunities in this field: 

Challenges: 
1. Scalability: Achieving efficient scalability of computational models and algorithms to 

effectively utilize the massive parallelism of exascale systems is a significant challenge. 
Designing algorithms that can efficiently distribute workloads and manage data across a 
large number of processing units is crucial. 

2. Heterogeneous architectures: Exascale systems often employ diverse processing units, 
such as CPUs, GPUs, and specialized accelerators. Exploiting the unique capabilities of 
each hardware component and developing algorithms that can effectively utilize these 
architectures require a deep understanding of their programming models and 
optimizations. 

3. Memory and I/O bottlenecks: The increased computational power at the exascale 
exacerbates memory and input/output (I/O) bottlenecks. Co-designing strategies to 
minimize data movement, optimize data locality, and utilize high-bandwidth storage 
solutions are crucial for reducing these bottlenecks and maximizing performance. 

4. Algorithmic adaptability: Traditional algorithms in materials science may not be well-suited 
for exascale architectures. Co-designing adaptive algorithms that can dynamically adjust 
their strategies based on the available computational resources is essential for efficient 
utilization of the hardware. 

5. Software infrastructure: Developing robust and efficient software infrastructure for 
exascale materials science simulations is a challenge. This includes frameworks for high-
performance computing, data management, visualization, and analysis, which need to be 
scalable and capable of handling the massive amounts of data generated at the exascale. 

Opportunities: 
1. Enhanced accuracy and complexity: Exascale computing enables simulations with 

increased accuracy and complexity. With greater computational resources, researchers 
can incorporate finer details into their models, such as atomistic simulations or quantum 
effects, leading to more realistic and accurate predictions of material behavior and 
properties. 

2. Multiscale simulations: Exascale computing facilitates multiscale simulations, where 
different length and time scales can be seamlessly integrated. This enables researchers 
to investigate material behavior across multiple levels, bridging the gap between atomistic 
simulations and macroscopic properties, and providing a deeper understanding of 
materials phenomena. 

3. Materials discovery and design: Exascale computing can accelerate materials discovery 
and design processes. By performing large-scale simulations, exploring vast chemical 
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spaces, and leveraging data-driven approaches, researchers can identify novel materials 
with desired properties, reducing the time and cost involved in experimental trial-and-error. 

4. Data-driven approaches: The exascale era generates massive amounts of data. Co-
designing techniques that combine simulation and data analytics, machine learning, and 
artificial intelligence can enable the extraction of valuable information from these large 
datasets. Data-driven models can complement traditional simulation-based approaches, 
leading to new insights and accelerating materials research. 

5. Collaborative research: Exascale computational materials science fosters collaboration 
among researchers from different disciplines, such as materials science, computational 
science, mathematics, and computer architecture. Collaborative efforts enable the 
exchange of expertise, the development of novel methodologies, and the acceleration of 
scientific discoveries. 

In summary, computational materials science at the exascale offers opportunities for enhanced 
accuracy, multiscale simulations, materials discovery and design, data-driven approaches, and 
collaborative research. However, it also poses challenges related to scalability, heterogeneous 
architectures, memory, algorithm design, and software infrastructure. Addressing these 
challenges and leveraging the opportunities can revolutionize materials research and facilitate the 
development of new materials with tailored properties. 

 




