
UCLA
UCLA Electronic Theses and Dissertations

Title
Fast and Adaptive Geometric Robot Perception

Permalink
https://escholarship.org/uc/item/4tr0w04d

Author
Chen, Kenny Jieyou

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4tr0w04d
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Fast and Adaptive Geometric Robot Perception

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Kenny Jieyou Chen

2023



© Copyright by

Kenny Jieyou Chen

2023



ABSTRACT OF THE DISSERTATION

Fast and Adaptive Geometric Robot Perception

by

Kenny Jieyou Chen

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Brett Thomas Lopez, Co-Chair

Professor Jonathan Chau-Yan Kao, Co-Chair

Mobile robots rely on state estimation and mapping to perceive, plan, and navigate in the

real-world, but they face significant challenges when operating in unstructured environments.

Factors such as low lighting, the presence of particulates (e.g., dust or fog), uneven terrain,

and other environmental disturbances can severely affect their ability to localize and map its

surrounding environment—leading to errors in the robot’s movements, inability to complete

tasks, and potentially even causing damage to itself or its surroundings. While current state-

of-the-art algorithms may work well in controlled environments, they quickly break down in

unstructured scenarios due to their brittle architecture, strong environmental assumptions,

and high computational complexity, limiting their applicability to the real-world. To this

end, this research aims to address these limitations and proposes several novel methods

for fast and reliable, domain-agnostic geometric perception through innovative algorithmic

design grounded by first principles. Towards this, through three novel algorithms which

leverage precise depth measurements from LiDAR technology, we propose several unique al-

gorithmic innovations which increase localization accuracy, computational speed, and overall

ii



operational reliability. The first algorithm introduces a lightweight LiDAR odometry (LO)

solution that enables the use of dense point clouds for fast and accurate localization with

an adaptive keyframing approach and data structure recycling. The second proposes a new

condensed LiDAR-inertial odometry (LIO) architecture with a fast coarse-to-fine method

for continuous-time motion correction, providing a technique for parallelizable point-wise

deskewing with a constant jerk and angular acceleration motion model. In the third, we

present a reliable LiDAR SLAM algorithm that prioritizes operational reliability and real-

world efficacy by strategically placing proactive safe-guards against common failure points

in both the front-end and back-end subsystems. The perspectives gained from this disser-

tation provide better insight into developing a general-purpose perception framework for

autonomous mobile robots operating in a diverse set of environments in-the-wild.

iii



The dissertation of Kenny Jieyou Chen is approved.

Jason L. Speyer

Sriram Narasimhan

Jonathan Chau-Yan Kao, Committee Co-Chair

Brett Thomas Lopez, Committee Co-Chair

University of California, Los Angeles

2023

iv



Just keep swimming

Dory, from Finding Nemo

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation & Research Statement . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 LiDAR Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 LiDAR-Inertial Odometry . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Contribution 1: Fast Localization with Dense Point Clouds . . . . . . 8

1.4.2 Contribution 2: Parallelizable Continuous-Time Motion Correction . 8

1.4.3 Contribution 3: Perceptive and Connective SLAM . . . . . . . . . . . 9

1.4.4 Structure of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Direct LiDAR Odometry: Fast Localization with Dense Point Clouds . 11

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Lightweight LO Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Scan Matching via Generalized-ICP . . . . . . . . . . . . . . . . . . . 16

2.3.2 Fast Keyframe-Based Submapping . . . . . . . . . . . . . . . . . . . 20

2.3.3 Keyframe Selection via kNN and Convex Hull . . . . . . . . . . . . . 22

2.3.4 Adaptive Keyframing . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



2.4 Algorithmic Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Scan-Stitched Submap Normals . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Data Structure Recycling . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Component Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Field Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Direct LiDAR-Inertial Odometry: Lightweight LIO with Continuous-Time

Motion Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Condensed LIO Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Continuous-Time Motion Correction with Joint Prior . . . . . . . . . 41

3.3.2 Scan-to-Map Registration . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 Geometric Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Ablation Study and Comparison of Motion Correction . . . . . . . . 46

3.4.2 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



4 Direct LiDAR-Inertial Odometry and Mapping: Perceptive and Connec-

tive SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Reliable & Perceptive Localization . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Slip-Resistant Keyframing via Sensor-Agnostic Degeneracy . . . . . . 61

4.3.2 Submap Generation via 3D Jaccard Index . . . . . . . . . . . . . . . 65

4.3.3 Adaptive Scan-Matching via Cloud Sparsity . . . . . . . . . . . . . . 66

4.4 Connective Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Connective Keyframe Factors . . . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Keyframe-based Loop Closures . . . . . . . . . . . . . . . . . . . . . 70

4.5 Algorithmic Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 Sensor Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.2 Submap Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.3 Velocity-Consistent Loop Closures . . . . . . . . . . . . . . . . . . . . 73

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.1 Analysis of Components . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.2 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

viii



5.2 Limitations & Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A Unsupervised Monocular Depth Learning with Integrated Intrinsics and

Spatio-Temporal Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.3 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.4 Single-Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.4.1 Optimization Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.4.2 Spatio-Temporal Reconstruction Loss . . . . . . . . . . . . . . . . . . 101

A.4.3 Spatial Reconstruction Loss . . . . . . . . . . . . . . . . . . . . . . . 102

A.4.4 Learning Camera Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . 103

A.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.5.1 Performance of Depth Estimation . . . . . . . . . . . . . . . . . . . . 105

A.5.2 Learned Camera Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . 108

A.5.3 Egomotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.5.4 Run-Time Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

ix



LIST OF FIGURES

2.1 Fast and Lightweight LiDAR Odometry. Two of Team CoSTAR’s robotic

platforms which have limited computational resources. (A) Our custom quadrotor

platform which features an Ouster OS1 LiDAR sensor on top. (B) A Boston

Dynamics Spot robot with a mounted custom payload and a Velodyne VLP-16

with protective guards. (C) Top-down view of a mapped limestone mine using

our lightweight odometry method on these robots during testing and integration

for the DARPA Subterranean Challenge. . . . . . . . . . . . . . . . . . . . . . . 12

2.2 LiDAR Odometry Architecture. Our system first retrieves a relative trans-

form between two temporally-adjacent scans of times k and k−1 through scan-to-

scan (S2S) matching with RANSAC outlier rejection and an optional rotational

prior from IMU. This initial estimate is then propagated into the world frame

and used as the initialization point for our secondary GICP module for scan-to-

map optimization (S2M), which scan-matches the current point cloud Pk with

a derived submap Sk consisting of scans from nearby and boundary keyframes.

The output of this is a globally-consistent pose estimate which is subsequently

checked against several metrics to determine if the current pose should be stored

as a new keyframe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Keyframe-Based Submapping. A comparison between the different submap-

ping approaches, visualizing the current scan (white), the derived submap (red),

and the full map (blue). (A) A common radius-based submapping approach of

r = 20m retrieved in point cloud-space. (B) Our keyframe-based submapping

approach, which concatenates a subset of keyed scans and helps anchor even the

most distant points in the current scan (green box) during the scan-to-map stage. 21

x



2.4 Keyframe Selection and Adaptive Thresholds. (A) Our method’s submap

(red) is generated by concatenating the scans from a subset of keyframes (green

spheres), which consists ofK nearest neighbor keyframes and those that construct

the convex hull of the keyframe set. (B) An illustration of adaptive keyframing.

In this scenario, the threshold decreases when traversing down a narrow ramp to

better capture small-scale details. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Alpha Course Map. Different views and angles of the dense 3D point cloud

map generated using our DLO algorithm on the Urban Alpha dataset. Estimated

positions at each timestamp were used to transform the provided scan into a world

frame; this was performed for all scans across the dataset and concatenated /

voxel filtered to generated the above images. . . . . . . . . . . . . . . . . . . . . 26

2.6 Error Comparison. The absolute pose error plotted across a 1200s window

of movement, showing the difference between radius and keyframe submapping

schemes. Keyframe-based approaches do not have the range restriction that

radius-based approaches inherently contain, which directly translates to a lower

error in odometry due to more perceptive submapping. Note that adaptive

keyframing primarily helps with reliability against changes in environmental di-

mension (Fig. 2.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Ablation Study of Data Recycling Schemes. Box plots of the processing

time and CPU usage for four different data recycling schemes, ranging from no

data structure reuse to partial reuse and full reuse. . . . . . . . . . . . . . . . . 28

2.8 Average Convergence Time. A comparison of average convergence times

across 100 benchmark alignments for each algorithm, including our NanoGICP

solver and two other open-source GICP packages. . . . . . . . . . . . . . . . . . 29

xi



2.9 Extreme Environments. Top: A section of an underground mine in Lexington,

KY mapped autonomously using our custom drone while running DLO. This

environment contained challenging conditions such as: (A) low illuminance, (B)

object obstructions, and (C) wet and muddy terrain. Bottom: Top-down (D) and

side (E) views of the three levels of an abandoned subway located in Downtown

Los Angeles, CA mapped via DLO using a Velodyne VLP-16 on a quadruped.

In this run, we manually tele-operated the legged robot to walk up, down, and

around each floor for a total of 856m. . . . . . . . . . . . . . . . . . . . . . . . . 32

2.10 Mega Cavern. Different views of the Mega Cavern in Louisville, KY mapped

by our DLO algorithm, with a total estimated trajectory of 9057.66m. Data is

courtesy of Team Explorer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Real-time Localization and Dense Mapping. DLIO generates detailed maps

by reliably estimating robot pose, velocity, and sensor biases in real-time. (A)

Our custom aerial vehicle next to UCLA’s Royce Hall. (B) A bird’s eye view of

Royce Hall and its surroundings generated by DLIO. (C) A close-up of a tree,

showcasing the fine detail that DLIO is able to capture in its output map. Color

denotes intensity of point return. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 System Architecture. DLIO’s lightweight architecture combines motion cor-

rection and prior construction into a single step, in addition to removing the

scan-to-scan module previously required for LiDAR-based odometry. Point-wise

continuous-time integration inW ensures maximum fidelity of the corrected cloud

and is registered onto the robot’s map by a custom GICP-based scan-matcher.

The system’s state is subsequently updated by a nonlinear geometric observer

with strong convergence properties [Lop23], and these estimates of pose, velocity,

and bias then initialize the next iteration. . . . . . . . . . . . . . . . . . . . . . 37

xii



3.3 Coarse-to-Fine Point Cloud Deskewing. A distorted point pL0 (A) is deskewed

through a two-step process which first integrates IMU measurements between

scans, then solves for a unique transform in continuous-time (C) for the original

point which deskews pL0 to p∗ (B). . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Continuous-Time Motion Correction. For each point in a cloud, a unique

transform is computed by solving a set of closed-form motion equations initial-

ized at the closest preceeding IMU measurement. This provides accurate and

parallelizable continuous-time motion correction. . . . . . . . . . . . . . . . . . . 43

3.5 Deskewing Comparison. Map generated from aggressive maneuvers without

(A) and with (B) our motion correction method. . . . . . . . . . . . . . . . . . . 46

3.6 Trajectory of Long Experiment. DLIO’s generated trajectory for the Newer

College - Long Experiment. Color indicates absolute pose error. . . . . . . . . . 47

3.7 UCLA Campus. Detailed maps of locations around UCLA in Los Angeles, CA

generated by DLIO, including (A) Royce Hall in Dickson Court, (B) Court of

Sciences, (C) Bruin Plaza, and (D) the Franklin D. Murphy Sculpture Garden,

with both (1) a bird’s eye view and (2) a close-up to demonstrate the level of fine

detail DLIO can generate. The trajectory taken to generate these maps is shown

in yellow in the first row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xiii



4.1 Dense Connective Mapping with Resilient Localization. Our novel DLIOM

algorithm contains several proactive safe-guards against common failure points in

LiDAR odometry to create a resilient SLAM framework that adapts to its oper-

ating environment. (A) A top-down view of UCLA’s Sculpture Garden mapped

by DLIOM, showcasing the algorithm’s derived pose graph with interkeyframe

constraints for local accuracy and global resiliency. (B & C) An example of

DLIOM’s slip-resistant keyframing which helps anchor scan-to-map registration,

in which abrupt scenery changes (e.g., traversal through a door) that normally

cause slippage (B) are mitigated by scene change detection (C). (D) A map of an

eight-story staircase generated by DLIOM, showcasing the difficult environments

our algorithm can track in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 System Architecture. DLIOM’s two-pronged architecture contains several key

innovations to provide a comprehensive SLAM pipeline with real-world opera-

tional reliability. Point-wise continuous-time integration in W ensures maximum

fidelity of the corrected cloud and is registered onto the robot’s map by a cus-

tom GICP-based scan-matcher. An analysis on the environmental structure and

health of scan-matching provides several system metrics for adaptively tuning

maximum correspondence distance, in addition to slip-resistant keyframing. Ad-

ditionally, a 3D Jaccard index for each keyframe is computed against the current

scan to maximize submap coverage and therefore scan-matching correspondences.

The system’s state is subsequently updated by a nonlinear geometric observer

with strong convergence properties, and these estimates of pose, velocity, and

bias then initialize the next iteration. This system state is also subsequently sent

to a background mapping thread, which places pose graph nodes at keyframe

locations and builds a connective graph via interkeyframe constraints for local

accuracy and global resiliency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xiv



4.3 Sensor-Agnostic Degeneracy. Uncertainty ellipsoids (purple) for each keyframe

computing using our generalized degeneracy metric in (A & B) outdoor environ-

ments, (C) a narrow hallway, and (D) through a doorway. Our metric is global in

that the ellipsoids are consistent in size in both indoor and outdoor environments;

our metric is also sensor-agnostic in that it accounts for the density of the cloud

(which can vary across different LiDAR sensors and voxelization leaf sizes). Note

that these ellipsoids usually on the millimeter-scale but have been enlarged for

visualization clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Submapping via Jaccard Index. Submap generation for the scan-to-map

stage using the Newer College Dataset Extension - Cloister in Collection 2 [ZCF21].

For each newly acquired scan, we compute its Jaccard index against each environ-

mental keyframe (axes) and extract only those which have a significant overlap

with the current scan (green circles & white lines). The point clouds associated

to the overlapping keyframes are then concatenated, alongside their in-memory

covariances, for accurate scan-to-map registration. A threshold of at least 20%

overlap was used in this example. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Adaptive Scan-Matching via Cloud Sparsity. For each motion-corrected

point cloud, we compute its sparsity, defined as the average per-point Euclidean

distance across K nearest neighbors (4.9) (K=5 in this example). This metric

is used to scale the scan-to-map module’s maximum correspondence distance for

adaptive registration. A scan within a small-scale environment will contain points

much closer together (left), so a small movement will have a small effect on point

displacement. On the otherhand, a large environment will have points much

more spread out (right) and will require a larger search distance during GICP for

correct data association. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xv



4.6 Keyframe-based Factor Graph Mapping. Our mapper adds a node to its

factor graph for each new keyframe and adds relative constraints through either

sequential factors (yellow), connectivity factors (blue), gravity factors (green), or

loop closure factors (purple). Sequential factors provide a strong “skeleton” for

the graph with low uncertainty between adjacent keyframes, while connectivity

factors scale depending on the overlap between pairs of keyframes. Loop closure

factors enable global consistency after long-term drift from pure odometry. . . . 69

4.7 Environmental Connectivity. Example of increasing graph strength (left to

right) by reducing the threshold for connective factors. A weak graph (left) is

less locally accurate but allows for more compliancy when adding loop closures

to the graph, while a strong graph (right) is more locally accurate from its higher

number of interkeyframe factors, which are computed according to keyframe-to-

keyframe overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Slip-Resistant Localization. Comparison of maps and trajectories generated

by (A) LIO-SAM [SEM20], (B) FAST-LIO2 [XCH22], and (C) our method, us-

ing the Newer College Extension - Stairs dataset [ZCF21]. For (A), we observed

slippage right after entering the stairwell, while for (B), tracking was shaking dur-

ing ascension (e.g., blurry map), with it slipping after descension at the bottom.

For (C), our keyframe placement (white nodes) allowed our algorithm to track

sufficiently both during ascension and descension, constructing a clear map and

accurate trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9 Adaptive Scan-Matching. A comparison of absolute pose error on the Newer

College - Short Experiment dataset using adaptive and static scan-matching cor-

respondence thresholds. We observed, on average, a lower trajectory error using

our adaptive scaling technique as compared to static search thresholds which

other methods typically use; this allows for more consistent localization in both

small and large environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xvi



4.10 MulRan DCC03. Top-down view of the map of the MulRan DCC03 dataset,

generated by DLIOM. This specific dataset featured approximately 5421.82 me-

ters of travel from driving around three different loops in Korea. . . . . . . . . . 83

A.1 System Overview. Our system regresses depth, pose and camera intrinsics from

a sequence of monocular images. During training, we use two pairs of unlabeled

stereo images and consider losses in both spatial and temporal directions for our

network weights. During inference, only monocular images are required as input,

and our system outputs accurately scaled depth maps and egomotion in addition

to the camera’s intrinsics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 Architecture Overview. Our system uses a common convolutional-based en-

coder between the different outputs, which compresses the input images into a

latent space representation. This representation is then sent through either a

trained decoder to retrieve left-right stereo image disparities, or through differ-

ent groups of fully connected layers to estimate egomotion (n = 3) or camera

intrinsics (n = 4). In the common encoder, each block uses a series of two convo-

lutional layers, the first with stride 2 and the second stride 1 (zero padding), and

with input dimensions and kernel sizes as specified. The transposed convolutional

blocks in the decoder are similarly structured, with pooling indices received from

the corresponding encoder’s feature maps. . . . . . . . . . . . . . . . . . . . . . 95

xvii



A.3 Training Diagram. Our single-network system runs a timed sequence of left

images through the common encoder (light blue trapezoid) to generate outputs

that are fed to the fully connected (FC) layers (blue rectangles) and the decoder

(green trapezoid). Outputs from the FC layers and the decoder are the camera

pose and intrinsics, and disparity maps, respectively. The disparities are used

to find left-right reprojected images (green dashed lines), while the disparities,

camera pose and intrinsics determine the temporal reprojections (pink dashed

lines). All input and output images are framed in black for clarity. . . . . . . . . 98

A.4 Qualitative Comparison of Depths. Visual comparison of regressed depth

maps between our method and various state-of-the-art methods ( [GMF19,LY19,

ZGW18]) on four images from the KITTI Eigen split (images of other methods

were retrieved from [GMF19]). Even with a reduced size and complexity, our

network can accurately regress depth maps given a single monocular image. . . . 105

A.5 Trajectory Comparison. Visual comparison of estimated egomotion between

our method and several others ( [MDM18,ZBS17,GZS11]) on Sequence 07 of the

KITTI Odometry dataset. Corresponding tate and rate metrics can be found in

Table A.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.6 Loss Comparison. Average training loss of the first 100 epochs for both archi-

tecture variants. The solid lines represent the mean across ten different runs, and

the shaded areas represent one standard deviation (∼70% confidence). The “Sep-

arate” architecture used a 7-layer CNN for pose and intrinsics, while “Combined”

used a common encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xviii



LIST OF TABLES

2.1 Summary of Data Structure Recycling . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Dropped LiDAR Scans per Recycling Scheme . . . . . . . . . . . . . . . . . . . 28

2.3 Comparison on Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Comparison with Newer College Dataset . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Comparison with UCLA Campus Dataset . . . . . . . . . . . . . . . . . . . . . 50

4.1 Comparison of Submapping Strategies . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Comparison with Newer College Dataset . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Comparison with Newer College Extension Dataset . . . . . . . . . . . . . . . . 81

4.4 Comparison with MulRan DCC03 . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Comparison with UCLA Campus Dataset . . . . . . . . . . . . . . . . . . . . . 84

A.1 Comparison of Monocular Depth Estimation. . . . . . . . . . . . . . . . . . . . 106

A.2 Regressed Camera Intrinsics Compared to Ground Truth. . . . . . . . . . . . . . 107

A.3 Comparison of Odometry Estimation . . . . . . . . . . . . . . . . . . . . . . . . 109

xix



ACKNOWLEDGMENTS

First and foremost, I’d like to extend my sincerest gratitude to the members of my com-

mittee, Brett Lopez, Jonathan Kao, Sriram Narasimhan, and Jason Speyer. Your critical

insights, thoughtful discussions, and probing questions have all played a vital role in refining

my work and in my development as a researcher.

I would like to specifically extend my deepest appreciation to my advisor Brett Lopez.

Words cannot express how grateful I am for you and for taking me under your wing and

believing in me and my potential when others overlooked me. Your intellectual rigor and

attention to detail have set a high standard that I continually strive to meet, and your

insightful feedback has not only improved the quality of my work, but has also honed my

critical thinking skills and has made me a better researcher. I owe these amazing past years

to you and am so grateful to have learned from you. Beyond academia though, thank you

for always being so genuine and for always looking out for me, my career goals, and my

well-being. And finally, thank you for being a great friend that I can always trust in.

I’d like to also express my heartfelt gratitude to my parents for their unwavering love

and support. Mom, your understanding and empathy have created a safe space where I

could freely express my both my triumphs and frustrations, and your comforting words have

given me the strength to persevere when the weight of academic pressure seemed almost too

overwhelming. Dad, you have imparted invaluable life lessons that have shaped my character

and taught me the importance of integrity, resilience, and compassion, and I know that the

qualities you have instilled in me will continue to shape my path long after my academic

journey. And thank you, to you both, for sacrificing the comfort of your hometown in China

and proximity to your family to immigrate to the States with nothing but each other and a

leap of faith. In doing so, you provided me with the tremendous opportunity to pursue my

dreams, and I hope I have made you two proud and will continue doing so in the future.

To my brother Kellen Chen, I consider myself incredibly fortunate to have you as my

xx



older brother and my closest friend, and you have had a profound influence on my life both

on the way I think and as my best friend and mentor in navigating the complexities of

life. Your wisdom has helped me grow tremendously as a person, and you have taught

me the importance of embracing the journey and nurturing the relationships that bring me

happiness. Thanks for always being there for me for literally my entire life, and I’m so

thankful that we’re so close and that we constantly call each other to catch up and talk

about everything, even when we’re in different parts of the country.

To my incredible partner Emily Zhang, thank you for all your support and the countless

ways you keep me sane and happy. You bring me incredible happiness and joy, and you

have taught me the importance of finding balance—especially when I get too obsessive over

my research. From hiking ten miles on a Saturday morning to going on foodie adventures

around LA and trying a variety of tasty dishes, it’s always so much fun going on adventures

with you. I can’t wait to see what’s in store for us next.

Finally, I am immensely grateful to all my current and former labmates, including Aaron

Sabu, Alex Zhen, Cat Nystrom, David Thorne, Helene Levy, Jacob Sayono, James Tseng,

Ryan Nemiroff, Sam Gessow, Sarah Enayati, and Yanlong Ma from the VECTR lab, and

Alexie Pogue, Amir Omidfar, Jasper Liu, Pehuen Moure, Tsang-Kai Chang, Wenzhong

Yan, Zhaoliang Zheng, and Zida Wu from the LEMUR lab. I am so thankful to have had

such wonderful and fun labmates to hangout with both inside and outside of the lab. A

special shoutout to my former colleagues at NASA JPL’s Team CoSTAR, including Ali

Agha, Amanda Bouman, Antoni Rosinol, David Fan, Kyle Coble, Luca Carlone, Micah

Corah, Patrick Spieler, Seyed Fakoorian, and Thomas Touma, for the wonderful friendships

we’ve built during our participation in the DARPA SubT Challenge. And thank you, from

the bottom of my heart, to all my friends, coworkers, and the countless individuals who

have played a significant role in shaping the person that I am today, including Aashish

Patel, Abdullah Choudhry, Alex Lin, Alex Schperberg, Alex Thoms, Alexandre Binet, Ankur

Mehta, Duy Tran, Eric Peltola, Erin Maher, Ethan Co, Flora Zhang, Gabe Musen, Jeanette

xxi



Nguyen, Jonathan Bunton, Jonathan Chen, Julie Vu, Justin Lee, Kevin Kawabata, Kevin

Le, Levon Markossian, Maggie Xiao, Manie Tadayon, Maxine Yang, Melody Tsolmonkhuu,

Michael Yip, Michelle Lee, Minh Chau, Miranda Mangahas, Monica Liu, Nikolay Atanasov,

Paolo Gabriel, Pat Kimball, Patrick Chen, Rajan Bhattacharyya, Rio Sano, Ronnie Saxena,

Sam Vinyard, Sid Paladugu, Stephanie Tsuei, Stephen Bauer, Thomas An, Tiffany Kim,

Tim O’Donnell, Troy Prejusa, Vikash Gilja, and Wahab Alasfour. I am truly fortunate to

have each and everyone one of you in my life, and I am forever grateful for the impact that

you all have had on my personal and professional growth.

xxii



VITA

2019 - 2023 Ph.D. (Expected), Electrical and Computer Engineering

University of California, Los Angeles – Samueli School of Engineering

2020 - 2021 Research Intern

NASA Jet Propulsion Laboratory

2018 - 2019 Software Engineer - Computer Vision

HRL Laboratories

2017 - 2018 M.S., Electrical Engineering

University of California, San Diego – Jacobs School of Engineering

2013 - 2017 B.S., Electrical Engineering

University of California, San Diego – Jacobs School of Engineering

PUBLICATIONS

K. Chen, R. Nemiroff, and B.T. Lopez, “Direct LiDAR-Inertial Odometry and Mapping:

Perceptive and Connective SLAM,” arXiv preprint arXiv:2305.01843, 2023. (Under Review)

R. Nemiroff, K. Chen, and B.T. Lopez, “Joint On-Manifold Gravity and Accelerometer

Intrinsics Estimation,” arXiv preprint arXiv:2303.03505, 2023. (Under Review)

K. Chen, R. Nemiroff, and B.T. Lopez, “Direct LiDAR-Inertial Odometry: Lightweight LIO

with Continuous-Time Motion Correction,” IEEE International Conference on Robotics and

Automation (ICRA), ExCel, London, May 2023.

xxiii



A. Bouman, J. Ott, S.K. Kim,K. Chen, M. Kochenderfer, B.T. Lopez, A. Agha-mohammadi,

and J. Burdick, “Adaptive Coverage Path Planning for Efficient Exploration of Unknown En-

vironments,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Kyoto, Japan, Oct 2022, pp. 11916-11923, doi: 10.1109/IROS47612.2022.9982287.

K. Chen, B.T. Lopez, A. Agha-mohammadi, and A. Mehta, “Direct LiDAR Odometry:

Fast Localization with Dense Point Clouds,” IEEE Robotics and Automation Letters (RA-

L), vol. 7, no. 2, pp. 2000-2007, April 2022, doi: 10.1109/LRA.2022.3142739. Presented at

ICRA 2022, Philadelphia, PA.

T.K. Chang, K. Chen, A. Mehta, “Resilient and Consistent Multirobot Cooperative Local-

ization with Covariance Intersection,” IEEE Transactions on Robotics, vol. 38, no. 1, pp.

197-208, Feb. 2022, doi: 10.1109/TRO.2021.3104965.

K. Chen, A. Pogue, B.T. Lopez, A. Agha-mohammadi, and A. Mehta, “Unsupervised

Monocular Depth Learning with Integrated Intrinsics and Spatio-Temporal Constraints,”

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague,

Czech Republic, Oct 2021, pp. 2451-2458, doi: 10.1109/IROS51168.2021.9636030.

A. Schperberg*, K. Chen*, S. Tsuei, M. Jewett, J. Hooks, S. Soatto, A. Mehta, and D.

Hong, “Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for Online Col-

lision Avoidance,” IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Las Vegas, NV, USA, Oct 2020, pp. 5730-5737, doi: 10.1109/IROS45743.2020.9341070.

*Indicates equal contribution

xxiv



CHAPTER 1

Introduction

1.1 Overview

The field of robotic perception stemmed from the convergence of ideas from computer vi-

sion, machine learning, state estimation, and numerical optimization. In general, “robot

perception” includes any system in which raw input data from one or more sensors is ab-

stracted into models or patterns to produce information about the robot itself and/or the

surrounding environment. These sensors can either be proprioceptive, which produce inter-

nal measurements of the robot itself relative to the environment (e.g., inertial measurement

unit, wheel encoders, temperature), or exteroceptive, which measure environmental parame-

ters external to the system (e.g., monocular/stereo cameras, infrared, LiDAR, radar, tactile).

Tasks ranging from state estimation and environmental mapping, to object recognition, se-

mantic segmentation, scene reconstruction, and even image restoration all aim to provide an

embodied system with visual intelligence in order to make sense of the physical world.

Simultaneous localization and mapping, or SLAM, is the computational problem of con-

currently estimating a robot’s state (i.e., position, velocity, and/or sensor biases) and its

operating environment’s map (i.e., an internal representation of the environment) via pro-

prioceptive and/or exteroceptive sensors. The basic idea of SLAM is to use one or more

sensors and process/fuse their (often noisy) measurements in such a way so that the robot

can “back-out” a map of the world in addition to its position within the constructed map.

The importance and fundamental need for SLAM in autonomous robotics is supported by

1



not only its substantial research history since the genesis of the problem in 1986 [SC86], but

also the astonishing progress made since then and its continual popularity in the robotics

community to this day [DB06, BD06]. The depth and complexity of this problem can be

further observed by the flexibility in sensor selection and the lack of convergence by re-

searchers towards an “ideal” sensor as they explored various sensor combinations for this

task. Proposed architectures have ranged from primarily using one or more visual (cam-

era) sensors to interpret 3D scene geometry, to infrared sensors, radar, thermal, tactile, and

event cameras [CCC16]. Metrically-accurate depth measurements are required for the robot

to understand environmental scale, and while there has been much progress in accurately

regressing depth from a set of images, active time-of-flight sensors such as LiDAR have

emerged as a promising solution to address the limitations of visual odometry and cameras

by providing direct depth measurements of the surrounding environment—making them an

attractive option for state estimation and mapping in challenging environments.

Despite the tremendous progress made in SLAM and other robotic perception tasks, there

are still many challenges that remain to be tackled. One such challenge is the ability of robots

to operate in unstructured and dynamic environments, where the information provided by

sensors may be noisy or incomplete. Another challenge is the ability of robots to adapt to

changing environmental conditions, such as lighting or weather, without the need for recal-

ibration or retraining. These challenges are particularly important for applications such as

autonomous driving, where the safety of passengers and pedestrians depends on the accu-

rate and reliable perception of the surrounding environment, and more generally autonomous

robots, where an agent needs an accurate representation of its operating environment to re-

liably plan and navigate without injuring itself or other entities. In this dissertation, we aim

to address these challenges by developing new algorithms and techniques for state estimation

and mapping that can operate reliably and efficiently in challenging real-world scenarios.

2



1.2 Motivation & Research Statement

While current methods may work well in known, structured environments (i.e., lab settings,

human-made buildings, etc.), they can be unreliable outside of their intended target envi-

ronments due to their inabilities to generalize (therefore inducing errors in data association),

and from their high computational-complexity which fail to keep up with the high data

throughput from modern sensors. Therefore, this dissertation aims to address these known

deficiencies in modern state-of-the-art SLAM algorithms through two orthogonal thrusts.

The first is the development of fast and efficient algorithms with low computational

complexity and high scalability through innovative algorithmic techniques to reduce the

reliance on significant compression or downsampling without sacrificing estimation accuracy.

The second is designing reliable architectures with long-term operational reliability

through online adaptability to generalize across a diverse set of structured and unstruc-

tured environments without manually hand-tuning parameters or heuristics. By addressing

the deficiencies of modern SLAM algorithms through the proposed two-pronged approach,

this dissertation aims to significantly improve the accuracy and reliability of autonomous

robots operating in unstructured environments. The resulting algorithms and architectures

will be able to generalize across a diverse set of environments without the need for man-

ual tuning, enabling robots to operate with greater efficiency and reliability in the face of

challenging real-world conditions.

1.3 Related Work

1.3.1 LiDAR Odometry

Geometric LiDAR odometry (LO) algorithms rely on aligning point clouds by solving a non-

linear least-squares problem that minimizes the error across corresponding points and/or

planes. To find point/plane correspondences, methods such as the iterative closest point

3



(ICP) algorithm [BM92,CM92] or Generalized-ICP (GICP) [SHT09] recursively match en-

tities until alignment converges to a local minimum. Slow convergence time is often ob-

served when determining correspondences for a large set of points, so feature-based meth-

ods [ZS14, SE18, SEM20, SER21b,PXH21,XCH21,NYC21,YCL19] attempt to extract only

the most salient data points, e.g., corners and edges, in a scan to decrease computation

time. These works aim to translate insights gained from visual odometry (VO) techniques

into the 3D domain. However, adding this step increases computational overhead and risks

discarding data points which could help with better correspondence matching for odometry

accuracy. In addition, feature-based methods contain a strong assumption on the world,

since these works explicitly look for edges and corners which may not exist in unstructured

environments. Conversely, dense methods [PMT20, TTC20, CLA22a, XCH22, RPM22] di-

rectly align acquired scans but often rely heavily on aggressive voxelization—a process that

can alter important data correspondences—to achieve real-time performance. Direct meth-

ods are much more accurate and do not contain any assumption on the outside world, but

are usually infeasible for real-time applications due to the sheer number of points in a cloud.

A second stage immediately following scan alignment between adjacent clouds has been

shown to reduce global drift by increasing pose estimation consistency with previous past

scans [PMT20,ECP20]. In the scan-to-map stage, a scan-to-scan transformation is further

refined by aligning the current point cloud with an existing in-memory map; this submap is

typically derived by retrieving nearby map points within some radius of the robot’s current

position. However, this search in “point-space” can quickly explode in computational expense

due to the sheer number of operations needed to retrieve the nearest neighbor data points.

While there exists techniques to mitigate this such as only incrementally storing map data

at keyed locations [SEM20], this search still involves thousands of calculations which can

increase overall processor load and hence the potential to drop frames.

4



1.3.2 LiDAR-Inertial Odometry

LiDAR odometry approaches can also be broadly classified according to their method of

incorporating other sensing modalities into the estimation pipeline. Loosely-coupled meth-

ods [ZS14, SE18, PMT20, TTC20, CLA22a] process data sequentially. For example, IMU

measurements are used to augment LiDAR scan registration by providing an optimization

prior. These methods are often quite reliable due to the precision of LiDAR measurements,

but localization results can be less accurate as only a subset of all available data is used for

estimation. Tightly-coupled methods [SEM20,XCH22,YCL19,NYC21], on the otherhand,

a.k.a. LiDAR-inertial odometry (LIO), can offer improved accuracy by jointly considering

measurements from all sensing modalities. These methods commonly employ either graph-

based optimization [SEM20,YCL19,NYC21,ZKS16] or a stochastic filtering framework, e.g.,

Kalman filter [XCH21,XCH22]. However, compared to geometric observers [BMT07,VSO08],

these approaches possess minimal convergence guarantees even in the most ideal settings

which can result in significant localization error from inconsistent sensor fusion and map

deformation from incorrect scan placement.

Incorporating additional sensors can also aid in correcting motion-induced point cloud

distortion. For example, LOAM [ZS14] compensates for spin distortion by iteratively esti-

mating sensor pose via scan-matching and a loosely-coupled IMU using a constant velocity

assumption. Similarly, LIO-SAM [SEM20] formulates LiDAR-inertial odometry atop a fac-

tor graph to jointly optimize for body velocity, and in their implementation, points were

subsequently deskewed by linearly interpolating rotational motion. FAST-LIO [XCH21] and

FAST-LIO2 [XCH22] instead employ a back-propagation step on point timestamps after a

forward-propagation of IMU measurements to produce relative transformations to the scan-

end time. However, these methods (and others [RSS20,DBK21]) all operate in discrete-time

which may induce a loss in precision, leading to a high interest in continuous-time methods.

Elastic LiDAR Fusion [PMK18], for example, handles scan deformation by optimizing for

a continuous linear trajectory, whereas Wildcat [RKC22] and [DB18] instead iteratively fit

5



a cubic B-spline to remove distortion from surfel maps. More recently, CT-ICP [DDJ22]

and ElasticLiDAR++ [PMW22] use a LiDAR-only approach to define a continuous-time

trajectory parameterized by two poses per scan, which allows for elastic registration of the

scan during optimization. However, these methods can still be too simplistic in modeling

the trajectory under highly dynamical movements or may be too computationally costly to

work reliably in real-time.

Another crucial component in LIO systems is submapping, which involves extracting a

smaller point cloud from the global map for efficient processing and to increase pose estima-

tion consistency. Rather than processing the entire map on every iteration which is often

computationally intractable, a submap instead contains only a subset of all available data

points to be considered. However, the efficacy of a submapping strategy depends on its

ability to extract only the most relevant map points for scan-matching to avoid any wasted

computation when constructing corresponding data structures (i.e., kdtrees, normals). One

common approach is to use a sliding window such that the submap consists of a set of re-

cent scans [YCL19,LZ21]. However, this method assumes a strong temporal correspondence

between points which may not always be the case (i.e., revisiting a location) and may not per-

form well under significant drift. To mitigate this, radius-based approaches [PMT20,SEM20]

extract points nearby the current position by directly working with point clouds and contin-

ually adding points to an internal octree data structure. This, however, results in unbounded

growth in the map [VGM23a] and therefore an explosion in computational expense through

the large number of nearest neighbor calculations required, which is infeasible for real-time

usage. Keyframe-based methods [SEM20,CLA22a], on the other hand, link keyed locations

in space to its corresponding scan, and therefore reduces the search space required to extract

a comprehensive submap. However, previous methods [CLA22a,CNL23b] have still implic-

itly assumed that nearby keyframes contain the most relevant data points for a submap

and do not explicitly compute a metric of relevancy per keyframe, risking the extraction of

keyframes which may not be used at all.

6



More recently, researchers have been interested in building new methods of algorith-

mic resiliency into odometry pipelines to ensure reliable localization across a diverse set of

environments. While the field of adaptive localization is still in its infancy, early works

have pioneered the idea of adaptivity in unstructured and/or extreme environments. For

instance, to provide resiliency against LiDAR slippage in geometrically-degenerate environ-

ments, LION [TTC20], DARE-SLAM [EPW21], and DAMS-LIO [FHW23] proposed using

the condition number of the scan-matching Hessian as an observability score in order to

switch to a different state-estimation algorithm (e.g., visual-inertial). However, these works

assume the availability of other odometry paradigms on-board which may not always be avail-

able. On the other hand, works such as [KYO21a] and [KYO21b] attempt to automatically

tune system hyperparameters based on trajectory error modeling, but these require an ex-

pensive offline training procedure to retrieve optimal parameter values and do not generalize

to other environments outside of the training set. Similarly, KISS-ICP [VGM23a] adaptively

tunes maximum correspondence distance for ICP, but their method scales the metric accord-

ing to robot acceleration which does not generalize across differently-sized environments.

AdaLIO [LKK23], on the other hand, automatically tunes voxelization, search distance, and

plane residual parameters in detected degenerate cases. Other methods, such as [MBG22],

include providing formal guarantees for the LiDAR scan-matching process. Methods of global

loop closure detection can also aid in reducing drift in the map through place recognition

and relocalization, using descriptors and detectors such as ScanContext [KK18,KCK21] and

Segregator [YYC23]. More recently, [ZKS16] and X-ICP [TNN22] propose innovative online

methods to mitigate degeneracy by analyzing the geometric structure of the optimization

constraints in scan-to-scan and scan-to-map, respectively, but these works only target a

specific module in an entire, complex SLAM pipeline.

7



1.4 Outline of Dissertation

This dissertation aims to address deficiencies in current state-of-the-art SLAM algorithms

which struggle to achieve long-term operational reliability in the unstructured real world.

To this end, this dissertation presents three main contributions which leverage LiDAR tech-

nology to enable fast, reliable localization and mapping.

1.4.1 Contribution 1: Fast Localization with Dense Point Clouds

LiDAR odometry has received tremendous attention as an alternative to vision-based meth-

ods due to the precise depth measurements and larger field-of-view of the sensors; however,

modern LiDAR sensors have posed a challenge to current odometry algorithms due to their

high data throughput. To address this challenge, this contribution presents a novel frontend

localization solution that enables the direct use of dense point cloud scans without significant

preprocessing. The main contribution of this research is a custom speed-oriented pipeline

that accurately estimates robot pose in real-time using minimally-preprocessed LiDAR scans

and an optional IMU on consumer-grade processors. The approach is based on three core

innovations: an adaptive keyframing system that efficiently captures significant environ-

mental information using a novel spaciousness metric, a fast keyframe-based submapping

approach via convex optimization that generates permissive local submaps for global pose

refinement, and NanoGICP, a custom iterative closet point solver for lightweight point cloud

scan-matching with data structure recycling to eliminate redundant calculations. The key

insight of this contribution is the relationship between algorithmic speed and accuracy, which

enables the development of a highly efficient and accurate frontend localization solution.

1.4.2 Contribution 2: Parallelizable Continuous-Time Motion Correction

Loosely-coupled LiDAR odometry methods, while reliable, lack the high-rate output and

additional state estimates provided by tightly-coupled LiDAR-inertial odometry methods.

8



Moreover, point cloud deskewing can be infeasible without properly calibrated IMU biases

for double-integration of accelerometer data. To address these limitations, this contribution

presents a fast and reliable odometry algorithm that delivers accurate localization and de-

tailed 3D mapping through three core innovations. First, a novel coarse-to-fine technique is

proposed for constructing continuous-time trajectories, leveraging a set of analytical equa-

tions with a constant jerk and angular acceleration motion model for efficient and paralleliz-

able point-wise motion correction. Second, a condensed architecture that integrates motion

correction and prior construction into one step, performing direct scan-to-map registration

is introduced to significantly reduce the overall computational overhead of the algorithm.

Third, a new nonlinear geometric observer with strong performance guarantees is employed

in the pipeline to reliably generate accurate estimates of the robot’s full state with minimal

computational complexity. Extensive experimental results using multiple datasets against

state-of-the-art approaches demonstrate the effectiveness of our proposed method.

1.4.3 Contribution 3: Perceptive and Connective SLAM

Building proactive safe-guards against common failure points in SLAM can provide reliable

and failure-tolerant localization perceptive to a wide range of operating environments for

long-term reliability. Therefore, this contribution proposes four new techniques to LiDAR-

based SLAM systems which address several deficiencies in both the front-end and back-end.

Our ideas target different scales in the data processing pipeline to comprehensively increase

localization resiliency and mapping accuracy. First, an adaptive scan-matching method

via a novel point cloud sparsity metric for consistent registration in both large and small

environments. Second, a method for slip-resistant keyframing by detecting the onset of scan-

matching slippage during abrupt scene changes via a global and sensor-agnostic degeneracy

metric. Third, A method which generates explicitly-relevant local submaps with maximum

coverage by computing the relative 3D Jaccard index for each keyframe for scan-to-map

registration. Finally, a method to increase local mapping accuracy and global loop closure

9



resiliency via connectivity factors and keyframe-based loop closures.

1.4.4 Structure of Chapters

The following chapters of this dissertation are arranged as follows.

• Chapter 2 covers the Direct LiDAR Odometry (DLO) algorithm [CLA22b], a fast and

lightweight LiDAR-only solution for localization and mapping with dense point clouds

capable of real-time processing on computationally-limited platforms, which was the

first of its kind.

• Chapter 3 details the Direct LiDAR-Inertial Odometry (DLIO) algorithm [CNL23b],

which extends our DLO algorithm with an inertial measurement unit (IMU) for fast

point cloud motion correction through a condensed architecture with strong conver-

gence properties.

• Chapter 4 presents the Direct LiDAR-Inertial Odometry and Mapping (DLIOM) al-

gorithm [CNL23a], a reliable LiDAR SLAM algorithm that prioritizes operational re-

liability and real-world efficacy by strategically placing proactive safe-guards against

common failure points in both the front-end and back-end subsystems.

• Chapter 5 discusses the work presented in this dissertation, examines its implications

to the field of robot perception, and sets a concrete future plan for achieving the

philosophies presented in this dissertation to further push our perception capabilities

in autonomous robotics.

Other works that the author was involved in but have been omitted from this dissertation

include [SCT20], [CCM22], [CPL21], [BGA20], and [NCL23].

10



CHAPTER 2

Direct LiDAR Odometry:

Fast Localization with Dense Point Clouds

Field robotics in perceptually-challenging environments require fast and accurate state esti-

mation, but modern LiDAR sensors quickly overwhelm current odometry algorithms. To this

end, this chapter presents a lightweight frontend LiDAR odometry solution with consistent

and accurate localization for computationally-limited robotic platforms. Our Direct LiDAR

Odometry (DLO) method includes several key algorithmic innovations which prioritize com-

putational efficiency and enables the use of dense, minimally-preprocessed point clouds to

provide accurate pose estimates in real-time. This is achieved through a novel keyframing

system which efficiently manages historical map information, in addition to a custom itera-

tive closest point solver for fast point cloud registration with data structure recycling. Our

method is more accurate with lower computational overhead than the current state-of-the-

art and has been extensively evaluated in multiple perceptually-challenging environments on

aerial and legged robots as part of NASA JPL Team CoSTAR’s research and development

efforts for the DARPA Subterranean Challenge.

2.1 Overview

Accurate state estimation and mapping in large, perceptually-challenging environments have

become critical capabilities for autonomous mobile robots. Whereas typical visual SLAM

approaches often perform poorly in dust, fog, or low-light conditions, LiDAR-based methods

11



Figure 2.1: Fast and Lightweight LiDAR Odometry. Two of Team CoSTAR’s robotic
platforms which have limited computational resources. (A) Our custom quadrotor platform
which features an Ouster OS1 LiDAR sensor on top. (B) A Boston Dynamics Spot robot with
a mounted custom payload and a Velodyne VLP-16 with protective guards. (C) Top-down
view of a mapped limestone mine using our lightweight odometry method on these robots
during testing and integration for the DARPA Subterranean Challenge.

can provide more reliable localization due to the superior range and accuracy of direct depth

measurements [CCC16]. However, recent work on LiDAR odometry (LO) have revealed the

challenges of processing the large number of depth returns generated by commercial LiDAR

sensors in real-time for high-rate state estimation [SE18, ECP20]. This chapter presents

several algorithmic innovations that make real-time localization with dense LiDAR scans

feasible while also demonstrating the superiority of our method in terms of accuracy and

computational complexity when compared to the state-of-the-art.

Current LO algorithms estimate a robot’s egomotion in two stages: first, by performing a

“scan-to-scan” alignment between adjacent LiDAR frames to recover an immediate motion

guess, followed by a “scan-to-map” registration between the current scan and past envi-

ronmental knowledge to increase global pose consistency. Unfortunately, the large number

12



of data points per scan from modern LiDARs quickly overwhelms computationally-limited

processors and bottlenecks performance during alignment, which can induce frame drops

and ultimately cause poor pose estimation. More specifically, scan-to-scan alignment re-

quires a registration of corresponding points between two clouds, but this process often

involves a nearest-neighbor search which grows exponentially with the number of points per

scan. Feature-based methods [SE18, SER21a, YCL19, SEM20] attempt to mitigate this by

using only the most salient points, but these methods employ an often computationally-

intensive feature extraction step and may accidentally discard data which could otherwise

help improve the quality of downstream registration. Moreover, in scan-to-map alignment,

keyed environmental history (which consists of all or a subset of past points) grows rapidly

in size as new scans are acquired and stored in memory. While aligning with a submap

(rather than the full history of scans) helps increase computational efficiency, the perpetual

addition of points still significantly expands the nearest-neighbor search space for typical

submap extraction methods. Tree-based data structures have been shown to decrease this

nearest-neighbor search cost significantly [Bha10], but the extraction of a local submap still

involves too many points after just a few keyframes, thus preventing consistent performance

for long-term navigation.

In this chapter, we present our Direct LiDAR Odometry (DLO) algorithm, a high-speed

and computationally-efficient frontend localization solution which permits the direct use of

dense point cloud scans without significant preprocessing. The main contribution of this

chapter is a custom speed-first pipeline which accurately resolves robot egomotion in real-

time using minimally-preprocessed LiDAR scans and an optional IMU on consumer-grade

processors. A key insight of our work is the link between algorithmic speed and accuracy, and

our approach is comprised of three core innovations. First, an adaptive keyframing system

which efficiently captures significant environmental information through a novel spaciousness

metric. Second, a fast keyframe-based submapping approach via convex optimization which

generates permissive local submaps for global pose refinement. Third, NanoGICP, a custom

13



Figure 2.2: LiDAR Odometry Architecture. Our system first retrieves a relative trans-
form between two temporally-adjacent scans of times k and k−1 through scan-to-scan (S2S)
matching with RANSAC outlier rejection and an optional rotational prior from IMU. This
initial estimate is then propagated into the world frame and used as the initialization point
for our secondary GICP module for scan-to-map optimization (S2M), which scan-matches
the current point cloud Pk with a derived submap Sk consisting of scans from nearby and
boundary keyframes. The output of this is a globally-consistent pose estimate which is sub-
sequently checked against several metrics to determine if the current pose should be stored
as a new keyframe.

iterative closet point solver for lightweight point cloud scan-matching with data structure

recycling to eliminate redundant calculations. Our method has been extensively evaluated in

numerous challenging environments on computationally-limited robotic platforms as part of

Team CoSTAR’s research and development efforts for the DARPA Subterranean Challenge,

and we have open-sourced our code for benefit of the community1.

2.2 System Description

Our DLO algorithm is built around a “speed-first” philosophy to permit the use of minimally-

preprocessed point clouds and provide accurate pose estimates even for robots with limited

computational resources (Fig. 2.2). The key contribution of our work lies in how we efficiently

1https://github.com/vectr-ucla/direct lidar odometry

14

https://github.com/vectr-ucla/direct_lidar_odometry


derive our submap for global refinement in scan-to-map matching. That is, rather than

extracting points within a local vicinity of a robot’s current position as most works do, DLO

instead searches in keyframe-space by associating a scan’s set of points with its corresponding

keyframe position. The submap is subsequently constructed by concatenating the clouds

from a subset of historic keyframes derived from nearby keyframes and those which make

up the convex hull; this provides the current scan with both nearby and distant points

in the submap to anchor to. In addition, a custom GICP solver enables extensive reuse

of data structures across multiple solver instantiations to eliminate redundant operations

across the two-stage process. Our system also optionally accepts an initialization prior

from an IMU in a loosely-coupled fashion to further improve accuracy during aggressive

rotational motions. The reliability of our approach is demonstrated through extensive tests

on several computationally-limited robotic platforms in multiple challenging environments.

This algorithm was part of Team CoSTAR’s research and development efforts for the DARPA

Subterranean Challenge in support of NASA Jet Propulsion Laboratory’s Networked Belief-

aware Perceptual Autonomy (NeBula) framework [AOM21], in which DLO was the primary

state estimation component for our fleet of autonomous aerial vehicles (Fig. 2.1A).

2.2.1 Notation

A point cloud, P , is composed of a set of points p ∈ P with Cartesian coordinates pi ∈ R3.

We denote L as the LiDAR’s coordinate system, B as the robot’s coordinate system located

at the IMU frame, and W as the world coordinate system which coincides with B at the

initial position. Note that in this work we assume L and B reference frames coincide.

Submap, covariance, and kdtree structures are denoted as S, C and T , respectively. We

adopt standard convention such that x points forward, y points left, and z points upward,

and our work attempts to address the following problem: given adjacent point clouds scans

Pk and Pk−1 at time k, estimate the robot’s current pose X̂
W
k ∈ SE(3) and mapMk in W .

15



2.2.2 Preprocessing

Our system assumes an input of 3D point cloud data gathered by a 360◦ LiDAR such as an

Ouster OS1 (20Hz) or a Velodyne VLP-16 (10Hz). To minimize information loss from the

raw sensor data, only two filters are used during preprocessing: first, we remove all point

returns that may be from the robot itself through a box filter of size 1m3 around the origin.

This is especially important if an aerial robot’s propellers (Fig. 2.1A) or protective guards

(Fig. 2.1B) are in the LiDAR’s field of view. The resulting cloud is then sent through a 3D

voxel grid filter with a resolution of 0.25m to lightly downsample the data for subsequent

tasks while maintaining dominate structures within the surrounding environment. Note that

in this algorithm we do not correct for motion distortion since non-rigid transformations can

be computationally burdensome, and we directly use the dense point cloud rather than

extracting features as most works do. On average, each cloud contains ∼10,000 points after

preprocessing.

2.3 Lightweight LO Architecture

2.3.1 Scan Matching via Generalized-ICP

LiDAR-based odometry can be viewed as the process of resolving a robot’s egomotion by

means of comparing successive point clouds and point clouds in-memory to recover an SE(3)

transformation, which translates to the robot’s 6-DOF motion between consecutive LiDAR

acquisitions. This process is typically performed in two stages, first to provide a best instan-

taneous guess, which is subsequently refined to be more globally consistent with previous

keyframe locations.

16



Algorithm 1: Direct LiDAR Odometry

1 input: Pk, X̂
W
k−1 ; initialize: X̂

W
k−1 = I or gravityAlign()

2 output: X̂
W
k ,Mk

3 while Pk ̸= ∅ do
// preprocessing

4 P̄k ← preprocessPoints(Pk) ;
5 computeAdaptiveParameters(P̄k) ;

// initialization
6 if k = 0 then
7 T t1

k , Ct1k ← NanoGICP1.build(P̄k) ;
8 Kk ← updateKeyframeDatabase(X̂

W
k−1, P̄k) ;

9 continue;
10 end

// prior

11 if IMU then X̃
L
k ← X̃

B
k ; else X̃

L
k ← I ;

// scan-to-scan

12 T s1
k , Cs1k ← NanoGICP1.build(P̄k) ;

13 X̂
L
k ← NanoGICP1.align(T s1

k , T t1
k , Cs1k , Ct1k , X̃

L
k ) ;

14 X̃
W
k ← X̂

W
k−1 X̂

L
k ;

// scan-to-map

15 Qk ← getKeyframeNeighbors(X̂
W
k−1, Kk) ;

16 Hk ← getKeyframeHulls(X̂
W
k−1, Kk) ;

17 Sk ← Qk ⊕Hk ;

18 if Sk ̸= Sk−1 then T t2
k ← NanoGICP2.build(Sk) ; else T t2

k ← T
t2
k−1 ;

19 T s2
k ← T

s1
k ; Cs2k ← C

s1
k ; Ct2k ←

∑N
n CSk,n ;

20 X̂
W
k ← NanoGICP2.align(T s2

k , T t2
k , Cs2k , Ct2k , X̃

W
k ) ;

// update keyframe database and map

21 Kk ← updateKeyframeDatabase(X̂
W
k , P̄k) ;

22 Mk ← Mk−1 ⊕ {Kk \ Kk−1} ;
// propagate data structures

23 T t1
k ← T

s1
k ; Ct1k ← C

s1
k ;

24 return X̂
W
k ,Mk

25 end

17



2.3.1.1 Scan-to-Scan

In the first stage, the scan-to-scan matching objective is to compute a relative transform X̂
L
k

between a source Ps
k and a target Pt

k (where Pt
k = Ps

k−1) captured in L where

X̂
L
k = argmin

XL
k

E
(
XL

kPs
k,Pt

k

)
. (2.1)

The residual error E from GICP is defined as

E
(
XL

kPs
k,Pt

k

)
=

N∑
i

d⊤i

(
Ctk,i + XL

k Csk,iXL⊤

k

)−1

di , (2.2)

such that the overall objective for this stage is

X̂
L
k = argmin

XL
k

N∑
i

d⊤i

(
Ctk,i + XL

k Csk,iXL⊤

k

)−1

di , (2.3)

for N number of corresponding points between point clouds Ps
k and Pt

k, where di = pti −

XL
k p

s
i, p

s
i ∈ Ps

k, p
t
i ∈ Pt

k,∀i, and Csk,i and Ctk,i are the corresponding estimated covariance

matrices associated with each point i of the source or target cloud, respectively. As will

be further discussed in Section 2.3.1.3, we can initialize the above objective function with a

prior supplied by external sensors in an attempt to push the convergence towards a global

minimum. That is, for Eq. (2.3), if a prior X̃
B
k is available by means of IMU preintegration,

we can set the initial guess X̃
L
k = X̃

B
k to create a loosely-coupled system. If a prior is not

available however, the system reverts to pure LiDAR odometry in which X̃
L
k = I and relies

solely on point cloud correspondence matching for this step.

2.3.1.2 Scan-to-Map

After recovering an initial robot motion estimate, a secondary stage of scan-to-map matching

is performed and follows a similar procedure to that of scan-to-scan. However, rather than

18



computing a relative transform between two instantaneous point clouds, the objective here

is to further refine the motion estimate from the previous step to be more globally-consistent

by means of matching with a local submap. In other words, the task here is to compute an

optimal transform X̂
W
k between the current source cloud Ps

k and some derived submap Sk

such that

X̂
W
k = argmin

XW
k

E
(
XW

k Ps
k,Sk

)
. (2.4)

After similarly defining the residual error E from GICP as in Eq. (2.2), the overall objective

function for scan-to-map is

X̂
W
k = argmin

XW
k

M∑
j

d⊤j

(
CSk,j + XW

k Csk,jXW⊤

k

)−1

dj , (2.5)

for M number of corresponding points between point cloud Ps
k and submap Sk, where CSk,j

is the corresponding scan-stitched covariance matrix for point j in the submap as defined

later in Section 2.4. Eq. (2.5) is initialized using the propagated result from scan-to-scan in

the previous section from L to W , i.e. X̃
W
k = X̂

W
k−1 X̂

L
k , so that this prior motion can be

compared against historical map data for global consistency. The output of this stage X̂
W
k

is the final estimated robot pose used for downstream modules.

We note here that a key innovation of this algorithm is how we derive and manage our

submap for this stage. Whereas previous works create a submap by querying the locality of

each individual point in a stored map, we associate scans to keyframes and search rather in

keyframe-space to stitch point clouds together and create Sk. The implications of this include

a far faster and more consistent generation of a local submap, which is additionally more

permissive as compared to a radius-based search and will be further discussed in Section 2.3.2.

19



2.3.1.3 Optimization Prior

Eq. (2.3) describes the scan-to-scan nonlinear optimization problem and can be initialized

with a prior to reduce the chances of converging into a sub-optimal local minima. This

prior represents an initial guess of the relative motion between two LiDAR frames and can

come from integrating angular velocity measurements from an inertial measurement unit

(IMU). More specifically, angular velocity measurements ω̂k is defined as ω̂k = ωk+bω
k +nω

k

measured in B with static bias bω
k and zero white noise nω

k for convenience. After calibrating

for the bias, a relative rotational motion of the robot’s body between two LiDAR frames can

be computed via gyroscopic propagation of the quaternion kinematics qk+1 = qk + (1
2
qk ⊗

ωk)∆t. Here, qk is initialized to identity prior to integration, ∆t is the difference in time

between IMU measurements in seconds, and only gyroscopic measurements found between

the current LiDAR scan and the previous one are used. Note that we are only concerned

with a rotational prior during IMU preintegration and leave the retrieval of a translational

prior via the accelerometer for future work. The resulting quaternion of this propagation

is converted to an SE(3) matrix with zero translational component to be used as X̃
B
k , the

scan-to-scan prior.

2.3.2 Fast Keyframe-Based Submapping

A key innovation of this algorithm lies in how our system manages map information and de-

rives the local submap in scan-to-submap matching for global egomotion refinement. Rather

than working directly with point clouds and storing points into a typical octree data struc-

ture, we instead keep a history of keyframes to search within, in which each keyframe is

linked to its corresponding point cloud scan in a key-value pair. The resulting local submap

used for scan-to-submap matching is then generated by concatenating the corresponding

point clouds from a subset of the keyframes, rather than directly retrieving local points

within some radius of the robot’s current position.

20



Figure 2.3: Keyframe-Based Submapping. A comparison between the different submap-
ping approaches, visualizing the current scan (white), the derived submap (red), and the full
map (blue). (A) A common radius-based submapping approach of r = 20m retrieved in point
cloud-space. (B) Our keyframe-based submapping approach, which concatenates a subset of
keyed scans and helps anchor even the most distant points in the current scan (green box)
during the scan-to-map stage.

The implication of this design choice is twofold: first, by searching in “keyframe-space”

rather than “point cloud-space,” a much more computationally tractable problem is obtained.

Radius-based searches within a cumulative point cloud map can require distance calculations

against hundreds of thousands of points — a process that quickly becomes infeasible even

with an incremental octree data structure. Searching against keyframes, however, typically

involves only a few hundred points even after long traversals and provides much more consis-

tent computational performance, reducing the chances of dropping frames. Additionally, a

keyframe-based approach constructs a much more permissive submap as compared to range-

based methods. That is, since the size of a submap derived from keyframe point clouds

relies solely on the LiDAR sensor’s range rather than a predetermined distance, the derived

submap can have a larger overlap with the current scan; this is illustrated in Fig. 2.3. In

21



Figure 2.4: Keyframe Selection and Adaptive Thresholds. (A) Our method’s submap
(red) is generated by concatenating the scans from a subset of keyframes (green spheres),
which consists of K nearest neighbor keyframes and those that construct the convex hull of
the keyframe set. (B) An illustration of adaptive keyframing. In this scenario, the threshold
decreases when traversing down a narrow ramp to better capture small-scale details.

this example, a submap of fixed radius r = 20m insufficiently overlaps with the current scan

and can introduce drift over time due to containing only spatially-nearby points; however, a

keyframe-based approach covers most of the current scan which helps with better scan-to-

map alignment. Expanding the radius size may help increase this overlap for radius-based

methods, but doing so would significantly slowdown subsequent tasks such as the GICP

covariance calculations.

2.3.3 Keyframe Selection via kNN and Convex Hull

To construct the submap Sk, we concatenate the corresponding point clouds from a selected

subset of environmental keyframes. Let Kk be the set of all keyframe point clouds such

that Sk ⊆ Kk. We define submap Sk as the concatenation of K nearest neighbor keyframe

22



scans Qk and L nearest neighbor convex hull scans Hk such that Sk = Qk ⊕Hk, where the

indices which specify the convex hull are defined by the set of keyframes which make up the

intersection of all convex sets containing the keyframes which compose Kk.

The result of this is illustrated in Fig. 2.4A, in which the keyframes highlighted in green

are those that compose the extracted submap, indicated in red. Intuitively, extracting nearest

neighbor keyframes aims to help with overlap of nearby points in the current scan, while those

from the convex hull — which contain boundary map points — increase the overlap with more

distant points in the scan. This combination reduces overall trajectory drift by maximizing

scan-to-map overlap and provides the system with multiple scales of environmental features

to align with. Note that keyframes which are classified as both a nearest neighbor and a

convex hull index are only used once in the submap.

2.3.4 Adaptive Keyframing

The location of keyframes affects the derived submap and can subsequently influence accu-

racy and robustness of the odometry. Keyframe nodes are commonly dropped using fixed

thresholds (e.g., every 1m or 10◦ of translational or rotational change) [PMT20, SEM20,

SER21a], but the optimal position can be highly dependent on a surrounding environment’s

structure. More specifically, in large-scale settings, features captured by the point cloud scan

are much more prominent and can be depended on for longer periods of time. Conversely, for

narrow or small-scale environments, a smaller threshold is necessary to continually capture

the small-scale features (i.e., tight corners) in the submap for better localization. Thus, we

choose to scale the translational threshold for new keyframes according to the “spaciousness”

in the instantaneous point cloud scan, defined as mk = αmk−1 + βMk, where Mk is the me-

dian Euclidean point distance from the origin to each point in the preprocessed point cloud,

α = 0.95, β = 0.05, and mk is the smoothed signal used to scale the keyframe threshold thk

23



at time k such that

thk =



10m if mk > 20m

5m if mk > 10m&mk ≤ 20m

1m if mk > 5m&mk ≤ 10m

0.5m if mk ≤ 5m

(2.6)

with rotational threshold held fixed at 30◦. Fig. 2.4B illustrates the effects of this adaptive

thresholding, which helps with robustness to changing environmental dimension.

2.4 Algorithmic Implementation

2.4.1 Scan-Stitched Submap Normals

Generalized-ICP involves minimizing the plane-to-plane distance between two clouds, in

which these planes are modeled by a computed covariance for each point in the scan. Rather

than computing the normals for each point in the submap on every iteration (which can

be infeasible for real-time operation), we assume that the set of submap covariances CSk can

be approximated by concatenating the normals CSk,n from N keyframes which populate the

submap such that CSk ≈
∑N

n CSk,n. As a consequence, each submap’s set of normals need not

be explicitly computed, but rather just reconstructed by stitching together those calculated

previously.

2.4.2 Data Structure Recycling

Expanding on the above, several algorithmic steps in current LiDAR odometry pipelines can

benefit from data structure sharing and reuse, drastically reducing overall system overhead

by removing unnecessary and redundant operations. As summarized in Table 2.1, the system

requires eight total elements to successfully perform scan-to-scan and scan-to-map matching.

This includes kdtrees Tk used to search for point correspondences and covariance matrices

24



Table 2.1: Summary of Data Structure Recycling

Element Scan-to-Scan Scan-to-Map

T source
k build

reuse from S2S−−−−−−−−→
T target
k T source

k−1 build when Sk ̸= Sk−1

Csourcek compute
reuse from S2S−−−−−−−−→

Ctargetk Csourcek−1

∑N
n CSk,n

Ck for GICP alignment for both source and target clouds in each scan-matching process.

Out of the four required kdtrees data structures, only two need to be built explicitly. That

is, the tree for the source (input) cloud T source
k can be built just once per scan acquisition

and shared between both modules (as the same scan is used for both sources). For the scan-

to-scan target tree T target
k , this is simply just the previous iteration’s scan-to-scan source

tree T source
k−1 and thus can be propagated. The scan-to-map target tree needs to be built

explicitly, but since the submap is derived from a set of keyframes, this build only needs

to be performed when the set of selected keyframes via our kNN and convex hull strategy

changes from one iteration to the next, such that Sk ̸= Sk−1. Otherwise, the data structure

can just be reused again for additional computational savings. Point covariances Ck needed

for GICP, on the other hand, only need to be computed once per scan aquisition, and its

data can be shared directly in the other three instances.

2.4.2.1 Dual NanoGICP

To facilitate the cross-talking of data between scan-matching modules, we developed NanoG-

ICP, a custom iterative closest point solver which combines the FastGICP [KYO21c] and

NanoFLANN [BR14] open-source packages with additional modifications for data structure

sharing as described before. In particular, NanoGICP uses NanoFLANN to efficiently build

kdtree data structures, which are subsequently used for point cloud correspondence matching

by FastGICP. In practice, data structure sharing is performed between two separate NanoG-

25



Figure 2.5: Alpha Course Map. Different views and angles of the dense 3D point cloud
map generated using our DLO algorithm on the Urban Alpha dataset. Estimated positions
at each timestamp were used to transform the provided scan into a world frame; this was
performed for all scans across the dataset and concatenated / voxel filtered to generated the
above images.

ICP instantiations with different hyperparameters — one to target each scan-matching prob-

lem — and done procedurally as detailed in Algorithm 1.

2.5 Experimental Results

2.5.1 Component Evaluation

To investigate the impact of our system’s components, including keyframe-based submap-

ping, submap normal approximation, and the reuse of data structures, we compare each

component with its counterpart using the Alpha Course dataset from the Urban circuit of

the DARPA Subterranean Challenge. This dataset contains LiDAR scans from a Velodyne

VLP-16 sensor, in addition to IMU measurements from a VectorNav VN-100, collected across

60 minutes in an abandoned powerplant located in Elma, WA which contains multiple per-

ceptual challenges such as large or self-similar scenes (Fig. 2.5). For these component-wise

evaluations, data was processed using a 4-core Intel i7 1.30GHz CPU.

26



Figure 2.6: Error Comparison. The absolute pose error plotted across a 1200s window
of movement, showing the difference between radius and keyframe submapping schemes.
Keyframe-based approaches do not have the range restriction that radius-based approaches
inherently contain, which directly translates to a lower error in odometry due to more per-
ceptive submapping. Note that adaptive keyframing primarily helps with reliability against
changes in environmental dimension (Fig. 2.9).

2.5.1.1 Keyframe-Based Submapping

We compared the absolute pose error (APE), processing time, and CPU load across three

submapping schemes, including: radius-based (r = 10m), keyframe-based with a 1m static

threshold, and keyframe-based with adaptive thresholding. For keyframe-based variants,

we used 10 nearest-neighbor and 10 convex hull keyframes for submap derivation. From

Fig. 2.6, the influence of our approach is clear: submapping in keyframe-space can signifi-

cantly reduce positional error by considering more distant points that would otherwise be

outside the scope of a radius-based approach. These additional points influence the outcome

of the GICP optimization process as they are considered during error minimization for the

optimal transform; this is especially important in purely frontend-based odometry, since any

additional error in pose can quickly propagate over time due to drift. Processing time and

CPU load showed similar trends: radius-based processed each scan notably slower at 74.2ms

per scan with an average of 37.5% CPU load as compared to 21.6ms / 10.2% and 19.1ms /

9.1% for static and adaptive schemes, respectively.

27



Figure 2.7: Ablation Study of Data Recycling Schemes. Box plots of the processing
time and CPU usage for four different data recycling schemes, ranging from no data structure
reuse to partial reuse and full reuse.

Table 2.2: Dropped LiDAR Scans per Recycling Scheme

None KDTrees Covariances Both

% Scans 9.37% 4.51% 0.00% 0.00%

2.5.1.2 Data Structure Recycling

To evaluate the effectiveness of data reusage, we measured and compared the processing

time and CPU usage between different recycling schemes via a box plot (Fig. 2.7) and

percentage of dropped scans over the dataset (Table 2.2). In a naive system which explicitly

calculates each kdtree and cloud covariance, computation time exceeded LiDAR rate (10Hz

for Velodyne) with a high average of 69.8ms per scan and nearly 10% of scans dropped due to

high processing time. Recycling kdtrees but not covariances provides a slight improvement in

processing time and CPU percentage, while recycling covariances but not kdtrees provides a

more prominent performance boost; this is reasonable since our covariance recycling scheme is

more aggressive than kdtree reusage. Finally, using the full scheme as detailed in Table 2.1

significantly decreases both metrics, with an average processing time of 21.9ms and 9.5%

28



Figure 2.8: Average Convergence Time. A comparison of average convergence times
across 100 benchmark alignments for each algorithm, including our NanoGICP solver and
two other open-source GICP packages.

CPU load, which prevents any LiDAR frames from dropping.

2.5.1.3 NanoGICP

To compare NanoGICP with the state-of-the-art, we use FastGICP’s [KYO21c] benchmark

alignment code found in the authors’ open-source repository. This benchmark measures the

average convergence time to align two LiDAR scans across 100 runs, and we compare against

PCL’s [RC11] GICP implementation as well as FastGICP’s multithreaded implementation.

Note that we do not compare against the voxelized FastGICP variant, since this method

approximates planes with groups of planes and decreases overall accuracy. All tested algo-

rithms were initialized with an identity prior, and as shown in Fig. 2.8, we observed that

NanoGICP converged faster on average (42.53ms) when compared to FastGICP (72.88ms)

and PCL’s GICP (178.24ms).

2.5.2 Benchmark Results

The odometry accuracy and CPU load of DLO was compared to several LiDAR and LiDAR-

IMU odometry methods — including BLAM [Nel], Cartographer [HKR16], LIO-Mapping

[YCL19], LOAM [ZS14], and LOCUS [PMT20] — using the Alpha and Beta course dataset

from the Urban Circuit of the Subterranean Challenge (numbers and ground truth retrieved

29



T
ab

le
2.
3:

C
om

p
ar
is
on

on
B
en
ch
m
ar
k
D
at
as
et
s

M
et
h
o
d

A
lp
h
a
C
ou

rs
e
(7
57
.4
m
)

B
et
a
C
ou

rs
e
(6
31
.5
m
)

C
P
U

U
sa
ge

A
P
E
[m

]
M
E
[m

]
A
P
E
[m

]
M
E
[m

]
N
o.

of
C
or
es

m
ax

m
ea
n

st
d

rm
se

m
ax

m
ea
n

st
d

rm
se

m
ax

m
ea
n

B
L
A
M

[N
el
]

3.
44

1.
01

0.
94

0.
43

3.
89

2.
27

0.
89

1.
27

1.
14

0.
93

C
ar
to
gr
ap

h
er

[H
K
R
16
]

5.
84

2.
91

1.
60

1.
05

2.
64

1.
37

0.
67

0.
31

1.
75

0.
88

L
IO

-M
ap

p
in
g
[Y

C
L
19
]

2.
12

0.
99

0.
51

0.
45

1.
60

1.
18

0.
22

0.
61

1.
80

1.
53

L
O
A
M

[Z
S
14
]

4.
33

1.
38

1.
19

0.
60

2.
58

2.
11

0.
44

0.
99

1.
65

1.
41

L
O
C
U
S
[P
M
T
20
]

0.
63

0.
26

0.
18

0.
28

1.
20

0.
58

0.
39

0.
48

3.
39

2.
72

D
L
O

0
.4
0

0
.1
8

0
.0
6

0
.1
9

0
.5
0

0
.1
6

0
.0
9

0
.1
9

0
.9
2

0
.6
2

30



from [PMT20]). We note that LIO-SAM [SEM20] and LVI-SAM [SER21a], two state-of-the-

art tightly-coupled approach, could not be tested at the time due to their sensitive calibration

procedure and strict input data requirements. We observed that our method’s CPU load

was measured to be far lower than any other algorithm, using less than one core both on

average and at its peak. This is likely a result how our system derives its submap, in addition

to the extensive reuse of internal data structures. This observation can also explain DLO’s

much lower absolute pose error (APE) and mean error (ME), with similar trends in the

relative pose error. With this faster processing time, our method outperformed all other

methods in both Alpha and Beta courses, having more than twice the accuracy in the Beta

course for max, mean and standard deviation, even without motion distortion correction.

In addition to our more permissive submapping approach, we are less likely to drop frames

than other methods and have the processing capital to match the dense point clouds at a

higher resolution.

2.5.3 Field Experiments

We additionally tested and implemented our solution on several custom robotic platforms for

real-world field operation. Specifically, we integrated DLO onto an aerial vehicle (Fig. 2.1A)

with an Ouster OS1 and a Boston Dynamics Spot (Fig. 2.1B) with a Velodyne VLP-16. Both

systems contained a VectorNav VN-100 IMU rigidly mounted below the base of the LiDAR

and processed data on an Intel NUC Board NUC7i7DNBE 1.9GHz CPU. We conducted

both manual and autonomous traversals in two perceptually-challenging environments: in an

underground limestone cave in Lexington, KY and at an abandoned subway in Los Angeles,

CA (Fig. 2.9). Both locations contained environmental properties which often challenge

perceptual systems, including poor lighting conditions, featureless corridors, and the presence

of particulates such as dust or fog. Despite traversing over 850m across three different levels

in the abandoned subway, our system reported only a 10cm end-to-end drift, largely owing

to DLO’s robust keyframing scheme which adapted to large and small spaces. Our tests in

31



Figure 2.9: Extreme Environments. Top: A section of an underground mine in Lexington,
KY mapped autonomously using our custom drone while running DLO. This environment
contained challenging conditions such as: (A) low illuminance, (B) object obstructions, and
(C) wet and muddy terrain. Bottom: Top-down (D) and side (E) views of the three levels
of an abandoned subway located in Downtown Los Angeles, CA mapped via DLO using a
Velodyne VLP-16 on a quadruped. In this run, we manually tele-operated the legged robot
to walk up, down, and around each floor for a total of 856m.

the underground mine showed similar promise: while this environment lacked any external

lighting deep within the cave, DLO could still reliably track our aerial vehicle across 348m

of autonomous flight. These results demonstrate the real-world reliability of our method.

2.6 Discussion

This chapter presented Direct LiDAR Odometry (DLO), a lightweight and accurate fron-

tend localization solution with minimal computational overhead for long-term traversals in

extreme environments. A key innovation which distinguishes our work from others is how

32



Figure 2.10: Mega Cavern. Different views of the Mega Cavern in Louisville, KY mapped
by our DLO algorithm, with a total estimated trajectory of 9057.66m. Data is courtesy of
Team Explorer.

we efficiently derive a local submap for global pose refinement using a database of keyframe-

point cloud pairs. This in turn permits a substantial number of solver data structures to

be shared and reused between system modules, all of which is facilitated using our cus-

tom NanoGICP cloud registration package. We demonstrate the reliability of our approach

through benchmarks and extensive field experiments on multiple platforms operating in

large-scale perceptually-challenging environments, and we invite others to use and evaluate

our open-source code. DLO was developed for and used on NASA JPL’s Team CoSTAR’s

fleet of quadrotors in the DARPA Subterranean Challenge (Fig. 2.10), and in the future we

are interested in tighter IMU integration as well as motion distortion correction.

33



CHAPTER 3

Direct LiDAR-Inertial Odometry: Lightweight LIO

with Continuous-Time Motion Correction

Aggressive motions from agile flights or traversing irregular terrain induce motion distortion

in LiDAR scans that can degrade state estimation and mapping. Some methods exist to

mitigate this effect, but they are still too simplistic or computationally costly for resource-

constrained mobile robots. To this end, this chapter presents Direct LiDAR-Inertial Odom-

etry (DLIO), a lightweight LiDAR-inertial odometry algorithm with a new coarse-to-fine

approach in constructing continuous-time trajectories for precise motion correction. The

key to our method lies in the construction of a set of analytical equations which are param-

eterized solely by time, enabling fast and parallelizable point-wise deskewing. This method

is feasible only because of the strong convergence properties in our nonlinear geometric ob-

server, which provides provably correct state estimates for initializing the sensitive IMU

integration step. Moreover, by simultaneously performing motion correction and prior gen-

eration, and by directly registering each scan to the map and bypassing scan-to-scan, DLIO’s

condensed architecture is nearly 20% more computationally efficient than the current state-

of-the-art with a 12% increase in accuracy. We demonstrate DLIO’s superior localization

accuracy, map quality, and lower computational overhead as compared to four state-of-the-

art algorithms through extensive tests using multiple public benchmark and self-collected

datasets.

34



Figure 3.1: Real-time Localization and Dense Mapping. DLIO generates detailed
maps by reliably estimating robot pose, velocity, and sensor biases in real-time. (A) Our
custom aerial vehicle next to UCLA’s Royce Hall. (B) A bird’s eye view of Royce Hall and
its surroundings generated by DLIO. (C) A close-up of a tree, showcasing the fine detail that
DLIO is able to capture in its output map. Color denotes intensity of point return.

3.1 Overview

Accurate real-time state estimation and mapping are necessary capabilities for mobile robots

to perceive, plan, and navigate through unknown environments. LiDAR-based localization

has recently become a viable option for many mobile platforms, such as drones, due to

more compact and accurate sensors. As a result, researchers have developed several new

LiDAR odometry (LO) and LiDAR-inertial odometry (LIO) algorithms which often outper-

form vision-based approaches due to the superior range and depth measurement accuracy of

a LiDAR. However, there are still fundamental challenges in developing reliable and accu-

rate LiDAR-centric algorithms [CCC16], especially for robots that execute agile maneuvers

or traverse uneven terrain. In particular, such aggressive movements can induce significant

distortion in the point cloud which corrupts the scan-matching process, resulting in severe

or catastrophic localization error and map deformation.

35



Existing algorithms which attempt to compensate for this effect may work well in struc-

tured environments for non-holonomic systems (e.g., autonomous driving), but their per-

formance can degrade under irregular conditions due to simplistic motion models, loss in

precision from discretization, and/or computational inefficiencies. For instance, works such

as [ZS14, SE18, SEM20] assume constant velocity during scan acquisition which may work

well for simple, predictable trajectories, but this quickly breaks down under significant ac-

celeration. On the other hand, [XCH21] and [XCH22] use a back-propagation technique to

mitigate distortion for each point, but their method may induce a loss in precision from accu-

mulating integration error over time. More recently, continuous-time methods attempt to fit

a smooth trajectory over a set of control points [PMK18,RKC22] or augment scan-matching

optimization with additional free variables [DDJ22], but such methods still hold strong as-

sumptions on the trajectory (i.e., smooth movement) or may be too computationally costly

for weight-limited platforms.

To this end, we present Direct LiDAR-Inertial Odometry (DLIO), which proposes a

fast, coarse-to-fine approach to construct each inter-sweep trajectory for accurate motion

correction. A discrete set of poses is first computed via numerical integration on IMU mea-

surements, and smooth trajectories between measurement samples are subsequently built via

analytical, continuous-time equations to query each unique per-point deskewing transform.

Our approach is fast in that we solve a set of analytical equations rather than an optimiza-

tion problem (e.g., spline-fitting), parameterized solely by the timestamp of the point which

can be easily parallelized. Our approach is also accurate in that we use a higher-order mo-

tion model to represent the underlying system dynamics which can capture high-frequency

movements that may otherwise be lost in methods that attempt to fit a smooth trajectory to

a set of control points. This approach is built into a simplified LIO architecture which per-

forms motion correction and GICP prior construction in one shot, in addition to performing

scan-to-map alignment directly without the intermediary scan-to-scan; this is all possible

through the strong convergence guarantees of our novel geometric observer with provably

36



Figure 3.2: System Architecture. DLIO’s lightweight architecture combines motion cor-
rection and prior construction into a single step, in addition to removing the scan-to-scan
module previously required for LiDAR-based odometry. Point-wise continuous-time integra-
tion inW ensures maximum fidelity of the corrected cloud and is registered onto the robot’s
map by a custom GICP-based scan-matcher. The system’s state is subsequently updated
by a nonlinear geometric observer with strong convergence properties [Lop23], and these
estimates of pose, velocity, and bias then initialize the next iteration.

correct state estimates.

DLIO is a fast and reliable odometry algorithm that provides accurate localization and

detailed 3D mapping (Fig. 3.1) with four main contributions. First, we develop a new coarse-

to-fine technique for constructing continuous-time trajectories, in which a set of analytical

equations with a constant jerk and angular acceleration motion model is derived for fast and

parallelizable point-wise motion correction. Second, a novel condensed architecture is pre-

sented which combines motion correction and prior construction into one step and directly

performs scan-to-map registration, significantly reducing overall computational overhead of

the algorithm. Third, we leverage a new nonlinear geometric observer [Lop23] that pos-

sesses strong performance guarantees—critical for achieving the first two contributions—in

the pipeline to reliably generate accurate estimates of the robot’s full state with minimal

computational complexity. Finally, the efficacy of our approach is verified through extensive

experimental results using multiple datasets against the state-of-the-art.

37



3.2 System Description

DLIO is a lightweight LIO algorithm that generates robot state estimates and geometric maps

through a unique architecture that contains two main components with three innovations

(Fig. 3.2). The first is a fast scan-matcher which registers dense, motion-corrected point

clouds onto the robot’s map by performing alignment with an extracted local submap. Point-

wise continuous-time integration inW ensures maximum image fidelity of the corrected cloud

while simultaneously building in a prior for GICP optimization. In the second, a nonlinear

geometric observer [Lop23] updates the system’s state with the first component’s pose output

to provide high-rate and provably correct estimates of pose, velocity, and sensor biases which

converge globally. These estimates then initialize the next iteration of motion correction,

scan-matching, and state update.

3.2.1 Notation

Let the point cloud for a single LiDAR sweep initiated at time tk be denoted as Pk and

indexed by k. The point cloud Pk is composed of points pnk ∈ R3 that are measured at a

time ∆tnk relative to the start of the scan and indexed by n = 1, . . . , N where N is the total

number of points in the scan. The world frame is denoted as W and the robot frame as R

located at its center of gravity, with the convention that x points forward, y left, and z up.

The IMU’s coordinate system is denoted as B and the LiDAR’s as L, and the robot’s state

vector Xk at index k is defined as the tuple

Xk =
[
pW
k , qW

k , vW
k , ba

k , b
ω
k

]⊤
, (3.1)

where pW ∈ R3 is the robot’s position, qW is the orientation encoded by a four vector

quaternion on S3 under Hamilton notation, vW ∈ R3 is the robot’s velocity, ba ∈ R3 is the

accelerometer’s bias, and bω ∈ R3 is the gyroscope’s bias. Measurements â and ω̂ from an

38



IMU are modeled as

âi = (ai − g) + ba
i + na

i , (3.2)

ω̂i = ωi + bω
i + nω

i , (3.3)

and indexed by i = 1, . . . ,M for M measurements between clock times tk-1 and tk. With

some abuse of notation, indices k and i occur at LiDAR and IMU rate, respectively, and will

be written this way for simplicity unless otherwise stated. Raw sensor measurements ai and

ωi contain bias bi and white noise ni, and g is the rotated gravity vector. In this chapter,

we address the following problem: given an accumulated point cloud Pk from a LiDAR

and measurements ai and ωi sampled between each received scan by an IMU, estimate the

robot’s state X̂
W
i and the geometric map M̂W

k .

3.2.2 Preprocessing

The inputs to DLIO are a dense 3D point cloud collected by a modern 360◦ mechanical

LiDAR, such as an Ouster or a Velodyne (10-20Hz), in addition to time-synchronized linear

acceleration and angular velocity measurements from a 6-axis IMU at a much higher rate

(100-500Hz). Prior to downstream tasks, all sensor data is transformed to be in R located

at the robot’s center of gravity via extrinsic calibration. For IMU, effects of displacing linear

acceleration measurements on a rigid body must be considered if the sensor is not coincident

with the center of gravity; this is done by considering all contributions of linear acceleration

at R via the cross product between angular velocity and the offset of the IMU. To minimize

information loss, we do not preprocess the point cloud except for a box filter of size 1m3

around the origin to remove points that may be from the robot itself, and a light voxel filter

for higher resolution clouds. This distinguishes our work from others that either attempt to

detect features (e.g., corners, edges, or surfels) or heavily downsamples the cloud through a

voxel filter.

39



Algorithm 2: Direct LiDAR-Inertial Odometry

1 input: X̂
W
k-1, PL

k , a
B
k , ω

B
k ; output: X̂

W
i , M̂W

k

// LiDAR Callback Thread

2 while PL
k ̸= ∅ do

// initialize points and transform to R
3 P̃R

k ← initializePointCloud(PL
k ) (Sec. 3.2.2);

// continuous-time motion correction

4 for âR
i , ω̂

R
i between tk-1 and tk do

5 p̂i, v̂i, q̂i ← discreteInt( X̂
W
k-1, â

R
i-1, ω̂

R
i-1 ) (3.4);

6 T̂
W
i = [ R̂(q̂i) | p̂i ];

7 end

8 for pnk ∈ P̃R
k do

9 T̂
W∗
n ← continuousInt( T̂

W∗
i , tn ) (3.5);

10 p̂nk = T̂
W∗
n ⊗ pnk ; P̂W

k .append( p̂nk );

11 end
// scan-to-map registration

12 ŜWk ← generateSubmap(M̂W
k ) [CLA22a]

13 T̂
W
k ← GICP( P̂W

k , ŜWk ) (3.6);
// geometric observer: state update

14 X̂
W
k ← update( T̂

W
k , ∆t+k ) (Sec. 3.3.3);

// update keyframe map

15 if P̂W
k is a keyframe then M̂W

k ← M̂W
k-1 ⊕ P̂W

k ;

16 return X̂
W
k , M̂W

k

17 end

// IMU Callback Thread

18 while aB
i ̸= ∅ and ωB

i ̸= ∅ do
// apply biases and transform to R

19 âR
i , ω̂

R
i ← initializeImu(aB

i , ω
B
i ) (Sec. 3.2.2);

// geometric observer: state propagation

20 X̂
W
i ← propagate( X̂

W
k , âR

i , ω̂
R
i , ∆t+i ) (Sec. 3.3.3);

21 return X̂
W
i

22 end

40



Figure 3.3: Coarse-to-Fine Point Cloud Deskewing. A distorted point pL0 (A) is
deskewed through a two-step process which first integrates IMU measurements between
scans, then solves for a unique transform in continuous-time (C) for the original point which
deskews pL0 to p∗ (B).

3.3 Condensed LIO Architecture

3.3.1 Continuous-Time Motion Correction with Joint Prior

Point clouds from spinning LiDAR sensors suffer from motion distortion during movement

due to the rotating laser array collecting points at different instances during a sweep. Rather

than assuming simple motion (i.e., constant velocity) during sweep that may not accurately

capture fine movement, we instead use a more accurate constant jerk and angular acceleration

model to compute a unique transform for each point via a two-step coarse-to-fine propagation

scheme. This strategy aims to minimize the errors that arise due to the sampling rate of

the IMU and the time offset between IMU and LiDAR point measurements. Trajectory

throughout a sweep is first coarsely constructed through numerical IMU integration [FCD16],

which is subsequently refined by solving a set of analytical continuous-time equations in W

(Fig. 3.3).

41



Let tk be the clock time of the received point cloud PR
k with N number of accumulated

points within the time period, and let tk +∆tnk be the timestamp of a point pnk in the cloud.

To approximate each point’s location in W , we first integrate IMU measurements between

tk-1 and tk +∆tNk via

p̂i = p̂i-1 + v̂i-1∆ti +
1
2
R̂(q̂i-1)âi-1∆t2i +

1
6
ĵi∆t3i ,

v̂i = v̂i-1 + R̂(q̂i-1)âi-1∆ti ,

q̂i = q̂i-1 +
1
2
(q̂i-1 ⊗ ω̂i-1)∆ti +

1
4
(q̂i-1 ⊗ α̂i)∆t2i ,

(3.4)

for i = 1, . . . ,M for M number of IMU measurements between two scans, where ĵi =

1
∆ti

(R̂(q̂i)âi − R̂(q̂i-1)âi-1) and α̂i =
1

∆ti
(ω̂i − ω̂i-1) are the estimated linear jerk and angu-

lar acceleration, respectively. The set of homogeneous transformations T̂
W
i ∈ SE(3) that

correspond to p̂i and q̂i then define the coarse, discrete-time trajectory during a sweep.

Then, an analytical, continuous-time solution from the nearest preceding transformation to

each point pnk recovers the point-specific deskewing transform T̂
W∗
n , such that

p̂∗(t) = p̂i-1 + v̂i-1t+
1
2
R̂(q̂i-1)âi-1t

2 + 1
6
ĵit

3 ,

q̂∗(t) = q̂i-1 +
1
2
(q̂i-1 ⊗ ω̂i-1)t+

1
4
(q̂i-1 ⊗ α̂i)t

2 ,
(3.5)

where i−1 and i correspond to the closest preceding and successive IMU measurements,

respectively, t is the timestamp between point pnk and the closest preceding IMU, and T̂
W∗
n

is the transformation corresponding to p̂∗ and q̂∗ for pnk (Fig. 3.4). Note that (3.5) is

parameterized only by t and therefore a transform can be queried for any desired time to

construct a continuous-time trajectory.

The result of this two-step procedure is a motion-corrected point cloud that is also approx-

imately aligned with the map inW , which therefore inherently incorporates the optimization

prior used for GICP (Sec. 3.3.2). Importantly, (3.4) and (3.5) depend on the accuracy of

v̂W
0 , the initial estimate of velocity, ba

k and bω
k , the estimated IMU biases, in addition to

42



Figure 3.4: Continuous-Time Motion Correction. For each point in a cloud, a unique
transform is computed by solving a set of closed-form motion equations initialized at the
closest preceeding IMU measurement. This provides accurate and parallelizable continuous–
time motion correction.

an accurate initial body orientation q̂0 (to properly compensate for the gravity vector) at

the time of motion correction. We therefore emphasize that, a key to the reliability of our

approach is the guaranteed global convergence of these terms by leveraging DLIO’s nonlinear

geometric observer [Lop23], provided that scan-matching returns an accurate solution.

3.3.2 Scan-to-Map Registration

By simultaneously correcting for motion distortion and incorporating the GICP optimization

prior into the point cloud, DLIO can directly perform scan-to-map registration and bypass

the scan-to-scan procedure required in previous methods. This registration is cast as a

nonlinear optimization problem which minimizes the distance of corresponding points/planes

between the current scan and an extracted submap. Let P̂W
k be the corrected cloud inW and

ŜW
k be the extracted keyframe-based submap via [CLA22a]. Then, the objective of scan-to-

map optimization is to find a transformation ∆T̂k which better aligns the point cloud such

that

∆T̂k = argmin
∆Tk

E
(
∆TkP̂W

k , ŜW
k

)
, (3.6)

43



where the GICP residual error E is defined as

E
(
∆TkP̂W

k , ŜW
k

)
=

∑
c∈C

d⊤c
(
CS

k,c +∆TkC
P
k,c∆T⊤

k

)−1
dc ,

for a set of C corresponding points between P̂W
k and ŜW

k at timestep k, dc = ŝck − ∆Tkp̂
c
k,

p̂ck ∈ P̂W
k , ŝck ∈ ŜW

k , ∀c ∈ C, and CP
k,c and CS

k,c are the estimated covariance matrices

for point cloud P̂W
k and submap ŜW

k , respectively. Then, following [SHT09], this point-to-

plane formulation is converted into a plane-to-plane optimization by regularizing covariance

matrices CP
k,c and CS

k,c with (1, 1, ϵ) eigenvalues, where ϵ represents the low uncertainty in

the surface normal direction. The resulting ∆T̂k represents an optimal correction transform

which better globally aligns the prior-transformed scan P̂W
k to the submap ŜW

k , so that

T̂
W
k = ∆T̂kT̂

W
M (where T̂

W
M is the last point’s IMU integration) is the globally-refined robot

pose which is used for map construction and as the update signal for the nonlinear geometric

observer.

3.3.3 Geometric Observer

The transformation T̂
W
k computed by scan-to-map alignment is fused with IMU measure-

ments to generate a full state estimate X̂k via a novel hierarchical nonlinear geometric ob-

server. A full analysis of the observer can be found in [Lop23], but in summary, one can show

that X̂ will globally converge to X in the deterministic setting with minimal computation.

The proof utilizes contraction theory to first prove that the quaternion estimate converges

exponentially to a region near the true quaternion. The orientation estimate then serves as

an input to another contracting observer that estimates translation states. This architecture

forms a contracting hierarchy that guarantees the estimates converge to their true values.

The strong convergence property of the observer is the main advantage over other fusion

schemes, e.g., filtering or pose graph optimization that possess minimal convergence guar-

antees, and will be important for future theoretical studies on the advantages of our LiDAR

44



odometry and mapping pipeline. From a practical viewpoint, the observer generates smooth

estimates in real-time so it output is also suitable for control. The observer used here is a

special case of that in [Lop23].

Let γℓ∈{1,...,5} be positive constants and ∆t+k be the time between GICP poses. If qe :=

(q◦e , q⃗e) = q̂∗
i ⊗ q̂k and pe = p̂k − p̂i (errors between propagated and measured poses) then

the state correction takes the form

q̂i ← q̂i +∆t+k γ1 q̂i ⊗

 1− |q◦e |

sgn(q◦e) q⃗e

 ,

b̂
ω

i ← b̂
ω

i −∆t+k γ2 q
◦
e q⃗e ,

p̂i ← p̂i +∆t+k γ3 pe ,

v̂i ← v̂i +∆t+k γ4 pe ,

b̂
a

i ← b̂
a

i −∆t+k γ5 R̂(q̂i)
⊤pe .

(3.7)

Note (3.7) is hierarchical as the attitude update (first two eqs.) is completely decoupled from

the translation update (last three eqs.). Also, (3.7) is a fully nonlinear update which allows

one to guarantee the state estimates are accurate enough to directly perform scan-to-map

registration solely with an IMU prior without the need for scan-to-scan.

3.4 Experimental Results

DLIO was evaluated using the Newer College benchmark dataset [RWC20] and data self-

collected around the UCLA campus. We compare accuracy and efficiency against four

state-of-the-algorithms, namely DLO [CLA22a], CT-ICP [DDJ22], LIO-SAM [SEM20], and

FAST-LIO2 [XCH22]. Each algorithm employs a different degree and method of motion

compensation, therefore creating an exhaustive comparison to the current state-of-the-art.

Aside from extrinsics, default parameters at the time of writing for each algorithm were used

45



Figure 3.5: Deskewing Comparison. Map generated from aggressive maneuvers without
(A) and with (B) our motion correction method.

in all experiments unless otherwise noted. Specifically, loop-closures were enabled for LIO-

SAM and online extrinsics estimation disabled for FAST-LIO2 to provide the best results

of each algorithm. For CT-ICP, voxelization was slightly increased and data playback was

slowed down otherwise the algorithm would fail due to significant frame drops. All tests

were conducted on a 16-core Intel i7-11800H CPU.

3.4.1 Ablation Study and Comparison of Motion Correction

To investigate the impact of our proposed motion correction scheme, we first conducted

an ablation study with varying degrees of deskewing in DLIO using the Newer College

dataset [RWC20]. This study ranged from no motion correction (None), to correction using

only nearest IMU integration via (3.4) (Discrete), and finally to full continuous-time motion

correction via both (3.4) and (3.5) (Continuous) (Table 3.1). Particularly of note is the

Dynamic dataset, which contained highly aggressive motions with rotational speeds up to

3.5 rad/s. With no correction, error was the highest among all algorithms at 0.1959 RMSE.

With partial correction, error significantly reduced due to scan-matching with more accurate

and representative point clouds; however, using the full proposed scheme, we observed an

error of only 0.0612 RMSE—the lowest among all tested algorithms. With similar trends for

all other datasets, the superior tracking accuracy granted by better motion correction is clear:

constructing a unique transform in continuous-time creates a more authentic point cloud than

previous methods, which ultimately affects scan-matching and therefore trajectory accuracy.

46



Figure 3.6: Trajectory of Long Experiment. DLIO’s generated trajectory for the Newer
College - Long Experiment. Color indicates absolute pose error.

Fig. 3.5 showcases this empirically: DLIO can capture minute detail that is otherwise lost

with simple or no motion correction.

3.4.2 Benchmark Results

3.4.2.1 Newer College Dataset

Trajectory accuracy and average per-scan time of all algorithms were also compared using

the original Newer College benchmark dataset [RWC20] via evo [Gru17]. For these tests, we

used data from the Ouster’s IMU (100Hz) alongside LiDAR data (10Hz) to ensure accurate

time synchronization between sensors. For certain Newer College datasets, the first 100 poses

were excluded from computing FAST-LIO2’s RMSE due to slippage at the start in order to

provide a fair comparison. We also compared using the recent extension of the Newer College

dataset [ZCF21] and observed similar results, but those results have been omitted due to

space constraints. The results are shown in Table 3.1, in which we observed DLIO to pro-

duce the lowest trajectory RMSE and lowest overall per-scan computational time (averaged

across all five datasets) as compared to the state-of-the-art. Fig. 3.6 illustrates DLIO’s low

trajectory error compared to ground truth for the Newer College - Long Experiment dataset

even after over three kilometers of travel.

47



T
ab

le
3.
1:

C
om

p
ar
is
on

w
it
h
N
ew

er
C
ol
le
ge

D
at
as
et

A
lg
or
it
h
m

T
y
p
e

A
b
so
lu
te

T
ra
je
ct
o
ry

E
rr
o
r
(R

M
S
E
)
[m

]
A
v
g
C
o
m
p
.
[m

s]

S
h
or
t
(1
60
9
.4
0m

)
L
o
n
g
(3
0
6
3
.4
2
m
)

Q
u
a
d
(4
7
9
.0
4
m
)

D
y
n
a
m
ic

(9
7
.2
0
m
)

P
a
rk

(6
9
5.
6
8
m
)

D
L
O

[C
L
A
22
a]

L
O

0.
46
33

0
.4
1
2
5

0
.1
0
5
9

0
.1
9
5
4

0
.1
8
4
6

4
8
.1
0

C
T
-I
C
P

[D
D
J
22
]

L
O

0.
55
52

0
.5
7
6
1

0
.0
9
8
1

0.
1
4
2
6

0
.1
8
0
2

4
1
2
.2
7

L
IO

-S
A
M

[S
E
M
20
]

L
IO

0.
39
57

0
.4
0
9
2

0
.0
9
5
0

0.
0
9
7
3

0
.1
7
6
1

1
7
9
.3
3

F
A
S
T
-L
IO

2
[X
C
H
22
]

L
IO

0.
37
75

0
.3
3
2
4

0
.0
8
7
9

0.
0
7
7
1

0
.1
4
8
3

4
2
.8
6

D
L
IO

(N
on

e)
L
IO

0.
42
99

0
.3
9
8
8

0
.1
1
1
7

0
.1
9
5
9

0
.1
8
2
1

3
4
.8
8

D
L
IO

(D
is
cr
et
e)

L
IO

0.
38
03

0
.3
6
2
9

0
.0
9
4
3

0.
0
7
9
8

0
.1
5
3
7

3
4
.6
1

D
L
IO

(C
on

ti
n
u
ou

s)
L
IO

0
.3
6
0
6

0
.3
2
6
8

0
.0
8
3
7

0
.0
6
1
2

0
.1
1
9
6

3
5
.7
4

48



Figure 3.7: UCLA Campus. Detailed maps of locations around UCLA in Los Angeles,
CA generated by DLIO, including (A) Royce Hall in Dickson Court, (B) Court of Sciences,
(C) Bruin Plaza, and (D) the Franklin D. Murphy Sculpture Garden, with both (1) a bird’s
eye view and (2) a close-up to demonstrate the level of fine detail DLIO can generate. The
trajectory taken to generate these maps is shown in yellow in the first row.

3.4.2.2 UCLA Campus Dataset

We additionally collected four large-scale datasets at UCLA for additional comparison (Fig. 3.7).

These datasets were gathered by hand-carrying our aerial platform (Fig. 3.1) over 2261.37m

of total trajectory. Our sensor suite included an Ouster OS1 (10Hz, 32 channels recorded

with a 512 horizontal resolution) and a 6-axis InvenSense MPU-6050 IMU located approxi-

mately 0.1m below it. We note here that this IMU can be purchased for approximately $10,

demonstrating that LIO algorithms need not require high-grade IMU sensors that previous

works have used. Note that a comparison of absolute trajectory error was not possible due to

the absence of ground truth, so as is common practice, we compute end-to-end translational

error as a proxy metric (Table 3.2). In these experiments, DLIO outperformed all others

across the board in both end-to-end translational error and per-scan efficiency. DLIO’s re-

sulting maps can capture fine detail in the environment which ultimately provides more

intricate information cues for autonomous mobile robots such as terrain traversability.

49



T
ab

le
3.
2:

C
om

p
ar
is
on

w
it
h
U
C
L
A

C
am

p
u
s
D
at
as
et

A
lg
or
it
h
m

T
y
p
e

E
n
d
-t
o
-E

n
d
T
ra
n
sl
a
ti
o
n
a
l
E
rr
o
r
[m

]
A
v
g
.
C
o
m
p
.
[m

s]

A
(6
52

.6
6m

)
B

(5
2
6
.5
8
m
)

C
(5
5
1
.3
8
m
)

D
(5
3
0
.7
5m

)
A

B
C

D

D
L
O

[C
L
A
22
a]

L
O

0.
02
16

1
.2
9
3
2

0
.0
3
7
5

0
.0
1
7
8

2
0
.4
0

2
0
.7
7

2
1
.1
8

2
1
.6
2

C
T
-I
C
P

[D
D
J
22
]

L
O

0.
0
38
7

0
.0
6
9
9

0
.0
9
6
6

0
.0
2
5
3

3
5
1
.8
5

3
4
2
.7
6

3
3
4
.1
5

3
7
0
.1
9

L
IO

-S
A
M

[S
E
M
20
]

L
IO

0.
0
21
6

0
.0
6
9
2

0
.0
9
3
6

0
.0
2
4
9

3
3
.2
1

2
9
.1
4

3
9
.0
4

4
8
.9
4

F
A
S
T
-L
IO

2
[X
C
H
22
]

L
IO

0.
04
54

0
.0
3
5
3

0
.0
3
6
3

0
.0
2
2
9

1
5
.3
9

1
2
.2
5

1
4
.8
4

1
5
.0
1

D
L
IO

L
IO

0
.0
1
0
5

0
.0
2
3
3

0
.0
3
0
1

0
.0
0
8
2

1
0
.4
5

8
.3
7

8
.6
6

1
0
.9
6

50



3.5 Discussion

This chapter presented Direct LiDAR-Inertial Odometry (DLIO), a highly reliable LIO al-

gorithm that yields accurate state estimates and detailed maps in real-time for resource-

contrained mobile robots. The key innovation that distinguishes DLIO from others is its

fast and parallelizable coarse-to-fine approach in constructing continuous-time trajectories

for point-wise motion correction. This approach is built into a simplified LIO architecture

which performs motion correction and prior construction in one shot, in addition directly

performing scan-to-map alignment for reduced computational overhead. This is all feasible

due to our observer’s strong convergence guarantees which reliably initializes pose, veloc-

ity, and biases for accurate IMU integration. Our experimental results demonstrate DLIO’s

improved localization accuracy, map clarity, and algorithmic efficiency as compared to the

state-of-the-art, and future work includes closed-loop flight tests and adding loop closures.

51



CHAPTER 4

Direct LiDAR-Inertial Odometry and Mapping:

Perceptive and Connective SLAM

This chapter presents Direct LiDAR-Inertial Odometry and Mapping (DLIOM), a reliable

SLAM algorithm with an explicit focus on computational efficiency, operational reliability,

and real-world efficacy. DLIOM contains several key algorithmic innovations in both the

front-end and back-end subsystems to design a resilient LiDAR-inertial architecture that is

perceptive to the environment and produces accurate localization and high-fidelity 3D map-

ping for autonomous robotic platforms. Our ideas spawned after a deep investigation into

modern LiDAR SLAM systems and their inabilities to generalize across different operat-

ing environments, in which we address several common algorithmic failure points by means

proactive safe-guards to provide long-term operational reliability in the unstructured real

world. We detail several important innovations to localization accuracy and mapping re-

siliency distributed throughout a typical LiDAR SLAM pipeline to comprehensively increase

algorithmic speed, accuracy, and reliability. In addition, we discuss insights gained from our

ground-up approach while implementing such a complex system for real-time state estima-

tion on resource-constrained systems, and we experimentally show the increased performance

of our method as compared to the current state-of-the-art on both public benchmark and

self-collected datasets.

52



Figure 4.1: Dense Connective Mapping with Resilient Localization. Our novel
DLIOM algorithm contains several proactive safe-guards against common failure points in
LiDAR odometry to create a resilient SLAM framework that adapts to its operating environ-
ment. (A) A top-down view of UCLA’s Sculpture Garden mapped by DLIOM, showcasing
the algorithm’s derived pose graph with interkeyframe constraints for local accuracy and
global resiliency. (B & C) An example of DLIOM’s slip-resistant keyframing which helps
anchor scan-to-map registration, in which abrupt scenery changes (e.g., traversal through a
door) that normally cause slippage (B) are mitigated by scene change detection (C). (D) A
map of an eight-story staircase generated by DLIOM, showcasing the difficult environments
our algorithm can track in.

4.1 Overview

Accurate real-time state estimation and mapping are fundamental capabilities that are the

backbone for autonomous robots to perceive, plan, and navigate through unknown environ-

ments. Long-term operational reliability of such capabilities require algorithmic resiliency

against off-nominal conditions, such as the presence of particulates (e.g., dust or fog), low-

lighting, difficult or unstructured landscape, and other external factors. While visual SLAM

approaches may work in well-posed environments, they quickly break down in-the-wild from

their strong environmental assumptions, brittle architecture, or high computational com-

53



plexity. LiDAR-based methods, on the other hand, have recently become a viable option

for many mobile platforms due to lighter and cheaper sensors. As a result, researchers have

recently developed several new LiDAR odometry (LO) and LiDAR-inertial odometry (LIO)

systems which often outperform vision-based localization due to the sensor’s superior range

and depth measurement accuracy. However, there are still several fundamental challenges

in developing reliable, long-term LiDAR-centric SLAM solutions, especially for autonomous

robots that explore unknown environments, execute agile maneuvers, or traverse uneven

terrain [CCC16].

Algorithmic resiliency by means of building proactive safe-guards against common fail-

ure points in SLAM can provide reliable and failure-tolerant localization across a wide range

of operating environments for long-term reliability. While existing algorithms may work

well in structured environments that pose well-constrained problems for the back-end op-

timizer, their performance can quickly degrade under irregular conditions—yielding slow,

brittle perception systems unsuitable for real-world use. Of the few recent approaches that

do have the ability to adapt to different conditions on-the-fly, they either rely on switching

to other sensing modalities in degraded environments [TTC20], require complex parameter

tuning procedures based on manually specified heuristics [KYO21a,KYO21b], or focus solely

on the scan-matching process in an effort to better anchor weakly-constrained registration

problems [TNN22].

To this end, this chapter presents the Direct LiDAR-Inertial Odometry and Mapping

(DLIOM) algorithm, a reliable, real-time SLAM system with several key innovations that

provide increased resiliency and accuracy for both localization and mapping (Fig. 4.1). The

main contributions of this chapter are five-fold, each targetting a specific module in a typical

LiDAR SLAM architecture (bolded) to comprehensively increase algorithmic speed, accu-

racy, and reliability. First, a method for slip-resistant keyframing by detecting the onset

of scan-matching slippage during abrupt scene changes via a global and sensor-agnostic de-

generacy metric. Second, a method which generates explicitly-relevant local submaps with

54



Figure 4.2: System Architecture. DLIOM’s two-pronged architecture contains several key
innovations to provide a comprehensive SLAM pipeline with real-world operational reliabil-
ity. Point-wise continuous-time integration in W ensures maximum fidelity of the corrected
cloud and is registered onto the robot’s map by a custom GICP-based scan-matcher. An
analysis on the environmental structure and health of scan-matching provides several system
metrics for adaptively tuning maximum correspondence distance, in addition to slip-resistant
keyframing. Additionally, a 3D Jaccard index for each keyframe is computed against the
current scan to maximize submap coverage and therefore scan-matching correspondences.
The system’s state is subsequently updated by a nonlinear geometric observer with strong
convergence properties, and these estimates of pose, velocity, and bias then initialize the
next iteration. This system state is also subsequently sent to a background mapping thread,
which places pose graph nodes at keyframe locations and builds a connective graph via in-
terkeyframe constraints for local accuracy and global resiliency.

maximum coverage by computing the relative 3D Jaccard index for each keyframe for scan-

to-map registration. Third, a method to increase local mapping accuracy and global loop

closure resiliency via connectivity factors and keyframe-based loop closures. Fourth, an

adaptive scan-matching method via a novel point cloud sparsity metric for consistent regis-

tration in both large and small environments. Finally, fifth, a new coarse-to-fine technique

for fast and parallelizable point-wise motion correction, in which a set of analytical equa-

tions with a constant jerk and angular acceleration motion model is derived for constructing

continuous-time trajectories.

DLIOM proposes several new techniques to LiDAR-based SLAM systems which address

several deficiencies in both the front-end and back-end. Our ideas target different scales

55



in the data processing pipeline to progressively increase localization resiliency and mapping

accuracy. Motion-corrected clouds are incrementally registered against an extracted submap

via an adaptive scan-matching technique, which tunes the maximum correspondence distance

based on the current cloud’s sparsity for consistent registration across different environments.

Each extracted submap is explicitly generated by computing each environmental keyframe’s

relevancy towards the current scan-matching problem via a relative 3D Jaccard index; this

is done to maximize submap coverage and therefore data association between the scan and

submap. To prevent slippage, scan-matching health is continually monitored through a novel

sensor-agnostic degeneracy metric, which inserts a new keyframe when optimization is too

weakly-constrained during rapid scene changes. Finally, to increase local mapping accuracy

and global loop closure resiliency, we compute interkeyframe overlap to provide additional

factors to our keyframe-based factor graph mapper.

4.2 System Description

DLIOM is a reliable SLAM algorithm with a specific focus on localization resiliency, map-

ping accuracy, and real-world operational reliability (Fig. 4.2). The architecture contains

two parallel threads which process odometry estimation and global mapping in real-time.

In the first, LiDAR scans are consecutively motion-corrected and then registered against

a keyframe-based submap to provide an accurate update signal for integrated IMU mea-

surements. This accuracy is ensured by an adaptive maximum correspondence distance for

consistent scan-matching, in addition to how we explicitly derive the local submap, whereby

maximum submap coverage of the current scan is enforced by computing a 3D Jaccard index

for each environmental keyframe. This helps increase reliability against errors in data associ-

ation during GICP optimization. A novel method for computing environmental degeneracy

provides a global notion of scan-matching slippage and continually monitors optimization

health status, placing a new keyframe right before the onset of slippage, and a nonlinear

56



geometric observer fuses LiDAR scan-matching and IMU preintegration to provide high-rate

state estimation with certifiable convergence guarantees.

In the second thread, keyframes continually build upon an internal factor graph, whereby

each keyframe is represented as a node in the graph and various constraints between pairs

of keyframes are factors between nodes. “Sequential” factors between adjacent keyframes

provide a strong backbone to the pose graph and is feasible due to our system’s accurate local

odometry; “connective” factors between overlapping keyframes (via their 3D Jaccard index)

provide local map accuracy and global map resiliency against catastrophically incorrect loop

closures. Frame offsets after such loop closures are carefully managed in order to prevent

discontinuities in estimated velocity for safe robot control. Our algorithm is completely built

from the ground-up to decrease computational overhead and increase algorithmic failure-

tolerance and real-world reliability.

4.2.1 Notation

Let the point cloud for a single LiDAR sweep initiated at time tk be denoted as Pk and

indexed by k. The point cloud Pk is composed of points pnk ∈ R3 that are measured at a

time ∆tnk relative to the start of the scan and indexed by n = 1, . . . , N where N is the total

number of points in the scan. The world frame is denoted as W and the robot frame as R

located at its center of gravity, with the convention that x points forward, y left, and z up.

The IMU’s coordinate system is denoted as B and the LiDAR’s as L, and the robot’s state

vector Xk at index k is defined as the tuple

Xk =
[
pW
k , qW

k , vW
k , ba

k , b
ω
k

]⊤
, (4.1)

where pW ∈ R3 is the robot’s position, qW is the orientation encoded by a four vector

quaternion on S3 under Hamilton notation, vW ∈ R3 is the robot’s velocity, ba ∈ R3 is the

accelerometer’s bias, and bω ∈ R3 is the gyroscope’s bias. Measurements â and ω̂ from an

57



Algorithm 3: DLIOM: Odometry Thread (LiDAR)

1 input: X̂
W
k-1, M̂W

k , PL
k , a

B
k , ω

B
k ; output: X̂

W
k

2 while PL
k ̸= ∅ do

// initialize points and transform to R
3 P̃R

k ← initializePointCloud(PL
k ); (3.2.2)

// continuous-time motion correction

4 for âR
i , ω̂

R
i between tk-1 and tk do

5 p̂i, v̂i, q̂i ← discreteInt( X̂
W
k-1, â

R
i-1, ω̂

R
i-1 ); (3.4)

6 T̂
W
i = [ R̂(q̂i) | p̂i ];

7 end

8 for pnk ∈ P̃R
k do

9 T̂
W∗
n ← continuousInt( T̂

W∗
i , tn ); (3.5)

10 p̂nk = T̂
W∗
n ⊗ pnk ; P̂W

k .append( p̂nk );

11 end
// environmental analysis: compute spaciousness and cloud sparsity

12 mk, zk ← computeAdaptiveParams( P̂W
k ); [CLA22a], (4.9)

// construct submap via 3D Jaccard index

13 for KW
j ∈ M̂W

k do

14 J(P̂W
k ,KW

j )← |P̂W
k ∩ KW

j | / |P̂W
k ∪ KW

j |; (4.7)
15 if J(P̂W

k ,KW
j ) ≥ threshjaccard then

16 ŜWk .append( P̂W
k );

17 end

18 end
// adaptive scan-to-map registration

19 T̂
W
k ← GICP( P̂W

k , ŜWk , zk) ; (4.8)
// slip-resistant keyframing

20 if P̂W
k is a keyframe via (4.5) or [CLA22a] then

21 KW
k ← P̂W

k ;
// compute new keyframe overlap and append to connectivity matrix

22 for KW
j ∈ M̂W

k do

23 Ckj ← J(KW
k ,KW

j ); (4.4.1)

24 end
// send new keyframe and connectivity matrix to mapping thread

25 odom2map(KW
k ,C );

26 end
// geometric observer: state update

27 X̂
W
k ← updateState( T̂

W
k , ∆t+k ) ; (3.3.3)

28 return X̂
W
k

29 end

58



Algorithm 4: DLIOM: Odometry Thread (IMU)

1 input: X̂
W
k , aB

k , ω
B
k ; output: X̂

W
i

2 while aB
i ̸= ∅ and ωB

i ̸= ∅ do
// apply biases and transform to R

3 âR
i , ω̂

R
i ← initializeImu(aB

i , ω
B
i ); (3.2.2)

// geometric observer: state propagation

4 X̂
W
i ← propagateState(X̂

W
k , âR

i , ω̂
R
i ,∆t+i ); (3.3.3)

5 return X̂
W
i

6 end

IMU are modeled as

âi = (ai − g) + ba
i + na

i , (4.2)

ω̂i = ωi + bω
i + nω

i , (4.3)

and indexed by i = 1, . . . ,M for M measurements between clock times tk-1 and tk. With

some abuse of notation, indices k and i occur at LiDAR and IMU rate, respectively, and will

be written this way for simplicity unless otherwise stated. Raw sensor measurements ai and

ωi contain bias bi and white noise ni, and g is the rotated gravity vector. In this chapter,

we address the following problem: given a distorted point cloud Pk from a LiDAR and ai

and ωi from an IMU, estimate the robot’s state X̂
W
i and the geometric map M̂W

k .

4.2.2 Preprocessing

The inputs to DLIOM are a dense 3D point cloud collected by a modern 360◦ mechanical

LiDAR, such as an Ouster or a Velodyne (10-20Hz), in addition to time-synchronized linear

acceleration and angular velocity measurements from a 6-axis IMU at a much higher rate

(100-500Hz). To minimize information loss, we do not preprocess the point cloud except

for a box filter of size 1m3 around the origin which removes points that may be from the

robot itself, and a light voxel filter for higher resolution clouds. This distinguishes our work

59



Algorithm 5: DLIOM: Mapping Thread

1 input: KW
k , C, Gk; output: M̂W

k

2 initialize: Gk.addPriorFactor(KW
0 )

// Keyframe Callback Thread

3 while KW
k ̸= ∅ and C ̸= ∅ do

// add factor to previous keyframe

4 Gk.addBetweenFactor(KW
k−1,KW

k );

// add factors to connective keyframes

5 for KW
j ∈ M̂W

k do

6 if Ckj ≥ threshconn then
7 Gk.addBetweenFactor(KW

k ,KW
j );

8 end

9 end

// submap-based loop closures

10 for KW
j ∈ M̂W

k do

11 if KW
j is a loop candidate via 4.4.2 then

12 LWk ← LWk ⊕KW
j

13 end

14 end

15 T̂← GICP(LRk , K̂R
k , zk ); (4.8)

16 if fitnessScore ≥ threshloop then
17 Gk.addBetweenFactor(KW

k ,KW
L );

18 end

// optimize the factor graph

19 Gk.optimize(KW
k );

// update map after optimization

20 M̂W
k ← updateKeyframes( Gk );

// send to odometry thread

21 map2odom(M̂W
k );

22 return M̂W
k

23 end

60



from others that either attempt to detect features (e.g., corners, edges, and/or surfels) or

aggressively downsamples the input cloud. On average, the point clouds used in this work

on our custom platform contained ∼16,000 points per scan.

In addition, prior to downstream tasks, all sensor data is transformed to be in R located

at the robot’s center of gravity via extrinsic calibration. For LiDAR, each acquired scan

is rotated and shifted via R
LT ∈ SE(3) such that [ pR 1 ]⊤ = R

LT [ pL 1 ]⊤ for each point in

the scan. For IMU, effects of displacing linear acceleration measurements on a rigid body

must be considered if the sensor is not located exactly at the center of gravity. This is

compensated for by considering all contributions of linear acceleration at R via the cross

product of angular velocity with the displacement between the IMU and center of gravity,

such that for raw linear acceleration aB
i measured in the IMU’s frame, the corresponding

linear acceleration in frame R is, assuming a constant displacement,

âR
i = âB

i +
[
˙̂ωR
i × R

Bt
]
+
[
ω̂R

i ×
(
ω̂R

i × R
Bt
)]

(4.4)

where R
Bt is the translational distance from B to R, and ω̂R

i is ω̂B
i but only rotated to be in

axis convention since angular velocity is equivalent at all points on a rigid body.

4.3 Reliable & Perceptive Localization

4.3.1 Slip-Resistant Keyframing via Sensor-Agnostic Degeneracy

Convergence of (4.8) into a sub-optimal local minima can occur when correspondences for

GICP plane-to-plane registration are sparse or insufficient. Such weak data correspondences

can subsequently lead to poor or diverging localization due to the estimate “escaping” a

shallow gradient around the local minima. This phenomenon, often referred to as LiDAR

slippage, often occurs when the surrounding environment is featureless or otherwise geomet-

rically degenerate (e.g., long tunnels or large fields) and is a result of incorrect data asso-

61



ciation between the source and target point clouds. Ill-constrained optimization problems

can also arise in keyframe-based LIO when the extracted submap insufficiently represents

the surrounding environment and which results in a low number of data correspondences

for scan-to-map matching. This can happen when there is an abrupt change in the envi-

ronment (e.g., walking through a door or up a stairwell) but there are no nearby keyframes

which describe the new environment. While previous works have used the condition num-

ber of the Hessian [TTC20, EPW21, FHW23] to identify environmental degeneracy, such

that κ(Htt) = |λmax(Htt)| / |λmin(Htt)|, this metric informs a system only of relative slip-

page with respect to the most constrained and least constrained directions of the problem.

The condition number is affected by the size of the environment and the density of points,

and therefore a more reliable approach is to compute a more consistent metric of degener-

acy across differently-sized environments and sensor configurations. This enables a global,

sensor-agnostic metric in which we use to detect when a new keyframe should be inserted

into the environment.

Let C be the set of all corresponding points between P̂W
k and ŜW

k , and therefore |C| is

the total number of corresponding points, and let E be the total error between all correspon-

dences after convergence of a nonlinear least squares solver (such as Levenberg-Marquardt)

as described previously in (4.8). Also, let H ∈ R6x6 be the Hessian of GICP, and let

Htt ∈ R3x3 be the submatrix corresponding to the translational portion of H, with eigen-

values λmax(Htt) ≥ · · · ≥ λmin(Htt) which provide information regarding the local gradient

of the nonlinear optimization after convergence. Note that H ≈ J⊤J for computational effi-

ciency and J is the Jacobian. Then, the global degeneracy dk of the system is the maximum

value after scaling each of the eigenvalues λ(Htt), such that

dk = max

[
m2

k

λ(Htt)
√
zk

]
, (4.5)

where mk is the computed spaciousness [CLA22a], defined as mk = αmk−1 + βMk, where

62



Figure 4.3: Sensor-Agnostic Degeneracy. Uncertainty ellipsoids (purple) for each
keyframe computing using our generalized degeneracy metric in (A & B) outdoor envi-
ronments, (C) a narrow hallway, and (D) through a doorway. Our metric is global in that
the ellipsoids are consistent in size in both indoor and outdoor environments; our metric is
also sensor-agnostic in that it accounts for the density of the cloud (which can vary across
different LiDAR sensors and voxelization leaf sizes). Note that these ellipsoids usually on
the millimeter-scale but have been enlarged for visualization clarity.

Mk is the median Euclidean point distance from the origin to each point in the preprocessed

point cloud (with constants α = 0.95, β = 0.05), and zk is the cloud sparsity as defined

above in (4.9). This degeneracy is computed for each incoming scan and saved in-memory

for each new keyframe. If the difference between the current degeneracy and degeneracy

at the location of the previous keyframe is sufficiently large, a new keyframe is inserted to

provide the scan-to-map module with new information.

The intuition behind (4.5) lies in how each scaling factor (i.e., mk and zk) affects λ(Htt).

In particular, while computing the condition number κ(Htt) can provide an idea of how

ellipsoidal the local gradient is (and therefore how long it may take to converge to a local

63



Figure 4.4: Submapping via Jaccard Index. Submap generation for the scan-to-map
stage using the Newer College Dataset Extension - Cloister in Collection 2 [ZCF21]. For
each newly acquired scan, we compute its Jaccard index against each environmental keyframe
(axes) and extract only those which have a significant overlap with the current scan (green
circles & white lines). The point clouds associated to the overlapping keyframes are then
concatenated, alongside their in-memory covariances, for accurate scan-to-map registration.
A threshold of at least 20% overlap was used in this example.

minimum), an elongated gradient does not necessarily indicate the onset of slippage from

being poorly constrained. In other words, κ(Htt) is a relative metric of how well the optimiza-

tion problem is constrained, since it only computes the relative ratio between the steepest

and shallowest directions. To get a more accurate idea of when slippage may occur, (4.5)

directly looks at (the inverse of) each individual eigenvalue. By rewarding sensors which pro-

vide less information about the environment via zk, and by penalizing larger environments

since measurements are less accurate with increasing distance, these various scaling factors

allow dk to be more consistent across different sensors and differently sized environments,

which enables a more reliable metric of slip-detection (Fig. 4.3).

64



4.3.2 Submap Generation via 3D Jaccard Index

A key innovation of the DLIOM algorithm is how it explicitly derives its keyframe-based

submap for scan-to-map registration. Ideally, the full history of all observed points would be

matched against to ensure that there is no absence of important environmental information

during scan-matching. Unfortunately, this is far too computationally intractable due to the

sheer number of nearest-neighbor operations required for aligning against such a large map.

Whereas previous approaches either naively assume that the closest points in map-space are

those which are most relevant, or they implicitly compute keyframe relevancy via nearest

neighbor and convex hull extraction in keyframe-space [CLA22a], we develop a new method

for deriving the local submap that explicitly maximizes coverage between the current scan

and the submap by computing the Jaccard index [Jac12] between the current scan and each

keyframe.

Let the intersection between two point clouds P1 ∩ P2 be a set C1,2 which contains all

corresponding points between the two clouds in a common reference frame (within some

corresponding distance), and therefore let |C1,2| be the total number of corresponding points.

In addition, let the union between two point clouds P1 ∪P2 be defined as the set U1,2 which

contains all non-intersecting points between the two point clouds, in addition to the mean of

each pair of corresponding points in C1,2, such that the total number of points in U1,2 equates

to

|U1,2| = (|P1| ⊕ |P2| ) \ |C1,2| . (4.6)

Then, for each newly acquired LiDAR scan at time k, we compute the 3D Jaccard index

between the scan P̂W
k and each jth keyframe KW

j , defined as

J(P̂W
k ,KW

j ) =
|P̂W

k ∩ KW
j |

|P̂W
k ∪ KW

j |
, (4.7)

or, in otherwords, the equivalent of the “intersection over union” similarity measurement

65



in the 3D domain. If J(P̂W
k ,KW

j ) surpasses a set threshold for the jth keyframe (i.e., a

keyframe is sufficiently similar), then that keyframe is included within the submap to be

used for scan-to-map registration. In contrast to previous methods which derive the submap

through a series of heuristics (such as directly retrieving local points within a certain radius of

the current position or assuming that nearby keyframes contain relevant points) our method

explicitly computes each keyframes’ relevancy to the current environment to ensure the scan-

to-map optimization is well-constrained with maximum coverage between the scan and the

submap. In addition, by using only keyframe scans that contain significant overlap with the

current scan, this guarantees that there are no wasted operations when building normals or

the kdtree data structure for the submap (Fig. 4.4).

4.3.3 Adaptive Scan-Matching via Cloud Sparsity

By simultaneously correcting for motion distortion and incorporating the GICP optimiza-

tion prior into the point cloud, DLIOM can directly perform scan-to-map registration and

bypass scan-to-scan required in previous methods. This registration is cast as a nonlinear

optimization problem which minimizes the distance of corresponding points/planes between

the current scan and an extracted local submap. Let P̂W
k be the corrected cloud in W and

ŜW
k be the extracted submap. Then, the objective of scan-to-map optimization is to find a

transformation ∆T̂k which better aligns the point cloud, where

∆T̂k = argmin
∆Tk

E
(
∆TkP̂W

k , ŜW
k

)
, (4.8)

such that the GICP residual error E is defined as

E
(
∆TkP̂W

k , ŜW
k

)
=

∑
c∈C

d⊤c
(
CS

k,c +∆TkC
P
k,c∆T⊤

k

)−1
dc ,

66



Figure 4.5: Adaptive Scan-Matching via Cloud Sparsity. For each motion-corrected
point cloud, we compute its sparsity, defined as the average per-point Euclidean distance
across K nearest neighbors (4.9) (K=5 in this example). This metric is used to scale the
scan-to-map module’s maximum correspondence distance for adaptive registration. A scan
within a small-scale environment will contain points much closer together (left), so a small
movement will have a small effect on point displacement. On the otherhand, a large environ-
ment will have points much more spread out (right) and will require a larger search distance
during GICP for correct data association.

for a set C of corresponding points between P̂W
k and ŜW

k at timestep k, dc = ŝck − ∆Tkp̂
c
k,

p̂ck ∈ P̂W
k , ŝck ∈ ŜW

k , ∀c ∈ C, and CP
k,c and CS

k,c are the estimated covariance matrices

for point cloud P̂W
k and submap ŜW

k , respectively. Then, following [SHT09], this point-to-

plane formulation is converted into a plane-to-plane optimization by regularizing covariance

matrices CP
k,c and CS

k,c with (1, 1, ϵ) eigenvalues, where ϵ represents the low uncertainty in

the surface normal direction. The resulting ∆T̂k represents an optimal correction transform

which better globally aligns the prior-transformed scan P̂W
k to the submap ŜW

k , so that

T̂
W
k = ∆T̂kT̂

W
M (where T̂

W
M is the last point’s IMU integration) is the globally-refined robot

pose which is used for map construction and as the update signal for the nonlinear geometric

observer.

An important parameter that is often overlooked is the maximum distance at which cor-

responding points or planes should be considered in the optimization. This parameter is

often hand-tuned by the user but should scale with the environmental structure for consis-

tency and computational efficiency. For example, in small-scale environments (e.g., a lab

67



room), points in the LiDAR scan are much closer together so a small movement has a small

effect on the displacement of a given point. In contrast, the same point in a more open

environment (e.g., a point on a distant tree outside) will be displaced farther with a small

rotational movement due to a larger distance and therefore needs a greater search radius

for correct correspondence matching (Fig. 4.5). Thus, we set the GICP solver’s maximum

correspondence search distance between two point clouds according to the “sparsity” of the

current scan, defined as zk = αzk−1 + βDk, where

Dk =
1

|P|N

N∑
n=1

Dn
k (4.9)

is the normalized per-point sparsity, Dn
k is the average Euclidean distance to K nearest

neighbors for point n, and α = 0.95 and β = 0.05 are smoothing constants to produce zk, the

filtered signal set as the max correspondence distance. Intuitively, this is the average inter-

point distance in the current scan; the larger the environment, higher the number of sparse

points (i.e., points further away), driving this number up. By adapting the corresponding

distance according to the sparsity of points, the efficacy of scan-matching can be more

consistent across differently-sized environments.

4.4 Connective Mapping

Factor graphs are widely used in SLAM as they are a powerful tool to estimate a system’s

full state by combining pose estimates from various modalities via pose graph optimization

[SEM20]. Such works model relative pose constraints as a maximum a posteriori (MAP)

estimation problem with a Gaussian noise assumption, and they typically view mapping as

an afterthought as a result of refining the trajectory. However, such a unimodal noise model

is far too simplistic for the complex uncertainty distribution that can arise from LiDAR

scan-matching and IMU pre-integration. Moreover, graph-based optimization for odometry

possesses minimal convergence guarantees and can often result in significant localization error

68



Figure 4.6: Keyframe-based Factor Graph Mapping. Our mapper adds a node to its
factor graph for each new keyframe and adds relative constraints through either sequential
factors (yellow), connectivity factors (blue), gravity factors (green), or loop closure factors
(purple). Sequential factors provide a strong “skeleton” for the graph with low uncertainty
between adjacent keyframes, while connectivity factors scale depending on the overlap be-
tween pairs of keyframes. Loop closure factors enable global consistency after long-term drift
from pure odometry.

and map deformation from inconsistent sensor fusion. To this end, we instead employ a factor

graph not for odometry (which is instead handled by our geometric observer), but rather to

explicitly represent the environment. A new node is added to the graph for every incoming

keyframe (as determined by DLIOM’s odometry thread), and various factors between nodes

contribute to the global consistency of the map (Fig. 4.6). In addition to the factors detailed

in this section, we additionally add a gravity factor to locally constrain the direction of each

keyframe as described in [NCL23].

4.4.1 Connective Keyframe Factors

Relative constraints between nodes in a factor graph are typically added sequentially (i.e., fac-

tors are added between adjacent nodes [SEM20]), but the relationship between non-adjacent

keyframes can provide additional information to the graph which helps to create a more

accurate and globally consistent map. These additional constraints are what we call connec-

tive factors, which are determined by pairs of keyframes having sufficient overlap in W as

computed in Sec. 4.3.2. That is, for K number of total keyframes, the connectivity between

KW
i and KW

j is defined as the 3D Jaccard index (4.7) and encoded in a symmetric matrix

69



Figure 4.7: Environmental Connectivity. Example of increasing graph strength (left to
right) by reducing the threshold for connective factors. A weak graph (left) is less locally
accurate but allows for more compliancy when adding loop closures to the graph, while a
strong graph (right) is more locally accurate from its higher number of interkeyframe factors,
which are computed according to keyframe-to-keyframe overlap.

C ∈ RKxK , such that

Cij =



|K̂W
i ∩ KW

j |
|K̂W

i ∪ KW
j |

for i > j

|K̂W
j ∩ KW

i |
|K̂W

j ∪ KW
i |

for i < j

1 for i = j

(4.10)

where the diagonal contains all 1’s by definition of (4.7). A new factor is added between

two keyframes if Cij is above a set threshold, and the noise for this factor is computed

by ζ(1 − Cij), where ζ is a tunable scaling parameter that controls the strength of the

environmental graph (Fig. 4.7).

4.4.2 Keyframe-based Loop Closures

Ideally, place recognition modules would search across all seen data for loop closures and

add corresponding graph factors accordingly. However, storing all historical scans is compu-

tationally infeasible, so scans are stored in-memory incrementally as keyframes. In this lens,

such keyframes can be understood as the subset of all historical point clouds which maximize

information about the environment and contain data about the most significant locations.

However, individual scans can be quite sparse (depending on the selected sensor) and may

not contain enough points for data association for accurate detection via scan-matching.

70



Therefore, rather than iterating through all keyframes individually or reusing the submap

constructed from the frontend which is only optimal for odometry [WZS22], we instead build

an additional submap optimized for the backend mapper which consists of all candidate loop

closure keyframes.

After adding the new keyframe to the factor graph and the associated connectivity con-

straints as described above, prior to optimization we search for and perform loop closure

detection through a three-step process. First, we extract keyframes that are within some

radius of the current position, in addition to those that contain some overlap with the cur-

rent keyframe. The corresponding point clouds are then concatenated into a loop cloud LW
k

and transformed back into R, and GICP scan-matching is performed between this and the

new keyframe. If the fitness score between K̂R
k and LR

k is sufficiently low (i.e., the average

Euclidean error across all corresponding points is small), a new loop-closure factor is added

between the current keyframe and the closest keyframe in W used to build the loop cloud.

Crucially, the registration is primed with a prior equal to the distance between these two

keyframes in W with a sufficiently large plane-to-plane search distance. This process is fast

since we do not rebuild the covariances required for GICP, as individual keyframe normals

are concatenated instead [CLA22a]. This idea of reconstructing a submap for loop closure de-

tection can easily be extend to using other place recognition modules (e.g., [KK18,KCK21])

for further robustness.

4.5 Algorithmic Implementation

This section highlights three important implementation details of our system for small

lightweight platforms: sensor time synchronization, resource management for consistent com-

putational load, and velocity-consistent loop closures.

71



4.5.1 Sensor Synchronization

Time synchronization is a critical element in odometry algorithms which utilize sensors

that have their own internal clock. This is necessary as it permits time-based data asso-

ciation to temporally align IMU measurements and LiDAR scans. There are three clock

sources in DLIOM: one each for the LIDAR, IMU, and processing computer. Hardware-

based time synchronization—where the acquisition of a LiDAR scan is triggered from an

external source—is not compatible with existing spinning LiDARs since starting and stop-

ping the rotation assembly can lead to inconsistent data acquisition and timing. As a result,

we developed a software-based approach that compensates for the offset between the LiDAR

(IMU) clock and the processing computer clock. When the first LiDAR (IMU) packet is

received, the processing computer records its current clock time ct0 and the time the mea-

surement was taken on the sensor st0. Then, each subsequent kth measurement has a time

ctk with respect to the processing computer clock given by ctk =
ct0+(stk − st0), where

stk is

the time the measurement was taken on the sensor. This approach was found to work well in

practice despite its inability to observe the transportation delay of sending the first measure-

ment over the wire. The satisfactory performance was attributed to using the elapsed sensor

time to compute the compensated measurement time since a sensor’s clock is generally more

accurate than that of the processing computer.

4.5.2 Submap Multithreading

Fast and consistent computation time is essential for ensuring that incoming LiDAR scans

are not dropped, especially on resource-constrained platforms. To this end, DLIOM offloads

work not immediately relevant to the current scan to a separate thread which minimally

interferes with its parent thread as it handles further incoming scans. Thus, the main

point cloud processing thread has lower, more consistent computation times. The secondary

thread builds the local submap kdtree used for scan-matching and builds data structures

72



corresponding to each keyframe which are needed by the submap. Speed of the submap

building process is additionally increased by saving in-memory the computed kdtrees for

each keyframe in order to quickly compute the Jaccard index of each keyframe, making

that process negligibly different than an implicit nearest neighbor keyframe search. This

thread can finish at any time without affecting DLIOM’s ability to accept new LiDAR scans.

Additionally, it periodically checks if the main thread is running so it can pause itself and

free up resources that may be needed by the highly-parallelized scan-matching algorithm.

Crucially, the submap changes at a much slower rate than the LiDAR sensor rate, and there

is no strict deadline for when the new submap must be built. Therefore, the effect of this

thread—which is to occasionally delay a new submap by a few scan iterations—has negligible

impact on performance.

4.5.3 Velocity-Consistent Loop Closures

Although our odometry module constructs a submap of relevant keyframes, these keyframes

are pulled directly from the globally optimized map. Therefore, we must be careful with

how the state and keyframes get updated upon loop closure detection. In particular, the

estimated position within the map will jump instantaneously, but a continuous trajectory

would be beneficial for control and require fewer updates in the odometry module. We

therefore allow the mapping module to perform this instantaneous update and maintain the

robot pose in the map frame, but establish an offset from the odometry frame so that the

robot pose and latest keyframe pose never jump. After an update, keyframes which have

shifted must have their point clouds transformed in the odometry module; this is executed

in a background thread, with submap keyframes being prioritized.

73



4.6 Experimental Results

In this section, we first provide an analysis of each proposed contribution to convince the

reader that our core innovations are reasonable for improving the accuracy and resiliency of

localization and mapping. Then, to validate our methods and system as a whole, DLIOM’s

accuracy and efficiency was compared against several current state-of-the-art and open-source

systems. These include three LO algorithms, namely DLO [CLA22a], CT-ICP [DDJ21],

and KISS-ICP [VGM23a], and three LIO algorithms, namely LIO-SAM [SEM20], FAST-

LIO2 [XCH22], and DLIO [CNL23b]. We use the entirety of two public benchmark datasets,

in addition to a self-collected dataset around a university campus, to compare the algorithms.

These benchmark datasets include the Newer College dataset [RWC20] and the extension

to Newer College Extension dataset [ZCF21]. Note that some well-known algorithms (e.g.,

Wildcat [RKC22] and X-ICP [TNN22]) could not be thoroughly compared against due to

closed-source implementation and/or custom unreleased datasets; however, Wildcat [RKC22]

was briefly evaluated against using the MulRan DCC03 dataset [KPC20] as they provide

numerical results of this dataset in their manuscript. Finally, we demonstrate the usage of

DLIOM in a fully closed-loop flight through several aggressive autonomous maneuvers in a

lab setting using our custom aerial platform.

4.6.1 Analysis of Components

4.6.1.1 Slip-Resistant Keyframing

To showcase the resiliency of our slip-resistant keyframing strategy, which continually mon-

itors scan-matching optimality and places an environmental keyframe during the onset of

slippage, we use the Newer College Extension - Stairs dataset [ZCF21] and compare against

LIO-SAM [SEM20] and FAST-LIO2 [XCH22]. Staircases are notoriously difficult for SLAM

algorithms—especially those which are LiDAR-centric—due to the sensors’ limited field-of-

view in the Z direction. Because of this, tracking can be challenging as there are less data

74



Figure 4.8: Slip-Resistant Localization. Comparison of maps and trajectories generated
by (A) LIO-SAM [SEM20], (B) FAST-LIO2 [XCH22], and (C) our method, using the Newer
College Extension - Stairs dataset [ZCF21]. For (A), we observed slippage right after entering
the stairwell, while for (B), tracking was shaking during ascension (e.g., blurry map), with
it slipping after descension at the bottom. For (C), our keyframe placement (white nodes)
allowed our algorithm to track sufficiently both during ascension and descension, constructing
a clear map and accurate trajectory.

points to associate with during ascension. This can be observed in Fig. 4.8. For LIO-SAM,

the algorithm slipped right at the entrance of the stairwell, most likely due to a lack in suf-

ficient features for feature extraction that the algorithm relies on. For FAST-LIO2, tracking

was much better (as the algorithm also performs no feature extraction), but localization was

jittery near the apex (e.g., blurry map at the top), and the algorithm completely slipped

during descension. However, by detecting the onset of slippage, DLIOM can actively place

new keyframes to continually anchor itself through space and therefore allow for tracking in

challenging scenarios. This can be further seen in Fig. 4.1(D), in which our method was able

to track through eight flights of stairs, while all other algorithms failed.

4.6.1.2 Jaccard Submapping

The efficacy of our submapping strategy, which directly computes each environmental keyframe’s

relevancy (i.e., overlap) through a computed 3D Jaccard index and subsequently extracts

those which are most useful for scan-matching, is compared against a naive, implicit method.

75



Table 4.1: Comparison of Submapping Strategies

Submapping Strategy
Absolute Trajectory Error [m]

Max Mean RMSE

NN + Convex [CLA22a] 0.5898 0.0923 ± 0.444 0.1006

Jaccard Index 0.2613 0.0604 ± 0.0361 0.0546

More specifically, the naive approach extracts keyframes which are spatially nearby and those

which construct the convex hull of keyframes. First proposed in [CLA22a], this strategy im-

plicitly assumes that these keyframes are the best for globally aligning the current scan.

However, as seen in Table 4.1, which compares trajectory error between the naive method

(“NN + Convex”) and our Jaccard method (“Jaccard Index”) using the Newer College Ex-

tension - Cloister dataset (Fig. 4.4), this may not extract the most relevant submap for

scan-to-map alignment and can be detrimental to accuracy and computational complexity.

Heuristically extracting such keyframes risks using point clouds which are not used for scan-

to-map, and therefore adds unnecessary operations during kdtree or covariance structure

building. In contrast, an explicit extraction of the most useful keyframes provides scan-to-

map a more practical set of keyframes to align with, ultimately helping with data association

for GICP and reducing computational waste on keyframes which may not be used at all for

registration. This applies for all scenarios, such as ascension of a staircase, where nearby

keyframes may have zero overlap but would be extracted using the nearest-neighbor method.

4.6.1.3 Connective Mapping

Finally, we verify the effectiveness of adding connective factors between keyframes in our fac-

tor graph mapper. These factors provide additional constraints between overlapping nodes to

better locally constrain each keyframe relative to one another, which can help with mapping

accuracy after loop closure. We compared overall cloud-to-cloud distance to ground truth

between a map generated with connectivity factors between keyframes, and a map generated

76



Figure 4.9: Adaptive Scan-Matching. A comparison of absolute pose error on the Newer
College - Short Experiment dataset using adaptive and static scan-matching correspondence
thresholds. We observed, on average, a lower trajectory error using our adaptive scaling
technique as compared to static search thresholds which other methods typically use; this
allows for more consistent localization in both small and large environments.

only with sequential (“odometry”-like) factors. The Newer College Extension - Maths (H)

dataset was used in this experiment, and ground truth was provided by a high-grade Leica

BLK360 laser scanner. Cloud-to-cloud error was computed using the CloudCompare appli-

cation [GRM05] after manual registration. All clouds were voxelized with a leaf size of 0.1m

to provide a fair comparison, and a maximum threshold of 1m was set for computing the

average error to filter non-overlaping regions. Without connective factors, DLIOM’s output

map had a mean cloud-to-cloud distance to ground truth of 0.3285 ± 0.2289; however, with

connective factors, this cloud-to-cloud distance reduced down to 0.2982 ± 0.2214. These

connective factors between overlapping nodes can create a more accurate map after graph

optimization by providing additional constraints for loop closures.

4.6.1.4 Adaptive Scan-Matching

Next, we compared our adaptive scan-matching technique, which scales the GICP maximum

correspondence distance according to scan sparsity, against two statically-set thresholds.

Specifically, we compared against a static correspondence distance of 0.25, which is typically

77



optimal for smaller environments (since points are closer together), and to the trajectory

from a static correspondence distance of 1.0, which is more reasonable for larger, outdoor

environments. We used the Newer College - Short Experiment dataset for this comparison, as

it features three different sections of varying sizes (“Quad”, “Mid-Section”, and “Parkland”).

The results are shown in Fig. 4.9, in which we observed our adaptive thresholding scheme to

perform the best, followed by a static threshold of 1.0, and finally a threshold of 0.25 which

performed the worst amongst the three. This is reasonable because the majority of the Short

Experiment dataset is in medium and large (“Quad” and “Parkland”) scenes, with about

20% of the trajectory in the smaller “Mid-Section.” Because of this, a larger threshold would,

on average, perform better than a smaller threshold (RMSE of 0.3810 ± 0.1063 versus 0.4140

± 0.1167), but not as well as one that adapts to provide the best of both worlds (0.3571 ±

0.0971).

4.6.2 Benchmark Results

We compare the accuracy and efficiency of DLIOM against six state-of-the-art algorithms

using public and self-collected datasets. Aside from extrinsics, default parameters at the

time of writing for each algorithm were used in all experiments unless otherwise noted.

Specifically, loop-closures were kept enabled for LIO-SAM and online extrinsics estimation

disabled for FAST-LIO2 to provide the best results of each algorithm. For FAST-LIO2, we

reduced the default crop otherwise it would fail in smaller environments. Deskewing was

enabled for KISS-ICP, and for CT-ICP, voxelization was increased and data playback speed

was slowed down to 25% otherwise the algorithm would fail due to significant frame drops.

Loop closures were disabled in DLIOM to provide a more fair assessment. Trajectories were

compared against the ground truth using evo [Gru17] in TUM [SEE12a] format and aligned

with the Umeyama algorithm [Ume91] for all public benchmark datasets. Algorithms which

did not produce meaningful results are indicated accordingly in the tables, and trajectory

lengths for each dataset are indicated in italics to give a reader a sense of duration. All tests

78



were conducted on a 16-core Intel i7-11800H CPU.

4.6.2.1 Newer College Dataset

Trajectory accuracy and average per-scan time of all algorithms were also compared using

the original Newer College benchmark dataset [RWC20]. For these tests, we used data from

the Ouster OS1-64 (10Hz) in addition to its internal IMU (100Hz) to ensure accurate time

synchronization between sensors. For certain Newer College datasets, the first 100 poses

were excluded from computing FAST-LIO2’s RMSE due to slippage at the start in order

to provide a fair comparison. Short, Long, and Parkland experiments were routes recorded

at a standard walking pace around several different sections, while Quad and Dynamic

featured rapid linear and angular movements. The results are shown in Table 4.2, in which

we observed our method to produce the lowest trajectory RMSE as compared to all other

algorithms. Fig. 3.6 illustrates DLIOM’s low trajectory error compared to ground truth for

the Newer College - Long Experiment dataset even after over three kilometers of travel.

4.6.2.2 Newer College Extension Dataset

Additionally, we compared all algorithms using the latest extension to the Newer College

benchmark dataset [ZCF21], which features three collections of data. Collections 1 and 3

contains three datasets each with progressively increasing difficulty, from “Easy” (E), which

had slow paced movement, to “Medium” (M), which featured slightly more aggressive turn-

rates and motions, and finally to “Hard” (H), which contained highly aggressive motions,

rotations, and locations in both small and large environments. Collection 2 contains three

datasets, each of which are highly different than the other to create a diverse set of envi-

ronments. This includes traversing up and down a staircase, walking around a cloister with

limited visibility, and a large-scale park with multiple loops. In this benchmark dataset, we

used data from the Ouster OS0-128 (10Hz) in addition to the Alphasense Core IMU (200Hz),

79



T
ab

le
4.
2:

C
om

p
ar
is
on

w
it
h
N
ew

er
C
ol
le
ge

D
at
as
et

A
lg
or
it
h
m

T
y
p
e

A
b
so
lu
te

T
ra
je
ct
o
ry

E
rr
o
r
(R

M
S
E
)
[m

]
A
ve
ra
g
e

C
o
m
p
.

[m
s]

S
h
o
rt

L
o
n
g

Q
u
a
d

D
y
n
a
m
ic

P
a
rk
la
n
d

1
6
0
9
.4
0
m

3
0
6
3
.4
2
m

4
7
9
.0
4
m

9
7
.2
0
m

6
9
5
.6
8
m

D
L
O

[C
L
A
22
a]

L
O

0
.4
6
3
3

0
.4
1
2
5

0
.1
0
5
9

0
.1
9
5
4

0
.1
8
4
6

4
8
.1
0

C
T
-I
C
P

[D
D
J
21
]

L
O

0
.5
5
5
2

0
.5
7
6
1

0
.0
9
8
1

0
.1
4
2
6

0
.1
8
0
2

4
1
2
.2
7

K
IS
S
-I
C
P

[V
G
M
23
b
]

L
O

0
.6
6
7
5

1
.5
3
1
1

0
.1
0
4
0

F
a
il
ed

0
.2
0
2
7

1
6
7
.3
8

L
IO

-S
A
M

[S
E
M
20
]

L
IO

0
.3
9
5
7

0
.4
0
9
2

0
.0
9
5
0

0
.0
9
7
3

0
.1
7
6
1

1
7
9
.3
3

F
A
S
T
-L
IO

2
[X
C
H
22
]

L
IO

0
.3
7
7
5

0
.3
3
2
4

0
.0
8
7
9

0
.0
7
7
1

0
.1
4
8
3

4
2
.8
6

D
L
IO

(N
on

e)
L
IO

0
.4
2
9
9

0
.3
9
8
8

0
.1
1
1
7

0
.1
9
5
9

0
.1
8
2
1

3
4
.8
8

D
L
IO

(D
is
cr
et
e)

L
IO

0
.3
8
0
3

0
.3
6
2
9

0
.0
9
4
3

0
.0
7
9
8

0
.1
5
3
7

3
4
.6
1

D
L
IO

(C
on

ti
n
u
ou

s)
[C
N
L
23
b
]

L
IO

0
.3
6
0
6

0
.3
2
6
8

0
.0
8
3
7

0
.0
6
1
2

0
.1
1
9
6

3
5
.7
4

D
L
IO

M
L
IO

0
.3
5
7
1

0
.3
2
5
2

0
.0
8
2
1

0
.0
6
0
9

0
.1
1
8
1

3
6
.2
1

80



T
ab

le
4.
3:

C
om

p
ar
is
on

w
it
h
N
ew

er
C
ol
le
ge

E
x
te
n
si
on

D
at
as
et

A
lg
or
it
h
m

T
y
p
e

A
b
so
lu
te

T
ra
je
ct
o
ry

E
rr
o
r
(R

M
S
E
)
[m

]
A
v
g

C
o
m
p
.

[m
s]

Q
u
ad

-E
Q
u
a
d
-M

Q
u
a
d
-H

S
ta
ir
s

C
lo
is
te
r

P
a
rk

M
a
th
s-
E

M
a
th
s-
M

M
a
th
s-
H

2
4
6
.6
7
m

2
6
0
.3
6
m

2
3
4
.8
1
m

5
7
.0
4
m

4
2
8
.7
9
m

2
3
9
6
.2
0
m

2
6
3
.6
2
m

3
0
4
.2
8
m

3
2
0
.5
6
m

D
L
O

[C
L
A
22
a]

L
O

0.
08
66

0.
11
4
1

0
.1
4
9
0

0
.1
6
0
5

0
.1
6
0
8

0
.8
1
0
8

0
.1
6
5
8

0
.7
7
3
0

1
.0
8
6
4

3
1
.3
4

C
T
-I
C
P

[D
D
J
21
]

L
O

0.
09
74

0.
1
8
2
0

F
a
il
ed

F
a
il
ed

0
.3
5
5
8

0
.7
9
3
5

0
.0
9
7
0

0
.1
3
6
2

F
a
il
ed

2
1
3
.4
1

K
IS
S
-I
C
P

[V
G
M
23
b
]

L
O

0.
09
60

0.
2
0
1
6

0
.3
6
6
3

F
a
il
ed

0
.7
3
9
8

0
.9
6
3
1

0
.0
7
1
8

0
.1
2
0
3

0
.2
7
8
9

6
2
.3
8

L
IO

-S
A
M

[S
E
M
20
]

L
IO

0.
07
14

0.
0
7
1
8

0
.0
9
0
9

F
a
il
ed

0
.0
8
1
1

0
.8
3
7
1

0
.0
7
8
4

0
.1
1
6
8

0
.0
9
3
2

5
1
.5
7

F
A
S
T
-L
IO

2
[X
C
H
22
]

L
IO

0.
04
91

0.
0
6
0
8

0
.0
6
7
0

F
a
il
ed

0
.0
5
9
4

0
.2
6
7
8

0
.0
8
7
2

0
.1
0
2
4

0
.0
6
4
6

2
8
.0
4

D
L
IO

[C
N
L
23
b
]

L
IO

0.
03
88

0.
0
6
1
0

0
.0
6
3
1

0
.1
5
5
9

0
.0
8
5
5

0
.2
8
6
6

0
.0
7
8
6

0
.0
9
8
3

0
.0
8
6
3

2
5
.9
9

D
L
IO

M
L
IO

0
.0
3
5
0

0
.0
5
7
1

0
.0
6
1
5

0
.0
6
8
6

0
.0
5
4
6

0
.2
6
0
8

0
.0
6
0
9

0
.0
9
0
4

0
.0
6
0
9

2
7
.8
9

81



Table 4.4: Comparison with MulRan DCC03

Algorithm
Relative Trajectory Error (RPE)

Translation [%] Rotation [°/m]

LIO-SAM [SEM20] 2.4 0.009

FAST-LIO2 [XCH22] 6.8 0.030

Wildcat [RKC22] 2.9 0.010

DLIOM 2.4 0.007

since this particular extension had well-synchronized data.

The results are shown in Table 4.3 for all tested algorithms. Particularly of note are the

two Hard (H) datasets, in addition to the Stairs dataset. For Quad (H) and Maths (H),

both of which had highly aggressive and unpredictable movements, CT-ICP failed (even

when reducing playback speed down to 10%), while both DLO and KISS-ICP had signifi-

cantly higher trajectory errors. This demonstrates the strength and need for fusing inertial

measurement units for point cloud motion correction. For Stairs, most algorithms failed to

produce meaningful results due to the difficult ascension and the limited vertical field-of-

view from the LiDAR sensor. Of those which could track sufficiently, both DLO and DLIO

had significantly high errors; however, by detecting and placing a new keyframe right at the

onset of slippage, DLIOM is able to achieve a low RMSE of just 0.0686m. This is further

illustrated in Fig. 4.8, in which keyframes (white nodes) are placed at locations with high

scene change (e.g., through the door, in-between stairs).

4.6.2.3 MulRan Dataset

To compare against Wildcat [RKC22], we use the MulRan DCC03 [KPC20] dataset. This is

shown in Table 4.4 (results for LIO-SAM, FAST-LIO2, and Wildcat retrieved from [RKC22]).

While the details of specifically how the relative trajectory error (RPE) was computed are

unclear, we assume that the translational metric was the average RPE with respect to

82



Figure 4.10: MulRan DCC03. Top-down view of the map of the MulRan DCC03 dataset,
generated by DLIOM. This specific dataset featured approximately 5421.82 meters of travel
from driving around three different loops in Korea.

the point distance error ratio using evo [Gru17], and the rotational metric was using evo’s

“rot part” option. A fair comparison of absolute trajectory error could not be conducted,

as numerical values were not provided by the authors, but DLIOM’s ATE was on average

2.36m and 2.4°. Top-down map is shown in Fig 4.10.

4.6.2.4 UCLA Campus Dataset

We additionally showcase our method’s accuracy using four large-scale datasets at UCLA

for additional comparison (Fig. 3.7). These datasets were gathered by hand-carrying our

aerial platform (Fig. 4.1) over 2261.37m of total trajectory. Our sensor suite included an

Ouster OS1 (10Hz, 32 channels recorded with a 512 horizontal resolution) and a 6-axis

InvenSense MPU-6050 IMU located approximately 0.1m below it. We note here that this

IMU can be purchased for approximately $10, demonstrating that LIO algorithms need not

require high-grade IMU sensors that previous works have used. Note that a comparison

83



T
ab

le
4.
5:

C
om

p
ar
is
on

w
it
h
U
C
L
A

C
am

p
u
s
D
at
as
et

A
lg
or
it
h
m

T
y
p
e

R
oy
ce

H
a
ll
(A

)
C
o
u
rt

o
f
S
ci
en
ce
s
(B

)
B
ru
in

P
la
za

(C
)

S
cu
lp
tu
re

G
a
rd
en

(D
)

6
5
2
.6
6
m

5
2
6
.5
8
m

5
5
1
.3
8
m

5
3
0
.7
5
m

E
rr
or

[m
]

C
o
m
p
[m

s]
E
rr
o
r
[m

]
C
o
m
p
[m

s]
E
rr
o
r
[m

]
C
o
m
p
[m

s]
E
rr
o
r
[m

]
C
o
m
p
[m

s]

D
L
O

[C
L
A
22
a]

L
O

0.
02
16

2
0
.4
0

1
.2
9
3
2

2
0
.7
7

0
.0
3
7
5

2
1
.1
8

0
.0
1
7
8

2
1
.6
2

C
T
-I
C
P

[D
D
J
21
]

L
O

0.
03
87

3
5
1
.8
5

0
.0
6
9
9

3
4
2
.7
6

0
.0
9
6
6

3
3
4
.1
5

0
.0
2
5
3

3
7
0
.1
9

K
IS
S
-I
C
P

[V
G
M
23
b
]

L
O

0.
06
89

5
0
.2
8

0
.4
0
0
7

3
1
.8
4

0
.2
4
1
2

3
5
.3
1

0
.0
9
8
7

6
2
.9
6

L
IO

-S
A
M

[S
E
M
20
]

L
IO

0.
02
16

3
3
.2
1

0
.0
6
9
2

2
9
.1
4

0
.0
9
3
6

3
9
.0
4

0
.0
2
4
9

4
8
.9
4

F
A
S
T
-L
IO

2
[X
C
H
22
]

L
IO

0.
04
54

1
5
.3
9

0
.0
3
5
3

1
2
.2
5

0
.0
3
6
3

1
4
.8
4

0
.0
2
2
9

1
5
.0
1

D
L
IO

[C
N
L
23
b
]

L
IO

0.
01
05

1
0
.4
5

0
.0
2
3
3

8
.3
7

0
.0
3
0
1

8
.6
6

0
.0
0
8
2

1
0
.9
6

D
L
IO

M
L
IO

0
.0
0
9
7

1
2
.9
1

0
.0
2
2
8

1
4
.1
8

0
.0
2
3
5

1
5
.3
7

0
.0
0
7
8

1
3
.7
8

84



of absolute trajectory error was not possible due to the absence of ground truth, so as is

common practice, we compute end-to-end translational error as a proxy metric (Table 4.5).

In these experiments, our method outperformed all others across the board in end-to-end

translational error. However, similar to the trends found in the Newer College datasets,

our average per-scan computational time has slightly increased due to the new algorithmic

additions since DLIO. Regardless however, our resulting maps can capture fine detail in

the environment which ultimately provides more intricate information cues for autonomous

mobile robots such as terrain traversability.

4.7 Discussion

This chapter presents Direct LiDAR-Inertial Odometry and Mapping (DLIOM), a reliable

SLAM algorithm with an extreme focus on operational reliability and accuracy to yield

real-time state estimates and environmental maps across a diverse set of domains. DLIOM

mitigates several common failure points in typical LiDAR-based SLAM solutions through

an architectural restructuring and several algorithmic innovations. Rather than using a

single sensor fusion framework (e.g., probabilistic filter or graph optimization) to produce

both localization and map as is typical in other algorithms, we separate these two processes

into separate threads and tackle them independently. Leveraging a nonlinear geometric

observer guarantees the convergence of IMU propagation towards LiDAR scan-matching

and reliably initializes velocity and sensor biases, which is required for our fast coarse-to-fine

motion correction technique. On the other hand, a factor graph, with nodes at keyframe

locations determined by our odometry thread, continually optimizes for a best-fit map using

connective factors between overlapping keyframes, which provide extra relative constraints

to the optimization problem.

Fast and reliable localization is achieved hierarchically in the front-end’s scan-matching,

keyframing and submapping processes. An adaptive scan-matching method automatically

85



tunes the maximum distance between corresponding planes for GICP by computing a novel

point cloud sparsity metric, resulting in more consistent registration in differently sized

environments. Slip-resistant keyframing ensures a sufficient number of data correspondences

between the scan and the submap by detecting abrupt scene changes using a new sensor-

agnostic degeneracy metric. Finally, our submap is explicitly generated by computing the 3D

Jaccard index between the current scan and each environmental keyframe to ensure maximal

overlap in the submap for data correspondence searching. These ideas collectively enable a

highly reliable LiDAR SLAM system that is not only agnostic to the operating environment,

but is also fast and online for real-time usage on computationally-constrained platforms.

86



CHAPTER 5

Conclusion

Inspired by a real-world need for fast and consistent localization and mapping for computationally-

limited robotic platforms, this dissertation presents four novel algorithms which attempt to

address known deficiencies in current state-of-the-art systems. These algorithms seek to be

simultaneously (1) fast and efficient with low computational complexity and high estima-

tion accuracy through innovative algorithmic design, and (2) reliable and domain-agnostic

with long-term operational reliability, enabled by their ability to generalize across a diverse

set of operating environments without the need for manual intervention. These four core

algorithms are summarized in the next section and all aim to help advance our society’s

engineering capabilities for autonomous mobile robots.

5.1 Summary of Contributions

• Fast Localization with Dense Point Clouds. A novel frontend localization solu-

tion that enables the direct use of dense point cloud scans without significant prepro-

cessing. This is made possible through a custom speed-oriented pipeline with three

core contributions to efficiently handle the large amounts of data from LiDAR sensors.

This was the first of its kind, is open-source, and has attracted a significant amount of

attention by the community.

• Parallelizable Continuous-Time Motion Correction. A fast and reliable LiDAR-

inertial odometry algorithm that delivers accurate localization and detailed 3D map-

87



ping, made possible through a novel coarse-to-fine technique for constructing continuous-

time trajectories for accurate and parallelizable point-wise motion correction. Up until

this point, motion correction algorithms were either highly inefficient or highly inaccu-

rate, but DLIO demonstrated the possibility for fast, accurate processing with minimal

overhead through a condense archtecture which cut away several unnecessary processes.

• Perceptive and Connective SLAM. A new, reliable LiDAR SLAM algorithm

that prioritizes computational efficiency, operational reliability, and real-world efficacy,

which offers valuable insights into modern LiDAR SLAM systems, addressing common

algorithmic failure points where current state-of-the-art algorithms struggle to achieve

long-term operational reliability in the unstructured real world. This is made possible

through several core innovations which are strategically located throughout both the

front-end and back-end subsystems to target different scales in the data processing

pipeline to create an architecture perceptive to the environment to comprehensively

increase localization resiliency and mapping accuracy.

5.2 Limitations & Future Work

Limitations in the work presented in this dissertation expose several future directions for

improving the proposed systems. For instance, improving the scalability of such algorthms

would enable large-scale and long-term SLAM. We have shown that the time complexity

of direct algorithms can be improved dramatically, but memory usage is still somewhat

high. Improving on the space complexity through, for example, point cloud compression

techniques would reduce the overall memory usage of such algorithms. Dynamic objects

and detecting changes in the map would allow the robot to build an internal map of only

static objects, which would improve map generalization and ultimately localization quality.

In addition, the presented algorithms are all purely geometric. That is, the output pose and

map representation are strictly in Euclidean space and solely provide metric measurements to

88



the system (i.e., XYZ pose, point cloud maps containing XYZ points, etc.). Conversely, there

has been significant recent interest in semantic methods in both 2D and 3D domains, such

as semantic segmentation and semantic SLAM. One could easily imagine pushing the work

presented in this document even further to create fast and reliable semantic robot perception.

Current methods for semantic perception involve the requirement of properly labeled images

with ground truth semantic segmentation, which is tedious and often time-consuming, for

machine learning algorithms. However, the intensity channel from LiDAR returns are often

some function of distance and material (to represent the reflectivity of the object a point

collided with). If, perhaps, this relationship could be explicitly formulated, the intensity

would provide a notion of “semantics” which would not require any sort of training scheme.

Such a process could better constrain SLAM algorithms by providing more information

about the outside world, and how the intensity of a certain material changes as a function of

distance for data association, to create 3D semantic LiDAR SLAM. Additionally, research

on 3D semantic segmentation would pave the way for more intelligent path planning by

enabling agents to truly understand their outside world. While there are several groups who

are currently studying this problem (mostly in the 2D domain), there still remains several

open questions towards this pursuit. What does it even mean for a system to “understand” its

environment? How can we best use this understanding for navigation and task completion?

Is there a proper measurement for optimal understanding of the environment? Such open

questions lie at the intersection of engineering, neuroscience, and philosophy, and could very

well never be answered.

Another potential future direction is to augment the pipeline with an additional ex-

teroceptive sensor, such as a radar, to further help constrain localization on both local

and global scales. Using a frequency-modulated continuous-wave (FMCW) radar, where a

continuous-wave radio energy of known frequency is transmitted by the device the received,

one can detect not only individual objects but also each object’s movement speed by analyz-

ing the difference in transmitted and received frequency; this is possible from the Doppler

89



phenomenon and is known as “Doppler velocity.” This can be useful for SLAM is several dif-

ferent ways. A notable deficiency in state estimation using LO/LIO methods is its inability

to directly measure linear velocity. While angular velocity can be directly measured via an

IMU’s gyroscope (and therefore can be integrated to get angular position), linear velocity

(which is required for point cloud motion correction, optimization prior construction, etc)

is estimated from integrating the linear acceleration from an accelerometer. It is important

to know that integration of such measurements in general suffer from accumulated error.

However, double-integrating linear acceleration to retrieve position is especially dangerous,

since any measurement errors, however small, are accumulated over time, and due to inte-

gration error, a constant error in acceleration results in linear error in velocity and quadratic

error growth in position. Thus, a direct measurement of linear velocity will decrease overall

system sensitivity to measurement noise. In general, multimodal sensor fusion is still an

open question, and further research into how best to combine various sensing modalities to

maximize each sensor’s utility (rather than, for example, throwing everything into a single

pose graph) is crucial for the future of autonomy.

5.3 Concluding Remarks

Robotics is really, really hard. However, truly autonomous robots would be unparalleled in

terms of societal impact and would provide unimaginable value to our human race. Fully self-

driving vehicles would drastically improve road safety, reduce traffic congestion, and improve

the carbon footprint of transportation as a whole. Healthcare robotics would help reduce

the workload of overworked healthcare professionals by assisting in medication delivery and

surgeries—improving overall patient satisfaction and outcomes. In agriculture, tasks such

as planting, harvesting, and monitoring crops could be performed by autonomous robots

to increase crop yield and improve the efficiency of farming operations. Robots could also

be used to better monitor the environment by collecting data on air and water quality or

90



wildlife populations, helping researchers better understand the impact of human activities

and develop strategies to mitigate it. Search and rescue robots could locate and help extract

survivors in disaster-stricken areas, entering areas too dangerous for human rescuers and

potentially saving countless lives. Finally, exploratory robots could be used in space or

deep underwater exploration to collect data, conduct scientific experiments, search for life

on other planets, and help scientists better understand the universe—potentially unlocking

the meaning to our human existence. The potential for autonomous robots is limited only

by our imagination and our ability to develop the corresponding technologies.

This dissertation may only be a small piece in the vast knowledge required to achieve

truly autonomous robots, but if the contents of this document help with the advancement

of our robotic capabilities even a little, then I will have succeeded in my goals as a graduate

student and hope to continue doing so for the remainder of my time in this universe. As we

continue to push the boundaries of our robotic capabilities, the need for passionate, curious

scientists and engineers will grow. I encourage anyone with an interest in robotics to join

this journey with me.

91



APPENDIX A

Unsupervised Monocular Depth Learning with

Integrated Intrinsics and Spatio-Temporal Constraints

Monocular depth inference has gained tremendous attention from researchers in recent years

and remains as a promising replacement for expensive time-of-flight sensors, but issues with

scale acquisition and implementation overhead still plague these systems. To this end, this

work presents an unsupervised learning framework that is able to predict at-scale depth maps

and egomotion, in addition to camera intrinsics, from a sequence of monocular images via a

single network. Our method incorporates both spatial and temporal geometric constraints to

resolve depth and pose scale factors, which are enforced within the supervisory reconstruction

loss functions at training time. Only unlabeled stereo sequences are required for training the

weights of our single-network architecture, which reduces overall implementation overhead as

compared to previous methods. Our results demonstrate strong performance when compared

to the current state-of-the-art on multiple sequences of the KITTI driving dataset and can

provide faster training times with its reduced network complexity.

A.1 Overview

Modern robotic agents take advantage of accurate, real-time range measurements to build a

spatial understanding of their surrounding environments for collision avoidance, state esti-

mation, and other navigational tasks. Such measurements are commonly retrieved via active

sensors (e.g., LiDAR) which resolve distance by measuring the time-of-flight of a reflected

92



Single NetworkStereo Images

Training

Inference

Network Weights

θ*

Stereo Training

θL

R

Monocular Inference
Single NetworkStereo Images

Training

Network Weights

θ*
θ*

Disparities

IntrinsicsEgomotion

Predicted Depth, Trajectory, & Intrinsics

Figure A.1: System Overview. Our system regresses depth, pose and camera intrinsics
from a sequence of monocular images. During training, we use two pairs of unlabeled stereo
images and consider losses in both spatial and temporal directions for our network weights.
During inference, only monocular images are required as input, and our system outputs
accurately scaled depth maps and egomotion in addition to the camera’s intrinsics.

light signal; however, these sensors are often costly [RB19], difficult to calibrate and main-

tain [Kat03,ML10], and can be unwieldy for platforms with a weight budget [LH17]. Passive

sensors, on the other hand, have seen a tremendous surge of interest in recent literature

to predict scene depth from input imagery using multi-view stereo [SCD06,SZF16,FCS10],

structure-from-motion [HZ03,NLD11,SF16,DST00], or more recently, purely monocular sys-

tems [GLJ19, GMF19, BLW19, ZBS17, YS18, ZLH18], due to their smaller form factor and

increasing potential to rival the performance of explicit active sensors with the advent of

machine learning.

In particular, monocular depth inference is attractive since RGB cameras are ubiqui-

tous in modern times and requires the least number of sensors, but this setup suffers from

a fundamental issue of scale acquisition. More specifically, in a purely monocular system,

depth can only be estimated up to an ambiguous scale and requires additional geomet-

ric information to resolve the units of the depth map. Such cameras typically capture

93



frames by projecting 3D scene information onto a 2D image plane, and abstracting higher

dimensional depth information from a lower dimension is a fundamentally ill-posed prob-

lem. To resolve the scale factors of these depth maps, a variety of learning-based ap-

proaches have been proposed with differing techniques to constrain the problem geomet-

rically [PAT18,GAB17,GMF19,GBC16,SCN06,LSL15,SSN08,TTL17,SSC19,GR20]. Tem-

poral constraints, for example, are commonly employed [GLJ19,SSC19,FGW18,XW18] and

is defined as the geometric constraint between two consecutive monocular frames, aiming to

minimize the photometric consistency loss after warping one frame to the next. Spatial con-

straints [GAB17,GMF19,PAG19], on the other hand, extract scene geometry not through

a forward-backward reconstruction loss (i.e., temporally) but rather in left-right pairs of

stereo images with a predefined baseline. Most works choose to design their systems around

either one or the other, and while a few systems have integrated both constraints before in

a multi-network framework [ZGW18,LWL18,MDM18], none have taken advantage of both

spatial and temporal constraints in a single network to resolve these scale factors.

To this end, we developed an unsupervised, single-network monocular depth inference

approach that considers both spatial and temporal geometric constraints to resolve the scale

of a predicted depth map. These “spatio-temporal” constraints are enforced within the

reconstruction loss functions of our network during training (Fig. A.1), which aim to minimize

the photometric difference between a warped frame and the actual next frame (forward-

backward) while simultaneously maximizing the disparity consistency between a pair of

stereo frames (left-right). Unlike previous approaches, we consider camera intrinsics as an

additional unknown parameter to be inferred and demonstrate accurate inference of both

depth and camera parameters through a sequence of purely monocular frames; this is all

performed in a single end-to-end network to minimize implementation overhead.

Our spatio-temporal network is inspired by [ZGW18, MDM18, LWL18] that uses an

effective combination of losses to simultaneously regress depth and egomotion in a sin-

gle network. Additionally, to provide freedom from manual calibration, the network is

94



It + 1 512, 3x3

512, 3x3

512, 3x3

512, 3x3

256, 3x3

128, 3x3

64, 5x5

32, 7x7

512, 3x3

256, 3x3

128, 3x3

64, 3x3

32, 3x3

16, 3x3

512

512

n

Common Encoder

Decoder

Fully Connected Layers (x3)

R

t
It

Dt
l

Dt+1
l

Dt
r

Dt+1
r

K

^

^

^

Figure A.2: Architecture Overview. Our system uses a common convolutional-based
encoder between the different outputs, which compresses the input images into a latent space
representation. This representation is then sent through either a trained decoder to retrieve
left-right stereo image disparities, or through different groups of fully connected layers to
estimate egomotion (n = 3) or camera intrinsics (n = 4). In the common encoder, each
block uses a series of two convolutional layers, the first with stride 2 and the second stride
1 (zero padding), and with input dimensions and kernel sizes as specified. The transposed
convolutional blocks in the decoder are similarly structured, with pooling indices received
from the corresponding encoder’s feature maps.

also capable of learning camera intrinsics which can be useful when a video source is un-

known [SSC19, GLJ19]. To predict depth, we use a photoconsistency loss between stereo

image pairs, a left-right consistency loss between image disparity maps [GAB17], and a dis-

parity map smoothing function [HKJ13]. To estimate egomotion and camera intrinsics, we

leverage a unique loss function that accounts for the photometric difference between tem-

porally adjacent images. By combining these losses, we show that we can obtain scaled

visual odometry information and accurate camera parameters. Furthermore, by observing

the similarities between the architecture of the depth network encoder and the pose network’s

convolutional layers, we can effectively eliminate architecture redundancy by merging them

via a common encoder (Fig. A.2) and can provide faster training times without significant

loss in performance.

Our main contributions are as follows: (1) we develop an unsupervised, single-network

architecture for monocular depth inference which takes advantage of the geometric con-

95



straints found in both spatial and temporal directions; (2) a novel loss function that inte-

grates unknown camera intrinsics directly into the single-network training procedure; and

(3) extensive performance and run-time analyses of our proposed architecture to verify our

methods. These efforts were in support of NASA’s Jet Propulsion Laboratory’s Networked

Belief-aware Perceptual Autonomy (NeBula) framework [AOM21] as part of Team CoSTAR

in the DARPA SubT Challenge.

A.2 Related Work

Depth estimation using monocular images and deep learning began with supervised methods

over large datasets and ground truth labeling [EPF14,EF,LSL15]. Although these methods

produced accurate results, acquiring ground truth data for supervised training requires ex-

pensive 3D sensors, multiple scene views, and inertial feedback to obtain even sparse depth

maps [GBC16]. Later work sought to address a lack of available high-quality labeled data

by posing monocular depth estimation as a stereo image correspondence problem, where

the second image in a binocular pair served as a supervisory signal [GBC16,GAB17,PAT18].

This approach trained a convolutional neural network (CNN) to learn epipolar geometry con-

straints by generating disparity images subject to a stereo image reconstruction loss. Once

trained, networks were able to infer depth using only a single monocular color image as in-

put. While this work achieved results comparable to supervised methods in some cases,

occlusion and texture-copy artifacts that arose with stereo supervision motivated learn-

ing approaches using a temporal sequence of images as an alternative [GAB17, GMF19].

CNNs trained using monocular video regressed depth using the camera egomotion to warp

a source image to its temporally adjacent target. To address the additional problem of cam-

era pose, [ZBS17,BLW19,YS18,ZLH18,GMF19,GLJ19,GAP20,YWW18] trained a separate

pose network.

The learning of visual odometry (VO) and depth maps has useful application in visual

96



simultaneous localization and mapping (SLAM). Visual SLAM leverages 3D vision to navi-

gate an unknown area by determining camera pose relative to a constructed global map of

an environment. To build and localize within a map, VO in a SLAM pipeline must solve

at metric scale. Geometric approaches to monocular SLAM using first principled solutions,

such as structure from motion (SfM) [KV91], resolved scaling issues using external informa-

tion [CWW,GR20]. Building on such methods, work in data-driven monocular VO obtained

scale using sources such as GPS sensor fusion [PL17] or training supervision [CWW,GAP20].

Unsupervised approaches using a camera alone remain attractive however, due to the reduc-

tion of manual effort associated with fewer sensors. Promising research in this area combined

visual constraints (e.g., monocular depth [ZBS17, BLW19, YS18, ZLH18, GMF19, GLJ19],

stereo depth [ZGW18,MDM18, LWL18, GR20], or optical flow [ZLH18, LY19]) to achieve

scale consistent outcomes.

Network architecture for visual odometry and dense depth map estimation separate depth

and pose networks into two CNNs, one with convolutional and fully connected layers and the

other an encoder-decoder structure [BKC17], respectively. In the case where only monocular

images are used in training, the self-supervision inherent in estimation is less constrained,

having only pose generated from temporal constraints to determine depth, and vice versa

[LY19]. The work of [VR17, ZBS17] for example, suffered from scaling ambiguity issues

[ZGW18]. Training using binocular video, on the other hand, made use of independent

constraints from spatial and temporal image pairs that offered an enriched set of sampled

images for network training. This “spatio-temporal” approach allowed for the regression of

depth from spatial cues generated by epipolar constraints, which were then passed to the

pose network to independently estimate VO using temporal constraints [ZGW18,MDM18,

LWL18,GMF19,LY19].

97



]

𝐼𝑡
𝑟

𝐼𝑡 + 1
𝑙

𝐼𝑡
𝑙

𝐼𝑡
𝑙𝐼𝑡

𝑟

𝐼𝑡 + 1
𝑙

𝐷𝑡
𝑙𝐷𝑡

𝑟

𝑡 ,𝑅,𝐾

𝑙 𝐼𝑟 , 𝐼𝑟 + 𝑙 𝐼𝑙, 𝐼𝑙𝑡 + 1
𝑙 )

Temporal Learning Spatial Learning

− −
𝑙(𝐼𝑡 + 1

𝑙 , 𝐼

Figure A.3: Training Diagram. Our single-network system runs a timed sequence of left
images through the common encoder (light blue trapezoid) to generate outputs that are fed to
the fully connected (FC) layers (blue rectangles) and the decoder (green trapezoid). Outputs
from the FC layers and the decoder are the camera pose and intrinsics, and disparity maps,
respectively. The disparities are used to find left-right reprojected images (green dashed
lines), while the disparities, camera pose and intrinsics determine the temporal reprojections
(pink dashed lines). All input and output images are framed in black for clarity.

A.3 System Description

Our framework is inspired by [ZGW18,MDM18,LWL18], but rather than requiring two sep-

arate networks for depth and pose estimation, we use a common encoder for both tasks

in a novel single-network architecture (Fig. A.3). That is, given two temporally adjacent

input images at times t and t′, our network first convolves these inputs through a series of

convolutional blocks in a common encoder, and then predicts either disparities through a de-

98



coder, or camera pose and intrinsics through fully connected layers. In the decoder network,

the encoder’s latent representation of the input images is re-upsampled using transposed

convolutions with pooling indices from the encoder to fuse low-level features, as inspired

by [GAB17, ZGW18]. We use rectified linear units (ReLU) [NH10] as activation functions

in all layers of this decoder except for the prediction layer, which uses a sigmoid function

instead. The decoder predicts left-to-right and right-to-left disparities D at both timesteps,

which are then either used to reconstruct the right stereo images for a spatially-constrained

geometric loss during training via bilinear sampling, or used to construct the depth dur-

ing inference. In the fully connected layers, translation t̂t′→t, rotation R̂t′→t, and camera

intrinsics K̂ are predicted independently in three separate and decoupled groups of fully

connected layers for better performance [LWL18]. These outputs are then either taken at

face value during inference as the predicted egomotion and camera parameters, or used as

inputs (along with the estimated depth map) to warp the current frame to the next for our

temporal reconstruction loss as described previously.

A.3.1 Notation

A color image, I, is composed of pixels with coordinates pij ∈ R2, where Iij = I(pij). In

temporal training, we denote images at time t as I t, and images temporally adjacent as

source frame I t
′
. A pixel at time t′ is transformed to its corresponding pixel at time t using

homogeneous transformation matrix Tt′→t ∈ SE(3) and camera intrinsics matrix K ∈ R3×3,

where pixels in homogeneous coordinates, p̃ = (p, 1)T , are denoted p for simplicity.

Rectified stereo image pairs are given by Ir, I l, where the superscripts for time have

been dropped for convenience, and superscripts l, r correspond to the left and right images

respectively. Dl represents the disparity map that warps Ir to the corresponding I l, and

we define per pixel disparity as dlij = Dl(pij). Thus I lij = Ir
i+dl,j

, and dr
i+dl,j

= Dr(pi+dl,j)

is the disparity that does the reverse operation. Depth per pixel z is then determined by

the relation, z = Bfx/d, where fx is the x-component focal length and B is the horizontal

99



baseline between stereo cameras.

A.3.2 Preliminaries

We can obtain the projected pixel coordinates and depth map using equation,

ztpt = KRt′→tK
−1zt

′
pt

′
+Ktt′→t , (A.1)

where the intrinsics matrix, K, is written explicitly as:

K =

F X0

0 1

 , F = diag(fx, fy), X0 = [x0, y0]
T , (A.2)

and R and t are the rotation matrix and translation vector arguments of transformation

matrix T [GLJ19]. Note that in this work we assume no lens distortion and a zero skew

coefficient in the camera, and that stereo cameras have equal intrinsic parameters. Equation

(A.1) constitutes the temporal reconstruction loss at training used to determine the camera

egomotion, R and t, and the camera intrinsics K in a single network.

A.4 Single-Network Architecture

A.4.1 Optimization Objective

Our loss function is made up of a novel temporal reconstruction term and four spatial

reconstruction terms [GAB17], [GR20]. Error regression for the following losses allows the

network to correctly predict a target image temporally and spatially during training in

order to infer depth, pose, and camera intrinsics from a monocular image sequence at test

time. The temporal reconstruction term of the loss function is implicitly defined where

lte(I
l,t, I l,t

′
)→ Î l,t, and the spatial reconstruction terms are composed of a photoconsistency

100



loss, lp, a left-right consistency loss llr, and a disparity smoothness loss lr,

l
(
f(I l; θ), I l, Ir

)
= λp

(
lp(I

l, Î l) + lp(I
r, Îr)

)
+ λtelp(I

l,t, Î l,t) + λlrllr
(
Dl, Dr

)
+ λr

(
lr(D

l, I l) + lr(D
r, Ir)

)
.

(A.3)

The argument I in the loss function is the original image and Î is the reprojected image,

and individual losses are weighted by λ labeled with corresponding subscripts.

A.4.2 Spatio-Temporal Reconstruction Loss

The photoconsistency loss compares image appearance using the structural simularity index

measure (SSIM) and an absolute error between generated and sampled images [WBS04,

GAB17,MDM18]:

lp(I, Î) =
1

N

∑
i,j

α
1− SSIM

(
Iij, Îij

)
2

+ (1− α) |Iij − Îij| . (A.4)

The loss is composed of three terms in total (two spatial losses and a temporal loss). N in

this equation is the number of image pixels and the weight α is set to 0.85.

For reprojected images, we assume equal camera intrinsics produce right and left stereo

images. The focal length f̂x from instrinsics matrix K̂ in (A.2) is co-predicted via the

learned disparity and penalized using spatial reconstruction losses. For stereo image inputs,

predicted disparity maps are used to generate the left view from a right image, and vice

versa. Depth values calculated from the disparity maps are then input to the temporal

reconstruction loss to generate the left target image from temporally adjacent source images,

i.e. to generate the temporal image arguments for (A.4), we put (A.1) in the form where for

101



pixels P = {pi, i = 1 . . . N},

∑
i,j

|I l,tij − Î l,tij | →
∑
p∈P

∣∣∣∣ztpt − [
K̂R̂t′→tK̂

−1 bf̂x
dl

pt
′
+ K̂t̂t′→t

]∣∣∣∣ , (A.5)

is the absolute error between the left image and the reprojected image, and the structure

similarity measure is generated by the same mappings between Iij and pixel pi.

We distinguish this loss function from previous works in the following ways: depth esti-

mation in the above temporal relation is derived using spatial losses from within the same

network, and the temporal loss infers both egomotion and camera intrinsics. This goes be-

yond work that used solely temporal constraints and a separate depth network [GLJ19],

[SSC19] or spatio-temporal work that used predetermined intrinsics and a separate depth

network [GMF19], [LWL18,MDM18,ZGW18], [LY19].

A.4.3 Spatial Reconstruction Loss

The left-right disparity consistency loss is used to obtain consistency between disparity maps

[GAB17]. During training, the network predicts disparity maps Dl and Dr using only left

image sequences as input and then penalizes the difference between the left-view disparity

map and the warped right view, as well as the right-view and the warped left view,

llr(D
l, Dr) =

1

N

∑
i,j

∣∣dlij − dri+dl,j

∣∣+ ∣∣drij − dli+dr,j

∣∣ . (A.6)

The disparity smoothness loss penalizes depth discontinuities that occur at image gradients

∂I [HKJ13]. To obtain locally smooth disparities, an exponential weighting function is used

on disparity gradients ∂d:

lr(D, I) =
1

N

∑
i,j

∣∣∂xdij∣∣e−|∂xIij | +
∣∣∂ydij|e−|∂yIij | . (A.7)

102



A.4.4 Learning Camera Intrinsics

For predicted parameters K̂, R̂, t̂ in (A.1), penalizing differences via training loss ensures

K̂t̂ and K̂−1R̂K̂ converge to the correct values. To determine parameters individually, the

translational relation fails because it is under-determined since there exists incorrect values

of K̂ and t̂ such that K̂t̂ = Kt. The rotational relationship, K̂R̂K̂−1 = KRK−1, however,

does uniquely determine K̂, R̂ such that they are equal to K, R, and therefore provides

sufficient supervisory signal to estimate these values accurately.

Proof: From the above relation we obtain R̂ = K̂−1KRK−1K̂, and we constrain R̂ to

be SO(3), i.e. R̂T = R̂−1 and det(R̂) = 1. Substituting R̂ into the relationship R̂R̂T = I,

we find that AR = RA where A = K−1K̂K̂TK−T . The value det(K̂−1KRK−1K̂) is equal

to 1, therefore the determinant of A is also equal to 1. Moreover, the characteristic equation

of A shows A always has an eigenvalue of 1 [GLJ19]. Thus the eigenvalue of A is equal to

1 with an algebraic multiplicity of 3, implying A is the identity matrix, or the eigenvalues

are unique. If we assume A has 3 distinct eigenvalues, because A ∈ R3×3 and A = AT ,

we may choose the eigenvectors of A such that they are real. But because AR = RA,

for every eigenvector, v of A, Rv is also an eigenvector. For an eigenvalue with algebraic

multiplicity 1, the corresponding eigenspace is dim(1), thus Rv = µv for some scalar µ,

implying each eigenvector of A is also an eigenvector of R. If R is SO(3), however, it has

complex eigenvectors in general, which contradicts this assertion. Therefore A must be the

identity matrix, and K̂K̂T = KKT . Referring to K from (A.2), we observe,

KKT =

FF +X0X
T
0 X0

XT
0 1

 , (A.8)

which implies X̂0 = X0 and F̂ = F , or K̂ = K.

It is clear from above that for R = I, the relation AR = RA holds trivially, and K̂ cannot

be uniquely determined. Thus the tolerances with which F in (A.2) can be determined (in

103



units of pixels) with respect to the amount of camera rotation that occurs is quantified as,

δfx <
2f 2

x

w2ry
; δfy <

2f 2
y

h2rx
, (A.9)

where rx and ry are the x and y-axis rotation angles (in radians) between adjacent frames,

and w and h are the width and height of the image, respectively. For a complete proof on the

relation between the strength of supervision on K and the closeness of R to I, see [GLJ19].

A.5 Experimental Results

In this section, we evaluate our proposed framework using the KITTI driving dataset [MG15].

Network architecture was implemented using the TensorFlow framework [AAB15] and models

were trained on a single NVIDIA GeForce RTX 2070 Super GPU with 8GB of memory using

a batch size of 4. Adam optimizer [KB14] was used to train the network parameters, with

exponential decay rates β1 = 0.9 and β2 = 0.99 and learning rate α initially set to 0.001 but

gradually decreased throughout training. Standard data augmentation techniques were used

to increase the size of the dataset during training.

We compare our method against the current state-of-the-art using conventional metrics

(i.e., Abs Rel, Sq Rel, RMSE, RMSE log, and Accuracy for depth, and Absolute Trajectory

Error (ATE) for egomotion) as per [ZSZ20]. Table A.1 provides a quantitative overview of

how our work fits in current literature, and Fig. A.4 accompanies this table with a visual,

qualitative comparison. Tables II and III evaluate odometry and camera intrinsics estimation

performance, and Fig. A.5 shows a comparison of trajectory on the KITTI Odometry dataset.

We additionally evaluate our framework’s run-time performance to show the benefits of our

reduced network size and overhead while maintaining comparable performance with current

methods which can be seen in Fig. A.6.

104



Input Godard et al. [13] Zhan et al. [30]Luo et al. [48] Ours

Figure A.4: Qualitative Comparison of Depths. Visual comparison of regressed depth
maps between our method and various state-of-the-art methods ( [GMF19,LY19,ZGW18])
on four images from the KITTI Eigen split (images of other methods were retrieved from
[GMF19]). Even with a reduced size and complexity, our network can accurately regress
depth maps given a single monocular image.

A.5.1 Performance of Depth Estimation

To evaluate the performance of our network’s depth inference, we use a standard Eigen split

[EPF14] on the KITTI dataset [MG15] as per convention and compare against several state-

of-the-art methods with a depth cap of 80m. We train, validate, and test our network using

these splits and compare our depth estimation accuracy against multiple other works across

several metrics, as shown in Table A.1 Ground truth data for the testing set is calculated

via projecting the Velodyne LiDAR data onto the image plane.

Several important observations can be extracted from Table A.1. First, and most no-

tably, our method is the only one which provides a combined architecture for both pose and

depth regression (as indicated in the “Comb.” column). Whereas all previous methods split

egomotion and depth estimation tasks into separate pipelines, we reduce network redun-

dancy (and hence, number of parameters needed for training) by sharing the input latent

representation for both tasks via a common encoder. A second observation is that only two

105



T
ab

le
A
.1
:
C
om

p
ar
is
on

of
M
on

o
cu
la
r
D
ep
th

E
st
im

at
io
n
.

C
ro
p
p
ed

re
gi
on

s
fr
o
m

[G
A
B
1
7
]
w
er
e
u
se
d
fo
r
p
er
fo
rm

an
ce

ev
al
u
at
io
n
al
l
m
et
h
o
d
s.

In
th
e
co
lu
m
n
la
b
el
ed

“
T
y
p
e”
,
“
D
”
in
d
ic
at
es

su
p
er
v
is
ed

tr
a
in
in
g
w
it
h

g
ro
u
n
d

tr
u
th
,
“T

”
in
d
ic
at
es

te
m
p
or
al

tr
ai
n
in
g
on

ly
,
“S

”
in
d
ic
at
es

sp
a
ti
al

tr
a
in
in
g
on

ly
,
an

d
“S

T
”

in
d
ic
a
te
s
a
sp
a
ti
o
-t
em

p
o
ra
l
tr
a
in
in
g
ap

p
ro
ac
h
.

C
ol
u
m
n

“A
.C

.”
d
en

ot
es

w
h
et
h
er

ad
d
it
io
n
a
l
co
m
p
on

en
ts

(s
u
ch

a
s
p
re
-/
p
os
t-

p
ro
ce
ss
in
g
m
et
h
o
d
s)

w
er
e
u
se
d
in

ad
d
it
io
n
to

n
eu

ra
l
n
et
w
or
k
s,

an
d
co
lu
m
n
“C

om
b
.”

d
en

ot
es

w
h
et
h
er

p
o
se

a
n
d
d
ep

th
n
et
w
o
rk
s

w
er
e
co
m
b
in
ed

.
C
o
lu
m
n
“
In
t.
”
d
en

o
te
s
w
h
et
h
er

th
at

m
et
h
o
d
ca
n
si
m
u
lt
an

eo
u
sl
y
re
gr
es
s
ca
m
er
a
in
tr
in
si
cs
{Y

es
(Y

),
N
o
(N

)}
(a

d
as
h
“
-”

in
d
ic
a
te
s
n
o
ap

p
li
ca
b
il
it
y
).

W
e
ev
al
u
at
e
u
si
n
g
th
e
E
ig
en

sp
li
t
[E
P
F
14

]
on

th
e
K
IT

T
I
d
at
a
se
t
[M

G
1
5]

an
d
ca
p
d
ep

th
to

8
0m

as
p
er

st
an

d
ar
d
p
ra
ct
ic
e
[G

A
B
17

].
R
es
u
lt
s
fr
om

ot
h
er

m
et
h
o
d
s
w
er
e
ta
k
en

fr
om

th
ei
r
co
rr
es
p
on

d
in
g
p
ap

er
s.

F
or

er
ro
r

m
et
ri
cs
,
lo
w
er

is
b
et
te
r;

fo
r
ac
cu

ra
cy
,
h
ig
h
er

is
b
et
te
r.

E
rr
or

M
et
ri
cs

A
cc
u
ra
cy

M
et
ri
cs

M
et
h
o
d

T
y
p
e

A
.C

.
C
om

b
.

In
t.

A
b
s
R
el

S
q
R
el

R
M
S
E

R
M
S
E
lo
g

<
1.
25

<
1
.2
52

<
1
.2
53

T
.S
.
M
ea
n

D
-

-
-

0.
36

1
4.
82

6
8.
10

2
0.
3
77

0.
6
38

0
.8
0
4

0.
8
94

[Z
L
H
18

]
T

Y
N

N
0.
15

0
1.
12

4
5.
50

7
0
.2
2
3

0
.8
0
6

0.
9
33

0
.9
7
3

[Y
S
1
8
]

T
Y

N
N

0.
14

9
1.
06

0
5.
56

7
0
.2
2
6

0
.7
9
6

0.
9
35

0
.9
7
5

[S
S
C
1
9
]

T
N

N
Y

0.
13

5
1.
07

0
5.
23

0
0
.2
1
0

0
.8
4
1

0.
9
48

0
.9
8
0

[G
L
J
1
9]

T
Y

N
Y

0.
12

8
0.
95

9
5.
23

0
-

-
-

-

[G
A
P
20

]
T

Y
N

N
0
.1
1
1

0
.7
8
5

4
.6
0
1

0
.1
8
9

0
.8
7
8

0
.9
6
0

0
.9
8
2

[G
B
C
16

]
S

N
-

N
0.
17

7
1.
16

9
5.
28

5
0
.2
8
2

0
.7
2
7

0.
8
96

0
.9
5
8

[G
A
B
1
7]

S
N

-
N

0.
14

8
1.
34

4
5.
92

7
0
.2
4
7

0
.8
0
3

0.
9
22

0
.9
6
4

[P
A
T
18

]
S

N
-

N
0.
16

3
1.
39

9
6.
25

3
0
.2
6
2

0
.7
5
9

0.
9
11

0
.9
6
1

[P
A
G
19

]
S

N
N

N
0.
11

6
0.
93

5
5.
15

8
0
.2
1
0

0.
8
42

0
.9
4
5

0.
9
77

[L
Y
19

]
S
T

Y
N

N
0.
12

7
0.
93

6
5.
00

8
0
.2
0
9

0
.8
4
1

0.
9
46

0
.9
7
9

[G
M
F
19

]
S
T

Y
N

N
0.
12

7
1.
03

1
5.
26

6
0
.2
2
1

0
.8
3
6

0.
9
43

0
.9
7
4

[L
W

L
1
8]

S
T

N
N

N
0.
18

3
1.
73

0
6.
57

0
0
.2
6
8

-
-

-

[M
D
M
18

]
S
T

N
N

N
0.
13

9
1.
17

4
5.
59

0
0
.2
3
9

0
.8
1
2

0.
9
30

0
.9
6
8

[Z
G
W

18
]

S
T

N
N

N
0.
14

4
1.
39

1
5.
86

9
0
.2
4
1

0
.8
0
3

0.
9
28

0
.9
6
9

O
u
rs

S
T

N
Y

Y
0.
14

1
1.
22

7
5.
62

9
0
.2
3
9

0
.8
0
9

0.
9
27

0
.9
6
2

106



Table A.2: Regressed Camera Intrinsics Compared to Ground Truth.
Note that ground truth values have been adjusted to match the scaling and cropping done
for training. All values are in units of pixels.

Camera Parameter Learned Ground Truth
Horizontal Focal Length (fx) 298.4 ± 2.3 295.8
Vertical Focal Length (fy) 483.1 ± 3.6 489.2
Horizontal Principal Point (x0) 254.8 ± 2.4 252.7
Vertical Principal Point (y0) 127.8 ± 1.7 124.9

other works before ours are also capable of estimating camera intrinsics during the inference

phase ( [SSC19,GLJ19], as indicated in the “Int.” column). From these observations, our

proposed method, to the best of our knowledge, is the first to demonstrate a simultaneous

regression of pose, depth, and camera parameters in a reduced single-network design that

uses both spatial and temporal geometric constraints.

However, this reduction in network complexity may come with trade-offs. First, through

a quantitative lens, Table A.1 shows that our method is not the lowest in depth estimation

error or highest in accuracy. With a reduced network complexity, a possible explanation lies

in our encoder’s shared network parameters that must balance both depth and pose/intrinsics

pathways. However, even then, our error and accuracy is still strongly comparable to many

state-of-the-art methods, many of which have additional components to compensate for

occlusions, motion, etc. Compared to the current best with the lowest error and highest

accuracy [GAP20], we are on average ∼75.9% as error-free and ∼95.6% as accurate. This

can also be seen qualitatively in Fig. A.4. Our method lacks slightly in sharpness compared

to [GMF19] but can provide finer edges than [LY19] and [ZGW18]. Depending on one’s

setup, the benefits of faster training through a more compact network could outweigh such

trade-offs.

107



A.5.2 Learned Camera Intrinsics

To evaluate our system’s ability to recover camera intrinsics (i.e., fx, fy, x0, y0) through the

supervisory signal provided by the rotational component of (A.1), we follow a similar pro-

cedure as [GLJ19] and trained separate models on several different video sequences until

convergence of these parameters for multiple independent results. During training, param-

eters were randomly initialized to begin with and empirically had no convergence issues

throughout our experiments. We used ten video sequences of the “2011 09 28” subdataset

chosen to have the same ground truth calibration done that day, and Table A.2 shows the

resulting mean and standard deviation of those ten tests. All experiments were done on the

left stereo color camera (“image 02”) of the vehicle setup. For all four variables, we observe

that, on average across all ten tests, our method can learn the parameters accurately and

within a reasonable bound.

A.5.3 Egomotion

We carried out our pose estimation performance evaluation using four sequences from the

KITTI Odometry dataset [GLU12] and compared against several state-of-the-art methods,

including UnDEMoN [MDM18], SfMLearner [ZBS17], and VISO-M [GZS11]. For a quanti-

tative comparison, we adopt the absolute trajectory root-mean-square error (ATE) for both

translational (tate) and rotational (rate) components per standard practice [SEE12b]. We

note that we used the same model that was trained for depth estimation to output our

egomotion estimation, and that these four test sequences were not part of our training set.

Sequence 07 is shown in Fig. A.5.

From Table II, we observe that for both translational and rotational errors in all four

sequences, our method outperformed SfMLearner [ZBS17] and VISO-M [GZS11] and is com-

parable with UnDEMoN’s [MDM18] performance. In contrast to these methods, our system

co-predicts egomotion and camera intrinsics (alongside disparity) in a single network such

108



T
ab

le
A
.3
:
C
om

p
ar
is
on

of
O
d
om

et
ry

E
st
im

at
io
n

T
h
is

co
m
p
a
ri
so
n
in
cl
u
d
es

[M
D
M
1
8
,Z

B
S
17

,G
Z
S
11

]
an

d
u
se
s
ab

so
lu
te

tr
a
je
ct
or
y
er
ro
r
fo
r
tr
a
n
sl
at
io
n
(t

a
te
)
an

d
ro
ta
ti
on

al
(r

a
te
)

m
ov
em

en
t.

C
om

p
ar
is
on

w
a
s
d
o
n
e
o
n
fo
u
r
se
q
u
en

ce
s
of

th
e
K
IT

T
I
d
at
as
et
.

S
eq
.

O
u
rs

U
n
D
E
M
oN

[M
D
M
18

]
S
fM

L
ea
rn
er

[Z
B
S
1
7]

V
IS
O
-M

[G
Z
S
11

]

t a
te

r a
te

t a
te

r a
te

t a
te

r a
te

t a
te

r a
te

00
0.
07

1
2

0.
00

14
0
.0
6
4
4

0.
00

13
0.
73

66
0.
00

40
0
.1
7
47

0
.0
0
0
9

04
0
.0
9
6
2

0
.0
01

6
0.
09

74
0
.0
0
0
8

1.
55

21
0.
0
02

7
0.
2
18

4
0.
0
00

9

05
0
.0
6
8
9

0
.0
0
0
9

0.
06

96
0
.0
0
0
9

0.
72

60
0.
0
03

6
0.
3
78

7
0.
0
01

3

07
0.
07

5
3

0.
00

13
0
.0
7
4
2

0
.0
0
1
1

0.
52

55
0.
0
03

6
0.
4
80

3
0.
0
01

8

109



Ours
UnDEMoN [32]
SfMLearner [15]
VISO-M [49]
Ground Truth

Figure A.5: Trajectory Comparison. Visual comparison of estimated egomotion between
our method and several others ( [MDM18, ZBS17, GZS11]) on Sequence 07 of the KITTI
Odometry dataset. Corresponding tate and rate metrics can be found in Table A.3.

that the loss functions for these free parameters are tied together. This may explain the slight

loss in accuracy, especially when compared to [MDM18], but the upside is that our method

is a reduction in computational complexity as there are fewer weights in our architecture to

optimize over.

A.5.4 Run-Time Evaluation

Our single-network architecture design via a common encoder decreases overall network com-

plexity (and therewith the number of network parameters) which can decrease the necessary

time to optimize weights. Previously, when using a 7-layer CNN instead of our common

encoder for pose and intrinsics regression, network size was ∼30 million in trainable param-

eters; however, after replacing those layers with a common encoder, the number of trainable

110



200 40 60 80 100

3

4

5

6

7

Figure A.6: Loss Comparison. Average training loss of the first 100 epochs for both
architecture variants. The solid lines represent the mean across ten different runs, and
the shaded areas represent one standard deviation (∼70% confidence). The “Separate”
architecture used a 7-layer CNN for pose and intrinsics, while “Combined” used a common
encoder.

parameters reduced to ∼27.6 million. This is around an 8% savings.

Fig. A.6 shows the effects of this decrease through a run-time comparison. In this figure,

the mean (solid) and standard deviation (shaded) loss for each epoch is calculated across

ten independent runs for each model. We observed a smaller initial average loss in the

combined network, where in this case initialization of weights from the 7-layer CNN that

may contribute to a higher loss before being optimal is not necessary. Over time though, we

observed that these losses cross paths (roughly at 20 epochs), which is likely caused by the

additional 2.4 million parameters for its function approximation. Thus, for those looking

to maximize accuracy, a separated network may be better; however, for others who need

reasonable results very quickly, a combined network can provide that in just a few epochs.

A.6 Discussion

In this work we have presented an unsupervised, single-network monocular depth inference

approach for joint prediction of environmental depth, egomotion, and camera intrinsics.

Through training our neural network to learn spatial and temporal constraints between

111



stereo and temporally-adjacent pairs, we are able to resolve solutions at metric scale using

only monocular video at test time. We distinguish our work from other monocular infer-

ence approaches by creating a single, fully differentiable architecture for depth prediction

and visual odometry. To further reduce human effort and manual intervention, we also take

advantage of intrinsics observability in the system by learning the camera parameters em-

bedded within the temporal reconstruction loss. We verify the success of our system using

the KITTI dataset, where our results show we are able to achieve performance comparable to

the state-of-the-art in monocular vision while solving for intrinsics and decreasing overhead

and overall training complexity.

In future work we plan to quantify network robustness to initialization error during the

training of camera parameters. We are also interested in comparing depth and odometry

results between predetermined and learned intrinsics, to analyze their effects on predic-

tion outcomes. To improve performance, we expect that the expansion of training to other

datasets will provide a more diverse collection of scenes for evaluation, and learned intrinsics

will allow for pooling of datasets as another avenue for training. Additionally addressing oc-

clusion and moving objects will ensure added support for higher complexity scenes captured

within these datasets.

112



REFERENCES

[AAB15] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, and
et al. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.”,
2015.

[AOM21] Ali Agha, Kyohei Otsu, Benjamin Morrell, David D Fan, Rohan Thakker, An-
gel Santamaria-Navarro, Sung-Kyun Kim, et al. “Nebula: Quest for robotic
autonomy in challenging environments; team costar at the darpa subterranean
challenge.” arXiv preprint arXiv:2103.11470, 2021.

[BD06] T. Bailey and H. Durrant-Whyte. “Simultaneous localization and mapping
(SLAM): part II.” IEEE Robotics and Automation Magazine, 13(3):108–117,
2006.

[BGA20] Amanda Bouman, Muhammad Fadhil Ginting, Nikhilesh Alatur, Matteo Palieri,
David D Fan, Thomas Touma, Torkom Pailevanian, Sung-Kyun Kim, Kyohei
Otsu, Joel Burdick, et al. “Autonomous spot: Long-range autonomous explo-
ration of extreme environments with legged locomotion.” In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2020.

[Bha10] Nitin Bhatia. “Survey of Nearest Neighbor Techniques.” International Journal
of Computer Science and Information Security, 2010.

[BKC17] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation.” IEEE Trans-
actions on PAMI, 39(12):2481–2495, 2017.

[BLW19] Jia-Wang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen,
Ming-Ming Cheng, and Ian Reid. “Unsupervised Scale-consistent Depth and
Ego-motion Learning from Monocular Video.” arXiv:1908.10553 [cs], October
2019.

[BM92] Paul J Besl and Neil D McKay. “Method for registration of 3-D shapes.” In
Sensor fusion IV: control paradigms and data structures, volume 1611, pp. 586–
606, 1992.

[BMT07] Grant Baldwin, Robert Mahony, Jochen Trumpf, Tarek Hamel, and Thibault
Cheviron. “Complementary filter design on the Special Euclidean group SE (3).”
In 2007 European Control Conference (ECC). IEEE, 2007.

[BR14] Jose Luis Blanco and Pranjal Kumar Rai. “nanoflann: a C++ header-only
fork of FLANN, a library for Nearest Neighbor (NN) with KD-trees.” https:

//github.com/jlblancoc/nanoflann, 2014.

113

https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann


[CCC16] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian Reid, and John J Leonard. “Past, present, and future of simul-
taneous localization and mapping: Toward the robust-perception age.” IEEE
Transactions on Robotics, 2016.

[CCM22] Tsang-Kai Chang, Kenny Chen, and Ankur Mehta. “Resilient and Consis-
tent Multirobot Cooperative Localization With Covariance Intersection.” IEEE
Transactions on Robotics, 38(1):197–208, 2022.

[CLA22a] Kenny Chen, Brett T. Lopez, Ali-akbar Agha-mohammadi, and Ankur Mehta.
“Direct LiDAR Odometry: Fast Localization With Dense Point Clouds.” IEEE
Robotics and Automation Letters, 7(2):2000–2007, 2022.

[CLA22b] Kenny Chen, Brett T. Lopez, Ali-akbar Agha-mohammadi, and Ankur Mehta.
“Direct LiDAR Odometry: Fast Localization With Dense Point Clouds.” IEEE
Robotics and Automation Letters, 7(2):2000–2007, 2022.

[CM92] Yang Chen and Gérard Medioni. “Object modelling by registration of multiple
range images.” Image and Vision Computing, 1992.

[CNL23a] Kenny Chen, Ryan Nemiroff, and Brett T Lopez. “Direct LiDAR-Inertial Odom-
etry and Mapping: Robust Localization and Connective Mapping.” arXiv, 2023.

[CNL23b] Kenny Chen, Ryan Nemiroff, and Brett T Lopez. “Direct LiDAR-Inertial Odom-
etry: Lightweight LIO with Continuous-Time Motion Correction.” IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2023.

[CPL21] Kenny Chen, Alexandra Pogue, Brett T. Lopez, Ali-Akbar Agha-Mohammadi,
and Ankur Mehta. “Unsupervised Monocular Depth Learning with Integrated In-
trinsics and Spatio-Temporal Constraints.” 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 2451–2458, 2021.

[CWW] Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, and Niki Trigoni.
“VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Prob-
lem.”.

[DB06] H. Durrant-Whyte and T. Bailey. “Simultaneous localization and mapping: part
I.” IEEE Robotics & Automation Magazine, 13(2):99–110, 2006.

[DB18] David Droeschel and Sven Behnke. “Efficient Continuous-Time SLAM for 3D
Lidar-Based Online Mapping.” In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 5000–5007, 2018.

[DBK21] Simon-Pierre Deschênes, Dominic Baril, Vladimı́r Kubelka, Philippe Giguere,
and François Pomerleau. “Lidar Scan Registration Robust to Extreme Motions.”
In Conference on Robots and Vision, 2021.

114



[DDJ21] Pierre Dellenbach, Jean-Emmanuel Deschaud, Bastien Jacquet, and François
Goulette. “Ct-icp: Real-time elastic lidar odometry with loop closure.”
arXiv:2109.12979, 2021.

[DDJ22] Pierre Dellenbach, Jean-Emmanuel Deschaud, Bastien Jacquet, and François
Goulette. “CT-ICP: Real-time elastic LiDAR odometry with loop closure.” In
2022 International Conference on Robotics and Automation (ICRA), pp. 5580–
5586. IEEE, 2022.

[DST00] Frank Dellaert, Steven M Seitz, Charles E Thorpe, and Sebastian Thrun. “Struc-
ture from motion without correspondence.” In Proceedings IEEE Conference on
Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662),
volume 2, pp. 557–564. IEEE, 2000.

[ECP20] Kamak Ebadi, Yun Chang, Matteo Palieri, Alex Stephens, Alex Hatteland, Eric
Heiden, Abhishek Thakur, Nobuhiro Funabiki, Benjamin Morrell, Sally Wood,
et al. “LAMP: Large-scale autonomous mapping and positioning for exploration
of perceptually-degraded subterranean environments.” In IEEE International
Conference on Robotics and Automation, 2020.

[EF] David Eigen and Rob Fergus. “Predicting Depth, Surface Normals and Semantic
Labels with a Common Multi-Scale Convolutional Architecture.”.

[EPF14] David Eigen, Christian Puhrsch, and Rob Fergus. “Depth Map Prediction from a
Single Image using a Multi-Scale Deep Network.” In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 27, pp. 2366–2374. Curran Associates, Inc.,
2014.

[EPW21] Kamak Ebadi, Matteo Palieri, Sally Wood, Curtis Padgett, and Ali-akbar Agha-
mohammadi. “DARE-SLAM: Degeneracy-aware and resilient loop closing in
perceptually-degraded environments.” Journal of Intelligent & Robotic Systems,
102:1–25, 2021.

[FCD16] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. “On-
manifold preintegration for real-time visual–inertial odometry.” IEEE Transac-
tions on Robotics, 2016.

[FCS10] Yasutaka Furukawa, Brian Curless, Steven M Seitz, and Richard Szeliski. “To-
wards internet-scale multi-view stereo.” In 2010 IEEE computer society confer-
ence on computer vision and pattern recognition. IEEE, 2010.

[FGW18] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng
Tao. “Deep ordinal regression network for monocular depth estimation.” In
Proceedings of the IEEE CVPR, pp. 2002–2011, 2018.

115



[FHW23] Fuzhang Han, Han Zheng, Wenjun Huang, Rong Xiong, Yue Wang, and Yan-
mei Jiao. “DAMS-LIO: A Degeneration-Aware and Modular Sensor-Fusion
LiDAR-inertial Odometry.”, 2023.

[GAB17] C. Godard, O. M. Aodha, and G. J. Brostow. “Unsupervised Monocular Depth
Estimation with Left-Right Consistency.” In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017.

[GAP20] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos, and Adrien
Gaidon. “3d packing for self-supervised monocular depth estimation.” In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 2485–2494, 2020.

[GBC16] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. “Unsupervised
CNN for Single View Depth Estimation: Geometry to the Rescue.” European
Conference on Computer Vision, 2016.

[GLJ19] A. Gordon, H. Li, R. Jonschkowski, and A. Angelova. “Depth From Videos in
the Wild: Unsupervised Monocular Depth Learning From Unknown Cameras.”
In IEEE/CVF ICCV, 2019.

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous
driving? the kitti vision benchmark suite.” In 2012 IEEE Conference on CVPR,
pp. 3354–3361. IEEE, 2012.

[GMF19] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel Brostow.
“Digging Into Self-Supervised Monocular Depth Estimation.” International Con-
ference on Computer Vision, August 2019.

[GR20] W. N. Greene and N. Roy. “Metrically-Scaled Monocular SLAM using Learned
Scale Factors.” In 2020 IEEE ICRA, pp. 43–50, 2020.

[GRM05] Daniel Girardeau-Montaut, Michel Roux, Raphaël Marc, and Guillaume
Thibault. “Change detection on point cloud data acquired with a ground laser
scanner.” ISPRS, 2005.

[Gru17] Michael Grupp. “evo: Python package for the evaluation of odometry and
SLAM.” https://github.com/MichaelGrupp/evo, 2017.

[GZS11] Andreas Geiger, Julius Ziegler, and Christoph Stiller. “Stereoscan: Dense 3d
reconstruction in real-time.” In 2011 IEEE intelligent vehicles symposium, pp.
963–968. Ieee, 2011.

[HKJ13] P. Heise, S. Klose, B. Jensen, and A. Knoll. “PM-Huber: PatchMatch with Huber
Regularization for Stereo Matching.” In 2013 IEEE International Conference on
Computer Vision, pp. 2360–2367, 2013.

116

https://github.com/MichaelGrupp/evo


[HKR16] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. “Real-time loop
closure in 2D LIDAR SLAM.” In IEEE International Conference on Robotics
and Automation, 2016.

[HZ03] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003.

[Jac12] Paul Jaccard. “The Distribution of the Flora in the Alpine Zone.” New Phytol-
ogist, 11(2):37–50, 1912.

[Kat03] Rolf Katzenbeisser. “About the calibration of lidar sensors.” In ISPRS Work-
shop, pp. 1–6, 2003.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion.” arXiv preprint arXiv:1412.6980, 2014.

[KCK21] Giseop Kim, Sunwook Choi, and Ayoung Kim. “Scan Context++: Structural
Place Recognition Robust to Rotation and Lateral Variations in Urban Environ-
ments.” IEEE Transactions on Robotics, 2021. Accepted. To appear.

[KK18] Giseop Kim and Ayoung Kim. “Scan Context: Egocentric Spatial Descriptor for
Place Recognition within 3D Point Cloud Map.” In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Madrid, Oct. 2018.

[KPC20] Giseop Kim, Yeong Sang Park, Younghun Cho, Jinyong Jeong, and Ayoung
Kim. “MulRan: Multimodal Range Dataset for Urban Place Recognition.” In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Paris, May 2020.

[KV91] Jan J Koenderink and Andrea J Van Doorn. “Affine structure from motion.”
JOSA A, 8(2):377–385, 1991.

[KYO21a] Kenji Koide, Masashi Yokozuka, Shuji Oishi, and Atsuhiko Banno. “Adaptive
Hyperparameter Tuning for Black-box LiDAR Odometry.” In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 7708–
7714, 2021.

[KYO21b] Kenji Koide, Masashi Yokozuka, Shuji Oishi, and Atsuhiko Banno. “Automatic
Hyper-Parameter Tuning for Black-box LiDAR Odometry.” In 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 5069–5074, 2021.

[KYO21c] Kenji Koide, Masashi Yokozuka, Shuji Oishi, and Atsuhiko Banno. “Voxelized
gicp for fast and accurate 3d point cloud registration.” In IEEE International
Conference on Robotics and Automation, 2021.

117



[LH17] Brett T Lopez and Jonathan P How. “Aggressive collision avoidance with limited
field-of-view sensing.” In 2017 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). IEEE, 2017.

[LKK23] Hyungtae Lim, Daebeom Kim, Beomsoo Kim, and Hyun Myung. “AdaLIO: Ro-
bust Adaptive LiDAR-Inertial Odometry in Degenerate Indoor Environments.”,
2023.

[Lop23] Brett T. Lopez. “A contracting hierarchical observer for pose-inertial fusion.”
arXiv:2303.02777, 2023.

[LSL15] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid. “Learning depth from
single monocular images using deep convolutional neural fields.” IEEE Transac-
tions on PAMI, 38(10):2024–2039, 2015.

[LWL18] Ruihao Li, Sen Wang, Zhiqiang Long, and Dongbing Gu. “UnDeepVO: Monoc-
ular Visual Odometry through Unsupervised Deep Learning.” 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA), February 2018.

[LY19] Chenxu Luo, Zhenheng Yang, et al. “Every pixel counts++: Joint learning of
geometry and motion with 3d holistic understanding.” IEEE Transactions on
PAMI, 42:2624–2641, 2019.

[LZ21] Zheng Liu and Fu Zhang. “Balm: Bundle adjustment for lidar mapping.” IEEE
Robotics and Automation Letters, 6(2):3184–3191, 2021.

[MBG22] Matteo Marchi, Jonathan Bunton, Bahman Gharesifard, and Paulo Tabuada.
“LiDAR Point Cloud Registration with Formal Guarantees.” In 2022 IEEE 61st
Conference on Decision and Control (CDC), pp. 3462–3467, 2022.

[MDM18] V Madhu Babu, Kaushik Das, Anima Majumdar, and Swagat Kumar. “Un-
DEMoN: Unsupervised Deep Network for Depth and Ego-Motion Estimation.”
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1082–1088, October 2018. ISSN: 2153-0866.

[MG15] Moritz Menze and Andreas Geiger. “Object Scene Flow for Autonomous Vehi-
cles.” In CVPR, 2015.

[ML10] Naveed Muhammad and Simon Lacroix. “Calibration of a rotating multi-beam
lidar.” In 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 5648–5653. IEEE, 2010.

[NCL23] Ryan Nemiroff, Kenny Chen, and Brett T. Lopez. “Joint On-Manifold Gravity
and Accelerometer Intrinsics Estimation.”, 2023.

[Nel] Erik Nelson. “B(erkeley) L(ocalization) A(nd) M(apping).”.

118



[NH10] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted
boltzmann machines.” In ICML, 2010.

[NLD11] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. “DTAM:
Dense tracking and mapping in real-time.” In 2011 ICCV. IEEE, 2011.

[NYC21] Thien-Minh Nguyen, Shenghai Yuan, Muqing Cao, Lyu Yang, Thien Hoang
Nguyen, and Lihua Xie. “MILIOM: Tightly coupled multi-input lidar-inertia
odometry and mapping.” IEEE Robotics and Automation Letters, 6(3):5573–
5580, 2021.

[PAG19] Sudeep Pillai, Rareş Ambruş, and Adrien Gaidon. “Superdepth: Self-supervised,
super-resolved monocular depth estimation.” In 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019.

[PAT18] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mattoccia. “Towards
real-time unsupervised monocular depth estimation on CPU.” 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), July 2018.

[PL17] Sudeep Pillai and John J. Leonard. “Towards Visual Ego-motion Learning in
Robots.”, 2017.

[PMK18] Chanoh Park, Peyman Moghadam, Soohwan Kim, Alberto Elfes, Clinton Fookes,
and Sridha Sridharan. “Elastic LiDAR Fusion: Dense Map-Centric Continuous-
Time SLAM.” In 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 1206–1213, 2018.

[PMT20] Matteo Palieri, Benjamin Morrell, Abhishek Thakur, Kamak Ebadi, Jeremy
Nash, Arghya Chatterjee, Christoforos Kanellakis, Luca Carlone, Cataldo
Guaragnella, and Ali-akbar Agha-Mohammadi. “Locus: A multi-sensor lidar-
centric solution for high-precision odometry and 3d mapping in real-time.” IEEE
Robotics and Automation Letters, 6(2), 2020.

[PMW22] Chanoh Park, Peyman Moghadam, Jason L. Williams, Soohwan Kim, Sridha
Sridharan, and Clinton Fookes. “Elasticity Meets Continuous-Time: Map-
Centric Dense 3D LiDAR SLAM.” IEEE Transactions on Robotics, 38(2):978–
997, 2022.

[PXH21] Yue Pan, Pengchuan Xiao, Yujie He, Zhenlei Shao, and Zesong Li. “MULLS:
Versatile LiDAR SLAM via multi-metric linear least square.” In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pp. 11633–11640,
2021.

[RB19] Santiago Royo and Maria Ballesta-Garcia. “An overview of lidar imaging systems
for autonomous vehicles.” Applied Sciences, 9, 2019.

119



[RC11] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point Cloud Library (PCL).”
In IEEE International Conference on Robotics and Automation, 2011.

[RKC22] Milad Ramezani, Kasra Khosoussi, Gavin Catt, Peyman Moghadam, Jason
Williams, Paulo Borges, Fred Pauling, and Navinda Kottege. “Wildcat: On-
line Continuous-Time 3D Lidar-Inertial SLAM.” arXiv:2205.12595, 2022.

[RPM22] Andrzej Reinke, Matteo Palieri, Benjamin Morrell, Yun Chang, Kamak Ebadi,
Luca Carlone, and Ali-Akbar Agha-Mohammadi. “LOCUS 2.0: Robust and
Computationally Efficient Lidar Odometry for Real-Time 3D Mapping.” IEEE
Robotics and Automation Letters, pp. 1–8, 2022.

[RSS20] Tobias Renzler, Michael Stolz, Markus Schratter, and Daniel Watzenig. “In-
creased accuracy for fast moving LiDARS: Correction of distorted point clouds.”
In IEEE International Instrumentation and Measurement Technology Confer-
ence, 2020.

[RWC20] Milad Ramezani, Yiduo Wang, Marco Camurri, David Wisth, Matias Mattamala,
and Maurice Fallon. “The Newer College Dataset: Handheld LiDAR, Inertial
and Vision with Ground Truth.” In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 4353–4360, 2020.

[SC86] Randall C Smith and Peter Cheeseman. “On the representation and estimation
of spatial uncertainty.” The international journal of Robotics Research, 5(4):56–
68, 1986.

[SCD06] Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard
Szeliski. “A comparison and evaluation of multi-view stereo reconstruction algo-
rithms.” In IEEE CVPR, volume 1, pp. 519–528, 2006.

[SCN06] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. “Learning depth from
single monocular images.” In NeurIPS, 2006.

[SCT20] Alexander Schperberg, Kenny Chen, Stephanie Tsuei, Michael Jewett, Joshua
Hooks, Stefano Soatto, Ankur Mehta, and Dennis Hong. “Risk-Averse MPC via
Visual-Inertial Input and Recurrent Networks for Online Collision Avoidance.”
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 5730–5737, 2020.

[SE18] Tixiao Shan and Brendan Englot. “Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain.” In International
Conference on Intelligent Robots and Systems, 2018.

[SEE12a] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. “A Benchmark
for the Evaluation of RGB-D SLAM Systems.” In Proc. of the International
Conference on Intelligent Robot Systems (IROS), Oct. 2012.

120



[SEE12b] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. “A benchmark for the evaluation of RGB-D SLAM systems.” In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–
580. IEEE, 2012.

[SEM20] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and Daniela
Rus. “Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and map-
ping.” In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 5135–5142, 2020.

[SER21a] Tixiao Shan, Brendan Englot, Carlo Ratti, and Rus Daniela. “LVI-SAM:
Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping.”
In IEEE International Conference on Robotics and Automation, 2021.

[SER21b] Tixiao Shan, Brendan Englot, Carlo Ratti, and Daniela Rus. “Lvi-sam: Tightly-
coupled lidar-visual-inertial odometry via smoothing and mapping.” In IEEE
International Conference on Robotics and Automation, pp. 5692–5698, 2021.

[SF16] Johannes L Schonberger and Jan-Michael Frahm. “Structure-from-motion revis-
ited.” In Proceedings of the IEEE CVPR, pp. 4104–4113, 2016.

[SHT09] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. “Generalized-ICP.” In
Robotics: Science and Systems (RSS), 2009.

[SSC19] Cordelia Schmid, Cristian Sminchisescu, and Yuhua Chen. “Self-supervised
Learning with Geometric Constraints in Monocular Video - Connecting Flow,
Depth, and Camera.” In ICCV, 2019.

[SSN08] Ashutosh Saxena, Min Sun, and Andrew Y Ng. “Make3d: Learning 3d scene
structure from a single still image.” IEEE Transactions on PAMI, 31(5):824–
840, 2008.

[SZF16] Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Polle-
feys. “Pixelwise view selection for unstructured multi-view stereo.” In European
Conference on Computer Vision, pp. 501–518. Springer, 2016.

[TNN22] Turcan Tuna, Julian Nubert, Yoshua Nava, Shehryar Khattak, and Marco Hut-
ter. “X-ICP: Localizability-Aware LiDAR Registration for Robust Localization
in Extreme Environments.” arXiv preprint arXiv:2211.16335, 2022.

[TTC20] Andrea Tagliabue, Jesus Tordesillas, Xiaoyi Cai, Angel Santamaria-Navarro,
Jonathan P How, Luca Carlone, and Ali-akbar Agha-mohammadi. “LION:
Lidar-Inertial observability-aware navigator for Vision-Denied environments.” In
International Symposium on Experimental Robotics, 2020.

121



[TTL17] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. “CNN-
SLAM: Real-time dense monocular SLAM with learned depth prediction.”
arXiv:1704.03489 [cs], April 2017.

[Ume91] S. Umeyama. “Least-squares estimation of transformation parameters between
two point patterns.” IEEE Transactions on Pattern Analysis and Machine In-
telligence, 13(4):376–380, 1991.

[VGM23a] Ignacio Vizzo, Tiziano Guadagnino, Benedikt Mersch, Louis Wiesmann, Jens
Behley, and Cyrill Stachniss. “KISS-ICP: In Defense of Point-to-Point ICP
– Simple, Accurate, and Robust Registration If Done the Right Way.” IEEE
Robotics and Automation Letters (RA-L), 8(2):1029–1036, 2023.

[VGM23b] Ignacio Vizzo, Tiziano Guadagnino, Benedikt Mersch, Louis Wiesmann, Jens
Behley, and Cyrill Stachniss. “KISS-ICP: In Defense of Point-to-Point ICP
– Simple, Accurate, and Robust Registration If Done the Right Way.” IEEE
Robotics and Automation Letters (RA-L), 8(2):1–8, 2023.

[VR17] Sudheendra Vijayanarasimhan, Susanna Ricco, et al. “SfM-Net: Learning of
Structure and Motion from Video.”, 2017.

[VSO08] José Fernandes Vasconcelos, Carlos Silvestre, and P Oliveira. “A nonlinear
GPS/IMU based observer for rigid body attitude and position estimation.” In
2008 47th IEEE Conference on Decision and Control, pp. 1255–1260. IEEE, 2008.

[WBS04] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. “Image Quality Assess-
ment: From Error Visibility to Structural Similarity.” IEEE Transactions on
Image Processing, 13(4), April 2004.

[WZS22] Zhong Wang, Lin Zhang, Ying Shen, and Yicong Zhou. “D-LIOM: Tightly-
coupled Direct LiDAR-Inertial Odometry and Mapping.” IEEE Transactions on
Multimedia, 2022.

[XCH21] Wei Xu, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang. “FAST-LIO2: Fast
Direct LiDAR-inertial Odometry.” arXiv preprint arXiv:2107.06829, 2021.

[XCH22] Wei Xu, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang. “Fast-lio2: Fast
direct lidar-inertial odometry.” IEEE Transactions on Robotics, 2022.

[XW18] Dan Xu, Wei Wang, et al. “Structured attention guided convolutional neural
fields for monocular depth estimation.” In Proceedings of the IEEE CVPR, 2018.

[YCL19] Haoyang Ye, Yuying Chen, and Ming Liu. “Tightly coupled 3d lidar inertial
odometry and mapping.” In International Conference on Robotics and Automa-
tion, pp. 3144–3150, 2019.

122



[YS18] Zhichao Yin and Jianping Shi. “GeoNet: Unsupervised Learning of Dense Depth,
Optical Flow and Camera Pose.” arXiv:1803.02276 [cs], March 2018.

[YWW18] Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, and Ram Nevatia. “Lego:
Learning edge with geometry all at once by watching videos.” In Proceedings of
the IEEE CVPR, pp. 225–234, 2018.

[YYC23] Pengyu Yin, Shenghai Yuan, Haozhi Cao, Xingyu Ji, Shuyang Zhang, and Lihua
Xie. “Segregator: Global Point Cloud Registration with Semantic and Geometric
Cues.” arXiv preprint arXiv:2301.07425, 2023.

[ZBS17] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe. “Unsuper-
vised Learning of Depth and Ego-Motion from Video.” In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 6612–6619, Honolulu,
HI, July 2017. IEEE.

[ZCF21] Lintong Zhang, Marco Camurri, and Maurice Fallon. “Multi-Camera LiDAR
Inertial Extension to the Newer College Dataset.” arXiv:2112.08854, 2021.

[ZGW18] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera, Kejie Li, Harsh Agar-
wal, and Ian Reid. “Unsupervised Learning of Monocular Depth Estimation and
Visual Odometry with Deep Feature Reconstruction.” Conference on Computer
Vision and Pattern Recognition, April 2018.

[ZKS16] Ji Zhang, Michael Kaess, and Sanjiv Singh. “On degeneracy of optimization-
based state estimation problems.” In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 809–816, 2016.

[ZLH18] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. “DF-Net: Unsupervised Joint
Learning of Depth and Flow using Cross-Task Consistency.”, 2018.

[ZS14] Ji Zhang and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in Real-
time.” In Robotics: Science and Systems, volume 2, pp. 1–9, 2014.

[ZSZ20] Chaoqiang Zhao, Qiyu Sun, Chongzhen Zhang, Yang Tang, and Feng Qian.
“Monocular Depth Estimation Based On Deep Learning: An Overview.” Sci-
ence China Technological Sciences, 63(9):1612–1627, September 2020. arXiv:
2003.06620.

123


	Introduction
	Overview
	Motivation & Research Statement
	Related Work
	LiDAR Odometry
	LiDAR-Inertial Odometry

	Outline of Dissertation
	Contribution 1: Fast Localization with Dense Point Clouds
	Contribution 2: Parallelizable Continuous-Time Motion Correction
	Contribution 3: Perceptive and Connective SLAM
	Structure of Chapters


	Direct LiDAR Odometry: Fast Localization with Dense Point Clouds
	Overview
	System Description
	Notation
	Preprocessing

	Lightweight LO Architecture
	Scan Matching via Generalized-ICP
	Fast Keyframe-Based Submapping
	Keyframe Selection via kNN and Convex Hull
	Adaptive Keyframing

	Algorithmic Implementation
	Scan-Stitched Submap Normals
	Data Structure Recycling

	Experimental Results
	Component Evaluation
	Benchmark Results
	Field Experiments

	Discussion

	Direct LiDAR-Inertial Odometry: Lightweight LIO with Continuous-Time Motion Correction
	Overview
	System Description
	Notation
	Preprocessing

	Condensed LIO Architecture
	Continuous-Time Motion Correction with Joint Prior
	Scan-to-Map Registration
	Geometric Observer

	Experimental Results
	Ablation Study and Comparison of Motion Correction
	Benchmark Results

	Discussion

	Direct LiDAR-Inertial Odometry and Mapping: Perceptive and Connective SLAM
	Overview
	System Description
	Notation
	Preprocessing

	Reliable & Perceptive Localization
	Slip-Resistant Keyframing via Sensor-Agnostic Degeneracy
	Submap Generation via 3D Jaccard Index
	Adaptive Scan-Matching via Cloud Sparsity

	Connective Mapping
	Connective Keyframe Factors
	Keyframe-based Loop Closures

	Algorithmic Implementation
	Sensor Synchronization
	Submap Multithreading
	Velocity-Consistent Loop Closures

	Experimental Results
	Analysis of Components
	Benchmark Results

	Discussion

	Conclusion
	Summary of Contributions
	Limitations & Future Work
	Concluding Remarks

	Unsupervised Monocular Depth Learning with Integrated Intrinsics and Spatio-Temporal Constraints
	Overview
	Related Work
	System Description
	Notation
	Preliminaries

	Single-Network Architecture
	Optimization Objective
	Spatio-Temporal Reconstruction Loss
	Spatial Reconstruction Loss
	Learning Camera Intrinsics

	Experimental Results
	Performance of Depth Estimation
	Learned Camera Intrinsics
	Egomotion
	Run-Time Evaluation

	Discussion

	References



