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ABSTRACT OF THE DISSERTATION

Learning Robust Models for Control: Tradeoffs, Fundamental Insights, and
Benchmarking Control Design

by

Abed AlRahman Al Makdah

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2023

Prof. Fabio Pasqualetti, Chairperson

In the field of machine learning, the quest to optimize the performance of machine

learning models while maintaining robustness against perturbations stands as a fundamental

challenge. Performance of a machine learning model refers to its capacity to execute a

desired task, such as classification, prediction, or generation. Conversely, robustness of a

machine learning model refers to its capacity to maintain consistent and reliable performance

when encountering perturbed data or data generated under unforeseen conditions.

This thesis investigates the inherent tradeoff between performance and robustness

in both classification and control learning problems. Our contribution is threefold. First,

we formally show that, in a quest to optimize their performance, machine learning mod-

els tend to exhibit reduced robustness against adversarial manipulation of the data. Our

results suggest that this tradeoff, fundamental in nature, is deeply rooted in the way in

which data is drawn and does not depend on the complexity of the learning model itself.

Second, we leverage the insights acquired from this characterization of the tradeoff to es-

tablish a benchmark for learning controllers. In particular, we introduce a robust feed-back

vii



control policy learning framework based on Lipschitz-constrained loss minimization, where

the feedback policies are learned directly from expert demonstrations. Our work integrates

robust learning, optimal control and robust stability into a unified framework, enabling the

learning of controllers that prioritize both performance and robustness. Finally, we revisit

the linear quadratic Gaussian (LQG) optimal control problem through the perspective of

input-output behaviors, where we derive direct data-driven expression for the optimal LQG

controller using a dataset of input, state, and output trajectories. We show that our data-

driven expression is consistent, since it converges as the number of experimental trajectories

increases, we characterize its convergence rate, and we quantify its error as a function of the

system and data properties. This analysis highlights the limitations and challenges posed

by noisy data and unknown system dynamics in learning control problems.
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Chapter 1

Introduction

In the realm of machine learning, the performance of a machine learning model

refers to its capacity to execute a desired task, such as classification, prediction, or gen-

eration. For instance, an image classifier demonstrating high performance can accurately

classify images of various objects. On the other hand, the robustness of a machine learning

model refers to its capacity to maintain consistent and reliable performance when encounter-

ing perturbed data or data generated under unforeseen conditions. For instance, an image

classifier exhibiting high robustness can maintain classification accuracy despite changes in

the lightning conditions or the angle at which the image is captured.

Machine learning models are meticulously crafted and trained to maximize perfor-

mance. However, this relentless pursuit of maximizing a model’s performance often encoun-

ters an inevitable tradeoff with its robustness against data perturbations. This tradeoff,

fundamental in nature, is deeply rooted in the way data is drawn and does not depend

on the complexity of the learning model itself. For instance, as learning models strive to
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optimize performance based on data patterns drawn from specific conditions (e.g., images

of street signs captured on clear days), they become increasingly specialized and tailored to

those particular conditions represented in the data. Consequently, they may fail to adapt

and generalize to novel scenarios (e.g., accurately classifying images of street signs in rainy

weather) or to adversarially perturbed data samples (e.g., accurately classifying images of

street signs covered with stickers).

Understanding and characterizing this fundamental tradeoff holds profound im-

plications not only for improving the capabilities of machine learning models but also for

fostering trust and dependability in their real-world deployment. Striking a delicate balance

between optimizing performance and robustness is pivotal to harnessing the true potential of

machine learning across diverse domains ranging from healthcare and finance to autonomous

systems and natural language processing.

In this thesis, we delve into a formal examination and characterization of the

fundamental tradeoffs between performance and robustness in both classification learning

problems and learning control problems. Furthermore, we leverage the insights acquired

from this characterization of the tradeoff to establish a benchmark for designing learning

models. Where these models are engineered to attain specific performance levels while

also ensuring robustness and reliability when deployed in environments that may contain

perturbations or variations of the data.
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1.1 Literature Synopsis

In this section, we examine the existing literature related to robust adversarial

classification and robust learning for control, along with their fundamental limitations. Ad-

ditionally, we provide a literature review focusing on behavioral representation for linear

control systems and learning the linear quadratic Gaussian regulator from data. This com-

prehensive review will allow a more precise articulation of the contributions made by this

thesis.

1.1.1 Fundamental limits in robust adversarial classification

Recent work has shown that classification based on neural networks is vulnerable

to adversarial perturbations [35,90], and that these perturbations are universal and affect a

large number of classification algorithms. While heuristic explanations of this phenomenon

have been proposed, including adversarial learning [35,54,76], black-box [61], and gradient-

based [35, 76], a fundamental analytical understanding of the limitations of classification

algorithms under adversarial perturbations is critically lacking. We identify these limitations

for a binary classification problem in a Bayesian setting. While in a simple setting, our

analysis formally shows that a fundamental tradeoff exists between accuracy and sensitivity

of any classification algorithm, independently of the complexity of the algorithm. The

papers [73,79] are also related to this study, which derive methods to measure robustness of

different classifiers against adversarial perturbations and obtain guarantees against bounded

perturbations, as well as [54], which shows how adversarial training improves the classifier’s

performance against adversarial perturbations while deteriorating its performance under
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nominal conditions. Distributionally robust optimization has also been used to develop

robust classifiers [86]. Yet, this theory does not formally explain the tradeoff highlighted in

this work. Our approach provides rigorous support to the empirical evidence obtained in

these works.

1.1.2 Fundamental limits in robust adversarial classification with abstain-

ing

The literature on classification with an abstain option (also referred to as reject

option or selective classification) mainly discusses methods on how to abstain on uncertain

inputs. [9, 42] augmented the output class set with a reject class in a binary classification

problem, where inputs with probability below a certain threshold are abstained on. Further,

[32] used abstaining in multi-class classification problems, where abstaining was used in deep

neural networks. In [106], abstaining was used in a regression learning problem. While little

work has been done on using abstaining in the context of adversarial robustness, recent

work has developed algorithms that guarantee robustness against adversarial attacks via

abstaining [8,55], where a tradeoff between nominal performance and adversarial robustness

has been observed upon tuning their algorithms. In this work, we formally prove the

existence of such a tradeoff between performance and adversarial robustness, where we

show that this tradeoff exist regardless of what algorithm is used to select the abstain

region.
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1.1.3 Fundamental limits in learning controllers for closed-loop systems

Machine learning and, more generally, data-driven algorithms have shown remark-

able performance under nominal and well-modeled conditions in a variety of applications.

Yet, the same algorithms have proven extremely fragile when subject to small, yet targeted,

perturbations of the data [35, 90]. A detailed understanding of this unreliable behavior is

still lacking, with recent theoretical results proving robustness and generalization guaran-

tees for learning algorithms subject to adversarial disturbances, e.g., see [3, 40, 103], and

showing that, in certain contexts, robustness to perturbations and performance under nom-

inal conditions are inversely related [?,25,95,107]. Compared to these works, we prove that

a fundamental trade-off between performance and robustness arises in linear estimation

algorithms, which may lead to a critical degradation of the closed loop performance [60].

Related to this work is the literature on robust control and estimation [62, 112]. However,

the primary focus of this work is not on designing a robust estimator or controller, but

rather on proving the existence of a fundamental trade-off between accuracy and robust-

ness, which plays a critical role in the deployment of learning and data-driven methods in

control applications.

1.1.4 Learning robust models for closed-loop systems

Robustness of data-driven models to adversarial perturbations has attracted much

attention in recent years. One of the approaches to robust learning seeks to modulate

the Lipschitz constant of the data-driven model [6, 20, 30], either via a regularization [15,

104] of the learning loss function or by imposing a Lipschitz constraint [37, 52]. Since the
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Lipschitz constant determines the (worst-case) sensitivity of a model to perturbations of the

input, data-driven models trained with Lipschitz constraints/regularizers are expected to

be robust to bounded (adversarial) perturbations [90]. Prior works have primarily explored

this approach for static input-output models [52, 90, 101]. However, in a feedback control

setting, a static input-output robustness guarantee for a data-driven controller may not

result in robust closed-loop performance. When a data-driven controller is integrated into

the feedback loop, a static input-output robustness guarantee for the data-driven controller

must be combined with appropriate robust control notions to yield a robustness certificate

for the closed-loop system [10, 48]. Obtaining safety and robustness certificates for data-

driven controllers in closed-loop systems remains an active area of research in general.

In this work, we propose a learning framework to learn Lipschitz feedback policies with

provable guarantees on closed-loop performance and robustness against bounded adversarial

perturbation, where these policies are learned directly from expert demonstrations without

any prior knowledge of the task and the system model.

Learning controllers from expert demonstrations (imitation learning)

Generalization: The key obstacle to widespread adoption of imitation learning is that

it is difficult to guarantee performance in unseen scenarios. One approach to overcome this

obstacle is inverse reinforcement learning (also referred to as apprenticeship learning in the

literature), where the learner infers the unknown cost function from expert demonstrations,

then learn an optimal policy that optimizes the learned cost using reinforcement learning

[1,2,44,58,89]. Since the learned cost represents the task of the expert, inverse reinforcement

learning algorithms are able to generalize to unseen scenarios that are not covered by the
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expert demonstrations. However, one drawback of inverse reinforcement learning is that

there can exist multiple cost functions that can be optimized under the expert’s policy,

which adds ambiguity in learning the cost function [114]. Another approach that overcomes

the obstacle of performing in unseen scenarios is direct policy learning via interactive expert

[82, 83]. In this approach, the learner can query an interactive expert at each iteration,

then, the learner uses the expert’s feedback to correct its mistakes and improve its policy.

Since this approach keeps expanding the expert’s data, it will eventually cover all possible

scenarios in the long run. However, one drawback of this approach is that it requires the

expert to be always available for feedback. In [56], noise is injected into the expert’s policy in

order to provide demonstrations on how to recover from errors. In [91], the authors develop

a framework for learning a generative model for planning trajectories from demonstrations,

which allows it to capture uncertainty about previously unseen scenarios.

Closed-loop performance and robustness: Several approaches to adversarial imita-

tion learning have been proposed in [51,115], where inverse reinforcement learning is used.

In [99], the authors proposed an adversarially robust imitation learning framework, where

an agent is trained in an adversarially perturbed environment with the expert being avail-

able for queries at any time step. In [59], the authors learn robust control barrier functions

from safe expert demonstrations. In all these works, robustness of imitation learning algo-

rithms is considered to be the ability of the learned policy to recover from errors, which is

similar to the notion of generalization.

In contrast to many of the works referenced above, we seek a principled feedback

policy learning framework with strong theoretical guarantees. In particular, we seek ex-
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plicit bounds on the performance, stability and robustness of the closed-loop system under

the learned feedback policy. The broader problem of obtaining closed-loop performance

and robustness guarantees for learned feedback policies and understanding the underly-

ing tradeoffs has attracted attention recently [43, 65, 97]; yet it remains an active area of

research. This requires the integration of theoretical tools from several areas: (i) the un-

derlying control task is typically specified as an optimal control problem with performance

measured in terms of the cost incurred, (ii) the feedback control policy is learned from finite

offline data which involves considerations of generalization and robustness to distributional

shifts, and (iii) closed-loop performance guarantees typically rely on an underlying robust

stability guarantee for the learned policy. Prior works have addressed this problem within

various frameworks, such as the H∞-control framework for linear systems [24]. However,

the problem of obtaining guarantees on closed-loop generalization and robustness to distri-

butional shifts of learned policies for general nonlinear systems still remains a challenge. In

this work, we address this problem within a Lipschitz feedback policy learning framework.

The Lipschitz property is a fairly mild requirement in nonlinear control, and through our

analysis we will see that it can be exploited to provide closed-loop bounds on generalization

and robustness to distributional shifts for learned policies, highlighting the effectiveness of

this approach.
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1.1.5 Linear quadratic Gaussian regulator and behavioral representation

Behavioral representation for data-driven control

In the context of data-driven control, the behavioral approach has garnered much

attention in recent years [22, 31, 53, 102], as it circumvents the need for state space repre-

sentation. Owing it this fact, it belongs in the same category as the difference operator

representation and ARMAX models [36, Sec. 2.3 and Sec. 7.4], and shares several connec-

tions with these classes of models. We refer the reader to [?] for a comprehensive overview

of the behavioral approach.

Data-driven Linear quadratic Gaussian regulator

The LQG control problem has been studied extensively in the literature [13,113],

where fundamental properties have been characterized, such as the existence of optimal

solution, how to obtain it using separation principle [113], and its lack of stability margin

guarantees in closed-loop [28]. In [111], the authors characterize the optimization landscape

for the LQG problem, showing that the set of stabilizing dynamic controllers can be discon-

nected. Different from the literature, our work seeks to represent the optimal LQG problem

in the space of input-output behaviors, characterize the optimal behavioral feedback con-

trollers, and to demonstrate their suitability for data-driven control and gradient-based

methods for controller design. More specifically, we show that the optimal LQG controller

can be expressed as a static behavioral-feedback gain, which underlies its advantages for

developing data-driven methods to learn LQG controllers.

Data-driven methods for system analysis and control have flourished in the last
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years and are revolutionizing the field [80]. The methods developed in this thesis fall in

the category of direct data-driven methods [7], where controls are obtained directly from

data bypassing the classic system identification step [33]. In line with earlier work and

differently from optimization-based approaches [26, 45], we pursue here closed-form data-

driven expressions, which are typically computationally advantageous [16], are transparent,

and can reveal novel insights into the problems [18].

This work focuses on data-driven LQG control, while most of the literature on

data-driven control has focused on the LQR problem with noiseless data [21,71,84]. Recent

work [19] has studied the design of data-driven controllers from noisy data [38, 78], the

design of data-driven Kalman filters [108], imitation-based LQG control design [39], and

some versions of the output-weighted LQG control problem [29, 87]. Compared to [87], in

particular, in our work, we do not assume perfect knowledge of the Markov parameters or

any part of the system dynamics and noise, and it does not estimate them to solve the state-

weighted LQG problem. To the best of our knowledge, this thesis contains the first direct,

closed-form data-driven solution to the state-weighted LQG problem, with finite-sample

performance guarantees.

The recent literature on the analysis of the sample complexity of estimation and

control problems is also relevant to this work. In particular, [23, 109] follow an indirect

approach, where sample complexity bounds are derived for the identification of the system

dynamics and such errors are propagated towards the design of LQR and LQG controllers.

Differently from our work, this analysis is valid only for stable systems and output-weighted

LQG costs. Bounds on the performance of the learned LQG controller are also derived in [70]
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assuming a sufficiently small error in the system identification step [75,93,96,110], and in [72]

where the optimal LQR is learned in a model-free setting using gradient methods. Although

our work makes use of similar technical tools, the approach pursued here is direct and does

not rely on the identification of the system matrices, nor on optimization algorithms to

design or tune robust controllers. Further, this work considers the canonical LQG setting,

rather than the noisy LQR problem or the output-weighted LQG problem with noisy con-

trols, and it provides closed-form expressions for the optimal controllers rather than their

performance.

1.2 Contributions of this Thesis

The main contributions of each chapter are as follows.

Chapter 2. This chapter features three main contributions. First, we propose metrics to

quantify the accuracy of a classification algorithm and its sensitivity to arbitrary manipula-

tion of the data. We prove that, under a set of mild technical assumptions, the accuracy of

a classification algorithm can only be maximized at the expenses of its sensitivity. Thus, a

fundamental tradeoff exists between the performance of a classification algorithm in nominal

and adversarial settings. While our results formally apply to binary classification problems,

we conjecture that this fundamental tradeoff in fact applies to more general classification

problems. Second, we show that a tradeoff between accuracy and sensitivity exists for

different classes of classification algorithms, and that simpler algorithms can sometimes

outperform more complex one in adversarial settings. Third, we numerically show that the

accuracy versus sensitivity tradeoff depends solely on the statistics of the data, and cannot
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be arbitrarily improved by tuning the classification algorithm (varying classification bound-

aries) or increasing its complexity (number of boundaries), including using sophisticated

adversarial learning techniques. Taken together, our results suggest that performance and

robustness of data-driven algorithms are dictated by the properties of the data, and not by

the sophistication or intelligence of the algorithm, a key insight that has critical implications

for the deployment of provably-robust data-driven and learning-based control algorithms.

Chapter 3. This chapter features three main contributions. First, we propose metrics to

quantify the performance of a classifier with an abstain option and its adversarial robustness.

Second, we show that for a binary classification problem with an abstain option, a tradeoff

between performance and adversarial robustness always exist regardless of which region of

the input space is abstained on. Thus, the robustness of a classifier with an abstain option

can only be improved at the expense of its nominal performance. Further, we numerically

show that such a tradeoff exist for the general multi-class classification problems. The

type of the tradeoff we present in this chapter is different than the one studied in the

literature [64,95,107], degrading the nominal performance implies that the classifier abstains

more often on nominal inputs, and it does not imply an increase in the misclassification

rate. Third, we provide necessary conditions to optimally design the abstain region for a

given classifier for the 1-dimensional binary classification problem.

Chapter 4. This chapter features two main contributions. First, we study a perception-

based control problem, where the state of a dynamical system is reconstructed using a

high-dimensional sensor. We prove the existence of a fundamental trade-off between the

12



accuracy of the estimation algorithm, as measured by its minimum mean squared error,

and its robustness to variations and inaccuracies of the data statistics. Thus, (i) estimation

algorithms that are optimal for the nominal data tend to perform poorly in practice, where

the operating conditions may differ from the nominal data, and, conversely, (ii) estimation

algorithms that are robust to data variations exhibit suboptimal performance in nominal

conditions. Second, we characterize estimators that lie on the Pareto frontier between accu-

racy and robustness, that is, estimators that are maximally robust for a desired performance

level, and estimators that are maximally accurate for a given bound on the data variations

and inaccuracies. We also show, numerically, that the trade-off for estimation algorithms

also affects the performance of the closed-loop system, and even when the measurement

error is not normally distributed, as we assume for the derivation of our analytical results.

In a broader context, the results of this chapter further characterize a fundamental

limitation of machine learning and data-driven algorithms, as described for different settings

in [?, 25, 95,107], and clarify its implications for control applications.

Chapter 5. Our primary contribution in this chapter is a robust feedback control policy

learning framework based on Lipschitz-constrained loss minimization, where the feedback

policies are learned directly from expert demonstrations. We then undertake a systematic

study of the performance of feedback policies learned within our framework using mean-

ingful metrics to measure closed-loop stability, performance and robustness. Our work

integrates robust learning, optimal control and robust stability into a unified framework for

robust feedback policy learning. More specifically, our work features three main technical

contributions. First, we derive a robust stability bound for the closed-loop system under
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the learned feedback policies, which guarantees that the closed-loop trajectory under the

learned policy stays within a bounded region around the expert trajectory and converges

asymptotically to a bounded region around the origin. Second, we derive a bound on the

regret incurred by learned feedback policies with respect to the expert policy in terms of the

generalization error (learning error), and a bound on the deterioration of closed-loop perfor-

mance in the presence of (adversarial) disturbances to state measurements. These bounds

provide certificates for closed-loop performance and adversarial robustness for learned poli-

cies. Third, we provide an analysis of the Lipschitz-constrained policy learning problem,

which results in a (probabilistic) bound on generalization error for the learned policies. This

sheds light on the dependence of closed-loop control performance and robustness on learn-

ing. Conversely, our results specify target bounds on policy generalization error (learning

error) for desired closed-loop performance. We then demonstrate our robust feedback policy

learning framework via numerical experiments on (i) the standard LQR benchmark, and

(ii) a non-holonomic differential drive mobile robot model. Finally, our analysis support the

existence of a potential tradeoff between nominal performance of the learned policies and

their robustness to adversarial disturbances of the feedback, which is borne out in numeri-

cal experiments where we observe that improvements to adversarial robustness can only be

made at the expense of nominal performance.

Chapter 6. This chapter features three main contributions. First, we introduce equivalent

representations for stochastic discrete-time, linear, time-invariant systems and the LQG

optimal control problem in the behavioral space. Second, we show that, in the behavioral

space, the optimal LQG controller can be expressed as a static behavioral-feedback gain,
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which can be solved for directly from the LQG problem represented in the behavioral space.

Third, we highlight the advantages of having a static feedback LQG gain over a dynamic

LQG controller in the context of data-driven control and gradient-based algorithms.

Chapter 7. The main contributions of this chapter is the characterization of direct data-

driven formulas for the LQR gain, Kalman filter, and LQG gain using a dataset of trajecto-

ries of the input, state, and output of a discrete-time linear time-invariant system. Impor-

tantly, since the experimental data is noisy and the system dynamics and noise statistics

are unknown, we show that our formulas are consistent, as they converge to the true ex-

pressions when the amount of experimental data increases. Additionally, we characterize

the convergence rate of our expressions, as well as their error when the data is of finite size.

Finally, we provide illustrative examples and remarks to highlight how the properties of the

system and of the experimental data affect the accuracy of our formulas.
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Part I

Unveiling Fundamental limits:

Performance vs Robustness

Tradeoff in Data-Driven Models
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Chapter 2

Fundamental Performance -

Robustness Tradeoff for

Adversarial Classification

In this chapter, we formally study a fundamental tradeoff between the accuracy of a

binary classification algorithm and its sensitivity to arbitrary manipulation of the data.

In particular, we cast a binary classification problem into a hypothesis testing framework,

parametrize classification algorithms – including those based on machine learning techniques

– using their decision boundaries, and show that the accuracy of the algorithm can be

maximized only at the expenses of its sensitivity. This tradeoff, which applies to general

classification algorithms, depends on the statistics of the data, and cannot be improved by

simply tuning the algorithm. Our theory explains how simple algorithms can outperform

more complex ones when operating in adversarial environments. The results of this chapter
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are reported in our published paper [64].

2.1 Problem setup and preliminary notions

To reveal a fundamental tradeoff between the accuracy of a classification algorithm

and its robustness against malicious data manipulation, we consider a binary classification

problem where the objective is to decide whether a scalar observation x ∈ R belongs to one

of the classes H0 and H1. We assume that the distribution of the observations satisfy

H0 : x ∼ f0(x; θ0), and H1 : x ∼ f1(x; θ1), (2.1)

where f0(x; θ0) and f1(x; θ1) are arbitrary, yet known, probability density functions with

parameters θ0 ∈ Rm0 and θ1 ∈ Rm1 , respectively. We assume that the partial derivatives of

fk with respect to x and θk exist and are continuous over the domain of the distributions,

for k = 0, 1. Let p0 and p1 denote the prior probabilities of the observations belonging to

the classes H0 and H1, respectively. Different (machine learning) algorithms can be used

to solve the above binary classification problem. Yet, because of the binary nature of the

problem, any classification algorithm can be represented by a suitable partition of the real

line, and it can be written as

C(x; y) =





H0, x ∈ R0,

H1, x ∈ R1,

(2.2)

18



where1 y = [yi] denotes a set of boundary points, with y0 ≤ · · · ≤ yn+1, y0 = −∞, yn+1 =∞,

and

R0 = {z : yi < z < yi+1, with i = 0, 2, . . . , n},

R1 = {z : yi ≤ z ≤ yi+1, with i = 1, 3, . . . , n− 1}.

We refer to (2.2) as general classifier. We measure the performance of a classification

algorithm through its accuracy, that is, its probability of making a correct classification.

Definition 1 (Accuracy of a classifier) The accuracy of the classification algorithm

C(x; y) is

A(y; θ) = p0P [x ∈ R0|H0] + p1P [x ∈ R1|H1] , (2.3)

where θ = [θT0 θT1 ]T contains the distribution parameters. �

Using Equation (2.3) and the distributions in (2.1), we obtain

A(y; θ) = p0

(
n∑

l=1

(−1)l+1

yl∫

−∞

f0(x; θ0)dx+ 1

)

+ p1

(
n∑

l=1

(−1)l
yl∫

−∞

f1(x; θ1)dx

)
.

(2.4)

Clearly, the accuracy of a classification algorithm depends on the position of its boundaries,

which can be selected to maximize the accuracy of the classification algorithm. To this aim,

let L(x) denote the Likelihood Ratio defined as

L(x) =
p1f1(x; θ1)

p0f0(x; θ0)
.

1For simplicity and without affecting generality, we assume that n is even. Further, an alternative
configuration of the classifier (2.2) assigns H0 and H1 to R1 and R0, respectively. However, because
accuracy and sensitivity of the two configurations can be obtained from each other, we consider only the
configuration in (2.2) without affecting the generality of our analysis.
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The Maximum Likelihood (ML) classifier is

CML(x; η) =





H0, L(x) < η,

H1, L(x) ≥ η,
(2.5)

where the threshold η > 0 is a design parameter that determines the boundary points and,

thus, the accuracy of the classifier. As a known result in statistical hypothesis testing [85],

the accuracy of the ML classifier with η = 1 is the largest among all possible classifiers. The

value and the number of boundary points of the ML classifier depend on the distributions

f0(x; θ0) and f1(x; θ1), the threshold η, and the prior probabilities through the equation

p1f1(x; θ1)− ηp0f0(x; θ0) = 0. (2.6)

Another important class of classifiers is the class of linear classifiers, which are less

complex and often achieve a competitive performance compared to nonlinear classifiers (see

[105] for more details). In our setting, a linear classifier consists of one decision boundary

y ∈ R, and is given by

CL(x; y) =





H0, x < y,

H1, x ≥ y.
(2.7)

Following Definition 1, the accuracy of CL is

A(y; θ) = p0

y∫

−∞

f0(x; θ0)dx− p1

y∫

−∞

f1(x; θ1)dx+ p1. (2.8)

The optimal boundary y∗L that maximizes A(y; θ) is

y∗L = arg max
yi

A(yi; θ)

s.t. yi is a solution of (2.6) with η = 1.

(2.9)
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Figure 2.1: The distributions of x under Gaussian hypotheses with µ0 = 0, σ0 = 9, µ1 = 9,
σ1 = 4, and p0 = p1 = 0.5. The dashed red lines represent the decision boundaries of the
CML(x; η = 1), which divide the space into R0 (represented by the blue region) and R1

(orange region).

While the boundaries are difficult to compute for general distributions, they can

be computed explicitly when the observations are Gaussian (see below). Let N (x;µ, σ) =

1√
2πσ2

e−
(x−µ)2

2σ2 be the p.d.f. of a normal random variable with mean µ and variance σ, and

Q(z) =
∫ z
−∞

1√
2π
e
−x2
2 dx the c.d.f. of the standard normal distribution.

Remark 2 (ML and linear classifiers for Gaussian distributions) For the Gaus-

sian distributions fi(x; θi) = N (x;µi, σi), i = 0, 1, the boundaries of ML classifier satisfy

ax2 + bx+ c = 0 where, (2.10)

a =
1

2

(
1

σ2
0

− 1

σ2
1

)
, b =

(
µ1

σ2
1

− µ0

σ2
0

)
, and

c = log

(
σ0

σ1

)
+ log

(
p1

p0

)
+

µ2
0

2σ2
0

− µ2
1

2σ2
1

− log(η).

Equation (2.10) has at most two real solutions, implying that the ML classifier has at most

two decision boundaries (see Fig. 2.1). The ML classifier with boundaries corresponding

to the solutions of (2.10) with η = 1 has maximum accuracy [85]. The solution of (2.10)

which maximizes the accuracy in (2.8) is the boundary for the optimal linear classifier. �
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In this paper, we consider adversarial manipulations of the observations in which

an attacker is capable of adding deterministic or random perturbations to the observations

in order to degrade the performance of the classifier. We model such manipulations as modi-

fication to the parameters of distributions in (1), i.e., the attacker can change the parameter

θ. To characterize the robustness of a classifier to these adversarial manipulations of the

observations, we define the following sensitivity metric, which captures the degradation of

the classification accuracy following data manipulation.

Definition 3 (Sensitivity of a classifier) The sensitivity of the classification algorithm2

C(x; y) is

S(y; θ) =

∥∥∥∥
∂A(y; θ)

∂θ

∥∥∥∥
∞
, (2.11)

where θ contains the parameters of the distributions in (2.1), and A(y; θ) denotes the accu-

racy of C(x; y). �

From Definition 3, a higher value of sensitivity implies that the adversary can affect the

classifier’s performance to a larger extent, whereas a lower sensitivity implies that the

classifier is more robust to adversarial manipulation. Further, the ∞−norm captures the

worst case in terms of the largest sensitivity with respect to the components of θ. Finally,

the sensitivity vector ∂A(y;θ)
∂θ can be used to determine a perturbation to θ that maximizes

(locally) the degradation of the classifier.

Remark 4 (Comparison with adversarial classification) In adversarial classifica-

tion, the attacker designs a perturbation for a given observation (e.g., an image) to induce

2Definition 3 is also valid for the ML and the linear classifier.
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misclassification [90], [54]. Such observation can be viewed as a realization of a multi-

dimensional distribution. In contrast, we consider perturbations of the distribution, which

affect all the realizations, and focus on the average reduced performance of the classifier

over all realizations. Despite this difference, our sensitivity vector and its norm capture the

direction and the extent of the worst-case perturbation, similar to the worst-case smallest

perturbation in adversarial classification, allow us to obtain formal guarantees, and provide

additional insight into the performance limitations of adversarial classification. �

Remark 5 (Accuracy and sensitivity of the ML classifier for Gaussian distri-

butions) The accuracy and the sensitivity of the ML classifier are obtained by substituting

the expression of the normal distributions N (x;µi, σi) in (2.3) and (2.11):

A(y; θ) = p0

(
Q
(y1 − µ0

σ0

)
−Q

(y2 − µ0

σ0

)
+ 1
)

+ p1

(
−Q

(y1 − µ1

σ1

)
+Q

(y2 − µ1

σ1

))
and,

S(y; θ) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




p0

(
f0

(
y2; θ0

)
− f0(y1; θ0)

)

p0

(
µ0−y1
σ0

f0(y1; θ0)− µ0−y2
σ0

f0(y2; θ0)
)

p1

(
f1(y1; θ1)− f1(y2; θ1)

)

p1

(
µ1−y2
σ1

f1(y2; θ1)− µ1−y1
σ1

f1(y1; θ1)
)




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

,

where θi = [µi σi]
T and i = 0, 1. �

A classification algorithm should have high accuracy and low sensitivity, so as to

exhibit robust performance against adversarial manipulation. Unfortunately, we show that

accuracy and sensitivity are directly related, so that optimizing the accuracy of a classifier

inevitably increases its sensitivity.
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2.2 A fundamental tradeoff between accuracy and sensitivity

of classification algorithms

In this section, we characterize a tradeoff between accuracy and sensitivity of a

classification algorithm for the binary classification problem in (2.1). We prove that, under

some mild conditions, there exist a classifier that is less accurate than CML(x; 1), yet more

robust to adversarial manipulation of the data. This shows that there exist a tradeoff

between accuracy and sensitivity at the configuration of maximum accuracy.

Let y∗ = [y∗1 y∗2 · · · y∗n]T be the vector of the boundaries of CML(x; 1), which

maximizes A(y; θ). Let θ(i) be the ith component of θ. We make the following assumptions:

A1: The vector ∂A(y;θ)
∂θ

∣∣∣
y∗

has a unique largest absolute element, located at index j.

A2: There exist at least one boundary y∗i such that

(
p0

∂

∂yi
f0(yi; θ0)

∣∣∣∣∣
y∗i

− p1
∂

∂yi
f1(yi; θ1)

∣∣∣∣∣
y∗i

)
∂y∗i
∂θ(j)

6= 0.

Assumptions A1 is specific to our definition of sensitivity in (2.11), and is not required

if 2−norm is used (see Remark 10). Further, A2 is mild and typically satisfied in most

problems.

Theorem 6 (Accuracy-sensitivity tradeoff for general classifier (2.2)) Let y∗ con-

tain the boundaries of the classifier CML(x; 1). Then, under Assumptions A1 and A2, it

holds

∂S(y; θ)

∂y

∣∣∣∣
y∗
6= 0. (2.12)
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Proof. Assumption A1 guarantees that S(y; θ) is differentiable with respect to y at y∗. Let

g
(
y; θ
)
, ∂A(y;θ)

∂y . Since y∗ maximizes A(y; θ), g
(
y∗; θ

)
= 0. Differentiating g

(
y∗; θ

)
with

respect to θ(j), and noting that y∗ depends on θ, we get:

dg
(
y∗; θ

)

dθ(j)
=
∂g
(
y; θ
)

∂θ(j)

∣∣∣∣∣
y∗

+
∂g
(
y; θ
)

∂y

∣∣∣∣∣
y∗

∂y∗

∂θ(j)
= 0,

⇒ ∂

∂y

∂A(y; θ)

∂θ(j)

∣∣∣∣∣
y∗

= −∂
2A(y; θ)

∂y2

∣∣∣∣∣
y∗

∂y∗

∂θ(j)
, (2.13)

where the last equation follows by substituting g
(
y; θ
)

= ∂A(y;θ)
∂y and switching the or-

der of partial differentiation. Using (2.11), it can be easily observed that the left side

of (2.13) equals ±∂S(y;θ)
∂y

∣∣∣
y∗

. Further, differentiating (2.4) twice, we get ∂2

∂y2
A(y; θ) =

diag(w1(y1), · · · , wn(yn)), where

wi(yi) = p0(−1)i+1 ∂

∂yi
f0(yi; θ0) + p1(−1)i

∂

∂yi
f1(yi; θ1).

Assumption A2 guarantees that there exist a boundary y∗i such that wi(y
∗
i )

∂y∗i
∂θ(j)

6= 0. The

result follows from (2.13).

Theorem 6 implies that the sensitivity of the classifier C(x; y) can be decreased

by modifying the boundaries y∗. Yet, because C(x; y∗) exhibits the largest classification

accuracy among all classifiers, the reduction of sensitivity inevitably decreases the accuracy

of classification. In other words, for any classification problem (2.1) satisfying Assumption

A1 and A2 and for any classification algorithm (2.2), there exists an arbitrarily small δ such

that3

S(y∗ + δ; θ) < S(y∗; θ) and A(y∗ + δ; θ) ≤ A(y∗; θ).

3The inequality for accuracy is strict for most distributions.
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Thus, a fundamental tradeoff exists between the accuracy of a classifier and its robustness

to adversarial manipulation. Note that the result of Theorem 6 holds for all distributions

that satisfy Assumptions A1 and A2. Further, we show next that such tradeoff also exists

for linear and ML classifiers, and for multi-dimensional digit classifier based on a neural

network (Section 4.3). This tradeoff is observed for a large class of problems, thereby

highlighting its fundamental nature.

Corollary 7 (Accuracy-sensitivity tradeoff for the linear classifier (2.7)) Let y∗L

be the boundary given in (2.9) that maximizes the accuracy (in (2.8)) of the linear classifier

CL(x; y). Then, under Assumptions A1 and A2, it holds

∂S(y; θ)

∂y

∣∣∣∣
y∗L

6= 0. (2.14)

Proof. Since y∗L corresponds to one of the boundaries contained in y∗, the proof follows

from Theorem 6.

Next, we show that this tradeoff also exists for the Maximum Likelihood classifier.

This fact does not follow trivially from Theorem 6, because the general classifier in theorem

has independent boundaries, while the boundaries of the ML classifier are dependent on

one another via (2.6). We make the following mild technical assumption.

A3: The vectors ∂y(η,θ)
∂η

∣∣∣
η=1

and ∂S(y;θ)
∂y

∣∣∣
y∗

are not orthogonal, where y(η, θ) contains the

boundaries of CML(x; η).

Lemma 8 (Accuracy-sensitivity tradeoff for the ML classifier (2.5)) Let y(η, θ)

contain the boundaries of the classifier CML(x; η). Then, under Assumptions A1, A2 and
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Figure 2.2: Accuracy-sensitivity tradeoff curves for a general classifier with 2 boundaries
(black dashed line), the ML classifier (blue line), and a linear classifier (orange dash-dotted
line) corresponding to the Gaussian hypothesis testing problem. The parameters of the
two distributions for Fig. 2.2(a)-(b) are µ0 = 0, σ0 = 9, µ1 = 9, and σ1 = 4, and for
Fig. 2.2(c) are µ0 = 0, σ0 = 4, µ1 = 5, and σ1 = 3. The red dot represents CML(x; 1)
(maximum accuracy point) and the green dot represents CML(x; 0.46). The red square
represents CL(x; y = 3.65), which is the linear classifier with maximum accuracy. The
sensitivity in 2.2(a) and for the black dashed line in 2.2(c) is computed using Definition 3,
while the sensitivity in Fig. 2.2(b) and for the red line in 2.2(c) is computed using (2.16).

A3, it holds

∂S (y(η, θ); θ)

∂η

∣∣∣∣
η=1

6= 0.

Proof. Let y∗ contain the boundaries of the classifier CML(x; η = 1). The derivative of

S
(
y(η, θ); θ

)
with respect to η can be written as:

∂S
(
y(η, θ); θ

)

∂η

∣∣∣∣∣
η=1

=
∂S
(
y; θ
)

∂yT

∣∣∣∣∣
y∗

∂y(η, θ)

∂η

∣∣∣∣
η=1

.

We conclude following Theorem 6 and Assumption A3.

In what follows we numerically show that a tradeoff between accuracy and sensitiv-

ity also exists when the classification boundaries are not selected to maximize the accuracy

of the classifier. To this aim, first we compute the accuracy and sensitivity of the ML classi-

fier CML(x; η), for different values of η. Notice that, by varying 0 < η <∞, Equation (2.6)
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returns different classification boundaries and, thus, different classification algorithms. Sim-

ilarly, we compute the accuracy and sensitivity of linear classifier CL(x; y) by varying the

single boundary y. Second, we numerically solve

min
y
S(y; θ)

s.t. A(y; θ) = ζ,

(2.15)

for different values of ζ ranging from 0.5 to A(y∗; θ). Notice that the minimization problem

(2.15) returns the classifier with lowest sensitivity and accuracy equal to ζ, and that the

boundaries solving the minimization problem (2.15) may not satisfy (2.6). Further, for

a given number of classification boundaries, the minimization problem (2.15) returns a

fundamental tradeoff curve relating accuracy and sensitivity over the range of ζ, which is

independent of the choice of classification algorithm. Finally, the minimization problem

(2.15) is not convex, because of its nonlinear equality constraint.

Fig. 2.2(a) shows the accuracy-sensitivity tradeoff for the Gaussian hypothesis

testing problem discussed in Remark 5. In this case, since the ML classifier has 2 bound-

aries, we also consider general classifiers with 2 boundaries. We observe that the general

classifier exhibits the tradeoff at the maximum accuracy point (identified by the red dot)

in accordance with Theorem 6. Several comments are in order. First, the ML and linear

classifiers also exhibit tradeoff at their respective maximum accuracy points in accordance

with Lemmas 8 and 7. Second, the tradeoff for the ML classifier is not strict and there exist

points where reducing accuracy increases sensitivity (green dot in the figure). On the other

hand, the tradeoff for the general classifier is strict. This might be because the decision

boundaries of the general classifier can be varied independently, whereas the boundaries of
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the ML classifier are related to each other since they are the solutions of (2.6). Thus, the

general classifier provides more flexibility in choosing the boundaries, which induces lower

sensitivity as compared to the ML classifier, and ultimately, results in a strict tradeoff.

Similarly, the tradeoff for the linear classifier is not strict. Third, the tradeoff curve for

the general classifier is below the tradeoff curves for the ML and linear classifiers, again,

due to the aforementioned reason.4 Fourth, the maximum accuracy of the linear classifier

(corresponding to red square) is smaller than that of the ML classifier (corresponding to

the red dot), but its sensitivity at the maximum accuracy configuration is also smaller than

that of the ML classifier. This explains the observed phenomena that in some cases, linear

models are more robust to adversarial attacks than nonlinear models (for example, neural

networks) [34]. Finally, the curves are not smooth because of the ∞-norm in Definition 3.

Next, we present two remarks on using the 2-norm to define sensitivity and on the

necessity of Assumption A1.

Remark 9 (Classification sensitivity using the 2−norm) In Definition 3, the ∞-

norm captures the largest change in accuracy with respect to a change in a single component

of parameters vector θ. Instead, using the 2-norm to define the sensitivity of a classification

algorithm leads to

S(y; θ) =

∥∥∥∥
∂A(y; θ)

∂θ

∥∥∥∥
2

, (2.16)

which captures the change in accuracy with respect to changes in all the components of

θ. Fig. 2.2(b) shows the sensitivity versus accuracy tradeoff when sensitivity is defined

using (2.16) instead of (2.11). For this case, a strict tradeoff is observed for all classifiers,

4ML and linear classifiers are particular instances of the general classifier.

29



although this may not be the case in general. Further, the tradeoff curves are smooth. �

Remark 10 (Necessity of Assumption A1) Assumption A1 is required to ensure dif-

ferentiability of the sensitivity in (2.11), and thus, it is required for Theorem 6. In contrast,

the sensitivity defined in (2.16) is always differentiable, and A1 is not required in this case.

We illustrate this in Fig. 2.2(c), where the vector ∂A(y∗;θ)
∂θ = [0.043, 0.024, −0.043, 0.040]T

has two elements with maximum absolute value, violating Assumption A1. We observe that

a tradeoff at the maximum accuracy point (denoted by the red dot) does not exist in this

case using (2.11), while it still exists using (2.16). �

Next, we numerically analyze the effect of the complexity (determined by the

number of boundaries) of the general classifier on the tradeoff. Fig. 3 shows the tradeoff

curves corresponding to ∞−norm sensitivity for different number of boundaries. Ideally,

the tradeoff should improve as the number of boundaries increase. Interestingly, we observe

that, for high values of accuracy (> 0.72), increasing the number of boundaries does not

improve the tradeoff, and all curves for 9 ≥ n ≥ 4 coincide. For low values of accuracy, we

face numerical difficulties in obtaining the global minimum of (15), and therefore, we do not

observe smooth and ordered points on the curve. However, we still observe that the curves

are close to each other, and the tradeoff does not seem to improve beyond a certain number

of boundaries. Based on this, we conjecture that there exists a fundamental tradeoff curve

which cannot be improved by increasing the number of boundaries arbitrarily.
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Figure 2.3: Accuracy-sensitivity tradeoff curves for general classifiers with different num-
ber of boundaries for the Gaussian hypothesis testing problem. The parameters of the
distributions are µ0 = 0, σ0 = 9, µ1 = 9, σ1 = 4.

2.3 Illustrative examples

In this section we illustrate numerically the implications of Theorem 6. In partic-

ular, we consider two classification algorithms with different accuracy and sensitivity, and

show how their performance degrades differently when the observations are corrupted by an

adversary. This implies that, when robustness to adversarial manipulation of the observa-

tions is a concern, classification algorithms should be designed to simultaneously optimize

accuracy and sensitivity, and should not operate at their point of maximum accuracy.

Consider the classification problem (2.1), and let

f0(x, θ0) = N (x;µ0, σ0), f1(x, θ1) = N (x;µ1, σ1). (2.17)

Let C1 = CML(x; 1) and C2 = CML(x; 0.46) be the classification algorithms identified by the

red and green points in Fig. 2.2(a), respectively. Notice that, when the observations are not

manipulated and follow the distributions (2.17), C1 achieves higher accuracy and sensitivity

than C2. This is also the case when using definition (2.16), as illustrated in Fig. 2.2(b).

While the nominal distributions (2.17) are used to design the classifiers C1 and C2, we
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Table 2.1: Numerical Results for Binary Classification

Classifier y1 y2 S(y; θ) A(y; θ) Aadv1 Aadv2

C1
3.65 18.78 0.0334 0.7891 0.6857 0.6808

C2
1.83 20.60 0.0201 0.7766 0.6947 0.6939

consider an adversary that manipulates the observations so that their true distributions are

f0(x, θ0) = N (x;µ0 + µ̄0, σ0 + σ̄0), and

f1(x, θ1) = N (x;µ1 + µ̄1, σ1 + σ̄1),

(2.18)

where µ̄0, µ̄1, σ̄0, and σ̄1 are unknown parameters selected by the adversary to deteriorate

the accuracy of the classifiers.

To evaluate the accuracy of C1 and C2, we generate 10000 observations obeying

the modified distributions (2.18), and compute the accuracy of the classifiers as the ratio

of the number of correct predictions to the total number of observations. We repeat this

experiment 100 times, and then compute the average accuracy of the classifiers over all

trials.

Table 2.1 summarizes the results of the classification problems with C1 and C2

on the altered observations. In particular, y1 and y2 are the decision boundaries of the

classifiers, while S(y; θ) and A(y; θ) denote their nominal sensitivity and accuracy. Instead,

Aadv1 and Aadv2 denote the average accuracy of the classifiers when, respectively, the ad-

versarial parameters are µ̄1 = µ̄0 = σ̄0 = 0, σ̄1 = 3, and µ̄0 = 1, σ̄0 = 2, µ̄1 = −2, σ̄1 = 1.5.

The results show that, although C1 exhibits higher accuracy than C2 when the observations

follow the nominal distributions (2.17), C2 outperforms C1 in both adversarial scenarios, as
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Table 2.2: Numerical Results for Digit Classification

Neural Networks NN1 NN2 NN3 NN4

Anom 0.9828 0.9641 0.9170 0.8665

Aadv 0.2462 0.2734 0.3189 0.3204

supported by our analysis.

Next, we illustrate that the results of Theorem 3.1 can be observed for more

complex and multidimensional classification problems. We consider the classification of

hand-written digits (0-9) using a neural network (NN). We consider a NN with 6 layers,

which uses cross entropy loss function, and we use the MNIST dataset [57] for its training.

We add a regularization term to the loss function to increase the robustness of the NN

against adversarial perturbations. We train 4 NNs using unperturbed images - NN1 without

any regularization term, and NN2, NN3 and NN4 with increasing regularization weight

coefficients. The adversarial images are computed using the framework of [90]. The results

are reported in Table 2.2, where Anom and Aadv denote the accuracy of a NN under clean

and adversarial images, respectively. We observe that a NN with larger robustness (Aadv)

exhibits lower accuracy (Anom), indicating the existence of an accuracy-sensitivity tradeoff.
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Chapter 3

Fundamental Performance -

Robustness Tradeoff for

Adversarial Classification with

Abstaining

In this chapter, we take a different route than Chapter 2 for addressing adversarial

robustness in classification problems. We consider an abstain option, where a classifier with

fixed classification boundaries may abstain from giving an output over some region in the

input space that the classifier is uncertain about. Mainly the inputs in such a region are the

most prone to adversarial attacks. Thus, abstaining over such a region helps the classifier

to avoid misclassifying perturbed inputs, and hence improve its adversarial robustness. In

particular, under a perturbed input, instead of giving a wrong output (or possibly a correct
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Figure 3.1: This figure shows the distribution of x under class H0 (blue ellipsoid) and class
H1 (orange ellipsoid). g(x), represented by the dashed red line, is the hyperspace decision
boundary for the non-abstain case for the classifier in (3.2). It divides the observation space
into R0 (blue region) and R1 (orange region). g1(x) and g2(x), represented by the green
dashed lines, are the boundaries of the abstain region Ra (gray region).

output with low confidence), the model decides to abstain from giving one. For instance,

if a self-driving car detects an object that it is uncertain about (it could be a shadow or

maybe sensor measurements are perturbed by an adversary), it could abstain from giving

an output that might lead to a car accident, and ask a human to take control. In safety

critical applications, abstaining on low confidence output might be better than making a

wrong decision. Motivated by this, we study the problem of classification with an abstain

option by casting it into a binary hypothesis testing framework, where we add a third

region in the observation space that corresponds to the observations on which the classifier

abstains on (Fig. 3.1). Particularly, we study the relation between the accuracy and the

adversarial robustness of a binary classifier upon varying the abstain region, where we show

that improving the adversarial robustness of a classifier via abstaining comes at the expense

of its accuracy. The results of this chapter are reported in our published paper [66].
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3.1 Problem setup and preliminary notions

We consider a d-dimensional binary classification problem formulated as hypothesis

testing problem as in [64]. The objective is to decide whether an observation x ∈ Rd belongs

to class H0 or class H1. We assume that the distribution of the observations under class

H0 and class H1 satisfy

H0 : x ∼ f0(x), and H1 : x ∼ f1(x), (3.1)

where f0(x) and f1(x) are known arbitrary probability density functions. For notational

convenience, in the rest of this paper we denote f0(x) and f1(x) by f0 and f1, respectively.

We denote the prior probabilities of the observations under f0 and f1 by p0 and p1, respec-

tively. In this setup, any classifier can be represented by a partition of the Rd space by

placing decision boundaries at suitable positions (see Fig. 3.1). We consider adversarial

manipulations of the observations, where an attacker is capable of adding perturbations

to the observations in order to degrade the performance of the classifier. We model1 such

manipulations as a change of the probability density functions in (3.1). We refer to the

perturbed f0 and f1 in (3.1) as f̃0 and f̃1, respectively. In this work, we aim to improve

the adversarial robustness of any classifier by abstaining from making a decision for low

confidence outputs. A classifier with an abstain option can be written as

C(x; g(x), g1(x), g2(x)) =





H0, x ∈ R0 ∩Ra,

H1, x ∈ R1 ∩Ra,

Ha, x ∈ Ra,

(3.2)

1In this work, we do not specify a model for the adversary, our analysis holds independently of the
adversary model.
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where g(x)2 gives the hyperspace decision boundary for the non-abstain case, g1(x) and

g2(x) give the hyperspace boundaries for the abstain region, specifically,

R0 = {z : g(z) ≤ 0, ∀z ∈ Rd},

R1 = {z : g(z) > 0,∀z ∈ Rd},

Ra = {z : (g1(z) ≥ 0) ∩ (g2(z) ≤ 0),∀z ∈ Rd},

(3.3)

and Ra is the complement set of Ra. We define two metrics to measure the performance

and robustness of classifier (3.2).

Definition 11 (Nominal error) The nominal error of a classifier with an abstain option

is the proportion of the (unperturbed) observations that are misclassified or abstained on,

enom(R0,R1,Ra) =p0P [x ∈ R1|H0] + p1P [x ∈ R0|H1]

+ p0P [x ∈ (R0 ∩Ra)|H0]

+ p1P [x ∈ (R1 ∩Ra)|H1] , (3.4)

where R0, R1, and Ra are as in (3.3). �

The first two terms in (3.4) correspond to the error without abstaining, therefore, they do

not depend on the abstain region Ra. The last two terms correspond to the abstain error,

thus, they depend on Ra. Using Definition 11 and the distributions in (3.1), the nominal

error for classifier (3.2) is written as

enom(R0,R1,Ra) = p0

∫

R1

f0dx+ p1

∫

R0

f1dx

+ p0

∫

R0∩Ra

f0dx+ p1

∫

R1∩Ra

f1dx. (3.5)

2Technically, g(x) is not the boundary, g(x) = 0 provides the boundary, but for the notational convenience
we use g(x) to refer to the boundary. Similarly, we use g1(x) and g2(x) instead of g1(x) = 0 and g2(x) = 0.
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As can be seen in (3.5), the nominal classification error depends on R0, R1, and Ra, and

thus on the position of the boundaries, g(x), g1(x), and g2(x), as described in (3.3). Lower

nominal error implies higher classification performance. Note that, if there is no abstain

option (Ra = ∅), then the nominal error is equal to the error computed in the classic

hypothesis testing framework [85].

Definition 12 (Adversarial error) The adversarial error of a classifier with an abstain

option is the proportion of the perturbed observations that are misclassified and not abstained

on,

eadv(R0,R1,Ra) =p0P
[
x̃ ∈ (R1 ∩Ra)|H0

]

+ p1P
[
x̃ ∈ (R0 ∩Ra)|H1

]
, (3.6)

where x̃ ∈ Rd is a perturbed observation that follows distributions f̃0 and f̃1 under classes

H0 and H1, respectively. �

Using Definition 12 and the distributions in (3.1), we can write the adversarial error for

classifier (3.2) as

eadv(R0,R1,Ra) = p0

∫

R1∩Ra

f̃0dx+ p1

∫

R0∩Ra

f̃1dx, (3.7)

Similar to the nominal error, the adversarial error depends on R0, R1, and Ra defined in

(3.3). Further, the adversarial error depends on the perturbed distributions f̃0 and f̃1. The

adversarial error is related to the classifier’s robustness to adversarial attacks, where low

adversarial error implies higher robustness. Note that, if a classifier abstains over the whole

input space (Ra = Rd), then the adversarial error converges to zero, and the classifier
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achieves maximum possible robustness. Yet, such classifier achieves maximum nominal

error.

Remark 13 (Intuition behind Definition 11 and 12) Abstaining from making a de-

cision can be better than making a wrong one, yet worse than making a correct one. enom

penalizes abstaining (along with misclassification) since the classifier is not performing the

required task, which is to make a decision. On the other hand, eadv does not penalize ab-

staining since by abstaining from making a decision on perturbed inputs, the classifier is

avoiding an adversarial attack that can lead to misclassification. Each of these two def-

initions is a different performance metric, where enom measures the classifier’s nominal

performance, while eadv measures the classifier’s robustness against adversarial perturba-

tions of the input. Further, these definitions guarantee that abstaining does not yield a

unilateral advantage or disadvantage, where the classifier would abstain always or never.

We remark that different definitions are possible. �

3.2 Tradeoff between nominal and adversarial errors

Ideally, we would like both the nominal error and the adversarial error to be small.

However, in this section we show that these errors cannot be minimized simultaneously.

Theorem 14 (Nominal-adversarial error tradeoff) For classifier (3.2), let Ra0 =

R0 ∩Ra and Ra1 = R1 ∩Ra, and let R̃a ⊃ Ra be another abstain region that is partitioned
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as R̃a = R̃a0 ∪ R̃a1, with R̃a0 ⊃ Ra0 and R̃a1 ⊃ Ra1. Then,

enom(R0,R1,Ra) < enom(R0,R1, R̃a), (3.8)

eadv(R0,R1,Ra) > eadv(R0,R1, R̃a). (3.9)

Proof. For notational convenience, we denote enom(R0,R1,Ra), eadv(R0,R1,Ra),

enom(R0,R1, R̃a), and eadv(R0,R1, R̃a) by enom, eadv, ẽnom, and ẽadv, respectively. For a

classifier as in (3.2) with abstain region R̃a, we can write

ẽnom =p0

( ∫

R1

f0dx+

∫

R̃a0

f0dx
)

+ p1

( ∫

R̃a1

f1dx+

∫

R0

f1dx
)

=p0

∫

R1

f0dx+ p0

∫

Ra0

f0dx+ p0

∫

R̃a0\Ra0

f0dx

+ p1

∫

R0

f1dx+ p1

∫

Ra1

f1dx+ p1

∫

R̃a1\Ra1

f1dx.

Then, we can write

ẽnom − enom = p0

∫

R̃a0\Ra0

f0dx+ p1

∫

R̃a1\Ra1

f1dx > 0.

Similarly, we can write

ẽadv − eadv = −p0

∫

R̃a0\Ra0

f̃0dx− p1

∫

R̃a1\Ra1

f̃1dx < 0.

As we increase the abstain region from Ra to R̃a, enom strictly increases, while eadv strictly

decreases, which indicates a tradeoff relation between both errors as we vary the abstain

region. Theorem 14 implies that there exist a tradeoff between enom and eadv. Therefore, the

classifier’s adversarial robustness can be improved only at the expense of its classification
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performance. In practice, the classifier’s robustness can be improved by increasing Ra,

while the nominal classification performance can be improved by decreasing Ra.

Remark 15 (Comparing our tradeoff with the literature) [64, 95, 107] showed that

a tradeoff relation exists between a classifier’s nominal performance and its adversarial ro-

bustness. Despite using different frameworks, their performance-robustness tradeoff relation

is obtained via tuning the classifier’s boundaries in a way that improves its robustness. In

our result, we fix the classifier’s decision boundaries, and include an abstain region that

can be tuned to obtain our performance-robustness tradeoff. It is possible that a classifier

with an abstain option and a classifier without an abstain option but with different deci-

sion boundaries achieve the same enom and eadv. Although both classifiers achieve same

metrics, they are different, where the latter gives an output all the time, while the former

abstains on some inputs. �

Next we provide our analysis on how to select the abstain region for the 1-dimensional binary

classification problem. Consider the same binary hypothesis testing problem introduced in

Section 7.1, but with a scalar observation space where the observation x ∈ R is distributed

under classes H0 and H1 as in (3.1). In this setup, any classifier can be represented by a

partition of the real line by placing decision boundaries at suitable positions (see Fig. 3.2).

Let3 −∞ = y0 ≤ · · · ≤ yn+1 =∞ denote n decision boundaries with y = [yi]. Then, the

3For simplicity and without loss of generality, we assume that n is even. Further, an alternative configu-
ration of the classifier (3.2) assigns H0 and H1 to R1 and R0, respectively. However, we consider only the
configuration in (3.2) without affecting the generality of our analysis.
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classifier regions are

R0 = {z : yi < z < yi+1, for i = 0, 2, . . . , n},

R1 = {z : yi ≤ z ≤ yi+1, for i = 1, 3, . . . , n− 1},

Ra = {z : yi − γi1 ≤ z ≤ yi + γi2, for i = 1, 2, . . . , n},

where γij ∈ R≥0 for i = 1, 2, . . . , n and j = 1, 2. Let γ = [γ11, γ12, . . . , γi1, γi2, . . . , γn1, γn2]T ,

yi1 = yi − γi1, and yi2 = yi + γi2. Using (3.4) and (3.1), we have

enom(y, γ) =p0




n∑

l=1

(−1)l

ylj∫

−∞

f0dx




+ p1




n∑

l=1

(−1)l+1

ylk∫

−∞

f1dx+ 1


 . (3.10)

where j = (−1)l+1
2 + 1 and k = (−1)l+1+1

2 + 1 for l = 1, . . . , n. Using (3.6), the adversarial

error becomes

eadv(y, γ) =p0




n∑

l=1

(−1)l
ylk∫

−∞

f̃0dx




+ p1




n∑

l=1

(−1)l+1

ylj∫

−∞

f̃1dx+ 1


 , (3.11)

where j and k are the same as above. Given a classifier as in (3.2) with known boundaries

y, we are interested in how to select the abstain region, i.e., how to choose γ given y. To

this aim, we cast the following optimization problem:

e∗adv(ζ) = min
γ

eadv(y, γ)

s.t. enom(y, γ) ≤ ζ,
(3.12)
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where ζ ∈ [enom(y, 0), 1]. In what follows, we characterize the solution γ∗ to (5.3). We begin

by writing the derivative of the errors in (3.10) and (3.11) with respect to γ:

∂enom

∂γi1
= pqfq(yi − γi1),

∂enom

∂γi2
= prfr(yi + γi2),

∂eadv

∂γi1
= −prf̃r(yi − γi1),

∂eadv

∂γi2
= −pqf̃q(yi + γi2),

(3.13)

where q = (−1)i+1
2 and r = (−1)i+1+1

2 for i = 1, . . . n. Note that the derivative of enom with

respect to γ is strictly positive, while that of eadv is strictly negative. Thus, enom increases

while eadv decreases as γ increases (i.e., as Ra increases), which agrees with the result of

Theorem 14. Problem (5.3) is not convex and it might not exhibit a unique solution. The

following theorem characterizes a solution γ∗ to (5.3).

Theorem 16 (Characterizing the solution to the minimization problem (5.3))

Given classifier (3.2) with 1-dimensional input and known n boundaries y, the solution γ∗

to problem (5.3) satisfies the following necessary conditions

enom(y, γ) = ζ, (3.14)

∂eadv(y, γ)

∂γiu
.
∂enom(y, γ)

∂γjv
=
∂eadv(y, γ)

∂γjv
.
∂enom(y, γ)

∂γiu
, (3.15)

for i, j = 1, . . . , n, i 6= j, and u, v = 1, 2, where the derivatives of enom and eadv with respect

to γ are as in (3.13).

Proof. Defining the Lagrange function of (5.3)

L(γ, λ) = eadv(y, γ) + λ(enom(y, γ)− ζ), (3.16)

where λ is the Karush-Kuhn-Tucker (KKT) multiplier. For notational convenience, we

denote eadv(y, γ) and enom(y, γ) by eadv and enom, respectively. The stationarity KKT con-
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dition implies ∂
∂γL(γ, λ) = 0, which is written as

∂eadv
∂γ

= −λ∂enom
∂γ

. (3.17)

Using (3.17) we write

−λ =
∂eadv
∂γiu

/∂enom
∂γiu

=
∂eadv
∂γjv

/∂enom
∂γjv

, (3.18)

for i, j = 1, . . . , n, i 6= j, and u, v = 1, 2, which gives us (3.15). The KKT condition for dual

feasibility implies that λ ≥ 0. However, since we have ∂eadv
∂γ 6= 0 and ∂enom

∂γ 6= 0 from (3.13),

we get from (3.17) that λ > 0. Further, the KKT condition for complementary slackness

implies λ(enom − ζ) = 0. Since λ > 0, then enom − ζ = 0, which gives us (3.14).

Remark 17 (Location of the abstain region in the observation space) The abstain

region in Theorem 14 can be located anywhere in the observation space. However, in Theo-

rem 16, we assume that the abstain region is located around the decision boundaries. This

assumption is fair since the observations near the classifier’s boundaries tend to have low

classification confidence and are prone to misclassification. �

We conclude this section with an illustrative example.

Example 18 (Classifier with an abstain option for exponential distributions)

Consider a 1-D binary hypothesis testing problem, where the observation x ∈ R under

classes H0 and H1 follows exponential distributions, i.e., the probability density functions

in (3.1) have the form fi(x) = ρi exp(−ρix) over the domain x ∈ R≥0 with parameter ρi > 0

for i = 0, 1. We consider a single boundary classifier with an abstain option as in (3.2), with

boundary y1 and abstain parameters γ11 and γ12 (see Fig. 3.2). For simplicity, we model
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Figure 3.2: This figure shows the binary classification problem described in Example 18,
where the observation x under hypotheses H0 (solid blue line) and H1 (solid orange line)
follows exponential distribution with ρ0 = 1.5 and ρ1 = 0.5, respectively. The dashed
red line is the decision boundary for the non-abstain case, which divides the space into
R0 (blue region) and R1 (orange region). The dot-dashed green lines are the boundaries of
the abstain region Ra (gray region), which is parametrized by γ11 and γ12.

the adversarial manipulations of the observations as perturbation added to the distributions’

parameters. We refer to the perturbed parameters as ρ̃0 and ρ̃1. Using Theorem 16:

p0 exp(−ρ0(y1 − γ11))− p1 exp(−ρ1(y1 + γ12)) + p1 = ζ,

p2
1ρ̃1ρ1 exp(−ρ̃1(y1 − γ11)− ρ1(y1 + γ12))

= p2
0ρ̃0ρ0 exp(−ρ̃0(y1 + γ12)− ρ0(y1 − γ11)). (3.19)

For a given classifier with known boundary, y1, and with desired nominal performance, ζ,

along with the knowledge of the perturbed distribution parameters ρ̃0 and ρ̃1, we can choose

the optimal abstain region by solving (3.19) for γ11 and γ12. A solution of (3.19) corresponds

to a local minima of (5.3). Note that the constraint (5.3) is active (see Theorem 16), hence

we have enom(y1, γ
∗) = ζ. Fig. 3.3 shows the values of e∗adv obtained by solving (3.19) for

γ∗11 and γ∗12 over the range ζ ∈ [enom(y1, 0), 1] with ρ0 = 1.5, ρ1 = 0.5, ρ̃0 = 1.2, ρ̃1 = 0.7,

and p0 = p1 = 0.5. Moreover, Fig. 3.3 shows the values of eadv as a function of enom as

γ11 and γ12 are varied arbitrarily. Both curves show a tradeoff between enom and eadv as

predicted by Theorem 14. Further, at each value of enom ∈ (enom(y1, 0), 1), we observe that
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Figure 3.3: This figure shows the tradeoff between enom and eadv as we vary the abstain
region, γ, for the classifier described in Example 18. The solid blue line is obtained using
Theorem 16 to solve for γ∗ for each value of enom, while the dashed red line is obtained
by varying γ arbitrarily. Both curves coincide at the extreme points at enom = 0.31 and
enom = 1, which correspond to Ra = ∅ (no abstaining) and Ra = R (always abstaining),
respectively. For enom ∈ (0.31, 1), we observe that the optimal curve achieves lower eadv

than the curve obtained by arbitrary selection of γ.

e∗adv(ζ) < eadv(y1, γ). �

3.3 Numerical experiment using MNIST dataset

In this section, we illustrate the implications of Theorem 14 using the classification

of hand-written digits from the MNIST dataset [57]. First, we design and train a classifier

with an abstain option. Then, we use Definition 11 and 12 to compute enom and eadv for a

classifier given the dataset. Finally, we present our numerical results on the MNIST dataset.

Although our theoretical results are for binary classification, we show that a tradeoff between

enom and eadv exists for multi-class classification using the MNIST dataset.
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3.3.1 Classifier design and training

We design a classifier h : X→ Y using the Lipschitz-constrained loss minimization

scheme introduced in [52]4:

min
h∈Lip(X;Y)

1

Ntrain

Ntrain∑

i=1

L (h (xi) , yi) ,

s.t. lip(h) ≤ α,

(3.20)

where X ⊂ Rd and Y ⊂ Rm are the respective input and output space, Lip(X;Y) denotes

the space of the Lipschitz continuous maps from X to Y, L is the loss function of the

learning problem, the pair {xi, yi}Ntrain
i=1 denotes the training dataset of size Ntrain, with

input x ∈ X and output y5 ∈ Y, lip(h) is the Lipschitz constant of classifier h, and α ∈ R≥0

is the upper bound constraint on the Lipschitz constant. The classifier takes an input

image of d pixels and outputs a vector of probabilities of size m, which is the number of

classes. The classifier chooses the class with the highest probability: higher probability

implies higher decision confidence. We incorporate an abstain option, where the classifier

abstains if the maximum probability is less than a threshold probability pa. We consider

adversarial examples, x̃ = x+δ, computed as in [52], where δ ∈ Rd is a bounded perturbation

(‖δ‖∞ ≤ ξ) in the direction that induces misclassification.

3.3.2 Nominal and Adversarial error

Let Z = {0, 1, . . . ,m − 1} and Ẑ = {0, 1, . . . ,m− 1, a} be the sets containing all

possible true labels and all possible predicted labels by classifier h, respecticvely, where a

4Other classification algorithms, e.g. neural networks, can also be used.
5Label yi ∈ Rm is a vector which contains 1 in the element that correspond to the true class and zero

everywhere else.
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Figure 3.4: In the classification problem discussed in Section 3.3, 4 classifiers are trained on
the MNIST dataset using the Lipschitz-constrained loss minimization scheme in (3.20), with
α = 5, 10, 20, 300, which are represented in all 4 panels by the solid blue line, the dashed red
line, the dot-dashed green line, and the three-dot-dashed orange line, respectively. Panel
(a) shows the tradeoff between enom and eadv, panels (b) and (c) show enom and eadv as a
function of the threshold probability, pa, respectively, and panel (d) shows the ratio of the
abstain region to the input space, denoted by A, as a function of pa. As observed in (d),
the abstain region is zero for pa ∈ [0, 0.5), it monotonically increases for pa ≥ 0.5 till it
covers the whole input space when pa = 1. When there is no abstaining (i.e., pa ∈ [0, 0.5)),
all classifiers achieve their lowest enom and their highest eadv as observed in (b) and (c),
respectively, where the classifier with α = 300 achieves the lowest enom and the highest eadv

among all 4 classifiers, while the classifier with α = 5 achieves the highest enom and the
lowest eadv, which agrees with the tradeoff result in [52]. When the abstain region covers
the whole input space (i.e., pa = 1), all classifiers achieve enom = 1 and eadv = 0 as seen in
(b) and (c), respectively. Also, it is observed in (b) and (c), respectively, that as the abstain
region increases (i.e., pa increases), enom increases while eadv decreases for all classifiers,
which leads to the tradeoff relation between the two as observed in (a).

corresponds to the abstain option. Let zi ∈ Z and ẑi ∈ Ẑ be the true label and the label

predicted by h for the input xi, respectively
(
i.e., ẑi is the label that corresponds to the

maximum probability in the vector h(xi), or label a if the maximum probability is less than

pa
)
. Further, let z̃i ∈ Ẑ be the label predicted by h for the perturbed input image x̃i. Using

Definition 11 and 12 we compute enom and eadv for h with threshold probability pa on the

testing dataset of size Ntest as,

enom(h, pa) =
1

Ntest

Ntest∑

i=1

1{ẑi 6= zi},

eadv(h, pa) =
1

Ntest

Ntest∑

i=1

1{z̃i 6= zi ∩ z̃i 6= a},
(3.21)

where 1{·} denotes the indicator function.
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3.3.3 Nominal-Adversarial error tradeoff

To show the implications of Theorem 14, we train four classifiers on the MNIST

dataset using (3.20) with α = 5, 10, 20, and 300, respectively (refer to [52] for details about

the training scheme). Then, we compute enom and eadv for each classifier using (3.21) with

different values of pa and a bound on the perturbation ξ = 0.3. Fig. 3.4 shows the numerical

results on the testing dataset. Fig. 3.4(a) shows the tradeoff between enom and eadv for

all the classifiers, which agrees with Theorem 14. Fig. 3.4(b)-(c) show enom and eadv as a

function of pa, respectively, while Fig. 3.4(d) shows the ratio of the abstain region to the

input space, denoted by A, as a function of pa. As shown in Fig. 3.4(d), A increases at a

low rate from zero to 0.1 for pa ∈ [0.5, 0.95] for the classifier with α = 300, then it increases

at a high rate till it reaches 1 for pa ∈ (0.95, 1]. The rate at which A increases becomes

more uniform as α decreases, where for the classifier with α = 5, A increases with an almost

uniform rate from zero at pa = 0.5 to 1 at pa = 1. This is because as we decrease α in

(3.20), the learned function becomes more smooth, and the change of the output probability

vector over the input space becomes smoother. As observed in Fig. 3.4(b) and Fig. 3.4(c),

enom increases, while eadv decreases for pa ∈ [0.5, 1].
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Chapter 4

Fundamental Tradeoff between

Performance and Robustness in

Perception-Based Control

In this chapter, we characterize a fundamental tradeoff between accuracy and ro-

bustness in a data-driven control problem. We consider a perception-based control scenario,

Fig. 4.1, where a camera is used to partially measure the state of a dynamical system and

construct an estimator of the full state. We assume that the output map between the

high-dimensional camera stream and the system state has been learned accurately [24], al-

though the estimated statistics of the measurement noise are inaccurate. Such inaccuracies,

which can arise from limited training data, sudden changes in environmental conditions,

and adversarial manipulation, are unknown to the estimator and induce incorrect confi-

dence bounds on the estimated state variables. In turn, inaccurate confidence bounds can
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lead to harmful control decisions [60]. Further, we show that, because of the incorrect noise

statistics, accuracy of the estimation algorithm can be improved only at the expenses of

its robustness. Thus, estimation algorithms that are optimal in the nominal training phase

may underperform in practice compared to suboptimal algorithms. Our analytical results

provide an explanation as to why nominally suboptimal data-driven algorithms can exhibit

better generalization and robust properties in practice [46]. The results of this chapter are

reported in our published paper [65].

4.1 Problem setup and preliminary notions

Consider the discrete-time, linear, time-invariant system

x(t+ 1) = Ax(t) + w(t), (4.1)

y(t) = Cx(t) + v(t), t ≥ 0, (4.2)

where x(t) ∈ Rn denotes the state, y(t) ∈ Rm the output, w(t) the process noise, and v(t)

the measurement noise. We assume that w(t) ∼ N (0, Q), with Q ≥ 0, v(t) ∼ N (0, R), with

R > 0, and x(0) ∼ N (0,Σ0), with Σ0 ≥ 0, are independent of each other at all times t ≥ 0.1

Finally, we assume that A is stable, that is, ρ(A) < 1. Note that this implies that (A,C) is

detectable and (A,Q
1
2 ) is stabilizable.

We use a linear filter with constant gain K ∈ Rn×m to estimate the state of the

system (5.1) from the measurements (4.2):

x̂(t+ 1) = Ax̂(t) +K[y(t+ 1)− CAx̂(t)] t ≥ 0, (4.3)

1See Section 4.3 for numerical examples showing that our main results seem to be valid also when some
of these assumptions are not satisfied.
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Figure 4.1: Panel (a) shows a perception-based control scenario, where the partial state of a
dynamical system (vehicle) is extracted from the measurements of a high-dimensional sensor
(camera) and used to implement a feedback control algorithm. A perception map is learned
from a set of training data of finite size, which relates the sensor’s readings to the system’s
state. Panel (b) shows the probability density functions of the perception error when op-
erating in nominal (clear weather, as represented by the training data) and non-nominal
(rainy weather, as it may occur in practice) conditions (error statistics are computed nu-
merically using the simulator CARLA [27]). Due to inaccuracies and uncertainties in the
sensed data, the error statistics of the perception map differ from the statistics learned
during the training phase. As shown in panel (c), discrepancies in the error statistics lead
to poor estimation performance in practical conditions. As we prove in this paper, a funda-
mental tradeoff exists between accuracy and robustness of a linear estimator (consequently,
in the considered perception-based control setting), so that estimators that perform well on
the training data may exhibit poor performance with non-nominal conditions, while robust
estimators may exhibit mediocre yet robust performance in a broad set of conditions.

where x̂(t) denotes the state estimate at time t. Let e(t) = x(t)−x̂(t) and P (t) = E[e(t)e(t)T]
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denote the estimation error and its covariance, respectively. For t ≥ 0, we have

e(t+ 1) = AKe(t) +BKw(t)−Kv(t+ 1), (4.4)

P (t+ 1) = AKP (t)AT
K +BKQB

T
K +KRKT, (4.5)

where AK , A −KCA and BK , In −KC. We assume that the gain K is chosen such

that AK is stable, that is, ρ(AK) < 1. Under this assumption, lim
t→∞

P (t) , P (K) ≥ 0 exists,

and satisfies the Lyapunov equation

P (K) = AKP (K)AT
K +BKQB

T
K +KRKT. (4.6)

The performance of the filter is quantified by P(K) , tr(P (K)), where a lower value of

P(K) is desirable. Note that the steady-state gain Kkf of the Kalman filter [49] minimizes

P(K) and depends on the matrices A, C, Q, R.

We allow for perturbations to the covariance matrix R, which may result from (i)

modeling and estimation errors, as in the case of perception-based control, or (ii) accidental

or adversarial tampering of the sensor, as in the case of false data injection attacks [77]. To

quantify the effect of such perturbations to the covariance matrix R on the performance of

the estimator, we define the following sensitivity metric:

S(K) , tr

[
d

dR
P(K)

]
. (4.7)

Intuitively, if S(K) is large, then a small change in R can result in a large change (possibly,

large increment) in P(K).

Remark 19 (Comparison with adversarial robustness) In adversarial settings, the

adversary designs a small deterministic perturbation added to a given observation (e.g.,
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pixels of an image) to deteriorate the performance of a machine learning algorithm. This

perturbed observation can be viewed as a realization of a multi-dimensional distribution.

Instead, in this work we consider perturbations to the sensor’s noise covariance, which

accounts for all possible realizations. Thus, our sensitivity metric captures the average

performance change over all possible perturbations, rather than the degradation caused by a

single worst-case perturbation. �

Lower values of sensitivity S(K) are desirable, and indicate that the filter (4.3) is

more robust to perturbations. This motivates the following optimization problem:

S∗(δ) = min
K

S(K)

s.t. P(K) ≤ δ,
(4.8)

where δ ≥ P(Kkf) for feasibility. In what follows, we characterize the solution K∗ to

(5.3), and the relations between the sensitivity S(K∗) and the error P(K∗) as δ varies.

To facilitate the discussion, in the remainder of the paper we use accuracy to refer to any

decreasing function of the error P(K) obtained by the gain K, and robustness to denote

any decreasing function of the sensitivity S(K) of the gain K.

4.2 Accuracy vs robustness tradeoff in linear estimation al-

gorithms

We begin by characterizing the sensitivity S(K).
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Lemma 20 (Characterization of sensitivity) Let the sensitivity S(K) be as in (4.7).

Then, S(K) = tr(S(K)), where S(K) ≥ 0 satisfies the following Lyapunov equation:

S(K) = AKS(K)AT
K +KKT. (4.9)

Lemma 20 allows us to compute the sensitivity of the linear estimator (4.3) as a

function of its gain. Before proving Lemma 20, we present the following technical result.

Lemma 21 (Property of the solution to Lyapunov equation) Let A, B, Q be ma-

trices of appropriate dimension with ρ(A) < 1. Let Y satisfy Y = AY AT + Q. Then,

tr(BY ) = tr(QTM), where M satisfies M = ATMA+BT.

Proof. Since ρ(A) < 1, Y and M can be written as

Y =
∞∑

i=0

AiQ(AT)i and M =
∞∑

i=0

AiB(AT)i. (4.10)

The result follows by pre-multiplying Y and M by B and QT respectively, and using the

cyclic property of trace.

Proof of Lemma 20: Taking the differential of (4.6) with respect to the variable R, we get

dP (K) = AKdP (K)AT
K +KdRKT

⇒ dtr(P (K)) = tr(dP (K))
(a)
= tr(KdRKTM), (4.11)

where M > 0 satisfies: M = AT
KMAK + In, and (a) follows from Lemma 21. From (4.11),

we get

dP(K) = tr(KTMKdR)⇒ d

dR
P(K) = KTMK. (4.12)
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Using (4.12) and (4.7), we have that S(K) = tr(KTMK) = tr(KKTM) = tr(S(K)), where

S(K) is defined in (4.9) and the last equality follows from Lemma 21. To conclude, the

property S(K) ≥ 0 follows by inspection from (4.9). �

Notice that, since S(K) ≥ 0, S(K) = tr(S(K)) is a valid norm of S(K) and

captures the size of S(K). Further, S(K) = 0 for K = 0, that is, K = 0 achieves the lowest

possible value of sensitivity. This implies that δ in the optimization problem (5.3) can be

restricted to [P(Kkf),P(0)] to characterize the accuracy-robustness tradeoff.

Next, we characterize the optimal solution to (5.3). We will show that, despite

not being convex, the minimization problem (5.3) exhibits a unique local minimum. This

implies that the local minimum is also the global minimum.

Theorem 22 (Solution to the minimization problem (5.3)) Let δ ∈ [P(Kkf),P(0)]

and λ ≥ 0. Let X ≥ 0 be the unique solution to the following Riccati equation:

X = AXAT−AXCT(CXCT+Im+λR)−1CXAT+λQ. (4.13)

Then, the global minimum of problem (5.3) is given by

K∗(λ) = XCT
(
CXCT + Im + λR

)−1
, (4.14)

where λ is selected such that P(K∗(λ)) , P∗(λ) = δ.

Proof. First-order necessary conditions: We begin by computing the derivatives

of P(K) and S(K) with respect to the variable K. For notational convenience, we denote

AK , BK , P (K) and S(K) by Ā, B, P and S, respectively. Taking the differential of (4.9),
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we get

dS = ĀdSĀT − dKCASĀT − ĀS(dKCA)T + dKKT +KdKT , ĀdSĀT + Z (4.15)

⇒ dS(K)
(a)
= tr(dS)

(b)
= tr(ZTM)

= 2tr[(−CASĀT +KT)MdK]

⇒ d

dK
S(K) = 2M(K − ĀSATCT), (4.16)

where M > 0 satisfies M = AT
KMAK + In, and (a) and (b) follow from Lemmas 20 and 21,

respectively. A similar analysis of (4.6) yields

d

dK
P(K) = 2M(KR− ĀPATCT −BQCT). (4.17)

Define the Lagrange function of problem (5.3) as

L(K,λ) = S(K) + λ
(
P(K)− δ

)
, (4.18)

where λ is the Karush-Kuhn-Tucker (KKT) multiplier. The stationary KKT condition

implies d
dKL(K,λ) = 0, which using (4.16) and (4.17) becomes

2M [K − ĀSATCT + λ(KR− ĀPATCT −BQCT)] = 0. (4.19)

Substituting Ā = A−KCA in the above equation, defining X , A(S + λP )AT + λQ, and

using M > 0, we obtain (4.14). Next, we show that X satisfies (4.13). From (4.6) and (4.9):

S + λP = Ā(S + λP )ĀT + λBQBT +K(Im + λR)KT

⇒ X = A(S + λP )AT + λQ

= A
[
Ā(S + λP )ĀT + λBQBT +K(Im + λR)KT

]
AT

+ λQ.
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Using Ā = A−KCA and substituting the gain K in (4.14) in the above equation, we obtain

the Riccati equation (4.13).

The KKT condition for dual feasibility implies that λ ≥ 0, so (4.13) has a unique

stabilizing solution. Further, the KKT condition for complementary slackness implies

λ[P(K∗(λ)) − δ] = 0. Thus, if λ > 0, then P(K∗(λ)) = δ. If λ = 0, then the solution

to (4.13) is X = 0. This implies that K∗(0) = 0, which is feasible only if δ = P(0). Thus,

for any δ ∈ [P(Kkf),P(0)], it holds P(K∗(λ)) = δ.

Second-order sufficient conditions: We show that the stationary point (4.14) corresponds

to a local minimum. We begin by computing the second-order differential of S(K). Taking

the differential of (4.15) and noting that d2K = 0, we get

d2S = Ād2SĀT − 2dKCAdSĀT − 2ĀdS(dKCA)T

+ 2dK(Ip + CASATCT)dKT , Ād2SĀT + Y

⇒ d2S(K) = tr(d2S) = tr(YM) = −4tr(dKCAdSĀTM)

+ 2tr(dK(Ip + CASATCT)dKTM). (4.20)

Similar analysis of (4.6) yields

d2P(K) = −4tr(dKCAdPĀTM) (4.21)

+ 2tr[dK(R+ CAPATCT + CQCT)dKTM ].

Adding (4.20) and (4.21), we get

d2L = −4tr(dKCA (dS + λdP )︸ ︷︷ ︸
(a)
= 0.

ĀTM)

+ 2tr[dKWdKTM ] = vecT(dK)(2W ⊗M)vec(dK),
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whereW , Ip+λR+CA(S+λP )ATCT+λCQCT, and where (a) holds because dL(K,λ) = 0

at the stationary point. The above expression implies that the Hessian of the Lagrangian

is given by H = 2W ⊗M , which is positive-definite because W > 0 and M > 0. Thus, the

considered stationary point corresponds to a local minimum.

Uniqueness of λ: Next, we show that for a given δ, the equation P(K∗(λ)) = δ has a

unique solution. Note that for a given λ > 0, the optimal gain K∗(λ) in (4.14) is the unique

minimizer of the cost C(K) = S(K) + λP(K). Let λ2 > λ1 > 0. Then, we have

S(K∗(λ1)) + λ1P(K∗(λ1)) < S(K∗(λ2)) + λ1P(K∗(λ2)),

S(K∗(λ2)) + λ2P(K∗(λ2)) < S(K∗(λ1)) + λ2P(K∗(λ1)).

Adding the above two equations, we get P(K∗(λ2)) < P(K∗(λ1)). Thus, P(K∗(λ)) is a

strictly decreasing function of λ, and therefore, it is one-to-one.

To conclude the proof, since the necessary and sufficient conditions for a local

minimum are satisfied by a unique gain, the local minimum is also the global minimum.

Corollary 23 (Properties of P∗(λ)) The error P∗(λ) defined in Theorem 22 is a strictly

decreasing function of λ.

Theorem 22 shows that the optimal gain can be characterized in terms of a scalar

parameter λ, which depends on the performance level δ according to the relation P∗(λ) = δ.

Notice that λ = 0 if δ = P(0), and λ approaches infinity as δ approaches P(Kkf). In other

words, lim
λ→∞

K∗(λ) = Kkf. Further, Corollary 23 implies that for a given δ, the solution of

P∗(λ) = δ can be found efficiently. For instance, one can use the bisection algorithm on

the interval [0, λmax], where P∗(λmax) > δ. These results also imply a fundamental tradeoff
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between performance and robustness of the estimator.

Theorem 24 (Accuracy vs robustness tradeoff) Let S∗(δ) denote the solution of (5.3).

Then, S∗(δ) is a strictly decreasing function of δ in the interval δ ∈ [P(Kkf),P(0)].

Proof. From the proof of Theorem 22, we have

∂S(K)

∂K

∣∣∣∣∣
K∗(λ)

= −λ∂P(K)

∂K

∣∣∣∣∣
K∗(λ)

. (4.22)

Since λ > 0 for δ ∈ [P(Kkf),P(0)] and P∗(λ) = δ, (4.22) implies that the sensitivity

decreases when the error increases, and vice versa, so that a strict tradeoff exists.

Theorem 24 implies that there exists a fundamental tradeoff between the accuracy

and robustness of a linear filter against perturbations to measurement noise covariance

matrix. Therefore, the robustness of the linear filter in (4.3) in uncertain or adversarial

environments can be improved only at the expenses of its accuracy in nominal conditions.

Conversely, improving the robustness of the filter leads to a lower accuracy in nominal

conditions.

Remark 25 (Design of optimally robust filters) Let ∆R ≥ 0 denote a sufficiently

small perturbation to R such that the approximation ∆P(K) ≈ tr(KTMK∆R) holds (see

(4.12)). Further, let ∆R be bounded as tr(∆R) ≤ γ. Then, we have

∆P(K) = tr(KTMK∆R) ≤ tr(KTMK)ρ(∆R)

= tr(S(K))ρ(∆R) ≤ γS(K).

Thus, given a gain K, the worst case performance degradation due to a bounded perturbation

to R is given by Pworst(K) = P(K)+γS(K). Therefore, a filter that is optimally robust (that
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is, it exhibits optimal worst-case performance in the presence of norm-bounded perturbations

of the noise statistics) can be obtained by minimizing Pworst(K). Note that this minimization

problem is akin to the problem (5.3), and that its solution is given by (4.14) with λ = γ−1.

�

Remark 26 (Analysis when the system matrix A is unstable) The accuracy-robustness

tradeoff shown above also holds when A is unstable and (A,C) is detectable. The analysis

for this case follows the same reasoning as above, except that the range of interest for the

error becomes δ ∈ [P(Kkf),P(K∗S)], with K∗S = arg min
K
S(K). If A does not have eigenval-

ues on the unit circle, then the Riccati equation (4.13) has a unique solution for λ = 0 [41]

(Theorem 12.6.2), and K∗S = K∗(0) (c.f. (4.14)). In this case, P(K∗S) is finite. The case

when A has eigenvalues on the unit circle is more involved, finding K∗S is not trivial, and

P(K∗S) may become arbitrarily large. This aspect is left for future research (see Section 4.3

for an example with unit eigenvalues). �

We conclude this section with an illustrative example.

Example 27 (Robustness versus performance tradeoff) Consider the system in (5.1)

and (4.2) with matrices

A =




0.9 0

0.02 0.8


 , C =




0.5 −0.8

0 0.7


 ,

Q =




0.5 0

0 0.7


 , R =




0.5 0.1

0.1 0.8


 .

(4.23)
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Fig. 4.2(a) shows the values S∗(δ) obtained from (5.3) over the range δ ∈ [P(Kkf),P(0)].

Several comments are in order. First, as predicted by Theorem 24, the plot shows a tradeoff

between accuracy and robustness. Second, in accordance with Theorem 22, the solution

to the minimization problem (5.3) implies that the equality constraint in (5.3) is active.

Third, when δ = P(Kkf), the minimization problem (5.3) returns the Kalman gain. Fourth,

although the Kalman filter (depicted by the red dot) achieves the highest accuracy, it features

the highest sensitivity (thus, lowest robustness) among the solutions of (5.3) over the range

δ ∈ [P(Kkf),P(0)]. Thus, the estimator that is most accurate on the nominal data, is also

the most sensitive to perturbations. Fifth, the linear filter obtained when δ = P(0) exhibits

the worst nominal performance, but is the most robust to changes in the noise statistics.

Fig. 4.2(b) shows the values of P∗(λ) as a function of λ. We observe that P∗(λ) is a strictly

decreasing function in λ in accordance with Corollary 23. We also observe that the linear

filter obtained when δ = P(0), depicted by the green dot, has λ = 0. Finally, the value

P∗(λ) obtained when δ = P(Kkf) cannot be shown since it requires λ =∞. �
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Figure 4.2: Panel (a) shows the accuracy versus robustness tradeoff for the linear estimator
(4.3) and the system described in Example 27. The red dot denotes the Kalman filter, and
the green dot denotes the linear filter with zero gain. The Kalman filter achieves optimal
performance with the nominal data, yet it is the most sensitive to changes of the noise
statistics. The opposite tradeoff holds for the filter with zero gain. Panel (b) shows the
estimation error as a function of λ for the system described in Example 27. The green dot
denotes the filter with zero gain. The performance of the Kalman filter does not appear in
the plot since it requires λ =∞.

4.3 Accuracy vs robustness tradeoff in perception-based con-

trol

In this section we illustrate the implication of our theoretical results to the perception-

based control setting shown in Fig. 4.1. We consider a vehicle obeying the dynamics [24]

x(t+ 1)=




1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1




︸ ︷︷ ︸
A

x(t)+




0 0

Ts 0

0 0

0 Ts




︸ ︷︷ ︸
B

u(t)+w(t), (4.24)

where x(t) ∈ R4 contains the vehicle’s position and velocity in cartesian coordinates, u(t) ∈

R2 is the input signal, w(t) ∈ R4 is the process noise which follows the same assumptions as

in (5.1), and Ts is the sampling time. We let the vehicle be equipped with a camera, whose
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images are used to extract measurements of the vehicle’s position. In particular, let

y(t) = fp
(
Z(t)

)
(4.25)

denote the measurement equation, where y(t) ∈ R2 contains measurements of the vehicle’s

position, Z(t) ∈ Rp×q describes the p×q pixel images taken by camera, and fp : Rp×q → R2 is

the perception map between the camera’s images and the vehicle’s position. We approximate

(4.25) with the following linear measurement model (see also [24]):

y(t) =




1 0 0 0

0 0 1 0




︸ ︷︷ ︸
C

x(t) + v(t), (4.26)

where v(t) ∈ R2 denotes the measurement noise, which is assumed to follow the same

assumptions as in (4.2).

We consider the problem of tracking a reference trajectory using the measurements

(4.26) and the dynamic controller

xc(t+ 1) =(I −KC)(A−BL)xc(t)

+K(y(t+ 1)− Cxd(t+ 1)),

u(t) =− Lxc(t) + ud(t), (4.27)

where L denotes the Linear-Quadratic-Regulator gain with error and input weighing matri-

ces Wx > 0 and Wu > 0, K the gain of a stable linear estimator as in (4.3),2 xd the desired

state trajectory, and ud the control input generating xd.

2If K equals the gain of the Kalman filter for the given system, then the controller (4.27) corresponds to
the Linear-Quadratic-Gaussian regulator.
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Figure 4.3: Panel (a) shows the trajectory tracking performance for the controller (4.27)
with the Kalman filter (dashed red line) and a robust filter (dotted green line) in nominal
noise statistics (the desired trajectory is shown by the solid blue line). The controller
with the Kalman filter outperforms the other. Panel (b) shows the tracking performance
for the two controllers using non-nominal noise statistics. In non-nominal conditions, the
controller with the Kalman filter performs worse than the controller with the robust filter.
The performance of a controller is measured based on the mean squared deviation between
the controlled and nominal trajectories (see also Fig. 4.4).

The statistics of the measurement noise in (4.26) depend on how the perception

map is trained and the data samples used for the training. We aim to show that, if the

estimator’s gain in (4.27) is designed to minimize the estimation error based on the learned

noise statistics, then the performance of the perception-based controller (4.27) degrades

significantly if the learned statistics differ from the actual noise statistics. Conversely, if

the estimator’s gain in (4.27) is designed based on Remark 25, then the performance of

the perception-based controller (4.27) remains robust across different values of the noise

statistics, although lower than the performance of the optimal estimator operating with

the nominal noise statistics. Fig. 4.3 shows the trajectory tracking performance for the

controller (4.27) for the Kalman filter and a robust filter with Ts = 1, Q = 0.1I4, R =

0.1I2,Wx = diag(100, 10−3, 100, 10−3),Wu = 10−3I2. The robust filter corresponds to λ =

0.307 (see (4.14)). The non-nominal covariance is R̄ = 2.5I2. We observe that the controller

based on the Kalman filter performs better in nominal conditions, while the controller
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Figure 4.4: This figure shows the root mean square error (RMSE) of the controller (4.27)
with the Kalman filter (solid blue line) and the robust filter (dashed red line), as a function
of deviation between the measurement noise statistics. For small deviations, the controller
using the Kalman filter outperforms the other. For large deviations, the controller using
the robust filter outperforms the controller using the Kalman filter.

based on the robust filter performs better in non-nominal conditions, as predicted by our

theoretical results. Fig. 4.4 shows the error of the Kalman filter and the robust filter as

a function of the changes of the measurement noise covariance. We notice that for small

deviations (near-nominal conditions), the controller based on the Kalman filter performs

better than the controller based on the robust filter. However, when the deviation of the

noise statistics becomes substantially large, the controller based on the robust filter performs

better, thereby validating our theoretical tradeoff.

As shown in Fig. 4.1(b), the perception error may not be normally distributed,

especially in the case of non-nominal measurements. Although our theoretical results were

obtained under the assumption that the measurement (perception) error is normally dis-

tributed, we next numerically show that a tradeoff still exists when the measurement (per-

ception) error is not Gaussian. To this aim, we consider the system in (5.10) and (4.26),

where the measurement noise is distributed as in Fig. 4.1(b) (these distributions are com-

puted numerically using the simulator CARLA [27]). We design 6 estimators using (4.14)

66



1,000 1,500 2,000 2,500 3,000
0

1

2

3

4

Pnom

(P
ad

v
−
P n

om
)/
P n

om

Figure 4.5: For the system (5.10) and (4.26) with measurement error distributed as in Fig.
4.1(b), this figure shows the performance Pnom (i.e., trace of estimation error covariance)
and the approximate sensitivity (Padv − Pnom)/Pnom for 6 different estimators obtained
from (4.14) by varying the desired accuracy δ. Although the measurement error is not
normally distributed, a tradeoff still emerges between the accuracy of the estimators and
their sensitivity.

with different values of δ, and test the performance of each estimator in nominal and

non-nominal conditions. The performance of each estimator in nominal and non-nominal

environments, denoted by Pnom and Padv, respectively, is computed using the sample error

covariance computed from the obtained samples of the estimation error in nominal and

non-nominal conditions. We approximate the sensitivity of these estimators as the relative

degradation of the nominal performance when operating in non-nominal conditions, that

is, as (Padv − Pnom)/Pnom. Fig. 4.5 shows the performance and approximate sensitivity

of the estimators. It can be seen that, even when the measurement error is not normally

distributed, the estimator with largest (respectively, smallest) accuracy also has highest

(respectively, smallest) sensitivity. These numerical results suggest that a tradeoff exists

independently of the statistical properties of the measurement error.

We conclude by showing that the identified tradeoff between accuracy and robust-

ness of linear estimators also constrain the performance of closed-loop perception-based
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Figure 4.6: This figure shows the accuracy versus robustness tradeoff in the closed loop
setting described in Section 4.3. The blue, green, and yellow lines denote the solution of
(4.30), where in the blue line we optimize over both gains, in the green line we fix the
controller to the LQR gain and optimize over the estimator only, and in the yellow line we
fix the estimator to the Kalman gain and optimize over the controller only. The red line
denotes the tradeoff between the accuracy in (4.28) and the sensitivity in (4.29) with the
estimator gain given in (4.14) and the controller fixed to the LQR gain.

control algorithms. To this aim, consider the system (5.10) with controller (4.27), where

both the estimator gain K and the controller gain L are now design parameters. For weigh-

ing matrices Wx > 0 and Wu > 0, let the performance of (4.27) be

J (K,L) = E

[
1

T

( T∑

t=0

x(t)TWxx(t) + u(t)TWuu(t)

)]
, (4.28)

where T denotes the time horizon. Notice that a lower value of the cost J is desirable, and

the minimum (for T → ∞) is achieved by choosing the Kalman gain Kkf with the linear

quadratic regulator gain Llqr for the matrices Wx and Wu. We adopt the following definition

of sensitivity (this metric is the equivalent of (4.7) for the closed-loop performance):

SJ (K,L) ,tr

[
∂J (K,L)

∂R

]
, (4.29)

where R is the noise covariance matrix of (4.26). To see if a tradeoff exists beween perfor-

mance and sensitivity of the closed-loop controller, we solve the following problem:

S∗J (δ) = min
K,L

SJ (K,L)

s.t. J (K,L) ≤ δ,
(4.30)

68



where δ is a constant satisfying δ ≥ J (Kkf, Llqr). Notice that the minimization problem

(4.30) is similar to (5.3) for the considered closed-loop control setting. The results of the

minimization problem (4.30) are reported in Fig. 4.6, where it can be seen that a tradeoff

between the performance of the controller (4.27) and its sensitivity still exists. Interest-

ingly, our numerical results show that the tradeoff curve can be obtained, equivalently, by

optimizing over both the controller and the estimator gain, by fixing the controller gain to

be the LQR gain and optimizing over the estimator gain, or by fixing the estimator gain to

be the Kalman gain and optimizing over the controller gain. Further, if the controller gain

is chosen to be the optimal LQR gain, then the estimator gain that solves (4.30) coincides

with the estimator gain obtained in Theorem 22. We leave a formal characterization of

these properties as the subject of future investigation.
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Part II

Benchmarking and Data-driven

Control Design
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Chapter 5

Learning Lipschitz Feedback

Policies From Expert

Demonstrations: Closed-Loop

Guarantees, Robustness and

Generalization

In this chapter, we propose a framework in which we use a Lipschitz-constrained

loss minimization scheme to learn feedback control policies with guarantees on closed-loop

stability, adversarial robustness, and generalization. These policies are learned directly

from expert demonstrations, contained in a dataset of state-control input pairs, without

any prior knowledge of the task and system model. Our analysis exploits the Lipschitz

71



property of the learned policies to obtain closed-loop guarantees on stability, adversarial

robustness, and generalization over scenarios unexplored by the expert. In particular, first,

we establish robust closed-loop stability under the learned control policy, where we provide

guarantees that the closed-loop trajectory under the learned policy stays within a bounded

region around the expert trajectory and converges asymptotically to a bounded region

around the origin. Second, we derive bounds on the closed-loop regret with respect to

the expert policy and on the deterioration of the closed-loop performance under bounded

(adversarial) disturbances to the state measurements. These bounds provide certificates for

closed-loop performance and adversarial robustness for learned policies. Third, we derive

a (probabilistic) bound on generalization error for the learned policies. Numerical results

validate our analysis and demonstrate the effectiveness of our robust feedback policy learning

framework. Finally, our results support the existence of a potential tradeoff between nominal

closed-loop performance and adversarial robustness, and that improvements in nominal

closed-loop performance can only be made at the expense of robustness to adversarial

perturbations. The results of this chapter are reported in our published paper [68].

5.1 Problem formulation and outline of the approach

In this section, we setup the problem of learning robust feedback control policies

from expert demonstrations and present an outline of our approach.
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5.1.1 Problem setup

We begin by specifying the properties of the system, the control task and the

dataset of expert demonstrations. Consider a discrete-time nonlinear system of the form:

xt+1 = f(xt, ut), yt = xt + δt, (5.1)

where the map f : Rn × Rm → Rn denotes the dynamics, xt ∈ Rn the state, ut ∈ Rm

the control input and yt ∈ Rn the full-state measurement at time t ∈ N, respectively, with

disturbance ‖δt‖ ≤ ζ for any t ∈ N.1

Assumption 28 (System properties) The following properties hold for System (5.1):

(i) Fixed point at origin: The map f in (5.1) has a fixed point at the origin (i.e.,

f(0, 0) = 0).

(ii) Lipschitz continuous dynamics: The map f in (5.1) is Lipschitz continuous with

constants `xf and `uf (i.e., ‖f(x1, u1)− f(x2, u2)‖ ≤ `xf‖x1−x2‖+ `uf‖u1−u2‖ for any

x1, x2 ∈ Rn and u1, u2 ∈ Rm).

(iii) Exponential stabilizability by Lipschitz feedback: System (5.1) is uniformly

exponentially stabilizable by Lipschitz feedback, i.e., there exists a Lipschitz continuous

feedback policy π and constants M ∈ R≥0, β ∈ (0, 1) such that
∥∥f tπ(x)

∥∥ ≤Mβt‖x‖.�

We now explain the motivation behind the above assumptions on the properties of Sys-

tem (5.1). The control task is often formulated as one of stabilizing the system to the

origin. Assumption 28-(i) states that the origin, in the absence of control input, is indeed

1The output equation allows for the modeling of sensors that are susceptible to bounded (adversarial)
disturbances [77]. Note that in this work we consider perturbations that only appear in the output equation.
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a fixed point of the system. The Lipschitz continuity Assumption 28-(ii) specifies the level

of regularity intrinsic to the system dynamics and is fairly standard in the literature. From

a control design perspective it is crucial that the system indeed possesses the desired sta-

bilizability properties from within this class of feedback policies considered in design. In

this paper, we seek to learn feedback policies with Lipschitz regularity and Assumption 28

specifies that this is the case and that System (5.1) is exponentially stabilizable by Lipschitz

feedback.

The task is one of infinite-horizon discounted optimal control of System (5.1) by

a Lipschitz-continuous feedback policy, with stage cost c : Rn × Rm → R≥0 and discount

factor γ ∈ (0, 1):

min
π∈Lip(Rn;Rm)

∞∑

t=0

γtc(xt, ut),

s.t.





xt+1 = f(xt, ut),

ut = π(xt + δt),

(5.2)

where Lip(Rn;Rm) is the space of Lipschitz-continuous feedback policies. Furthermore, we

would like the closed-loop performance to be robust to the disturbance δ.

Assumption 29 (Task properties) The following hold for Task (5.2) and System (5.1):

(i) Strong convexity and smoothness of stage cost: The stage cost c : Rn ×Rm →

R≥0 is µ-strongly convex and λ-smooth. Furthermore, c(x, u) = 0 if and only if x = 0

and u = 0.

(ii) Existence of optimal feedback policy: For every γ ∈ (0, 1), there exists a mini-

mizer π∗ ∈ Lip(Rn;Rm) to the optimal control problem (5.2) with δ ≡ 0. �
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The choice of optimal control cost function plays an important role in determining the

properties of the optimal feedback policy. Assumption 29-(i) specifies the convexity and

smoothness properties of the control cost. Existence of an optimal feedback policy within

the considered class, as specified in Assumption 29-(ii) is a minimum requirement for control

design.

We now verify the properties in Assumptions 28 and 29 in the Linear-Quadratic

control setting.

Example 30 (Linear quadratic control) For a linear system with f(x, u) = Ax + Bu

such that (A,B) is a controllable pair, it can be seen that the properties in Assumption 28

readily follow. It can be seen that a quadratic stage cost c(x, u) = x>Qx+ 2x>Wu+ u>Ru

(with Q � 0 and R −W>Q−1W � 0) is strongly convex and has a Lipschitz-continuous

gradient with µ = λmin(H), λ = λmax(H), and H = 2



Q W

W> R


, thereby satisfying As-

sumption 29-(i). Furthermore, we note that Assumption 29-(ii) readily follows from the

existence of an optimal feedback gain for the discounted infinite-horizon LQR problem, and

the fact that the corresponding optimal value function is quadratic.

In this paper, we consider the problem of data-driven feedback control, where we have

access neither to the underlying dynamics f nor to the task cost function (stage cost c

and discount factor γ). Instead, we have access to N < ∞ expert demonstrations of an

(unknown) optimal feedback policy π∗ on System (5.1) over a finite horizon of length T .

The initial state of the demonstrations is sampled uniformly i.i.d. from Br(0) ⊂ Rn, the

ball of radius r centered at the origin. The data is collected in the form of matrices X,U
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as follows:

X =

[
x(1) . . . x(N)

]
, U =

[
u(1) . . . u(N)

]
,

where x(i) = (x
(i)
0 , . . . , x

(i)
T ) and u(i) = (u

(i)
0 , . . . , u

(i)
T−1) are the state and input vectors from

the i-th demonstration, satisfying u
(i)
t = π∗(x(i)

t ) for all i ∈ {1, . . . , N} and t ∈ {0, . . . , T−1}.

5.1.2 Outline of the approach

Our objective is to learn a feedback policy from the dataset X,U of expert demon-

strations to solve the control task (5.2) while remaining robust to (adversarial) distur-

bances δ of full-state measurements. To this end, we seek an optimization-based learning

formulation that allows us to explicitly constrain the sensitivity of the learned policy to

(adversarial) disturbances. The Lipschitz constant of the learned policy serves as a measure

of its sensitivity to disturbances, and we thereby formulate the (adversarially) robust policy

learning problem as a Lipschitz-constrained policy learning problem [52]:

min
π∈Lip(Br(0);Rm)

1

NT

N∑

i=1

T−1∑

t=0

L
(
π(x

(i)
t ), u

(i)
t

)
,

s.t. lip(π) ≤ α,

(5.3)

where L is a strictly convex and Lipschitz continuous loss function for the learning problem,

lip(π) is the Lipschitz constant of the policy π, and α ∈ R≥0 is a target upper bound for the

Lipschitz constant of the learned policy π̂ (the minimizer in (5.3)). The Lipschitz constraint

in (5.3) serves as a mechanism to induce robustness of the learned policy to disturbances δ

(the smaller the parameter α, the more robust the policy π̂ is to the disturbances δ [30]).

Figure 5.1 illustrates our setup.
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Figure 5.1: The block diagram in panel (a) corresponds to the implementation of the
learned control policy π̂ in non-nominal conditions under adversarial perturbations δ on the
state measurement. Panel (b) illustrates the Lipschitz-constrained policy learning scheme
implemented on the expert generated dataset to obtain policy π̂.

From here, we divide our analysis into two parts. In the first part of our analysis

we consider the closed-loop control aspect of the problem. In particular, for a given worst-

case learning error bound ‖π̂ − π∗‖∞ , supx∈Br(0) ‖π̂(x)− π∗(x)‖ ≤ ε and a bound on the

Lipschitz constant of the learned policy, lip(π̂) ≤ α, we establish (i) a robust closed-loop

stability bound as a function of ε and α, and (ii) bounds on the closed-loop performance

and robustness as a function of ε and α. In the second part of our analysis, we tackle

the learning aspect of the problem. In particular, we use the robustness of the learned

policy (imposed by the Lipschitz constraint in (5.3)), along with a bound on the training

error, to obtain a probabilistic bound on the violation of ‖π̂ − π∗‖∞ ≤ ε. The two parts of

our analysis complement each other, for instance, in order to satisfy target bounds on the

closed-loop stability and performance, our analysis can be used to obtain a target bound

on ε which must be satisfied by the learned policy, if some additional information on the

system and task are available.

Note that, the loss function L defines the learning problem (5.3) and eventually shapes the

learned policy and its deviation from the true policy, ‖π̂ − π∗‖∞. While the properties of L
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do not enter our analysis, the bound on learning error ε does. Thus, since our focus is not

to understand how the learning error depends on the properties of the loss function L, we

find useful to use ε as a proxy for the learning performance and to quantify how closed-loop

stability, performance and robustness depend on it.

We now develop appropriate notions of closed-loop performance and robustness

under the feedback policies learned from expert demonstrations. We note that the control

task (5.2), being one of optimal control of System (5.1), has a natural performance metric

given by the value function. In what follows, we make use of the following notations, we let

fπ(x) = f(x, π(x)) and cπ(x) = c(x, π(x)). Let V π̂ be the value function associated with

the learned feedback policy π̂ for System (5.1):

V π̂(x0) =
∞∑

t=0

γtcπ̂
(
f tπ̂(x0)

)
,

where f tπ(x) , fπ ◦ . . . ◦ fπ︸ ︷︷ ︸
t times

(x).

(5.4)

Since the expert implements the optimal policy π∗, the performance of the learned policy

can be measured by its regret with respect to the expert policy π∗. The regret associated

with the learned policy π̂ relative to the expert policy π∗ is:

R(π̂) = sup
x∈Br(0)

{
V π̂(x)− V ∗(x)

}
. (5.5)

WhenR(π̂) = 0, the performance of the learned policy equals the performance of an optimal

policy for the control task (5.2). Conversely, the performance of the learned policy degrades

asR(π̂) increases. Naturally, the objective of the policy learning problem is now to minimize

the regret incurred by the learned policy π̂. Note that this is a more important performance

metric in the closed-loop setting than the loss function L used for learning in (5.3), as it
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encodes the cost incurred by the evolution of the system under the learned feedback policy.

We now note that the regret R only measures the performance of the learned policy under

nominal conditions (in the absence of perturbations on the state measurements) and does

not shed light on its performance in the presence of adversarial perturbations. This calls

for an appropriate robustness metric, for which we will use the regret associated with the

policy π̂ when subject to perturbations relative to when deployed under nominal conditions,

that is,

S(π̂) = sup
x∈Br(0)

δ∈Rn,‖δ‖≤ζ

{
V π̂δ(x)− V π̂(x)

}
, (5.6)

where π̂δ(x) = π̂(x + δ). Intuitively, if S(π̂) is small, then the performance of the policy

π̂ under perturbation is close to its performance in nominal conditions, and π̂ is robust to

feedback perturbations. Again, we note that this robustness metric measures closed-loop

robustness by encoding the cost incurred by the evolution of the system under the learned

feedback policy subject to feedback perturbations. We would ideally like to keep both R

and S low, which would imply that the policy performs well both under nominal conditions

and when subjected to feedback perturbations. However, we shall see later that there may

exist tradeoffs between the two objectives, presenting an obstacle to such a goal. Note that

we use the supremum in (5.5) and (5.6) since we are interested in performing worst-case

analysis in order to provide closed-loop performance and robustness certificates.

We now address some crucial technical issues arising in the closed-loop dynamic

setting in relation to minimizing the performance metrics R and S. We note that the policy

learning problem (5.3) is formulated over the set Br(0) ∈ Rn, which is the region of interest

containing the data from expert demonstrations. Now, in order to measure the performance
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of a learned policy π̂ using the metrics R and S, we must first ensure that the closed-loop

trajectories of the system, under policy π̂, remain in Br(0) (for initial conditions in Br(0)).

In the absence of such a guarantee, the metrics R and S are likely to be unbounded, and

would therefore not serve as useful measures of performance. We therefore obtain robust

stability bounds that specify the conditions under which closed-loop trajectories remain

bounded in Br(0).

5.2 Robust closed-loop stability and performance

In this section, we present the theoretical results underlying the robust feedback

policy learning framework outlined in Section 5.1. The results are presented in three parts:

(a) We first present a closed-loop stability analysis for System (5.1) under learned feedback

control policies (learned using (5.3)) satisfying a given bound on their distance from the

optimal feedback policy π∗ (the minimizer in (5.2)). In Lemma 31-(ii), we establish that

the closed-loop system under optimal feedback π∗ is exponentially stable. In Theorem 34

we then establish a robust stability guarantee (to bounded adversarial disturbances on the

state measurements) for feedback control policies satisfying a given bound on their distance

from π∗. (b) We then present an analysis of performance on the control task (5.2) under

feedback control policies satisfying a given bound on their distance from π∗. Theorem 37-

(i) provides an upper bound on the regret incurred by a policy with respect to the expert

policy π∗. Theorem 37-(ii) quantifies the robustness of the closed-loop performance in

terms of the Lipschitz constant of the feedback policy. (c) We finally present an analysis

of the Lipschitz-constrained policy learning problem (5.3). In Theorem 40, we provide a
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generalization bound for the maximum learning error incurred in the region of interest

Br(0), i.e., ‖π̂ − π∗‖∞ in terms of the covering radius of the training dataset. This learning

error bound is to be combined with the previous closed-loop stability and performance

guarantees for policies which were established for policies satisfying a given error bound.

5.2.1 Robust stability with learned feedback policy

We first present the following result on the quadratic boundedness of the optimal

value function:

Lemma 31 (Optimal value function and feedback policy) (i) Quadratic boundedness

of optimal value function: There exist κ, κ̄ ∈ R≥0 with κ < κ̄ such that the optimal value

function in (5.2), for any γ ∈ (0, 1), satisfies κ‖x‖2 ≤ V ∗(x) ≤ κ̄‖x‖2.

(ii) Exponential stability under optimal feedback policy: Let γ′ = 1−κ/κ̄. For any γ ∈ (γ′, 1),

the closed-loop trajectory starting from any x ∈ Rn and generated by the optimal policy π∗

in (5.2) satisfies:

∥∥f tπ∗(x)
∥∥ ≤

√
κ̄

κ

(
γ′

γ

)t/2
‖x‖.

We now make the following assumption on the existence of constants κ∗, κ̄∗ in Lemma 31

satisfying certain bounds:

Assumption 32 There exist κ∗, κ̄∗ ∈ R>0 (with κ∗ < κ̄∗) such that for any γ ∈ (1− κ∗/κ̄∗, 1):

(i) κ∗‖x‖2 ≤ V ∗(x) ≤ κ̄∗‖x‖2,

(ii) fπ∗ is contractive (i.e., `fπ∗ < 1).
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We now verify the properties in Assumptions 32 in the Linear-Quadratic control setting.

Example 33 (Linear quadratic control) Consider a linear system with f(xt, ut) = Axt+

But such that (A,B) is a controllable pair, and a quadratic stage cost c(xt, ut) = x>t Qxt +

u>t Rut (with Q � 0 and R � 0) for t ≥ 0. For any γ ∈ (1− κ∗/κ̄∗, 1) and x = x0, the op-

timal discounted LQR value function can be written as V ∗(x) = xTP ∗x, where P ∗ satisfies

the following Riccati equation [14, section 4.3]:

P ∗ = γAT
(
P ∗ − γ2P ∗B

(
γBTP ∗B +R

)−1
BTP ∗

)
A+Q.

For the value function V ∗(x), we have κ∗ = |λmin(P ∗)| and κ̄∗ = |λmax(P
∗)|. Furthermore,

the closed-loop dynamics, fπ∗, associated with the optimal LQR policy, π∗(xt) = −K∗xt,

is contractive with `fπ∗ = |λmax (A−BK∗) | < 1 for t ≥ 0, where K∗ = γ(γBTP ∗B +

R)−1BTP ∗A.

The following theorem establishes robust stability of the closed-loop system under the

learned policy π̂ from a bound on the policy error ‖π̂(x)− π∗(x)‖∞ and measurement dis-

turbances δ:

Theorem 34 (Robust exponential stability under Lipschitz policy) Let π∗ be the min-

imizer in (5.2) for some γ ∈ (1− κ∗/κ̄∗, 1), and let π̂ be any policy such that ‖π̂ − π∗‖∞ ≤ ε

and lip (π̂) ≤ α. Let αζ + ε ≤
(
1− `fπ∗

)
r/`uf and let ‖δt‖ ≤ ζ for all t ∈ N. For the closed-

loop trajectory f tπ̂δ(x) starting from x ∈ Br(0) and generated by the policy π̂δ, the following

holds:

∥∥f tπ̂δ(x)− f tπ∗(x)
∥∥ ≤

[
1− `tfπ∗

1− `fπ∗

]
`uf (αζ + ε).
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We refer the reader to subsection 5.5.2 for the proof. The robust stability result can be

understood in the sense of input-to-state stability [47,88], in that we exploit the exponential

stability result for the expert policy π∗ and treat the learned policy π̂ as a perturbation

on π∗. By obtaining boundedness of the learning error along the closed-loop trajectory,

we establish that the closed-loop trajectory under the learned policy both stays within a

bounded region around the optimal trajectory and converges asymptotically to a bounded

region around the origin.

5.2.2 Regret and robustness with learned feedback policy

Having clarified the issue of robust stability, we now present a regret analysis for the

learned control policy π̂. We first present the following lemma on an incremental exponential

stability property of exponentially stabilizing Lipschitz feedback policies on Br(0):

Lemma 35 (Incremental exponential stability) Let π be an exponentially stabilizing

Lipschitz feedback policy for System (5.1) such that
∥∥f tπ(x)

∥∥ ≤Mβt‖x‖ for some M ∈ R≥0

and β ∈ (0, 1). For x, x′ ∈ Br(0), there exists M̄ ∈ R≥0 such that
∥∥f tπ(x)− f tπ(x′)

∥∥ ≤

M̄βt‖x− x′‖.

From Lemmas 31-(ii) and 35, it follows that the optimal policy π∗ is incrementally exponen-

tially stable. We now make the following assumption that this property holds for policies

in a neighborhood of π∗:

Assumption 36 (Incremental exponential stability) Let γ ∈ (1 − κ∗/κ̄∗, 1) be such

that for any π ∈ Lip(Br(0);Rm) satisfying ‖π − π∗‖∞ ≤
(
1− `fπ∗

)
r/`uf , the closed-loop

dynamics fπ is incrementally exponentially stable as in Lemma 35.
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The following theorem establishes a bound on the sub-optimality of the closed-loop perfor-

mance of system (5.1) with π̂ and a robustness bound for the deterioration of the closed-loop

performance under bounded disturbances:

Theorem 37 (Regret and robustness of learned policy) Let M̄, β be as specified in

Lemma 35 and Assumption 36, and let π∗ be the minimizer in (5.2) for some γ ∈ (1− κ∗/κ̄∗ , 1)

and lip(π∗) = α∗. Let π̂ be any policy such that ‖π̂ − π∗‖∞ ≤ ε and lip (π̂) ≤ α. Further-

more, let αζ + ε ≤
(
1− `fπ∗

)
r/`uf .

(i) Regret: The regret R of the policy π̂ relative to π∗, as defined in (5.5), satisfies:

R(π̂) ≤ λ

1− γ

[
c1r

√
1 + |max {α, α∗}|2 ∆ +

1

2
c2∆2

]
,

where

c1 = 1 + γΘ`uf , c2 = 1 + γΘ
√

1 + α∗2 (`uf )2,

∆ = ‖π̂ − π∗‖∞ , Θ = M̄2/(1− γβ2).

(ii) Robustness: Let ‖δt‖ ≤ ζ for any t ∈ N. For any γ ∈ (0, 1), the robustness metric S

of the policy π̂, as defined in (5.6), satisfies:

S(π̂) ≤ λα

1− γ

[
d1rα

√
1 + α2 ζ +

1

2
d2α

2ζ2

]
,

where

d1 = 1 + γΘ`uf , d2 = 1 + γΘ
√

1 + α2 (`uf )2.

We refer the reader to subsection 5.5.4 for the proof. Theorem 37-(i) establishes that the

regret bound for the learned policy scales quadratically with the deviation of the learned
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policy from the expert (optimal) policy. We also note that the regret bound scales with λ,

the Lipschitz constant of the gradient of the stage cost, and the Lipschitz constant of the

dynamics (w.r.t. u), as they modulate the sensitivity to variations of the input. Further-

more, we want the performance of the learned policy under disturbances to be close its

nominal performance, i.e., a low value of S. Theorem 37-(ii) establishes that the robustness

of performance is determined by the sensitivity of the learned policy to disturbances, in

particular that the robustness bound scales quadratically with the Lipschitz constant of the

learned policy. Theorem 37-(ii) provides the designer with a robustness guarantee while

implementing the learned policy in the presence of bounded (possibly adversarial) distur-

bances to measurements. We note that, the bounds in Theorem 37 might be loose. This is

because we consider worst-case analysis (where we use supremum in (5.5) and (5.6)), which

is unavoidable if we want to provide closed-loop performance and robustness certificates

over all possible scenarios. Although the bounds might be loose, they are informative and

intuitive, where they provide qualitative understanding of the properties that affect the

closed-loop performance and robustness of the learned policy π̂. Further, the bounds in

Theorem 37 provide insights on how to tune the Lipschitz bound, α, in (5.3) as pointed out

next in Remark 39. We end this section with the following Remarks.

Remark 38 (Tradeoff between R(π̂) and S(π̂)) We note that in the limit of the expert

demonstrations, N → ∞, Theorem 37 suggests a tradeoff between the regret R(π̂) and the

robustness metric S(π̂) as we vary the Lipschitz bound α in (5.3). As we decrease α, the

deviation of the learned policy π̂ from the optimal policy π∗ increases, and so does the bound

in Theorem 37-(i) (via an increase in ε). Instead, as we increase α such that the constraint
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in (5.3) is no longer active, the learned policy converges to the optimal policy π∗, and

the bound in Theorem 37-(i) decreases to zero. Similarly, as we decrease α, the Lipschitz

constant of the learned policy, `π̂, decreases, and so does the bound in Theorem 37-(ii). See

Fig. 5.7 in Section 5.4 for an illustration of this tradeoff. Furthermore, we see that strong

convexity of the cost induces stability properties and λ-smoothness allows for the tuning of

regret.

Remark 39 (Selection of the Lipschitz bound α) As noted in Remark 38, the regrets

R(π̂) and S(π̂), as well as their upper bounds, exhibit a tradeoff relation upon tuning the

Lipschitz bound α in (5.3). Hence, an “optimal choice of α” that optimizes both regrets

generally does not exist. In practice, the selection of α depends on the control application

at hand and its performance and robustness requirements. Note that in practice, we cannot

compute the regrets R(π̂) and S(π̂) since we do not have access to the system dynamics nor

the cost function of the control task. However, we can compute the upper bounds in Theorem

37, which we can use as a benchmark to tune α such that the control application requirements

are met. We also note that even if the regret bounds are finite, Assumption 36 might still

get violated for some values of α and hence stability will not be guaranteed. Therefore, when

selecting α, Assumption 36 need to be checked in order to guarantee stability.

5.3 Lipschitz-constrained policy learning

We now present results from our analysis of the Lipschitz constrained policy

learning problem (5.3). We note that the training data for the feedback policy learning

problem (5.3) consists of evaluations of the expert policy π∗ over a finite set of points
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{x(i)
t } ⊂ Br(0) in the state space, and the objective is to generalize over the region of in-

terest Br(0). The following theorem establishes a (maximum) generalization error bound

for the minimizer π̂ over the region Br(0) in terms of the covering radius of the training

dataset:

Theorem 40 (Generalization error bound for Lipschitz policy learning) Let π̂ be

a minimizer in (5.3), XN = {x(1), . . . ,x(N)} with x(i) =
(
x

(i)
0 , . . . , x

(i)
T−1

)
and let

εtrain = max
i∈{1,...,N},
t∈{0,...,T−1}

∥∥∥π̂(x
(i)
t )− π∗(x(i)

t )
∥∥∥ ,

ρ(XN , r) = sup
x∈Br(0)

min
i∈{1,...,N},
t∈{0,...,T−1}

∣∣∣x− x(i)
t

∣∣∣ .

For any δ > 0, the maximum learning error in Br(0) satisfies:

P

[
‖π̂ − π∗‖∞ > (α+ α∗)δ + εtrain

]
≤ P [ρ(XN , r) > δ] .

We refer the reader to subsection 5.5.5 for a proof of this result. Theorem 40 shows that

although a larger α allows for achieving a lower εtrain, it can result in worse generalization

performance. This is due to the fact that the (α + α∗)δ term in the bound scales linearly

with α, which can potentially result in a higher maximum learning error ‖π̂ − π∗‖∞. Fur-

thermore, we note that the covering radius ρ(XN , r) of the training dataset XN controls

the (probabilistic) bound on the generalization error2.

We finally note that Theorems 34 and 37 establish robust stability and performance

bounds for policies π̂ that satisfy (i) ‖π̂−π∗‖∞ ≤ ε, and (ii) lip(π̂) ≤ α, whereas Theorem 40

yields a (probabilistic) bound on the violation of the condition ‖π̂ − π∗‖∞ ≤ ε for finite

2We refer the reader to [81] for finite sample estimates on the covering radius.
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Algorithm 1 Graph-based Lipschitz policy learning

Input: Training data, Graph size η, Number of edges |E|, Lipschitz bound α, Number of

iterations k

1: Sample η points (graph vertices) uniformly i.i.d. from Br(0)

2: Partition training dataset as in (5.7)

3: Implement k iterations of primal-dual algorithm (5.9)

Output: Minimizer û

datasets of N expert trajectories (while the Lipschitz bound still holds). Therefore, by

combining the bounds in Theorems 34 and 37 with the finite sample bound in Theorem 40,

we obtain the desired closed-loop generalization and robustness bounds.

We now present a graph-based Lipschitz policy learning algorithm to solve (5.3).

We sample η points {Xi}ηi=1, uniformly i.i.d from Br(0). Considering the points {Xi}ηi=1 as

the (embedding of) vertices, we construct an undirected, weighted, connected graph G =

(V, E), with vertex set V = {1, . . . , η}, edge set E ⊆ V × V, we consider the weights of

all edges to have a unit value. We then define a partition W = {Wi}ηi=1 of the training

dataset D = {x(i)
t } (set of points in the state space where evaluations of the expert policy

are available) as follows:

Wi = {x ∈ D | |x−Xi| ≤ |x−Xj | ∀ j ∈ V \ {i}} . (5.7)

Finally, we write the discrete (empirical) Lipschitz-constrained policy learning problem over
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the graph G as follows (which can be viewed as the discretization of (5.3) over the graph G):

min
û=(û1,...,ûη),

ûi∈Rm

∑

i∈V

∑

j∈I(Wi)

L(ûi, uj),

s.t. |ûr − ûs| ≤ α |Xr −Xs| , ∀ (r, s) ∈ E ,

(5.8)

where uj correspond to the input coming from the expert policy. We note that Problem (5.8)

is convex (strictly convex objective function with convex constraints) and it can be solved

using any off-the-shelf convex optimization solver. Note that the solution to Problem (5.8)

is a set of input vectors û = (û1, · · · ûη), where the value of ûi corresponds to the vertex i of

G ∀i ∈ V. The learned policy π̂ corresponds to the learned graph G with {û}ηi=1 being the

input values obtained by solving (5.8). The learned policy π̂ takes a state measurement xt

as feedback and thereupon perform first-order interpolation among the nearest vertices to

get the corresponding input ut.
3

5.4 Numerical experiments

In this section, first, we present the primal-dual algorithm to solve Problem (5.8),

then, we present the results from numerical experiments applying our algorithm to (i) learn

the Linear Quadratic Regulator (LQR), and (ii) learn nonlinear control for a nonholonomic

system (differential drive mobile robot).

3Note that, the first-order interpolation do not violate the Lipschitz bound on lip(π̂)
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5.4.1 Primal-dual algorithm

The Lagrangian of Problem (5.8) is given by:

LG(û,Φ) =
∑

i∈V

[ ∑

s∈I(Wi)

L(ûi, us)

+
1

2

∑

j∈V
φij

(
|ûi − ûj |2 − α |Xi −Xj |2

)]
,

where Φ = [φij ]
η
i,j=1 is the matrix of Lagrange multiplier for the pairwise Lipschitz con-

straints. Define a primal-dual dynamics for the Lagrangian LG(û,Φ) with time-step se-

quence {h(k)}k∈N:

û(k + 1) = û(k)− h(k) ∇ûLG (û(k),Λ(k)) ,

Φ(k + 1) = max{0 , Φ(k) + h(k) ∇ΦLG (û(k),Φ(k))}.
(5.9)

The primal dynamics is a discretized heat flow over the graph G with a weighted Laplacian,

where ∇ûLG (û(k),Φ(k)) =
(
∆(Φ)⊗ Idim(Y)

)
û + ∇1L(û,u), and ∆(Φ) is the Φ-weighted

Laplacian of the graph G. The convergence of the solution {(û(k),Φ(k))}k∈N of the primal-

dual dynamics (5.9) to the saddle point of the Lagrangian LG follows [5] from the convexity

of Problem (5.8). The primal-dual algorithm that solves Problem (5.8) is presented in

Alg. 1.
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Figure 5.2: This figure shows the surface of policy π̂ in the state space for system (5.11),
which is learned using Alg. 1 with α = 1 (red surface) and α = 0.27 (green surface), and
the expert being the LQR for system (5.11).
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Figure 5.3: Panel (a) and panel (b) show the trajectory tracking performance for the LQR
(dashed blue line), the learned policy π̂ learned using Alg. 1 with α = 1 (dash-dotted red
line) and α = 0.27 (solid green line) for the settings described in section 5.4.2. In panel (a),
the policies are deployed in nominal conditions. The policy π̂α=1 performs as good as the
LQR while the policy π̂α=0.27 performs poorly compared to the LQR and π̂α=1. In panel
(b), the policies are deployed in non-nominal conditions. The performance of the LQR and
policy π̂α=1 is worse than when deployed in nominal conditions, while the performance of
policy π̂α=0.27 in non-nominal conditions remains almost the same as in nominal conditions.
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5.4.2 Learning the Linear Quadratic Regulator

We consider a vehicle obeying the following dynamics (see also [65] and [4]):

xt+1 =




1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1




︸ ︷︷ ︸
A

xt+




0 0

Ts 0

0 0

0 Ts




︸ ︷︷ ︸
B

ut, yt = xt + δt
(5.10)

where xt ∈ R4 contains the vehicle’s position and velocity in cartesian coordinates, ut ∈ R2

the input signal, y ∈ R4 the state measurement, δt ∈ R4 bounded measurement noise with

‖δt‖ ≤ ζ and ζ ∈ R≥0, and Ts the sampling time. We consider the problem of tracking a

reference trajectory, and we write the error dynamics and the controller as

et+1 = Aet +Būt, ut = −K(et + δt)︸ ︷︷ ︸
ūt

+vt, (5.11)

where et = xt − ξt is the error between the system state and the reference state, ξt ∈ R4

at time t, vt ∈ R2 is the control input generating ξt, and K denotes the control gain.

We consider the expert policy to correspond to the optimal LQR gain, Klqr, which min-

imizes a discounted value function as in (5.2) but with horizon T , quadratic stage cost

c(et, ūt) = eTt Qet + ūTt Rūt with error and input weighing matrices Q � 0 and R � 0, re-

spectively. Notice that the quadratic stage cost is strongly convex and Lipschitz bounded

over bounded space e ∈ Br(0) ⊂ R4 and ū ∈ R2.

Expert demonstrations. We generate N = 3000 expert trajectories with time horizon

T = 600 using (5.11) with K = Klqr, Ts = 0.1, γ = 0.82, Q = 0.1I4, R = 0.1I2, and δt = 0,

92



0 200 400 600

−1

−0.5

0

0.5

1

t

v x
(m

/
s)

Reference trajectory LQR π̂α=1 π̂α=0.27

0 200 400 600

−1

−0.5

0

0.5

1

t

v x
(m

/
s)

(a) (b)

Figure 5.4: Panel (a) and panel (b) show the linear velocity tracking performance for the
LQR (dashed blue line), the learned policy π̂ learned using Alg. 1 with α = 1 (dash-dotted
red line) and α = 0.27 (solid green line) for the settings described in section 5.4.2. In panel
(a), the policies are deployed in nominal conditions. The policy π̂α=1 performs as good as
the LQR while the policy π̂α=0.27 performs poorly compared to the LQR and π̂α=1. In panel
(b), the policies are deployed in non-nominal conditions. The performance of the LQR and
policy π̂α=1 is worse than when deployed in nominal conditions, while the performance of
policy π̂α=0.27 in non-nominal conditions remains almost the same as in nominal conditions.

contained in the data matrices E,U :

E =

[
e(1) . . . e(N)

]
, U =

[
u(1) . . . u(N)

]
,

with e(i) = (e
(i)
0 , . . . , e

(i)
T ) and u(i) = (u

(i)
0 , . . . , u

(i)
T−1). Each trajectory is generated with

random initial condition, e
(i)
0 ∈ B2(0) for i = 1, . . . , N . Note that, since the initial condi-

tions, e
(i)
0 , are inside B2(0) and K = Klqr is stabilizing, then, all the data points in E are

inside B2(0). Furthermore, Klqr obeys Assumption 32 (see Example 33) with κ∗ = 3.73,

κ̄∗ = 7.74, and `fπ∗ = 0.976 < 1. Moreover, we have γ = 0.82 ∈ (1− κ∗/κ̄∗, 1).

Policy learning. For the learning Problem (5.8), we use the squared error loss L =

(π̂(x) − π∗(x))2. Using Alg. 1, we learn policy π̂ with α = 1 and α = 0.27 denoted by

π̂α=1 and π̂α=0.27, respectively. Fig. 5.2 shows the surface of the learned policies π̂α=1 and
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Figure 5.5: For the settings described in 5.4.2, panel (a) and panel (b) show the deviation of
the trajectory incurred by the learned policy π̂ from the expert trajectory (solid blue line)
for α = 1 and α = 0.27, respectively, along with the corresponding robust stability bounds
derived in Theorem 34 (dashed red line).
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Figure 5.6: Panel (a) and panel (b) show the true regrets R(π̂) and S(π̂) in (5.5) and (5.6)
(solid blue line), and the regret bounds in Theorem 37 (dashed red line) as a function of the
Lipschitz bound, α, in (5.3), respectively, for the settings described in section 5.4.2. The
regret R(π̂) and the bound in Theorem 37-(i) decrease as α increases, as shown in panel (a),
while The regret S(π̂) the bound in Theorem 37-(ii) increase with α, as shown in panel (b).

π̂α=0.27 in the state space. Note that, since the Lipschitz constant of the expert policy,

π∗ = Klqr, is α∗ = ‖Klqr‖2 = 0.51 < α = 1, we get ‖π̂α=1 − π∗‖2 = 0, which implies that

π̂α=1 learns exactly the expert policy. On the other hand, since α = 0.27 < α∗ = 0.51, we

get ‖π̂α=0.27 − π∗‖2 = ε for ε > 0, which implies that π̂α=0.27 learns the expert policy with

some learning error ε. As observed in Fig. 5.2, the Lipschitz constant constraints the slope

of the learned surface, where π̂α=0.27 has smaller slope than π̂α=1, and hence more robust
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to perturbations in the states. However, smaller Lipschitz constant implies larger learning

error, and hence poorer nominal performance.

Stability. Both policies π̂α=1 and π̂α=0.27 satisfy Assumption 36, i.e., ‖π̂α=1 − π∗‖∞ = 0 ≤
(
1− `fπ∗

)
r/`uf and ‖π̂α=0.27 − π∗‖∞ = 0.4745 ≤

(
1− `fπ∗

)
r/`uf , which imply that both

π̂α=1 and π̂α=0.27 are incrementally exponentially stable. Fig. 5.3 shows the trajectory

tracking performance for the optimal LQR controller, π̂α=1, and π̂α=0.27. The policies are

deployed in nominal conditions, Fig. 5.3(a), and in non-nominal conditions with ζ = 0.5,

Fig. 5.3(b). We observe in Fig. 5.3(a) that π̂α=1 performs better than π̂α=0.27 in nominal

conditions. On the other hand, we observe in Fig. 5.3(b) that the performance of π̂α=1

degrades when deployed in non-nominal conditions, while the performance of π̂α=0.27 re-

mains almost the same, as predicted by [52]. Fig. 5.4 shows the tracking performance of

the vehicle’s velocity in the x-direction for the optimal LQR controller, π̂α=1, and π̂α=0.27

versus time. The conditions in Fig. 5.4(a) and Fig. 5.4(b) are the same as in Fig. 5.3(a)

and Fig. 5.3(b), respectively. Similarly as in Fig. 5.3, the policy π̂α=1 performs better

than π̂α=0.27 in nominal conditions as observed in Fig. 5.4(a). Further, we observe in Fig.

5.4(b) that the performance of π̂α=1 degrades when deployed in non-nominal conditions,

while the performance of π̂α=0.27 remains almost the same. Fig. 5.5 shows the deviation

of the trajectories incurred by π̂α=1 and π̂α=0.27 from the expert trajectory, along with

the corresponding stability bounds derived in Theorem 34. We observe that both learned

policies do not violate the stability bound, which agrees with Theorem 34. Furthermore,

we observe that the deviation between the expert trajectory and the trajectory incurred by

π̂α=1, and the corresponding stability bounds (Fig. 5.5(a)) are lower than those of π̂α=0.27
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(Fig. 5.5(b)), which is expected since ‖π̂α=1 − π∗‖∞ < ‖π̂α=0.27 − π∗‖∞.

Regret bounds. The parameters of the bounds in Theorem 37 are obtained as follows,

λ = max{ρ(2Q), ρ(2R)}, α∗ = ‖Klqr‖2, `uf = ‖B‖2, and Θ = 1
1−γρ(A+BK)2

, where K is

a stabilizing gain. Fig. 5.6 shows the regrets R(π̂) and S(π̂) in (5.5) and (5.6), and the

corresponding upper bounds derived in Theorem 37 as a function of the Lipschitz bound, α,

in (5.3). As can be seen, the regret R(π̂) and the corresponding upper bound in Theorem

37-(i) decrease as α increases, while the regret S(π̂) and the corresponding upper bound

in Theorem 37-(ii) increase with α. Further, the regrets and the bounds remains constant

for α ≥ 0.51, since the constraint in (5.3) becomes inactive and π̂ converges to the optimal

LQR controller. Fig. 5.7 shows the tradeoff between the regrets, as well as the tradeoff

between the regrets upper bounds as we vary the Lipschitz bound, α, in (5.3). This suggests

that improving the robustness of the learned policy to perturbations comes at the expenses

of its nominal performance. We note that for α < 0.27 Assumption 36 is violated, which

implies that even if the regret bounds are not violated for α < 0.27 in Fig. 5.6 and Fig.

5.7, stability is not guaranteed. Therefore, when selecting α using Fig. 5.7, Assumption 36

should be checked in order to guarantee stability. See Remark 39.
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Figure 5.7: Panel (a) shows the tradeoff between the regrets R(π̂) and S(π̂) in (5.5) and
(5.6), respectively, for the settings described in section 5.4.2. Panel (b) shows the tradeoff
between the upper bounds of R(π̂) and S(π̂) derived in Theorem 37, respectively. In both
panels, the red and the green dots represent the learned policies π̂α=1 and π̂α=0.27 used in
Fig. 5.3, respectively.

5.4.3 Learning nonlinear control for nonholonomic system

We consider nonholonomic differential drive mobile robot (see Fig. 5.8) obeying

the following discrete-time nonlinear dynamics

xt+1 = Tsvt cos(θt) + xt, for t ≥ 0

yt+1 = Tsvt sin(θt) + yt,

θt+1 = θt + Tsωt

(5.12)

where xt ∈ R and yt ∈ R are the position of the robot’s centroid in the cartesian coordinate

frame (O;x, y), θt ∈ R is the robot’s orientation, vt ∈ R and ωt ∈ R are the robot’s forward

and angular velocity at time t, respectively, which are the system’s inputs, and Ts > 0 is

the sampling time. The dynamics in (5.12), can be written in the following vector form

qt+1 = f(qt, ut), ut = π(qt + δt) for t ≥ 0, (5.13)

where qt = [xt, yt, θt]
T is the state, ut = [vt, ωt]

T is the input, f : R3 × R2 → R3 is the

dynamics, π : R3 → R2 is the control policy, and δt ∈ R3 is a bounded perturbation, with
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Figure 5.8: Differential drive mobile robot described in (5.12).

‖δt‖ ≤ ζ ∈ R≥0. Let rt = [rxt , r
y
t ]T be a point fixed on the robot at a fixed distance d from

[xt, yt]
T (see Fig. 5.8). The task is to stabilize the point rt at [0, 0]T, which is described by

the following regulator problem

min
π∈Lip(R3;R2)

lim
T→∞

T∑

t=0

γt
(
rt

TQrt + ut
TS(θt)

TRS(θt)ut

)
,

s.t.





qt+1 = f(qt, ut),

ut = π(qt + δt),

(5.14)

where S(θt) =



Ts cos(θt) −dTs sin(θt)

Ts sin(θt) dTs cos(θt)


 ,

with γ denoting the discount factor, and Q � 0 and R � 0 are weighing matrices.

Expert demonstrations. We consider the expert policy, π∗, to be the minimizer of (5.14).

The derivation of π∗ for this example is presented in subsection 5.5.6. We use π∗ to generate
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N = 40 expert trajectories with time horizon T = 500.

Policy learning. For the learning Problem (5.8), we use the squared error loss L =

(π̂(x) − π∗(x))2. Using Alg. 1, we learn policy π̂ with α = 50 and α = 0.5 denoted by

π̂α=50 and π̂α=0.5, respectively. Fig. 5.9 shows the surface of the learned policies π̂α=50 and

π̂α=0.5 that correspond to the input ω in the subspace [x, y]T for θ = 0. Since the Lipschitz

constant of the expert policy, π∗, is α∗ = 16.65 < α = 50, the policy π̂α=50 learns exactly

the expert policy. On the other hand, since α = 0.5 < α∗ = 16.65, the policy π̂α=0.5 learns

the expert policy with some learning error. As observed in Fig. 5.9, the Lipschitz constant

constraints the slope of the learned surface, where π̂α=0.5 has smaller slope than π̂α=50, and

hence more robust to perturbations in the states. However, since π̂α=0.5 has larger learning

error, it has poorer nominal performance. Fig. 5.10 shows the trajectory of the point (rxt , r
y
t )

(see Fig. 5.8) induced by the expert policy, π̂α=50, and π̂α=0.5 starting from initial position

(1, 1) and an orientation θ = 180◦. The policies are deployed in nominal conditions, Fig.

5.10(a), and in non-nominal conditions with ζr = 0.7 for the position and ζθ = π/180 for

the orientation, Fig. 5.10(b). We observe in Fig. 5.10(a) that π̂α=50 performs as good as

the expert and better than π̂α=0.5 in nominal conditions. On the other hand, we observe in

Fig. 5.10(b) that the performance of π̂α=50 and that of the expert degrade when deployed

in non-nominal conditions, while the performance of π̂α=0.5 remains almost the same.
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Figure 5.9: This figure shows the surface of policy π̂ that correspond to the input ω in
the subspace [x, y]T for system (5.13) for θ = 0. Two policies are learned using Alg. 1
with α = 50 (red surface) and α = 0.5 (green surface), and the expert demonstrations are
generated as in subsection 5.5.6.
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Figure 5.10: Panel (a) and panel (b) show the trajectory of the expert (solid blue line), the
learned policy π̂ learned using Alg. 1 with α = 50 (dashed red line) and α = 0.5 (dash-
dotted green line). In panel (a), the policies are deployed in nominal conditions. The policy
π̂α=50 outputs the same trajectory as the expert while the policy π̂α=0.5 outputs a different
trajectory towards the equilibrium. In panel (b), the policies are deployed in non-nominal
conditions. The performance of the expert and policy π̂α=50 is worse than when deployed
in nominal conditions, while the performance of policy π̂α=0.5 in non-nominal conditions
remains almost the same as in nominal conditions.

100



5.5 Proofs of the main results and supplementary material

5.5.1 Proof of Lemma 31

(i) Quadratic bounds: We first note that V ∗(x) ≥ 0 for any x ∈ Rn, and π∗(0) = 0.

To see this, we first recall that V ∗(0) ≤ ∑∞t=0 γ
tc(xt, ut) for xt+1 = f(xt, ut) with x0 = 0

and any {ut}. In particular, with ut = 0 for all t ∈ N, we get that
∑∞

t=0 γ
tc(xt, ut) = 0

(since x0 = 0, f(0, 0) = 0 and c(0, 0) = 0), and since 0 ≤ V ∗(0) ≤ ∑∞t=0 γ
tc(xt, ut) = 0, it

follows that V ∗(0) = 0. Now, we have that π∗(0) ∈ arg minu∈Rm c(0, u) + V ∗(f(0, u)), from

which we clearly get that π∗(0) = 0 is the only minimizer. Now, since c is µ-strongly convex,

with c(0, 0) = 0, we have cπ∗(x) ≥ µ‖x‖2/2. Furthermore, since V ∗(x) = minu∈Rm c(x, u) +

γV ∗(f(x, u)), we get:

V ∗(x) = cπ∗(x) + γV ∗(fπ∗(x))

≥ µ

2
‖x‖2 + γV ∗(fπ∗(x)) ≥ µ

2
‖x‖2.

Let π be a Lipschitz-continuous (with constant α), exponentially stabilizing feedback policy

as in Assumption 28. We then have:

V ∗(x) ≤ Vπ(x) =

∞∑

t=0

γtcπ
(
f tπ(x)

)
≤ λ

2
(1 + α2)

∞∑

t=0

γt
∥∥f tπ(x)

∥∥2

≤ λ

2
(1 + α2)

∞∑

t=0

∥∥f tπ(x)
∥∥2 ≤ λ

2
M(1 + α2)

∞∑

t=0

β2t‖x‖2

=
λM(1 + α2)

2(1− β2)
‖x‖2.

We then have:

µ

2︸︷︷︸
κ

‖x‖2 ≤ V ∗(x) ≤ λM(1 + α2)

2(1− β2)︸ ︷︷ ︸
κ̄

‖x‖2,
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and the statement of the lemma follows. (ii) Exponential stability under expert (optimal)

feedback policy: We have V ∗(x) = cπ∗(x) + γV ∗ (fπ∗(x)) and κ‖x‖2 ≤ V ∗(x) ≤ κ̄‖x‖2. It

then follows that:

V ∗(fπ∗(x))− V ∗(x) ≤ − µ

2γ
‖x‖2 +

κ̄(1− γ)

γ
‖x‖2

= − κ̄
γ

[
γ −

(
1− κ

κ̄

)]
‖x‖2 = −κ̄

(
1− γ′

γ

)
‖x‖2.

It follows from the above inequality and the quadratic boundedness of V ∗ that fπ∗ is uni-

formly globally exponentially convergent [92]. In what follows, we obtain an estimate for

the upper bound on
∥∥f tπ∗(x)

∥∥. From the above inequality and the fact that V ∗(x) ≤ κ̄‖x‖2

we get V ∗(fπ∗(x))−V ∗(x) ≤ −(1−γ′/γ)V ∗(x) and V ∗(fπ∗(x)) ≤ γ′/γV ∗(x). It then follows

that V ∗(f tπ∗(x)) ≤ (γ′/γ)tV ∗(x) which implies κ
∥∥f tπ∗(x)

∥∥2 ≤ κ̄(γ′/γ)t‖x‖2. Therefore, we

get:

∥∥f tπ∗(x)
∥∥ ≤

√
κ̄

κ

(√
γ′

γ

)t
‖x‖.

5.5.2 Proof of Theorem 34

Let γ′ = 1 − κ∗/κ̄∗. For x ∈ Br(0), let x̂t = f tπ̂(x) and x∗t = f tπ∗(x). From

Lemma 31-(ii), we have:

‖fπ̂(x)‖ ≤ ‖fπ∗(x)‖+ ‖fπ̂(x)− fπ∗(x)‖

≤ `fπ∗‖x‖+ `uf ‖π̂(x)− π∗(x)‖ ≤ `fπ∗ r + `ufε.
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We see that ‖fπ̂(x)‖ ≤ r for ε ≤ 1
`uf

(
1− `fπ∗

)
r. It then follows that ‖π̂(x̂t)− π∗(x̂t)‖ ≤ ε

for any t ∈ N. We then have:

‖x̂t‖ ≤ `tfπ∗‖x‖+ `uf

t−1∑

τ=0

`t−τ−1
fπ∗

ε

= `tfπ∗‖x‖+ `uf

[
1− `tfπ∗
1− `fπ∗

]
ε.

Furthermore, we have from part (i) that x∗t ∈ Br(0) for any t ∈ N. Therefore, Br(0) is

invariant under fπ∗ and fπ̂, and we immediately obtain the uniform bound ‖x̂t − x∗t ‖ ≤ 2r.

We now have:

‖x̂t − x∗t ‖ =
∥∥f(x̂t−1, π̂(x̂t−1))− f(x∗t−1, π

∗(x∗t−1))
∥∥

≤ ‖f(x̂t−1, π̂(x̂t−1))− f(x̂t−1, π
∗(x̂t−1))‖

+
∥∥f(x̂t−1, π

∗(x̂t−1))− f(x∗t−1, π
∗(x∗t−1))

∥∥

≤
∥∥fπ∗(x̂t−1)− fπ∗(x∗t−1)

∥∥

+ ‖f(x̂t−1, π̂(x̂t−1))− f(x̂t−1, π
∗(x̂t−1))‖

≤ `fπ∗
∥∥x̂t−1 − x∗t−1

∥∥+ `uf ‖π̂(x̂t−1)− π∗(x̂t−1)‖

≤ `fπ∗
∥∥x̂t−1 − x∗t−1

∥∥+ `ufε

≤ `uf
t−1∑

τ=0

`t−τ−1
fπ∗

ε = `uf

[
1− `tfπ∗
1− `fπ∗

]
ε.

Now, for the policy π̂δ, we have ‖π̂δ − π∗‖(Br(0),∞) ≤ ‖π̂δ − π̂‖(Br(0),∞)+‖π̂ − π∗‖(Br(0),∞) ≤

αζ + ε, and the earlier analysis now carries through with this bound, and the statement of

the theorem follows.
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5.5.3 Proof of Lemma 35

From the exponential stability of fπ, for x, x′ ∈ Br(0), we have
∥∥f tπ(x)− f tπ(x′)

∥∥ ≤
∥∥f tπ(x)

∥∥+
∥∥f tπ(x′)

∥∥ ≤ 2Mβtr. Furthermore, let `fπ be the Lipschitz constant of fπ on Br(0).

This implies that
∥∥f tπ(x)− f tπ(x′)

∥∥ ≤ `tfπ ‖x− x′‖. We then have
∥∥f tπ(x)− f tπ(x′)

∥∥ ≤

min
{
`tfπ ‖x− x′‖ , 2Mβtr

}
. We can then obtain an M̄ such that

∥∥f tπ(x)− f tπ(x′)
∥∥ ≤

M̄βt‖x− x′‖.

5.5.4 Proof of Theorem 37

The following lemma establishes a difference bound for the value function under a

Lipschitz feedback policy:

Lemma 41 (Value function difference bound) Let π ∈ Lip (Br(0);Rm) be a Lips-

chitz feedback policy such that π(0) = 0, lip(π) ≤ α. For the value function Vπ(x) =

∑∞
t=0 γ

tcπ
(
f tπ(x)

)
of policy π, the following holds:

∣∣Vπ(x′)− Vπ(x)
∣∣ ≤ Θλr

√
1 + α2

∥∥x′ − x
∥∥
[
1 +
‖x′ − x‖

2r

]
,

where Θ =
∑∞

t=0 γ
tθ2
t and θt = M̄βt.

Proof. We first note that (0, 0) ∈ Br(0)×Rm is a strict minimizer of c (by Assumption 29)

and since c is differentiable, we have ∇c(0, 0) = 0. For any x ∈ Br(0):

‖∇cπ(x)‖ = ‖∇c(x, π(x))−∇c(0, 0)‖

≤ λ ‖(x, π(x))‖ ≤ λ
√

1 + α2‖x‖,

since ‖π(x)‖ = ‖π(x) − π(0)‖ ≤ α‖x‖. For any x, x′ ∈ Br(0), let p be the straight line

segment between x and x′, such that p(t) = x + t(x′ − x) for t ∈ [0, 1]. From the λ-
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smoothness of c, we have:

cπ(x′)− cπ(x) =

∫ 1

0
∇cπ(p(t)) · ṗ(t)dt

≤
∫ 1

0
‖∇cπ(p(t))‖ dt · ‖x′ − x‖

≤ λ
√

1 + α2

∫ 1

0
‖p(t)‖dt · ‖x′ − x‖

≤ λ
√

1 + α2

∫ 1

0
‖x+ t(x′ − x)‖dt · ‖x′ − x‖

≤ λ
√

1 + α2 ‖x‖
∥∥x′ − x

∥∥+
λ

2

√
1 + α2

∥∥x′ − x
∥∥2

We also have:

cπ(x)− cπ(x′) ≤λ
√

1 + α2 ‖x′‖
∥∥x′ − x

∥∥

+
λ

2

√
1 + α2

∥∥x′ − x
∥∥2
,

and therefore we get:

∣∣cπ(x)− cπ(x′)
∣∣ ≤λ

√
1 + α2 max{‖x‖, ‖x′‖}

∥∥x′ − x
∥∥

+
λ

2

√
1 + α2

∥∥x′ − x
∥∥2
.

We now have:

Vπ(x′)− Vπ(x) =

∞∑
t=0

γt
[
cπ
(
f tπ(x′)

)
− cπ

(
f tπ(x)

)]
≤
∞∑
t=0

γt
[
λ
√

1 + α2 max{‖f tπ(x)‖, ‖f tπ(x′)‖}
∥∥f tπ(x′)− f tπ(x)

∥∥
+
λ

2

√
1 + α2

∥∥f tπ(x′)− f tπ(x)
∥∥2 ]

≤
[ ∞∑
t=0

γtθ2t

]
λ
√

1 + α2 max{‖x‖, ‖x′‖}
∥∥x′ − x∥∥

+

[ ∞∑
t=0

γtθ2t

]
λ

2

√
1 + α2

∥∥x′ − x∥∥2
≤ Θλ

√
1 + α2 r

∥∥x′ − x∥∥+
1

2
Θλ
√

1 + α2
∥∥x′ − x∥∥2 ,
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and the statement of the lemma follows. (i) Regret: Let π ∈ Lip (Br(0),Rm) be a policy

such that ‖π − π∗‖ ≤ ε and lip(π) ≤ α. Since ε ≤
(

1−
√

(κ̄∗/κ∗ − 1)/γ
)
r/`uf , we get

from Theorem 34 that Br(0) is fπ-invariant. The value function Vπ corresponding to π

satisfies Vπ(x) = cπ
(
x
)

+ γVπ
(
fπ(x)

)
. We then have for any x ∈ Br(0):

R(π) = sup
x∈Br(0)

{Vπ(x)− V ∗(x)}

= sup
x∈Br(0)

{cπ(x)− cπ∗(x) + γ (Vπ(fπ(x))− V ∗(fπ∗(x)))}

≤ sup
x∈Br(0)

{cπ(x)− cπ∗(x) + γ (Vπ(fπ(x))− V ∗(fπ(x)))

+γ (V ∗(fπ(x))− V ∗(fπ∗(x)))}

≤ sup
x∈Br(0)

{cπ(x)− cπ∗(x) + γ (V ∗(fπ(x))− V ∗(fπ∗(x)))

+ γ sup
x∈Br(0)

{Vπ(x)− V ∗(x)}}.

It then follows that:

R(π) ≤ 1

1− γ · sup
x∈Br(0)

{cπ(x)− cπ∗(x)

+ γ (V ∗(fπ(x))− V ∗(fπ∗(x)))}.

Furthermore, we have:

sup
x∈Br(0)

{cπ(x)− cπ∗(x)}

≤ λ
√

1 + |max {α, α∗}|2 r ‖π − π∗‖∞ +
λ

2
‖π − π∗‖2∞ .
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From Lemma 41, we also have:

V ∗(fπ(x))− V ∗(fπ∗(x))

≤ Θλr
√

1 + α∗2 ‖fπ(x)− fπ∗(x)‖
[
1 +
‖fπ(x)− fπ∗(x)‖

2r

]

≤ Θλr
√

1 + α∗2 `uf ‖π − π∗‖∞
[
1 +

`uf ‖π − π∗‖∞
2r

]
.

The statement of the theorem follows from the above two inequalities.

(ii) Robustness: The value function for the policy π satisfies Vπ(x) = cπ
(
x
)

+ γVπ
(
fπ(x)

)
.

For convenience of notation, we denote π ◦ (Id +δ) by πδ, i.e., πδ(x) = π(x + δ). For

‖δ‖∞ ≤ ζ ∈ R, we have:

S(π) = sup
x∈Br(0)

{
Vπδ
(
x
)
− Vπ

(
x
)}

= sup
x∈Br(0)

{
cπδ(x)− cπ(x) + γ

(
Vπδ
(
fπδ(x)

)
− Vπ

(
fπ(x)

))}

≤ sup
x∈Br(0)

{cπδ(x)− cπ(x) + γ (Vπδ (fπδ(x))− Vπ (fπδ(x)))

+γ (Vπ (fπδ(x))− Vπ (fπ(x)))}

≤ sup
x∈Br(0)

{
cπδ(x)− cπ(x) + γ (Vπ (fπδ(x))− Vπ (fπ(x)))

+γ sup
x∈Br(0)

{Vπδ (fπδ(x))− Vπ (fπδ(x))}
}
.

It then follows that:

S(π) =
1

1− γ · sup
x∈Br(0)

{cπδ(x)− cπ(x)

+ γ (Vπ (fπδ(x))− Vπ (fπ(x)))}.
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Furthermore, we have:

sup
x∈Br(0)

{cπδ(x)− cπ(x)} ≤ λα
√

1 + α2 rζ +
λ

2
α2ζ2.

From Lemma 41, we also have:

Vπ (fπδ(x))− Vπ (fπ(x))

≤ Θλr
√

1 + α2 ‖fπδ(x)− fπ(x)‖
[
1 +
‖fπδ(x)− fπ(x)‖

2r

]

≤ Θλr
√

1 + α2 `ufαζ

[
1 +

`ufαζ

2r

]
.

The statement of the theorem follows from the above two inequalities.

5.5.5 Proof of Theorem 40

For any i ∈ {1, . . . , N} and t ∈ {0, . . . , T − 1}, we have:

|π̂(x)− π∗(x)|

=
∣∣∣π̂(x)− π̂(x

(i)
t ) + π̂(x

(i)
t )− π∗(x(i)

t ) + π∗(x(i)
t )− π∗(x)

∣∣∣

≤ (α+ α∗)
∣∣∣x− x(i)

t

∣∣∣+
∣∣∣π̂(x

(i)
t )− π∗(x(i)

t )
∣∣∣ .

In particular, the following holds:

|π̂(x)− π∗(x)|

≤ min
i∈{1,...,N},
t∈{0,...,T−1}

[(α+ α∗) |x− xi|+ |π̂(xi)− π∗(xi)|]

≤ (α+ α∗) min
i∈{1,...,N},
t∈{0,...,T−1}

|x− xi|+ max
i∈{1,...,N},
t∈{0,...,T−1}

|π̂(xi)− π∗(xi)|

≤ (α+ α∗) min
i∈{1,...,N},
t∈{0,...,T−1}

|x− xi|+ εtrain.

where

εtrain(π̂) = max
i∈{1,...,N},
t∈{0,...,T−1}

∥∥∥π̂(x
(i)
t )− π∗(x(i)

t )
∥∥∥ .
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Therefore, we get:

sup
x∈Br(0)

|π̂(x)− π∗(x)|

≤ (α+ α∗) sup
x∈Br(0)

min
i∈{1,...,N},
t∈{0,...,T−1}

∣∣∣x− x(i)
t

∣∣∣+ εtrain.

From the previous inequality, we obtain the following probabilistic bound:

P

[
sup

x∈Br(0)

|π̂(x)− π∗(x)| > (α+ α∗)δ + εtrain

]
≤ P [ρ(XN , r) > δ] .

5.5.6 Expert policy for the system in subsection 5.4.3

In this subsection, we present more details for the numerical example in subsection

5.4.3. The expert’s task is to stabilize the point rt = [rxt , r
y
t ]T at [0, 0]T with minimal cost

(5.14). Knowing that rxt = xt + d cos(θt) and ryt = yt + d sin(θt) and using (5.12), we can

describe the dynamics of rxt and ryt as



rxt+1

ryt+1




︸ ︷︷ ︸
rt+1

=



rxt

ryt




︸ ︷︷ ︸
rt

+



Ts cos(θt) −dTs sin(θt)

Ts sin(θt) dTs cos(θt)




︸ ︷︷ ︸
S(θt)



vt

ωt




︸ ︷︷ ︸
ut

, (5.15)

Where we assumed that Ts is very small and used the approximation sin(Tsωt) ≈ Tsωt and

cos(Tsωt) ≈ 1. Let [vt, ωt]
T = S(θt)

−1[µxt , µ
x
t ]T, then (5.15) is written as

rt+1 = rt + µt, where µt = [µxt , µ
y
t ]

T. (5.16)
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To stabilize rt at [0, 0]T, we design µt = −Krt, where K is a gain matrix that minimizes

(5.14), which can be rewritten as

min
µ∈Lip(R2;R2)

lim
T→∞

T∑

t=0

γt
(
rt

TQrt + µt
TRµt

)
,

s.t. rt+1 = rt + µt,

(5.17)

We generate N expert trajectories using (5.13) with ut = −S(θt)
−1Krt, where K is the LQR

gain matrix that minimizes (5.17) with Ts = 0.01, d = 0.15, γ = 0.8, Q = I2, R = 300I2,

and δ = 0. The generated trajectories are contained in the matrices

E =

[
q(1) . . . q(N)

]
, U =

[
u(1) . . . u(N)

]
,

with q(i) = (q
(i)
0 , . . . , q

(i)
T ) and u(i) = (u

(i)
0 , . . . , u

(i)
T−1). Each trajectory is generated with

random initial condition, [x
(i)
0 , y

(i)
0 ]T ∈ B2(0) and θ

(i)
0 ∈ Bπ(0) for i = 1, . . . , N .
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Part III

Behavioral Perspectives for Linear

Quadratic Gaussian (LQG)

Control: Reformulation,

Characterization, and Data-Driven

Control
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Chapter 6

Behavioral Representation for

Optimal Linear Quadratic

Gaussian (LQG) Control

In this work, we revisit the Linear Quadratic Gaussian (LQG) optimal control

problem from a behavioral perspective. Motivated by the suitability of behavioral models

for data-driven control, we begin with a reformulation of the LQG problem in the space of

input-output behaviors and obtain a complete characterization of the optimal solutions. In

particular, we show that the optimal LQG controller can be expressed as a static behavioral-

feedback gain, thereby eliminating the need for dynamic state estimation characteristic of

state space methods. The static form of the optimal LQG gain also makes it amenable

to its computation by gradient descent, which we investigate via numerical experiments.

Furthermore, we highlight the advantage of this approach in the data-driven control setting
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of learning the optimal LQG controller from expert demonstrations. The results of this

chapter are reported in our published paper [67].

6.1 Problem setup and preliminary results

Consider the discrete-time, linear, time-invariant system

x(t+ 1) = Ax(t) +Bu(t) + w(t),

y(t) = Cx(t) + v(t), t ≥ 0,

(6.1)

where x(t) ∈ Rn denotes the state, u(t) ∈ Rm the control input, y(t) ∈ Rq the measured

output, w(t) the process noise, and v(t) the measurement noise at time t. We assume that

w(t) ∼ N (0, Qw), with Qw � 0, v(t) ∼ N (0, Rv), with Rv � 0, and x(0) ∼ N (0,Σ0),

with Σ0 � 0, are independent of each other at all times. For the system (6.1), the Linear

Quadratic Gaussian (LQG) problem asks to find a control input that minimizes the cost

J , lim
T→∞

E

[
1

T

( T−1∑

t=0

x(t)TQxx(t) + u(t)TRuu(t)
)]

, (6.2)

where Qx � 0 and Ru � 0 are weighing matrices of appropriate dimension.

Assumption 42 The pairs (A,B) and (A,Q
1/2
w ) are controllable, and (A,C) and (A,Q

1/2
x )

are observable. �

As a classic result [113], the optimal control input that solves the LQG problem can be

generated by a dynamic controller of the form

xc(t+ 1) = Exc(t) + Fy(t),

u(t) = Gxc(t) +Hy(t),

(6.3)

113



where xc(t) denotes the state at time t, and E ∈ Rn×n, F ∈ Rn×q, G ∈ Rm×n, and

H ∈ Rm×p are the dynamic, input, output and feedthrough matrices of the compensator,

respectively. The optimal LQG controller can be conveniently obtained using the separa-

tion principle by concatenating the Kalman filter for (6.1) with the (static) controller that

solves the Linear Quadratic Regulator problem for (6.1) with weight matrices Qx and Ru.

Specifically, after some manipulation, the optimal input that solves the LQG problem reads

as (6.3), we refer the reader to subsection 6.3.2 for the details. In what follows, we will

make use of an equivalent representation of the system (6.1). To this aim, let

z(t) , [U(t− 1)T, Y (t)T,W (t− 1)T, V (t)T]T, (6.4)

where

U(t− 1) ,
[
u(t− n)T, · · · , u(t− 1)T

]T
,

Y (t) ,
[
y(t− n)T, · · · , y(t)T

]T
,

W (t− 1) ,
[
w(t− n)T, · · · , w(t− 1)T

]T
,

V (t) ,
[
v(t− n)T, · · · , v(t)T

]T
.
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We can write an equivalent representation of (6.1) in the behavioral space z as (see subsec-

tion 6.3.3 for the derivation):




u(t− n+ 1)

...

u(t− 1)

u(t)

y(t− n+ 1)

...

y(t)

y(t+ 1)

w(t− n+ 1)

...

w(t− 1)

w(t)

v(t− n+ 1)

...

v(t)

v(t+ 1)




︸ ︷︷ ︸
z(t+1)

=




0 I 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · I 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0
0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0
0 0 0 · · · 0 0 I 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 0 0 0 0 · · · I 0 0 0 · · · 0 0 0 0 · · · 0
Au Ay Aw Av

0 0 0 · · · 0 0 0 0 · · · 0 0 I 0 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · I 0 0 0 · · · 0
0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0
0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 I 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · I
0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0




︸ ︷︷ ︸
A




u(t− n)

...

u(t− 2)

u(t− 1)

y(t− n)

...

y(t− 1)

y(t)

w(t− n)

...

w(t− 2)

w(t− 1)

v(t− n)

...

v(t− 1)

v(t)




︸ ︷︷ ︸
z(t)

+




0 0 0

...
...

...

0 0 0

I 0 0

0 0 0

...
...

...

0 0 0

CB C I

0 0 0

...
...

...

0 0 0

0 I 0

0 0 0

...
...

...

0 0 0

0 0 I




︸ ︷︷ ︸[
Bu Bw Bv

]




u(t)

w(t)

v(t+ 1)


 ,

yz(t) =




I 0 · · · 0 0 0 · · · 0
0 I · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · I 0 0 · · · 0




︸ ︷︷ ︸
C

z(t)

(6.5)

In fact, given a sequence of control inputs and noise values, the state z contains the system

output y over time, and can be used to reconstruct the exact value of the system state x.

This also implies that a controller for the system (6.1) can equivalently be designed using

the dynamics (6.5). In subsection 6.3.4, we show that any dynamic controller for (6.1) can

be equivalently represented as a static controller for (6.5):

u(t) = Kyz(t), (6.6)
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where K ∈ Rm×r is the feedback gain and r = (nm + np + p). Next, we reformulate the

LQG problem (7.2) for the behavioral dynamics (6.5). The LQG problem (7.2) can be

equivalently written in the behavioral space as:

Jz , lim
T→∞

E

[
1

T

( T−1∑

t=n

z(t)TQzz(t) + u(t)TRuu(t)
)]

, (6.8)

subject to (6.5), where Qz is presented in subsection 6.3.5 along with the derivation of (6.8),

and Ru is as in (7.2). The solution to the LQG problem in the behavioral space is given by

a static controller in the form of (6.6), which we characterize next.

Theorem 43 (Behavioral solution to the LQG problem) Let u∗ be the global mini-

mizer of (6.8) subject to (6.5). Then, u∗ = K∗yz with

K∗ = −
(
Ru + BTuMBu

)−1
BTuMAPCT

(
CPCT

)†
+ αK0, (6.9)

where K0 ∈ Rd×r is a matrix whose rows span the left null space of CPCT, and α∈Rm×d is

an arbitrary matrix with d = nm − n and r = nm + np + p, and M � 0 and P � 0 are the

unique solutions of the following coupled Riccati equations:

M = ATMA−ATMBuSMBTuMA+Qz

+
(
I − PCTSPC

)T
ATMBuSMBTuMA

(
I − PCTSPC

)

P = APAT −APCTSPCPAT + Σ

+
(
I −MBuSMBTu

)T
APCTSPCPAT

(
I −MBuSMBTu

)

with SM , (Ru + BTuMBu)−1, SP , (CPCT)†, Σ , BwQwBTw + BvRvBTv . �

A proof of Theorem 43 is postponed to subsection 6.3.6. The gain K is not unique since

CPCT is generally not invertible, which stems from the fact that yz has components that are
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dependent on each other, which makes the left kernel of CPCT non-empty. The following

result shows that in some cases the gain, K, in (6.9) can be unique, where CPCT becomes

invertible.

Corollary 44 (Uniqueness of the behavioral LQG gain K∗) The optimal behavioral

LQG gain, K∗, in (6.9) for system (6.5) with single-input (i.e., m = 1) is unique. �

The proof of Corollary 44 follows by noting that CPCT is full-rank when m = 1 (see Lemma

65). Note that, solving the coupled Riccati equations that characterize the LQG gain in

Theorem 43 can be challenging. The next result allows us to compute the optimal gain, K,

by solving two separate Riccati equations.

Theorem 45 (Alternative solution to the behavioral LQG problem) The optimal

behavioral LQG gain, K∗, in (6.9) can be written as

K∗ = K1 +K2P21P
†
11 + αK0, (6.10)

where K1 ∈ Rm×r and K2 ∈ Rm×q, with r = nm + np + p, q = n2 + np + p, are computed

as follows

[K1,K2] = KLQR = −
(
Ru + BTuMLQRBu

)−1
BTuMLQRA, (6.11)

where MLQR � 0 is the unique solution of the following Riccati equation

MLQR =ATMLQRA+Qz

−ATMLQRBu
(
Ru + BTuMLQRBu

)−1
BTuMLQRA.

The matrices P11 ∈ Rr×r and P21 ∈ Rq×r correspond to the (1, 1)-block and the (2, 1)-block

of matrix P , respectively, K0 ∈ Rd×r is a matrix whose rows span the left null space of P11,
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and α ∈ Rm×d is an arbitrary matrix with d = nm−n, and P satisfies the Riccati equation

P = AKPAT
K −AKPCT

(
CPCT

)†
CPAT

K + Σ

+ (A+ BuKLQR)PCT
(
CPCT

)†
CP (A+ BuKLQR)T ,

(6.12)

where AK , A+ BuK1C and Σ , BwQwBTw + BvRvBTv . �

A proof of Theorem 45 is postponed to subsection 6.3.7.

Example 46 (LQG controller in the behavioral space) Consider the system (6.1)

with A = 1.1, B = 1, C = 1, Qw = 0.5, and Rv = 0.8. Also, consider the optimal control

problem (7.2) with Qx = Ru = 1. The Kalman and the LQR gains are Kkf = 0.5474 and

Klqr = 0.7034, respectively, which can be written as (6.3) using (6.21) with E = 0.1716,

F = 0.0973, G = −0.7034, and H = −0.3991. Using (6.4), we define the behavioral space

as z(t) , [u(t− 1), y(t− 1), y(t), w(t− 1), v(t− 1), v(t)]T for t ≥ 1. Using Lemma 60, we

write the equivalent dynamics of (6.1) in the behavioral space as (6.5) with Au = 0.4977,

Ay =

[
0.5475 0.6023

]
, Aw = 0.4977, and Ay =

[
−0.5475 −0.6023

]
. Using Theorem 43,

the LQG gain is K = [0.1716, 0,−0.3991]. Fig. 7.1(a) shows the free response of (6.1) and

(6.5) with equal initial conditions. Fig. 7.1(b) shows the response of (6.1) and (6.5) to the

LQG controllers (6.21) and (6.9), respectively. �

Example 47 (Behavioral LQG controller for single-input system) Consider the
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Figure 6.1: This figure shows the free response and the LQG feedback response of (6.1)
and (6.5) for the setting defined in Example 47. In both panels, the solid blue line and
the dashed red line represent the output of (6.1) and the output of (6.5) that corresponds
to y(t), respectively. Panel (a) shows the free response of (6.1) and (6.5), we observe that
the response of both systems are equal, which agrees with Lemma 60. Panel (b) shows the
feedback response of (6.1) and (6.5) to the LQG controller (6.21) and the behavioral LQG
controller in Theorem 43, respectively. We observe that both systems have equal responses,
which agrees with Lemma 62 and Theorem 43. Notice that the response of (6.5) starts at
time t = n = 1 since we have to wait n = 1 time steps in order to get the equivalent initial
condition for (6.5).

system (6.1) with

A=




0.738 0.002 0.001

0.694 0.875 0.766

0.198 1.011 0.309



, C=




0.009 0.802 0.766

0.895 0.602 0.933


 ,

B =




0.247

0.677

0.757



, Qx = Qw = 2I3, Ru = 1, and Rv = I2.

The LQG controller can be written in the form of (6.3) using the classical separation prin-
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Figure 6.2: This figure shows the output response of (6.5), which corresponds to the first
element of y(t), when driven by the behavioral LQG controller for the settings defined in
Example 47 and Example 48. In both panels, the solid blue line and the dashed red line
represent the output of (6.5) when driven by the LQG gain computed using Lemma 61 and
Theorem 45, respectively. Panel (a) corresponds to the setting described in Example 47
where the gains computed using Lemma 61 and Theorem 45 are equal, which agrees with
Corollary 44, and hence we observe equal output response. Panel (b) corresponds to the
setting described in Example 48 where the optimal LQG gains computed using Lemma 61
and Theorem 45 are different. However, we observe that, although the gains are different,
they have equal output response. Notice that the response of (6.5) starts at time t = n = 3
since we have to wait n=3 time steps in order to write the behavioral representation in (6.5).

ciple as discussed in subsection 6.3.2 with

E=




0.339 −0.172 −0.041

0.237 0.030 0.284

−0.371 0.101 −0.195



, F =




−0.241 0.181

0.010 0.199

0.14 −0.252



,

G=

[
−0.667 −1.005 −0.586

]
, H=

[
−0.371 −0.572

]
.

Using Lemma 60, we can write the equivalent dynamics of (6.1) in the behavioral space as

(6.5). Further, using Lemma 61, the behavioral LQG gain, K = [−.003, .066, .174, 0, 0, .052, .064, .133,−.074,−.371,−.572].

Alternatively, using Theorem 45, we obtain a gain equal to the one computed using Lemma

61, where P11 in (6.10) is full-rank and Knull = 0, which agrees with Corollary 44. Fig.

7.1(a) shows the output response of each of the LQG gains. �
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Example 48 (Behavioral LQG controller for MIMO system) We consider the sys-

tem (6.1) with the same parameters as in Example 47, but with an additional input, i.e.,

B =




0.247 0.009

0.677 0.895

0.757 0.802



, and Ru = I2.

We write the equivalent behavioral dynamics (6.5) using Lemma 60. Further, we compute

the optimal LQG gain using Lemma 61 and Theorem 45 which are not equal. This is

expected since the gain is not unique where P11 in (6.10) is rank deficient and Knull can be

differer from zero. Fig. 7.1(b) shows that output response of both of the LQG gains are

equal. �

6.2 Implications of behavioral representation in numerical

methods

In this section, we highlight some implications of our behavioral representation

and results. In particular, we provide an analysis of learning the LQG controller from

finite expert demonstrations, and an analysis of solving for the behavioral LQG gain via a

gradient descent method. First, we present the following Lemma regarding the sparsity of

the LQG gain in (6.9), which we use in our subsequent analysis.
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Lemma 49 (Sparsity of the optimal LQG gain) Consider the LQG gain written in

the behavioral space as

u(t) =

[
K1 K2 K3

]




U(t− 1)

y(t− n)

Y (t)



, (6.13)

where Y (t) ,
[
y(t− n+ 1)T, · · · , y(t)T

]T
. Then K2 = 0. �

A proof of Lemma 49 is presented in subsection 6.3.8.

6.2.1 Learning LQG controller from expert demonstrations

Consider the system (6.1), assume that the system is stabilized by an expert that

uses optimal LQG controller. We also assume that the system and the noise statistics are

unknown. Our objective is to learn the optimal LQG controller from finite expert demon-

strations, which are composed of input and output data. In the behavioral representation,

this boils down to learning the gain K of the subspace u(t) = Kyz(t) for t ≥ n. Using Lemma

49, we only need to learn K1 and K3, which are obtained as [K1 K3] = UNY
†
N +Knull, where

UN ,
[
u(t) · · · u(t+ k − 1)

]
,

YN ,




u(t− n) · · · u(t− n+ k − 1)

...
. . .

...

u(t− 1) · · · u(t− 2 + k)

y(t− n+ 1) · · · y(t− n+ k)

.

..
. . .

.

..

y(t) · · · y(t− 1 + k)




,
(6.14)

for t ≥ n, where k is the number of columns, and Knull is any matrix with appropriate

dimension whose rows belong to the left null space of YN . Note that Knull will disappear
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when multiplied by the feedback yz(t), i.e., Knullyz(t) = 0. Therefore, without loss of

generality, we set Knull = 0.

Lemma 50 (Sufficient number of expert data to compute the optimal LQG gain)

Consider input and output expert samples U = [u(t), · · · , u(t+N−1)] and Y = [y(t), · · · , y(t+

N−1)] generated by LQG controller to stabilize system (6.1), such that U is full-rank. Then,

N = n+ nm+ np expert samples are sufficient to compute the LQG gain K. �

A proof of Lemma 50 is presented in subsection 6.3.9. We note that the rank condition on

the input matrix U in the statement of Lemma 50 is a reasonable assumption owing to the

fact that system (6.1) is driven by i.i.d. process noise w and that the measurement noise v

is also i.i.d. Furthermore, note that we can learn the dynamic controller matrices E, F , G,

and H in (6.3) (up to a similarity transformation) using subspace identification methods

for deterministic systems (see [74]) with U and Y treated as the output and input signals

to (6.3), respectively. Using [74, Theorem 2], we need at least N = 2(n+ 1)(m+ p+ 1)− 1

expert samples to learn (6.3), which is more than the sufficient number of expert samples

to learn K (Lemma 50).

Example 51 (Learning LQG controller from expert data) Consider the system in

Example 47 where the system dynamics and the noise statistics are assumed to be unknown.

The system is driven by an expert that uses an LQG policy. According to Lemma 50, we

collect N = n+ nm+ np = 3 expert input-output samples to form the data matrices

UN =

[
−0.2269 −0.1231

]
, YN =




1.7878 −0.2269

1.3371 0.211


 .
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Using the data, we obtain [K1 K3] = [0.1716 − 0.3991] with Knull = 0, which matches the

LQG gain in Example 47. �

6.2.2 Gradient descent in the behavioral space

In this section, we use gradient descent to solve for K:

K(i+1) = K(i) − α(i)∇Jz(K(i)) for i = 0, 1, 2, · · · (6.15)

where the index i refers to the iteration number, α(i) is the step size at iteration i, and

∇Jz(K(i)) is computed using (6.34). We initialize the gradient descent method with a

stabilizing gain K(0). We determine the step size α(i) by the Armijo rule [12, Chapter 1.3]:

initialize α(0) = 1, repeat α(i) = βα(i) until

Jz(K(i+1)) ≤ Jz(K(i))− σα(i)
∥∥∥∇Jz(K(i))

∥∥∥
2

F

is satisfied, with β, σ ∈ (0, 1).

Example 52 (Gradient descent) We consider the example in [28] discretized with sam-

pling time Ts = 0.4,

A =




1.4918 0.5967

0 1.4918


 , B =




0.1049

0.4918


 , C =

[
1 0

]
,

Qw =




4.6477 3.7575

3.7575 3.0639


 , Qx =




3.0639 3.7575

3.7575 4.6477


 ,

Rv = 2.5 and Ru = 0.5966. The LQG gain from Theorem 43 is K = [−0.0366,−0.103, 0, 5.8461,−4.7434].

Using Lemma 49, we only need to do the search over K1 and K3 since K2 = 0. We use gra-

dient descent in (6.15) to solve for the LQG gain. We choose a stabilizing initial gain K(0)
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Figure 6.3: This figure shows the convergence performance (measured by the sub-optimality
gap) of the gradient descent applied to the system in Example 52. The solid blue line, dashed
red line and the dash-dotted green line represent different initial conditions, respectively.
Panels (a) and (b) show the convergence performance of the gradient descent over K and
the gradient descent over the controller matrices E, F , G and H, respectively.

that randomly place the closed-loop eigenvalues within [0.45, 0.92]. We use the Armijo rule

to compute the step size with α(0) = 1, β = 0.8, and σ = 0.7. We set the stopping criteria to

be when the gradient vanishes or when the maximum number of iterations is reached (in this

example we set it to 15000 iterations). For numerical comparison, we use gradient descent

to solve for the optimal LQG dynamic controller in the form of (6.3) as in [111], where

we optimize the LQG cost (7.2) and apply the gradient search over the control parameters

E, F , G, and H.1 Fig. 6.3 shows the convergence performance of the gradient descent for

different initial conditions. We observe that the gradient descent over K in Fig. 6.3(a) con-

verges to K∗ = [−0.0366,−0.1030, 0, 5.8460,−4.7434] before reaching the maximum number

iterations for different initial conditions. Starting from initial conditions equivalent to the

ones in Fig. 6.3(a), the gradient descent over the controller matrices E, F , G and H in

Fig. 6.3(b) did not converge within 15000 iterations. �

1In [111], H = 0 since it is assumed that the control input u(t) at time t depends on the history
{u(0), · · · , u(t− 1), y(0), · · · , y(t− 1)}. In this paper, u(t) depends also on y(t), therefore H is nonzero (see
subsection 6.3.2). We computed the gradient of J w.r.t. the controller matrices E, F , G and H as in [111]
adapted to the case where H is nonzero. We have not included the derivations in this paper due to space
constraint.

125



6.3 Technical Lemmas and proofs of the main results

6.3.1 Linear Algebra facts and technical lemmas

Fact 53 ( [11, Fact 8.7.5]) Let A,B ∈ Rn×n, assume that A,B � 0. Then,

R (A+B)=R (A)+R (B) , N (A+B)=N (A) ∩N (B) .

�

Fact 54 ( [11, Fact 2.10.10]) Let A,B ∈ Rn×m, and let α ∈ R be non-zero. Then,

N (A) ∩N (B) = N (A) ∩N (A+ αB)

= N (αA+B) ∩N (B) .

�

Fact 55 ( [11, Fact 7.4.10]) Let A ∈ Rn×m, B ∈ Rm×l, C ∈ Rl×k, and D ∈ Rk×n.

Then,

tr [ABCD] = (vec (A))T
(
B ⊗DT

)(
vec
(
CT
))

.

�

Lemma 56 ( [11, Lemma 8.2.1]) Let A ,



A11 A12

AT
12 A22


 � 0 with A11 ∈ Rn×n, A22 ∈

Rm×m, and A12 ∈ Rn×m. Then,

A12 = A11A
†
11A12 = A12A22A

†
22.

�
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Lemma 57 (Property of the solution to Lyapunov equation) Let A, B, Q be ma-

trices of appropriate dimensions with ρ(A) < 1. Let Y satisfy Y = AY AT + Q. Then,

tr [BY ]= tr
[
QTM

]
, where M satisfies M=ATMA+BT. �

Lemma 58 (Range space of the solution to Lyapunov equation) Let A, Q be square

matrices of appropriate dimensions with ρ(A)< 1 and Q� 0. Let X satisfy X =AXAT+

Q. Then, for i ≥ 1,

R
(
AiX

)
⊆ R (X) , and N (X) ⊆ N

(
X
(
Ai
)T)

.

Proof. From Fact 53, we have

R (X) = R (Q) +R
(
AXAT

)
= R (Q) +R (AX) .

The above equality implies that R (AX) ⊆ R (X). Then, the first claim follows from the

fact that R
(
Ai
)
⊆ R (A) for i≥ 1. The second claim follows from the fact that the range

space and the null space of any matrix are orthogonal complements.

6.3.2 Optimal LQG controller

The LQG controller that minimizes (7.2) can be written as

x̂(t+ 1) = (In −KkfC)(A−BKLQR)x̂(t) +Kkfy(t+ 1),

u(t) = −KLQRx̂(t),

(6.16)

where Kkf and KLQR are the Kalman and LQR gains, respectively. To write the controller

(6.16) in the form of (6.3), we need the following lemma.
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Lemma 59 (Equivalent compensator forms) Consider the compensator (6.3) and a

compensator of the form:

ξc(t+ 1) = Eξc(t) + Fy(t+ 1),

u(t) = Gξc(t),

(6.17)

with ξc ∈ Rn denoting the state, and E ∈ Rn×n, F ∈ Rn×q, and G ∈ Rm×n denoting the

dynamic, input, and output matrices of the compensator, respectively. Let xc(0) = ξc(0)

and y(0) = 0, then, the compensators (6.3) and (6.17) output the same u(t) given the same

input y(t) if:

E = E, F = EF, G = G, H = GF. (6.18)

Proof. Using (6.3) with y(0) = 0, we can write

u(t) = GEtxc(0) +

[
GEt−2F · · · GF H

]
y, (6.19)

where y = [y(1)T, · · · , y(t)T]T. Using (6.17), we can write

u(t) = GEtξc(0) +

[
GEt−1F · · · GF

]
y. (6.20)

Under the same y, (6.19) is equal to (6.20) for E = E, F = EF , G = G, and H = GF .

Using Lemma 59 and (6.16), we can write the LQG controller in the form of (6.3) with

E = (In −KkfC)(A−BKLQR),

F = (In −KkfC)(A−BKLQR)Kkf,

G = −KLQR,

H = −KLQRKkf.

(6.21)
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6.3.3 System representation in the behavioral space

The following Lemma provides an equivalent representation of (6.1) in the behav-

ioral space, z, which is written in (6.5).

Lemma 60 (Equivalent dynamics) Let z be as in (6.4). Then,

z(t+ 1) = Az(t) + Buu(t) + Bww(t) + Bvv(t+ 1),

where A, Bu, Bw, and Bv are as in (6.5), and

Au , F2 − CAn+1O†F1, Ay , CAn+1O†,

Aw , F4 − CAn+1O†F3, Av , −CAn+1O†,

O ,




C

CA

...

CAn




, F1 ,




0 · · · 0

CB · · · 0

...
. . .

...

CAn−1B · · · CB




,

F2 ,

[
CAnB · · · CAB

]
,

and the matrices F3 and F4 are obtained by replacing B with I in F1 and F2, respectively.

Proof. We can write the evolution of y(t+ 1) as

y(t+ 1) =CAn+1x(t− n) + F2U(t− 1) + F4W (t− 1)

+ CBu(t) + Cw(t) + v(t+ 1), (6.22)
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where, F2 and F4 are as in Lemma 60, and U(t − 1) and W (t − 1) are as in (6.4). Also,

we can write Y (t) in (6.4) in terms of U(t− 1), W (t− 1), and V (t):

Y (t) = Ox(t− n) + F1U(t− 1) + F3W (t− 1) + V (t), (6.23)

where O, F1, and F3 are same as in Lemma 60 and V (t) is as in (6.4). Then using (6.23),

we substitute x(t− n) into (6.22)

y(t+ 1) =

[
Au Ay Aw Av

]




U(t− 1)

Y (t)

W (t− 1)

V (t)




︸ ︷︷ ︸
z(t)

+CBu(t)

+ Cw(t) + v(t+ 1),

where Au, Ay, Aw, and Av are as in Lemma 60.

6.3.4 From dynamic to static controller

Lemma 61 (From dynamic to static controllers) Let the control input u be the output

of the dynamic controller (6.3). Then, equivalently,

u(t) =

[
GEnT †1 T2 −GEnT †1M

]

︸ ︷︷ ︸
K

yz(t), (6.24)
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where z is as in (6.4) and follows the dynamics (6.5), and

T1 ,




G

GE

...

GEn−1




, T2 ,

[
GEn−1F · · · GF H

]
,

M ,




H 0 0 · · · 0 0

GF H 0 · · · 0 0

GEF GF H · · · 0 0

...
...

...
. . .

...
...

GEn−2F GEn−3F · · · · · · H 0




.

Proof. Using (6.3), we can write

u(t) = GEnxc(t− n) + T2Y (t), (6.25)

where T2 and Y (t) are as in Lemma 61 and (6.4), respectively. Further, we can write U(t−1)

in (6.4) as

U(t− 1) = T1xc(t− n) +MY (t), (6.26)

where T1 and M are as in Lemma 61. Using (6.26) we substitute xc(t− n) in (6.25) to get

u(t) =

[
GEnT †1 T2 −GEnT †1M

]


U(t− 1)

Y (t)




︸ ︷︷ ︸
yz

.
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6.3.5 LQG problem in the behavioral space

Lemma 62 (LQG problem in the behavioral space) The input u∗ is the minimizer of

(7.2) subject to (6.1) if and only if it is the minimizer of

Jz , lim
T→∞

E

[
1

T

( T−1∑

t=0

z(t)TQzz(t) + u(t)TRuu(t)
)]

(6.27)

subject to (6.5), where Qz = HTQxH and

H ,
[
G1 −AnO†F1 AnO† G2 −AnO†F3 −AnO†

]
,

G1 ,

[
An−1B · · · B

]
, G2 ,

[
An−1 · · · In

]
.

Proof. We begin by proving that the costs in (7.2) and (6.27) are equivalent. We can

express x(t) for t ≥ n as

x(t) = Anx(t− n) + G1U(t− 1) + G2W (t− 1), (6.28)

where G1 and G2 are as in Lemma 62, and U(t − 1) and W (t − 1) are as in (6.4). Using

(6.23), we can substitute x(t− n) in terms of U(t−1), Y (t), W (t−1), and V (t) into (6.28)

to get x(t) = Hz(t), where H is as in Lemma 62. Substituting x(t) = Hz(t) into the cost

(7.2) yields the cost (6.27). Further, Lemma 60 shows that the systems (6.1) and (6.5) are

equivalent. Therefore, the minimizer of (7.2) subject to (6.1) is the minimizer of (6.27)

subject to (6.5).

6.3.6 Proof of Theorem 43

For the proof of Theorem 43, we need the following technical results from the

literature.
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Lemma 63 (Steady-state cost) For a controller u(t) = Kyz(t) with stabilizing gain K,

the cost (6.8) at steady-state is written as

Jz(K) = tr [QKP ] , (6.29)

where QK , Qz + CTKTRuKC, and P � 0 is the unique solution of the following Lyapunov

equation

P = AcPAT
c + Σ. (6.30)

with Ac , A+ BuKC and Σ , BwQwBTw + BvRvBTv .

Proof. Since u(t) = Kyz(t) is stabilizing, the closed-loop matrix Ac = A+BuKC is stable.

We can write

E
[
z(t)z(t)T

]
=AcE

[
z(t− 1)z(t− 1)T

]
AT
c

+ BwQwBTw + BvRvBTv︸ ︷︷ ︸
Σ

,

where we have used the fact that z(t − 1), w(t − 1), and v(t) are uncorrelated, and

E
[
w(t− 1)w(t− 1)T

]
= Qw and E

[
v(t)v(t)T

]
= Rv. Since Ac is stable, lim

t→∞
E
[
z(t)z(t)T

]

converges to a finite value, and at steady state we have P , lim
t→∞

E
[
z(t)z(t)T

]
= lim

t→∞
E
[
z(t− 1)z(t− 1)T

]
,

where P satisfies (6.30). The cost (6.8) is written as

Jz , lim
T→∞

E

[
1

T

(
T−1∑

t=0

z(t)T
(
Qz + CTKTRuKC

)
z(t)

)]

= lim
t→∞

E
[
tr
[
z(t)TQKz(t)

]]
= tr

[
QK lim

t→∞
E
[
z(t)z(t)T

]]

=tr [QKP ] ,

where QK , Qz + CTKTRuKC. The proof is complete.
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Assumption 64 (Observability of the dynamic LQG controller) The pair (E,G) of

the optimal LQG controller written in the form (6.3) is observable. �

Lemma 65 (Rank of CPCT) Let K∗ be the minimizer of Jz in (6.29). Then,

Rank
[
CPCT

]
= n+ (n+ 1)p,

where P � 0 is the solution of the Lyapunov equation in (6.30) that corresponds to K∗.

Proof. We begin by noting that the solution of (6.30) that corresponds to K∗ can be written

as P = lim
t→∞

E
[
z(t)z(t)T

]
, where z(t) is the state of (6.5) at time t ≥ n when driven by the

optimal controller u∗(t) = K∗yz(t). Further, the input sequence u∗(t) can also be generated

by the dynamic controller defined in (6.21), which is written in the form of (6.3) (see Lemma

61 and Lemma 62). From (6.26), we can write



U

Y




︸ ︷︷ ︸
Yz

=



T1 M

0 I




︸ ︷︷ ︸
H




Xc

Y


 , (6.31)

where U ,

[
U(n− 1) · · · U(T − 1)

]
, Y ,

[
Y (n) · · · Y (T )

]
, and Xc ,

[
xc(0) · · · xc(T − n)

]
.

Under Assumption 64, the matrix H is full-column rank, with Rank [H] = n + (n + 1)p.

Further, since Y has Gaussian measurement noise, we have Rank







Xc

Y





 = n+ (n+ 1)p

using [102, Corollary 2-(ii)], which is full-row rank. Then, we have Rank (Yz) = n+(n+1)p.

Finally, Rank
[
CPCT

]
= n + (n + 1)p since at steady state, for t ≥ n, we have CPCT =

E
[
yz(t)yz(t)

T
]

= lim
T→∞

1
T−n+1YzYz

T.

Proof of Theorem 43: First-order necessary conditions: Using Lemma 63, we can write the

cost (6.8) at steady-state as (6.29). Next, we compute the derivative of Jz(K) with respect
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to the variable K. Taking the differential of (6.30) with respect to the variable K, we get

dP = AcdPAT
c + dAcPAT

c +AcPdAT
c , AcdPAT

c +X

=⇒ tr [QKdP ]
(a)
= tr [XM ]

(b)
= 2tr

[
CPAT

cMBudK
]
,

(6.32)

where M � 0 satisfies M = AT
cMAc + QK, (a) follows from Lemma 57, and (b) follows

from tr
[
dAcPAT

cM
]

= tr
[
(dAcPAT

cM)T
]

and using the trace cyclic property. Taking the

differential of QK, we get

dQK = CTdKTRuKC + CTKTRudKC

=⇒ tr [dQKP ]
(c)
= 2tr

[
CPCTKTRudK

]
,

(6.33)

where (c) follows similarly as (b). For notational convenience, we denote Jz(K) by Jz.

Taking the differential of Jz in (6.29), we get,

dJz = dtr [QKP ] = tr [dQKP ] + tr [QKdP ]

= 2tr
[(
CPCTKTRu + CPAT

cMBu
)
dK
]

=⇒ dJz
dK = 2

(
RuKCPCT + BTuMAcPCT

)
(6.34)

= 2
(
Ru + BTuMBu

)
KCPCT + 2BTuMAPCT.

The stationary optimality condition implies dJz
dK = 0, we get

Ks = −
(
Ru + BTuMBu

)−1
BTMAPCT

(
CPCT

)†
︸ ︷︷ ︸

K∗

+αK0, (6.35)

where we have used the right pseudo inverse of CPCT since it is rank deficient, K0 ∈ Rd×r

is a matrix whose rows span the left null space of CPCT, and α ∈ Rm×d is an arbitrary

matrix, with d = nm−n and r = nm+np+ p (see Lemma 65). Next we derive the Riccati

equations of M and P . Let SM , (Ru + BTuMBu)−1 and SP , (CPCT)†. Substituting the
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expression of K∗ in (6.35) into (6.30), we get

P = APAT −APCTSpCPATMBuSMBTu

− BuSMBTuMAPCTSPCPAT + BwQwBTw + BvRvBTv

+ BuSMBTuMAPCT SP
(
CPCT

)
SP

︸ ︷︷ ︸
(d)
= Sp

CPATMBuSMBTu

(e)
=APAT −APCTSpCPATMBuSMBTu

− BuSMBTuMAPCTSPCPAT + BwQwBTw + BvRvBTv

+ BuSMBTuMAPCTSPCPATMBuSMBTu

+APCTSpCPAT −APCTSpCPAT

=APAT −APCTSPCPAT + BwQwBTw + BvRvBTv

+
(
I −MBuSMBTu

)T
APCTSPCPAT

(
I −MBuSMBTu

)
,

where (d) follows from the Moore-Penrose conditions, and in (e) we have added and sub-

tracted the term APCTSpCPAT. The Riccati equation of M is derived in similar manner.

Second-order sufficient conditions: We show the stationary points (6.35) corre-

spond to a local minimum. We begin by noting that dP in (6.32) can be written as

dP = V + V T with

V =
∞∑

i=0

Aic
(
BudKCPAT

c

)(
AT
c

)i
. (6.36)

Further, the first-order stationary condition in (6.34) implies

(CTKTRu +AT
cMBu︸ ︷︷ ︸

X

)TPCT = 0
(f)

=⇒ XTAciPCT = 0, (6.37)
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where (f) follows from Lemma 58 for i = 1, 2, · · · ,∞. Then, using (6.37), we have,

V X =
∞∑

i=0

Aic(BudKCPAT
c )(AT

c )iX︸ ︷︷ ︸
=0

= 0. (6.38)

Next, we compute the second-order differential of P and QK. Taking the differential of dP

in (6.32) and noting that d2K = 0,

d2P =Acd2PAT
c +2dAcdPAT

c +2AcdPdAT
c +2dAcPdAT

c . (6.39)

Taking the differential of dQK in (6.33), we get

d2QK = 2CTdKTRudKC. (6.40)

Now we are ready to compute the second-order differential of Jz. Taking the differential of

dJz in (6.34), we get

d2Jz =tr
[
d2QKP

]
+ 2tr [dQKdP ] + tr

[
QKd2P

]

(g)
=4tr

[
dKCdP

(
CTKTRu +AT

cMBu
)]

+ 2tr
[
dK
(
CPCT

)
dKT

(
Ru + BTuMBu

)]

(h)
=4tr

[
dKCV TX

]
+ 2tr

[
dK
(
CPCT

)
dKT

(
Ru + BTuMBu

)]

(i)
=4

∞∑

i=0

tr
[
dKCAi+1

c PCTdKTBTu (Aic)T
]

+ 2tr
[
dK
(
CPCT

)
dKT

(
Ru + BTuMBu

)]

(j)
=
∞∑

i=0

(vec (dK))T
(

4
(
CAi+1

c PCT
)
⊗
(
XTAicBu

))
vec (dK)

+ (vec (dK))T
(

2
(
CPCT

)
⊗
(
Ru+BTuMBu

))
vec (dK) ,

(6.41)

where in step (g) we have used (6.39), (6.40), Lemma 57, and the cyclic property of trace,

in step (h) we have used (6.38), in step (i) we have used (6.36), and in step (j) we have used

Fact 55. The second-order differential in (6.41) can be rewritten as

d2Jz =(vec (dK))TY vec (dK) ,
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where,

Y ,4
∞∑

i=0

(
CAi+1

c PCT
)
⊗
(
XTAicBu

)
+ 2

(
CPCT

)
⊗
(
Ru+BTuMBu

)
.

Since Jz is twice differentiable, using [63, Theorem 6 in Chapter 6], we can compute the

Hessian of Jz as

H =
1

2

(
Y + Y T

)

=2

∞∑

i=0

(
CAi+1

c PCT
)
⊗
(
XTAicBu

)
+ 2

∞∑

i=0

(
CP (Ai+1

c )TCT
)
⊗
(
BTu (Aic)TX

)

+ 2
(
CPCT

)
⊗
(
Ru+BTuMBu

)
.

The above expression implies that the Hessian, H, of Jz evaluated at the stationary point

(6.35) is positive semi-definite since CPCT � 0 and
(
Ru + BTuMBu

)
� 0. Let K0 ⊆ Rd×r

denotes the left null space of CPCT, and let K⊥0 ⊆ Rh×r denotes the orthogonal complement

subspace to K0, with h = n + (n + 1)p (see Lemma 65). It can be seen that the Hessian

is degenerate at the stationary points (6.35), where it is zero along the subspace K0
2 and

positive along the directions of K⊥0 . Hence, the stationary point in (6.35) correspond to

a local minima over the subspace K⊥0 , which is achieved by the unique gain K∗. Next,

we show that Jz(K∗) remains constant along the directions of the subspace K0, i.e., we

show that Jz(K∗) remains constant over all stationary points Ks in (6.35). From (6.35), we

have Ks = K∗ + αK0, let P and Ps be the solutions of the Lyapunov equation (6.30) that

correspond to K∗ and Ks, respectively. Since K0 ∈ K0, we have

K0CPCT = K0C
( ∞∑

i=0

A∗c iΣ
(
A∗cT

)i
)
CT = 0, (6.42)

2Let K0 ∈ K0, then we have K0CPCT = 0 =⇒ K0CP = 0 =⇒ K0CAicP = 0 for i ≥ 1, where the last
equality follows from Lemma 58.
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where A∗c = A+ BuK∗C. Then, using Fact 53, we have

K0CA∗c iΣ
(
A∗cT

)i
CT = 0, for i = 0, 1, · · · ,∞,

=⇒ K0CA∗c iΣ1/2 = 0, for i = 0, 1, · · · ,∞.
(6.43)

Using (6.43), we can show that the following equation holds for i = 1, 2, · · · ,∞

AcA∗c i−1Σ
(
A∗cT

)i−1
AcT = A∗c iΣ

(
A∗cT

)i
, (6.44)

where Ac=A+ BuKsC=A∗c + BuαK0C. Using (6.44), we get

A∗c iΣ
(
A∗cT

)i
=AcA∗c i−1Σ

(
A∗cT

)i−1
AcT

=Ac2A∗c i−2Σ
(
A∗cT

)i−2 (
AcT

)2

= · · · = AciΣ
(
AcT

)i
, for i = 1, 2, · · · ,∞.

Hence, we have Ps = P . Finally, we can write

Jz(Ks) = tr
[(
Qz + CT (K∗ + αK0)TRu(K∗ + αK0)C

)
Ps

]

= tr
[(
Qz + CTK∗TRuK∗C

)
P
]

= Jz(K∗),

where we have used (6.42). To conclude the proof, since over the subspace K⊥0 the necessary

and sufficient conditions for a local minimum are satisfied by a unique gain K∗, the local

minimum is also a global minimum over K⊥0 . Further, this minimum is flat along the

directions of the subspace K0. Therefore, the stationary points in (6.35) are the global

minimizers of (6.8). �
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6.3.7 Proof of Theorem 45

We begin by showing that the gain in (6.10) belongs to a stationary point of the

behavioral LQG problem. Using Lemma 63, we can write the behavioral LQG problem as

min
K

Jz(K) , tr
[(
Qz + CTKTRuKC

)
P
]

s.t. P = AcPAT
c + Σ,

(6.45)

where Ac , A+ BuKC and Σ , BwQwBTw + BvRvBTv . Let

A ,



A11 A12

0 A22


 , Bu ,



B1

0


 ,

P ,



P11 P12

P21 P22


 , Qz ,



Q11 Q12

Q21 Q22


 ,

where A11, P11, Q11 ∈ Rr×r, A22, P22, Q22 ∈ Rq×q, A12, P12, P
T
21, Q12, Q

T
21 ∈ Rr×q, B1 ∈

Rr×m, r = nm+ np+ p, and q = n2 + np+ p. We write Jz in (6.45) as

Jz(K) =tr
[
(Q11 +KTRuK)P11

]
+ tr [Q12P21]

+ tr [Q21P12] + tr [Q22P22] ,

and we can write P in (6.45) as

P =



A11+B1K A12

0 A22






P11 P12

P21 P21P
†
11P12







(A11+B1K)T 0

AT
12 AT

22




+



A12

A22


 (P/P11)

[
AT

12 AT
22

]
+ Σ,

where P/P11 = P22−P21P
†
11P12 is the generalized Schur complement of the block P11. Note

that P22 does not depend on K, and it follows that the term tr [Q22P22] in the cost Jz does
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not affect control design. Without loss of generality, let

K = K1 +K2P21P
†
11 +Knull (6.46)

where Knull is a matrix with appropriate dimension whose rows belong to the left null space

of P11. By substituting (6.46) into (6.45), we can equivalently write the LQG problem as

min
K1,K2

tr
[
(Q11+KT

1 RuK1)P11

]
+ tr

[
(Q12+KT

1 RuK2)P21

]

+tr
[
(Q21+KT

2 RuK1)P12

]
+tr

[
KT

2 RuK2P21P
†
11P12

]

s.t. P =



A11+B1K1 A12+B1K2

0 A22




︸ ︷︷ ︸
A1



P11 P12

P21 P21P
†
11P12




︸ ︷︷ ︸
P

.




(A11+B1K1)T 0

(A12+B1K2)T AT
22




+



A12

A22




︸ ︷︷ ︸
A2

(P/P11)

[
AT

12 AT
22

]
+ Σ,

(6.47)

where we have used P †11 = P †11P11P
†
11, which follows from the Moore-Penrose conditions for

pseudo-inverse, and P21 = P21P
†
11P11, which follows from Lemma 56. Define the Lagrange

function of Problem (6.47) as

L(K1,K2, P,Λ) =tr
[
(Q11+KT

1 RuK1)P11

]

+ tr
[
(Q12+KT

1 RuK2)P21

]
+ tr

[
(Q21+KT

2 RuK1)P12

]

+tr
[
KT

2 RuK2P21P
†
11P12

]
+ tr [ΛP ]− tr

[
ΛA1PAT

1

]

− tr
[
ΛA2(P/P11)AT

2

]
− tr [ΛΣ] ,

(6.48)

where Λ ∈ R(r+q)×(r+q) is the Lagrange multiplier matrix, which we write as a block matrix

Λ ,




Λ11 Λ12

Λ21 Λ22


, with Λ11 ∈ Rr×r, Λ12,Λ

T
21 ∈ Rr×q, and Λ22 ∈ Rq×q. Let K , [K1 K2].
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The stationary Karush-Kuhn-Tucker (KKT) condition implies ∂L(K,P,Λ)
∂K = 0. For notational

convinience, we use L to denote L(K1,K2, P,Λ). Taking the derivative of L(K1,K2, P,Λ)

in (6.48) with respect to K1 and K2, we obtain

∂L
∂K1

= 2
((
Ru −BT

1 Λ11B1

)
K1 −BT

1 Λ11A11

)
P11

+ 2

((
Ru −BT

1 Λ11B1

)
K2 −BT

1

(
Λ11A12 +

1

2

(
Λ12 + ΛT

21

)
A22

))
P21,

∂L
∂K2

= 2
((
Ru −BT

1 Λ11B1

)
K1 −BT

1 Λ11A11

)
P12

+ 2

((
Ru −BT

1 Λ11B1

)
K2 −BT

1

(
Λ11A12 +

1

2

(
Λ12 + ΛT

21

)
A22

))
P21P

†
11P12.

∂L
∂K

=
[(
Ru −BT

1 Λ11B1

)
K1 −B1Λ11A11

(
Ru −BT

1 Λ11B1

)
K2 −BT

1 (Λ11A12 + Λ12A22)

]
.

.



P11 P12

P21 P21P
†
11P12




= 2
((

Ru −BT
1 Λ11B1

)[
K1 K2

]
−
[
BT

1 Λ11A11 BT
1 Λ11A12 + Λ12A22

])
.

.



P11 P12

P21 P21P
†
11P12




= 2
((

Ru − BTuΛBu
)
K − BTuΛA

)


P11 P12

P21 P21P
†
11P12




(6.49)

Let Λ=ΛT, then we can write ∂L
∂K as in (6.49). LetKLQR=−(Ru+BTuMLQRBu)−1BTuMLQRA,

with MLQR satisfying the following Riccati equation

MLQR =ATMLQRA+Qz −ATMLQRBu
(
Ru + BTuMLQRBu

)−1
BTuMLQRA.
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Then, for any P , K = KLQR, and Λ = −MLQR, we get ∂L
∂K (KLQR,MLQR, P ) = 0. For P to

belong to a stationary point of the Lagrangian, it should satisfy the constraint in Problem

(6.45). Using (6.46), we can write Ac in the constraint of (6.45) as

Ac = A+ BuK1C︸ ︷︷ ︸
AK

+BuK2︸ ︷︷ ︸
BK

P21P
†
11C +KnullC = AK + BKCPCT

(
CPCT

)†
C +KnullC, (6.50)

where C ,
[
0q×r Iq

]
. Substituting (6.50) into the constraint of (6.45), we get

P =AKPAT
K +AKP

(
BKCPCT

(
CPCT

)†
C
)T

+ BKCPCT
(
CPCT

)†
CPAT

K + Σ

+ BKCPCT
(
CPCT

)†
CPCT

(
CPCT

)†
︸ ︷︷ ︸

(CPCT)
†

CPCTBTK

(a)
=AKPAT

K −AKPCT
(
CPCT

)†
CPAT

K + Σ

+
(
AK + BKC

)
PCT

(
CPCT

)†
CP
(
AK + BKC

)T

(b)
=AKPAT

K −AKPCT
(
CPCT

)†
CPAT

K + Σ

+ (A+ BuK)PCT
(
CPCT

)†
CP (A+ BuK)T ,

where in step (a), we have added and subtracted the term AKPCT
(
CPCT

)† CPAT
K , and (b)

follows by observing that

AK + BKC = A+ BuK1C + BuK2C = A+ BuK.

Therefore, the gain K in (6.46) with

[
K1 K2

]
= KLQR in (6.11) and P satisfying the

Riccati equation in (6.12), is a stationary point of (6.45), and hence it is connected to

Ks in (6.35) via the subspace K0 (see the proof of Theorem 43). Thus, Knull ∈ K0 and

P = Ps = P ∗, where Ps and P ∗ denote the solutions of the Lyapunov equation in (6.30)
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that corresponds Ks and K∗ in (6.9), respectively. Therefore, we can write Knull = αK0,

where α ∈ Rm×d is an arbitrary matrix, and K0 ∈ Rd×r is a matrix whose rows span the left

null space of CP ∗CT = CPCT = CPsCT, with d = nm− n and r = nm+ np+ p (see Lemma

65). To conclude the proof, since all stationary points in (6.35) are the global minimizers of

(6.8), then K in (6.46) with

[
K1 K2

]
= KLQR in (6.11), P satisfying the Riccati equation

in (6.12), and Knull = αK0, is also the global minimizer of (6.8). �

6.3.8 Proof of Lemma 49

K2 in Lemma 49 corresponds to the first block of T2 − GEnT †1M in (6.24). We

start by expanding GEnT †1M. Since T †1 is full column rank, we have

T †1 =
(
T T

1 T1

)−1
T T

1 =
(
GTG+ · · ·+ (En−1)TGTGEn−1

)−1

︸ ︷︷ ︸
,S

T T
1 ,

then we have

GEnT †1M = GEnS

[
GTH + · · ·+ (En−1)TGTGEn−2F X

]
,

where X denotes any matrix. Then, we take the first block of GEnT †1M and the first block

of T2 to write K2 as

K2 =GEn−1F −GEnS
(
GTH + · · ·+ (En−1)TGTGEn−2F

)

(a)
=GEn−1F −GEn S

(
G

T
G+ · · ·+ (E

n−1
)TG

T
GE

n−1
)

︸ ︷︷ ︸
(b)
= I

F
(c)
= GEn−1F −GEn−1F = 0,

where in steps (a), (b) and (c) we have used Lemma 59. �
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6.3.9 Proof of Lemma 50

Since the rank of YN in (6.14) is Rank(YN ) ≤ nm+ np , k = nm+ np columns are enough

for Rank(YN ) to stop increasing. To construct YN with k = nm+ np columns, nm+np+n

samples are required. Therefore, N = nm+ np+ n expert samples are sufficient to learn

the LQG gain K. This completes the proof. �
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Chapter 7

Sample Complexity of the Linear

Quadratic Gaussian Regulator

Leveraging the behavioral representation introduced in Chapter 6, in this chapter,

we provide direct data-driven expressions for the Linear Quadratic Regulator (LQR), the

Kalman filter, and the Linear Quadratic Gaussian (LQG) controller using a finite dataset

of noisy input, state, and output trajectories. We show that our data-driven expressions

are consistent, since they converge as the number of experimental trajectories increases,

we characterize their convergence rate, and we quantify their error as a function of the

system and data properties. These results complement the body of literature on data-

driven control and finite-sample analysis, and they provide new ways to solve canonical

control and estimation problems that do not assume, nor require the estimation of, a model

of the system and noise and do not rely on solving implicit equations. The results of this

chapter are reported in our published paper [69].
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7.1 Problem formulation and preliminary results

Consider the discrete-time, linear, time-invariant system

x(t+ 1) = Ax(t) +Bu(t) + w(t),

y(t) = Cx(t) + v(t), t ≥ 0,

(7.1)

where x(t) ∈ Rn denotes the state, u(t) ∈ Rm the control input, y(t) ∈ Rp the measured

output, w(t) and v(t) the process and measurement noise at time t. The LQG control

problem asks for the input that minimizes the cost function

lim
T→∞

E

[
1

T

( T−1∑

t=0

x(t)TQxx(t) + u(t)TRuu(t)
)]

, (7.2)

where Qx � 0, Ru � 0 are weight matrices and T is the control horizon. With the standard

assumptions that

(A1) the process and measurement noise sequences and the initial state are independent

at all times and satisfy w(t)∼N (0, Qw), v(t)∼N (0, Rv), and x(0)∼N (0,Σ0), with

Qw � 0, Rv � 0, and Σ0 � 0;

(A2) the pairs (A,B) and (A,Q
1
2
w) are controllable, and the pairs (A,C) and (A,Q

1
2
x ) are

observable;

the input that solves the LQG problem can obtained by concatenating the Kalman filter for

(7.1) with the (static) controller that solves the LQR problem for (7.1) with weight matrices

Qx and Ru [113]. That is,

u∗(t) = KLQRxKF(t), (7.3)
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where xKF(t) is the Kalman estimate of the state x(t). The classic, model-based compu-

tation of the LQR gain and Kalman filter in (7.3) requires the complete knowledge of the

system (7.1), including the noise statistics. Motivated by the recent successes of data-driven

and machine-learning methods, we seek here a solution to the LQG problem that relies only

on a (finite) dataset of experimental data, without the need to estimate the system dynamics

and noise statistics.

Our aim is to compute the LQG inputs in a data-driven setting where datasets from

offline experiments are available but the system matrices and noise statistics are unknown.

In particular, we have access to the following data:

U=

[
u1 · · · uN

]
, X=

[
x1 · · · xN

]
, Y =

[
y1 · · · yN

]
, (7.4)

where xi and yi are the i-th state and output trajectories of (7.1) generated by the input

ui. That is, for i ∈ {1, . . . , N},

ui =




ui(0)

...

ui(T − 1)



, xi =




xi(0)

...

xi(T )



, yi =




yi(0)

...

yi(T )



,

where T is the horizon of the control experiments. We make the following assumption on

the experimental inputs.

Assumption 66 (Experimental inputs) The inputs in (7.4) are independent and iden-

tically distributed, that is, ui(t) ∼ N (0,Σu), with Σu � 0, for all i ∈ {1, . . . , N} and times.

�

In our analysis we will make use of an equivalent characterization of the LQG inputs derived
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in [67, Theorem 2.1], which shows that these inputs can also be computed as

u∗(t+ n) = KLQG




u∗(t)

...

u∗(t+ n− 1)

y∗(t+ 1)

...

y∗(t+ n)




, (7.5)

where the static gain KLQG depends on the system and noise matrices, and y∗ is the output

of (7.1) with input u∗.

Remark 67 (State vs output measurements) We assume here that the state of the

system (7.1) can be directly measured. This assumption is easily satisfied in certain lab ex-

periments, where additional sensors (e.g., a motion capture system for robotic applications)

can be deployed during the design stage to measure the system state and collect training

data. Further, state measurements are necessary to solve the state-weighted LQG problem,

since the state weight matrix Qx uses specific coordinates that cannot be inferred from output

measurements only [94], but they can be substituted with input and output measurements

for different versions of the LQG problem. See also [67] for a reformulation of the LQG

problem that uses only input and output measurements. �

7.2 Data-driven formulas for LQG control

In this section we derive our main results, that is, direct data-driven formulas

for the LQR controller, the Kalman filter, and the LQG controller using the data (7.4).
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Additionally, we show that these formulas are consistent, i.e., they converge to the true

model-based expressions as the data grows, and we finally quantify their error when the

data is finite.

We start by introducing some additional notation. Let

Xt =

[
x1(t)T · · · xN (t)T

]T
, (7.6)

and, given input and state trajectories uv ∈ RmT and xv ∈ RnT , let um ∈ Rm×T and

xm ∈ Rn×T be the matrices obtained by reorganizing the inputs and states in the vectors

uv and xv in chronological order. The next result characterizes the LQR gain from data.

Theorem 68 (Data-driven LQR gain) Let x0 ∈ Rn and



uv

xv


 =



H

M


P

−1/2

([
In 0n×mT

]
P−1/2

)†
x0, (7.7)

where

H =

[
0mT×n ImT

]
,M = X



X0

U




†

, and

P = MT (IT+1⊗Qx)M + blkdiag (0n×n, IT⊗Ru) .

(7.8)

Let x∗v ∈ RnT be the trajectory of (7.1) with initial state x0, control input u∗(t) = KLQRx(t),

and w(t) = 0 at all times. Then, the data-driven estimate KD
LQR = umx

†
m of KLQR

‖KLQR −KD
LQR‖2 ≤

1

σmin(x∗m) (1− κ(x∗m))

(
c1√
N

+ c2ρ
T

)
,

for sufficiently large N and probability at least 1− 6δ, where

κ(x∗m) =
σmax(xm − x∗m)

σmin(x∗m)
,
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where the constants c1 and c2 are independent of N and are defined in (7.29), ρ < 1, and

δ ∈ [0, 1/6]. �

A proof of Theorem 68 is postponed to subsection 7.3.2. Some comments are in order.

First, Theorem 68 provides a direct, data-driven way to estimate the LQR gain from noisy

data, namely, KD
LQR, and characterizes the error between the true and the estimated gains.

Such error vanishes as the number (N) and length (T ) of the experimental trajectories

grow.1 Further, the term κ(x∗m) also vanishes as the number of experimental trajectories

increases (see Theorem 78). Second, the vectors uv and xv contain an estimate of the optimal

input and state trajectories that minimize the LQR cost with matrices Qx and Ru for the

system (7.1) with initial state x0 and without process noise. Notably, these trajectories

are estimated using the noisy dataset (7.4). Thus, this result extends the analysis in [16].

Third, Theorem 68 is valid when N is sufficiently large. In particular, N needs to be at least

large enough to satisfy κ(x∗m) < 1 (see subsection 7.3.2 for other conditions on N). Also, the

result holds with probability 1−6δ, and the specific choice of δ affects the magnitude of the

constant c1. Fourth and finally, although formulas with similar convergence rates for the

estimation of the LQR exist [23,70], Theorem 68 provides an alternative, direct, closed-form

expression of the gain, as opposed to indirect and optimization-based approaches. This will

allow us to estimate the LQG controller.

Example 69 (Estimating the LQR gain from noisy data) Consider System (7.1)

1The constant c1, as well as other constants defined later in the paper, depend also on the horizon T .
While a detailed characterization of the effects of this dependency requires a dedicated analysis, notice that
our expressions remain consistent if N grows sufficiently faster than T . The formulas in the paper quantify
the error for finite choices of these two parameters.
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Figure 7.1: This figure shows the error between the data-driven and the model-based gains
as a function of the size of the data in (7.4) for the setting described in Example 69,
71, and 73. Panel (a) shows the error between the model-based LQR gain and the data-
based LQR gain obtained from Theorem 68 as a function of N for the setting described
in Example 69. Panel (b) shows the error between the model-based Kalman filter and
the data-based Kalman filter obtained from Theorem 70, and panel (c) shows the error
between the corresponding state estimates as a function of N for the setting in Example
71. Panel (d) shows the error between the model-based LQG input generated by (7.3) and
the data-based LQG input generated by (7.11) as a function of N . Panel (e) shows the
error between the model-based LQG gain in (7.5) and the data-based LQG gain obtained
from Theorem 72 as a function of N for the setting in Example 73. We observe that all the
quantities in the plots decrease as the number of trajectories, N , increases, which agrees
with our theoretical results.

with

A =




0.7 1.2

0 0.4


 , B =




0

1


 , C =

[
1 0

]
,

Qx=5I2, Qw=2I2, Ru =Rv = Σu=1, and Σ0 = I2. We collect open-loop trajectories as in

(7.4) generated by inputs satisfying Assumption 66 with horizon T=50. The model-based

LQR gain is KLQR=[0.241 0.788]. We use Theorem 68 to compute the data-driven LQR

gain, KD
LQR for different values of N . Fig. 7.1(a) shows the error ‖KD

LQR−KLQR‖ as a

function of the number of trajectories. �

We now focus on estimating the Kalman filter from noisy data with unknown system dy-

namics and noise statistics.

Theorem 70 (Data-driven Kalman filter) Let Ut and Yt be the submatrices of U and
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Y in (7.4) obtained by selecting only the inputs and outputs up to time t. Let

LD
t = Xt



Ut−1

Yt




†

, (7.9)

where Xt is as in (7.6). Then, for every t ∈ [0, T ],

∥∥∥∥∥∥∥∥
xKF(t)− LD

t



ut−1

0

yt0




∥∥∥∥∥∥∥∥
2

≤ c3√
N

∥∥∥∥∥∥∥∥



ut−1

0

yt0




∥∥∥∥∥∥∥∥
2

, (7.10)

with probability at least 1−2δ, where ut0 and yt0 are the vectors of inputs and outputs of (7.1),

respectively, from time 0 up to time t, c3 is a constant independent of N as defined in (7.35),

and δ ∈ [0, 1/2]. �

A proof of Theorem 70 is postponed to subsection 7.3.3. Theorem 70 provides a way to

construct an approximate Kalman filter using a finite set of experimental data, without

knowing the system dynamics and the statistics of the noise. As can be seen from (7.10),

the error vanishes with rate 1/
√
N as the number of experimental data grows, showing the

consistency of the data-driven Kalman filter expressions (7.9).

Example 71 (Estimating the Kalman filter from noisy data) Following the setting

introduced in Example 69, we use Theorem 70 to obtain the data-driven Kalman filter,

LD
KF, and the corresponding data-driven state estimate, xDKF. Fig. 7.1(b) and 7.1(c) show

the errors ‖LD
KF−LKF‖ and ‖xDKF−xKF‖. �

Theorems 68 and 70 allow us to compute the LQG inputs from time 0 up to time T .
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In particular, recalling the structure of the LQG inputs due to the separation principle [113],

udLQG(t) = KD
LQR L

D
t




udLQG(0)

...

udLQG(t− 1)

ydLQG(0)

...

ydLQG(t)




︸ ︷︷ ︸
xDKF(t)

, (7.11)

where xD
KF is the state estimate obtained using our data-driven scheme. Fig. 7.1(d) shows

how these data-driven inputs compare to the model-based LQG inputs as a function of

the amount of data. As expected, the performance gap between the data-driven and the

model-based schemes shrinks as the amount of data increases. We next provide an estimate

of the LQG gain (7.5), which allows us to compute LQG inputs beyond the horizon T of the

experimental trajectories. We start by collecting M ≥ n+nm+np closed-loop input-output

trajectories of system (7.1) driven by the LQG inputs generated from (7.11). In particular,

UdLQG =

[
u1

dLQG · · · uMdLQG

]
, YdLQG =

[
y1

dLQG · · · yMdLQG

]
, (7.12)

where yidLQG is the i-th output trajectory of (7.1) generated by the LQG input uidLQG in

(7.11). That is, for i ∈ {1, . . . ,M},

uidLQG =




uidLQG(0)

...

uidLQG(T−1)



, yidLQG =




yidLQG(0)

...

yidLQG(T )



.
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Theorem 72 (Data-driven LQG gain) Let UndLQG and Y n
dLQG be the submatrices of

UdLQG and YdLQG in (7.12) obtained by selecting only the inputs from time T −n up to time

T −1 and the outputs from time T −n+1 up to time T , respectively. Define the data-driven

LQG gain as

KD
LQG =KD

LQRL
D
t



UdLQG

YdLQG






UndLQG

Y n
dLQG




†

︸ ︷︷ ︸
c4

,

Then, the data-driven estimate of the LQG gain satisfies

‖KLQG −KD
LQG‖2 ≤ ‖c4‖2

(
c5 + c6ρ

T

√
N

+ c7ρ
T

)
, (7.13)

for sufficiently large T and N and probability at least 1 − 8δ, where the constants c5, c6,

and c7 are independent of N and are defined in (7.38), ρ < 1, and δ ∈ [0, 1/8]. �

We postpone the proof of Theorem 72 to subsection 7.3.4. Theorem (72) provides a direct

data-driven expression of the LQG gain that converges with polynomial rate as the experi-

mental data increases. To the best of our knowledge, this result is the first of its kind, and

it provides a new way to compute the LQG controller using offline experimental data and

a finite number of online experiments, without knowing or identifying the system and noise

matrices.

Example 73 (Estimating the LQG gain from noisy data) Following the setting in-

troduced in Example 69 and Example 71, we use Theorem 72 to obtain the data-driven LQG

gain, KD
LQG. Fig. 7.1(e) shows the error ‖KD

LQG−KLQG‖ as a function of the number of

trajectories, N . �
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7.3 Technical Lemmas and proofs of the main results

7.3.1 Technical lemmas

Lemma 74 (Product of Gaussian matrices [23, Lemma 1]) Let A = [a1, · · ·, aN ]

and B = [b1, · · ·, bN ], where ai ∈ Rn and bi ∈ Rm are independent random vectors with

ai ∼ N (0,Σa) and bi ∼ N (0,Σb) for i = 1, · · · , N . Let δ ∈ [0, 1] and N ≥ 2(n+m) log (1/δ).

Then, with probability at least 1− δ

‖ABT‖2 ≤ 4‖Σa‖1/22 ‖Σb‖1/22

√
N(n+m) log (9/δ).

�

Lemma 75 (Singular values of a Gaussian matrix) Let δ ∈ [0, 1], and let A ∈ Rn×N

be a random matrix with independent entries distributed as N (0, 1). Then, for N ≥ 8n +

16 log (1/δ), each of the following inequalities hold with probability probability at least 1− δ

σmin(A) ≥
√
N/2, σmax(A) ≤ 3

√
N/2,

where σmin (σmax) is the smallest (largest) singular value. �Proof.

For notational convenience, we use σmin, σmax, and δ′ to denote σmin(A), σmax(A), and

2 log (1/δ), respectively. From [98, Corollary 5.35], we have each of the following inequalities

holds with probability at least 1− δ

σmin ≥
√
N −√n−

√
δ′, σmax≤

√
N+
√
n+
√
δ′. (7.14)

Assume that N ≥ 8n+ 8δ′. Then,

√
N/2 ≥ √n+

√
δ′, (7.15)
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where we have used the inequality 2(a2 + b2) ≥ (a + b)2. The proof follows by substituting

(7.15) into (7.14).

7.3.2 Proof of Theorem 68

Let u∗v ∈ RmT and x∗v ∈ RnT be the optimal LQR trajectories of (7.1) from the

initial state x0. Then, KLQR = u∗mx
∗†
m asymptotically as the control horizon T grows.

Further, from [16, 17], the trajectories u∗v and x∗v can be obtained using (7.7) when the

state data is not corrupted by the process noise. Let Xclean be such data, that is, the

state trajectories of (7.1) with inputs U and noise w(t) = 0 at all times. Notice that in

our setting X is different from Xclean since the process noise is nonzero when the data

is collected. Because of this deviation in the data, the vectors uv and xv in (7.7) are a

perturbed version of the optimal trajectories u∗v and x∗v. Accordingly, KD
LQR = umx

†
m is

a perturbed version of KLQR. To quantify the deviation between KD
LQR and KLQR, we

quantify (i) the deviation in the data induced by the process noise, (ii) the sensitivity of

the map (7.7) that generates LQR trajectories, and (iii) how the induced errors propagate

to compute KD
LQR.

(i) Data deviation induced by the process noise. Note that

X =

[
O Fu

]

︸ ︷︷ ︸
F



X0

U




︸ ︷︷ ︸
U

+FwW, (7.16)

where W ∈ RnT×N is a matrix that contains the corresponding N process noise realizations
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of horizon T − 1, and

O =




In

A

...

AT


 , Fu =




0 · · · 0

B · · · 0

...
. . .

...

AT−1B · · · B


 , Fw =




0 · · · 0

In · · · 0

...
. . .

...

AT−1 · · · In


 .

Note that Xclean = FU . Let the data matrices in (7.4) and (7.6) be partitioned as

U =

[
Ud Un

]
, X =

[
Xd Xn

]
, X0 =

[
X0,d X0,n

]
, (7.17)

where Ud, Xd, andX0,d contain the firstNd ≥ mT+n columns of U , X, andX0, respectively,

and let U = [Ud, Un] be partitioned similarly. For notational convenience, we define QT =

(IT+1 ⊗ Qx) and RT = blkdiag(0n×n, IT ⊗ Ru). Noting that UdUd
†

= In+mT , we rewrite

uv in (7.7) as

uv = HP−1/2

([
In 0n×mT

]
P−1/2

)†
x0, (7.18)

with

P =
(
X̃cU

†
d

)T
QT

(
X̃cU

†
d

)
+RT , and X̃c =XU †Ud. (7.19)

Further, let

Xc = XcleanU
†Ud and ∆X = X̃c −Xc. (7.20)

Notice that if the process noise, W , is zero, then ∆X = 0 and X̃c = Xc and, from (7.7),

uv = u∗v and xv = x∗v. Thus, we use ∆X as a proxy for the deviation between X and Xclean,

which is induced by the process noise, FwW . The next Lemma provides a non-asymptotic

upper bound to ‖∆X‖2.
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Lemma 76 (Non-asymptotic bound on ‖∆X‖2) Let ∆X be as in (7.20), and let δ ∈

[0, 1/3]. Assume that N > max {N1, Nd} , with N1 = 2 ((n+m)T + n) log (1/δ) and Nd ≥

8(mT + n) + 16 log (1/δ). Then, with probability at least 1− 3δ,

‖∆X‖2 ≤ d1

√
Nd ((n+m)T + n) log (9/δ)

N
, (7.21)

where d1 = 24‖Fw‖2‖Qw‖1/22 and Qw = IT ⊗Qw. �

Proof. Let U = Σ
1/2
u Z and Ud = Σ

1/2
u Zd, where Σu = blkdiag(Σ0, IT ⊗ Σu), Z ∈

Rn+mT×N is a random matrix whose columns are independent copies of N ∼ (0, In+mT ),

and Zd contains the first Nd columns of Z. From (7.19), (7.20),

‖∆X‖2 =‖FwWUT(UUT)−1Ud‖2 =‖FwWZT(ZZT)−1Zd‖2

≤ ‖Fw‖2‖WZT‖2‖(ZZT)−1‖2‖Zd‖2.

The proof follows by using Lemma 74 to bound ‖WZT‖2, Lemma 75 to bound ‖(ZZT)−1‖2

and ‖Zd‖2, and using the union bound to compute the probability.

(ii) Sensitivity of map (7.7) w.r.t. ∆X . We focus our analysis on the map f : Rn(T+1)Nd ×

R(n+mT )Nd → Rn+mT that generates uv as in (7.18). Then, u∗v = f(vec(Xc), vec(Ud)).

Since f is Fréchet-differentiable with respect to vec(Xc) [17,50], we can write its first-order

Taylor-series expansion as

f(vec(X̃c), vec(Ud))=f(vec(Xc), vec(Ud)) +∇fX
(
vec(Xc), vec(Ud)

)
vec(∆X), (7.22)

where ∇fX is the Jacobian matrix of f(vec(Xc), vec(Ud)) with respect to vec(Xc). We

quantify the sensitivity of the map (7.18) to the change in Xc by ∇fX (large values of ∇fX

implies higher sensitivity). Next, we derive an upper bound on ‖∇fX‖2, and upper bounds

on ‖uv − u∗v‖2 and ‖xv − x∗v‖2 using the first-order approximation in (7.22).
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Lemma 77 (Non-asymptotic bound on ‖∇fX‖2) Let Ud, Xc, and ∇fX
(
vec(Xc), vec(Ud)

)

be as in (7.20) and (7.22). Also, let δ ∈ [0, 1] and assume that Nd ≥ 8(n+mT )+16 log (1/δ).

Then, with probability at least 1− δ,

∥∥∇fX
(
vec(Xc), vec(Ud)

)∥∥
2
≤ 4d2

√
n(T + 1)

Nd
, (7.23)

where d2 > 0 is independent of Nd. �

Proof. The proof can be adapted from the proof of [17, Lemma IV.4], then using Lemma

75 and ‖ · ‖2 ≤ ‖ · ‖F.

Theorem 78 (Non-asymptotic bound on the deviation of the LQR trajectories)

Let uv and xv be as in (7.7) and u∗v and x∗v be the optimal LQR trajectories of length T of

(7.1) from the initial state x0. Let δ ∈ [0, 1/6] and assume that N ≥ max {N1, N2, N3}, with

N1 = 2 ((n+m)T + n) log (1/δ), N2 = 8(mT + n) + 16 log (1/δ), and N3 = ((n + m)T +

n) log (9/δ). Then, with probability at least 1− 4δ,

‖uv − u∗v‖2 ≤ d3

√
((n+m)T + n) log (9/δ)

N
. (7.24)

Further, with probability at least 1− 6δ,

‖xv − x∗v‖2 ≤d4

√
((n+m)T + n) log (9/δ)

N
, (7.25)

with

d3 = 4d1d2

√
qn(T + 1),

d4 = ‖F‖2d3 + 16‖Fw‖2‖Σ
−1/2
u ‖2‖Qw‖

1/2
2 (‖u∗v‖2 + d3) ,

where d1, F , and Fw are as in (7.21) and (7.16), respectively, d2 > 0 is independent of N ,

q = Rank (∆X) ≤ n(T + 1), u∗v = [xT0 , u
∗
v
T]T, and Qw and Σu are as in Lemma 76. �
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Proof. Inequality (7.24) follows from (7.22) by using Lemma 76, Lemma 77, and ‖vec(∆X)‖2 =

‖∆X‖F ≤
√
q‖∆X‖2, with q = Rank (∆X). Next, we derive (7.25). For notational conve-

nience, we use ∆u and ∆x to denote uv − u∗v and xv − x∗v, respectively. From (7.7), we can

write

‖∆x‖2 =

∥∥∥∥∥∥∥∥
X̃cU

†
d



x0

uv


−XcU

†
d



x0

u∗v




∥∥∥∥∥∥∥∥
2

(7.26)

=

∥∥∥∥∥∥∥∥
XcU

†
d




0

∆u


+ ∆XU

†
d



x0

u∗v


+ ∆XU

†
d




0

∆u




∥∥∥∥∥∥∥∥
2

≤ ‖XcU
†
d‖2‖∆u‖2 + ‖∆XU

†
d‖2‖u∗v‖2 + ‖∆XU

†
d‖2‖∆u‖2.

Note that UdU
†
d = In+mT . Then we have

‖XcU
†
d‖2 = ‖XcleanU

†‖2 = ‖F‖2,

‖∆XU
†
d‖2 =‖(X−Xclean)U †‖2 = ‖FwWU †‖2≤‖Fw‖2‖WUT‖2‖(UUT)−1‖2,

Inequality (7.25) follows from (7.26) by using (7.24), Lemma 74, and Lemma 75 to bound

‖∆u‖2, ‖WUT‖2, and ‖(UUT)−1‖2, respectively, and noting that for N ≥ N3 we have

δ′
N ≤

√
δ′
N , with δ′ = ((n+m)T + n) log (9/δ). The probabilities follow from the union

bound.

(iii) Error between KLQR and KD
LQR. We are now ready to conclude the proof of Theorem

68. Notice that

u∗m = KLQRx
∗
m, and u∗m + δu = KD

LQR (x∗m + δx) , (7.27)

where δu = um − u∗m and δx = xm − x∗m. Note that um and xm are the matrices obtained

by reorganizing the inputs and states in the vectors uv and xv in chronological order. For
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notational convenience, we use K and KD to denote KLQR and KD
LQR. Let ∆K = K −KD.

In what follows, subscript i denotes the i-th row, with i ∈ {1, · · · ,m}. Using [100, Theorem

5.1] and assuming that x∗m is of full row rank,2

‖∆K,i‖2 ≤ d5

(
ε‖Ki‖2‖x∗m‖2 + ‖δu,i‖2 + εα‖r‖2

)
, (7.28)

where

d5 =
α

1− αε‖x∗m‖2
, ε =

‖δx‖2
‖x∗m‖2

, r = u∗m,i −Kix
∗
m,

and α = ‖x∗m‖2‖x∗m†‖2 is the spectral condition number of x∗m. From [16, Theorem 3.2],

we have ‖r‖2≤ d6ρ
T , where d6> 0 and ρ< 1, which are independent of N . Since ‖x∗m‖2 =

σmax(x∗m), ‖(x∗m)†‖2 =1/σmin(x∗m). Then, we can write d5 as

d5 =
1

σmin(x∗m) (1− κ(x∗m))
, with κ(x∗m) =

σmax(δx)

σmin(x∗m)
,

For sufficiently large N such that σmax(∆X) < σmin(X∗), we have κ(x∗m) < 1 and εα < 1.

Then, we can write (7.28) as

‖∆K,i‖2 ≤ d5

(
‖Ki‖2‖δx‖2 + ‖δu,i‖2 + d6ρ

T
)
,

(a)

≤ d5

(
‖K‖2‖∆x‖2 + ‖∆u‖2 + d6ρ

T
)
,

where in step (a), we have used ‖δx‖2 ≤ ‖δx‖F = ‖vec(δx)‖2 = ‖∆x‖2, and ‖δu,i‖2 =

‖δu,i‖F ≤ ‖δu‖F = ‖vec(δu)‖2 = ‖∆u‖2, where ∆x and ∆u are as in Theorem 78. Noting

that ‖∆K‖F =
√
tr [∆K(∆K)T] =

√∑m
i=1 ‖∆Ki‖22 and using the bounds in Theorem 78,

we have with probability at least 1− 6δ

‖∆K‖2 ≤
1

σmin(x∗m) (1− κ(x∗m))

(
c1√
N

+ c2ρ
T

)
,

2This condition is typically satisfied for generic choices of the initial state.
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where,

c1 =(d3+‖KLQR‖2d4)
√
m ((n+m)T+n) log (9/δ),

c2 = d6

√
m,

(7.29)

and d3 and d4 are as in Theorem 78. Finally, the probability follows from the union bound.

This concludes the proof.

7.3.3 Proof of Theorem 70

The Kalman filter computes the estimate xKF(t) given {u(0), . . . , u(t−1), y(0), . . . , y(t)}

that minimizes the cost

T∑

t=0

E
[
(x(t)− xKF(t))T (x(t)− xKF(t))

]
, (7.30)

which is then used to generate LQG inputs. Equivalently, xKF(t) can be obtained with the

following linear estimator,

xKF(t)=

[
Lut,0 · · ·Lut,t−1

]

︸ ︷︷ ︸
Lut




u(0)

...

u(t− 1)




︸ ︷︷ ︸
ut−1
0

+

[
Lyt,0 · · ·Lyt,t

]

︸ ︷︷ ︸
Lyt




y(0)

...

y(t)




︸ ︷︷ ︸
yt0

,

=

[
Lut Lyt

]

︸ ︷︷ ︸
LKF
t



ut−1

0

yt0




︸ ︷︷ ︸
zt

,

where LKF
t ∈ Rn×mt+p(t+1), with Lut ∈ Rn×mt and Lyt ∈ Rn×p(t+1), is the estimator gain that

minimizes (7.30). Let e(t) = x(t)−xKF(t) and Σe,t ∈ Rn×n � 0 denote the estimation error

and the estimation error covariance matrix, respectively. For an optimal linear estimator,
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LKF
t , we have e(t) ∼ N (0,Σe,t), and we can write the state x(t) as

x(t) = LKF
t zt + e(t).

Let

xt = [x1(t), . . . , xN (0)], et = [e1(t), . . . , eN (0)], (7.31)

where xi(t) and ei(t) denote the state and the state estimation error incurred by LKF
t at

time t for the i-th trajectory of the data (7.4), respectively. Further, let Zt = [UT
t−1, Y

T
t ]T,

where Ut and Yt are the submatrices of U and Y in (7.4) obtained by selecting the inputs

and outputs up to some t. Then,

xt = LKF
t Zt + et. (7.32)

To estimate the optimal filter Lt from the data (7.4), we consider the following least squares

problem

LD
t = arg min

Lt
‖xt − LtZt‖2F. (7.33)

Problem (7.33) admits a unique solution since Zt is full-row rank, which is given by (7.9).

Next, we bound ‖LD
t − LKF

t ‖2.

Theorem 79 (Non-asymptotic bound on ‖LD
t − LKF

t ‖2) Let LKF
t and LD

t be as in

(7.32) and (7.9), respectively, and let δ ∈ [0, 1/2]. Assume that N ≥ max {N1, N2}, with

N1 = 2 ((n+m)T + n) log (1/δ) and N2 = 8(mT +n) + 16 log (1/δ). Then, with probability

at least 1− 2δ,

‖LD
t − LKF

t ‖2 ≤ d7

√
((m+ p)t+ n+ p) log (9/δ)

N
, (7.34)
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with

d7 , 16‖Σ−1/2
Z ‖2‖Σe,t‖1/22 ,

where ΣZ ∈ R(m+p)t+p×(m+p)t+p � 0 comprises the noise statistics, Σ0, and Σu in Assump-

tion 66, and Σe,t is the optimal estimation error covariance matrix at time t. �

Proof. Let Z = Σ
1/2
Z G and where ΣZ � 0 is as in the theorem statement, and G ∈

R(m+p)t+p×N is a random matrix whose columns are independent random vectors distributed

as N ∼(0, I(m+p)t+p). From (7.9) and (7.32),

‖LD
t − LKF

t ‖2 = ‖etZ†‖2 = ‖etGT(GGT)−1Σ
−1/2
Z ‖2 ≤ ‖Σ

−1/2
Z ‖2‖etGT‖2‖(GGT)−1‖2.

The proof follows by using Lemma 74 to bound ‖etGT‖2, and Lemma 75 to bound ‖(GGT)−1‖2.

Finally, The probability follows from the union bound.

To conclude the proof of Theorem 70, we have

∥∥∥∥∥∥∥∥
xKF(t)− LD

t



ut−1

0

yt0




∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥
LKF
t



ut−1

0

yt0


− L

D
t



ut−1

0

yt0




∥∥∥∥∥∥∥∥
2

≤ ‖LKF
t − LD

t ‖2

∥∥∥∥∥∥∥∥



ut−1

0

yt0




∥∥∥∥∥∥∥∥
2

,

where ut0 and yt0 are the vectors of inputs and outputs of (7.1), respectively, from time 0 up

to time t. Using Theorem 79,

∥∥∥∥∥∥∥∥
xKF(t)− LD

t



ut−1

0

yt0




∥∥∥∥∥∥∥∥
2

≤ c3√
N

∥∥∥∥∥∥∥∥



ut−1

0

yt0




∥∥∥∥∥∥∥∥
2

, (7.35)

where c3 = d7

√
((m+ p)t+ n+ p) log (9/δ), and d7 is as in Theorem 79. The above inequal-

ity holds with probability at least 1− 2δ, which follows from Theorem 79 for δ ∈ [0, 1/2].

This concludes the proof of Theorem 70.
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7.3.4 Proof of Theorem 72

Consider the closed-loop trajectories in (7.12), and let UndLQG and Y n
dLQG be the

submatrices of UdLQG and YdLQG in (7.12) obtained by selecting only the inputs from

time T−n up to time T−1 and the outputs from time T−n+1 up to time T , respectively.

We can write the data-based and the model-based LQG inputs at time T for the trajectories

in (7.12) as

[
u1

dLQG(T ) · · · uMdLQG(T )

]

︸ ︷︷ ︸
UdLQG(T )

= KD
LQRL

D
T



UdLQG

YdLQG


 ,

[
u1

LQG(T ) · · · uMLQG(T )

]

︸ ︷︷ ︸
ULQG(T )

= KLQRL
KF
T



UdLQG

YdLQG




︸ ︷︷ ︸
Z

.

For notational convenience, let ∆KLQR = KD
LQR − KLQR, ∆L = LD

T − LKF
T , and ∆U =

UdLQG(T )− ULQG(T ). Then,

∆U = KD
LQRL

D
TZ −KLQRL

KF
T Z = KLQR∆LZ + ∆KLQRL

KF
T Z + ∆KLQR∆LZ. (7.36)

For sufficiently large T , we use (7.5) to write

UdLQG(T ) = KD
LQG



UndLQG

Y n
dLQG


 , ULQG(T ) = KLQG



UndLQG

Y n
dLQG




︸ ︷︷ ︸
Zn

.
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Then, KD
LQG = UdLQG(T )Z†n and KLQG = ULQG(T )Z†n. For notational convenience, let

∆KLQG = KD
LQG −KLQG, and let ‖ · ‖ denote ‖ · ‖2. Then, using (7.36), we can write

‖∆KLQG‖2 =‖(UdLQG(T )− ULQG(T ))Z†n‖ = ‖∆UZ†n‖

≤‖KLQR‖‖∆L‖‖ZZ†n‖+ ‖∆KLQR‖‖LKF
T ‖‖ZZ†n‖+ ‖∆KLQR‖‖∆L‖‖ZZ†n‖.

(7.37)

Let δ ∈ [0, 1/8] and assume that N ≥ max {N1, N2, N3}, where N1, N2, and N3 are as

in Theorem 78. Then, inequality (7.13) follows by using Theorem 68 and Theorem 79 to

bound ‖∆KLQR‖ and ‖∆L‖ in (7.37), respectively, with probability at least 1−8δ and with

c5 =
c1‖LKF

t ‖+ c1c3

σmin(x∗m) (1− κ(x∗m))
+ c3‖KLQR‖,

c6 =
c2c3

σmin(x∗m)(1−κ(x∗m))
, c7 =

c2‖LKF
t ‖

σmin(x∗m)(1−κ(x∗m))
,

(7.38)

where c1, c2, x∗m, and κ(x∗m) are as in Theorem 68, and c3 is as in Theorem 70. Finally, the

probability follows using the union bound. This concludes the proof of Theorem 72.
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Chapter 8

Conclusions

The intricate relationship between performance and robustness in machine learn-

ing models stands as a fundamental challenge with far-reaching implications. Throughout

this thesis, we have illuminated the inherent fundamental tradeoff these models encounter,

where the pursuit of optimal performance often comes at the cost of robustness against

perturbations, and diverse and unforeseen conditions.

In this thesis, we have showed the existence of a fundamental tradeoff between

performance and robustness of learning models in both classification and control learn-

ing problems, where we have provided a comprehensive characterization of these tradeoffs.

Moreover, leveraging insights gained from these tradeoffs, we have introduced a robust feed-

back control policy learning framework based on Lipschitz-constrained loss minimization,

where the feedback policies are learned directly from expert demonstrations. Our work

integrates robust learning, optimal control and robust stability into a unified framework,

enabling the learning of controllers that prioritize both performance and robustness. Fi-
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nally, we have revisited the LQG optimal control problem from a behavioral perspective,

where we have derived direct data-driven expression for the optimal LQG controller using

a dataset of input, state, and output trajectories. This analysis highlighted the limitations

and challenges posed by noisy data and unknown system dynamics.

In summary, our study sheds light on the necessity of redefining model benchmarks

and design strategies to navigate the intricate landscape of performance and robustness

tradeoffs. By embracing this nuanced balance, we can pave the way for more dependable,

versatile, and impactful machine learning applications across fields.

8.1 Summary and future directions

In what follows, we provide a brief summary of each chapter, followed by a dis-

cussion on potential future directions.

Chapter 2. In this chapter, we showe that a fundamental tradeoff exists between the

accuracy of a binary classification algorithm and its sensitivity to adversarial manipulation

of the data. Thus, accuracy can only be maximized at the expenses of the sensitivity to data

manipulation, and this tradeoff cannot be arbitrarily improved by tuning the algorithm’s

parameters.

Directions of future interest include the extension to M-ary testing problems, as well as

the formal characterization of the relationships between the complexity of the classification

algorithm and its accuracy versus sensitivity tradeoff.
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Chapter 3. In this chapter, we include an abstain option in a binary classification prob-

lem, to improve adversarial robustness. We propose metrics to quantify the nominal per-

formance of a classifier with an abstain option and its adversarial robustness. We formally

prove that, for any classifier with an abstain option, there exist a tradeoff between its nom-

inal performance and its robustness, thus, the classifier’s robustness can only be improved

at the expense of its nominal performance. Further, we provide necessary conditions to

design the abstain region that optimizes robustness for a desired nominal performance for

1-dimensional binary classification problem. Finally, we validate our theoretical results on

the MNIST dataset, where we show that the tradeoff between performance and robustness

also exist for the general multi-class classification problems.

Directions of future interest include comparing tradeoffs obtained with an abstain op-

tion and tradeoffs obtained via tuning the decision boundaries (from ch: 2), as well as

investigating whether it is possible to improve the tradeoff by tuning the boundaries and

the abstain region simultaneously.

Chapter 4. In this paper we show that a fundamental trade-off exists between the ac-

curacy of linear estimation algorithms and their robustness to unknown changes of the

measurement noise statistics. Because of this trade-off, estimators that are optimal with

nominal sensing data may perform poorly in practice due to variations of the measure-

ments statistics or different operational conditions. Conversely, robust estimators obtained

through a more detailed design process may maintain similar performance levels in nominal

and non-nominal conditions, but considerably underperform in nominal conditions when

compared to nominally optimal estimators. To complement these results, we characterize
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the structure of optimal estimators, for desired levels of accuracy and robustness, and show

that the trade-off also constrain the performance of closed-loop perception-based controllers.

The results in this chapter complement a recent line of research aimed at deriving prov-

able guarantees and performance limitations of machine learning and data-driven algo-

rithms [?, 25, 95, 107], and extend such results, for the first time, to an estimation and

control setting.

Directions of future interest include an explicit quantification of the performance of

data-driven control algorithms when data is scarce and corrupted. Another area of interest

is characterizing how the tradeoff depends on system parameters and noise statistics.

Chapter 5. In this chapter, we propose a framework to learn feedback control policies

with provable robustness guarantees. Our approach draws from our earlier work [52] where

we formulate the adversarially robust learning problem as one of Lipschitz-constrained loss

minimization. We adapt this framework to the problem of learning robust feedback policies

from a dataset obtained from expert demonstrations. We establish robust stability of the

closed-loop system under the learned feedback policy. Further, we derive upper bounds on

the regret and robustness of the learned feedback policy, which bound its nominal subop-

timality with respect to the expert policy and the deterioration of its performance under

bounded (adversarial) disturbances to state measurements, respectively. The regret bounds

suggest the existence of a tradeoff between nominal performance of the feedback policy and

closed-loop robustness to adversarial perturbations on the feedback. This tradeoff is also

evident in our numerical experiments, where improving closed-loop robustness leads to a

deterioration of the nominal performance. Finally, we demonstrate our results and the ef-
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fectiveness of our robust feedback policy learning framework via numerical experiments on

(i) the standard LQR benchmark, and (ii) a nonholonomic differential drive mobile robot

model.

Directions of future interest involve extending our framework to learn robust feedback

policies from open-loop data, particularly in scenarios where data is scarce or corrupted.

Another promising direction is to further develop our framework, enabling the learning of

robust policies capable of adjusting their level of robustness based on the specific deployment

environment.

Chapter 6. In this chapter, we revisit the LQG optimal control problem from a behavioral

perspective. We introduce equivalent representations for the class of stochastic discrete-

time, linear, time-invariant systems and the LQG optimal control problem in the space of

input-output behaviors. In particular, we show that the optimal LQG controller can be

expressed as a static behavioral-feedback gain, which can be solved for directly from the

LQG problem in the behavioral space. Finally, we highlight the advantages of having a static

LQG gain over a dynamic LQG controller in the context of data-driven control and gradient-

based algorithms, which arise from the fact that the behavioral approach circumvents the

need for a state space representation and the fact that the optimal behavioral-feedback is

a static gain.

Directions of future interest include the investigation of the optimization landscape

of the LQG problem in the behavioral space, which will pave the way for an improved

understanding of the convergence properties of data-driven and gradient algorithms.
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Chapter 7. In this chapter we derive direct data-driven expressions for the LQR gain,

Kalman filter, and LQG controller using a dataset of input, state, output trajectories. We

show the convergence of these expressions as the size of the dataset increases, we charac-

terize their convergence rate, and we quantify the error incurred when using a dataset of

finite size. Our expressions are direct, as they do not use a model of the system nor require

the estimation of a model, and provide new insights into the solution of canonical control

and estimation problems.

Directions of future interest include the direct data-driven solution toH2 and H∞ prob-

lems, as well as the extension of the results to accommodate for incomplete, heterogeneous

and, possibly, corrupted datasets.
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[21] G. R. Gonçalves da Silva, A. S. Bazanella, C. Lorenzini, and L. Campestrini. Data-
driven LQR control design. IEEE Control Systems Letters, 3(1):180–185, 2019.

[22] C. De Persis and P. Tesi. Formulas for data-driven control: Stabilization, optimality
and robustness. IEEE Transactions on Automatic Control, 65(3):909–924, 2020.

[23] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu. On the sample complexity of the
linear quadratic regulator. Foundations of Computational Mathematics, 20(4):633–
679, 2020.

[24] S. Dean, N. Matni, B. Recht, and V. Ye. Robust guarantees for perception-based
control. arXiv preprint arXiv:1907.03680, 2019.

175



[25] Z. Deng, C. Dwork, J. Wang, and Y. Zhao. Architecture selection via the trade-off
between accuracy and robustness. arXiv preprint arXiv:1906.01354, 2019.

[26] F. Dörfler, P. Tesi, and C. De Persis. On the role of regularization in direct data-driven
LQR control. In IEEE Conf. on Decision and Control, pages 1091–1098, Cancún,
Mexico, December 2022. IEEE.

[27] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open
urban driving simulator. In Conference on Robot Learning, volume 78 of Proceedings
of Machine Learning Research, pages 1–16, Mountain View, CA, USA, Nov 2017.
PMLR.

[28] J. C. Doyle. Guaranteed margins for LQG regulators. IEEE Transactions on auto-
matic Control, 23(4):756–757, 1978.

[29] W. Favoreel, B. D. Moor, P. V. Overschee, and M. Gevers. Model-free subspace-based
LQG-design. In American Control Conference, volume 5, pages 3372–3376, San Diego,
CA, Jun. 1999.

[30] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. J. Pappas. Efficient and
accurate estimation of Lipschitz constants for deep neural networks. In Advances in
Neural Information Processing Systems, pages 11423–11434, 2019.

[31] L. Furieri, B. Guo, A. Martin, and G. Ferrari-Trecate. A behavioral input-output
parametrization of control policies with suboptimality guarantees. arXiv preprint
arXiv:2102.13338, 2021.

[32] Y. Geifman and R. E. Yaniv. Selective classification for deep neural networks. In Ad-
vances in Neural Information Processing Systems, volume 30, Long Beach Convention
Center, CA, USA, Dec 2017. Curran Associates, Inc.

[33] M. Gevers. Identification for control: From the early achievements to the revival of
experiment design. European Journal of Control, 11:1–18, 2005.

[34] A. Ghafouri, Y. Vorobeychik, and X. Koutsoukos. Adversarial regression for detecting
attacks in cyber-physical systems. In International Joint Conference on Artificial
Intelligence, pages 3769–3775, Stockholm, Sweden, July 2018.

[35] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, San Diego, USA,
May 2015.

[36] G. C. Goodwin and K. S. Sin. Adaptive filtering prediction and control. Courier
Corporation, 2014.

[37] H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree. Regularisation of neural networks
by enforcing Lipschitz continuity. Machine Learning, 110(2):393–416, 2021.

176



[38] B. Gravell, P. M. Esfahani, and T. Summers. Learning optimal controllers for linear
systems with multiplicative noise via policy gradient. IEEE Transactions on Auto-
matic Control, 66(11):5283–5298, 2020.

[39] T. Guo, A. A. Al Makdah, V. Krishnan, and F. Pasqualetti. Imitation and transfer
learning for LQG control. IEEE Control Systems Letters, 7:2149–2154, 2023.

[40] B. Hassibi and T. Kaliath. H∞ bounds for least-squares estimators. IEEE Transac-
tions on Automatic Control, 46(2):309–314, February 2001.

[41] B. Hassibi, A. H. Sayed, and T. Kailath. Indefinite-Quadratic Estimation and Control:
A Unified Approach to H2 and H-infinity Theories, volume 16. SIAM, 1999.

[42] R. Herbei and M. H. Wegkamp. Classification with reject option. The Canadian
Journal of Statistics, pages 709–721, 2006.

[43] L. Hewing, K. Wabersich, M. Menner, and M. Zeilinger. Learning-based model pre-
dictive control: Toward safe learning in control. Annual Review of Control, Robotics,
and Autonomous Systems, 3:269–296, 2020.

[44] J. Ho, J. Gupta, and S. Ermon. Model-free imitation learning with policy optimiza-
tion. In International Conference on Machine Learning, volume 48 of Proceedings
of Machine Learning Research, pages 2760–2769, New York, NY, USA, Jun. 2016.
PMLR.

[45] B. Hu, K. Zhang, N. Li, M. Mesbahi, M. Fazel, and T. Başar. Towards a theoretical
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[92] D. Tran, B. Rüffer, and C. Kellett. Convergence properties for discrete-time nonlinear
systems. IEEE Transactions on Automatic Control, 64(8):3415–3422, 2018.

[93] A. Tsiamis and G. J. Pappas. Finite sample analysis of stochastic system identifica-
tion. In IEEE Conf. on Decision and Control, pages 3648–3654, Nice, France, dec
2019.

[94] A. Tsiamis, I. Ziemann, N. Matni, and G. J. Pappas. Statistical learning theory for
control: A finite sample perspective. arXiv preprint arXiv:2209.05423, 2022.

[95] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry. Robustness may
be at odds with accuracy. In International Conference on Learning Representations,
Ernest N. Morial Convention Center, NO, USA, May 2019.

[96] S. Tu, R. Frostig, and M. Soltanolkotabi. Learning from many trajectories. arXiv
preprint arXiv:2203.17193, 2023.

[97] S. Tu, A. Robey, T. Zhang, and N. Matni. On the sample complexity of stability
constrained imitation learning. arXiv preprint arXiv:2102.09161v2, 2021.

[98] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

[99] J. Wang, Z. Zhuang, Y. Wang, and H. Zhao. Adversarially robust imitation learning.
In Conference on Robot Learning, London,UK, Nov. 2021.
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