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Machine learning model to predict 
obesity using gut metabolite 
and brain microstructure data
Vadim Osadchiy 1,2,3,4, Roshan Bal 1, Emeran A. Mayer 1,2,3, Rama Kunapuli 1, Tien Dong  1,2, 
Priten Vora 1,3,5, Danny Petrasek 6, Cathy Liu 1,3, Jean Stains 1,3,5 & Arpana Gupta  1,2,3,7*

A growing body of preclinical and clinical literature suggests that brain-gut-microbiota interactions 
may contribute to obesity pathogenesis. In this study, we use a machine learning approach to 
leverage the enormous amount of microstructural neuroimaging and fecal metabolomic data to better 
understand key drivers of the obese compared to overweight phenotype. Our findings reveal that 
although gut-derived factors play a role in this distinction, it is primarily brain-directed changes that 
differentiate obese from overweight individuals. Of the key gut metabolites that emerged from our 
model, many are likely at least in part derived or influenced by the gut-microbiota, including some 
amino-acid derivatives. Remarkably, key regions outside of the central nervous system extended 
reward network emerged as important differentiators, suggesting a role for previously unexplored 
neural pathways in the pathogenesis of obesity.

The obesity epidemic has emerged as a major public health crisis nationally and internationally1,2. In addition 
to costing the healthcare system hundreds of billions of dollars, there are countless associated negative health 
outcomes including cancers, endocrinological disorders, musculoskeletal disorders, and a well-documented 
increase in premature mortality from cardiovascular disease3. Additionally, the distinction between overweight 
and obese is becoming increasingly important as many studies have demonstrated a dose-dependent relationship 
between excess weight or body mass index (BMI) and health outcomes4,5.

The pathophysiology of obesity remains complex, representing a derangement of energy homeostasis and gut 
endocrine signaling, especially within the context of aberrant insulin sensitivity and regulation, in addition to 
disruptions in the fine balance of pro- and anti-satiety signals in the gut6,7. In brief, gut hormones such as ghrelin 
produce hunger and cravings8,9, while hormones such as glucagon like peptide (GLP)-110 and peptide tyrosine 
tyrosine (PYY)11 trigger satiety. External factors, such as the gut microbiota, can disrupt this carefully orches-
trated homeostatic energy balance. For example, spore forming microbes found in the human gut microbiome 
can influence enteroendocrine cells of the gut to release more or less GLP-1 in response to microbiota-derived 
secondary bile acids12.

Obesity, however, is just as much a disorder of the endocrine system as it is of the brain, especially with 
respect to the extended reward network, which is responsible for processing rewarding stimuli and food-seeking 
behaviors. Key regions of the extended reward network that have been implicated include those related to sali-
ence, executive control, core reward, sensorimotor, and emotional regulation-related processes13–17. Despite the 
robust body of neuroscience research on obesity, investigations have almost exclusively focused on understand-
ing how the obese brain differs from the non-obese brain; no studies have investigated central nervous system 
(CNS) changes that differentiate obese from overweight individuals. In addition to identifying anatomical and 
functional alterations in specific brain regions, more recent efforts have focused on identifying alterations in 
brain network properties18. To assess brain connectivity, graph theory has been leveraged to perform complex 
network analysis. In this way, we can quantify the anatomic and functional contributions to information flow 
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within the context of a global, whole brain network19–22. Previous investigations used this approach to explore 
CNS alterations between high BMI and normal BMI brain connectivity23,24.

Perhaps attributed to the feasibility of more computationally rigorous approaches, combined with an over-
whelming amount of data, the last decade has seen an explosion of research leveraging systems-based approaches 
to understanding complex human disease states, such as obesity. One such example has been to view obesity as a 
brain-gut disorder, with the gut microbiome also likely to modulate these interactions. Most of the high quality 
evidence to suggest a role for these brain-gut interactions have been from pre-clinical studies, or primarily cross-
sectional clinical studies25,26. It is important to note that there has been limited progress in developing effective, 
long-lasting treatments for obesity27,28. This is likely driven by both the complex pathophysiology of obesity, 
combined with the failure to view obesity through a systems biology lens, incorporating both neuroimaging and 
gut metabolite data. Recent advances in machine learning have allowed for the ability to build robust, predictive 
models that can distill very large amounts of data into a smaller number of highly impactful features. Here, we 
use a machine learning approach to leverage the enormous amount of neuroimaging and fecal metabolomic data 
to better understand key drivers of the obese compared to overweight phenotype.

Methods
Study participants.  The total sample was comprised of 117 right-handed healthy adult (age ≥ 18) volun-
teers (36 males and 81 females). A medical exam and clinical assessment that included a modified Mini-Interna-
tional Neuropsychiatric Interview Plus 5.0 (MINI) (27) was administered to confirm the absence of significant 
medical or psychiatric conditions. Subjects were excluded from participating in the study for any of the following 
reasons: pregnant or lactating, substance abuse, abdominal surgery, tobacco dependence (smoked half a pack 
of cigarettes or more daily), extreme strenuous exercise (> 8 h of continuous exercise per week), current or past 
psychiatric illness, and major medical or neurological conditions. Subjects taking medications that interfere 
with the central nervous system (full dose antidepressants including SSRI, NSRIs, sedatives or anxiolytics) or 
regular use of analgesic drugs (including narcotics, opioids, and α2-δ ligands) were excluded. Since female sex 
hormones such as estrogen are known to effect brain structure and function, in this study we used women who 
were premenopausal and who were scanned during the follicular phase of their menstrual cycles as determined 
by self-report of their last day of the menstrual cycle.

Subjects with hypertension, diabetes, or metabolic syndrome were also excluded from the study to minimize 
confounding effects from our findings. For the same reason, subjects with eating disorders such as anorexia or 
bulimia nervosa were also excluded. For the purpose of our analyses, we used BMI cutoffs to define our groups: 
Overweight individuals had a BMI ≥ 25 but < 30, obese individuals had a BMI > 30. Individuals with normal 
BMIs or who had BMIs that would be considered underweight were excluded from our analysis (BMI < 25). No 
subjects exceeded 400lbs due to MRI scanning weight limits.

All procedures complied with the principles of the Declaration of Helsinki and were approved by the Insti-
tutional Review Board at UCLA’s Office of Protection for Research Subjects (approval numbers 11-000069 and 
12-001802). All subjects provided written informed consent.

MRI acquisition.  A 3.0 T Siemens Trio scanner was used to perform whole brain structural, and diffusion 
tensor (DTI) magnetic resonance imaging. Noise reducing headphones were used. Automated data processing 
and computational workflows for structural and diffusion tensor imaging data were designed and implemented 
in collaboration with the University of Southern California Laboratory of Neuroimaging (LONI) Pipeline (pipe-
line.loni.usc.edu).

Structural gray‑matter.  For registration purposes, a high resolution structural image was obtained from each 
subject using a magnetization-prepared rapid acquisition gradient-echo sequence, repetition time = 2200 ms, 
echo time = 3.26 ms, structural acquisition time = 5 m 12  s, slice thickness = 1 mm, 176 slices, 256*256 voxel 
matrix, 1 mm voxel size.

Anatomical connectivity (DTI).  Diffusion-weighted MRIs (DWIs) were acquired according to two comparable 
acquisition protocols. Specifically, DWIs were acquired in either 61 or 64 noncolinear directions with b = 1000 s/
mm2, with 8 or 1 b = 0 s/mm2 images, respectively. Both protocols had a TR = 9400 ms, TE = 83 ms, and field 
of view (FOV) = 256 mm with an acquisition matrix of 128 × 128, and a slice thickness of 2 mm to produce 
2 × 2 × 2 mm3 isotropic voxels.

MRI preprocessing and quality control.  Structural gray‑matter.  Structural T1-image segmenta-
tion and regional parcellation were conducted using FreeSurfer 29,30 following the nomenclature described in 
Destrieux et al. 31. This parcellation results in the labeling of 165 regions, 74 bilateral cortical structures, 7 sub-
cortical structures, the midbrain, and the cerebellum32.

Anatomical connectivity (DTI).  Diffusion weighted images (DWI) were corrected for motion and used to com-
pute diffusion tensors that were rotationally re-oriented at each voxel. The diffusion tensor images were realigned 
based on trilinear interpolation of log-transformed tensors as described in Chiang et al. 33 and resampled to an 
isotropic voxel resolution (2 × 2 × 2 mm3). White matter connectivity for each subject was estimated between the 
165 brain regions using DTI fiber tractography 32, performed via the Fiber Assignment by Continuous Tracking 
(FACT) algorithm 34 using TrackVis (http://​track​vis.​org).

http://trackvis.org


3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5488  | https://doi.org/10.1038/s41598-023-32713-2

www.nature.com/scientificreports/

Anatomical MRI network construction.  Connection matrix.  Regional parcellation and tractography 
results were combined to produce a weighted, unidirected connectivity matrix. The final estimate of white matter 
connectivity between each of the brain regions was determined based on the number of fiber tracts intersecting 
each region. Weights of the connections were then expressed as the absolute fiber count divided by the individual 
volumes of the two interconnected regions 21.

Computing network metrics.  The Graph Theory GLM toolbox (GTG) (www.​nitrc.​org/​proje​cts/​metal​ab_​gtg) 
and in-house matlab scripts were applied to the subject-specific anatomical brain networks to compute three 
local weighted network metrics indexing centrality. The network metrics are described below 22,35–37.

Measures of centrality quantify the importance of a region’s influence on communication and information 
flow in large-scale brain networks. These measures include strength, betweenness centrality and eigenvector 
centrality. Strength represents the number of connections (fiber tracts) a given brain region has, factoring in the 
“weight” of each connection and reflects a brain region’s total level of impact in the network. Betweenness central-
ity describes degree to which a brain region lies on the shortest path between two other regions. Acting as way 
stations, regions with high betweenness centrality are topologically primed to control communication between 
other regions38. Eigenvector centrality reflects how connected a given brain region is to other brain regions with 
high centrality (greater number of fiber tracts) and is a measure of a region’s overall influence on the network39.

Stool collection and processing.  Fecal samples were aliquoted under liquid nitrogen and shipped to 
Metabolon for processing and analysis as a single batch on their global metabolomics and bioinformatics plat-
form. Data was curated by mass spectroscopy using established protocols and software as previously described40. 
The samples of stool were all collected within a week of the subjects’ MRIs.

Machine learning model.  A balanced, binary classification label was defined using clinical information 
about each participant’s weight.

For both the metabolite and brain DTI network metric datasets, the number of variables (987 and 2156 
respectively) greatly outnumber the sample size of 117. Machine learning models containing this many feature 
with a comparatively smaller sample size often contain uninformative variables that lower the model’s classifica-
tion accuracy. In order to arrive at an optimal, reduced feature space that gave a superior classification, a feature 
selection technique known as Recursive Feature Elimination (RFE) was utilized with cross validation. Previous 
work has shown RFE using a Support Vector Machine Estimator (SVM-RFE) to be effective at small sample size 
and high dimensional data modeling41.

RFE is a wrapper feature selection technique that essentially performs backwards selection on the predictors. 
A linear model is initially trained on the entire set of features, and iteratively, the features with the lowest weight 
are removed until a certain target of features to be kept is met. We used a Support Vector Machine (SVM) with 
a linear kernel as our model for RFE.

In this study, two different types of cross validation were used. K-fold cross validation is a resampling proce-
dure that can be used to evaluate a machine learning model’s performance on a limited dataset. In this process 
the dataset is partitioned into k different, equally sized, subsets, which are termed folds. Of these k folds, a single 
one is isolated as a test data set while the rest of the data are designated for training. This process is repeated k 
times, with a different fold designated as test data at each iteration. Here, we used ten-fold cross validation and 
leave-one-out (LOO) cross validation, which involves iteratively isolating a single sample as test data and using 
the rest as training data42.

To determine the best target number of features to keep using RFE, a candidate range from 1 feature, all the 
way to the entire feature space was considered. RFE was performed with LOO cross validation for each candidate. 
The number of features that recorded the highest average test data accuracy was determined to be the optimal 
number of features to keep.

Using this optimal number, RFE was then performed again with ten-fold cross validation To determine the 
final feature subset, a voting strategy was used43. For each fold, a different subset of features was selected by RFE. 
Each time a feature was included in a fold’s RFE selection, it received a count, or “vote.” If “n” were the optimal 
number of features to keep, then the final subset of selected features was determined to be the top “n” features 
by votes across folds43.

This process was performed on both the metabolite and brain DTI datasets to arrive at minimal feature sets 
that maximized accuracy.

To further assess the ability of these chosen variables to classify obesity, SVM with a linear kernel, ridge clas-
sifier, and logistic regression models were created and trained on just these features. In addition to the isolated 
variables, patient age and sex were also included as model predictors. For the metabolite model, patient diet 
was included as well. Logistic regression and a ridge classifier, being different models than the one used as an 
estimator for RFE, were used to ensure robustness and linear separability of the data. The predictive ability of 
each of these final models was assessed using LOO cross validation.

Finally, a combined model was created by merging the top 90 percent of features by absolute value of model 
weight, from each of the final brain and metabolite models. This model was also assessed using leave one out 
cross validation.

For each model, in addition to overall accuracy, precision and recall were calculated as well. Precision is 
defined as the number of true positives over the number of true positives plus the number of false positives. Recall 
is defined as the number of true positives over the number of true positives plus the number of false negatives. 
In other words, precision is the proportion of predicted trues that were actually true, and recall is the proportion 

http://www.nitrc.org/projects/metalab_gtg
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of actual trues that were correctly predicted as true by the model. Precision and recall were calculated for both 
the very obese and obese classes.

As an additional way to ensure that overfitting was not occurring, a permutation test was performed by 
randomly shuffling the labels and retraining all three (brain, metabolite, and combined) models44. With the null 
hypothesis that there is no difference between the original model’s test accuracy versus the test accuracy after 
shuffling the labels, this test illustrates whether the model actually learned based on the particular relationship 
between the features and the label, or otherwise simply fit very closely to our high dimensional feature data with 
a small sample size. If the latter occurred, then we would see that the model would still have an above average 
test accuracy or have overfit and learned something from this random data.

Figure 1 provides a high-level overview of the methodology.

Results
Sample characteristics.  The total sample (N = 117) included 64 obese individuals (females = 47, 
males = 17), mean age = 33.203125, standard deviation 10.2457, and 53 overweight individuals (females = 34, 
males = 19) mean age = 31.4528, standard deviation = 10.964. Clinical characteristics are summarized in Table 1.

Recursive feature elimination results.  Our feature selection method identified 83 DTI features out of 
2156 total variables for the brain model (Fig. 2A, SuppTable 1).

Out of 987 total metabolites, our feature selection method identified 57 variables for the metabolite model 
(Fig. 2B, SuppTable 2).

Brain classifier.  An SVM model trained on this subset of DTI features identified by our RFE method 
achieved 90.25 percent accuracy in discriminating very obese patients from obese patients (Fig. 3A). The obese 
class (0 class) had a precision of 0.90 and a recall of 0.88. The extremely obese (1 class) had a precision of 0.91 
and a recall of 0.92.

Interestingly, the 83 isolated DTI network metric features were all either node betweenness centrality or 
average path length measures of various parts of the brain. Out of the 83 isolated features, all of the correspond-
ing brain regions were unique except for nine. The left triangular part of the frontal gyrus (L_InfFGTrip), left 
fronto marginal gyrus (of Wernicke) and sulcus (L_FMarG_S), right occipital pole (R_OcPo), right intraparietal 
(interparietal sulcus) and transverse parietal sulci (R_IntPS_TrPS), right transverse frontopolar gyri and sulci 
(R_TrFPoG_S), left inferior segment of the circular sulcus of the insula (L_InfCirIns), right inferior temporal 
sulcus (R_InfTS), Transverse frontopolar gyri and sulci(L_TrFPoG_S), and left caudate nucleus (L_CaN) each 
had both its node betweenness centrality and average path length measures in the identified feature set.

The three features with the largest positive weight, influencing the model most towards classification as 
extremely obese are average path length of the left pericallosal sulcus (AvPathLength__L_PerCaS), average 
path length of inferior occipital gyrus and sulcus (AvPathLength__L_InfOcG_S), and node betweeness cen-
trality of the left temporal pole (NodeBWCent__L_Tpo). On the other hand, the three features with the largest 
negative weight, influencing our model towards classification as just obese are average path length of the right 
long insular gyrus and central insular sulcus (AvPathLength__RLoInG_CInS), average path length of the left 
middle-posterior part of the cingulate gyrus and sulcus (AvPathLength__L_MPosCgG_S), and posterior dorsal 
part of the cingulate gyrus (AvPathLength__PosDCgG) (SuppFigure 1).

Metabolite classifier.  An SVM model trained on this subset of metabolite features identified by our RFE 
method achieved 79.84 percent accuracy in discriminating very obese patients from obese patients (Fig. 3B). 
The obese (0 class) had a precision of 0.79 and a recall of 0.76. The extremely obese (1 class) had a precision of 
0.81 and a recall of 0.83.

The three features with the largest positive weight, influencing the model towards classification as extremely 
obese were acesulfame, N-acetylisoleucine, and 1,2-dilinoleoyl-GPC (18:2/18:2). On the other hand, the three 
features with the largest negative weight, influencing the model towards classification as obese, were 1-oleoyl-
GPC (18:1), pregnen-diol sulfate, and glyocholate (SuppFigure 2).

Combined classifier.  Combining the top 90 percent of features by absolute value of weight from the two 
described models above yielded a new feature subset of 126 variables (50 metabolite variables and 76 brain dti 
nm variables) (Table 2). The SVM model trained on this subset of features slightly outperformed the brain clas-
sifier. It achieved 90.49 percent accuracy in discriminating very obese patients from obese patients (Fig. 4). The 
obese class (0 class) had a precision of 0.90 and a recall of 0.89, and the extremely obese class (1 class) had a 
precision of 0.91 and a recall of 0.92.

In this model, the features from the brain DTI dataset had significantly greater weights than those from the 
metabolite dataset. The three features with the largest positive weight, influencing the model towards classifica-
tion as extremely obese were average path length of the left pericallosal sulcus (AvPathLength__L_PerCaS), 
average path length of inferior occipital gyrus and sulcus (AvPathLength__L_InfOcG_S), and node betweeness 
centrality of the Superior occipital gyrus (SupOcG).

The three features with the largest negatives weights were average path length of the right long insular gyrus 
and central insular sulcus (AvPathLength__RLoInG_CInS), average path length of the left middle-posterior part 
of the cingulate gyrus and sulcus (AvPathLength__L_MPosCgG_S), and posterior dorsal part of the cingulate 
gyrus (AvPathLength__PosDCgG) (Fig. 5A).
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The most negative metabolite features in the combined model were pregen-diol sulfate, 1-oleoyl-GPC (18:1), 
and R-salsolinol. Lastly, the most positive metabolite features in this model were I-urobilinogen, 1-oleoylglycerol 
(18:1), and genistein (Fig. 5B).

Permutation testing.  For all three models, this null hypothesis was rejected. By shuffling the labels, the 
test accuracy with ten-fold cross validation decreased to worse than random (46 percent). This supports our 
claim that the models learned meaningful relationships between the features (metabolites and brain DTI) and 
the label (obesity level).

Figure 1.   Study overview. In this study, we distil over three thousand unique brain microstructural and gut 
metabolite data into 76 brain and 50 metabolite features. These features were then used to create a machine 
learning model that could predict if patients were overweight or obese with over 90% accuracy.
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Discussion
In this study, we demonstrate a machine learning approach that can successfully differentiate overweight from 
obese individuals using fecal metabolites and neuroimaging data, independently; however, combination of these 
two data parameters yields a more accurate classifier. Our results reveal a role for metabolites and brain regions 
of interest that have been previously investigated within the context of obesity, in addition to suggesting a role 
for previously unexplored metabolites and regions within this context. While not providing information about 
causality, our findings will be important for future, mechanistic studies, as this represents the first investigation 
of brain-gut interactions in differentiating obese from overweight individuals.

A substantial number of brain regions in the extended reward network, primarily the emotional regula-
tion and somatosensory networks, emerged as important in differentiating obese from overweight individuals. 
These brain regions, most notably the inferior frontal gyrus, cingulate gyrus, and straight gyrus (emotional 

Table 1.   Clinical characteristics.

Column name
Overweight
(n = 53) Std Obese (n = 64) Std P-value T-value

Diets American: 12
Other: 41 – American: 29

Other: 35 – 0.01024 − 2.6106

Sexes Male: 19
Female: 34 – Male: 17

Female: 47 – 0.28261 1.07951

Ages 28.0 10.964 31.0 10.246 0.37888 0.88335

BMI 27.60274 1.61979 34.52796 3.79251 0.0 12.2843

Figure 2.   Recursive feature elimination graph of brain network metrics (A) and metabolites (B). A linear 
model is first developed incorporating all features and iteratively, the features with the lowest weight are 
removed. These graphs demonstrate the relationship between model accuracy and the number of features kept.

Figure 3.   Receiver operating characteristic curve of support-vector machine model using brain features (A) 
exclusively, metabolite features exclusively (B).
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Column name Info SVM weight P-value T-value

1-oleoyl-GPC (18:1) Metabolite − 3.20823e−05 0.3254347 − 0.9875739

Glycocholate Metabolite − 8.2497e−06 0.2450839 − 1.1683452

Pregnen-diol disulfate* Metabolite − 5.24364e−05 0.0766891 − 1.7862797

Nicotinate ribonucleoside Metabolite − 1.16909e−05 0.5345713 − 0.6229187

2-hydroxypalmitate Metabolite − 8.8495e-06 0.0279664 − 2.2259563

12-ketolithocholate Metabolite − 6.062e-07 0.6234562 − 0.4922853

11beta-hydroxyandrosterone sulfate (2) Metabolite − 6.3292e-06 0.1132935 − 1.5957305

N-stearoyl-sphinganine (d18:0/18:0)* Metabolite 2.2885e−06 0.9127752 0.10978

Pantoate Metabolite − 5.9953e−06 0.0844496 − 1.7404801

5-hydroxyhexanoate Metabolite − 1.05904e−05 0.3068464 − 1.026423

Imidazole propionate Metabolite 2.7469e−06 0.9937212 − 0.0078865

Agmatine Metabolite − 2.20964e−05 0.1105004 −1.6083507

N-methylproline Metabolite − 1.37931e−05 0.3443564 – 0.9495022

Arabitol/xylitol Metabolite − 2.07102e−05 0.1675273 − 1.3889653

Deoxymugineic acid Metabolite − 9.3404e−06 0.2403965 − 1.1800981

Theobromine Metabolite − 4.6408e−06 0.8264974 − 0.219696

Stachydrine Metabolite 2.3491e−06 0.9693121 0.0385549

Docosahexaenoylcarnitine (C22:6)* Metabolite − 7.433e−06 0.0613478 − 1.8894642

Carboxyibuprofen Metabolite − 2.25928e−05 0.4496436 − 0.7586004

Hyocholate Metabolite − 2.7928e−06 0.4151871 − 0.817757

3,7-dimethylurate Metabolite − 4.1805e−06 0.7599397 − 0.3062874

7-methylxanthine Metabolite − 2.2189e−06 0.5315353 − 0.6275615

(R)-salsolinol Metabolite − 2.21099e−05 0.2229156 − 1.225434

5alpha-androstan-3alpha,17beta-diol disulfate Metabolite − 7.7926e−06 0.2266135 − 1.2156354

Curcumin Metabolite − 7.1795e−06 0.1972666 − 1.2968855

Docosadienoate (22:2n6) Metabolite − 6.8086e−06 0.2522873 − 1.1505912

Genistein Metabolite 4.88011e−05 0.6114582 0.5093853

2′-deoxyadenosine 5′-monophosphate Metabolite 1.2038e−06 0.785891 − 0.2722852

2-(4-hydroxyphenyl)propionate Metabolite 1.64756e−05 0.2969804 1.0476857

Piperine Metabolite 3.29415e−05 0.5037286 0.6707439

5-(2-Hydroxyethyl)-4-methylthiazole Metabolite − 9.7784e−06 0.9918073 0.0102906

Tyrosol Metabolite 1.02517e−05 0.0755582 1.7932698

N-butyryl-leucine Metabolite 5.3575e−06 0.0931012 1.6933227

I-urobilinogen Metabolite 7.58174e−05 0.0195845 2.36738

N-(2-furoyl)glycine Metabolite 2.14319e−05 0.3071521 1.0257716

OAHSA (18:1/OH-18:0) Metabolite − 8.6601e−06 0.7071483 0.3766223

AMP Metabolite − 2.3066e−06 0.2627772 − 1.1253659

Maltose Metabolite 2.7173e−06 0.3679204 − 0.9039334

Sulfate of piperine metabolite C16H19NO3 (2)* Metabolite 2.01842e−05 0.1394363 1.488196

gamma-Glutamylalanine Metabolite 3.4847e−06 0.1697141 1.3817916

Docosahexaenoate (DHA; 22:6n3) Metabolite 1.79368e−05 0.5487737 0.6013752

1-linolenoylglycerol (18:3) Metabolite − 2.6022e−06 0.5024215 0.6728043

1-oleoylglycerol (18:1) Metabolite 5.74495e−05 0.2049111 1.2749096

Stigmastadienone Metabolite 4.6773e−06 0.4839874 0.7021772

Linoleoyl-linoleoyl-glycerol (18:2/18:2) [1]* Metabolite 5.4485e−06 0.0342553 2.1425781

Levulinate (4-oxovalerate) Metabolite 2.1728e−06 0.2314901 1.2028887

Sucralose Metabolite 8.6687e−06 0.116412 1.5819302

1,2-dilinoleoyl-GPC (18:2/18:2) Metabolite 1.16417e−05 0.8407669 0.2013676

N-acetylisoleucine Metabolite 5.4118e−06 0.02041 2.3512972

Acesulfame Metabolite 2.93443e−05 0.222516 1.2264998

AvPathLength__R_LoInG_CInS Somatosensory − 0.0009482483 0.170343 − 1.3797417

AvPathLength__L_MPosCgG_S Emotional Regulation − 0.0009154738 0.0139718 − 2.4961668

AvPathLength__L_PosDCgG Default Mode Network − 0.0007531148 0.1134375 − 1.5950865

AvPathLength__R_InfFGOrp Emotional Regulation − 0.0005549889 0.4141841 − 0.8195216

NodeBWCent__R_PosCS Somatosensory − 0.0006092343 0.0692979 − 1.8336098

AvPathLength__L_InfCirIns Somatosensory − 0.0006176458 0.0244062 − 2.2807316

Continued



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5488  | https://doi.org/10.1038/s41598-023-32713-2

www.nature.com/scientificreports/

Column name Info SVM weight P-value T-value

NodeBWCent__R_PosCG Somatosensory − 0.0005719311 0.6046272 − 0.5191882

NodeBWCent__L_RG Emotional Regulation − 0.0006018847 0.6067252 − 0.5161723

AvPathLength__R_PrCun Default Mode Network − 0.0005846671 0.0411581 − 2.0651356

NodeBWCent__L_ACgG_S Emotional Regulation − 0.0005199462 0.8344359 − 0.2094906

NodeBWCent__R_TrFPoG_S Default Mode Network − 0.000550803 0.4761666 − 0.7148237

AvPathLength__L_OcPo Occipital − 0.0005372031 0.3719004 − 0.8964214

AvPathLength__R_PosTrCoS Interlobe − 0.0005350337 0.1452779 − 1.4663656

NodeBWCent__R_AngG Default Mode Network − 0.0004671307 0.4646458 − 0.7336653

AvPathLength__R_PerCaS Emotional Regulation − 0.0004534601 0.0093628 − 2.6430109

AvPathLength__R_AOcS Occipital − 0.0004988374 0.0586744 − 1.9096126

NodeBWCent__L_CS Somatosensory − 0.0004482049 0.6791227 − 0.4147156

AvPathLength__R_SbOrS Emotional Regulation − 0.0005218257 0.0774365 − 1.7817068

AvPathLength__R_PaHipG Emotional Regulation − 0.0005000987 0.7399951 − 0.3326619

NodeBWCent__L_MOcG Occipital − 0.0004343127 0.1116088 − 1.6033124

NodeBWCent__R_MPosCgG_S Emotional Regulation − 0.000483703 0.3756011 − 0.8894819

NodeBWCent__L_PaHipG Emotional Regulation − 0.0004352314 0.5103618 − 0.6603312

AvPathLength__L_InfFGTrip Emotional Regulation − 0.000433419 0.2284636 − 1.2107763

AvPathLength__L_MACgG_S Emotional Regulation − 0.0003845632 0.0829239 − 1.7492025

NodeBWCent__L_PosCG Somatosensory − 0.0004257865 0.1377684 − 1.4945595

NodeBWCent__R_Hip Emotional Regulation − 0.0004448703 0.7521676 0.3165386

NodeBWCent__L_TrFPoG_S Default Mode Network − 0.0004187044 0.5716848 − 0.5671986

NodeBWCent__R_OcPo Occipital − 0.0003524324 0.9782904 − 0.0272716

AvPathLength__L_FMarG_S Executive − 0.0004036164 0.2131851 − 1.251794

AvPathLength__R_SupPrCs Somatosensory − 0.0002847931 0.3299016 − 0.9784583

NodeBWCent__R_Tha Somatosensory − 0.0003020804 0.4789275 − 0.7103462

NodeBWCent__R_MOcG Occipital − 0.0003067178 0.3078318 − 1.0243248

NodeBWCent__L_SupFG Somatosensory − 0.0002481055 0.5374476 0.6185325

NodeBWCent__R_SupFS Somatosensory − 0.0002719212 0.6366603 − 0.4736319

NodeBWCent__L_CaN Core Reward − 0.0002289915 0.0463734 − 2.0137213

NodeBWCent__L_PaCL_S Somatosensory − 0.0001960458 0.5392911 − 0.6157276

AvPathLength__L_InfFGOrp Emotional Regulation − 0.0002701086 0.69713 0.3901735

NodeBWCent__R_SbPS Executive − 0.0002149309 0.7591009 − 0.3073921

NodeBWCent__L_Hip Emotional Regulation 3.375e−06 0.4010689 − 0.8428374

NodeBWCent__R_InfTS Temporal 0.0001339698 0.5679843 0.5726727

NodeBWCent__L_Pu Somatosensory 0.0001385234 0.5944141 0.5339394

NodeBWCent__L_HG Temporal 0.0001799849 0.2125041 1.2536713

NodeBWCent__R_IntPS_TrPS Executive Control 0.0002065054 0.912869 − 0.1096615

AvPathLength__R_TrFPoG_S Default Mode Network 0.0001700514 0.6230364 − 0.4928811

NodeBWCent__R_InfFGTrip Emotional Regulation 0.0001712679 0.4691462 0.7262744

AvPathLength__R_ShoInG Salience 0.0002558495 0.1916472 1.313446

NodeBWCent__L_InfCirIns Somatosensory 0.000298333 0.3661217 0.9073451

NodeBWCent__L_InfFGTrip Emotional Regulation 0.0002452258 0.2790149 1.0876706

NodeBWCent__R_SupFG Somatosensory 0.0003080609 0.2651615 1.1197311

AvPathLength__R_InfFGOpp Emotional Regulation 0.0002563451 0.6090979 0.512767

NodeBWCent__L_SupFS Somatosensory 0.0003189446 0.1007301 1.6546121

AvPathLength__R_OcPo Occipital 0.0003393655 0.5872989 − 0.5442853

AvPathLength__R_Cun Occipital 0.00039095 0.9285999 − 0.0898031

AvPathLength__R_ACirIns Salience 0.0003916695 0.0878444 1.7215257

AvPathLength__L_SupTS Temporal 0.0003220023 0.8840551 0.1461548

AvPathLength__R_TrTs Temporal 0.0003712902 0.2822812 1.0802726

AvPathLength__L_SupPrCs Somatosensory 0.0003569259 0.8959603 0.1310557

AvPathLength__L_InfPrCS Somatosensory 0.000369516 0.6345674 0.4765773

AvPathLength__R_PosVCgG Default Mode Network 0.0003904446 0.4358497 0.7819521

AvPathLength__L_TrFPoG_S Default Mode Network 0.0003353048 0.8599587 − 0.1768227

AvPathLength__L_JS Parietal 0.0004036897 0.5434692 0.6093882

NodeBWCent__L_MTG Default Mode Network 0.0004397223 0.4000983 0.8445812

Continued
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regulation), in addition to the postcentral gyrus, posterior insula, and paracentral lobule (somatosensory) have 
been previously described in multivariate analysis pattern classifiers that are able to differentiate normal weight 
from overweight individuals with a high degree of accuracy23. Only one region of the core reward network, the 
caudate nucleus, emerged as an important, albeit relatively minor, differentiator in our model. Although disrup-
tions in core reward connectivity have been shown to be particularly important in differentiating normal from 
overweight phenotypes23, our results suggest that these disruptions are likely not the most important factors 
in differentiating overweight and obese individuals. Unexpectedly, regions outside of the extended reward net-
work, primarily the default mode network, also emerged as important in differentiating obese from overweight 
individuals. Activity in the default mode network reflects baseline brain function, in addition to spontaneous 
self-reflection45, attention to internal stimuli45, and accounts for up to 80% of the brain’s energy use46. Research 
on the default mode network within the context of obesity is limited; though, our findings are consistent with a 
preclinical mouse model that demonstrates increased default mode network activity in overweight but not lean 
mice47. Taken together, our results suggest that obesity should not necessarily be interpreted as a more extreme 
version of the overweight phenotype, but rather as perhaps a different entity with a unique neuroimaging sig-
nature that is in many ways distinct from the overweight one.

Several amino acid derivatives (N-methylproline [from proline], imidazole propionate [histidine], agmatine 
[arginine], N-acetylisoleucine [isoleucine] and N-butyryl-leucine [leucine]) emerged as important in differen-
tiating obese from overweight individuals. Previous work has linked amino acid and branched-chain amino 
acids in particular to obesity and related insulin resistance in both human and preclinical models, though these 
studies have been primarily performed using serum rather than fecal samples48–51. It is likely that the micro-
biome plays an important role in mediating this relationship; one study showed that mice transplanted with 
the microbiomes of human twin pairs discordant for obesity demonstrated differences in body composition, 
with the microbial communities in the obese mice showing increased metabolism of branched-chain amino 
acids52. Furthermore, a subset of the metabolites that emerged as some of the strongest differentiators between 

Column name Info SVM weight P-value T-value

AvPathLength__L_InfTS Temporal 0.000505792 0.4668332 0.730068

NodeBWCent__L_PRCG​ Somatosensory 0.0004845014 0.0058443 2.8088183

NodeBWCent__L_FMarG_S Executive 0.0005082393 0.2996283 1.0419329

NodeBWCent__R_SupCirInS Salience 0.0005409756 0.2098923 1.2609129

AvPathLength__L_ACirIns Salience 0.0005799921 0.253704 1.1471418

NodeBWCent__R_SupTGLp Temporal 0.0005360867 0.0692834 1.8337069

NodeBWCent__R_CS Somatosensory 0.0005749146 0.732848 0.3421693

NodeBWCent__L_SupTGLp Temporal 0.0005546731 0.6895121 0.4005262

NodeBWCent__L_PrCun Default Mode Network 0.0005835341 0.8516433 0.1874434

NodeBWCent__L_SupOcG Occipital 0.000645764 0.1567469 1.4254113

AvPathLength__R_InfPrCS Somatosensory 0.0006194332 0.4971359 0.6811658

NodeBWCent__L_Tpo Temporal 0.0006079824 0.2851643 1.0737911

AvPathLength__L_InfOcG_S Occipital 0.0006837278 0.049996 1.9808431

AvPathLength__L_PerCaS Emotional Regulation 0.0009624533 0.5916009 0.538023

Table 2.   Brain and metabolites features included in combined support-vector machine model of obesity.

Figure 4.   Receiver operating characteristic curve of support-vector machine model using combined brain and 
metabolite features.
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obese and overweight individuals in our data set are produced exclusively by gut microbes, including imidazole 
propionate53. L-urobilinogen, a metabolite produced in the intestine by bacterial reduction of bilirubin was also 
an important differentiator54. Previous studies have suggested a role for hyperbilirubinemia and obesity with 
respect to blood levels54.

With activity on serotonergic and glutaminergic neurotransmitters, agmatine is one of the handful of metabo-
lites highlighted in our results that has been extensively studied with respect to its role as a neuromodulator55. 
Agmatine is also released from endogenous neurons in the peripheral nervous system and astrocytes in the 
central nervous system as a compensatory, protective mechanism in response to stress and inflammation56. Gut 
agmatine may interact with vagal afferents and contribute to the unique brain-gut signature of the obese and 
overweight phenotype. As many of the other significant metabolites have not been studies within the context of 

Figure 5.   Top brain (A) and metabolite (B) features in combined support-vector machine model of obesity. The 
x-axis represents the brain and metabolite features of interest that contributed the most to the machine learning 
model—the magnitude of contribution is outlined on the y-axis, with a negative weight associated with the 
obese phenotype and a positive weight with the overweight phenotype.
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brain-gut interactions, we cannot conclude if these compounds communicate with the central nervous system 
in some way.

Our study focused on structural connectivity of brain regions and fecal metabolites. Future work may benefit 
from incorporating functional connectivity of brain regions or perhaps pairwise connectivity in characterizing 
key differences between overweight and obese individuals. Although we discussed the metabolites of interest 
within the context of the gut microbiome, we did not explicitly examine gut microbiota signatures (16S rRNA 
gene sequencing data) in this study. Future, more complex, machine learning models may benefit from the addi-
tion of different data sets to deepen our systems-based understanding of obesity and how it may be different from 
the overweight phenotype. We are unable to define the directionality and causality between fecal metabolites 
and alteration in brain connectivity with respect to obesity from this study; however, previous work has sug-
gested bidirectional models for brain-gut-microbiome communication in obesity57. Machine learning tends to 
focus on the variability of features in order to explain the various outcomes. As a result, machine learning can 
eliminate features with low variance. This may not be correct in all situations as sometimes small variations can 
potentially drive large changes in the systems. To some extent, this bias can be eliminated by ensuring that the 
models being built and used are validated by subject matter experts. Although many of the fecal metabolites 
included in this model were not on their own able to differentiate between the overweight and obese pheno-
types, the unique metabolome signature was able to significantly differentiate between the two groups, which 
underscores the impact of a machine learning approach to our systems understanding of obesity, which would 
otherwise not be captured in more traditional, strictly correlational analyses. Despite their predictive accuracy in 
classifying the data, machine learning algorithms cannot always entirely explain the true underlying processes, 
while also arriving at a final predictive model with the best set of features for optimizing accuracy. In this study, 
we differentiated our two groups by BMI; although BMI, which expresses the relationship between height and 
weight is the most widely used measure of obesity. Future studies may consider other measures of obesity such 
as waist–hip ratio or visceral adiposity in order to validate our current study.

To our knowledge, this is the first study to integrate microstructural neuroimaging and fecal metabolite data 
using a machine learning model to understand key differentiators and potential drivers of obese and overweight 
individuals. A growing body of evidence suggests that brain-gut interactions are important in driving the transi-
tion from being normal weight to overweight. Our results suggest that brain-directed signaling may be more 
important in obesity pathophysiology compared to overweight pathophysiology, as our machine learning model 
weighed alterations in brain connectivity as substantially more significant compared to fecal metabolites. This 
exploratory analysis supports previous preclinical and clinical investigations, while also revealing novel insights, 
which will be essential in driving discovery into previously unexplored avenues of brain-gut-microbiome inter-
actions in obesity.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to the fact that 
the data collected are a part of an ongoing study but are available from the corresponding author on reasonable 
request.
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