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1 Introduction 

An Overview of Some Recent 
Machine Learning 

Research and Applications 

Brent A. Metfessel and Paul O'Rorke. 

September 27, 1990 

A number of definitions of learning exist, reflecting the fact that the term "learning" is 
ambiguous. We learn when we memorize an address, acquire tennis playing skills, or master a 
new language but these are very different forms of learning. Definitions of learning range from 
the trite statement that "learning means never making the same mistake twice" to several 
pages of philosophical treatise. The founders of the field of Artificial Intelligence define 
learning pragmatically in terms of improved performance. Marvin Minsky defines learning as 
"making useful changes in our minds." Herb Simon defines it in terms of changes in a system 
which enable it to do the same task more effectively the next time (Simon, 1983). 

Machine Learning (ML) is the subfield of AI exploring computational approaches to learn­
ing. ML researchers adopt a practical point of view and consider learning to refer to a 
change of state of a system such that the system in question can perform a task in a manner 
closer to the optimum performance (e.g., faster or more efficiently). A number of machine 
learning paradigms are presently used or being actively researched. In this brief survey 
we focus on some recent work on symbolic approaches to inductive learning from examples 
and explanation-based learning (EBL) but we also discuss other machine learning research 
paradigms such as connectionist networks and genetic algorithms. 

2 Symbolic Approaches to Learning 

The most prominent class of methods for learning from examples is sometimes called "in­
ductive," "empirical," or "similarity-based learning" (SBL). We will use the convenient label 
SBL even though differences are as important to these .. methods as similarities. SBL is the 
best understood of the machine learning methods, and commercial applications exist. The 
primary application of SBL is in the development of expert systems. 
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2.1 General Considerations 

The "knowledge engineering bottleneck" is a well-known phenomenon in expert system devel­
opment (Feigenbaum, 1979), where domain knowledge to be encoded in the expert system's 
database is obtained by interviews of domain experts by computer specialists called "knowl­
edge engineers." Since they often do not speak the same language, the interviews can go 
on for months. In addition, much of the experts' knowledge is tacit knowledge; that is, the 
expert is not able to articulate or make explicit all that the many yea.rs of experience in 
the domain area has provided him. SBL ameliorates this difficulty by using actual examples 
from the domain area that the machine learns to classify. SBL algorithms typically require a 
collection of positive examples of a concept or category (e.g., a collection of lung cancer cases) 
and a collection of negative cases (e.g., a collection of patient cases without lung cancer but 
with abnormal chest x-rays). The positive examples are required for generalizing the cate­
gories or rules that the machine learns, whereas the negative cases are important for category 
specialization -narrowing the categories down so as to not include the negatives while still 
including the positive cases in the relevant category. The hope is then that future instances 
given as input will be properly categorized. 

Naturally, an inductive learning system needs to have the input and the categories/ concepts 
that it needs to learn given in a machine-readable representation language. There is a trade­
off between flexibility and tractability- more flexible and complex representation languages 
typically require more computer space and time (Clark, 1990). A relatively simple and ef­
ficient way ·of representing examples is in terms of "feature vectors." A medical diagnosis 
example of clinical depression might be represented as a feature vector: 

Exam: mental status 
Rate of Speech: slow 
Mood: depressed 
Affect: blunted 
Hallucinations: None 
Thought content: Moderate suicidal ideation 
Category: + 

Probably the best-known example of inductive learning is the ID3 algorithm developed by J. 
R. Quinlan (Quinlan, 1986b). This algorithm is based on earlier work on CLS, a "Concept 
Learning System" (Hunt, Marin, & Stone, 1966). From feature vectors given to the system, a 
decision tree consistent with the positive and negative examples is constructed. The object of 
ID3 is to obtain the simplest tree that accomplishes this goal, using an information-theoretic 
measure of uncertainty called entropy. The feature that gives the minimum average uncer­
tainty about the class is the one that provides the most information about the class, so it is 
selected for testing at the next tree node. 

The AQ algorithm, developed by R. S. Michalski in the early '70s (Michalski, 1975), builds 
conceptual descriptions which expand outwards from positive examples while being careful 
not to cover cells in the feature space which contain negative examples. AQ learns rules from 
input examples instead of building decision trees. 
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2.2 Evaluations of SBL Methods 

Several studies a.nd evaluations have been done of aspects of individual symbolic concept 
learning algorithms such as ID3. In these studies variants of a single ML method are tested 
on the same data. Quinlan has studied the effects of noise on concept learning (Quinlan, 
1986a), methods for simplifying decision trees (Quinlan, 1987b ), and methods for generating 
production rules from trees (Quinlan, 1987a). For a comparison of different tree pruning 
strategies, see Mingers (1989). 

Comparisons of alternative SBL strategies also exist. A comparison of AQ and ID3 
(O'Rorke, 1982) found that AQ tended to be more expensive computationally but it pro­
duced more comprehensible and more accurate concept descriptions than ID3. A study by 
Shavlik and Mooney found that AQ's tendency to fit the data more closely than ID3 can be a 
liability when the training examples include noise (Mooney, Shavlik, Towell, & Gove, 1989). 

A relatively new inductive algorithm called CN2 aims to "combine the efficiency and ability 
to cope with noisy data of ID3 with the if-then rule form and flexible search strategy of the AQ 
family" (Clark & Niblett, 1989). CN2 outputs a decision list, which is an ordered set of if-then 
rules. In experiments on various domains, CN2 was found to have performance comparable 
(in terms of efficiency and ability to deal with noisy data) to ASSISTANT. Developed by 
I. Kononenko, I. Bratko, and E. Roskar in 1984, ASSISTANT is a descendent of ID3 that 
outputs a decision tree but also has a tree pruning mechanism for processing noisy data. 1 

2.3 Applications of SBL 

Of all the machine learning techniques presently available, SBL is the most fully utilized 
in practical applications. Perhaps the earliest application of ML methods to a knowledge 
engineering task was a comparison by Michalski and Chilausky of rules produced by AQ 
against a hand-coded expert system in the domain of soybean disease diagnosis. Seventeen 
categories of disease were possible. The AQ system was correct 98 percent of the time, whereas 
the expert system was correct only 72 percent of the time (Michalski & Chilausky, 1980). 

The ACLS (Advanced Concept Learning System) based on CLS and ID3 was developed in 
1981 by Intelligent Terminals Limited. ACLS was a UCSD-PASCAL program that produced 
a Pascal conditional expression to be used as a classification rule (Paterson & Niblett, 1982). 
ACLS later led to the development of a number of commercially available inductive learning 
systems including Expert-Ease (1983), EX-TRAN (1984), and RuleMaster (1984). Expert­
Ease, for example, ran on an IBM PC or compatible with at least 128K RAM and a double­
sided/ double-density disk drive (Milman, 1984). According to a flyer distributed by Expert 
Systems, Inc. in 1984, the system cost approximately $2000 and had been purchased by at 
least 300 major corporations including Exxon, General Motors, Miami VA Medical Center 
and General Electric. 

Kinney, Cortada, Seinfeld, and Keck (1984) described a study done in Miami concern­
ing medical patients admitted to a cardiac care unit (CCU) with suspected MI (myocardial 
infarction or "heart attack"). Using six attributes (quality of chest pain, results of a chest 

1 Interestingly, a. Ba.yesia.n classifier, using the independence assumption, did not perform significa.ntly less 
a.ccura.tely tha.n the other algorithms tested. 
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x-ra.y, etc.) used for diagnosis of MI, Expert-Ea.se wa.s given 25 training examples and 50 test 
examples. The patient ca.ses were cla.ssified into one of three groups: acute MI, a.ngina, or 
non-cardiac causes for the chest pain. About 603 of patients admitted to the CCU at this 
center with suspected MI actually had an MI. The decision rule constructed by Expert-Ease 
correctly cla.ssified patients 94 percent of the time ( 4 7 out of 50 correct). This compared quite 
favorably with human physicians, who are often overly cautious (Kinney et al., 1984). 2 

Carter and Catlett ( 1987) investigated ID3 as applied to a.ssessing whether credit card ap­
plications should be accepted or rejected. The decision was based on certain risk parameters, 
such a.s "amount of money in the bank", "length of time at the present address", etc. This is a 
difficult domain even for humans, and the researchers note that depending on experience and 
other factors, a.ssessments are often inconsistent between assessors a.s well as time-consuming. 
In the investigation, there were 690 credit applications available, 340 of which were used 
a.s ID3's training set. After approximately 30 decision trees were built, 150 examples were 
provided for each decision tree in a testing paradigm. As a result of the testing, attributes, 
selection criteria, and other parameters were chosen for the performance run (200 samples). 
During the performance run, both the existing method and ID3 were compared and it was 
noted from a one sided t-test that the differences were not significant (both categorized the 
applications with about an 80 percent success rate). However, the C4 algorithm, an extension 
of ID3 with the addition of a pruning algorithm that collapses subtrees into leaves, performed 
with about an 85 percent success rate (noted to be statistically significant when compared to 
the existing method). Other remarkable aspects of this study included the high number of 
examples needed for SBL to properly operate, a.s well a.s the difficulty that was experienced 
with cutoff points for attributes with numeric values. 

Carter and Catlett reviewed other commercial uses of inductive learning packages, in­
cluding fault diagnosis for printed circuit boards (ITT Europe) and assessment of engine 
performance of NASA's space shuttle. Westinghouse Electric's nuclear fuel division used in­
ductive learning techniques to improve a process control application, resulting in at least 10 
million dollars per year in additional revenue (Carter et al., 1987). 

3 Explanation-Based Learning 

3.1 General Considerations 

Mitchell et al. give a concise summary of EBL when they state that "the characteristic 
common to these methods is that their ability to generalize from a single example follows 
from their ability to explain why the training example is a member of the concept being 
learned" (Mitchell, Keller, & Kedar-Cabelli, 1986). The way EBL generates an explanation 
of an example from its domain theory is through unification, computing the most general 
unifier that allows the domain knowledge to be connected together in a general way. The 
explanations are usually deductive consequences of inference rules provided prior to learning 

2 Despite such favorable results it should be noted that SBL and expert systems a.re not widely used in 
medicine with the exception of a few teaching hospitals. This is likely due to the conservatism of the medical 
community as a. whole a.nd the brittleness of expert systems in genera.I (i.e., expert systems suffer abrupt 
deterioration in accuracy when ta.ken outside their relatively narrow domain of expertise). 
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(DeJong & Mooney, 1986). DeJong (1988) gives an excellent introduction to EBL. Overviews 
of some current research issues in explanation-based learning may be found in Minton (1990) 
and in Holder (1990). 

3.2 Variants of EBL 

A number of versions of EBL exist. Some important variants are described below. 

3.2.1 Learning Apprentice Systems 

One type of EBL-based system is the learning apprentice. The knowledge base here is in­
teractive, and the machine learns through observation and analysis of the problem-solving 
methods that the users engage in during their normal utilization of the machine. An early 
study of EBL in an apprenticeship context was Paul O'Rorke's work on the "Mathematician's 
Apprentice" project (O'Rorke, 1986b ). O'Rorke's system, MA, used explanation-based ac­
quisition of schemata (knowledge collections such as frames or scripts). MA starts with very 
limited problem-solving ability, observes the teacher's behavior, explains why the behavior is 
successful, and learns new schemata as well as rules governing their use. 

A more applications oriented system known as LEAP (Mitchell, Mahadevan, & Steinberg, 
1986) was implemented as an augmentation to VEXED, a knowledge-based assistant in VLSI 
design. From training examples as well as knowledge previously encoded in the knowledge 
base, LEAP used explanation-based generalization to come up with general rules. Training 
examples provided by the user are tailored to focus mainly on refining knowledge discovered 
missing from the knowledge base. 

The PRODIGY system (Carbonell, Knoblock, & Minton, 1989), developed at Carnegie 
Mellon University, is an integrated learning apprentice, problem-solver and planner. The 
system has been tested in a number of domains including blocks world, matrix multiplication, 
robotic planning, and machine-shop scheduling. The EBL module of PRODIGY develops 
control rules (rules controlling search) from a problem-solving trace, which consists of the 
entire search tree for the solution, including failed attempts. PRODIGY is able to learn 
both from a successful search path and from unsuccessful ones (the latter paths leading to 
rejection rules, used to filter nonviable solution paths). After a control rule is developed from 
an example, empirical utility tests are run during subsequent problem-solving to determine if 
the rule should be kept active. In other words, a rule is kept only if the cumulative savings 
in search time significantly outweighs the cumulative cost (in time) that it takes to match 
the rule. In addition, a user-interface allows dialog with a teacher (expert user), allowing the 
teacher to evalu~te anq offer guidance to the system's learning and problem-solving. If the 
system has difficulty with a problem, it is able to point out where the difficulty occurs, thus 
allowing the teacher to communicate with the system. This may involve communicating the 
necessary domain knowledge for the machine to come up with a solution, or even providing the 
solution directly (i.e., providing an operator sequence that solves the problem or subproblem). 
PRODIGY may also ask the teacher for reasons why the methods/he provided is more efficient 
or applicable than other solutions which might seem to apply. 
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3.2.2 Learning by Understanding Explanations 

An example of the LBUE paradigm was developed by Martin and Redmond for causal mod­
eling. Their system, EDSEL, is an expert diagnostic system for automobiles developed on 
a causal model. They develop a scenario where a car has stalled and attempts are made to 
diagnose the problem. Assume the system is missing some causal relationships and backward 
chaining is attempted: 

(not( run engine)) .._ 
(not( spin crankshaft)) .._ 

(not( down-stroke cylinder)) <­

(not( combustion cylinder)) 

The machine could not reason beyond this level due to an incomplete causal model. Then 
the authors had a fictitious mechanic hypothesize that a stuck butterfly valve is the cause. 
Forward chaining is attempted: 

(not(movable butterfly-valve)) -
(low( flow air carburetor)) 

Once again, the reasoning goes no farther and the forward and backward chains do not 
meet. However, the mechanic then puts in the explanation that low carburetor air fl.ow leads 
to a low air/gas mixture which causes difficulty with cylinder combustion. The forward and 
backward chains meet and the following explanation results: 

(not(movable butterfly-valve)) -
(low( fl.ow air carburetor)) -

(low( mix air gas)) -
(not( combustion cylinder)) -

(not( down-stroke cylinder)) -
(not( spin crankshaft)) -

(not (run engine)) 

When collapsed, this causal relationship becomes: 

(not(movable butterfly-valve)) - (not(run engine)) 
This new explanation· is then added to the domain knowledge of the machine (Martin & 
Redmond, 1989). 

3.2.3 Generalization to N 

One of the goals of explanation-based learning is to filter out extraneous details of examples so 
that learning can focus on causally relevant essentials. Unfortunately, the original techniques 
(implemented in a domain-independent fashion in systems such as EGGS (Mooney & Ben-
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nett, 1986), PROLOG-EBG (Kedar-Cabelli & McCarty, 1987), and PROLEARN (Prieditis & 
·Mostow, 1987)) fail to filter out all the irrelevant details when applied to examples involving 
recursive or iterative concepts. Since repetition and recursion occur in important domains 
such as programming and circuit design, researchers have begun to study extensions of EBL 
designed to deal with recursion. 

3.3 Evaluations of Explanation-Based Learning 

Explanation-based learning techniques for improving a number of different performance el­
ements have been evaluated. For example, O'Rorke {1986a) described EBL experiments on 
logical problem solvers. In his award winning paper at AAAI-87, Keller (1987) described 
an EBL system for learning in the context of symbolic integration problem solving. Minton 
(1988) described results of empirical tests of EBL methods for learning search control rules 
in the context of GPS-based planning and scheduling. Mooney (1987) described a general 
EBL system and its application to text comprehension and planning. Shavlik (1988) studied 
EBL in the context of physical reasoning and planning tasks. Segre {1988) described EBL for 
robotic manipulators. 

Experimental analyses of learning problem solvers have demonstrated that the manner of 
integration is important. In experiments comparing rote learning and EBL, O'Rorke found 
that simply plugging a learning method into a performance system in the obvious way may 
lead to anomalous results. An experimental analysis found that an initial problem solver had 
control features that hampered both rote and explanation-based learning (O'Rorke, 1989). 
Since there can be subtle, unanticipated interactions between performance and learning ele­
ments, it is important to integrate them carefully so that learning maximizes improvements 
in performance. 

Early research on EBL made the implicit assumption that EBL was always a good idea. 
However, experiments have shown that EBL sometimes hurts performance rather than im­
proving it (Minton, 1988). The "utility problem" revolves around the question of what to learn 
and when to use explanation-based learning so that overall performance improves. Mooney 
et al. (1989) attempted to make generalizations reconciling earlier (seemingly contradictory) 
results. 

A recent analysis of PRODIGY /EBL (Etzioni, 1990) indicated that standard EBL can 
cause performance to deteriorate in domains where explanations of both success and fail­
ure are recursive but a static evaluation technique can be used to learn search control rules 
avoiding the recursion. Alternatively, Shavlik (1990) described a method for doing EBL in re­
cursive domains a.nd reported on encouraging experimental results of applying a system called 
BAGGER2 to blocks-world planning problems. Letovsky described a.n alternative approach 
for learning recursive concepts using structural induction (Letovsky, 1990). Subramanian 
analyzed a cost model to determine when learning recursive concepts is likely to "pay off" 
(Subramanian & Feldman, 1990). Bhatnagar and Mostow described an adaptive planner 
called FS2 that performed well in recursive domains (Bhatnagar & Mostow, 1990). 
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3.4 Applications of EBL 

Most studies of EBL have been performed using unrealistic domain theories, e.g., "micro­
worlds" like blocks-world or STRIPS-world. EBL has not yet progressed to the level of 
practical applicability attained by SBL. While still controversial (Davis, 1990; Keller, 1990), 
initial results of attempts to apply variants of EBL to relatively realistic domains such as 
model-based diagnosis (El Fattah & O'Rorke, 1990; Resnick, 1989), design (Blumenthal, 
1990; Kellogg et al., 1989), and scheduling (Eskey & Zweben, 1990) are encouraging. 

4 Connectionist Approaches to Learning 

Connectionist methods, "parallel distributed processing" (PDP) (McClelland & Rumelhart, 
1988), and neural network methods involve highly parallelized networks of computational 
units somewhat analogous to a biological network of neurons, with each "neuron" being able 
to excite (through positive activation) or inhibit (through negative activation) other units 
to which it is connected. The neurons, or units, within the network are usually arranged 
in a number of layers, including an "input" layer and an "output" layer. In between these 
two layers are "hidden layers". Generally, the input layer is activated first by a stimulus, 
with resulting activation spreading to other network units until the output layer becomes 
activated. It usually takes many cycles of spreading activation for the network to reach a 
stable state, with each unit having a numeric weight (activation level). This weight can be 
positive (representing excitatory activation) or negative (representing inhibitory activation) 
(Ford, 1989). 

To control the spread of activation, algorithms such as backpropagation and Boltzman 
learning are used. Although backpropagation is the faster of the two algorithms and used 
more commonly, the required continuous error feedback in backpropagation makes it too 
slow for many practical applications, and thus new research areas such as "unsupervised 
backpropagation" and "generative backpropagation" have emerged (Fayyad, Laird, & Irani, 
1989). 

A neural network system does not need predetermined rules to exhibit learning phenom­
ena. Data (generally in the form of examples and their classifications) is provided to the 
input layer during a training session and activation spreads throughout the system. During 
the activation cycles, the hidden layer units act as feature detectors; that is, each neuron unit 
will look for a certain feature (or collection of features) and give a strong response when that 
pattern is found. The output layer then constructs its output pattern based on the feature 
patterns that the hidden layer has detected. The purpose of the network training session is 
to generate a set of feature detectors in the hidden layer which results in a consistent and 
appropriate output layer response. Although neural networks can learn without any previous 
domain knowledge, better and faster training can often be achieved when a preset bias can 
be set up withi·n the network, the bias being based on the domain features that an expert 
thinks are more important (Caudill, 1989). Once the training is complete, the network can 
then process novel examples. 
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5 Genetic Algorithms 

Genetic algorithms a.re modeled on biological evolutionary systems. The environment is 
represented as strings of symbols, most commonly binary strings of 0 and 1. Ea.ch point 
in the problem space is represented by a unique string of these symbols. These strings are 
the "genetic material" (chromosomes) with each 0 or 1 symbol being an allele. The system 
maintains a certain population of such strings, and uses as feedback a fitness measure (or 
process performance measure). These strings compete against each other, recombine with 
each other, and have a. finite chance of having the value of an allele change (mutate). Those 
chromosomes with the highest fitness factor have the most chance of creating offspring (time 
is also measured in intervals known as generations). The ha.sic cycle is a.s follows: first, the 
candidates from the existing solutions are partitioned, with the highest fitness candidates 
selected out for reproduction; next, pairs of chromosomes are randomly chosen for crossover 
mating (exchanging genes with each other); then the mutation operator is applied, and the 
weakest performers are eliminated using the fitness function. The process is then iterated 
(Austin, 1990). 

6 Comparison 

Overall, it appears that SBL methods are noise tolerant and work well in domains where not 
much theory is known. However, they typically require large numbers of examples to ensure 
good performance. 

One advantage of EBL is that the explanation, often in the form of a proof tree, justifies 
the generalization made on the example in terms of the domain theory tha.t the machine uses. 
Thus, unlike SBL, EBL does not need the hefty amount of input data. tha.t SBL often must 
ha.ve. The domain theory and the ability to explain examples provided to EBL systems ca.n 
substitute for large numbers of examples. However, EBL does not enable the machine to 
learn anything fundamentally new. There are no "inductive leaps" involved in EBL. Rather, 
EBL is used to learn to solve problems faster. 

EBL is sensitive to imperfections in the domain theory. H the domain theory is incorrect, 
the justifications provided by explanations may be false. H the domain theory is incomplete, 
the EBL system may be unable to provide an explanation and unable to learn from some 
experiences. A third difficulty is the intractability problem, where computer space or time 
may be inadequate to develop an explanation (which might occur in very large or very complex 
domain theory spaces). Such imperfections are common in complex, real world domains such 
as medicine. EBL is most useful when the domain can be well-formalized. Since many domains 
can be partly formalized but there are not enough examples to ensure good results with SBL, 
many researchers are working on hybrid SBL/EBL algorithms. Previously encoded domain 
knowledge could enable SBL algorithms to efficiently generate decision rules less subject to 
inductive errors·, whereas the additional examples provided by SBL could make up for some 
incompleteness in the domain theory thereby enhancing the performance of EBL. 

The advantages of neural networks include massive parallelism and the ability to perform 
well in the presence of incomplete, partly incorrect, or conflicting data. These networks are 
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also interesting in that they offer models of biological neural systems, and thus neural network 
designs may be able to take advantage of new findings in neuroscience. Neural nets have been 
most successful in perceptual problems such as character-recognition, as well as in other tasks 
where the preexisting domain knowiedge is sparse. On the other hand, neural nets can take 
a long time to reach stability. See Fahlman ( 1988) for an empirical study of the convergence 
speed of backpropagation learning. Several researchers feel that connectionist methods are 
in general much slower than other well-established symbolic learning methods such as ID3. 
Furthermore, once a neural system has reached stability (i.e., is "tuned"), it becomes very 
difficult to track down the reasons for its success on some cases and its failure on others. As 
for the algorithms that run the network, a hill-climbing method is often used, which can lead 
to premature halting at local maxima or minima (Buchanan, 1989). See Dietterich, Hild, 
and Bakiri (1990) and Mooney et al. (1989) for comparisons of connectionist and symbolic 
approaches to learning. 

Genetic algorithms are most useful when the search space is poorly understood, large 
and complex. 500 to 1000 samples may be needed in order to properly evaluate the genetic 
structures for fitness, and thus are not appropriate for domains where large samples cannot 
be found. In this respect, genetic algorithms have requirements similar to those of SBL. The 
purpose of the fitness measure is then to select the best-performing structures, which means 
that the domain must not be so poorly understood that a fitness evaluation function cannot 
be constructed (e.g., desired goal states must be clearly known). It may be possible to utilize 
a hybrid system of SBL and genetic algorithms; that is, learning a fitness evaluation scheme 
through SBL, then utilizing the scheme via a genetic algorithm. Genetic algorithms can 
learn quite quickly-significant improvements in fitness have been seen after 10 generations. 
Often the systems employing genetic algorithms are separated into two components-a genetic 
algorithm-based learning component and a task component with which to effect a behavior 
change. Genetic algorithms have been used to change parameters, data structures, and even 
executable code (DeJong, 1988). 
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TABLE OF MACHINE LEARNING METHODS 

ML Method Advantages Disadvantages 
Similarity-Based -Little or no knowledge -Often needs much data 
Learning of domain theory needed in the form of examples 

-Can handle noisy domains -Currently suited more for 
classification than for 

-Has shown practical problem-solving 
value 

Explanation-Based -Uses knowledge -Sensitive to imperfections 
Learning effectively in domain theory 

(e.g., incorrectness) 
-Needs few examples 
(often only one) -Does not learn 

"new information" 
-Can make a slow problem 
solver run faster -Not demonstrated to be 

practically useful 
as yet 

Genetic Algorithms -Work well in large, -Need large populations 
complex and ill-defined 
search spaces. -Computationally expensive 

Neural Networks -Can handle noisy and -Slow to reach stability 
conflicting data 

-Hill climbing 
-Highly parallel subject to errors 
processing 

-Does not need -Difficult to understand 
domain knowledge reasons for success and 

failure 
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7 Conclusion 

This report is an executive summary of recent research on similarity-based learning, explanation­
based learning, connectionist approaches to learning, and genetic algorithms. No attempt was 
made to make this a comprehensive survey. Instead, we have attempted to give pointers to 
more complete treatments of specific topics. We have attempted to say something about 
the conditions of applicability of various ma.chine learning methods and we have attempted 
to characterize current knowledge about the advantages and disadvantages of competing ap­
proaches. It should be noted, however, that research on identifying strengths and weaknesses 
of ML methods is still in its infancy; new results are appearing all the time and occasionally 
these lead to changes in the interpretation of the results of previous experimental comparisons. 

Progress is being made on "hybrid" algorithms; that is, combinations of two or three 
machine learning techniques in one system. It is hoped that hybrid systems will be able to 
exploit the advantages of complementary ML methods while avoiding their disadvantages. 
An example of a hybrid system integrating EBL and connectionist learning is described in 
Towell, Shavlik, and Noordewier ( 1990). For a recent example of an integration of EBL and 
SBL, see Vilain, Katon, and Chase (1990). Bergadano et al. describe an integration of EBL 
and SBL applied to real world vibration analysis problems in Bergadano, Giordana, Saitta, 
Marchi, and Brancadori (1990). 
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