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Abstract

Robust Communication in Vehicular Ad Hoc Networks

by

Mark Christopher Johnson

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Chair

The development of intelligent transportation systems is one of the most important strate-
gies for making roads safer and more efficient. The key technology underpinning all such
systems, from cooperative safety systems to electronic tolling, is wireless communications.
Vehicles must be able to communicate with each other, and with fixed infrastructure, in real
time. One promising architecture involves forming an ad hoc network among the vehicles
and taking advantage of the peer-to-peer connectivity to reduce infrastructure costs.

In this dissertation, we consider the design and analysis of medium access control and
network layer protocols for vehicular ad hoc networks. In particular, we examine the problem
of distributing content over many hops from a source to a destination. The fundamental
challenge in such systems is the inability of the vehicles to coordinate with each other.
Because of the high frequency at which vehicles enter and exit the road, and the fact that
vehicles may be moving at widely varying speeds, the topology is continuously changing.
Therefore, centralized scheduling of transmissions to avoid collisions and global routing of
packets is either technically infeasible or prohibitively expensive. We propose instead a class
of uncoordinated protocols, based on randomized channel access and network coding. The
key idea behind the coding is for the vehicles to transmit random combinations of all the
packets that they have received, instead of simply forwarding packets. This scheme does
not require link level feedback, and thus vehicles do not need to track the identities of their
current neighbors.

We first consider a minimally coordinated protocol, where the vehicles on a road are
partitioned into spatial blocks. The block structure is used to funnel waves of data down
the road, while the vehicles within each block randomly contend with each other for the
channel. We show that when the vehicles use network coding in this scheme, the end-to-
end throughput is constant, as long as the number of blocks in the network does not grow
exponentially in the vehicle density. Network coding allows for the reliable transport of data
over many hops at the same rate at which data could be sent over a single hop.

Then we consider a completely uncoordinated protocol, which does not even require
the assignment of vehicles to spatial blocks. We begin by providing a general algorithm for
computing the throughput of an arbitrary network using such a protocol. The main technical
contribution is to account for the fact that intermediate nodes may temporarily not have
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any new packets to transmit to their neighbors, due to the random channel access. We prove
that the throughput of this wireless network is equal to the throughput of an equivalent
wired network, despite the randomized medium access strategy. This result has application
in a variety of other contexts, where it is often assumed for tractability that relays always
have data when they use the channel.

We then apply this result to the problem of finding the throughput in an uncoordinated
vehicular ad hoc network. In a congested highway, where the connectivity graph is homoge-
neous, a constant throughput can be provided to receivers that are located at an arbitrary
distance from the source. In essence, every vehicle can be thought of as a digital repeater,
despite the packet losses due to collisions.
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Chapter 1

Introduction

The design and deployment of safe and efficient transportation networks is one of the
most important large-scale engineering challenges of the 21st century. In the US alone, there
are over 33,000 traffic fatalities per year, according to data from the National Highway Safety
Administration [1]. Furthermore, the US Bureau of Transportation Statistics reports that in
2007 drivers spent a total of 4.2 billion hours delayed in traffic [2]. Not only does this time
represent a loss in productivity, but it also significantly increases fuel consumption and air
pollution. In the near future these problems will likely increase in magnitude, as the number
of vehicles on the road worldwide is projected to double within the next decade [3].

One of the many strategies for making highways safer and less congested has been the
development of intelligent transportation systems (ITS), the incorporation of information
and communication technologies in vehicles and transport infrastructure. There are a large
and growing number of systems, targeting a wide range of applications, that fall under the
heading of ITS. For example, cooperative active safety systems enable numerous applica-
tions that can mitigate collisions and traffic fatalities, such a collision warning, emergency
electronic brake lights, and slow/stopped vehicle alerts [4, 5]. Two systems have recently
been developed which use smartphones in vehicles to estimate traffic conditions and travel
times more accurately than by using existing roadside infrastructure [6, 7]. This traffic data
can then be relayed to drivers, allowing them to plan trips more effectively, and also used by
traffic management centers to plan long term upgrades to the highway system. In a similar
vein, the development of electronic tolling mechanisms will enable high occupancy toll lanes
and congestion pricing, which can potentially reduce traffic congestion at peak hours [8]. The
most forward looking ITS projects have even tested completely automated vehicles, which
drive themselves without input from a human [9]. Such automated highway systems have
long been known to increase the capacity of roads by as much as four times [10].

The common technology underlying all of these disparate systems is wireless communi-
cation. In each application, the vehicles on the road must be able to exchange information
either with each other or with the fixed infrastructure units along the roadside. All real
time intelligent transportation systems require a wireless link which can provide a sufficient
throughput, delay, and reliability to each vehicle.

A variety of architectures have been proposed for providing wireless connectivity to vehi-
cles. One general approach is to extend legacy networks by placing devices in vehicles that
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can utilize existing infrastructure. Examples include using cellular networks to collect traffic
data generated by smartphones [11], and opportunistically making use of open WiFi access
points to deliver data to vehicles [12]. These networks are all based on a single hop topology,
as shown in Figure 1.1. The vehicles use the wireless channel to communicate directly with
one or more base stations, which may be linked by a backend wired network.

Figure 1.1: A single hop vehicular network. The vehicles communicate only with the fixed
base stations along the roadside.

A second general approach, in contrast, involves forming an ad hoc network among
the vehicles on the road, as shown in Figure 1.2. In this paradigm, vehicles communicate
directly with each other, as opposed to communicating only with fixed access points [13, 14].
Vehicular ad hoc networks (VANETs) are especially well suited for safety applications, where
low latency is the most important system requirement. The development of VANETs was
fostered by the decision of the FCC to allocate 75 MHz of spectrum in the 5.9 GHz band
for use by Dedicated Short Range Communication (DSRC) systems, which is intended to
“improve traveler safety, decrease traffic congestion, facilitate the reduction of air pollution,
and help to conserve vital fossil fuels” [15]. The availability of this band has prompted
research and development of a variety of ITS services that could make use of it, targeting
applications beyond just vehicle safety.

In this dissertation, we consider the problem of designing communication protocols for
vehicular ad hoc networks. In particular, we focus on the medium access control (MAC) and
network layers of the protocol stack. The fundamental characteristic which distinguishes
VANETs from other wireless networks, even other ad hoc systems such as sensor networks,
is the high mobility of the individual nodes. The network topology changes at a very high
rate, due to vehicles entering and exiting the road as well as the fact that vehicles often travel
at very different speeds. The result is that the coordination of transmissions and routing of
packets is costly and difficult. In fact, vehicles may not even know their current neighbors.
While neighbor discovery and self-organization in ad hoc networks are technically feasible
in static scenarios [16, 17], they become much more challenging with high node mobility.



3

Figure 1.2: A vehicular ad hoc network. The vehicles communicate directly with each other,
without requiring a base station to organize and manage the network.

Repeatedly executing such algorithms, each time the topology of the VANET changes, would
quickly consume a large portion of the system resources.

We propose instead the use of simple uncoordinated protocols for VANETs. The key tool
is to use randomization to combat the fact that no single vehicle or infrastructure element has
knowledge of the global network topology. Thus, each vehicle randomly and independently
accesses the channel, instead of attempting to schedule transmissions to avoid collisions and
optimally reuse the available bandwidth. The only assumption is that vehicles are time
synchronized, enabling the use of a slotted protocol. Similarly, instead of utilizing global
routing tables, which require significant resources to initiate and maintain in a dynamic
network, each node randomly mixes the packets that it transmits. This protocol does not
require any link level feedback as to which packets are received and which are lost due to
collisions.

We are primarily concerned with analyzing the performance provided by such uncoordi-
nated protocols in vehicular ad hoc networks. We present a general method for computing
the throughput in networks using random channel access and random linear network coding,
and then apply it to a model of the topology of a VANET. Our first main contribution shows
that on a congested highway, which can be modeled by a dense network with homogeneous
connectivity, the throughput is independent of the number of hops between the source and
destination. Thus, the network can provide a constant throughput over any distance, so long
as there is the same density of vehicles. With a very simple distributed MAC protocol, the
throughput is about 45% of the throughput in a fully coordinated network. Thus, the “cost
of uncoordination” is a loss in performance of about a factor of 2. By using a more complex
MAC protocol, such as by incorporating carrier sensing, this cost can be further reduced.

The intuition behind this result is that network coding, the mixing of packets at interme-
diate nodes, makes the uncoordinated network robust against packet losses. Without coding,
in contrast, the throughput would degrade with distance due to the inability to coordinate
among nodes. In effect, each vehicle functions as a digital repeater.

In the course of studying the throughput of uncoordinated networks, we address the
problem of starvation, the possibility that intermediate nodes in a multihop network may
temporarily not have any new information because of the random ordering of transmissions.
We then use queueing theory to demonstrate our second main contribution, that starvation
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does not affect the end-to-end throughput. This result has application in a number of fields
extending beyond vehicular networks. In particular, it is relevant to the study of CSMA
networks, where it is often assumed for analytic tractability that all nodes are in a saturated
state, meaning that they always have new information to transmit.

This dissertation is organized as follows. In Chapter 2, we give an explicit formulation of
the multihop communication problem that we will study, and discuss the uncoordinated MAC
and network layer protocols that we will apply to this problem. In Chapter 3 we propose a
spatially synchronized protocol for multihop communication in VANETs, which requires a
minimum level of coordination among the vehicles to implement. The goal in this chapter
is to explore the tradeoff between coordination and performance, by studying a protocol
with significant randomization but still a small degree of coordination. It also provides a
benchmark, against which we can then compare a completely uncoordinated protocol. In
Chapter 4 we present a general method for computing the end-to-end throughput of multihop
networks using an uncoordinated MAC protocol and network coding. Then in Chapter 5 we
use this algorithm to calculate the throughput in an uncoordinated VANET. We conclude
the dissertation in Chapter 6 with a discussion of future work.
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Chapter 2

Multihop Content Distribution in

Vehicular Ad Hoc Networks

In this dissertation, we focus on multihop content distribution in vehicular ad hoc net-
works. There are two main features of this problem which distinguish it from other VANET
communication problems. The first is that data must be transmitted over large distances,
and thus a multihop communication protocol will be used. There are several scenarios where
this is true. Clearly, one example is when the source and destination are separated by such
a large distance that single hop communication is not possible. A second example is when
limitations on the transmit power make it necessary to relay data over multiple hops. We
can imagine an emergent service being deployed in unlicensed bands with strict power limi-
tations, as opposed to purchasing licensed spectrum where it might be possible to transmit
data directly from source to destination.

The second unique feature is that a relatively large amount of data must be sent, and
therefore it must be divided into numerous packets. One of the key results of this dissertation
will be to show that the data can be distributed over many hops without a loss in perfor-
mance. There are a variety of applications where a large volume of data must be delivered
to vehicles on a road. As one example, we consider applications where the VANET is being
used to distribute data that is meaningful to drivers of vehicles. For example, the California
Department of Transportation has cameras placed near bridges and freeway interchanges in
the Bay Area [18]. We could use the vehicular network to distribute live video from such
cameras to vehicles, so drivers can make decisions about which road to take or whether to
delay their trip. Similarly, we could distribute a real-time map showing the average speeds
on the roads in a metropolitan area, similar to the traffic map provided by Google maps.
As a second general class of applications, we can consider the vehicular network to be a
backbone which is used to distribute data that is independent of the fact that the network is
formed on a highway. In the realm of entertainment, for example, we could use the multihop
network to stream a television show which passengers in the vehicles would watch during
their trip.

In order to situate this multihop content distribution problem within the larger field
of vehicular networking, we briefly compare it to safety applications, which are one of the
technologies driving the deployment of VANETs. In safety systems, the data is usually small
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enough to be contained in a single packet, for example a warning that a vehicle is braking
sharply or changing lanes. In addition, safety messages are usually only relevant to vehicles
that are near the source. For example, when a vehicle changes lanes, only the vehicles in the
adjacent lane which are in the driver’s blind spot need be warned. Thus, safety messages
only need be transmitted over a small number of hops, if not just a single hop. Due to
these considerations, it suffices to flood the safety messages over the region where they are
relevant, and to use repetition coding to combat channel losses. For this class of applications,
there is little benefit to using the more powerful coding strategies that are examined in this
dissertation.

The rest of this chapter is organized as follows. In Section 2.1 we formulate the multihop
communication problem. In Sections 2.2 and 2.3, we discuss the MAC and network layer
protocols, respectively, that will be used in subsequent chapters to design a scheme for
multihop VANET communication. In particular, in Section 2.3 we provide background
material on network coding, which is the key component of our solution. In Section 2.4 we
review some related work on content distribution in VANETs.

2.1 Multihop Networks

We will begin by considering a unicast communication problem, where a fixed base station
wants to use the VANET to send data to a destination vehicle that is far down the road,
as illustrated in Figure 2.1. We will also refer to this base station as an infostation, to
emphasize that it is the source of the data, in contrast to cellular telephone networks where
one of the mobile devices is the source.

Figure 2.1: We consider a unicast communication problem in a multihop wireless vehicular
ad hoc network.

We make several simplifying assumptions. Primarily, we assume throughout this disser-
tation that all vehicles use the same transmit power and thus have a common transmission
range R meters. We also assume that the physical layer is modeled by the Gupta and Ku-
mar protocol model for packet reception [19]. In that model, a vehicle can receive packets
transmitted by other vehicles that are within a distance R of itself, but cannot receive any
packets transmitted by vehicles further than a distance R from itself. If two vehicles within
a distance R of the receiver transmit at the same time, the receiver hears a collision and
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neither packet can be decoded. In the following chapters, we will describe various models of
the spatial distribution of vehicles in more detail. For now, it suffices that we will assume
that there are no gaps longer than R between adjacent vehicles, and therefore there are no
disconnected components of the graph.

We also assume here that the vehicles and base stations use omnidirectional antennas. A
more advanced system could improve the throughput by using directional antennas. Even
placing a relatively simple two antenna array at each vehicle could reduce interference by
focusing the radiated power in the direction of the destination. The analysis of a VANET
with directional antennas is left for future work. Finally, all packets in the network will have
a fixed length.

As discussed in Chapter 1, the most important property of a VANET is that centralized
coordination and control is either extremely expensive or technically infeasible. For this
reason, we will design distributed MAC and network layer protocols for this problem.

2.2 MAC Layer Protocols

The vehicles cannot coordinate when accessing the channel, due to the lack of knowledge
of the topology. Instead, we will utilize randomized MAC protocols, such as Aloha [20] and
carrier sense multiple access [21] based schemes.

2.2.1 Slotted Aloha

The slotted Aloha protocol was originally proposed for use in fully connected computer
networks [20]. The basic idea is that nodes access the common communication channel in-
dependently of one another. Whenever a terminal has data to send, it transmits a packet
in the next time slot. This protocol can be readily adapted to wireless vehicular networks.
Time is partitioned into slots, and vehicles randomly choose to either transmit or receive in
each slot. Vehicle i will transmit a packet in every time slot with probability pi, independent
of all other vehicles and all other time slots, and with probability (1− pi) will not transmit.
Whenever a node does not transmit, it attempts to receive a packet. If exactly one neigh-
boring vehicle within its transmission range is transmitting, then that packet is successfully
demodulated and decoded. If more than one neighbor transmits, the vehicle hears a collision
and is unable to decode any of the transmitted packets.

This protocol requires a very minor degree of coordination, because all vehicles must
have access to a common reference clock so that the time slot boundaries are synchronized.
This could be implemented, for example, by placing a GPS receiver in each vehicle, which
gives them access to a universal time basis. Alternatively, a single high-power transmitter
could broadcast beacons on an auxiliary channel. Since this transmitter is only demarcating
the boundaries of the time slots, and not communicating information, only a very small
bandwidth would be required.
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2.2.2 Unslotted Aloha

The unslotted Aloha protocol for computer networks is similar to slotted Aloha, except
that the terminals now transmit each packet immediately after it is generated, instead of
waiting until the beginning of the next time slot. Thus, the transmission times are now
asynchronous. When two terminals transmit, the packets may partially overlap, which also
results in a collision and loss of information. In slotted Aloha, on the other hand, all
nodes align their transmissions with the same slot boundaries, and therefore packets either
completely overlap in time or are received without collision.

In the context of wireless VANETs, we will use unslotted Aloha to refer to a protocol
where each vehicle independently chooses to either transmit or receive in every time slot, but
the vehicles do not have access to a common reference clock. Each vehicle implements the
slotted Aloha protocol described in the previous section, but the slot boundaries are shifted
by a random offset. In this case, transmitted packets can partially overlap, just as in the
unslotted Aloha protocol from computer networking.

2.2.3 Carrier-Sense MAC

In Aloha-style protocols, many packets are corrupted by collisions, since neighboring
nodes frequently transmit at the same time. The performance can be improved, without
requiring coordinated scheduling, by having each vehicle check whether the channel is in use
before transmitting. When a node chooses to transmit, it will first sense the channel. If the
channel is free, it proceeds with its transmission. On the other hand, if the channel is busy,
then the vehicle will back-off by a random amount of time before trying to transmit again.
The design of carrier sense multiple access (CSMA) networks is a very active research area,
with substantial work on optimizing the channel access and back-off parameters [22, 23, 24].

While carrier sensing can mitigate the losses inherent to Aloha protocols, collisions may
still occur due to the hidden node problem. This occurs when two transmitters do not sense
each other’s transmissions, but a receiver is within range of both of them. Thus, the two
transmitters may decide to transmit concurrently, which results in the receiver hearing a
collision. However, recent work has shown that any network can be made hidden node-free,
by adjusting the carrier sensing range to be large enough in proportion to the transmission
range1 [25].

We also note that more advanced carrier-sense protocols often include collision avoidance
mechanisms. In one standard scheme, a transmitter sends a request to send (RTS) packet
before transmitting. If the receiver hears the RTS packet, it replies with a clear to send
(CTS) packet. The transmitter only begins to transmit when it receives the CTS packet. In
this dissertation, we do not consider the use of such collision avoidance protocols for several
reasons. First, our goal is to show that a significant throughput can be achieved with very
simple distributed protocols. Second, in Chapter 4 we will consider scenarios where vehicles

1This is true when there is a line of sight path between all pairs of nodes, and the hidden node problem
occurs due to propagation losses. If there are obstacles between some nodes, then the hidden node problem
may be unavoidable.
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do not know the identity of their neighbors and cannot address each other, which makes it
impossible to use RTS/CTS packets.

2.3 Network Layer Protocols

The medium access layer only defines how the vehicles will access the channel. The
network layer describes how information is moved from the source to destination. In this
section, we discuss several network layers that are compatible with the requirement that no
single node has global knowledge of the network topology. This lack of coordination prevents
the computation and distribution of centralized routing tables

We first note that by identifying themselves to their neighbors, vehicles could learn the
local topology of the network. By propagating this information throughout the network, it
would be possible in theory to learn the complete topology and then execute a predefined
algorithm to construct common routing tables. However, such a scheme will consume a
significant amount of system resources, since the topology of the VANET changes frequently
due to vehicles entering and exiting the road, and moving relative to each other. If vehicles
enter and exit the road on the same timescale as the algorithm that learns the topology,
then the network will not be able to maintain accurate routing tables. We instead consider
distributed network layer protocols. By this, we refer to a general class of protocols where
vehicles select what data to include in a transmitted packet independently of each other. In
this section we outline two such protocols, distributed routing and random network coding.

2.3.1 Distributed Routing

One possible network protocol is distributed store-and-forward routing. In this scheme,
each vehicle maintains a buffer of all of the packets that it has received. When a vehicle
accesses the channel, it randomly selects one of the stored packets to transmit, independently
of the other vehicles.

There are a variety of heuristics that could be used to select packets to transmit. In
the simplest case, a vehicle would uniformly choose one of the packets stored in its buffer.
A more advanced protocol could choose the more recently received packets with a higher
probability than those that have been in the buffer longer, since the newer packets are less
likely to have been received by neighboring vehicles.

However, all variants of distributed routing suffer due to the lack of coordination. Because
vehicles do not know which packets are present at any other vehicles, and do not receive
feedback about which transmissions were received correctly and which were lost to collision,
some transmissions are not useful. A transmitter may send a packet that its neighbors
already possess, when there are other packets in its buffer that its neighbors do not have
yet. The destination is essentially performing a coupon collecting operation, and may receive
numerous copies of one source packet before receiving any copies of another source packet.
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2.3.2 Random Network Coding

A second general option is for the vehicles to use network coding. The fundamental
idea of network coding is to allow mixing of information at intermediate nodes, instead of
simply routing it. The seminal paper by Ahlswede, et al. [26] proved that a network code
which allows a source to send h units of data per unit time through the network to a set of
destinations exists if and only if the maximum flow between the source and each destination
are all greater than or equal to h.

The maximum flow is the largest rate at which information can be delivered from a
source to a destination, while respecting the capacities of each link. With network coding, it
is possible for all of the destinations to receive data at a rate equal to the smallest maximum
flow between the source and any destination, which is clearly the largest possible multicast
rate. In general, this is not possible if the intermediate nodes perform only routing. More
recently, it has been shown that the maximum rate can be achieved with high probability
if each node simply transmits a random linear combination of its inputs (using coefficients
drawn from a sufficiently large finite field) [27, 28]. Randomized network coding can be
practically performed without any centralized coordination [27], and is very useful in cases
in which the topology of the network is unknown or dynamic [29].

In a vehicular network, the implementation of random linear network coding is particu-
larly straightforward. Each packet in the network consists of simply a linear combination of
all of the source packets. For example, consider a scenario with three source packets labeled
X1, X2, X3. Each Xi consists of a long vector of source symbols, which are elements in a finite
field. The packets transmitted by vehicles will be of the form Y = α1X1 + α2X2 + α3X3,
where the mixing coefficients {αi, i = 1, 2, 3} are elements in the same finite field as the
source symbols. The actual packet will consist of a header, which contains the coefficients
αi, and the data, Y .

Figure 2.2: In a system based on random linear network coding, the intermediate nodes
transmit linear combinations of the packets that they have received.

Every vehicle maintains a buffer containing all of the linearly independent packets that
it has received. When a vehicle chooses to transmit, it generates a set of random mixing
coefficients, uses those coefficients to combine the packets in its buffer, and transmits the
result over the channel. Figure 2.2 provides a simple example. The relay vehicle in the
middle has received two packets from its neighbors to the left, which represent the equations
Y1 = 2X1 + 3X2 + X3 = 14 and Y2 = 3X1 + 5X2 − X3 = 23. While the coefficients in this
example are integers, in actual implementations the coefficients will be elements in a finite
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field. When the relay decides to transmit a packet, it randomly generates two local mixing
coefficients γ1 and γ2, and uses them to form the new equation

γ1Y1 + γ2Y2 = γ1(2X1 + 3X2 + X3) + γ2(3X1 + 5X2 − X3) = γ1(14) + γ2(23)

For example, if γ1 = −1 and γ2 = 2, then the new equation is 4X1 + 7X2 − 3X3 = 32,
as shown in the Figure 2.2. The header of the new packet must contain only the absolute
coefficient vector (4, 7,−3). The local coefficients (γ1, γ2) do not need to be propagated
through the network.

Whenever a vehicle receives a new packet, it will check whether or not the packet is
a linear combination of the packets already stored in the vehicle’s buffer. If the packet is
a linear combination of packets that the vehicle has already received, then the vehicle can
disregard the new packet. On the other hand, if the new packet is linearly independent of the
set of prior packets, then the vehicle adds the new packet to the buffer. Once the number of
packets in a vehicle’s buffer is equal to the number of source packets, the vehicle can recover
those source packets by solving a system of equations.

Clearly, the overhead required to transmit the coefficients in each packet is proportional
to the number of source packets. In a streaming application, where there is essentially an
infinite amount of source data, the source packets are partitioned into blocks, referred to as
epochs. Instead of mixing all source packets at the intermediate nodes, only packets that
are from the same epoch are combined with one another. Dividing the source data stream
into disjoint epochs keeps the overhead in each packet at a reasonable level.

Network coding provides two advantages over routing. First, nodes can simply broadcast
coded packets to all nodes within their transmission range, without needing to know the net-
work topology. Second, a system using network coding can provide substantial throughput
gains even when nodes do not receive any feedback as to which of their neighbors received a
transmitted packet. This is important because the communication protocol can be substan-
tially simplified if feedback is unnecessary. While providing feedback is not impossible in a
vehicular network, a protocol without feedback utilizes the scarce bandwidth resources more
efficiently. In addition, there are contention issues on the feedback channel as well. In this
dissertation, we analyze the end-to-end throughput when random linear coding is combined
with the various distributed MAC protocols discussed in Section 2.2.

2.4 Related Work

The problem of distributing data from infostations to vehicles on a highway was first
examined in [30, 31, 32]. This series of work focuses on a low power, low connectivity
setting. Vehicles are by default disconnected from the rest of the network, and exchange
packets over a short time period when they pass another vehicle in an adjacent lane. The
number of packets that can be received is a function of the relative speeds of the vehicles.
Such a scenario is significantly different from the situation considered here, where a high
degree of connectivity is assumed at all times for all vehicles in the network.

In [33], the performance of network coding as a solution for content distribution in ve-
hicular networks is investigated. The paper adopts a medium access protocol based on the
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802.11(b) MAC, in combination with network coding. It analyzes, via computer simulations,
the reduction in file download time as compared to a network layer based on Ad Hoc On De-
mand Distance Vector (AODV) routing, originally proposed in [34]. The impact of mobility
and node density on the performance of network coding and routing is also briefly investi-
gated, and simulation results indicate that network coding can take advantage of increasing
mobility. It should be noted that these results were obtained in a scenario characterized by
random car movement in an urban street grid, rather than on a highway.

Our work differs in several aspects. First, our goal is to understand the asymptotic per-
formance limits for network coding in vehicular ad hoc networks, by providing a theoretical
analysis and supporting it with computer simulations. In order to do so, we focus on an ana-
lytically tractable scenario, constituted by a highway where cars adopt a slotted Aloha MAC
protocol to cooperatively distribute content provided by an infostation, where the vehicle
density is relatively high.

Second, we carry out extensive throughput analysis in order to determine the capability
of a peer-to-peer scheme using network coding to support real-time content streaming on
highways. This analysis is paramount to the aim of designing a content distribution system
for highways, since it provides an indication of the amount of infrastructure and the associ-
ated cost required for reliable communications. In this framework, we analyze the tradeoff
between system complexity and performance, by comparing a spatially synchronized scheme
using position information with a fully uncoordinated scheme.

Our work was initially motivated by the problem of communication using untuned radios
in a dense sensor network, analyzed in [35]. In this work, a large number of small, inexpensive
sensor nodes are used to relay information from a source to a destination. Because the radios
in these sensors use an on-chip resonator, instead of a more expensive quartz crystal, their
carrier frequencies are random. Because it is not known a priori which nodes can receive
transmissions from which other nodes, it is not possible to coordinate the dissemination of
information through the network.
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Chapter 3

A Minimally Coordinated VANET

Communication Protocol

In this chapter we propose and analyze a minimally coordinated transmission protocol
for multihop content distribution. The basic idea underpinning this scheme is to partition
the highway into spatial blocks, which are then used to facilitate the flow of information over
many hops. Only vehicles in certain spatial blocks will attempt to transmit in specific time
windows. However, the vehicles within a block will operate in an uncoordinated manner,
randomly accessing the channel independently of each other. Therefore, this scheme requires
some degree of coordination to set up the spatial structure and coordinate transmissions at
the block level, as opposed to the purely uncoordinated protocols discussed in Chapter 2. We
will refer to this protocol as a synchronous scheme, to emphasize the spatial synchronization
imposed by the block structure. Our objective in proposing this scheme is to demonstrate
the performance that can be achieved with a small degree of coordination, and to provide a
benchmark against which we can compare the uncoordinated protocol examined in Chapter
5. The primary metric that we use to quantify the system performance is the end-to-end
throughput between the source and destination.

The rest of this chapter is organized as follows. In Section 3.1 we discuss the block
structure and the minimally coordinated MAC protocol. In Section 3.2, we analyze the
throughput of this scheme with network coding. Then in Section 3.3 we discuss a modification
of the basic synchronous protocol which can improve performance. Finally in Section 3.4
we give simulation results which compare the throughput of these two synchronous schemes
when using both network coding and routing at the network layer.

3.1 Spatial Partitioning of the Road

The synchronous scheme is founded on dividing the highway into blocks, as shown in
Figure 3.1. The length of each block is chosen to be 1

2
R, where R is the transmission range

of the vehicles. By choosing 1
2
R for the length of the blocks, it is guaranteed that under

the physical layer model discussed in Chapter 2, a transmission from any vehicle in a given
spatial block can be received by any vehicle in the adjacent block. Even when a vehicle at
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the left edge of block i is transmitting, the vehicle all the way at the right edge of block i+1
is within distance R of the transmitter and can decode the packet, so long as there is no
interference.

Figure 3.1: In the synchronous transmission scheme, the highway is partitioned into blocks,
where the length of each block is half of the transmission range of the vehicles.

The synchronous communication protocol uses a variant of the slotted Aloha MAC pro-
tocol discussed in Section 2.2. Aloha is modified so that vehicles in the same block randomly
compete with each other for the channel, but vehicles in adjacent blocks do not interfere
with each other. To this end, we group the time slots into larger units, referred to as frames,
that contain M slots each, as shown in Figure 3.2. M is a free parameter, entirely under the
control of the system designer.

Figure 3.2: In the synchronous transmission scheme, the time axis is divided into slots, which
are then grouped into frames composed of M slots.

At the macroscopic time scale of the frames, data is transmitted in a deterministic man-
ner. In one frame of M time slots, the infostation will transmit M unique packets to the
vehicles that are in block 1, i.e., the block which receives transmissions directly from the
infostation. In the next frame, the vehicles in block 1 will transmit the data which they
just received to the vehicles in block 2. During each subsequent frame, this data will be
transmitted to the next block on the highway, similar to a “bucket brigade”. We will refer
to these packets, which are forwarded from one spatial block to the next in each frame, as
a wave of data. Figure 3.3 shows an example of the movement of waves among the blocks.
The dark arrows denote that the vehicles in block 1 and block 5 are transmitting during the
same frame.

The blocks which are concurrently transmitting must be separated by sufficient distance
to ensure that there is no interference between these waves. It can easily be shown that the
minimum separation is 4 blocks. To see that a smaller separation will not work, consider a
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scenario where blocks 1 and 4 are transmitting in the same frame. A vehicle in block 2 could
be within distance R of both a vehicle in block 1 and a vehicle in block 4. If the vehicles in
blocks 1 and 4 transmit in the same slot, this vehicle in block 2 will hear a collision.

This receiver in block 2 is then unable to decode the transmission from block 1, which
contains a packet in a new wave of data, because of interference from block 4, which contains
old information that block 2 has already received. This interference between waves will
degrade the throughput, since vehicles in block 2 will receive fewer packets from block 1,
and thus have fewer packets to forward to block 3.

On the other hand, if the waves are separated by 4 blocks, then no such interference will
occur. No vehicles in block 2 are within the transmission range of any of the vehicles in
block 5. Note that this does not mean that no collisions occur in the synchronous scheme.
Clearly two vehicles in the same block might still transmit in the same time slot, resulting
in collision. However, by separating the waves by 4 blocks, we have eliminated collisions
caused by transmissions in separate waves of data.

Figure 3.3: In the synchronous scheme, waves of data propagate along the highway, moving
one block to the right in each frame. The dark arrows show two spatial blocks that are
transmitting during the same frame. The concurrent waves are sufficiently separated so that
there is no interference between them.

At the time slot scale, however, the nodes do not schedule their transmissions. As we
have discussed earlier, it is not desirable, or even feasible, for centralized coordination to be
implemented in this network. In the frame in which block i transmits to block i + 1, every
vehicle in block i will randomly choose exactly one slot in the frame on which to transmit,
uniformly and independently of all other vehicles. During that time slot, the vehicle will
either transmit one of the packets that it received from its adjacent block during the previous
frame (when distributed routing is used) or a random linear combination of all of the packets
it received (when network coding is used). When two or more vehicles in block i choose the
same slot, a collision occurs and no vehicles in block i+1 can decode either packet. However,
if exactly one vehicle in block i selects a given time slot, then all vehicles in block i + 1 will
successfully receive the transmitted packet.

This MAC protocol is a variation of the slotted Aloha protocol outlined in Chapter 2.
The first modification is that vehicles only attempt to transmit during every fourth frame,
instead of operating identically in every time slot. The second modification is that within the
frame in which a given block is forwarding data, each vehicle transmits in exactly one of the
M time slots in the frame, instead of making an independent random decision in every slot.



16

We note in passing that modifying the unslotted Aloha and carrier sense MAC protocols for
use in this synchronous scheme would be much more challenging, because of the requirement
that all transmissions from vehicles in the same block must be contained within a specific
frame.

In order to implement the synchronous scheme, it is necessary that each vehicle knows
the identity of the block in which it is located, as well as the boundaries of the time frames.
Although this requires a certain level of coordination among the nodes, it is still feasible in
a distributed network. If each vehicle contains a GPS receiver, the vehicles know their own
locations with high precision, as well as the boundaries of the time slots. The additional
information required for the synchronous scheme can be provided by having the base station
periodically transmit a wave that contains control information, including the infostation
location and information on the frame length and frame boundaries, instead of data. When
a new vehicle enters the network, it will not transmit until it receives one such control wave.
After receiving the control wave, however, the vehicle will be able to compute the location
of the block boundaries, and will be able to become a full participant in the network.

3.2 Throughput Of Synchronous Protocol

We analyze the throughput provided by this synchronous protocol when the vehicles use
network coding. In particular, we focus on the limit of a high vehicle density, i.e., a large
number of vehicles in each spatial block. We first optimize M , the number of time slots in
a frame, and then compute the end-to-end throughput.

3.2.1 Optimal Frame Length

The first question that we address is how to choose the optimal value of M , the number
of time slots in a frame. If M is too small, then it will be highly probable that two or more
vehicles in the same block will transmit on any single slot and most packets will be lost to
collision. On the other hand, if M is large there will be few collisions, but many time slots
will be empty because vehicles transmit on only one slot per frame.

We will assume that the vehicles are equidistantly spaced on the road, with exactly
N vehicles in each block. Since we are primarily interested in quantifying the asymptotic
throughput when the vehicle density is large, this is a reasonable assumption. However, if
we instead chose to analyze the low density case, it would be more correct to assume that
the vehicles were distributed randomly, e.g. according to a Poisson point process. In that
case, there would be a variable number of vehicles in each block.

Given that the vehicles are spaced equally, the system designer has some control over N ,
because the length of each block in Figure 3.1 can be varied by adjusting the transmission
range. However, due to limits on the maximum allowed transmission power in the frequency
band where the system is operating, the transmission range cannot be increased arbitrarily.
Thus N is dependent to some degree on the physical traffic conditions on the road.

During the frame when the vehicles in a given block are transmitting, each of the N
vehicles randomly selects one of the M slots via a uniform distribution, independently of
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all other vehicles in the block. Our goal is to maximize the total number of packets that
are successfully received by vehicles in the next block. This is equivalent to maximizing
the number of time slots on which exactly one vehicle transmits. By the symmetry in the
medium access protocol, this is in turn equivalent to maximizing the probability that exactly
one vehicle transmits in any single time slot. We can express the probability that exactly
one of the N vehicles in a block selects a fixed slot as:

(

N
1

)

p(1 − p)N−1 = N
1

M
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where p = 1/M is the probability that a given vehicle transmits during a fixed slot. We can
optimize this expression by taking the derivative with respect to M and setting the result
equal to zero.
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The optimum frame length is then found by solving the equation 1 − N
M

= 0, which yields
M = N . This should come as no surprise, because all of the nodes in a single block are
within range of each other. It is well known that the throughput of a fully connected Aloha
network is optimized when each of the N nodes transmits with probability 1

N
, as shown in

[20].
The probability that exactly one vehicle in the block transmits on a given slot, and thus

vehicles in the next block receive a packet without collision, is given by N 1
N

(

1 − 1
N

)N−1
=

(

1 − 1
N

)N−1
. In the limit as N becomes large, this expression approaches 1

e
. Also, given that

a vehicle transmits a packet, the probability that no other vehicles in the same block transmit

on the same slot is
(

1 − 1
N

)N−1
→ 1

e
. Each transmitted packet is successfully received with

probability 1
e
, and lost due to collision with probability 1 − 1

e
.

3.2.2 Throughput with Network Coding

The second question that we address is the throughput of the multihop synchronous
transmission scheme. The fact that data is being funneled down the highway in waves facili-
tates the computation of the throughput. If we can count the number of independent packets
that the destination receives in a single wave, then finding the throughput is straightforward.
If the destination receives an average of x independent packets per wave, then the through-
put per wave is x

N
, as each frame has a length of N slots. Because the waves are separated

by four blocks in order to prevent interference between waves, the true throughput of the
synchronous scheme will be x

4N
. This throughput is measure in the abstract unit of “pack-

ets per time slot”. Multiplying by the packet length and dividing by the slot duration will
produce a throughput in the standard unit of bits per second.
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To find the average number of independent packets that the destination receives in each
wave, we formulate a random graph which models the propagation of a wave of data through
the network, as shown in Figure 3.4. In this graph, the N nodes in each column represent
the N vehicles in each block on the highway1. The H columns represent H blocks between
the base station and the destination vehicle. Each node is connected to all of the nodes in
the previous column with a unit capacity link, since a vehicle could potentially receive one
packet from every vehicle in the previous block, in the case where all of those vehicles chose
unique slots on which to transmit.

1

1

2

N

2 3 H

Figure 3.4: A random graph modeling the propagation of a wave of data through a vehic-
ular ad hoc network using the synchronous transmission scheme. Each node, and all of its
incoming and outgoing edges, is independently deleted with probability 1 − 1/e.

Because a transmitted packet is corrupted by collision with probability 1 − 1/e, each of
the vertices in the random graph is independently deleted with probability 1−1/e, in which
case all of its incoming and outgoing links are also deleted2. The source of an edge that is
not deleted is uniformly distributed over the non-deleted vertices in the previous column,
because given that exactly one vehicle transmits in a slot, the source of that transmission is
equally likely to be any of the nodes that do not experience a collision. We will label this
graph G1−1/e, to denote that the vertices are deleted with probability 1 − 1/e.

The maximum flow is the largest number of packets that can be transported from the
source to the destination of the graph under any protocol, while respecting the link capacities.
In our synchronous scheme, each vehicle transmits a random linear combination of all of the
packets that it received from the previous block. However, with random network coding it
is known that the maximum flow is achievable with high probability, as long as the coding
is done over a sufficiently large finite field [29]. The challenge in this problem is to compute
the maximum flow through the random graph in Figure 3.4.

Because all vehicles in the first block deterministically receive the M packets sent by the
infostation, that link is not the limiting bottleneck on the end-to-end flow. In addition, we

1The synchronous scheme can also accommodate situations where the number of vehicles in each block
is variable. There will be a small performance degradation, due to the fact that the fixed frame length can
not be optimal for every block.

2Here, we are making the approximation that each transmission is lost to collision independently, in order
to make the computation of the throughput tractable. This is valid in the limit of large N .
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recall that in the synchronous scheme, all vehicles in the same block receive the same packets.
In particular, the destination receives the same set of packets as all of the vehicles in the
last column. Therefore, the maximum flow between the source and destination is given by
the number of vertex-disjoint paths between the first and last columns of the random graph
in Figure 3.4. The following theorem quantifies the achievable flows, in the limit of high
density. The proof will be given after we prove two associated lemmas.

Theorem 1: For any constant β such that β < 1/e, the maximum flow through G1−1/e is
greater than βN with high probability as N goes to infinity, as long as H is subexponential
in N .

As we will see, the probability that this theorem does not hold decays to zero exponen-
tially with N . We prove Theorem 1 via two lemmas. We use a modified version of a common
technique in percolation theory, which relates the probability of having many disjoint end-
to-end paths through a lattice to the probability of having a single end-to-end path. We will
use A to denote the event that there exists at least one end-to-end path from the first column
to the last column of the random graph. We will let Ar denote the event that the random
graph has the property that the deletion of any r vertices results in a graph belonging to A.
This is equivalent to saying that any graph in Ar has at least r+1 vertex-disjoint paths con-
necting the first and last columns. As an example, Figure 3.5 shows an instantiation of the
random graph, where the black circles represent nodes that are present and the white circles
represent nodes that have been deleted. This graph has only one vertex-disjoint end-to-end
path, and an example path is shown. Figure 3.6, in contrast, shows another instantiation
of the random graph, where the nodes are deleted with a lower probability. This graph has
r = 3 vertex-disjoint end-to-end paths. The following lemma relates the events A and Ar to
the probability of deleting vertices in the two graphs.

Lemma 1: Let r be a positive integer. Then

P (Gp2 /∈ Ar) ≤

(

q2

q2 − q1

)r

P (Gp1 /∈ A)

for each 0 ≤ p2 ≤ p1 ≤ 1. Here, q1 = 1 − p1 and q2 = 1 − p2, and Gp is the random graph
where each vertex is independently deleted with probability p.

Proof of Lemma 1: The proof of this lemma is based on the proof in [36] of a related result
in percolation theory, and the adaptation of that proof to the problem of communicating
using untuned radios in [35]. Let Xi,j ∀i ∈ {1, 2, ...N} and j ∈ {1, 2, ...H} be i.i.d. random
variables, uniformly distributed in the interval [0, 1]. We assign the variable Xi,j to the
vertex in row i and column j of a rectangular grid. We then create two random graphs Gp1

and Gp2, which have vertices deleted with probability p1 and p2 respectively, as follows. We
first insert edges from every vertex in columns 2 through H to all vertices in the previous
column. Then we generate Gp1 by deleting the vertex in row i, column j (and all incoming
and outgoing edges) if and only if Xi,j ≤ p1. Gp2 is likewise generated by deleting each vertex
if and only if Xi,j ≤ p2.
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Figure 3.5: An instantiation of the random graph modeling the propagation of a single wave
through the network. The white circles represent nodes that were deleted, and the black
circles represent nodes that were not deleted. This graph has only a single vertex-disjoint
end-to-end path. One such path is outlined.

Figure 3.6: An instantiation of the random graph modeling the propagation of a single wave
through the network. The white circles represent nodes that were deleted, and the black
circles represent nodes that were not deleted. This graph has r = 3 vertex-disjoint end-to-end
paths. One set of three disjoint paths is outlined.

Our goal is to find a relationship between the probability that Gp2 ∈ Ar and the proba-
bility that Gp1 ∈ A. We observe that if Gp2 /∈ Ar, then there must exist a set of vertices T
such that:

• None of the vertices in T are deleted in Gp2

• |T | < r

• The graph G∗
p2

obtained by deleting the vertices in T from Gp2 satisfies G∗
p2

/∈ A.
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There may exist many such sets T . For our purposes, it is sufficient to consider any
one set with this property. Suppose that Gp2 /∈ Ar, and that every vertex i, j in the set T
satisfies p2 < Xi,j < p1. It then follows from the third bullet point above that Gp1 /∈ A.
After conditioning on a set T , the probability that p2 < Xi,j < p1 for all vertices in T is
given by

[(p1 − p2)/(1 − p2)]
|T | = [(q2 − q1)/q2]

|T |

Therefore

P (Gp1 /∈ A|Gp2 /∈ Ar) ≥

(

q2 − q1

q2

)r

Applying the definition of conditional probability shows that

P (Gp2 /∈ Ar) ≤

(

q2

q2 − q1

)r

P (Gp1 /∈ A ∩ Gp2 /∈ Ar)

Finally, the proof of Lemma 1 is completed by using the fact that

P (Gp1 /∈ A ∩ Gp2 /∈ Ar) ≤ P (Gp1 /∈ A) �

Lemma 1 can be used to prove Theorem 1 if we can show that the probability that
Gp1 /∈ A decays exponentially to zero with N , for some p1. In other words, if we can show
that P (Gp1 /∈ A) ≤ e−αN , where α is a constant that depends on p1, then we can rewrite
Lemma 1 as

P (Gp2 /∈ Ar) ≤

(

q2

q2 − q1

)r

e−αN = e
r ln

“

q2
q2−q1

”

−αN

and by choosing r = β ·N , it follows that the probability of not having (βN + 1) end-to-end
edge disjoint paths is bounded by

P (Gp2 /∈ Ar) ≤ e
−

“

α−β ln
“

q2
q2−q1

””

N

If β satisfies the condition

β < α/ ln

(

q2

q2 − q1

)

then the probability of not having βN end-to-end paths decays to zero exponentially. An
exponentially tight bound on P (Gp1 /∈ A) does in fact exist, as shown by Lemma 2.

Lemma 2: The probability that there are no end-to-end paths in Gp1 is bounded by

P (Gp1 /∈ A) ≤ HeN log p1
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Proof of Lemma 2: Observe that if all of the nodes in a single column of the graph are
deleted, then Gp1 /∈ A. On the other hand, if at least one node in every column is not
deleted, then an end-to-end path exists, because every node in the graph is connected to
all N nodes in the previous column. The probability that all nodes in a single column are
deleted is pN

1 , and, by the union bound, the probability that all N nodes in one or more
columns are deleted is less than or equal to

HpN
1 = HeN log p1 �

Proof of Theorem 1: We can rewrite the probability that Gp1 /∈ A as e−N(− log p1−(log H)/N).
Combining Lemma 1 and Lemma 2, we see that the probability that there are not at least
βN paths through Gp2 decays exponentially if

β <
− log p1 − (log H)/N

log
(

1−p2

p1−p2

)

If H is constant, or growing subexponentially in N , then the (log H)/N term will go to
zero in the limit of large N , and the expression becomes

β <
− log p1

log
(

1−p2

p1−p2

)

Remember that in the original vehicular network p2 = 1 − 1/e, the probability that
packets are lost to collision when the frame length M is chosen to be equal to N . However,
p1 is unrelated to the graph Gp2, so we are free to choose any value of p1, as long as it is
larger than p2. We evaluate the bound on β above by setting p2 = 1 − 1/e and choosing
p1 = 1 − ǫ, and then taking the limit as ǫ goes to 0.

− log(1 − ǫ)

log
(

1/e
1−ǫ−1+1/e

) =
− log(1 − ǫ)

log(1/e) − log(1/e− ǫ)

=
log(1 − ǫ)

1 + log(1/e − ǫ)

Applying L’Hopital’s rule, we find that as ǫ approaches 0, this bound approaches 1/e.
This proves that, with high probability, the throughput of the random graph is at least N/e.
�

Theorem 1 demonstrates that the maximum flow through the random graph is at least
N/e. We also observe that the maximum flow, on average, cannot exceed N/e. This can
be easily seen by looking at the first two blocks. With each of the N nodes in block 1
randomly choosing one of the N time slots, the vehicles in block 2 will receive, on average,
N/e packets. Furthermore, nodes in subsequent blocks cannot receive more packets than
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the nodes in block 2. Thus, we can make the stronger statement that the maximum flow
through the graph is equal to N/e.

The implication is that a fraction (1 − 1/e) of the packets are lost between the first two
blocks, but with high probability no more information is lost in any subsequent hops (as
long as H does not grow exponentially in N). Each block in the system can be viewed as a
digital repeater, which preserves all information that it received from the preceding block.

As discussed earlier, because the maximum flow for a single wave is N/e packets, and
network coding can achieve the maximum flow with high probability, the throughput of the
synchronous scheme is equal to 1/(4e) ≈ 0.09 packets per time slot. Thus, the destination
vehicle receives a novel packet in approximately 9 percent of the time slots.

Finally, it is instructive to compare this synchronous scheme with a fully coordinated
network. If complete coordination is possible, then each node in a block can be assigned a
unique time slot within the frame, so that no collisions occur. In this case, the destination
receives N independent packets per wave, and the corresponding throughput is 1/4 packets
per time slot. Hence, the “cost of uncoordination” in the synchronous scheme is a factor of
1/e. This protocol achieves a throughput that is about 36% of what could be achieved with
a fully coordinated block synchronized protocol.

Despite this loss, this scheme still enables us to transmit the same throughput over a
large distance, as long as the number of hops does not grow exponentially in the density.
Like a fully coordinated protocol, the synchronous scheme has the attractive property of not
losing information as the number of hops grows, even though it involves random channel
access.

3.3 Synchronous Transmission with Overhearing

While the block structure described in Section 3.1 is very helpful in moving waves of
data along the highway in an analytically tractable manner, it has a shortcoming in that it
artificially limits the number of packets that each vehicle receives. As one example, because
the length of each block is R/2, when a vehicle in block 1 in Figure 3.1 transmits, some
vehicles in block 3 will be able to successfully receive the packet. A second example is that
if two vehicles in block 1 transmit in the same time slot, all vehicles in block 2 will hear a
collision, but some vehicles in block 3 will be able to receive one of the packets, by virtue of
being within range of one of the transmitters but not the other. Likewise, if vehicles listen
to transmissions from other vehicles within their own block, they might also receive new
information3.

Taken together, these examples raise the possibility that a vehicle could improve the
number of independent packets that it receives in each wave of data by decoding the trans-
missions from all nodes within its range, instead of just transmissions from vehicles in the

3In the basic synchronous scheme, all vehicles in one block receive the same set of packets from the
previous block, and thus decoding transmissions from neighbors in the same block provides no additional
information. However, when vehicles are allowed to receive packets transmitted from non-adjacent blocks,
it is no longer true that all vehicles in a block must have the same information. In that case, listening to
transmission from a vehicle’s own block may be beneficial.
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previous block. While many of these additional received packets will clearly provide re-
dundant information, some of them could be independent of the packets received from the
previous block. We use the term “overhearing” to describe this extension of the basic syn-
chronous scheme. In general, there is no reason not to receive and decode any transmission
not corrupted by collision, since battery life is not a constraint in the vehicular network-
ing application. The inclusion of overhearing complicates the analysis, and thus a rigorous
bound similar to Theorem 1 for the basic synchronous scheme is beyond the scope of this
work. However, in the next section we provide simulations that demonstrate the gains that
are achievable when overhearing is included.

3.4 Simulation Results

The synchronous transmission scheme was simulated in the OMNeT framework [37],
under the following scenario. We considered a highway strip of length D, populated by Ncars

evenly spaced cars. The highway was served by an infostation, located along the strip in
position xIS = R/4, where R is the transmission range, assumed to be identical for the
infostation and the vehicles.

The transmission scheme used in the simulations can be summarized as follows.

1. The cars on the highway strip are partitioned into blocks of length R/2.

2. Time is divided into slots of duration Ts, which are in turn organized into frames of N
slots, leading to a frame duration Tf = N · Ts. The duration of a slot is selected as the
time required to send a packet of length Lpacket at a bit rate W .

3. Both the infostation and each block of cars transmit in one out of every four frames.

4. During frames in which transmission for a block is allowed, every car in the block
transmits in each slot with probability p = 1

N
.

We simulated Nwaves waves of information and averaged the measured throughput, cor-
responding to a total simulation time of Tsim = 4 · Tf · Nwaves.

The values used for the various parameters of the network and the synchronous protocol
are given in Table 3.1. We can make several observations about the scenario that is sim-
ulated here. First, the duration of the simulation time Tsim, although sufficient to analyze
the behavior of the system over several waves, is short enough to allow us to neglect the
displacement of vehicles with respect to the infostation caused by their movement at speed
vcars. This justifies the assumption of a static scenario adopted in our analysis. Second, the
vehicle density is fairly high, corresponding to a traffic jam scenario.

The above scheme was used to compare the performance of four different strategies,
which are given by combining the two network layer protocols and the two variations on
when vehicles listen to the channel:

• Routing with the basic synchronous protocol

• Routing with overhearing
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Table 3.1: The system parameters used to simulate the performance of the synchronous
transmission scheme

Parameter Value

D 8000 m
Ncars 2400

R 800 m
Ts 1 ms

Lpacket 976 bit
W 1 Mb/s
N 120
Tf 0.12 s
p 0.0083

Nwaves 20
Tsim 9.6 s

• Network coding with the basic synchronous protocol

• Network coding with overhearing

For each strategy we measured the system rank received per wave, averaged over Nwaves

waves. System rank was defined as the number of unique packets in the case of routing, and
as the number of linearly independent packets in the case of network coding.

Figure 3.7 confirms the analysis in Section 3.2. This plot shows the system rank as a
function of the distance of the car from the infostation. For clarity, only the rank for the car
at the center of each block is shown. These simulation results demonstrate that the use of
network coding in place of routing significantly increases performance. More importantly, the
simulation confirms that network coding leads to a different scaling law than routing. Even
in the case of overhearing, in fact, the rank clearly decreases with distance under routing,
eventually decaying to zero. On the other hand, network coding is able to support a high
rank over large distances, as was proven analytically, and thus provides an appealing solution
for streaming data delivery between roadside infostations. Also note that the introduction
of overhearing is seen to improve throughput by about a factor of 1.75.

As an aside, we also verify via simulation that the increase in performance with network
coding is independent of the number of delivered packets. Figure 3.8 shows the number of
packets which are successfully received per wave, regardless of whether or not those packets
are independent. Because we selected the duration of the frame to maximize the number of
correct receptions, the number of received packets per wave is very close to the expected value
of N/e in the case of the basic synchronous scheme, without overhearing. The important
point is that the same number of raw packets is received with both routing and network
coding. With overhearing, the total number of received packets per wave increases to 4N/e.
However, many more of these packets will be dependent, and thus the throughput does not
increase by a factor of four with overhearing.
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Finally, we also empirically studied the delay introduced by synchronous strategies. Fig-
ure 3.9 shows the time when the infostation begins transmitting the first packet of each wave,
as well as the time when the destination node receives the last packet of that wave. The
results are shown only for network coding with overhearing. In this synchronous scheme,
the delay with routing would be the same, although the destination would receive fewer
independent packets in each wave.

The figure verifies that the delay experienced between one wave and the next is constant,
and equal to the delay introduced by the infostation, which transmits a new wave in every
fourth frame. The implication is that the synchronous scheme is suitable for delivering
delay-sensitive traffic, such as streaming audio and video. It is also evident from Figure
3.9 that synchronous strategies introduce a significant latency before the first wave reaches
the destination, due to the pipeline-like nature of the scheme. It can be readily shown that
the delay for each wave is about (Nblocks + 2) · Tf seconds. For the settings used in these
simulations, this corresponds exactly to the 22 · 0.12 = 2.64 seconds shown in Figure 3.9.
The conclusion is that the synchronous scheme may not be suitable for use in interactive
applications, where latency must be minimized.
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Figure 3.7: The number of independent packets received per wave as a function of the location
of the destination vehicle in the synchronous transmission scheme. Results are shown for four
different strategies: routing with the basic synchronous protocol, routing with overhearing,
network coding with the basic synchronous protocol, and network coding with overhearing.
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Figure 3.8: The total number of received packets per wave as a function of the location
of the destination vehicle in the synchronous transmission scheme. This plot counts all
packets received without collision, regardless of whether they are independent. Results are
shown for four different strategies: routing with the basic synchronous protocol, routing with
overhearing, network coding with the basic synchronous protocol, and network coding with
overhearing.
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Figure 3.9: The time when the infostation begins transmitting each wave, and the time when
the destination vehicle receives the final packet of the wave, for the scenario outlined in
Table 3.1. The vertical distance between the two curves is the time delay of the synchronous
scheme.
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Chapter 4

Uncoordinated Wireless Networks

We now examine the throughput of fully uncoordinated networks, which do not require
the minimal level of coordination necessary for the synchronous scheme considered in Chapter
3. In this chapter, we will give a general method for computing the throughput of a wireless
network with arbitrary topology that utilizes a randomized MAC protocol and random linear
network coding. Then in Chapter 5 we will apply this algorithm to the topology of a vehicular
ad hoc network and compute the throughput of an uncoordinated VANET.

In this chapter, we consider an even stronger restriction than our definition of unco-
ordinated networks in Chapter 2. Previously, we had simply disallowed any centralized
scheduling of transmissions or routing of packets. By this definition, an uncoordinated net-
work could still incorporate link level feedback and could potentially build routing tables via
local interaction, although for simplicity in Chapter 3 we designed a scheme that did not
require feedback.

In this chapter, in contrast, we consider the throughput of neighbor-oblivious wireless
networks. This refers to networks where nodes do not know the identities of any of their
neighbors. Thus, they cannot address neighboring nodes, and sending feedback about suc-
cessfully received packets is not possible. This is a stricter limitation, which forces the
network to use distributed MAC and network layer protocols. Clearly, a protocol which
satisfies the requirements of a neighbor-oblivious network can be used in an uncoordinated
VANET.

The rest of this chapter is organized as follows. In Section 4.1 we discuss the relationship
between this neighbor-oblivious problem and prior work on scheduling in wireless networks.
In Section 4.2 we review the protocols that we use, and discuss the primary challenge in
calculating the multihop throughput. Then in Section 4.3 we present a method for computing
the capacity of an uncoordinated network with arbitrary topology.

4.1 Neighbor-Oblivious Networks

One of the most challenging problems in wireless networking has proven to be scheduling:
the question of how the nodes should share the limited wireless resource in order to max-
imize performance. A throughput-optimal centralized scheme, known as maximal-weight
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scheduling, was first presented in [38]. Jiang and Walrand made a major contribution to
the field by developing a distributed algorithm that uses carrier sensing to attain the op-
timal throughput [22]. A similar distributed algorithm has been proposed for wavelength
assignment in optical networks [39]. Subsequent work has extended [22] to the discrete-time
setting [24, 23], characterized the delay [23], and implemented the algorithm in practice [40].

However, these schemes all make the implicit assumption that once the resource allocation
problem is solved, packets can be routed from the source to the destination, either via a
global routing table or by implementing a distributed routing algorithm. Nodes must know
the identities of their neighbors in order to forward packets to the next hop in the desired
path. In this chapter, we consider multihop communication in neighbor-oblivious wireless
networks. When nodes do not know who their neighbors are, they cannot address packets to
specific neighbors and thus it is not possible to route packets. One obvious, though limited,
approach is to use a simple packet flooding scheme. We present a more complex scheme that
combines the random medium access control protocols outlined in Chapter 2 with network
coding to achieve a higher throughput. Our focus will be on providing a method to compute
the end-to-end capacity.

As in Chapter 2, we consider a unicast communication problem. We study the end-
to-end throughput in a multihop network with arbitrary topology, as shown in Figure 4.1.
Furthermore, we require that the nodes must be neighbor-oblivious, i.e., that they do not
know the identities of neighboring nodes and thus cannot route packets. Instead, when nodes
transmit they must broadcast packets to all of their neighbors.

S

D

Figure 4.1: We consider a unicast communication problem in a multihop neighbor-oblivious
network. Our objective is to find the maximum throughput under the limitation that none
of the nodes know the identities of their neighbors.

4.2 A Distributed Communication Protocol for Neighbor-

Oblivious Networks

Due to the constraint that nodes do not know the identity of their neighbors, all nodes
must use one of the distributed MAC protocols discussed in Chapter 2 and a distributed
network layer protocol. In this chapter, we analyze the throughput under the combination
of random network coding and a randomized MAC.
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The primary challenge when calculating the multihop throughput is to account for the
possibility that when an intermediate node accesses the channel, it might not have any new
information to send to its neighbors. Even if the transmitted packet is received without
collision, it does not convey any useful information to the receivers and the time slot is effec-
tively wasted. This problem can be best illustrated through a concrete example. Consider
the network in Figure 4.2, where a source S sends packets to a destination D through a
single relay node R. Further, imagine that due to the random nature of the medium access,
the source and relay nodes happen to access the channel in four consecutive time slots in
the order S, R, R, S.

DRS

Figure 4.2: This simple network illustrates the starvation problem that can occur when nodes
access the channel in a random order. Consider a case when the source and relay transmit
in the order S, R, R. When the relay transmits the second time, it has not yet received a
second packet from the source and hence can only send a redundant packet to D.

Even though S and R both transmitted two packets, D has only received one independent
packet. This is because when R transmits the second time, it has not yet received another
packet from S, and hence must retransmit the same packet that it sent previously. Although
both links may support the same average rate, the relay temporarily did not have any new
packets to send to the destination. We refer to this as the starvation problem to emphasize
that the relay has “consumed” all of its packets (forwarded them to the destination) without
being “fed” (received new packets from the source).

We emphasize that this is not a problem that can be solved by coding. Even if R is
using network coding, when it transmits the second time it can only send a multiple of the
first packet, which does not provide an independent packet to D. This starvation problem is
caused by the random ordering of when links are used, and it can occur regardless of whether
the network uses routing or coding at the network layer. The source of the problem is the
fact that the randomized MAC induces a random ordering on transmissions, as opposed to
a deterministic ordering which could be implemented with centralized scheduling.

In wired networks, starvation is not an issue because all of the links in the network can be
used concurrently. In a wired network with the same topology as Figure 4.2, both S and R
can transmit packets in every time slot. Hence, R always has a new packet, which it received
in the previous slot, to send to D. Starvation is also not an issue in the spatially synchronized
protocol studied in Chapter 3. Because of the manner in which waves propagated from block
to block down the road in the synchronous protocol, each vehicle only transmitted a single
packet in each wave. When this transmission occurs, the vehicle always has received some
set of packets from the previous block, and hence transmits one linear combination of those
packets. However, in more general networks where a node can transmit multiple packets
containing combinations of the same data, we must account for starvation.
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Much of the existing work on designing and analyzing random distributed scheduling
algorithms makes the assumption that nodes are in a saturated state, i.e., that they always
have a useful packet to send when they access the channel [22, 24]. This is equivalent to
assuming that the starvation effect can be ignored. In the course of analyzing uncoordinated
networks, we show that while starvation does lead to some transmissions being wasted, the
average end-to-end throughput is not decreased. In essence, the loss due to starvation is a
sub-linear effect. Our results in this chapter validate the standard saturation assumption,
and thus are useful in a wide class of random scheduling problems beyond the neighbor-
oblivious networks considered here.

4.3 Capacity of Neighbor-Oblivious Wireless Networks

We now present an algorithm for computing the end-to-end throughput of a wireless
network with arbitrary topology that uses a randomized MAC protocol and random network
coding. The method can be summarized as follows. We will discuss the various steps in more
detail in the following sections.

1. Enumerate the independent sets, the sets of links in the network that can be used
concurrently.

2. Compute the capacities of the individual links from a Markov chain on the independent
sets.

3. Construct an equivalent wired network, with the same topology and link capacities as
the wireless network.

4. Find the minimum cut of the equivalent wired network.

The minimum cut of the equivalent wired network is clearly an upper bound on the
throughput of the wireless network, since the nodes in a wired network are always saturated
due to the fact that all links can be used concurrently. We prove that in fact this minimum
cut can also be achieved in the wireless network. The key tool is the construction of a
queueing network which models the flow of equations in the wireless network. We use
queueing theory to show that whenever the source in the wireless network transmits data
at a rate smaller than the min-cut of the equivalent wired network, the destination receives
independent packets at the same rate. Therefore, the maximum end-to-end throughput of
the wireless network is the same as in the wired network, despite the fact that the starvation
problem may affect some transmissions.

4.3.1 Computation of Link Capacities

Our algorithm incorporates a recently proposed method for finding the capacities of
individual links in CSMA networks. The throughput of links was shown to be computable
from a time-reversible Markov chain in [41]. An efficiently computable approximation was
given in [42] and the approach has been further developed in [43].
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As a concrete example, we will consider the linear network shown in Figure 4.3, with links
labeled 1 through 4. The first step is to list the sets of links that can be used concurrently
without interfering with each other, which are known as independent sets. Trivially, any set
containing only one of the links is an independent set, because it is always possible to use
only one link at a time. In addition, we note that links 1 and 4 can be used at the same time
without interfering, and thus {1, 4} is an independent set. However, no other set of multiple
links can be used concurrently. For example, imagine that node S attempts to transmit a
packet on link 1 and node B attempts to transmit a packet on link 3 at the same time.
Because A is within transmission range of both S and B, a collision occurs and the packet
on link 1 cannot be received. Thus, there are five independent sets in this example: {1},
{2}, {3}, {4}, and {1, 4}.

S DA B C
1 2 3 4

Figure 4.3: An linear wireless network with four links. The independent sets, which are sets
of links that can be used concurrently without interfering with each other, are {1}, {2}, {3},
{4}, and {1, 4}.

The second step is to form a Markov chain whose current state is the set of links that are
carrying information at the current time. We refer to this set as the active links. Clearly,
the state space of the Markov chain is given by the independent sets plus the null set.
This Markov analysis is valid for networks using Aloha and CSMA medium access protocols
without hidden nodes1.

The valid transitions of this Markov chain, and the transition probabilities, depend on the
specific MAC protocol being used. For slotted Aloha, the Markov chain is a fully connected
graph, since the set of active links in two different time slots is independent. The network
can transition from any independent set to any other independent set in a single time step.
With CSMA, on the other hand, time dependencies are introduced because of the backoff
counter that is started when a node senses that the channel is in use. The transition diagram
for the network in Figure 4.3 will have a form like that shown in Figure 4.4.

Next, we find the steady state distribution of this Markov chain. Whenever there is a
finite number of links in the network, there will be a finite number of independent sets.
The Markov chain then has a steady state distribution, which can be computed from the
transition probabilities. Finally, the link capacities are given by the fraction of time when a
link is active, which is the sum of the steady state probabilities of independent sets containing
that link. In this example, C1, the capacity of link 1, is equal to π1 + π14.

We can then create an equivalent wired network, which has the same topology and link
capacities as the wireless network. Figure 4.5 shows this equivalent wired network for the
example in Figure 4.3. We will also refer to this graph as the link capacity graph.

1As discussed in Chapter 2, any CSMA network can be made free of hidden nodes by appropriately
adjusting the carrier sensing range.
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Figure 4.4: The set of links that are currently active can be modeled with a Markov chain
defined on the independent sets. This figure shows the Markov chain corresponding to
network in Figure 4.3 when using a carrier sensing MAC protocol.

S DA B C
C1 C2 C3 C4

Figure 4.5: The wireless network in Figure 4.3 can be replaced with an equivalent wired
network, know as a link capacity graph, whose individual links have the same capacities as
the wireless links.

A simple application of the max-flow min-cut theorem shows that the capacity of the
equivalent wired network is equal to the minimum cut of this link capacity graph. Further-
more, as stated in Chapter 3, random network coding can achieve this min-cut if the coding
is done over a large enough field. However, it is not obvious that the capacity of the wireless
network is the same as the equivalent wired network, due to the possibility of starvation at
the intermediate nodes.

4.3.2 Virtual Relay Nodes

Before addressing the relationship between the wireless and wired networks, we take a
brief detour to introduce a more general example network. In the simple linear network
in Figure 4.3, each transmitted packet is received by only a single receiver. This masks
the broadcast nature of the wireless channel, where a single transmission could be received
by multiple nodes. We now consider the example shown in Figure 4.6. When S transmits,
depending on which of the extraneous interferers are simultaneously transmitting, the packet
could be received by A only, by B only, or by both A and B. However, in the last case, A
and B receive the same packet. It is not possible for S to send independent packets to A
and B in a single time slot, even though there are links to both A and B.
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ℓ4

Figure 4.6: An diamond network with source S, destination D, and two relays A and B.
Transmissions from S may be received by either or both of the relay nodes.

To account for this effect, we introduce a virtual node AB, which represents packets that
are received by both of the relay nodes. The link capacity graph for this example is shown
in Figure 4.7. Note that there are infinite capacity links from the virtual node to both of
the relays, since packets sent to the virtual node are physically received by both A and B.

In the remainder of this section, we will use this example, since it brings out the general
structure that will be needed when we study vehicular networks in Chapter 5

4.3.3 Achievability of Min-Cut of Equivalent Wired Network

Our main result is that the end-to-end capacity of the wireless network is equal to the
minimum cut of the equivalent wired network, even when intermediate nodes experience
starvation. A natural tool to track the propagation of information through a multihop net-
work is queueing theory. However, there is an immediate complication in neighbor-oblivious
wireless networks, where nodes are required to broadcast their transmissions. If a transmit-
ted packet is received by two or more nodes, all of the receivers will store a copy of it in
their buffer. In queueing theory, in contrast, it is generally assumed that when a customer
is processed by one server, it is then forwarded to the queue of only one other server.

In order to apply queueing theoretic results, we first introduce a genie into the system
which allows only one receiver to store each transmitted packet, even if multiple nodes
were able to receive the packet. We prove that this genie can only decrease the end-to-end
throughput of the network. Therefore, analyzing the system with the genie provides a lower
bound on the performance of the true system. Finally, we show that there is one genie
such that the end-to-end throughput is given by the minimum cut of the equivalent wired
network.
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Figure 4.7: The link capacity graph of the network in Figure 4.6. The dashed node represents
a virtual node, which accounts for packets that are received by both of the relays.

Genie-Degraded Wireless Network

We first find the maximum flow through the equivalent wired network, and one rate
allocation that achieves this flow. We denote the rate assigned to each link by R∗

i , and the
value of the flow by λ∗. By the max-flow min-cut theorem, λ∗ is equal to the min-cut of
the graph. Clearly, if the underlying physical network was a wired network with the same
capacities, then λ∗ would be the end-to-end capacity.

As an example, Figure 4.8 shows this rate allocation graph corresponding to the link
capacity graph in Figure 4.7. Because this is a valid flow, R∗

i < Ci for all i, and the total
rate entering each intermediate node equals the total rate exiting. We further note that for
any λ < λ∗, we can write λ = γλ∗, where 0 < γ < 1. Then, Ri = γR∗

i is a valid flow that
achieves rate λ.

To find the end-to-end capacity of the wireless network, we would like to construct a
network of queues with the same topology as the wireless network. However, as noted
above, in a neighbor-oblivious wireless network, nodes broadcast all transmissions. We thus
introduce a genie, which alters the physical network in two ways. First, each node randomly
drops incoming packets with probability 1− Ri

Ci
. Thus, the rate of each link is now Ri, instead

of the link capacity Ci. Second, packets entering a virtual node are assigned to exactly one
physical node, in a ratio proportional to the outgoing rates from the virtual node. Thus,
there is now only a single copy of each transmitted packet, regardless of how many nodes
receive it, and standard queueing methods can be applied.

We note that in both of these modifications, the action of the genie is to force some nodes
to drop packets that they actually received. We prove in Lemma 3 below that this genie
can only decrease the end-to-end throughput. Thus, the genie-degraded network provides a
lower bound on the actual system.

Lemma 3: The unicast capacity of a network using random network coding cannot increase
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Figure 4.8: A flow assignment that is compatible with the link capacity graph in Figure 4.7
and achieves the maximum flow from S to D.

when nodes discard a subset of packets that were successfully received.

Proof of Lemma 3: We begin by examining a time-space representation of the system,
shown in Figure 4.9. All of the nodes in a row represent the same physical node, with
each column corresponding to a separate time step. Thus, we can think of the graph as
“unwrapping” the time axis. We are interested in the max-flow from the source at the first
time step (the top left node) to the destination at the final time step (the bottom right
node). Observe that the horizontal edges represent each node’s internal buffer, i.e., each
physical node stores all packets that it receives and can code over them in future time slots.
The diagonal edges represent successful transmissions between nodes.

S

D

Figure 4.9: A time-space representation of the network. Each row represents one physical
node and each column represents a different time step. The amount of information trans-
mitted from the source to the destination is the min-cut between the top left node and the
bottom right node.

A node ignoring a packet that it received is equivalent to removing one of the diagonal
edges in the time-space graph, which cannot increase the min-cut. Thus, when coding over
an infinite field, where the max-flow always equals the min-cut, the effect of removing some
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edges is that the max-flow either is unchanged or decreases.
When coding over a finite field, the probability that the destination can decode the source

data is at least (1 − 1/q)η where q is the field size and η is the number of links carrying
coded packets [29]. Removing edges will reduce η, which increases this lower bound on the
probability of decoding. Thus, removing links has not increased the min-cut, but we must
increase the field size q if we want to guarantee that the decoding probability in the original
system meets a desired target. �

With the genie inserted, there is now only one copy of each packet in the network, even
if a transmission was physically received by multiple nodes. Therefore, we can represent the
flow of information in the genie-degraded system by a queueing network. The queue length
at each node represents how many more packets a node has received than it has successfully
transmitted to one of its neighbors2.

We also note that because of interference constraints in the underlying wireless network,
it is not possible for adjacent servers in the queueing network to process packets at the
same time. Therefore, the server processes are correlated across the nodes, and the queueing
network is a generalized Jackson network, as opposed to a standard Jackson network with
independent service processes.

Stability Conditions of Generalized Jackson Networks

A generalized Jackson network refers to a network of queues where the only requirements
on the arrivals, service times, and routing decisions are that they are stationary and ergodic,
i.e., the service times at different servers do not have to be independent. An example network
is shown in Figure 4.10. A fundamental problem is to find the conditions on the arrival rate
λ such that the queueing network is stable, which means that none of the queue lengths grow
arbitrarily large.

It is assumed that there are K stations in the network, numbered 1, 2, . . . , K. In addition,
station 0 will represent the source of the external arrivals and station K + 1 will denote
customers that leave the network. Furthermore σ

(k)
j denotes the service time of the jth

customer served at station k, and ν
(k)
j denotes the station to which this customer is sent

after service is complete, i.e., the “next hop” in the network. We emphasize that in this
model the service times and routing decisions are associated with the servers and not the
customers, which is also true in the uncoordinated wireless network that we are studying.

Because of the stationarity and ergodicity assumptions, the long run averages of these
variables are well defined. For the service times, we use the notation

1

n

n
∑

j=1

σ
(k)
j →

1

µ(k)
1 ≤ k ≤ K

2Recall that each node stores all packets that it receives, and therefore the physical buffer at each node
only increases in length. Because there is no feedback in the network layer protocol, nodes do not know
which of their transmissions were lost due to collisions. The queue length is thus a virtual quantity, of which
nodes do not have any knowledge. One consequence is that it is not possible to implement schemes where
the transmission probability is modulated by queue length, such as [22, 23].
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λ

Figure 4.10: A generalized Jackson network. The service times and routing decisions need
only be stationary and ergodic.

For the routing decisions, let Pi,j(n) =
∑

ℓ≤n 1
{ν

(i)
ℓ

=j}
where 0 ≤ i ≤ K and 1 ≤ j ≤ K + 1.

In words, Pi,j(n) counts how many of the first n customers served at station i are routed to
station j. Then, the averages of these variables converge to the following matrix

1

n
Pi,j(n) → pi,j 0 ≤ i ≤ K, 1 ≤ j ≤ K + 1

To find the stability conditions, we first must solve the following system of equations

πi = p0,i +
K

∑

j=1

pj,iπj i = 1, . . . , K

The variable πi can be interpreted as the average number of times that a customer is
processed by station i while it is in the network.

The stability of the network is defined via the time needed to empty all of the queues
in the network. The variable Z denotes the amount of time to empty the system after the
last external arrival, and A denotes the event that Z = ∞. The main result is stated in
terms of the probability of event A, as a function of the external arrival rate λ. This is made
mathematically precise by considering a generalized Jackson network with only n external
arrivals. The time to empty this network after the last arrival is denoted by Z[−n,0], and A
is defined by the following limit

A =
{

Z = limn→∞Z[−n,0] = ∞
}

The stability conditions for the generalized Jackson network are given by the following
theorem due to Lelarge [44], which is equivalent to earlier results due to Baccelli and Foss
[45, 46]. We state the result without proof here.

Theorem 2. Let
ρ = λ max

1≤i≤K

πi

µ(i)

If ρ < 1 then P (A) = 0, while if ρ > 1 then P (A) = 1.
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We note that this result gives a sharp threshold condition for stability. Depending on
the choice of the arrival rate λ, the network is either stable with probability one or unstable
with probability one.

Also, πi/µ
(i) can be interpreted as the total service time of a customer at station i, i.e.,

the average number of times it visits the station multiplied by the average service time for
each visit. Thus, the theorem states that the arrival rate must be small enough that none
of the servers are overwhelmed. By maximizing over the servers, we are checking that even
the worst station is not overwhelmed by arrival rate λ.

Stability Conditions of the Neighbor-Oblivious Wireless Network

To demonstrate the desired result, that the maximum throughput of the wireless network
is the min-cut of the equivalent wired network, we apply this theory of generalized Jackson
networks to the queuing network that we derived from the neighbor-oblivious wireless net-
work.

We first describe the connection between stability of the queuing network and the rate
of the wireless network. If the queueing network is stable, the queue length at each node is
finite and there are only a finite number of packets at all of the intermediate nodes at any
given time. As time gets large, the rate of packets arriving at the destination must approach
λ, the rate of packets injected into the network from the source. On the other hand, if
the queueing network is unstable, one or more queue lengths becomes infinite and the rate
of packets arriving at the destination is less than λ. Therefore, the maximum end-to-end
throughput is equal to the maximum rate λ for which the queueing network is stable.

Theorem 3: The generalized Jackson network derived from a rate allocation graph is stable
if λ is less than the min-cut of the graph.

Proof of Theorem 3:
The mean service rate of a node i, denoted by µ(i) in the above notation, is given by the

total capacity out of that node:

µ(i) =
∑

e:out(i)

R∗
i

Further, the transition probabilities pij are given by the fraction of outgoing rate from
node i that is assigned to the link from i to j:

pij =
Rij

∑

e:Out(i) Re

Thus, for any λ < λ∗, we can write the flow balance equation at node i as

∑

e:Out(i)

Re =
∑

e:In(i)

Re
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Defining Vi =
∑

e:Out(i)

Re, we have

∑

e:In(i)

Re =
∑

e=(j,i)

Re

Vj

Vj =
∑

e=(j,i)

pjiVj = Vi

Thus, by setting Vi = λπi, we recover the same system of equations as in Theorem 2.
Applying the theorem shows that

λπi

µ(i)
=

Vi

µ(i)
=

∑

e:Out(i) Re
∑

e:Out(i) R∗
e

= γ < 1

Therefore, Theorem 2 is satisfied and the network is stable. �

Combining Theorem 3 and Lemma 3 leads to the desired conclusion. Theorem 3 proves
that if we introduce a genie which drops packets so that the rate on the links is a valid flow
with value λ less than the min-cut of the equivalent wired network, then the destination
receives a rate λ. Lemma 3 then shows that in the actual wireless network, the end-to-end
throughput must be at least as much as the throughput in this genie-degraded network.
Therefore, any rate less than the min-cut of the equivalent wired network can be supported,
even when the possibility of starvation is allowed. It is not necessary to assume that all
nodes are in a saturated state.
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Chapter 5

An Uncoordinated VANET

Communication Protocol

A completely uncoordinated communication scheme for a VANET, as opposed to the
synchronous scheme presented in Chapter 3 which required some coordination to spatially
partition the vehicles, can be viewed as an instance of a neighbor-oblivious wireless network.
We will refer to a network that uses the distributed MAC protocols outlined in Chapter 2 and
random network coding, without any spatial synchronization, as an asynchronous scheme,
in contrast to the synchronous scheme in Chapter 3.

We originally only required that the VANET protocol be distributed, while still allowing
for the possibility that vehicles could know, or learn, their neighbors. However, requiring
the VANET to operate in a neighbor-oblivious mode does not relax any of the original
conditions, and also prevents the use of feedback. This will simplify the implementation of
such a scheme in a practical deployment.

Theorem 3 in Chapter 4 shows that the capacity of the vehicular network is equal to the
min-cut of the link capacity graph. The two main challenges when studying the VANET
are (a) modeling the connectivity of the network, and (b) computing the min-cut of the
link capacity graph. Because the vehicles are no longer grouped into spatial blocks, a more
precise model of the vehicle locations and connectivity is necessary.

The rest of this chapter is organized as follows. In Section 5.1 we present a model for the
VANET topology. In Section 5.2 we calculate the end-to-end throughput of a dense vehicular
network under the slotted Aloha and unslotted Aloha MAC protocols, and discuss the op-
timal centralized protocol. We show that the homogeneous connectivity of a dense network
enables data to be transmitted over large distances without a loss in performance. Finally
in Section 5.3 we give simulation results that compare the throughput of the asynchronous
scheme under routing and network coding, and the throughput of the asynchronous scheme
to the synchronous scheme proposed in Chapter 3
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5.1 Modeling the Vehicular Network Connectivity

The transmission power used in vehicular ad hoc networks is typically quite large, which
in turn leads to a large transmission range. For example, transmitters operating in the
Dedicated Short Range Communication (DSRC) band can transmit up to a range of about
300 meters [47]. Thus, the transmission range is significantly larger than the width of the
road, which is no more than about 50 meters for an 8 lane highway, and clearly much smaller
for a road with fewer lanes. Figure 5.1 shows the relative sizes of the transmission range and
road width when the vehicles are making full use of the available transmit power.

R

Figure 5.1: The transmission range R of a vehicular network is typically much larger than
the width of the road.

Because the transmission range is much larger than the width of the road, a reasonable
model for the VANET connectivity is a one-dimensional line network, as shown in Figure
5.2. Although the vehicles may be located in different lanes, we will make the approximation
that each vehicle can communicate with any other vehicles that are within a longitudinal
distance R from itself along the road1.

RR

Figure 5.2: The connectivity of the VANET will be modeled by a line network, where each
node connects to all neighbors within a distance R of itself.

1When vehicles use a low transmit power, this approximation is no longer valid. In the case of extremely
low transmit power and a heavily congested road, where all lanes are at the maximum vehicle density, the
connectivity can be modeled as a two dimensional grid lattice. We leave the analysis of the throughput of
the low power vehicular network to future work.
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The number of neighbors of each node depends on the transmission range and the vehicle
density. An example where each node has 2 neighbors in both directions is shown in Figure
5.3. A fixed number of neighbors for each node is an appropriate model for a heavily
congested highway, where the inter-vehicle spacing is constant. In this work, we focus on
such a setting, and in particular quantify how the throughput scales as density increases. For
a road in the free-flow state, the distance between vehicles is not constant, e.g., the vehicle
locations may be modeled with a Poisson distribution. We will show in the following section
that the throughput is governed by the sparsest region of the network.

Figure 5.3: The connectivity of a VANET with evenly spaced nodes. Each vehicle has 2
neighbors in both the forward and reverse directions.

5.2 Throughput of A Dense Vehicular Network

We begin by examining a VANET with constant vehicular spacing, such that there are K
edges emanating from each node, i.e., each vehicle can communicate with the next K vehicles
along the road. In this section, we give exact expressions for the end-to-end throughput
with the slotted Aloha and unslotted Aloha MAC protocols, and an upper bound on the
throughput with a carrier sense MAC protocol.

We also make the additional assumption that the source node, which could be either a
vehicle or a fixed base station, has the ability to communicate with its neighbors without
contention. This could be implemented either by allowing local coordination at the source
node, or by allocating an auxiliary channel for the source to “seed” its own neighbors.
Likewise, we also assume that the destination node can collect all of the packets received by
its neighbors.

The motivation for these assumptions is to allow the unicast flow to take full advantage of
the capacity provided by the multihop network. When the source and destination randomly
access the channel, similar to the other nodes, the min-cut of the link capacity graph will
be the cut that separates the source from the rest of the graph and the cut that separates
the destination from the rest of the graph. Conceptually, the source cannot get information
into the network fast enough to take advantage of the relays. By allowing the source and
destination to communicate without random access, the min-cut is not determined by the
cuts in the boundary regions of the network. For simplicity, we will model the source and
destination as having infinite capacity links to their K neighbors2, as shown in Figure 5.4.

In this case, the minimum cut is given by any cut which does not pass through these
infinite capacity links at the source and destination. Two such cuts are shown in Figure 5.5.

2In practice, these links will have finite capacity. However, since our objective is only to find the min-cut
of the network, setting the capacity of links that do not pass through the minimum cut to be infinite will
not affect the result.
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Figure 5.4: A model of a vehicular network in which the source and destination can commu-
nicate with their neighbors without randomly contending for the channel, as the relay nodes
do.

By the symmetry of the graph, all such cuts must have the same value. This proves our
first key result for the asynchronous transmission scheme: the end-to-end throughput of the
VANET is independent of the number of relay nodes. Therefore, by using a random MAC
protocol and network coding, data can be transmitted arbitrary distances along the road.
Thus each vehicle can be viewed as a digital repeater

S
Cut 1 Cut 2

D
∞∞ ∞∞

Figure 5.5: In a homogeneous vehicular network, all cuts that do not pass through the infinite
capacity edges near the source and destination will have the same (minimum) value.

We emphasize that this is not an intuitively obvious result. In the synchronous scheme
presented in Chapter 3 the capacity is constant if the number of blocks grows subexponen-
tially in the number of vehicles per block (the vehicle density), but decays to zero otherwise.
In contrast to that result, the asynchronous scheme allows us to transmit data over arbitrarily
long distances while maintaining a constant throughput.

Our second result is to compute the numerical value of the capacity under the MAC
protocols discussed in Section 2.2. We summarize the results in the limit of large density
(large number of outgoing links K from every node) in Table 5.1, and discuss the computation
in the following subsections.
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MAC protocol Capacity
Slotted Aloha 0.2248

Unslotted Aloha 0.1012
TDMA 0.5

Table 5.1: The end-to-end throughput of the asynchronous transmission scheme, in the limit
of high density, for three common MAC protocols.

5.2.1 Min-Cut of Vehicular Network Graph

We first note that under any MAC protocol, we must introduce virtual nodes to account
for the broadcast nature of the wireless channel, as discussed in Section 4.3. Because the
min-cut is finite, it must be true that none of the infinite capacity edges from the virtual
nodes to the physical nodes pass through it3. Therefore, we must consider cuts of the form
shown in Figure 5.6, where all of the virtual nodes that can be reached from nodes to the
left of the cut are on the right side of that cut.

Figure 5.6: The topology of the vehicular ad hoc network. The virtual nodes are represented
by the dashed circles, and the infinite capacity edges from the virtual nodes to physical nodes
by the bold lines. The minimum cut is a cut with no infinite capacity edges pass through it
from source side to destination side.

5.2.2 Throughput under Slotted Aloha MAC Protocol

With slotted Aloha, the set of active links in any time slot is independent of all other time
slots. The Markov chain representing the network is then fully connected, with transition
probabilities that depend only on the destination state. Thus, each link capacity can be
directly computed by finding the probability that the link is active in a single time slot.

3Specifically, no infinite capacity edges pass through the min-cut from the source side of the graph to the
destination side.
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We assume that each vehicle transmits with probability p in every time slot, independent
of all other times and vehicles, where p is a parameter that will be optimized. We compute
the sum of the values of all links crossing the cut shown in Figure 5.6. To simplify the
calculation, we will group together links by the “right most” node in the destination set. As
a concrete example, consider Figure 5.7 where each node can transmit to K = 2 neighbors.
When node A transmits, the packet may be received by B only, C only, or both B and C.
We simplify the computation of the cut by finding the sum of the link from A to C and the
link from A to the virtual node in one step. This sum is the probability that a transmission
from node A is received by node C, regardless of whether or not B receives it.

A B C

BC

Figure 5.7: To simplify computation of the min-cut of the vehicular network, the weight of
the edge from A to C and the edge from A to virtual node BC will be calculated in one
step.

After grouping the links in this manner, there are now two general classes of links crossing
the cut: groups that contain the “furthest neighbor” from the transmitter, and groups that
do not reach the furthest neighbor. The total probability of each group in the first class is
p(1−p)2K , which is the probability that the transmitting node chooses to access the channel
(with probability p) and the furthest destination node and its remaining 2K − 1 neighbors
are silent. There are K such links crossing the cut.

The probability of each group in the second class is p2(1− p)2K , because a second (inter-
fering) node must also transmit to prevent the packet from being received by the furthest
neighbor of the transmitter. The number of links in this class is given by

K−1
∑

m=1

m =
K(K − 1)

2

Therefore, the sum of the link capacities of all links crossing the cut is given by

Kp(1 − p)2K +
K(K − 1)

2
p2(1 − p)2K

≈ Kp(1 − p)2K +
K2

2
p2(1 − p)2K



48

By setting p = 1
2K

, the capacity in the limit of large K can be found using a standard
approximation as 1

2
1
e
+ 1

8
1
e

= 5
8e

≈ 0.23. The capacity can be further increased by optimizing
over p. However, numerical optimization shows that even for large K the improvement by
using the optimum p is relatively small, as shown in Figure 5.8.
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Figure 5.8: A numerical evaluation of the expression for the min-cut under slotted Aloha,
for both the optimal transmission probability p and the nominal value p = 1

2K
, reveals that

using the optimal value provides only a small improvement over the nominal value, even for
large K.

To verify these results, we simulated the throughput in a network with the homoge-
neous topology shown in Figure 5.4 using slotted Aloha and random network coding. First,
we checked whether the end-to-end throughput does approach the predicted limit of 5

8e
as

the number of neighbors of each node K increases. Figure 5.9 shows a simulation of the
throughput as a function of K. The total number of nodes between source and destination
was varied, so that for all values of K, the expected number of hops was approximately
five4. Here, we simulated an idealized scenario, where network coding was done over the real
field. Thus, packets were only discarded by the receiver in the case when the transmitter
was starved of new information, and never because the transmitter had novel information
but chose a bad set of mixing coefficients. Although in practical settings the coding must be
done over a finite field, by using a real field we were able to isolate the effect of starvation
from the effect of random coding over a finite field. The plot shows that when K is on the
order of 20, the min-cut is already close to the limiting value of the high density regime.

4Observe that increasing K for fixed network size presents an unfair comparison, since each packet will
travel fewer hops between source and destination and thus the problem of starvation will be reduced.
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Next, we simulated the dependence of the end-to-end throughput on the distance between
source and destination. Figure 5.10 shows a plot of the simulated throughput as a function of
the number of nodes between the source and destination, where the neighborhood size is fixed
at K = 5 and the network coding is again done over the real field. This plot demonstrates
that the throughput is in fact nearly constant when the distance to the destination increases,
as our analysis suggests.
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Figure 5.9: A simulation of the end-to-end throughput as a function of the neighborhood
size K for the homogeneous topology shown in Fig 5.4. The network coding is done over the
real field.

5.2.3 Throughput under Unslotted Aloha MAC Protocol

We model the unslotted Aloha protocol with a system where each vehicle implements
slotted Aloha, but the slot boundaries are offset by a random phase. In this case, the same
analysis as with the slotted Aloha MAC applies. However, when a transmitter sends a packet,
the receiver and the interfering nodes must be silent for two consecutive time slots because
of the offsets5. (See Figure 5.11 for a graphical example of the offset time slot boundaries.)
Therefore, the capacity under unslotted Aloha is approximately equal to

Kp(1 − p)4K +
K2

2
p2(1 − p)4K

5We assume that whenever two transmissions collide for any portion of the packet duration, the entire
packet is lost.
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Figure 5.10: A simulation of the end-to-end throughput as a function of the number of nodes
between the source and the destination for the homogeneous topology shown in Fig 5.4. The
neighborhood size is K = 5 and the coding is done over the real field.

By setting p = 1
4K

, the capacity can be analytically found to be equal to 9
32e

. As in
the case of slotted Aloha, numerical optimization shows that the capacity with the optimal
probability p is only slightly better.

5.2.4 Throughput under TDMA

While it is possible to write a general closed-form expression for the throughput of a
linear network (a network where each node has K = 1 neighbors) using CSMA, evaluating
it is difficult. In addition, even finding such an expression for cases with K > 1 is complex.
Thus, computing the end-to-end throughput of an uncoordinated VANET using CSMA is
beyond the scope of this dissertation.

However, in networks with no hidden nodes, it is known that a dual-channel CSMA sched-
uler can achieve the same average throughput scaling law as the optimal TDMA scheduler
[25]. Furthermore, a single-channel CSMA scheduler is known to achieve the same achiev-
able rate region as the optimal TDMA scheduler, except for the boundary region [43, 22].
For our purposes, this means that it is instructive to study the throughput of the VANET
under an optimal TDMA protocol, both because this provides an upper bound on what
an uncoordinated MAC can achieve and because CSMA can approach this bound in some
settings.

Consider the simple network where each node can reach K = 2 neighbors shown in Figure
5.12. In order to optimally reuse the channel, in one time slot nodes 1, 6, 11, . . . will transmit
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Figure 5.11: In unslotted Aloha, when a node transmits a packet (the shaded rectangle)
neighboring nodes must be silent for two consecutive time slots (the crosshatched rectangles)
to prevent a collision.

packets. In the second time slot, nodes 3, 8, 13, . . . will forward the packets that they received
in the first slot. In each subsequent slot, packets are forwarded by the “furthest neighbor”
that received the transmission in the previous time slot, with transmissions separated by
just enough distance to prevent any collisions. In a block of 2K +1 time slots, each node will
receive K novel packets (from nodes on its left), receive K redundant packets (from nodes
on its right), and transmit once. Thus, for high densities the capacity of the optimal TDMA
scheme approaches 1

2
.

We note that with slotted Aloha, the throughput is about 45% of the throughput in a
fully coordinated network. Thus, the “cost of uncoordination” for slotted Aloha is a loss in
performance of about a factor of 2.

2 3 41 5 6 7

Figure 5.12: The optimal TDMA scheme is found by packing concurrent transmission as
tightly as possible without inducing collisions, and having each packet forwarded by the
furthest node that received it.

5.2.5 Throughput of Non-Homogeneous Networks

In practical settings, the vehicular network will not have a homogeneous connectivity
structure, even in relatively congested regimes. In lighter traffic conditions, the structure
will be even more variable. A first approximation to modeling such scenarios is to represent
them by regions of constant density. Figure 5.13 shows an example with a more congested
region on the left and a less congested region to the right.

Figure 5.13: To a first order, a non-homogeneous vehicular network can be approximated by
a network with several different regions of constant connectivity.
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In this case, the min-cut within each region is constant. The analysis in Section 5.2.2
shows that the min-cut is an increasing function of K, the number of neighbors in a homo-
geneous region. Thus, the smallest cut will be governed by the subsection of the VANET
with the least connectivity. (For systems with fixed transmit power, this will be the least
dense region, where the vehicles are spaced furthest apart.)

5.3 Simulation Results

We simulated the performance of the asynchronous scheme using the same parameters as
the synchronous simulations in Section 3.4. In these simulations, the asynchronous scheme
always used the slotted Aloha MAC protocol. Our objective was to compare network cod-
ing and routing in the asynchronous scheme, as well as to compare the asynchronous and
synchronous protocols. The main differences in the simulation parameters are the following:

• The nodes are not organized into spatial blocks, and are allowed to transmit in any
time slot.

• The time axis, although divided into slots as in the synchronous case, is not organized
into frames.

• Each node chooses to transmit in every slot with probability p = 1/(L), where L is the
number of neighbors within range of a node.

In the asynchronous scheme, there are no longer distinct waves of data flowing down the
highway. Thus, many of the practical considerations related to the length of packet headers
and the field size, which are minimized in the synchronous case where nodes only combine
packets in the same wave, are much more severe. In particular, while the theoretical analysis
assumes that vehicles can code over all source packets, this is not possible in even a moder-
ately sized simulation, due to the fact that the packet headers would become unreasonably
long. There are thus nontrivial questions about when the infostation should transmit, and
how vehicles should separate packets that the infostation originally injected into the network
at different times. In these simulations, the source data is divided into finite length epochs
instead of coding over a single infinite block. In our simulations, we have assumed that the
infostation operates in exactly the same manner as in the synchronous case, transmitting
for N slots out of every 4N slots. The infostation protocol was kept unchanged in order to
facilitate a direct comparison between the synchronous and asynchronous schemes. However,
the problem of identifying the optimal choice for the infostation transmission schedule in the
asynchronous system is left for future work.

In addition, it was assumed that during each “duty cycle” the infostation would transmit
a new epoch of source data, independent of all previously transmitted epochs. When a
vehicle hears a packet from a new epoch, it immediately decodes the received packets from
the last epoch and flushes them from its buffer. Although this policy of immediately flushing
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the buffer, which was inspired by [27], is clearly far from optimal, it has the advantage of
being simple and robust6.

We first compared the performance of routing and network coding in the asynchronous
protocol. The first parameter we analyzed was the rank of the system as a function of the
distance from the infostation. Again, the rank is defined as the number of unique packets
per epoch for routing, and the number of independent packets per epoch for network coding.
Figure 5.14 shows a plot of average rank versus the distance between the infostation and the
destination vehicle. The plot shows that in the asynchronous protocol the rank is constant
as the distance increases when network coding is used, while with routing the rank decreases
rapidly to values close to 0.

In the case of network coding the asymptotic value of the curve is approximately equal to
N/e independent packets per wave. Because, the infostation initiates a new wave every 4N
slots in these simulations, the average throughput at the destination is thus about 1

4e
. We

observe that this is less than 5
8e

, which is the throughput predicted by our analysis in Section
5.2.2. However, the practical considerations discussed above clearly cause the performance
of the asynchronous scheme to degrade. In particular, the policy of immediately flushing the
packets in one epoch as soon as a vehicle receives a single packet in the next epoch causes
the throughput to decrease. The design of network protocols which can be implemented in
practice and bridge this gap is an important open question.

As in the case of the synchronous protocol, we again measured the total number of
received packets, regardless of whether they were independent. Figure 5.15 confirms that
there is no difference in the number of raw received packets with the two strategies.

Finally, we also empirically studied the delay introduced by the asynchronous scheme.
Figure 5.16 shows the time when the infostation begins transmitting the first packet of each
epoch, as well as the time when the destination node receives the last packet of that epoch.
The results are shown only for network coding. In the asynchronous scheme, the latency
before the first wave is completed is very low, about 0.7 s.

We also compared the performance of the synchronous and asynchronous schemes. Fig-
ure 5.17 compares the number of independent packets received at the destination vehicle.
In this figure the results obtained in the case of synchronous strategies without overhearing
were not considered, since it was empirically shown in Section 3.4 that incorporating over-
hearing provides better performance without any additional cost. The plot shows that the
synchronous scheme can sustain higher rank than the asynchronous scheme, with an increase
on the order of 50%. While the asynchronous network coding scheme does not provide the
same throughput as the synchronous network coding scheme, we still would like to highlight
the fact that the asynchronous scheme can sustain a constant throughput over relatively
large distances, without the synchronous block structure. Similar considerations hold in
the case of routing, however neither the synchronous nor asynchronous schemes can sustain
an acceptable throughput over long distances. The fact that the synchronous scheme out-
performs the asynchronous scheme is to be expected, since the spatial partitioning imposes
additional structure on the problem. Because additional resources must be invested to set

6It is not possible for vehicles to combine packets across source epochs, since the overhead required to
transmit the coefficients would eventually consume the entire packet
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Figure 5.14: The number of independent packets received per wave as a function of the
location of the destination vehicle in the asynchronous transmission scheme. Results are
shown for two strategies: routing with the asynchronous scheme and network coding with
the asynchronous scheme.

up the spatial blocks, it is unsurprising that better performance is obtained.
On the other hand, the results for the delay, presented in Figure 5.18, indicate that the

asynchronous strategy can guarantee a lower initial latency, due to the pipeline effect that
is artificially introduced in the synchronous scheme, which forces nodes to wait for a longer
time before the first wave is received. The figure shows indeed that there is a trade-off
between throughput and latency in the selection of a synchronous or asynchronous method.
If the main goal is to guarantee a high throughput and the system has the resources set up
the spatial block structure, then the synchronous solution should be used, at the price of a
higher complexity and a larger initial latency. On the other hand, if the throughput provided
by asynchronous network coding is sufficient, then this strategy is preferable because of the
lower complexity and the lower latency.
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Figure 5.15: The total number of received packets per wave as a function of the location
of the destination vehicle in the asynchronous transmission scheme. This plot counts all
packets received without collision, regardless of whether they are independent. Results are
shown for two strategies: routing with the asynchronous scheme and network coding with
the asynchronous scheme.
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Figure 5.16: The time when the infostation begins transmitting each wave, and the time when
the destination vehicle receives the final packet of the wave, for th asynchronous scheme. The
vertical distance between the two curves is the time delay of the asynchronous scheme with
network coding.
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Figure 5.17: The number of independent packets received per wave as a function of the
location of the destination vehicle. Results are shown for four strategies: routing with the
synchronous overhearing scheme, network coding with the synchronous overhearing scheme,
routing with the asynchronous scheme, and network coding with the asynchronous scheme.
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Figure 5.18: The time when the infostation begins transmitting each wave, and the time
when the destination vehicle receives the final packet of the wave for network coding with
the synchronous overhearing scheme and network coding with the asynchronous scheme. The
vertical distance between the curves is the time delay.
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Chapter 6

Conclusions and Future Directions

In this dissertation, we have considered the problem of multihop communication in ve-
hicular ad hoc networks. Because vehicles frequently enter and exit roads, and different
vehicles may be traveling at very different speeds, the topology of VANETs changes rapidly.
Therefore, communication protocols that rely on coordinated scheduling of transmissions
to avoid collisions and global routing tables to move data from source to destination are
either technically infeasible, or require that a very large portion of system resources by de-
voted to tracking and disseminating the network topology. We have proposed to instead use
randomized, uncoordinated protocols in such networks.

We have proposed to combine randomized MAC protocols, such as Aloha and a simple
carrier sensing protocol, with random linear network coding for use in VANETs. Network
coding, which is based on the mixing of packets at intermediate nodes, makes the system
robust to packet losses without requiring any link level feedback. Our work focuses on analyz-
ing the throughput that is provided by vehicular networks that implement this combination
of MAC and network layer protocols.

In particular, we have focused on the case of a single multihop unicast flow, where the
vehicles on the road are serving as relays to forward packets from the source to destination.
We began by considering a spatially synchronized protocol. This scheme required a minor
degree of coordination, in that vehicles are grouped into spatial blocks, and transmissions
were scheduled at the block level to move waves of data down the road, although vehicles
within each block randomly contend with each other when transmitting. We proved that
the throughput with network coding in this synchronous scheme is constant, as long as the
number of blocks grows slower than exponentially in the vehicle density.

We then turned to a completely uncoordinated protocol. We showed that when vehicles
combine random channel access with network coding, the throughput is given by the min-
cut of the link capacity graph between source and destination. The implication is that on a
congested highway, where the connectivity is homogeneous and every vehicle has the same
number of neighbors, the throughput does not degrade with distance. In contrast to the
spatially synchronized protocol, a constant throughput can be supported over an arbitrarily
long distance.

The key challenge in demonstrating this result is the problem of starvation. Due to the
random ordering of transmissions induced by the randomized MAC protocol, the intermedi-
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ate nodes may temporarily not have any new information to forward to their neighbors. We
used tools from queueing theory to show that starvation does not decrease the throughput
below the min-cut of the network. This result has many applications beyond the vehicular
networks considered here. It closes an open question in the analysis of CSMA networks,
where it is often assumed that all nodes are in a saturated state, meaning that they always
have new information to transmit when they access the channel.

There are numerous open questions and directions for future research, both theoretical
and applied, that must be addressed in order to make VANETs a practical reality in the
near future:

• In practice, in order for the destination to be able to decode its received packets, each
packet must contain a header that specifies the linear combination contained in its
body. Therefore, vehicles cannot code over an infinite number of source packets. This
is especially true in wireless networks, where the packet length must be smaller than
the coherence time of the channel, and thus the header must be kept to a reasonably
small length. Due to these practical issues, the source data is partitioned into epochs,
and intermediate nodes only combine packets in the same epoch. Before deploying
a system that incorporates network coding, the performance loss that results from
dividing the source data into epochs must be analyzed. In particular, the effect of
partitioning the source on the result that a constant throughput can be sent over an
arbitrary number of hops must be carefully studied.

• While the problem of sending a single unicast flow through a vehicular network is an
important starting point, a practical network must be able to support a variety of other
modes of communication, such as multicast. One of the most interesting problems is
when there are multiple overlapping streams. Future work must address how receivers
that are interested in different flows should share the channel and cooperate with each
other in relaying packets.

• In this work, we have focused on data streams which are short enough that the network
can be considered effectively static during the duration of transmission. For very long
data streams, such as movies, the vehicles will move relative to each other while the
data is being relayed, which can improve performance by physically carrying data
through regions of low connectivity but presents additional challenges to quantifying
network performance.

• We have up to this point considered a simplified physical layer model, where receivers
within range of a transmitter can perfectly demodulate a packet, and receivers out of
range experience no interference. A more accurate analysis of the system performance
should incorporate a more realistic physical layer model based on the SINR at the
receiver.

• A more accurate approximation of the individual link capacities under the CSMA
protocol, as a function of the number of neighbors of each vehicle, is worth exploring.
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We hope that the results contained in this dissertation will prompt further research in the
field of protocol design and analysis for vehicular ad hoc networks, and eventually lead to the
deployment of practical networks which can serve to enable intelligent transportation systems
that improve highway safety and reduce the expenses associated with traffic congestion.
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