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ABSTRACT OF THE DISSERTATION 

 

Advancing Quantitative Perfusion Abdominal Imaging 

 

By 

 

Thomas Boyd Martin 

Doctor of Philosophy in Biomedical Physics 

University of California, Los Angeles, 2018 

Professor Kyunghyun Sung, Chair 

 

Purpose  

 To develop and investigate a self-gated MR imaging technique to improve motion 

compensation robustness for dynamic contrast enhanced MRI, to develop and evaluate a low-

dose CT perfusion reconstruction technique, and to develop motion tracking for uterine motion 

and evaluate its characteristics in MRI. These all could potentially allow for more practical 

applications of quantitative MRI and CT in clinical workflow. 

Methods  

 A 3D dual-echo golden angle stack-of-radial gradient echo sequence was developed 

such that a fat-only self-gated signal (SGSF) could be extracted using a two-point Dixon method. 



 

 iii  

The SGSF was validated by i) numerical simulations of SGSF in the presence of B0 

inhomogeneities and varying fat fractions, ii) comparing to conventional SGS and an external 

video for respiratory motion detection, and iii) comparing SGS’s in four liver DCE MRI scans. 

 A previously developed MRI reconstruction technique called k-space weighted image 

contrast (KWIC) was used to reduce the number of x-ray projections per gantry rotation, 

therefore reducing the radiation dose for CT perfusion (CTP) imaging.  KWIC reconstruction 

was evaluated on i) a numerically simulated FORBILD head phantom with numerically 

simulated time-varying objects using multiple projection undersampling amounts (50%, 25%, 

and 12.5% of the original dose) and compared to conventional CT reconstruction, and ii) three 

clinical CTP cases.  Quantitative perfusion metrics were computed and compared between 

KWIC reconstructed CTP data and those of standard FBP reconstruction. 

 The 3D golden angle stack-of-radial gradient echo sequence and KWIC reconstruction 

were then used to scan sixty-one pregnant women.  Forty-eight subjects were scanned between 

14-18 weeks and 19-24 weeks gestational age (GA). Thirteen additional pregnant subjects 

underwent only a single MRI between 14-18 weeks GA. An image-based algorithm was used on 

3D dynamic images to track uterine motion over time in the superior-inferior and left-right 

directions. Uterine contraction and maternal motion cases were separated and compared between 

GA, fetal sex, and placental location. Comparisons were done in relation to direction and 

duration of the uterine motion. An unpaired t-test and a paired t-test were performed between 

GA, fetal sex, and placental location in terms of direction and duration for uterine contraction 

and maternal related motion, respectively. 

Results  
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 Numerical simulation showed that the fat extraction for SGS has less than 15% error at 

∆𝑓 = ±0-50 Hz. There is strong correlation between SGS and SGSF (mean correlation = 0.91), 

and video motion curve and SGSF (mean correlation coefficient = 0.87).  SGSF(t) was not 

significantly affected by the contrast uptake in liver DCE MRI experiment. 

 For the CT perfusion the numerical simulations showed that KWIC were unaffected by 

the undersampling/dose reduction (down to 12.5% dose) with KWIC reconstruction compared to 

the fully sampled FBP reconstruction. The normalized root-mean-square-error (NRMSE) of the 

AUC in the FORBILD head phantom is 0.04, 0.05 and 0.07 for 50%, 25%, and 12.5% KWIC 

respectively as compared to FBP reconstruction.   The cerebral blood flow (CBF) and cerebral 

blood volume had no significant difference between FBP and 50%, 25%, and 12.5% KWIC 

reconstructions (p>0.05). 

 In uterine motion we observed the mean duration of the contractions was significantly 

longer by 26.5 seconds during GA 14-18 weeks compared to GA 19-24 weeks (p=0.034) and 

significantly longer for male fetuses versus female fetuses (p=0.044; 141.7 ± 20.1s and 106.9 ± 

43.2s, respectively). There was no significant difference between duration and direction in 

maternal-related motion by GA, fetal sex, or placental location (p > 0.05). 

Conclusions  

 Respiratory motion correction in the liver can be achieved using fat-only SGS with 

minimal error in the fat-water separation. The proposed technique has potential implications for 

more robust motion correction for liver dynamic contrast enhanced MRI. 
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 The low dose CTP study demonstrates that KWIC preserves perfusion metrics for CTP 

with substantially reduced dose. Clinical implementation will require further investigation into 

methods of rapid switching of a CT X-ray source. 

 There is a significant difference in the duration of uterine contractions between the two 

gestational ages examined and the fetal sex. No association in maternal motion during early 

gestation was seen between GA, fetus sex and placental position. 
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1 INTRODUCTION 

 Hepatocellular carcinoma (HCC) is a primary malignant liver tumor and is one of the 

most aggressive malignant cancers causing more than 500,00 deaths per year worldwide1. 

Because it has such a high malignancy, early detection is even more prevalent.   One of the 

common methods of diagnosis is biopsy of liver tissue.  However, liver biopsy is invasive and 

can potentially spread HCC along the needle track2.  Dynamic contrast-enhanced (DCE) MRI 

and CT imaging have started to become more widely used because it can capture multiple phase 

contrasts of the liver to improve detection of the liver metastases. However, qualitative analysis 

can lead to inter- and intra-reader variability and does not provide accurate staging of HCC.  

Quantitative DCE-MRI and CT imaging is promising because it can provide quantitative analysis 

of the cancer reducing the reader variability and provide more accurate staging of HCC.  

Quantitative DCE-MRI is limited in the liver primarily due to the respiratory motion of the liver.  

And even though CT is a much faster acquisition time it is limited in clinical practice due to the 

relatively high amounts of radiation dose to the patient.   
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 Another disorder in the abdominal region is preeclampsia and intrauterine growth 

restriction (IUGR), and placenta abruption are obstetrical conditions that account for over 50% 

of all medically indicated preterm birth in the United States3–5. Preterm deliveries due to these 

disorders contribute to higher rates of infant and maternal morbidity and mortality6. Therefore, 

development of accurate methods to predict or detect in early gestation would be of great 

importance to enable prevention strategies and improve outcomes. One of the current non-

invasive methods for assessing placental function is uterine artery Doppler4. However, it has low 

sensitivities for the detection of placental disorders, particularly during early gestation. 

Quantitative MRI is a promising technique to improve the detection of preeclampsia, IUGR, and 

placental abruption; however, due to uterine motion caused by patient, uterine contraction, or 

other organ motion it is limited.  Additionally it is not well understood the extent in which these 

motion artifacts need to be accounted for in MRI.   

  

 The purpose of this dissertation is to develop and evaluate a self-gated MR imaging 

technique to improve motion compensation robustness for DCE-MRI, to develop and evaluate a 

low-dose CT perfusion reconstruction technique that could potentially allow for more practical 

applications of DCE MRI and CT in clinical work flow, and to develop a method to evaluate and 

characterize uterine motion in early gestation to allow for improved motion compensation.  The 

background and overview of these methods are discussed next. 
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1.1 Quantitative Liver DCE MRI 

 Quantitative liver DCE-MRI requires continuous acquisition of the whole liver volume 

for several minutes with each whole image acquired every 5-10 seconds. However it is 

sometimes limited due to respiratory motion as the liver moves with respiratory breathing. Self-

gated signals (SGS) obtained from a golden angle radial trajectory have been shown to be useful 

for respiratory motion detection and compensation7. The SGS is typically extracted by using the 

central k-space (DC) data from acquired radial spokes and can provide superior / inferior motion 

(primary direction of the respiratory motion) of the liver.  In liver DCE-MRI, the central k-space 

data are comprised of both the contrast uptakes as well as the respiratory motion. The separation 

between these two is non-trivial due to the variation in patients’ breathing patterns and contrast 

uptake during the scan, causing inaccurate respiratory motion detection using SGS.  The purpose 

of the study is to develop a fat-only self-gated signal that can be used to inherently separate 

contrast uptake curve and the respiratory motion signal allowing for more robust motion 

compensation compared to standard SGS’s. 

  

 Chapter 2 describes the methods of using recently developed dual-echo 3D golden angle 

radial gradient echo (GRE) sequence for fat-only respiratory motion extraction. It is a promising 

technique for liver dynamic contrast enhancement MRI (DCE-MRI), because it has inherent 

motion robustness, while providing other advantages, such as water-only images and R2* 

mapping. It is also described how the fat-only SGS (SGSF) was developed and evaluated to 

overcome the issue of contrast uptake and respiratory motion signal using a simple two-point 

Dixon method to separate fat and water SGS’s to improve the motion correction needed for liver 

DCE-MRI. 
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1.2 Quantitative DCE-CT 

In DCE-CT current dose reduction methods involve low tube-current modulation and iterative 

reconstruction.  However, due to plastic like image reconstruction and long computational times 

it limits CT perfusion (CTP) imaging in clinical practice. It is theoretically possible to reduce the 

number of projections by some sort of pulsing of the X-ray tube, which then would allow for 

undersampled radial reconstruction similar to MRI dynamic imaging and result in lower dose 

CTP. It is hypothesized that by undersampling the CT projections the radiation dose can be 

significantly reduced while maintaining diagnostic viability. Chapter 3 describes the work of 

developing and evaluating using this method of projection undersampling, to allow for dose 

reduction up to ~75% by adapting a projection view-sharing technique originally developed for 

accelerated dynamic MRI – k-space weighted image contrast (KWIC). 

1.3  Uterine and Placental MRI Imaging 

When imaging motion of the placenta and uterus could be caused due to uterine contractions, 

maternal respiration, fetal motion, and other organ motion8,9. In particular, during uterine 

contractions the uterus compresses, causing significant motion in the uterus and placenta. It has 

not been well studied the extent these sources of motion are needed to be accounted and adjusted 

for in MRI imaging. Dickinson et al. studied uterine contraction activity during gestational ages 

(GA) of 20 weeks – 40 weeks, using a monitor that recorded electrophysiological signals to 

provide electrocardiogram (ECG) of the fetus heart rate and electrohysterogram (EHG) for 

uterine contractions10.  However, only about 70% of the time was the fetal heart rate accurately 

measured and the EHG reported 19% false positives for uterine contractions.  Using 3D dynamic 
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MR imaging can potentially provide less false positives of uterine contractions, because there is 

a visualization of the uterine and possibly fetal activity. 

  

 Chapter 4 describes the work in how the developed 3D golden angle radial gradient 

echo sequence developed in Chapter 2 and the KWIC reconstruction was used to track and 

characterize uterine motion. It is also described how an image-based template matching 

algorithm was implemented for tracking uterine motion11,12, and generating motion time plots of 

the uterus in the super/inferior (SI) and left/right (LR) directions. The goal of the study is to 

characterize uterine contraction and maternal motion in terms of direction and duration, and to 

understand if there are associations with gestational age, fetal sex, and placental position are also 

investigated for uterine contraction and maternal motion. 
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2 EVALUATION OF FAT-ONLY 
SELF GATED SIGNAL FOR 
RESPIRATORY MOTION 
EXTRACTION AND 
COMPENSATION IN THE LIVER 

2.1 Introduction 

Qualitative dynamic contrast enhanced MRI (DCE-MRI) is a widely used technique that can 

provide initial diagnosis and staging of tumors13–15. It has also been shown to be a promising 

imaging biomarker for monitoring tumor response to chemotherapy, radiotherapy and 

embolotherapy for breast, prostate, and other cancers16–20.  In particular, liver DCE-MRI is 

important in evaluating hepatocellular carcinoma (HCC), liver metastases, and other chronic 

liver diseases21–24. However, many clinical practices in liver MRI are limited to single contrast 

phase of hepatic artery and portal vein, and require multiple breath holds during contrast 
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injection20. These images can lead to significant intra- and inter-reader variability in qualitative 

diagnosis. Furthermore, many patients have difficulties properly and consistently holding their 

breath for the duration of the scan, compromising diagnostic liver MRI image quality. 

 

 Quantitative assessment of DCE-MRI is a promising way to evaluate liver diseases 

objectively since it can provide physiological perfusion parameters of the liver21,25.  Quantitative 

DCE-MRI typically requires continuous acquisition of the whole liver volume for several 

minutes with each whole liver image acquired at every 5-10 seconds20. However, the liver can 

shift up to 20 mm in the superior/inferior (S/I) direction primarily due to respiratory motion26, 

and therefore the motion artifacts can significantly limit the quantitative assessment of liver 

DCE-MRI. 

 

 Studies have shown reduced motion artifacts using golden-angle radial sampling27–30 

due to its inherent insensitivity to motion. Additionally, golden angle ordering of radial 

projections allows for flexible temporal and spatial resolution of the DCE-MRI images due to 

nearly uniform k-space sampling with arbitrary number projections31. However, motion artifacts 

remain a significant challenge, vary depending on breathing patterns, and decrease the 

reproducibility of the quantitative images. 

 

 The self-gated signal (SGS) obtained from the golden angle radial acquisition has been 

shown to be useful for respiratory motion detection and compensation7,27,30,32–34.  The SGS is 

typically extracted by using the central k-space (DC) data from acquired radial spokes and can 



 

 8 

provide superior / inferior motion (primary direction of the respiratory motion) of the liver 30,33.  

In liver DCE-MRI, the central k-space data are comprised of both the contrast uptakes as well as 

the respiratory motion. The separation between these two is not trivial due to the variation in 

patients’ breathing patterns and contrast uptake during the scan, causing inaccurate respiratory 

motion detection using SGS.  If the SGS respiratory motion detection is inaccurate, it can lead to 

misregistration or not binning the respiratory data in the correct motion state leaving related 

respiratory motion artifacts in the reconstructed image.  

 

 In this work, we propose a novel method for accurately detecting the respiratory motion 

using fat-only SGS (SGSF) that can be potentially useful in the presence of contrast uptake35,36. 

The SGSF can be extracted by two-point Dixon fat-water separation37 using a dual-echo 3D 

golden angle stack-of-radial sequence. Fatty tissue typically does not include contrast uptake in 

DCE-MRI, and therefore, the motion detected by SGSF inherently separates respiratory motion 

and the contrast uptake signal, thus improving motion compensation in DCE-MRI. The 

feasibility of using SGSF is demonstrated by i) performing numerical simulations of the fat-water 

separation in the presence of B0 field inhomogeneities, ii) comparing SGSF to a conventional 

SGS and an external video source, iii) using SGSF for respiratory motion compensation in 

normal liver at 3T, iv) using the SGS in liver DCE MRI patient scans at 3T. 
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2.2 Theory 

The SGS is generated from the DC component of k-space, which is located such that the gradient 

amplitude is zero.  It is basically the sum of all the image contrast into a single voxel.  It can be 

expressed as: 

𝑆𝐺S 𝑡,𝑇𝐸 =  { 𝑊 𝑥,𝑦 𝐶 𝑡 + 𝐹 𝑥,𝑦 𝑒!" 𝑅(𝑡)𝑒!!!!! !,! !"𝑒!!! !,!
!

∆𝑥∆𝑦}
!

 

Equation 2-1 

 

where W and F are the water and fat signal contained in the voxel, 𝑡 is time, 𝐶 𝑡  is the contrast 

uptake curve (assuming that it only occurs in non-fatty tissue), 𝛼 is the phase angle of fat relative 

to that of water at the echo-time (TE), 𝑅 𝑡  is the respiratory motion, ∆𝑓 is the frequency shift 

due to B0 field inhomogeneity, and 𝜙! is the static phase that may arise from other system errors.  

 

 For the dual echo sequence, the two signals are acquired such that at TE1 the fat and 

water are out-of-phase (OP) to each other and TE2 the fat and water are in phase (IP), the SGS 

for OP and IP can be written as, 

𝑆𝐺𝑆!" 𝑡 =  { 𝑊 𝑥,𝑦 𝐶 𝑡 − 𝐹 𝑥,𝑦 𝑅(𝑡)𝑒!!!!! !,! !"!𝑒!!! !,!
!

∆𝑥∆𝑦}
!

 

Equation 2-2 

 

𝑺𝑮𝑺𝑰𝑷 𝒕 =  { 𝑾 𝒙,𝒚 𝑪 𝒕 + 𝑭 𝒙,𝒚 𝑹(𝒕)𝒆𝒊𝟐𝝅𝚫𝒇 𝒙,𝒚 𝑻𝑬𝟐𝒆𝒊𝝓𝟏 𝒙,𝒚
𝒚

∆𝒙∆𝒚}
𝑿

 

Equation 2-3 



 

 10 

 

Assuming ∆𝑓 is small (~0Hz) and negligible, the fat-only and water-only self gated signals 

(SGSF,true and SGSW,true) can be computed by using the two-point Dixon method37 : 

𝑆𝐺𝑆!,!"#$ 𝑡 =  { 𝐹 𝑥,𝑦 𝑅(𝑡)𝑒!!! !,!
!

∆𝑥∆𝑦}
!

 

Equation 2-4 

 

𝑆𝐺𝑆!,!"#$ 𝑡 =  { 𝑊 𝑥,𝑦 𝐶(𝑡)𝑅(𝑡)𝑒!!! !,!
!

∆𝑥∆𝑦}
!

 

 Equation 2-5 

 

 Note that SGSF is the sum of the signal from fatty tissue within the imaged volume, and 

therefore, a change in SGSF may represent a change in the volume of lung and liver in the 

excited slab, which could be used for detecting physiological motion over time. When 3D 

stack-of-radial golden angle radial acquisition (golden angle sampling in the kx-ky plane and 

Cartesian sampling in the kz dimension) is used, all the radial spokes are acquired along kz for a 

given rotation angle, and then the same acquisition scheme is repeated for the next rotation angle 

(see Fig. 2-1a). For improved motion detection30, a SGS profile of the entire volume can be 

constructed for each rotation angle by taking the 1D Fourier transform along kz. Lastly, the final 

SGS profile for motion detection can be constructed by including the SGS profiles from all coils 

and can be expressed as SGS(z,c,t), where z is the slice location, c is the coil index and t is time 

index for each rotation angle, as described in Fig. 2-1. 
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Figure 2-1 A) 3D dual-echo golden angle stack-of-radial acquisition of IP and OP echoes. B) FFT 
along kz at kx = ky = 0 gives SGSIP(z,c,t) and SGSOP(z,c,t).  SGSF(z,c,t) is generated using equation 2-
5. 

2.3 Methods 

2.3.1 Numerical Simulations 

When the frequency shift due to 𝐵! field inhomogeneity, ∆𝑓, is not negligible, the fat-water 

separation using equation 2-4 may not be accurate since SGSF may include partial contribution 

from water signal, as expressed below, 

 𝑆𝐺𝑆! 𝑡 =  
1
2 𝑊 𝑥,𝑦 𝐶 𝑡 + 𝐹 𝑥,𝑦 𝑒!!!!! !,! !"!

!!

− 𝑊 𝑥,𝑦 𝐶 𝑡 − 𝐹 𝑥,𝑦 𝑒!!!!! !,! !"! 𝑅 𝑡 𝑒!!! !,! ∆𝑥∆𝑦 

Equation 2-6 

  

Numerical simulations were performed to evaluate the accuracy of the extracted fat-only SGS 

using the two-point Dixon fat-water separation. A matrix of 200 x 200 voxels with fat and water 
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in each voxel was generated.  𝑊 𝑥,𝑦  and 𝐹 𝑥,𝑦  signals were randomly generated with the 

mean signal value determined by the desired fat fraction (𝐹𝐹 =  !
!!!

100%) value between 10-

70%.  A frequency shift was applied to each voxel in the matrix with linear variation ranging 

from ±0-50 Hz, to simulate common ranges of frequency shifts at 3T38–40. The contrast uptake 

signal, 𝐶 𝑡 , was generated by using sample prostate DCE-MRI images to get a general idea of 

the uptake. The respiratory motion, 𝑅 𝑡 , was assumed to be a simple sinusoidal curve 

𝑅 𝑡 = sin 𝑤𝑡 , where 𝑤 is the respiratory motion frequency and was assumed to be 0.25Hz. 

Equations 2-2 and 2-3 were then used to generate the SGSIP and SGSOP signals, and SGSF,true was 

generated using equations 2-4. The mean squared error between SGSF,true and SGSF (MSEF,F,true) 

was determined as well as the MSE between SGSF,true and SGSW,true (MSEW,F,true) 

MSE!,!,!"#$ =  
1
𝑛  𝑆𝐺𝑆!,!"#$ 𝑡 −   𝑆𝐺𝑆! 𝑡

!
!

!

 

Equation 2-7 

MSE!,!,!"#$ =  
1
𝑛  𝑆𝐺𝑆!,!"#$ 𝑡 −   𝑆𝐺𝑆!,!"#$ 𝑡

!
!

!

 

Equation 2-8 

 

MSEW,F,true  represents the maximum possible error that MSEF,F,true can have and a relative 

percentage error (PE) was calculated as follows: 

𝑃𝐸 𝐹𝐹,Δ𝑓 =
MSE!,!,!"#$ 
MSE!,!,!"#$

×100% , 𝐹𝐹 ∈ {0,100%}
 ∆𝑓 ∈ {−50,50𝐻𝑍} 

Equation 2-9 

 



 

 13  

2.3.2 Motion Detection 

 The study was approved by the local Institutional Review Board (IRB), and all subjects 

provided written informed consent. Thirteen healthy volunteers (age: 26 ± 4 years, weight: 159 ± 

34 lbs) were scanned using a 3D dual-echo golden angle radial gradient echo (GRE) sequence on 

a 3T scanner (Prisma, Siemens Healthcare, Erlangen, Germany) with a 20-channel body matrix 

array. No contrast media was injected during the scan. The first echo was acquired such that the 

fat and water signals were out-of-phase (OP; TE1 = 1.23 ms) and the second echo was acquired 

when the fat and water signals were in-phase (IP; TE2 = 2.46 ms) at 3T. The total scan time was 

about 3 min, which would include the typical time to acquire pre-contrast, arterial, portal venous, 

and delayed phases, if there was injection of contrast media.  See Table 2-1 for the imaging 

protocol.  

Table 2-1 Scanning protocol for Dual-Echo GA Radial GRE 

 

Imaging Parameters Multi-Echo GA 
Radial GRE  

Number of Echoes 2 

TE1 (ms) 1.23 

TE2 (ms) 2.46 

TR (ms) 3.85 

Matrix Size 256 x 256 x 48 

FOV (mm3) 380 x 380 x 144 

Slice Thickness (mm) 4 

Radial Spokes 1000 

Bandwidth (kHz) 1370 

Flip Angle (degrees) 7 

Scan Time (min:sec) 3:04 
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 The subjects were instructed to perform normal, deep, or a combination of the two 

(changing half way through the scan) breathing patterns.  This was to try to observe different 

breathing patterns that might be seen in practice. We averaged the two k-space center points to 

adjust for some gradient delays. We then took the 1D Fourier transform at kx = ky = 0 along kz to 

construct the SGS profiles for IP and OP, SGSIP(z,c,t) and SGSOP(z,c,t) respectively, and 

SGSF(z,c,t) was computed using equation 2-5 (see Fig 2-1b). A hamming window filter was 

applied for temporal filtering and to adjust for high frequency variances in the SGS profiles. For 

respiratory motion over time, we combined the SGSF profiles into one-dimensional signal as a 

function of time, SGSF(t), which contains the relative respiratory motion. First to combine coil 

information, we used singular-value decomposition (SVD)41 to create a single virtual coil that 

has the dominant signal containing motion information, SGSF(z,t). Although it is possible to 

empirically or systematically choose the single coil with the best motion information as each coil 

contains local respiratory motion information, it is practically very challenging and therefore, it 

was out of the scope of the study.  Lastly, the cross-correlation was performed between a 

reference projection profile time point and all the projection profiles (see Fig 2-2).  The cross-

correlation gives a relative position shift between the two-time points.  This shift is then used as 

the final self-gated signal SGSF(t).  In other studies30,33, the conventional SGS technique is 

similar to SGSOP(t) because the echo-time desired is short and contains both fat and water signal. 

Therefore, SGSOP(t) was used as the conventional SGS technique and compared with SGSF(t) by 

performing a linear correlation between the two signals.    
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Figure 2-2 Diagram of respiratory motion extraction from SGSF(z,t) ,A), after coil combination. B) 
Cross-correlation is then used to generate C), the final respiratory motion signal SGSF(t). 

2.3.3 External Validation  

External videos were recorded for additional validation of motion detection for six subjects (a 

total of 13 cases). A colored fiducial was placed on subject’s chest, and a camera was set up to 

record their chest motion. To extract respiratory motion, each video frame was first blurred using 

Gaussian filtering, and a mask of the fiducial was generated by either performing a thresholding 

or computing an edge of the fiducial mask when the colored fiducial was not sufficiently 

homogeneous. The center of mass was determined after the mask was generated, and the 

Euclidian distance between two centers of mass (a reference time point and the other time frame) 

was computed to generate the video motion curve. The supplementary video shows an example 

of the external video of a subject breathing with a fiducial and the motion curve extracted from 

the fiducial. Finally, the video motion curves and SGSs were slightly shifted to account for 

timing mismatch, and the SGS signals were inverted to match the end inhale motion state. The 

correlation coefficients were computed to compare the video motion curves to SGSF and SGSOP.  
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2.3.4 Motion Compensation In-vivo Liver 

To show the feasibility of using SGSF, a static image was reconstructed with and without motion 

correction for thirteen healthy subjects. Images with no motion correction used all of the spokes 

acquired during the scan. The motion correction was performed by binning the data into 6 

motion states, and then using the motion state with the most radial spokes to reduce the 

undersampling artifacts. The motion state that had the most radial spokes was at end expiration.  

For motion corrected reconstructed images, the k-space data from the motion state that had the 

mode number of radial spokes was used (mean radial spokes ~250, undersampling factor ~1.6).  

The motion state used was primarily in the end-expiration phase of the respiration. The 

reconstruction was performed offline (MATLAB; Mathworks, MA; version R2013a) using radial 

gridding with linear density compensation function. 

 

 Two experienced radiologists were given images, with and without motion correction  

(SGSF and SGSOP), reformatted in the coronal plane (through plane motion), because this is the 

main direction of respiratory motion, with no patient information and were blinded to what 

reconstruction method was used.  They scored the images from 1 to 5 based on the motion 

artifacts (1 = severe motion artifacts, 2 = moderately severe motion artifacts, 3 = moderate 

motion artifacts, 4 = minimal motion artifacts, and 5 = no detectable motion artifacts).  A score 

of 3 was the minimum score for the image to be a clinically viable image.  An intraclass 

correlation coefficient (ICC) test was used for comparison of inter reader agreement between the 
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two radiologists.  Then a Wilcoxon signed rank test was performed to compare the means with 

and without motion correction using SGSF and SGSOP. 

 

2.3.5 Patient Liver DCE MRI 

Four patients (age: 64.5 ± 4.5 years, weight: 184 ± 45 lbs) were recruited that were going to have 

a clinical routine liver DCE MRI study. All patients received gadoxetate disodium (Eovist; Bayer 

Healthcare, Berlin, Germany) intravenously for their MR imaging examinations with an injection 

rate of 2.0 mL/sec. A total of 20 ml was intravenously administered, where the contrast agent 

was diluted 1:1 with saline. The patients were continuously scanned using the 3D golden angle 

radial GRE sequence to acquire pre-contrast, arterial, venous, and wash-out phases of the liver 

DCE for 3.5 min. SGSF was then compared to SGSOP to show the feasibility of SGSF in the 

presence of contrast uptake it. 

 

2.4 Results 

2.4.1 Numerical Simulation 

The numerically simulated MSE percentage errors (PE) between SGS!,!"#$ and SGSF are shown 

in Fig 2-3.  The simulation shows that there is minimal change of the MSE PE as Δf increases 

(~1-5% change). The PE is most affected by the FF levels of the numerically simulated SGSF. 

The typical range of FF in the field of view for healthy subjects is about 30-50% (see dotted 

white lines in left plot of figure 2-3).  The PE ranged from 1-18% in the typical FF range. At FF 

< 20% the PE error begins to increase near exponentially.  The plot on the right shows the cross 
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section at Δf = 40 Hz.  This plots shows that the PE is much larger at lower FF levels (<30%) 

and less than 10%.   These numerical simulations show that even though there is contrast uptake 

the SGSF will not be significantly affected, assuming the FF is in the range of 30-50%. 

 

Figure 2-3 The MSE percent error between 𝐒𝐆𝐒𝑭,𝒕𝒓𝒖𝒆 and the SGSF (left). The SGSF is most affected 
by the FF compared to B0 inhomogeneities (right plot). The plot on the right shows a cross section 
of the MSE PE at Δf = 40Hz. For common FF (30-50%) MSE PE is less than 15% for all fat 
fraction levels. 

2.4.2 Motion Detection 

Figure 2-4 (top) shows the SGSOP(t) and the SGSF(t) plots for one of cases where the patient is 

performing deep breathing.  The bottom plot is the linear correlation between the two SGS 

signals.  This example shows a strong positive correlation between SGSOP(t) and SGSF(t) with a 

slope of 0.99.  The mean slope for all cases was 0.91 ± 0.12.  This shows that there are minimal 

discrepancies between SGSOP(t) and SGSF(t) for respiratory motion extraction.   
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Figure 2-4 SGSOP(t) and SGSF(t) comparison with a deep respiration breathing pattern (top). 
Linear correlation plot comparing the SGSOP(t) and SGSF(t) shows a strong positive linear 
relationship between the two signals.  For all thirteen subjects the mean slope is 0.91 ± 0.12. 

2.4.3 External Validation 

A representative case of the comparison between SGSOP(t), SGSF(t), and video motion(t) plots is 

shown in Fig 2-5. In this case the subject was performing deep breathing, and the peaks and the 

valleys of the video motion correlate well with the SGS’s.  The linear correlation coefficient 

values are 0.87 for SGSF(t) vs. video motion(t) and 0.88 for SGSOP(t) vs. video motion(t). A 

supplementary video is shown how the video motion extraction is performed.  
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Figure 2-5 A representative plot of the SGSOP(t), SGSF(t), and video motion(t) time curves.  The 
amplitudes vary between the SGS’s and video motion plots, however the linear correlation 
coefficient between SGSOP(t) and video motion(t) is 0.88 and SGSF(t) and video motion(t) is 0.87. 

 

 Table 2-2 gives the linear correlation coefficient of SGSF(t) vs. video motion(t) and 

SGSOP(t) vs. video motion(t) for each of the thirteen cases.  The mean correlation coefficient was 

higher for the SGSF(t) vs. video motion(t) (0.87) compared to the SGSOP(t) vs. video motion(t) 

(0.83), however it was not significantly higher. Subject 2 was a case where the subject performed 

both normal and deep breathing (changed halfway through scan). The correlation coefficients 

were lower (0.67 and 0.51) compared to the rest of cases. This is primarily due to SGSOP and 

SGSF not representing well the changes of breathing patterns (normal vs. deep). The extracted 
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video motion had much higher amplitudes during deep breathing compared to the self-gated 

signals. On the other hand, for case 13, the subject also performed combined breathing patterns, 

and the correlation coefficients are higher (0.81 and 0.81). However, a coefficient greater than 

0.5 still shows significant correlation between the SGS’s and the video motion.  

Table 2-2 Linear Correlation Coefficients between video motion and the respective SGS. 

 

2.4.4 Motion Compensation In-vivo Liver 

Case SGSF vs. 
Video Motion 

SGSOP vs. 
Video Motion 

1 0.79 0.71 
2 0.67 0.51 
3 0.90 0.86 
4 0.92 0.89 
5 0.90 0.87 
6 0.94 0.93 
7 0.95 0.92 
8 0.87 0.88 
9 0.88 0.92 

10 0.76 0.73 
11 0.92 0.92 
12 0.97 0.83 
13 0.81 0.81 

Mean ± Std 0.87 ± 0.08 0.83 ± 0.11 
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Images were converted to DICOM for viewing and analyzing in OsiriX (Pixmeo Sarl, Bernex, 

Switzerland) where images were reformatted from axial to coronal.  Reconstructed images with 

and without motion correction of a subject performing deep breathing are shown in Fig 2-6.  In 

the through plane (top row) image without motion correction there is severe blurring at the 

diaphragm (white arrow) and the blood vessels. The primary direction of motion is in the S/I 

direction. In the motion corrected image with SGSF and SGSOP the diaphragm and blood vessels 

are sharper (white arrows).  There are more visible blood vessels in the images with motion 

correction compared to without motion correction.  The in-plane resolution images (bottom row) 

show that there is improvement in the respiratory motion blurring when using motion correction 

with SGSF.  The blood vessels are better delineated (white arrows) with motion correction 

compared to no motion correction.  The radiologist score improved from a 2 (no motion 

correction) to a 5 (both SGSF and SGSOP motion correction) with no detectable motion-related 

artifacts. 

Figure 2-6 Example reconstructed images with SGSF and SGSOP motion correction and without 
motion correction. The arrows identify areas of high motion artifacts (left), while after motion 
correction the motion blurring is greatly reduced (right). The reconstructed images using SGSF and 
SGSOP show comparable image quality. 

 Table 2-3 contains the mean radiologist scores for the reconstructed images with and 

without motion correction.  The ICC comparison showed that there was great statistical inter 
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reader agreement.  Therefore, the radiologist’s scores could be combined.  The mean radiologist 

scores were 2.88 ± 1.03, 3.96 ± 0.66, and 3.53 ± 1.10 for images without and with SGSF and 

SGSOP motion correction, respectively.  The Wilcoxon Signed Rank Tests, comparing the means 

between each reconstruction method, were all p<0.02, stating that there is a statistically 

significant difference between all the mean scores, with SGSF having the highest score.  All of 

the scores of the motion corrected images using SGSF were 3 and above which corresponds to 

clinically diagnostic images.    

Table 2-3 Radiologist scoring for no motion correction and motion correction with SGSF images. 

 

2.4.5 Patient Liver DCE MRI 

The feasibility of using SGSF(t) in the presence of contrast uptake is shown in Figure 2-7. The 

examples of SGSF(t) and SGSOP(t) from two subjects show that SGSF(t) is not contaminated with 

contrast uptake signal while SGSOP(t) includes both respiratory motion and contrast uptake 

signal. There is a visible rise in SGSOP(t) starting at 90 seconds, while the contrast uptake is not 

visible in SGSF(t). Note that there exists a sharp change at the time of the contrast uptake in 

 Radiologist 1 Radiologist 2 Total Mean ± 
Stdev 

No Motion Correction 3.00 ±1.00* 2.77 ± 1.09* 2.88 ± 1.03** 

Motion Correction with SGSF 4.08 ± 0.64† 3.85 ± 0.69† 3.96 ± 0.66** 

Motion Correction with SGSOP 3.69 ± 0.69‡ 3.38 ± 0.76‡ 3.53 ± 1.10** 
*ICC= 0.94 Intraclass Correlation Coefficient between radiologist scoring 
†ICC = 0.86 Intraclass Correlation Coefficient between radiologist scoring 
‡ICC = 0.90 Intraclass Correlation Coefficient between radiologist scoring 
**p < 0.02 Wilcoxon Signed Rank Test to compare mean scores between each set of images 
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subject 2, due to a transient severe motion during hepatic arterial phase associated with 

gadoxetate disodium42. The post-contrast SGSF(t) levels off at the same amplitude prior to the 

contrast uptake, while SGSOP(t) remains higher after the contrast uptake. One of the subjects, not 

shown, there was not a significant amount of contrast uptake seen in neither SGSOP(t) nor 

SGSF(t). 

Figure 2-7 Two representative cases of SGSOP(t) and SGSF(t) in which the subjects underwent liver 
DCE MRI.  Note that subject 2 had a transient severe motion, causing a sharp change in the 
SGSF(t) at the time of the contrast uptake (90 seconds). 

2.5 Discussion 

We have shown that a 3D dual echo golden angle stack-of-radial GRE sequence can be used to 

properly extract a fat-only SGS, which then can be used for respiratory motion correction on a 

3T scanner. The main advantage of extracting a fat-only SGS is that for DCE-MRI scans the 

SGS will not contain contrast uptake, and eliminate the bias by separating the contrast uptake 

signal and the respiratory motion signal.  The IP and OP echoes can also be used to provide 

robust water only images compared to using a fat saturation pulse sequence37,43.  In this study we 

reconstructed a static image, but golden angle ordering sampling also provides the advantage of 

having flexible temporal resolution, which can provide the dynamic contrast uptake information 

needed for quantitative analysis31.   
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 The numerical simulation shows promising results that the MSE PE < 15% at common 

FF (30-50%).  The simulation shows that there is minimal affect (<1% in common FF) of 

separating out the fat-only SGS in the presence of B0 inhomogeneity.  The numerical simulation 

included both contrast uptake and respiratory simulations and represents an accurate 

representation of the SGS with contrast uptake similar to DCE-MRI studies.   It is shown that the 

SGSF can be appropriately separated in the presence of contrast uptake in water tissue within 

commone FF levels.  It is known that liver fat fraction is often 10% or less, however within the 

field of view there is also subcutaneous fat and visceral fat.  In healthy subjects (not shown in 

study) fat fraction maps were generated and a mean FF of about 35% was measured within the 

field of view allowing for minimal error in the fat-water separation in DCE-MRI studies.   

 

  It is possible to more accurately separate fat-water in the presence of B0 

inhomogeneities by using methods such as extended two-point Dixon44,45, three-point Dixon 

technique with B0 correction46 or generalized k-space decomposition with chemical shift 

correction47.  The extended two-point Dixon method can be used for phase-correction to reduce 

B0 inhomogeneities, but there is less tractability of the fat-water separation.  Three-point Dixon 

and generalized k-space methods correct for B0 inhomogeneities, but they typically require at 

least three echoes being acquired which increases the TR and decreases the temporal resolution 

of the dynamic images. Future studies may include implementing these advanced fat-water 

methods when higher Δf is expected. 
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 It is possible due to gradient delays that the center of k-space is not accurately acquired 

and removing the assumption that the gradient amplitude is zero.  This would then increase the 

error in fat-water simulation.  However, it has been shown that gradient calibration can be 

achieved such that the center of k-space is accurately acquired48. 

 

 The SGSF is comprised of the entire fatty tissue within the imaged volume.  This 

includes subcutaneous fat, liver fat, bone marrow and visceral fat.  The PE may be reduced for 

patients with high amounts of subcutaneous fat or fatty-liver disease (FF = 5%-30%).  In this 

study only healthy and young subjects were included, and have a lower FF in the liver as well as 

subcutaneous fat compared to most clinical patients.   

 

 It was shown that SGSF was not contaminated with contrast uptake signal for liver 

DCE-MRI studies.  In all four patient cases there was no contrast uptake observed, however in 

one of the cases there was no contrast uptake observed in either SGSF or SGSOP.  For this case, in 

the dynamic liver images it was observed that there was a contrast leak prior to the scanning and 

therefore no contrast uptake in the self-gated signals was observed. It is difficult to quantitatively 

validate that the contrast uptake signal is separated from the respiratory signal in SGSF.  Future 

studies could include verifying the contrast uptake separation of SGSF by using arterial contrast 

uptake or other tissue and subtract it from SGSOP to get a rough estimation.  Another approach is 

using SGSF for motion compensation and look at the reconstructed images to see if they have 

reduced motion artifacts. 
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 One of the remaining challenges is a way to find an optimal combination of coils when 

generating self-gated signal. The coil compression was used for the healthy subjects, but a 

manual coil selection was performed for liver DCE-MRI to improve self-gated signal.  An 

automated coil selection approach, similar to Zhang et al.49 would be highly desirable to make it 

more useful in clinical practice. Further development of the automated coil selection for the SGS 

in the presence of contrast will be needed in future studies. 

 

 For all reconstructed images with motion correction the range of the radiologist scoring 

was 3 to 5.  The minimum score for clinically relevant images was 3, indicating all of the motion 

corrected images would be clinically viable with minimal motion artifacts. Even with the 

subjects deep breathing where large motion artifacts were noticed the motion correction 

improved the radiologist scoring and rendered the previously motion corrupted images more 

clinically viable. This shows that the SGSF is accurately representing the liver motion due to 

respiratory motion.  This respiratory information could also be used to perform non-rigid liver 

motion correction to essentially create a dynamic series of the liver with one motion state50. 

 

2.6 Conclusion 

We have demonstrated that respiratory motion extraction and compensation in the liver can be 

achieved using fat-only self-navigated signal with minimal error in the fat-water separation (< 

15%). The SGSF is comparable to an external respiratory source (mean linear correlation 

coefficient = 0.87 ± 0.08) as well as to the conventional SGS (mean linear correlation slope = 

0.91 ± 0.12).  Images with motion correction using SGSF all had a radiologist score that were all 
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clinically relevant and statistically significant, compared to no motion corrected images (p < 

0.01). It was also shown that the contrast uptake does not significantly affect SGSF(t).  Using this 

technique has potential implications for more robust motion correction for liver DCE-MRI due to 

its inherent separation between respiratory motion signal and contrast uptake. 
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3 LOW DOSE CT PERFUSION 
WITH PROJECTION VIEW 
SHARING 

3.1 Introduction 

CT brain perfusion (CTP) is a widely used imaging technique for the evaluation of hemodynamic 

changes in stroke and cerebrovascular disorders as well as neoplasm51. In acute stroke imaging, 

CTP of the brain is valuable for the detection of ischemic lesions, and for distinguishing infarct 

core from penumbra brain tissue in acute stroke52. However, CTP involves a high radiation dose 

for the patients as the CTP scan continuously images the same anatomical region for 

approximately 60 seconds in order to capture the full passage of the contrast bolus. This has been 

raised as a concern by the FDA53, especially when multiple successive CTPs are performed on 

the same patient, e.g. to monitor reperfusion following recanalization. 
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Recently, several techniques have been applied for radiation dose reduction in CTP scans, 

including reduction of tube current and tube voltage, as well as the use of novel noise reduction 

techniques such as iterative reconstruction (IR)3,4. The standard CTP protocols now employ a 

reduced tube voltage of ~80kV while keeping the tube current below 200mA (typically 150mA), 

without deterioration of quantitative perfusion values56. However, the resultant radiation dose of 

existing CTP scans (≥~200mGy) is still about 2-3 times higher than that of a standard head CT 

scan (~60mGy)57. More recently, different IR methods for reducing radiation dose without 

sacrificing image quality have been developed by all major CT manufacturers (e.g. iDose by 

Phillips Healthcare, ASIR by GE Healthcare, SAFIRE (Sinogram Affirmed Iterative 

Reconstruction) by Siemens Healthcare, and AIDR by Toshiba Medical Systems)58.  Although 

the application of IR in standard CT scans has been improving due to enhanced computational 

power, its application in CTP is very limited due to the high complexity and computational 

burden for processing dynamic CTP image series (e.g., Siemens doesn’t offer IR options for 

CTP).  A recent study showed that it is feasible to reduce radiation dose of CTP by 50% using 

the IR algorithm called iDose51,59,60 developed by Philips, however, the subjective image quality 

of the resultant CTP with IR is still inferior in about a quarter of the patients61. There is a critical 

and unmet need to develop effective dose reduction techniques for dynamic CTP scans, without 

sacrificing image quality and speed (i.e., clinical workflow). 

 

In recent years, a number of sparse sampling and reconstruction algorithms have been developed 

for dynamic MRI with radial trajectories, such as highly constrained back projection (HYPR)62, 

k-space weighted image contrast (KWIC)12, and compressed sensing30. Since CT projection data 

can be converted into “k-space” data according to the central slice theorem, these MRI 
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algorithms can potentially be adapted for dose reduction of dynamic CT scans such as CTP by 

acquiring reduced number of projections for each image. As a proof-of-concept, HYPR has been 

applied for low dose CTP62–64 that allows for reduced image noise and streaking artifacts from 

undersampled data sets.   

 

Here we present an alternative strategy to reduce the radiation dose of existing CTP methods by 

~75% by adapting a projection view-sharing technique originally developed for accelerated 

dynamic MRI – k-space weighted image contrast (KWIC) 11,12 We present the theory and 

provide a proof-of-concept of the proposed technique with numerically simulated phantom data 

and retrospectively undersampled clinical CTP data. This chapter is based on the published work 

in Medical Physics65. 

 

3.2 Theory  

As shown in Fig. 3-1a, the standard CT scan involves continuous rotation and exposure of the X-

ray source around the patient. According to the Nyquist criterion and standard CT acquisition 

scheme, a total of π * Xres (where Xres is the number of detectors; π takes into account two 

projections 180° apart) projection views are acquired to form one CT image. For dynamic CT 

scans, the total number of X-ray projection views will be π * Xres * Nframe (number of temporal 

frames, typically 45-60 for CTP), resulting in a high level of radiation dose. As shown in Fig. 3-

1b, the proposed technology reduces the radiation dose of CTP scans by controlling the X-ray 

source to be on intermittently (instead of continuously) at pre-specified rotation angles (e.g., 

programmed pulsed X-ray). The dynamic CTP image series can then be reconstructed using 
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algorithms that preserve high spatial and temporal resolutions as well as image quality 

comparable to those of standard CTP scans. 

 

Many algorithms can be applied for this purpose by exploiting the redundancy of information in 

4D dynamic imaging data. In this work we focus on a projection view-sharing technique called 

KWIC which was originally developed for accelerated 4D dynamic MRI with radial 

trajectories11,12. KWIC exploits the oversampling of the k-space center in the radial acquisition 

by using drastically fewer views in the central region of k-space, while progressively larger 

numbers of views are used toward the outer k-space regions in a fashion of sub-apertures (Fig. 3-

2). The image contrast is primarily determined by the central region of k-space (i.e., low spatial 

frequencies), therefore relatively few projection views are required to maintain the image 

contrast with a high temporal resolution.  The radius of the central region (ρ1), and subsequent 

sub-aperture regions (ρn), is based on the Nyquist sampling criteria to minimize undersampled 

streaking artifacts and is calculated by 

Ring	of		
detectors	Detector	

X-ray	source	
con4nuously	on	

Pa4ent	

Incremental		
Rota4on	angle		
θ	=	2π/N	

θ	

Detector	
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Pulsed	
X-ray	

X-ray	source	
off	or	blocked	

a) b) 

Figure 3-1 a) The standard CT acquisition has the X-ray tube continuously on and acquires 
projections at 2π/N increments.  For KWIC implementation the x-ray tube needs to be 
intermittently on, b), during gantry rotation at specified angles. 
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𝜌! =  
𝑁

𝜋(𝛼 − 𝑛 + 1) 

Equation 3-1 

 

where N is the total number of projections, α is the number of sub-apertures used, and n is the 

region number (n = 1 is central region)12.  The number of projections in each sub-aperture region 

(ρn*π) increases progressively with number of sub-apertures toward the outer k-space 

regions11,12. A voronoi diagram is then used for density compensation66. 

Figure 3-2 Illustration of the CT-KWIC workflow. Raw CT projection data is Fourier transformed 
along the detector rows (column direction in this figure depiction) and combined with a KWIC 
mask, which selects and weights projections into sub-apertures. The masked sinogram is then 
regridded into 2D Cartesian k-space; a grid is overlaid in this diagram to indicate the relative 
density of projections in each sub-aperture (fewest at the center “view-core,” where contrast info 
lies, most at the outer, high-frequency regions). The outer sub-apertures will contain the largest 
amount of view-sharing. Finally, the gridded k-space image will be Fourier transformed into final 
2D image. 

 

As a projection view-sharing technique, KWIC is able to preserve high spatial and temporal 

resolutions of undersampled 4D dynamic contrast enhanced MRI and MR angiography27. 

Projection imaging data such as CT can be related to the frequency domain (e.g., k-space in 

MRI) through the central-slice theorem by performing 1-D FT of the projection of an object, 

which is the same as the line drawn through the center of the 2-D FT plane (i.e., k-space). By 

converting the CT sinogram into “k-space” data, we can apply KWIC to preserve high spatial 
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and temporal resolutions of undersampled CTP data by progressively increasing the number of 

projection views for more distant regions of “k-space” (Fig. 3-2).  Under this paradigm, contrast 

information, most important for quantitative CTP measures such as CBV, CBF, etc., maintains 

high temporal resolution, and temporal blurring is relegated to high frequency image details that 

do not impact perfusion measurements. 

 

While the central-slice theorem provides the key connection between CT projection data and k-

space used for KWIC reconstructions, parallel-beam CT geometry (e.g. “pencil beam” or 

translate-rotate geometry67) is required for correct mapping.  Modern CTP studies are typically 

conducted using 3rd generation CT scanners with cylindrical detector geometry, which is not 

immediately suitable for a KWIC reconstruction.  To achieve the correct geometry, rebinning 

algorithms originally developed for helical reconstruction were applied to the projection data, 

transforming the fan-beam data into “pseudo-parallel” data68,69.  The rebinning portion of the 

FreeCT_wFBP reconstruction software was utilized to accomplish this70.   

 

It should be noted that rebinning involves interpolation and mapping of data from nearby 

projections in the study.  In the case of CTP, this means that the rebinning process itself could 

result in some amount temporal blurring even prior to the temporal blurring one expects to see 

from the KWIC algorithm.  While this is an important effect to be aware of, it is limited to 

approximately 0.2 seconds at the edge of the scanner field of view, where it is most severe.  Near 

the center of the scanner field of view, where a head would be placed for a perfusion study, data 

is interpolated from at most 50-100 nearby projections, or < 0.1 seconds of acquisition data.  
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This is substantially less than the temporal blurring induced by KWIC and has not been observed 

to be a source of deviation in perfusion measurements. 

 

 Angular rebinning, which induces the temporal blurring, is governed by the equation 

θ=α+β, where θ is the rebinned angle, α is the unrebinned x-ray source angle, and β is the 

detector channel fan angle68,69.  Thus, a given projection acquired at angle α, is rebinned into 

projections of similar source angle, adjusted depending on an individual detector’s fan angle.  

Measurements near the edge of the scanner field of view (i.e. “large” absolute value of β) are 

rebinned to projections further from its original source angle; measurements near the center of 

the field (i.e. small β) of view are largely unchanged.   

 

The maximum detector fan angle for the scanner utilized in this is work is 0.436 radians 

(detectors at the edge of the scanner field of view).  1152 projections are acquired per scanner 

rotation, which gives an angular increment of 0.00545 rad/projection.   Thus, the maximum 

change in projection index due to rebinning is ±80 projections.  With a scanner rotation time of 1 

second per rotation, this results in a temporal error of (1/1152)*80=0.07s.  Since the blur happens 

in both the positive and negative directions, all of which will contribute to the reconstruction, we 

find that at the edge of the field of view, we obtain a temporal blur of 2*0.07=0.14~0.2s due to 

the angular rebinning.  This, however, is still substantially lower than the perfusion sampling rate 

of 1 sample per second. 
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The rebinning approach provides benefits as well.  Many modern CT scanners employ “flying 

focal spots” to improve in-plane and z-direction spatial resolution and the rebinning process and 

software routines used in this work allows for a robust approach to reconstruct scans acquired 

with flying focal spots using KWIC reconstruction.  This requires little to no modification of the 

KWIC algorithm and allows for improved spatial resolution of the flying focal spot scan.  

Additionally, once the data is in a parallel geometry, convolution filters can readily be applied to 

the parallel projection data to modify the spatial and contrast properties of the final 

reconstruction, as is done in FBP reconstruction; this direct application is not possible in the 

unmodified diagnostic fan-beam geometry68.  While not investigated in this work, further dose 

reduction could be achievable via the careful selection and application of these filters. 

3.3 Methods 

3.3.1 Adapting K-space weighted image contrast (KWIC) for CTP 

A modified KWIC algorithm for reconstruction of CTP data was implemented in MATLAB 

(The MathWorks Inc., Natick, Massachusetts, USA), that consisted of 5 main modules/steps: 1) 

rebinning of fan-beam CT data into parallel-beam sinogram data; 2) performing 1D FFT of the 

projection along the detector row direction; 3) multiplication with a KWIC filter that selects and 

weights projections into sub-apertures; 4) gridding of KWIC filtered sinogram into 2D Cartesian 

k-space using the VORONOI algorithm21; and finally 5) performing 2D FFT of the regridded k-

space data into 2D images (see Fig. 3-2 for diagram of the workflow).  Step (1) was implemented 

using a modified version of freely-available, open-source weighted filtered backprojection (FBP) 

for CT, FreeCT_wFBP70.  
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KWIC divides the k-space into sub-apertures (Fig. 3-3b): the sub-aperture covering the central 

region of k-space is updated every time frame (or rotation of CT gantry), while progressively 

larger numbers of views are used in the sub-apertures toward the outer k-space regions and 

shared between neighboring time frames (Fig. 3-2). The number of projections in the central sub-

aperture (or the number of X-ray projections per rotation of CT gantry) is determined by the 

desired dose reduction.  For example, if the standard number of projections is 576 per 180 

degrees, and the desired dose reduction is 75%, then the number of projections in the central sub-

aperture is 144.  The total number of sub-apertures required is also determined by the amount of 

desired dose reduction as well as the Nyquist sampling criterion in the outer regions of k-space.  

In this study the minimum number of projections needed in the outmost sub-aperture of k-space 

is 576 in order to meet the Nyquist criterion.  Therefore to achieve 50%, 25%, and 12.5% of the 

original dose the central sub-aperture would comprise 288, 144, and 72 projections respectively; 

to satisfy the Nyquist criterion, 2, 4, and 8 sub-apertures are used, respectively.  
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Figure 3-3 Angle-bisection (a) and KWIC reconstruction techniques (b). A, B, C, and D represent 
sub-apertures that are acquired in an angle-bisection scheme (a).  In this example, the time frame 
projections, A, acquires 3 projections within one gantry rotation with each projection being 60° 
apart from each other.  The next time frame, B, is then acquired such that each projection bisects 
the angle separation so that the angle between an A and B projection is 30°.  C and D sub-apertures 
are acquired at angles that bisect A to B and B to A projections respectively. The KWIC 
reconstruction divides the k-space into sub-apertures (b). The sub-aperture in the central region of 
k-space is updated every time frame (A,B,C,D), while progressively larger numbers of views are 
used in the sub-apertures toward the outer k-space regions and shared between neighboring time 
frames. 

 

As mentioned, a clinical implementation of KWIC algorithm also requires a custom acquisition 

scheme.  One potential realization of this is a high speed X-ray switching (e.g. pulsed X-ray) at 

pre-specified rotation angles to which different sampling sequences of rotation angles can be 

applied. In the present work, an angle-bisection (or “bit-reverse”) sequence of rotation angles for 

sampling patterns was applied for KWIC. As shown in Fig. 3-3a the projections were acquired in 

an interleaved fashion (A, B, C, D). During the first gantry rotation, only one downsampled set 

of evenly distributed projection angles were acquired (A). During subsequent gantry rotations, 

the projections that bisect the previous set of projections were acquired (B, C, D) until a full set 
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of projections at all angles were acquired. In other words, one quarter of the projection views are 

acquired each rotation, corresponding to a 25% dose level per gantry rotation assuming perfect 

x-ray switching. Data from the different gantry rotations is then assembled by the KWIC 

reconstruction algorithm into the sub-apertures to achieve complete sampling of k-space.  

Alternative sampling sequences of rotation angles such as the golden ratio scheme31,71 may be 

applied and will be discussed below. 

 

3.3.2 FORBILD Phantom CTP 

A FORBILD head phantom containing numerically simulated time-varying objects (5, 10, and 

50mm in size) was developed to create a parallel-beam dynamic CT projection data set. The goal 

was to assess the types of artifacts only the KWIC algorithm will produce.  Therefore, the 

FORBILD head phantom was numerically simulated with no added noise. The time-varying 

object contrast was simulated using the following gamma-variate equation72 

𝐶 𝑡 =  𝐶!𝑡!𝑒!(!!!) 

Equation 3-2 

 

where C(t) is the contrast signal, 𝐶! is an arbitrary constant (𝐶! = 1), t is time, and 𝛼 is a constant 

that affects the contrast uptake rise and fall (𝛼 = 11). The simulated scans were 60 seconds long 

with 1 gantry rotation per second and 576 projections per 180° rotation. Reduced-dose cases 

were simulated by down-sampling the number of projections per 180° rotation from 576 to 288 

(50% dose), 144 (25%), and 72 (12.5%) based on the angle-bisection scheme. One image per 

second was reconstructed using FBP and KWIC respectively.  KWIC reconstructions utilized 72, 
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144, and 288 projections per gantry rotation and 4, 3, and 2 sub-apertures, for the 50%, 25% and 

12.5% dose cases respectively. On all sets of reconstructed images (FBP 100% dose, KWIC 50% 

dose, KWIC 25% dose, KWIC 12.5% dose), an ROI was placed on the time-varying object (red 

ROI dot) and time to peak (TTP), area-under the curve (AUC) and the full width at half 

maximum (FWHM) of the corresponding dynamic curves were calculated.  Perfusion curves 

produced using the KWIC reconstructions were compared against reference values from the full-

dose FBP data. 

 

To assess the effects of the streaking artifacts near the edge of the image, the time-varying object 

was placed near the back of the FORBILD head phantom.  KWIC reconstruction was also 

performed down to 6.25% of the original dose to show when KWIC reconstruction begins to 

break down.    This was only performed with a 5mm size object, to assess the more extreme case 

of a lesion in clinical practice. The ROI was drawn on the time-varying object (red ROI dot) and 

TTP, AUC, and FWHM were measured.  To better highlight the artifacts, image subtraction was 

performed between full dose KWIC reconstruction and the respective low dose KWIC 

reconstruction.  Due to reconstruction algorithm difference, image subtraction was not performed 

with full dose FBP because it could create spurious artifacts not relevant to the study. 

 

3.3.3 In-vivo CTP data 

Three clinical CTP cases were scanned on a Definition AS (Siemens Healthineers, Erlangen, 

Germany) CT scanner. The scanning parameters are listed in Table 3-1.  The CTP protocols used 
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were the standard clinical protocols for patients with potential strokes, with dose level (217mGy) 

over 20% lower compared to that of the AAPM recommended protocol (281mGy)56.   

 

Table 3-1 Imaging and Reconstruction Parameters 

 

The CTP images were reconstructed using an in-house FBP reconstruction using MATLAB and 

were compared to KWIC reconstruction at 50%, 25%, and 12.5% dose reduction based on the 

angle-bisection scheme. Images using all of the projections were also reconstructed using the 

KWIC algorithm, which is the same as performing gridding reconstruction.  For this proof-of-

concept study, the central four detector slices of the fan beam data set were averaged together 

and utilized to achieve an effective slice thickness of 4.8mm, which AAPM recommends as the 

slice thickness for a Definition AS CT scanner CTP scan protocol56. The software used for CTP 

analysis was SCAN4, which has been used in large-scale clinical trials73. Post-processing of CT 

perfusion images yielded multi-parametric perfusion maps including cerebral blood flow (CBF) 

Imaging Parameters FBP Recon KWIC Recon

Scan Time (Sec) 45 45

CTDIvol (mGy) 217 N/A

Gantry Rotation (s/turn) 1 1

# Projections/turn 1152 576, 288, 144, 72

Matrix Size 360 x 360 360 x 360 

FOV (cm2) 50 x 50 50 x 50 

# Sub-Apertures 1 2,4,8,16

Projections/Sub-Aperture 1152 576, 288, 144, 72

Effective CTDIvol (mGy) 217 109, 55, 28, 14
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and cerebral blood volume (CBV) by using the delay-insensitive block-circulant singular-value 

decomposition (bSVD) method according to previously described procedures74.  Regions-of-

interest (ROI) were drawn in the motor cortex for all 3 cases in the CBV and CBF maps to 

compare between all the reconstructed perfusion maps.  A two-tailed t-test was used to compare 

the mean values of the ROI’s for CBF and CBV.  The arterial input function (AIF) was extracted 

from the anterior cerebral artery, venous output function (VOF) from the sagittal sinus vein, and 

the tissue density signals from manually drawn regions of interest within the brain parenchyma.  

The KWIC reconstructed dynamic curves for AIF, VOF, and tissue density signals were 

compared to those by the full dose FBP reconstructions using least squares linear regression. 

  

3.4 Results 

3.4.1 Simulated FORBILD Phantom CTP Data 

The reconstructed images of the FORBILD head phantom using the full dose FBP and KWIC 

with different dose reduction levels (100, 50, 25, 12.5%) are shown in Fig. 3-4a. The quality of 

FBP reconstructed images is degraded by streaking artifacts (blue arrows) at reduced dose levels, 

while the streaks are drastically reduced in KWIC reconstructed images down to 12.5% dose 

level. A numerically simulated time-varying object (red arrow in Fig. 3-4, 5mm size) for CTP is 

clearly visible at all dose reduction levels for FBP and KWIC  (10mm and 50mm objects are not 

shown because they were separate simulations with the object in the same place).  At 12.5% dose 

the FORBILD resolution fiducials (white arrows) are barely visible in the FBP reconstructed 

images while they are still detectable in KWIC reconstructed images.  Figure 3-4b shows the 

gamma variate signal curves from the 5mm object using FBP and KWIC reconstructions down to 
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12.5% dose.  The KWIC reconstructed signal curves down to 12.5% dose are virtually equivalent 

to that of the full dose FBP reconstruction.  

Figure 3-4 FORBILD CT phantom, a), with a 5mm object (red arrow) reconstructed using FBP 
and KWIC. Streaking artifacts (blue arrows) are present in FBP but not KWIC reconstructed 
images down to 25% dose level. The resolution fiducials (white arrows) are still visible at 12.5% 
dose in the KWIC reconstruction while in the FBP they are not visible. The red dot is the ROI 
drawn to obtain the dynamic curve of the time-varying object. The subtraction images show the 
artifacts from the KWIC. The gamma variate dynamic time curve, b), is similar at all dose 
reconstruction levels. 
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 In Table 3-2, the FWHM, TTP, and AUC measurements show that FBP and KWIC 

reconstructions are comparable for simulated objects of 5mm, 10mm, and 50mm in size.  The 

largest variation occurs at 12.5% dose KWIC reconstruction, however the normalized root-mean-

square error (NRMSE) of the AUC between 12.5% KWIC and FBP is 0.07. The NRMSE of the 

AUC between 50% KWIC and FBP and 25% KWIC and FBP is 0.04 and 0.05 respectively. The 

maximum temporal blurring occurred at 50% dose reduction with 0.02s increase in the FWHM. 

Table 3-2 Measure TTP, AUC, and FWHM for numerically simulated time varying object near the 
middle of the phantom 

 

The time-varying object (red arrow) and the ROI (red dot) drawn are shown in figure 3-5.  The 

subtraction image shows that there are streaking artifacts most prominent near the back of the 

FORBILD head phantom.  At 12.5% of the original dose there is presence of temporal blurring 

the in subtraction images (blue arrow), and is more prominent in 6.25% of the original dose 

image.   

FBP Full KWIC 
50%

KWIC 
25%

KWIC 
12.5%

TTP(s)
5mm 15 15 14 14

10mm 15 15 15 14
50mm 15 15 15 15

AUC
5mm 0.0253 0.0310 0.0285 0.0294

10mm 0.0253 0.0271 0.0271 0.0264
50mm 0.0253 0.0270 0.0271 0.0272

FWHM (s)
5mm 10.712 10.732 10.729 10.696

10mm 10.712 10.705 10.703 10.785
50mm 10.712 10.712 10.712 10.708
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Figure 3-5 FORBILD CT phantom, a), with a 5mm object near the back edge of the phantom.  The 
subtraction images show the artifacts from the KWIC. The red dot is the ROI drawn to obtain the 
dynamic curve of the time-varying object. Streaking artifacts (red and white arrows) where the 
time-varying object are seen and introduce more noise into the time curves.  The blue arrows 
identify a temporal blurring artifact due to higher amounts of view sharing at 12.5%  and 6.25% 
KWIC.The gamma variate dynamic time curve, b), is similar at all dose reconstruction levels, 
except at KWIC 6.25%. 

 

Table 3-3 shows that there is not a significant difference in the measured TTP, AUC, and 

FWHM up to 12.5% of the original dose despite the streaking artifacts.  However, at 6.25% dose 

the measured AUC, TTP, and FWHM vary about 30-40% compared to the corresponding FBP 

measurements.  The maximum temporal blurring occurred at 6.25% dose reduction with 2.3s 

increase in the FWHM.  
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Table 3-3 Measure TTP, AUC, and FWHM for numerically simulated time varying object near the 
back edge of the phantom 

 

3.4.2 Clinical CTP Data 

Figure 3-6 shows the CTP images reconstructed using FBP and KWIC with 50%, 25%, and 

12.5% dose levels for one of the 3 clinical cases.  All CTP images of the KWIC reconstructions 

are comparable to that of the full dose FBP reconstructions, however at 12.5% dose there are 

some streaking artifacts. The image quality is significantly improved using KWIC compared to 

FBP at lower doses, with identifiable brain structures and blood vessels.  At 25% and 12.5% 

dose the FBP reconstructed images are not viable for diagnostic imaging.  In the 50% and 25% 

dose KWIC images, the blood vessels are better delineated mostly due to the windowing and 

leveling of the images.  Due to reconstruction method differences between FBP and KWIC (i.e. 

kernel size), the images do not have the same signal-to-noise ratios and thus comparable contrast 

in the images can be difficult to achieve. Also the kernel used in FBP could smooth out finer 

structures compared to KWIC reconstruction. Difference images between the KWIC images and 

full dose reconstructed images (bottom row).  The window and leveling was increased by x8 to 

show the difference.  The noise becomes more grainy as the dose reduction increases, and there 

are visible streaking artifacts near the edge of the head.  

5mm FBP Full KWIC 
50%

KWIC 
25%

KWIC 
12.5%

KWIC 
6.25%

TTP(s) 15 15 14 15 15
AUC 0.0253 0.0254 0.0270 0.0280 0.0354

FWHM (s) 10.714 10.731 11.022 10.914 13.054
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Figure 3-6 FBP and KWIC reconstructed STP cases at 50%, 25%, and 12.5% dose levels.  The 
image quality shows slight degrading in the KWIC reconstructions while the FBP images show a 
greater increase in streaking artifacts as the dose reduction increases. Difference images between 
the KWIC images and full dose reconstructed images (bottom row).  The window leveling (WL) 
and width (WW) was decreased by x8 to show the difference (WL: 67, WW: 1800).  The window 
leveling and width for the FBP and KWIC images are 11000 and 8500, respectively. (The noise 
becomes more grainy as the dose reduction increases, and there are visible streaking artifacts near 
the edge of the head. The white, blue, and red ROI’s are where the ROI’s were drawn to generate 
tissue, arterial, and venous time curves. The white ROI was also used to measure CBF and CBV in 
the tissue.  

 

 The AIF, VOF, and tissue density signals are shown in Figure 3-7 for FBP and KWIC 

reconstructions respectively.  The signal curves from the KWIC reconstructions down to 25% 
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dose level are virtually identical to those of FBP. However, slight deviation is observed for the 

12.5% dose KWIC curves compared to the reference curves of FBP. The scatter plots of figure 3-

8 further show the strong correlations between the full dose FBP signals and those by KWIC 

reconstructions for AIF, VOF and tissue density curves respectively.  The maximum temporal 

blurring between all three CTP cases occurred at 12.5% dose reduction for case 2 with 0.5s 

increase in the FWHM. 

Figure 3-7 Dynamic contrast curves for arterial, venous, and tissue ROIs generated with FBP full 
dose reconstruction, 50%, 25%, and 12.5% KWIC reconstruction.  The noise in the signal 
minimally increases as the dose reduction increases. 
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Figure 3-8 Correlation plots for Arterial (first row), Venous (second row), and Tissue (third row) 
signal curves comparing FBP and the KWIC reconstruction.  There is high correlation at all dose 
reconstruction levels. 

 

 Figure 3-9 shows the quantitative CBF maps for one of the clinical CTP cases (case 3).  

The CBF maps generated with KWIC reconstructions are comparable to those by full dose FBP. 

However, some variations of CBF maps can be observed across different dose levels, e.g., the 

CBF maps of full radial and 12.5% KWIC have a lower intensity compared to full dose FBP and 

50% and 25% KWIC CBF maps.  Table 3-4 shows the measured CBF and CBV in the motor 

cortex region of the brain. There is no significant difference of CBV and CBF values between 
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KWIC and FBP reconstructed images. The quantitative perfusion metrics (CBF and CBV) are 

not significantly different  (p>0.05) between FBP and KWIC reconstructions (only CBF maps 

are shown).  

Figure 3-9 CBF maps generated from a clinical case using FBP and radial gridding with all 
projections (Full Radial), KWIC reconstruction at 50%, 25%, and 12.5% dose reduction levels.  
The CBF maps of full radial and 12.5% KWIC have a lower intensity compared to FBP full and 
50% and 25% KWIC CBF maps. 

 

Table 3-4 Measured CBF and CBV values for all cases.  ROI was drawn in the motor cortex region. 

 

3.5 Discussion 

 In both the simulated and clinical CTP data, KWIC was able to reduce the radiation 

dose down to 25% of the original dose without significantly affecting the image quality and 

perfusion quantification. While the original goal of KWIC was for preserving spatial and 

FBP Full 12.5% KWIC 25% KWIC 50% KWIC Full Radial 

FBP Full Full Radial KWIC 50% KWIC 25% KWIC 12.5%

CBF(ml/100g/min)
Case 1 40.4 ± 30.3 34.5  ± 26.6 42.8 ± 33.2 51.0 ± 52.7 46.3 ± 40.3
Case 2 49.1 ± 23.2 33.0 ± 15.9 53.1 ± 32.1 52.6 ± 31.8 52.5 ± 38.7
Case 3 56.9 ± 37.9 51.48 ± 33.2 65.5 ± 39.2 59.0 ± 37.2 49.7 ± 29.0

CBV (ml/100g)
Case 1 6.4 ± 3.2 5.2 ± 3.1 5.6 ± 3.4 6.7 ± 4.2 6.5 ± 3.6
Case 2 7.9 ± 2.7 5.3 ± 2.1 6.1 ± 2.7 6.4 ± 3.2 7.4 ± 4.1
Case 3 7.9 ± 4.3 6.8 ± 3.3 6.9 ± 3.5 6.9 ± 3.6 6.7 ± 3.2
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temporal resolutions in accelerated 4D dynamic MRI, its application in dynamic CT scans results 

in a reduced number of total X-ray projections required per gantry rotation.  Coupled with fast 

X-ray switching and a custom acquisition scheme, it is foreseeable that perfusion exams could be 

conducted at reduced total radiation doses.  This innovation builds on the central-slice theorem 

that relates the CT sinogram to “k-space” data by performing 1-D FT of the projection of an 

object, which is the same as the line drawn through the center of the 2-D FT plane (i.e., k-space). 

Therefore many algorithms developed for accelerated dynamic MRI including KWIC can be 

adapted for low dose dynamic CT scans such as CT perfusion and angiography29,62,75. The 

drawback of KWIC is potential temporal blurring of fine objects comprising primarily high 

spatial frequencies. Based on our simulation, however, there is no apparent temporal blurring of 

CTP time courses for objects as small as 5mm in size. Clinical CTP data did not show temporal 

blurring of the AIF, VOF or tissue density curves. While our initial goal is to reduce the radiation 

dose of brain CTP, the technology can be expanded to CTP of body organs, which is rarely 

performed due to excessive radiation dose. Our technique may also be adapted for multiphase 

CT angiography (CTA) of the brain and heart. One of the limitations of CTA in clinical 

applications is that the peak of the contrast bolus might not be precisely captured leading to 

either rescanning of the patient or misdiagnosing the disease76.  With CT KWIC more time 

points can be acquired with the same amount of dose, and thus improving the quality and 

reliability of CT angiography scans.   

 

 In the present study, KWIC was able to reduce the radiation dose down to 25% of the 

original dose without compromising the image quality of simulated CTP and clinical CTP cases 

without head motion (case 3). However, in the clinical case presenting head motion the 
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achievable dose reduction was ~50% (case 1 and 2). Since the higher frequency k-space regions 

are shared between neighboring time frames in KWIC, the effect of sudden head motion is 

propagated to neighboring time frames during reconstruction, affecting the final image quality. 

While motion was observed to have an impact on reconstruction quality and dose reduction 

potential, other studies30,77 have proposed methods for auto-detection and correction of motion in 

radial projection acquisitions that would be applicable to the KWIC methods utilized in this 

work. In the present study, we observed some variations in CBF maps generated across different 

dose levels (Fig. 9), which may be attributed to variations in the hand drawn ROI’s for the VOF 

and AIF, as well as different amount of view sharing, or potential patient motion. However, there 

was no significant difference in the measured ROI values (Table 3-4). Detailed investigation into 

the effects of motion on KWIC reconstructed CTP as well as its correction await further 

investigation in future studies. 

 

 Besides the angle-bisection scheme employed in the present study, alternative sampling 

sequences may be applied for KWIC such as the golden ratio scheme in which the rotation 

angles of the X-ray source are spaced by the golden angle (180°/1.618 = 111.25°). The golden 

ratio scheme guarantees an optimal projection distribution for any arbitrary number of 

projections used in reconstruction, especially if the number of total projection views is a 

Fibonacci number31,71,78.  To improve the sampling efficiency, a “tiny golden angle” scheme was 

introduced recently based on a generalized Fibonacci sequence that allows a smaller angle 

increment while still maintaining the sampling efficiency as the standard golden angle 

scheme71,78. It is worth noting that as a pseudo-random sequence, the (tiny) golden ratio scheme 
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is also ideal for modern sparse sampling techniques with constrained reconstruction such as 

compressed sensing (CS). 

 

 The main competition of KWIC is iterative reconstruction (IR) algorithms currently 

offered by all major CT vendors. Disadvantages of IR potentially include blotchy image 

appearance and longer computational time. As mentioned, clinical application of IR for CTP has 

been very limited due to the high complexity and computational burden for processing dynamic 

CTP images that impairs clinical workflow. In contrast, KWIC does not prolong reconstruction 

time and is computationally comparable to FBP. Furthermore, our technology is not exclusive to 

existing low dose CT technologies, and can be combined with IR to dramatically reduce 

radiation dose of existing CT scans.  

 

 Another similar study in reducing the radiation dose by retrospectively reducing the 

number of projections used is HYPR62,63.  HYPR uses the assumption that the image is a product 

of the composite image (all projections) and a weighting factor in the image domain.  HYPR 

additionally convolves a low-pass filtering kernel to smooth out the streaking artifacts in the 

retrospectively undersampled low dose image. The main difference between HYPR and KWIC is 

the weighting mechanism. HYPR uses a high-quality composite image of all the projections from 

the dynamic series to generate low-noise image frames with high spatial and temporal 

resolutions. KWIC uses view sharing from immediate neighboring time points in the frequency 

domain (i.e., local k-space filter) to minimize streaking artifacts to generate dynamic images with 

high spatial and temporal resolutions.  While HYPR can improve the noise and spatial resolution 

of the dynamic images, residual artifacts can still occur79,80. Additional methods may be required 
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to mitigate these artifacts81. If there is patient motion this can lead to streaking artifacts across all 

the HYPR images. KWIC reconstruction is also susceptible to streaking motion artifacts, 

however the streaking artifacts are limited to the images with motion while HYPR is susceptible 

to motion artifacts across the dynamic series due to the composite weighted image. HYPR also 

uses a smoothing kernel and can decrease the spatial resolution of the images, which can affect 

the perfusion quantification in regions with smaller blood vessels. KWIC does not decrease the 

spatial resolution because it is sharing information in neighboring time points and does not 

require the smoothing kernel as HYPR does. 

 

 A limitation of the KWIC algorithm is that due to the view-sharing in the higher-spatial 

frequencies there will be inherent temporal blurring.  It has been shown in this study as well as in 

MRI KWIC studies11,12 that the effects of temporal blurring are minimal when the projection 

undersampling (e.g. dose reduction) is less than 75%.  The temporal blurring of the contrast 

uptake is more significant with smaller features (e.g. higher spatial frequencies)11 because of the 

higher amounts of view sharing.  The temporal blurring can lead to CT number discrepancies in 

areas where there is contrast uptake. If there is patient motion the angle bisection acquisition of 

the projections can lead to streaking artifacts.  Using CS for the undersmapled projections is a 

promising technique to reduce the streaking artifacts without view-sharing, which would reduce 

the streaking artifacts due to motion and potentially improve the CTP metrics75. Also due to the 

interleaved view sharing there is a discontinuity in the projections in the KWIC reconstruction 

that can lead to streaking artifacts, when there are a higher number of sub-apertures used. 

Previous KWIC studies11,12,82 and this study show that using 8 sub-apertures is the upper limit 

before reconstruction artifacts are unacceptable. 
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 KWIC does require sparse sampling through high speed X-ray switching, which could 

theoretically be implemented using hardware and/or software approaches. Grid controlled X-ray 

tube is an existing technology that allows pulsed X-ray on a very short time scale (micro to 

milliseconds). It has been applied for pulsed fluoroscopy to reduce radiation dose83. Grid-

controlled X-ray has also been applied for flying focal spot CT to rapidly shift the focal spot of 

electron beam as a means to increase the slice coverage or resolution84. Therefore, it could be 

feasible to adapt grid-controlled X-ray for pulsed CT acquisition as required by KWIC. Currently 

there are organ based tube current modulation techniques that have very rapid changes in mA 

and are clinically used85. Alternatively, mechanical approaches such as a lead shutter may be 

applied for implementing pulsed X-ray. Software control of intensity-modulated X-ray has been 

applied for CT with reduced radiation dose, e.g., for thoracic imaging to spare lung/breast and 

cardiac imaging to focus on specific cardiac phases, although the time scale of existing X-ray 

intensity modulation is generally on the order of a few hundred milliseconds. Both hardware and 

software approaches can be explored for the implementation of pulsed X-ray in future studies.  

We recognize that the potential hardware developments required to implement the proposed CTP 

acquisition/reconstruction approach are substantial, however the work presented demonstrates 

the compelling dose-reduction benefits that could be possible with such technology, and the 

potential new applications of low-dose CTP, that such hardware developments would enable, 

could be a powerful pathway for improvements in clinical care. 
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3.6 Conclusions 

In this work, we presented a low dose CTP technique by adapting a projection view-sharing 

technique named KWIC that was originally developed for accelerated 4D dynamic MRI with 

radial trajectories11,12. This study provides a proof-of-concept for KWIC reconstruction of CTP 

to achieve ~75% dose reduction without compromising imaging speed or quality. With high 

speed X-ray switching, this technique may be expanded for CTP of body organs and multi-phase 

CTA as well as to include other constrained sparse sampling techniques.  Future work will 

concentrate on further improvement of SNR of the KWIC reconstruction with CT data, further 

validation of the proposed algorithm in clinical CTP studies, and addressing sampling 

requirements of the acquisition schemes via new sampling protocols (e.g. tiny golden angle) and 

hardware and software developments to achieve the required fast X-ray switching.  As 

demonstrated, KWIC’s potential for use in CTP provides another possible pathway to reduce the 

radiation dose of current CT perfusions exams as well as possible pathways towards clinical 

body perfusion with CT, and reduced-dose CT angiography. 
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4 MRI CHARACTERIZATION OF 
UTERINE MOTION IN EARLY 
GESTATION USING IMAGE-
BASED MOTION TRACKING 

4.1 Introduction 

Placental function and growth is critically important to fetal health and growth 86–88.  Ultrasound 

is the primary technique for imaging the fetus and placenta primarily because of its proven 

utility, easy accessibility, and the low cost compared to other imaging modalities.  However, the 

limitations of ultrasound include soft-tissue contrast, small field of view (cannot measure 

placenta volume), and poor image quality in some placental functional imaging, which makes 

ultrasound findings potentially inconclusive or insufficient to guide treatment options 89.  MRI is 

a promising technique because it provides great tissue contrast, functional imaging, and there is 

no ionizing radiation 90.  However, motion in MRI still remains one of the major limiting factors. 
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The motion of the placenta and uterus can be caused by multiple factors, including 

uterine contractions, maternal respiration, fetal motion, and other organ motion 8,9. In particular, 

uterine contractions can compress the superior region of the uterus, causing significant motion in 

the uterus and placenta. The extent these sources of motion should be accounted and adjusted for 

in MRI imaging has not been well studied. Dickinson et al. studied the uterine contraction 

activity during gestational ages (GA) of 20 weeks – 40 weeks and showed that there is a mean 

contraction frequency in pregnant women of ~2 contractions/hour 10.  They also concluded that 

the frequency and magnitude of contractions increase steadily throughout gestation. Though the 

study provides the frequency, duration, and magnitude of uterine contractions, measurements 

were conducted from an external source. Further, the direction of contractions or the magnitude 

of the direction, which can affect the imaging technique in MRI was not forthcoming.  Another 

study revealed uterine contractions to demonstrate a graded response on the fetal heart rate 

suggesting that uterine contractions may pose a physiological challenge to the developing fetal 

cardiovascular system 91.  This study used monitors recording electrophysiological signals of the 

fetal heart electrocardiogram (ECG) and uterine contractions by the electrohysterogram (EHG).   

However, only about 70% of the time was the fetal heart rate accurately measured and the EHG 

reported 19% false positive detection of uterine contractions.  Using MRI imaging can 

potentially reduce false positive detection of uterine contractions, related to direct visualization 

of uterine and fetal activity. 

 

Recently a 3D stack of stars golden angle radial gradient echo sequence was developed to 

generate more motion robust images and provide a self-gated signal 7,27,30,32–35.  Having this 
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image sequence can provide 3D dynamic images of the uterus and thereby provide accurate 

temporal and magnitude information about uterine activity.  Additionally, Wu et al. 92 developed 

an image based motion tracking algorithm that uses dynamic images that track cardiac motion 

improving motion compensation towards better visualization of the coronary arteries.  This 

algorithm is applicable to any dynamic set of images, including the uterus, providing spatial and 

temporal information. 

 

 In this study, we implemented an image-based template matching algorithm for tracking 

uterine motion based on 3D dynamic images reconstructed by k-space weighted image contrast 

(KWIC) 11,12. This algorithm generates motion time plots of the uterus in the superior/inferior 

(SI) and left/right (LR) directions.  Uterine contraction and uterine motion caused by maternal 

motion (e.g. maternal respiration and other maternal organ motion) were separated based on the 

uterine motion time plot.  Using the motion information we aim to characterize uterine 

contraction and maternal motion in terms of direction and duration. Associations with gestational 

age, fetal sex, and placental position will also be investigated in the case of uterine contraction 

and maternal motion. 

 

4.2 Methods 

4.2.1 Study Population 

UCLA’s Institutional Review Board (IRB) approved this prospective study. Sixty-one pregnant 

women (mean age: 35 ± 5 years, range: 22-45 years) were consented and recruited from UCLA’s 

antenatal clinics for a placental MRI study. Forty-eight of the subjects were scanned twice at two 
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different gestational ages during their second trimester, with the first scan between 14 - 18 

weeks, and the second scan between 19 - 24 weeks. The other 13 subjects underwent only their 

first MRI (14-18 weeks gestation age) as they voluntarily withdrew from the study.  In total there 

were 109 MRI exams.  The inclusion criteria for the subjects were the clinical confirmation of 

pregnancy, and exclusion criteria consisted of any known pregnancy abnormalities at the time of 

recruitment.  There were only three subjects who either developed preeclampsia or presented 

subsequently with intrauterine growth restriction (IUGR). Since these subjects delivered babies 

later with no immediate morbidity, we did not exclude them from our present study, which was 

performed during the second trimester. 

 

4.2.2 MRI techniques and Reconstruction 

All MRI exams were performed on two 3T scanners (Prisma and Skyra, Siemens Healthcare, 

Erlangen, Germany) using a body array coil. Subjects were positioned feet-first supine. A T2-

weighted scan was performed using T2-HASTE sequence to get an anatomy scan of the 

abdomen/pelvis region.  This was used to identify the placenta, uterus, and other relevant 

anatomy. A 3D multi-echo golden angle radial gradient echo (GRE) sequence was used for 

assessment of uterine contractions and maternal motion.  The first echo was used for 

reconstruction because, on average, it had the best qualitative contrast of the placenta, uterus, and 

fetus. There were two main protocols used for the sequence and are listed in table 4-1.  Using 

golden angle rotation of the radial acquisition allows for retrospective flexibility of the temporal 

and spatial resolution of the dynamic images that were reconstructed 31. The first set of data 
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acquisition only used 6 echoes for data acquisition while later 12 echoes were used.  The total 

acquisition time for the 6 echo scans was 4-5 min and for the 12 echo scans it was 5:30-6 min. 

Table 4-1 Representative sequence parameters for in vivo placenta scans. 

 

 A dynamic set of images were reconstructed offline using KWIC 11.  The KWIC 

algorithm progressively increases the k-space information from the center of k-space to the outer 

region, where the outer region shares the k-space information from other time points (see Fig 4-

1). We used 10 radial spokes in the center of k-space and 170 spokes used in the outer most ring.  

For the two acquisition protocols, the temporal resolution was 4.24 seconds and 7.63 seconds. 

The images were reconstructed in axial slices and reformatted to coronal and sagittal planes (see 

Fig 4-1).  The coronal and axial images were used to determine uterine and maternal motion in 

SI and LR directions, respectively.    

Imaging Parameters GA Radial GRE (a) GA Radial GRE (b) 

Number of Echoes 6 12 

TE1 (ms) 1.23 1.23 

ΔTE (ms) 1.23 1.23 

TR (ms) 8.85 15.9 

Matrix Size 160 x 160 x 32-48 224 x 224 x 44 

FOV (mm3) 350 x 350 x 168-200 379 x 379 x 154-198 

Slice Thickness (mm) 3.5-5 3.5-4.5 

Radial Spokes 620 440 

Flip Angle (degrees) 5 5 

Scan Time (min:sec) 3:18-4:57 5:35-6:06 
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Figure 4-1 Diagram of KWIC reconstruction (left).  The 3D reconstruction was used to reformat 
axial images into coronal and sagittal planes to process SI and LR motion (right). 

4.2.3 Image Based Template-Matching Motion Tracking 

We used an in-house software developed for tracking the uterine motion employing an image-

based template matching algorithm 92. The uterine motion along the SI and LR directions was 

measured on 2D coronal and axial images, which covered the uterus, from the 3D dynamic 

image sets, respectively (Fig 4-2). The inner rectangle (dashed-line) depicts the target region-of-

interest (ROI) for tracking, and the outer rectangle (solid line) delineates the search region based 

on the expected ranges of motion to reduce processing time. The inner rectangle was manually 

drawn to cover the superior or left/right regions of the uterus, which provided features with better 

contrast and reduced noise bias. A least-squares error metric based on normalized image 

intensity was used to determine the position of the target feature at each dynamic time frame. 
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The initial position of the feature (at the first time frame) was then subtracted from the best-

matched target location (minimized error) in the search region to calculate motion coordinates in 

two directions at each time frame. This algorithm tracks the uterine contractions as well as the 

uterine motion caused by maternal motion.  A multi-resolution of four fold was used for 

measuring uterine motion at a higher resolution.  Fetal motion was not a significant contributor 

to uterine motion given that the gestational age of the subjects at the time of the MRI scans was 

less than 26 weeks.  The fetus at these early stages of gestation does not demonstrate much 

movement and is not compressed against the uterine wall as seen later in gestation. 

 

 The center-of-mass of the inner rectangle location (x-y coordinate) was determined for 

each time point.  The SI direction of motion was determined by the y-coordinate when motion 

tracking was performed on coronal images, and the LR direction of motion was determined by 

the x-coordinate of the center-of-mass when motion tracking was performed on axial images. We 

then performed motion tracking on multiple coronal and axial slices within the uterus.  The 

center-of-mass location was averaged across all slices within the uterus for each time point to 

smooth any random fluctuations that may occur while tracking uterine motion.  The mean center-

of-mass of the inner rectangle was determined for each time point in coronal and axial images 

resulting in the uterine motion time plot for SI and LR directions as shown in Fig 4-2 (right).    
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Figure 4-2 Example images and plot of measuring the uterine motion with the image-based 
template matching algorithm. The coronal reformatted images were used to measure superior-
inferior (SI) motion (blue line) and axial images were used to measure left-right (LR) motion (green 
line).  The template matching algorithm searches for the target ROI (dotted white line) within the 
search region (solid squares) for each dynamic time frame, using a least-squares error metric based 
on normalized image intensity.  Note that the uterine contraction during the scan can be seen in the 
plot on the right. 

 

4.2.4 Uterine Contraction and Maternal Motion 

Uterine contractions were confirmed by an experienced abdominal radiologist (with 10 years of 

experience) and an experienced maternal fetal medicine specialist (with 20 years of experience). 

The uterine motion caused by maternal factors refers to all other motion (respiratory, subject, and 

other organ motion) or situations without contractions and is termed maternal motion. Three 

studies were excluded from the analysis.  Two contractions did not finish before the MRI scan 

ended, so the full duration of the contraction could not be determined.  The other exam was 

excluded due to significant maternal motion that made it difficult to distinguish between 

maternal motion and uterine contractions.   
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The maximum amplitude of the SI and LR (same time point) uterine motion time plot 

during the scan was used to identify SI and LR directions of the uterine contraction and maternal 

motion. For uterine contractions, the duration was measured from the start to the finish of 

contractions in uterine motion time plots.  

 

 For uterine contractions, three associations were mainly investigated if there was a 

significant difference in uterine contractions between (i) gestational age, (ii) sex of the fetus, and 

(iii) placental location (anterior and posterior 93). All were in relation to uterine motion in terms 

of direction and duration. For the gestational age comparison, we assumed that the contractions 

were independent of each other since there was only one subject having contractions during both 

scans. For maternal motion, we also investigated if there was a significant difference between (i) 

gestational age, (ii) sex of the fetus, and (iii) placental location. However, we only used 

direction, because it was difficult to generalize the duration of maternal motion for each scan. 

Exams with uterine contractions were excluded due to interference resulting in a potential bias 

when analyzing maternal motion.  Singular value decomposition (SVD) was used on uterine 

contraction and maternal motion to determine singular values or the dominant direction of 

motion, as well as the angular direction of motion between SI and LR. There were eight uterine 

contractions and twenty-three incidents of maternal motion where the fetal sex was unknown, 

thus were excluded from comparisons in the fetal sex analysis. 
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4.2.5 Statistical Analysis 

The data are presented as mean ± standard deviation, and stratified into three groups: gestational 

age 14-18 weeks and 19-24 weeks (1st and 2nd MRI, respectively), fetal sex (male and female), 

and placental location (anterior and posterior).  A two-group t-test was performed for uterine 

contraction related motion, because only one subject had uterine contractions in both MRI scans.  

For the one subject with contractions in both scans we averaged the duration and the direction 

values of the uterine contractions, and assumed it as not a mixed model. A paired t-test was 

performed on the maternal motion for gestational age on thirty-four subjects and an unpaired t-

test was performed on the other forty-eight subjects to compare means of fetal sex and placental 

location. The paired data for gestational age were derived from subjects that underwent both 

MRI scans and did not have a contraction in either scan (n= 34). A p-value less than 0.05 were 

considered significant for all statistical analyses. The statistical tests were performed in 

Microsoft Excel. 

 

4.3 Results 

4.3.1 Uterine Contraction 

In total 20% (n = 22) of the MRI scans had uterine contractions related to motion. We also 

observed that uterine contractions occurred 18% of the time during14-18 weeks gestational age 

and 25% of the time during 19-24 weeks. 

 

 Figure 4-3 shows uterine contractions of subjects in their first (green) and second (blue) 

MRI.  With all of the exams combined, SVD shows that the dominant direction was SI (top row), 
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as well as in the 1st MRI and 2nd MRI scans.  The dominant direction of motion was SI (see 

Table 4-2) when comparing between LR and SI motion in the 1st MRI (p = 0.04) and 2nd MRI (p 

= 0.0003). The mean duration of the contractions related to motion for the 1st MRI was 151.4s ± 

23.4s and for the 2nd MRI was 124.9s ± 28.0s.  It was observed that there was a statistically 

significant difference (p = 0.034) between the duration of these contractions between the 1st and 

2nd MRI.  The mean duration was greater for the 1st MRI (151.4  ± 23.4 seconds) compared to the 

2nd MRI (124.9  ± 28.0 seconds).    

Figure 4-3 Uterine contraction for patient’s 1st (green) and 2nd (blue) MRI and represents the SI 
and LR motion.  The SVD demonstrates the dominant direction of motion for SI and LR directions. 

 

 The uterine contractions between male (green) and female (magenta) fetal sex are 

shown in Figure 4-4. The SVD shows that the dominant direction was SI (top row) for combined 

and separate comparisons of male and female fetuses.  We observed a significant difference 

between LR and SI motion for female (p = 0.025) and male (p = 0.005). The mean duration was 

significantly greater for male fetuses (p = 0.044). 

 

1st MRI 
 
2nd MRI 
 
SVD Direction 
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Figure 4-4 Uterine contraction for male (blue) and female (magenta) fetuses and shows the SI and 
LR motion.  The SVD demonstrates the dominant direction of motion between SI and LR 
directions.  The dominant direction of motion is SI. 

 

 The placental location (anterior and posterior) in relation to contractions with motion is 

shown in Figure 4-5.  Similar to the fetal sex and gestational age the dominant direction was SI 

compared to LR motion for both anterior (p = 0.04) and posterior (p = 0.03) positioned placentas.  

There was no significant difference between the anterior and posterior placental location in terms 

of direction and duration (see table 4-2) for contraction related motion. 

 

Figure 4-5 Uterine contraction for anterior (magenta) and posterior (green) placental locations.  
The SVD shows that the dominant direction of motion is SI. 
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Table 4-2 Mean motion of SI and LR directions and duration of uterine contraction. 

 

4.3.2 Maternal Motion 

Figure 4-6 shows maternal motion for the subjects 1st MRI (green) and 2nd (blue) MRI scans.  

The SVD (red eclipse) shows that the dominant direction was SI when scans were combined, and 

separated individually as in the 1st MRI and 2nd MRI.  The paired t-test showed that there was a 

significant difference for LR motion between the 1st and 2nd MRI (p = 0.0001).  However, there 

was no statistically significant difference in the direction of motion, which was SI between the 1st 

and 2nd MRI (p = 0.44, see table 4-3). 

 

 

 

Uterine Contraction Cases  

p-value 

0.034 

0.044 

0.807 

  

Duration  
(sec) 

151.4 ± 23.4 

124.9 ± 28.0 

141.7 ± 20.1 

106.9 ± 43.2 

129.8 ± 46.1 

133.56 ± 23.6 

131.9 ± 34.7 

p-value 

0.413 

0.392 

0.412 

  

LR  
(mm) 

2.6 ± 2.2 

3.7 ± 4.0 

3.4 ± 4.0 

2.0 ± 1.6 

3.8 ± 3.5 

2.7 ± 3.0 

3.2 ± 3.2 

p-value 

0.099 

0.69 

0.095 

  

SI  
(mm) 

6.0  ± 4.1 

6.5 ± 2.7 

5.5 ± 2.0 

6.0 ± 2.7 

7.6 ± 4.2 

5.1 ± 2.2 

6.3 ± 3.4 

		

1st MRI (n = 11) 

2nd MRI (n = 11) 

Male (n = 7) 

Female (n = 7) 

Anterior (n = 10) 

Posterior (n = 12) 

All Cases  

		

Longitudinal 

Fetal Sex 

Placental 
Position 
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Figure 4-6 Maternal motion for patient’s 1st (green) and 2nd (blue) MRI. The SVD shows that the 
dominant direction of motion is SI. 

 

 Figure 4-7 shows the SI and LR motion for maternal motion related to fetal sex.   The 

SVD (red eclipse) shows that the dominant direction was SI for the combined fetal sex, as well 

as when separated as male and female.  There was no significant difference between the LR and 

SI motion for female fetuses (p = 0.11, see table 4-3), as well as between the female and male for 

LR (p = 0.54) and SI (p = 0.91) motion.  There was however statistically significant difference (p 

= 0.01) noted in the direction of motion between the LR and SI for male fetuses alone.  

 

Figure 4-7 Maternal motion for male (blue) and female (magenta) fetuses. The SVD shows that the 
dominant direction of motion is SI. 
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 The placental location (anterior and posterior) in relation to maternal motion is shown in 

figure 4-8.  There was no significant difference between the anterior and posterior placenta 

positions in the SI motion (p = 0.67, see table 4-3).  There was a statistically significant 

difference between the anterior and posterior placentas in the LR motion (p = 0.02), and between 

the LR and SI motion for anteriorly (p = 0.04) and posteriorly (p = 0.0002) located placentas. 

 

Figure 4-8 Maternal motion for anterior (magenta) and posterior (green) placental locations. The 
SVD shows that the dominant direction of motion is SI. 

 

Table 4-3 Mean motion of SI and LR directions for maternal motion 

 

Anterior 
 
Posterior 
 
SVD Direction 

No Contraction Cases 
    SI (mm) p-value LR (mm) p-value 

Longitudinal 
1st MRI (n = 50) 1.3  ± 1.0 

0.74 
0.6 ± 1.0 

0.004 
2nd MRI (n = 37) 1.4 ± 1.1 1.1 ± 0.9 

Fetal Sex 
Male (n = 37) 1.4 ± 1.2 

0.908 
0.8 ± 0.7 

0.539 
Female (n = 27) 1.4 ± 1.0 0.9 ± 1.2 

Placental 
Position 

Anterior (n = 49) 1.4 ± 1.0 
0.672 

1.1 ± 1.2 
0.0245 

Posterior (n = 38) 1.3 ± 1.1 0.6 ± 0.5 

All Cases 1.4 ± 1.0   0.8 ± 1.0   
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4.4 Discussion 

We used the image-based template-matching algorithm to characterize uterine contraction and 

maternal motion. SI motion compensation should be corrected for placental MRI scans, 

especially if the placenta is located in the superior region. The duration of contractions was 

statistically significant and greater by a mean of 26 seconds during GA 14-18 weeks compared to 

GA 19-24 weeks. We also observed that there was no association in the direction of motion 

between fetal sex, placental location, and gestational age. This method can potentially improve 

uterine motion detection with MRI studies in pregnant patients, thereby avoiding potential 

motion artifacts. 

 

 Dickinson et al. 10 performed a study on uterine contractions, where they monitored the 

duration of contractions in pregnant women at gestational ages between 20-40 weeks using 

ambulatory tocodynamometry.   In their study they observed that the duration of contractions 

decreased between 20-24 weeks and 25-28 weeks gestational ages and subsequently began to 

increase again.  Our present study demonstrated a similar decrease in the duration of contractions 

between the 1st MRI (14-18 weeks gestation age) and the 2nd MRI (19-24 weeks) timing, despite 

being at earlier gestational ages.  Dickinson et al. also showed that the max amplitude of the 

contractions increased across gestational age.  We observed a similar non-significant trend, 

related to a small sample size.  

 

We also observed that there was no significant difference in the duration and the direction 

of motion, except in LR motion, for exams included just the maternal motion.  Even though there 
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was a significant difference in LR motion between the 1st and 2nd MRI, the mean maximum 

motion was 1.1 mm and 0.6 mm, respectively.  However, when using multi-resolution in the 

tracking algorithm with four-fold resolution we encountered a measurement error of ±0.4 mm.  

Therefore the difference between 1.1 mm and 0.6 mm is considered too small to warrant 

correction of motion in most applications.  Having no significant difference in maternal motion 

between varying gestational ages, fetal sex, and placental location, it supports the expected 

notion that uterine motion is random. 

 

The 3D multi-echo golden angle radial VIBE sequence that we used can provide more 

than just motion characterization.  A recent study showed that this sequence can be used for free-

breathing fat quantification 94.  Though yet to be clearly understood, future work perhaps could 

decipher if there indeed is placental fat and whether such quantification could prove to be useful. 

Since we have collected multiple echoes, it is possible to generate R2* maps thereby providing 

information on placental oxygenation.  Using the motion information, we can reduce motion 

artifacts in the interpretation of exams that demonstrate significant motion. 

 

One of the limits of our study is the limited number of uterine contractions noted in 

exams.  Even though the mean direction of motion of uterine contractions between the 1st and 2nd 

MRI was different, there was no statistically significant difference between gestational ages.  

This lack of statistical difference between gestational ages could be due to an inadequate sample 

size. However, we observed significant differences in the duration of the contractions between 

the 1st and 2nd MRI and in relation to the fetal sexes.   
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Another challenge is the lack of contrast between the placenta, fetus, and other features 

that the gradient echo sequence provides.  This could make it challenging to distinguish causes of 

uterine motion caused by fetal motion, maternal digestive track, and uterine contractions. As 

mentioned in the methods an experienced abdominal radiologist and an experienced maternal 

fetal medicine specialist, to eliminate possible ambiguity of causes of the uterine motion, 

confirmed the uterine contractions. To further improve the motion tracking other sequences 

could be used to achieve T2-weighted or T2/T1-weighted image contrast (e.g. spin echo or 

balanced steady-state free precession), which would provide better contrast images for the 

motion tracking.  However, the trade off is slower image acquisition, banding artifacts, and/or 

decreased number of slices.   

 

In conclusion, we have demonstrated uterine contractions and maternal motion characterized by 

an image-based template-matching algorithm.  We showed that there is an increase in contraction 

frequency between 14-18 weeks and 19-24 weeks gestational ages. The duration of uterine 

contractions between the two gestational ages was significantly different, and the uterine 

contraction duration was greater in male versus female fetuses. There was no significant 

association of the direction of motion for uterine contractions based on gestational age, fetal sex, 

and position of the placenta. We also observed that the maternal motion is not associated with 

gestational age, fetal sex, and position of the placenta early in gestation during the second 

trimester.   
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4.5 Conclusion 

We have demonstrated uterine contractions and maternal motion characterized by an image-

based template-matching algorithm.  We showed that there is an increase in contraction 

frequency between 14-18 weeks and 19-24 weeks gestational ages. The duration of uterine 

contractions between the two gestational ages was significantly different, and the uterine 

contraction duration was greater in male versus female fetuses. There was no significant 

association of the direction of motion for uterine contractions based on gestational age, fetal sex, 

and position of the placenta. We also observed that the maternal motion is not associated with 

gestational age, fetal sex, and position of the placenta early in gestation during the second 

trimester. 

  



 

 76 

5 SUMMARY AND FUTURE 
STUDIES 

In summary, I have developed an MRI pulse sequence and showed that it can generate a fat-only 

self-gated signal and potentially allow for more robust motion compensation for liver DCE MRI.  

I have developed a novel application of the KWIC reconstruction to CT perfusion scans that can 

allow up to 75% dose reduction compared to the standard clinical procedures. Lastly, using both 

the 3D golden angle radial vibe sequence and the KWIC reconstruction to reconstruct 3D 

dynamic images of uterus (gestation age ≥ 14 weeks), and applied an image-based motion 

tracking method to characterize uterine motion during early gestation. 

  

 The SGSF is a very promising technique in improving the needed motion compensation 

for quantitative evaluation of liver DCE-MRI studies.  We showed in healthy volunteers with no 

contrast injection that the SGSF can reliable give accurate respiratory information.  Then in 

patient liver DCE-MRI studies we showed that the SGSF is not contaminated with the contrast 
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uptake signal.  A future study would need to be done to verify the separation of the contrast 

uptake and respiratory motion by comparing the contrast uptake signal in the liver or other tissue.  

This could also be done qualitatively by using SGSF to generate motion compensation images 

and compare to the motion compensated images of SGSOP.  

  

 As mentioned in chapter 2 one of the current challenges is to automatically select the 

coil that provides the best SGSF. We demonstrated in non-contrast healthy volunteers that a PCA 

could be used to combine the coils to get a comparable SGS to conventional methods, however 

when it was implemented in patient studies with contrast injected the PCA did not provide an 

optimal SGS and therefore the coil with the best SGSF was selected empirically.  The next 

experiment would to develop an automated coil selection, to make it more useful in clinical 

practice.  A possible method to explore are using coil clustering developed by Zhang et al49.  

They generated a navigator correlation matrix with all the coils and then used eigenvalue 

decomposition to separate out the dominant respiratory signals. Another possibility is to use PCA 

across the z+coil dimension instead of just using it to combine the coils30,50,95. 

  

 Another study would be to develop and apply motion compensation techniques on the 

3D dynamic reconstructed images. 3D dynamic images could be reconstructed using total 

variation compressed sensing to achieve high spatial and temporal resolution50. Soft gating could 

be used to generate pre-contrast, arterial, and venous phases, but there are not enough dynamic 

images to estimate quantitative perfusion parameters96.  Non-rigid deformable registration is 

another possible study that could be performed to reduce motion related artifacts97. 
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 Using projection undersampling method to reduce radiation dose for CT perfusion 

imaging has not been well studied.  Most current techniques to reduce radiation dose modulate 

the tube-current or kVp.  Undersampling the projections per gantry rotation will have similar 

challenges to MRI radial trajectory undersampling; therefore similar methods could potentially 

be used to compensate for undersampling artifacts.  Compressed sensing is a promising future 

direction of this project as it could theoretically be applied to not only dynamic CT imaging, but 

also static imaging.  A next project would be to evaluate compressed sensing methods on static 

images and compare them to current iterative reconstruction and FBP reconstructions with a 

similar dose reduction.  

  

 The projection undersampling and KWIC reconstruction has great potential to provide 

another possible pathway to reduce the radiation dose of clinical abdominal perfusion with CT. 

Due to the high ionizing radiation exposure during continuous CT scanning, CT perfusion in the 

abdomen is limited.  Another project would then to be apply CT KWIC in abdominal cases and 

compare the KWIC reconstruction with the current standard of practice, which is to scan every 2-

3 seconds (even though 1 second temporal resolution is desired). 

 

 Another future study using the uterine motion characterization is to apply motion 

compensation for free-breathing fat quantification94 and R2* mapping.  The fat quantification 

can help understand the physiological features of the placenta and to assess if there is a 

difference between healthy and abnormal placenta features.  The motion characterization can be 
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used to remove motion corrupted data to improve the quantification of the placental fat.  A recent 

study assessed the oxygenation in the placenta using R2* mapping based off of the multi-echo 

sequence98.  However, some of the subjects, with uterine contractions provided severe motion 

artifacts that affected the R2* quantification.  The motion characterization of the uterine motion 

can then be used to identify the motion corrupted date and then the data could be removed to 

decrease the motion bias of the placenta. 

 

 Having a fat-only SGS, low dose CT perfusion, and uterine motion characterization are 

essentials steps to improving quantitative abdominal imaging.  Motion corruption is still one of 

the limiting factors in quantitative MR imaging, and high radiation dose limits the abdominal 

imaging for CT perfusion.  Using these developed techniques can potentially improve and 

increase the clinical application for quantitative abdominal imaging.  
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