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NOTATION 

a activity; also a negative ion; also parameter in eq. (46) 

A Helmholtz energy 

A~ Debye-Huckel parameter 

B .. 
~J 

second virial coefficient or binary ion interaction parameter 

for interaction i-j (also ~ B .. ) 
l.J 

b parameter in extended Debye-Huckel expression; also parameter 

c 

cij 

d 
w 

e 

f(I) 

F 

g(x) 

g' (x) 

Gex 

H 

I 

Jij 

k 

K 

£ 

mi 

M 

n w 

N 
0 

p 

in eq. (46) 

positive ion; also parameter in eq. (46) 

<P 
(also Cij) third virial coefficient 

density of water 

electronic charge 

extended Debye-Huckel function 

collection of terms for the activity coefficient (eq. 32,33) 

defined function (eq. 19) 

defined function (eq. 20) 

excess Gibbs energy 

enthalpy 

ionic strength 

defined function (eq. All) 

Boltzmann constant 

equilibrium constant 

electrostatic length (eq. A9) 

molality of i 

positive ion 

number of moles of water 

Avogadro's number 

pressure 

v 



qij defined function (eq. Al2) 

r interparticle distance 

R gas constant 

S entropy 

t temperature in °C 

T absolute temperature 

X negative ion 

z. charge on ion i 
1 

Z total charge molality (eq. 35) 

uij short range potential 

v interionic potential of mean force 
ij 

Greek letters 

a 

s~?) 
1] 

yi 

y~ 

8 .. 
1] 

E 
eij 

K 

> . .. 
1] 

~. 
1 

v 
i 

¢ 

parameter in second virial coefficient expression (also a
1

, a
2

) 

(also 8~~), si~)) second virial coefficient for interaction i-j 

activity coefficient of ion i 

mean activity coefficient for electrolyte }~ 

second virial coefficient contribution from short-range forces 

same but for long-range force 

Debye length (eq. A3) 

second virial coefficient for interaction i-j 

standard chemical potential of species i 

third virial coefficient for interaction i-j-k 

number of ions of type i in the complete salt 

total number of ions in salt MX 

osmotic coefficient 

total second virial coefficient for ions i-j of the same sign 

third virial coefficient for mixing effects 

vi 



INTRODUCTION 

There are many geologically inportant natural systems involving 

multicomponent aqueous solutions; other si~ilar systems are important in 

steam power generation, chemical processing, and other industrial opera­

tions. Thus it is important to have an accurate and convenient model 

for the prediction of the thermodynamic properties of such aqueous solu­

tions since it would be very burdensome to make experimental measurements 

for each composition at all of the temperatures and pressures of interest. 

Aqueous solutions are also of theoretical interest, and existing theory 

provides a general structure for the desired model as well as the precise 

form of certain terms, but other terms are best evaluated empirically 

from appropriate experiments. The model and its applications are de­

scribed and discussed in the present chapter and the following one by 

Weare. 

This model was initially developed (Pitzer, 1973, 1975; Pitzer and 

Kim, 1974) for solutions near room temperature, but it has been found to 

be applicable to aqueous systems up to 300°C or a little higher tempera­

ture. A liquid-like density and relatively small compressibility are 

assumed. Thus the present model is not applicable close to the criti­

cal point of water at 374°C. The requirements for a theory applicable 

to ionic solutions in the critical region were discussed by Levelt 

Sengers et al. (1986). Progress has been made toward nodels valid for 

aqueous systems at above critical temperatures and pressures (Sverjensky, 

a chapter in this volume; Pitzer and Li, 1983, 1984; Bischoff and Pitzer, 

1985), but much more research is needed for these more extreme conditions. 

A typical application is the prediction of the equilibrium between 

an aqueous phase (brine) and one or more solid phases (minerals). There 

are many published examples of solubility calculations; especially 
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pertinent are those of Harvie and Weare (1980), Krumgalz and Millero 

(1983), and Harvie et al.(l984) for 25°C, and for high temperatures that 

of Pabalan and Pitzer (1987b). The following chapter by Weare emphasizes 

solubility calculations. The vapor phase may also be present and 

important. A complete calculation of either type involves several steps 

which can be considered separately as follows: 

1. The standard state chemical potential or molar Gibbs energy of 

formation of each substance involved. For aqueous species the standard 

state is a hypothetical state with ideal properties at one molal which 

is actually evaluated in a limiting process at infinite dilution. General 

tables of standard state chemical potentials for solids, gases, and 

solution species at the reference temperature, 25°C = 298.15 K, and the 

reference pressure of 1 bar are available from several sources (Robie 

et al•, 1978; Wagman et alo, 1982). Our interest is in accurate values 

for particular differences, and the tables of Harvie and Weare (1980), 

Harvie et al.(l984), and in the following chapter of this volume have 

been prepared to best meet this need. 

2. The excess Gibbs energy for the solution, which yields the 

activity coefficients of all solute species and the osmotic coefficient. 

The model for these quantities is described below. Additional informa­

tion concerning the theoretical basis for the model is given in Appendix 

A. This model was first tested at 25°C and the most extensive array of 

parameters pertain to that temperature. Also there have been a very 

extensive array of successful applications at 25°C, some of which are 

described below and others by Weare in the next chapter. Recently, this 

model has been extended to 200°C or above for a number of the geologi­

cally important solutes and these results are also described below. 

Appendix B gives numerical values for several solutes at elevated 

temperatures. 

2 
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3. For high temperature applications, the changes of standard­

state chemical potential values from 25° to the temperature of interest. 

This calculation is normally based on values for the standard-state 

entropy (or enthalpy) at 25°C and for the standard-state heat capacity 

over a range of temperature from 25°C upward. Sample calculations of 

this type are discussed and a summary of entropy values and heat capacity 

equations are given below. 

Since the model is based on a general equation for the Gibbs energy 

of the aqueous fluid, any thermodynamic property can be obtained from 

the appropriate derivative. Phase equilibria with several solid 

minerals are especially interesting applications which are discussed by 

Weare in the following chapter. Thermal properties of the brine are 

sometimes required, and these are discussed below, as are equilibria of 

the aqueous fluid with a vapor phase. 

There are, of course, other models which with similar accuracy 

treat some of the properties and systems here considered. But none of 

the other models has shown a comparably wide range of applicability and 

accuracy. Hence, we shall not burden this paper with extensive discus­

sions of other models and comparisons of results. Such comparisons are 

available elsewhere; many publications here cited contain such 

comparisons. 

EXCESS GIBBS ENERGY; ACTIVITY AND OSMOTIC COEFFICIENTS 

Basic Equation 

In constructing a model for aqueous ionic solutions all valid and 

useful theory should be included. The statistics of ideal solution 

behavior are first included in the definitions of the excess Gibbs 

energy and the activity and osmotic coefficients. Next in importance 

and now fully confirmed is the limiting law of Debye and Htickel; this is 
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the leading term for departure from ideality for any ionic solution. 

It depends only on the concentrations of the electrically charged 

species, the temperature, and the macroscopic properties of the solvent, 

the density and dielectric constant. This type of term arises purely 

from long-range electrostatic forces. There are higher order terms of 

the same type, depending only on electrical forces, but in many cases 

these are indistinguishable from terms arising from short-range forces 

between solute species. These short-range forces are complex and not 

practically predictable at present; hence, their effects are treated 

empirically. 

There is one higher-order electrostatic term that yields effects 

quite different from those from short-range forces. It arises only when 

2+ Na+ ions of different charge of the same sign are mixed, i.e., Ca and 

2- -or so4 and Cl • It can be calculated from theory and the properties 

of the solvent. 

Neutral solute species interact only through short-range forces. 

These effects are easily included in any general equation for the excess 

Gibbs energy. The remaining questions relate to the choice of variables 

for the basic equation. The basic theory is developed in terms of the 

total volume and the concentrations of solute species as well as the 

temperature. But for most practical systems pressure is a more appro-

priate variable than total volume. Also composition variables such as 

molality or mole fraction, which are independent of pressure and temper-

ature, are much more convenient than concentration. For electrolytes, 

molality is so widely used that it seems desirable to adopt it. It is 

possible to make rigorous transformations from volume to pressure and 

from concentration to molality, but these are very cumbersome in general. 

Thus, it is convenient and satisfactory for most purposes to set up the 

basic equation with the variables T, P, mi and with guidance from theory 



for the details of certain terms and the general structure of the 

equation. The empirical terms can be accepted as such or can be related 

to the corresponding theoretical terms in the T, V, ci equation, if 

desired. But, it must be remembered that the volume to pressure trans-

formation breaks down with the infinite compressibility at the solvent 

critical point. Hence, the present treatment has this limitation and 

should not be used above 350°C, except at pressures far above critical. 

Most of the applications of the present model have been at 300°C or 

lower temperatures, and in that range the pressure basis is fully 

satisfactory. 

There are alternate presentations of the basic statistical 

mechanics of multicomponent ionic fluids which suggest the basic equa-

tion adopted for the present model. Appendix A describes the most 

rigorous analysis which, however, is abstract. In the original presen-

tation and an early summary of this model (Pitzer, 1973, 1979), a basic 

but approximate treatment was presented which suggests the same form of 

equation and gives an easier understanding of the general physical 

picture. The approximations of the latter treatment do not carry over 

to the basic equation of the model, however. The model is postulated 

for empirical use and is to be justified by its empirical success. 

This equation (A7 in Appendix A) expresses the excess Gibbs energy as 

follows: 

+ L I I mim.~ uiJ'k + · · · 
i j k J 

(1) 

Here nw is the number of kg of water and mi' mj, ... are the molalities 

of all solute species. The ionic strength is given by 
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2 
m.z. 

1 1 

h i h b f h h .th 1 w ere zi s t e num er o c arges on t e 1 so ute. 
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The first term on 

the right in equation (1) includes the Debye-Hlickel limiting law, but is an 

extended form chosen for empirical effectiveness. Note that f(I) depends 

only on the ionic strength and not on individual ionic molalities or 

other solute properties. 

The quantity Aij(I) represents the short range interaction in the 

presence of the solvent between solute particles i and j. This binary 

interaction parameter or second virial coefficient does not itself have 

any composition dependence for neutral species, but for ions it is 

dependent on the ionic strength; it does depend, of course, on the 

particular solute species i and j and the temperature and pressure. The 

similar quantity for triple interaction is ~ijk; in principle it might 

be ionic strength dependent, but with a single possible exception 

(Phutela and Pitzer, 1986a), there is no indication of such dependence. 

Hence, we shall write our equations without considering any !-dependence 

for ~. Fourth or higher order interactions could be included, but we 

will not do so in this presentation. They are needed only for extremely 

concentrated solutions (Ananthaswany and Atkinson, 1985), and 

then alternate methods may be preferable (Pitzer and Simonson, 1986). 

The standard definitions and thermodynamic transformations yield 

the equations for the activity and osmotic coefficients 

lny. 
1 

= (z:/2)f' + 2 L A .. m. + (z~/2) I L AJ.kmJ.~ 
1 j 1] J j k 

(2) 



¢-1 

<I m.)-
1
[(If'- f)+ I I (A .. + n: .)mim. 

i ~ i j ~J ~J J 

(3) 

Here f' and>.' are the ionic strength derivatives off and A. Also 

mi = ni/nw with ni the number of moles of species i. The multiple sums 

in equations (1, 2, 3) are unrestricted, i.e., each sum covers all 

solute species. Also, we note the definition of the excess Gibbs energy 

in the molality system and another useful relationship. 

0 0 

Gex = G - n1G1 - L: ni [Gi - RT(l- Znmi)] 

Gex/n RT ~ (l 1 ~) w = L. mi ny i + - '+' 

0 0 

Here G
1 

is the molar Gibbs energy of water and Gi the partial molar 

Gibbs energy for species i, each in its standard state. 

For solutions containing ions, the requirement of electrical 

neutrality makes it impossible to evaluate certain individual ionic 

quantities. This becomes more explicit as one derives the working 

equation for an electrolyte with a single solute. 

Pure Electrolytes 

If the electrolyte MX has vM positive ions of charge zM in its 

formula and vX negative ions of charge zX; neutrality requires 

(4) 

(5) 

zMvM = lzxlvx; also we take v = vM + vX. For a salt molality m, the ion 

molalities are ~ = vMm and ~ = vXm. The osmotic coefficient becomes 

7 
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¢-1 

(6) 

From the experimentally measured properties of the pure electrolyte, 

together with the Debye-HUckel term (IF'-f), one can evaluate only the 

bracketed term in A's, a function of ionic strength, and the final term 

in parentheses involving ~'s. Thus we define f¢, B¢(1) and C¢ as follows 

f¢ = (f'-f/I)/2 (7) 

I I f 

= AMX + lAMX + (vM/2vX)(AMM + lAMM) + (vX/2vM)(AXX + IAXX) (8) 

(9) 

At this point we could have included the terms in ~M}lli and ~XXX in 

the definition of C¢, but we shall neglect them later so omit them now. 

These terms relate to short-range interactions of three ions all of the 

same sign. Since electrical repulsions make it unlikely that three ions 

of the same sign are often close together, these terms are expected to 

be very small, and no indication has arisen that they need to be 

included. Equation (6) now reduces to the simple form 

For a 1-1 electrolyte all of the coefficients became unity. 

In originally developing this model (Pitzer, 1973), two choices 

were made at this point: the extended form of the Debye-HUckel term f~ 

and the form for the ionic strength dependence of B~. All combinations 

of the most likely forms were tested with an array of accurately meas-

ured experimental osmotic coefficients for several 1-1, 2-1, and 1-2 
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type salts at 25°C, and the best results were obtained for the forms: 

(11) 

(12) 

The general pattern of ionic strength dependence was indicated theoret-

ically for each function, but alternate forms were equally plausible, 

and the choice was made for empirical effectiveness. Here b is a 
1 1 

universal parameter with the value 1. 2 kg~· mol-~ and a. has the value 
1 1 

2. 0 kg~. mol-~ for all of the salts in the test set. It will be pas-

sible to use a different value of a. for other salts or salts of other 

charge types; this will be discussed below. The parameters 6~) and 

(1) 
6MX are specific to the salt MX. It was expected that these parameters 

representing short-range interactions would be specific to the inter-

acting ions. 

As salts of other valence types were studied, it was found that 

equation (12) with a. = 2.0 served well for 3-1 and even 4-1 salts but 

9 

not for 2-2 salts such as Mgso4 (Pitzer and Mayorga, 1973, 1974). The 

2-2 type salts show an electrostatic ion pairing effect which has usually 

been represented by considering the·ion pair as a separate solute species. 

Introduction of such a species in equilibrium with other species compli-

cates the calculations considerably, however. We found that good agree-

ment with observed properties was obtained for the 2-2 salts if one 

¢ 
simply added another term to BMX as follows: 

~ ~ ~ -~ The values a.
1 

= 1. 4 kg · mol and a.
2 

= 12 kg · mol were satisfactory 

for all 2-2 electrolytes at 25°C. The parameter 6~) is negative and is 

related to the association equilibrium constant. 
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In a very extensive investigation of aqueous HCl Holmes et al.(l987) 

found that the s( 2 ) term was unnecessary below 250°C. From 250 to 

. (2) 
375°C they obtained a good fit with a B term and with a

1 
= 1.4 and 

a 2 = 6.7 A¢. There is theoretical support for the proportionality of 

a 2 to the Debye-Huckel parameter A¢. 

Finally, we note the theoretical expression for the Debye-Huckel 

parameter 

(14) 

with N Avogadro's number, d the density of water, e the electronic 
0 w 

charge, k Boltzmann's constant, and E the dielectric constant or the 

relative permittivity of water. For SI units E is multiplied by 4nE 
0 

with E the permittivity of free space. In many papers the symbol D is 
0 

used instead of E for the dielectric constant. 

Next we transform B~ and c:~ as defined by equations (8) and (9) 

to the corresponding forms for the excess Gibbs energy as follov1s: 

(15) 

(16) 

These quantities are used for the equations for mixed electrolytes. 

Introduction of the selected forms from equations (11) and (13) yields 

1 

f = -(4IA /b)ln(l + bi~) (17) 
¢ 

B(O) s<l) k + 6(2) k 
BMX = + g(al I 2) g(a2I2) (18) 

MX MX MX 

2 (19) g(x) = 2[1-(l+x) exp(-x)]/x 

Further manipulations yield the useful relationships 

1.' 



,~, 

(20) 

g' (x) -2[1-(l+x+x2/2) exp(-x)]/x2 
(21) 

CMX (22) 

For the activity coefficient equation, it is useful to define the 

following: 

fy 
1 1 1 

= -A¢[1~/(l+bl~) + (2/b)ln(l+bl~)] (23) 

By = BMX + B¢ (24) MX MX 

cY = 3C:x/2 (25) MX 

The mean activity coefficient for a salt is defined as 

(26) 

and for the present model with a single salt this becomes 

(27) 

Equations (10) and (27) were applied to the very extensive array of data 

-1 for 25°C with excellent agreement to about 6 mol•kg for various types 

of electrolytes (Pitzer and Mayorga, 1973, 1974). The resulting para-

meters are discussed in a subsequent section. 

Mixed Electrolytes 

In order to treat mixed electrolytes it is desirable to rewrite 

equation (1) in terms of the experimentally determinable quantities B 

and C instead of the individual ion quantities A and ~. Appropriate 

transformations yield for the excess Gibbs energy 

11 



Gex/(n RT) = f(I) + 2 \ \ m m [B + (\ m z )C ] 
w L L c a ca L c c ca 

+ I I 
c<c 1 

+ 2 I I 
n c 

c a c 

mm 1 [2¢ 1 +\m\j; 1 ]+ 
c c cc L a cc a 

a 
I I m m 1 [2¢ 1 + \ m \jJ 1 ] 

a a aa L c caa 
c 

m m A 
n c nc + 2 I-I m m A 

n a na 
n a 

a<a 1 

+ 2 I I 
n<n 1 

mm /.. +·· n n 1 nn 1 (28) 

12 

where the sums are over the various cations c,c 1 and over the anions a,a 1
• 

If neutral solute species n, n 1 are present, the terms from equation (1) 

in .:\ij and ~ijk are retained; only those in .:\ij are shown in the last 

three sums. Difference combinations of >..'sand ~ 1 s arise which are 

defined as follows: 

¢cc 1 "cc' - (z ,/2z )A - (z /2z 1 )/.. , , c c cc c c c c 
(29) 

Analogous expressions for ¢ , and \jJ , arise from permutation of the 
aa caa 

indices. These quantities account for interactions between ions of like 

sign, which arise only for mixed solutions, and can best be determined 

from simple common-ion mixtures. 

In terms of various quantities defined above, the following 

equations give the osmotic coefficient of the mixed electrolyte and the 

activity coefficients of cation M and anion X, respectively. 

(¢-1) = (2/\ mi)[-A,-~,r 312 /(l+bi 112 ) + \ \ m m (B¢ + Z C ) Li ~ L L c a ca ca 
c a 

+ )~ I 
c<c' 

m m ,(¢¢ 1 + \ maw·ccla) + \ \ m m ,(¢¢ 1 + \ m w 1) 

c c cc ~ ;<;' a a aa ~ c caa 

+ I I m m .:\ 
n c nc + I I 

n a 
m m A n a na + I l. 

n<n' 
nm 1 .:\ , + ... ] 

n n nn 
(31) 

n c 



.. 

lnyM 
2 

I m (2BM + Z CM ) + I me (2¢Mc + I = zM F + ma1j!Mc) a a a a c a 

+ I I m m 1jJ + \zM\ I I m m C + 2I m A + · . . (32) a a' Maa' c a ca n nM a<a' c a n 

lnyx 
2 

I m (2B X + Z C X) + I m (NX + I = zX F + mc1j!cXa) c c c a a c a c 

+ I I m m 1jJ + lzxl I I m m C + 2 I m A X +· . . (33) 
c<c' c c' cc'X c a ca n n 

' c a n 

The third virial terms for neutrals are omitted in equations (31)-(33). 

The quantity F includes the Debye-Hlickel term and other terms as 

follows: 

F = -AA-[I~/(l+bi~) + (2/b) ln(l+bi~)] +I I m m B' 
'+' c a ca 

+ I I 
c<c' 

' m m ill + c c' cc' I I 
a<a' 

' m m ¢ 
a a' aa' 

c a 

Also, ¢' is the ionic strength derivative of 1>, and 

¢¢ = ¢ + I¢' 
cc' cc' cc' 

(34) 

(35) 

(36) 

It should be remembered that single ion activity coefficients are 

not measurable by ordinary thermodynamic methods because of space charge 

limitations. Also in the transformation from equation (2) to (32) and 

(33) certain terms in A's and ~'s remain which cancel for any neutral 

combination of ions; see Pitzer (1979) for more details. Thus there is 

13 

no pretense that equations (32) and (33) yield absolute values of single-

ion activity coefficients; rather these are practical values for use in 

all practical thermodynamic calculations. For complex mixed electrolytes, 

the use of the single ion activity coefficients is much more convenient 



than the use of mean activity coefficients and electrically neutral 

differences of activity coeffici~nts, although the final results are 

identical. 

Since like charged ions repel one another, we expect their short-

range interactions to be small and that A , A ,, etc. are all small. cc cc 

We further note that ¢ , and ~ , are differences between these small cc cc a 

quantities; hence, they should certainly be small. Indeed both Bronsted 

(1922) and Guggenheim (1935) neglected these terms completely. We do 

not neglect these quantities, but we do find them to be small in most 

cases. There is an exception, noted above, where the long-range elec-

trical forces yield a term that appears in ¢ , in this formulation. 
cc 

It appears only for unsymmetrical mixing, i.e., where the charges on c 

and c' (or a and a') differ. This term is given by theory (Pitzer, 

1975, 1983). The complete expressions for ¢ .. are: 
1J 

E E where 8(I) and e'(I) account for these electrostatic unsymmetrical 

(37) 

(38) 

(39) 

mixing effects and depend only on the charges of the ions i and j, the 

total ionic strength, and on the solvent properties £ and d (hence, on w 

the temperature and pressure). The theory and equations for calculating 

these terms are given in Appendix A, which also describes a method of 

numerical calculation by Chebyshev approximations devised by 

Harvie (1981). The remaining term eij arising from short-range forces 

is taken as a constant for any particular c,c' or a,a' at a given T and 

P. Its ionic strength dependence is very small and is usually neglected 

14 



as we have done here, but this effect may be significant in some cases 

as shown by recent calculations of heats of mixing by Phutela and 

Pitzer (1986a). 

Thus starting from theoretical considerations, the ion-interaction 

model gives an expression for the activity and osmotic coefficients of 

electrolyte mixtures in terms of the empirical parameters, B~), B~), 

6 ( 2) c¢ e 
MX' MX' ij' and Wijk" Provided that their temperature and pressure 

dependencies are known, these coefficients permit the calculation of 

solubilities in binary, ternary and more complex mixtures at different 

temperatures and pressures. 

15 

It is important to recognize that the same equation for total excess 

Gibbs energy yields other thermodynamic functions such as excess 

volumes, enthalpies, entropies, and heat capacities by appropriate dif-

ferentiation. These other functions are directly obtainable from experi-

ment and their evaluation yields accurate data on the pressure or 

temperature-dependencies of the ion-interaction coefficients. Also the 

entropy or enthalpy of the fluid is required for analysis of some 

important processes,and it can be calculated from the temperature deri-

vative of the Gibbs energy. Since these relationships are standard 

thermodynamics, we will not burden this paper with the detailed equations 

for mixtures. The equations for pure electrolytes were given by Pitzer 

et al.(l984). 

There is, therefore, a wide array of experimental data from which 

the ion-interaction parameters and their temperature functions can be 

determined. This includes measurements of 

1) freezing point depression 

2) boiling point elevation 

* 3) vapor pressure 

* 4) isopiestic concentrations 
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5) E.M.F. 

* 6) enthalpy of dilution 

7) enthalpy of mixing 

8) enthalpy of solution 

* 9) heat capacity 
~ 

* 10) solubility 
~ 

Those marked with an asterisk are those that so far have been most 

useful at temperatures greater than 100°C. Enthalpies of dilution 

measured at 25°C are also important for their relation to the tempera-

ture dependency of the Gibbs energy. 

Neutral Solutes 

The situation is much simpler for uncharged solute species, and 

there is no need to rearrange the terms in A .. and~ .. kin the basic 
1] 1] 

equations (1), (2), and (3). The terms for neutral species were 

included in equations (32) and (33) for the activity coefficients of ions. 

The corresponding equation for the activity coefficient of a neutral 

species is 

= 2(I m AN + I m \N + I m AN ) c c a a n ,n 
c a n 

(40) 

Third virial terms from equation (2) can be added to equation (40), if 

needed. Even for neutral molecules interacting with ions, the forces 

are short ranged, and there is no need to modify the \'sand ~·s. 

Electrical neutrality limits the evaluation of \'sand ~·s to electri-

cally neutral sums and differences, but it does not seem worthwhile to 

define new quantities. Since Setchenow in 1892, the departure of 

neutral-species activity coefficients from unity has traditionally been 

described in terms equivalent to the A's of these equations. An exten-

sive review of neutral solutes in aqueous salt solutions was presented 
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by Long and McDevit (1952). 

Empirically there is no evidence for an ionic-strength dependence 

' for the \'s for neutral species. Thus all \ij terms in equations (2) 

and (3) can be omitted for both neutral-neutral and neutral-ion inter-

actions. There is some theoretical basis for a small ionic strength 

effect for interactions of ions with neutrals having large dipole 

moments (or higher-order electric moments); this is described in 

Appendix A. But this effect is so small that there is no reason to 

complicate the equations at present. 

Also the question may be asked whether the dielectric constant 

should be that of a mixed solvent, including neutral solute species, 

instead of the value for water. It is possible to set up equations for 

mixed solvents, and this is necessary if the solvent composition varies 

over a wide range, e.g., from pure water to pure methanol. But the 

present equations assume a pure solvent, and its dielectric constant 

must be used. The effect of neutral-molecule solutes on interionic 

effects via changes in dielectric constant are included along with other 

effects in the second and third virial coefficients including a pas-

sible ionic-strength dependence of the ion-neutral second virial co-

efficient. Such an ionic-strength dependence has not been detected up 

to the present, but the possibility should be kept in mind. 

Silica dissolves in water to form a neutral species, presumably 

Si(OH) 4 ; this is an interesting example to discuss briefly. Silica 

solubility, both in pure water and in salt solutions, has been measured 

by various investigators including Chen and Marshall (1981). 

For the three-component system Si02 - salt - H20 with salt molality 

m, they summarized their results with the equation 

log y = Dm + E m
2 (4la) 



where y is the activity coefficient of the silica. If S represents 

silica and the salt MX has vM and vX ions, respectively, our equation 

(2) reduces in this case to 
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(4lb) 

2 2 
Evidently 2.303D = 2(vMASM + vXASX) and 2.303E = 3(vMwSMM + VXWSXX). 

Chen and Marshall fit their equation to their data both with and without 

the term in E and then give equations for the parameters over the range 

of temperature 25-300°C. Even for solutions extending to as high 

molality as 7, the effect of theE term was rather small for the salts 

NaCl, Na
2

so
4

, MgC1
2

, and MgS0
4

. 

In an accompanying paper Marshall and Chen (1981) restated their 

results (with E = 0) in terms of ion molalities. Since all of the 

individual ion parameters cannot be evaluated, they set the parameter 

+ for Na to zero. Their parameter Di now becomes just (2/2.303) ASi in 

our equation (2). Marshall and Chen also made solubility measurements 

for silica in mixed salt solutions and verified that the ionic effects 

were additive as implied by equation (2). 

Association Equilibria 

Up to this point we have assumed that the selection of solute 

species was unambiguous and that electrical neutrality was the only 

supplementary relationship between solute molalities. But there may be 

+ -association equilibria such as H + HC0
3 

= co2 (aq) +H2o which relate 

one solute molality to other molalities. The chemical thermodynamics 

of each such equilibrium is straightfon1ard with an equilibrium constant 

relationship involving molalities and activity coefficients. For the 

carbonic acid case this is 



K assoc. 

Each such equilibrium adds one or more relationships between the 

molalities and an equilibrium-constant equation all of which must be 

satisfied sim~ltaneously in the complete solution of the problem. 

(42) 

For carbonates and many other cases the association constants are 

large (i.e., the dissociation constants are very small) and there is no 

question about the need to recognize the associated species. Examples 

treated using the present model include 

co
2

- H
2
o (Peiper and Pitzer, 1982), H+ 

Na+ - HCO - - CO 2- - Cl-
3 3 

- Hso
4

- - so
4

2- - H
2
0 (Pitzer 

et al·, 1977), and H+- K+- H
2

Po
4 

- H
3

Po
4

- H
2

o (Pitzer and Silvester, 

1976). The last example is interesting in that it models the phosphoric 

acid to such high molality that a third virial coefficient for triple 

interaction of the neutral species is required. 

In some cases the association, although significant, is not strong, 

and the fraction in the associated form is never large. In the dilute 

range the degree of association increases with concentration. But at 

higher concentration, the activity coefficients of the ions decrease, and 

the degree of association levels off and may even decrease. This last 

effect is particularly strong for multiply charged ions such as the 

divalent metal sulfates. In the case of the M2+- so
4

2
- solutions it 

was found (Pitzer and Mayorga, 1974) that the associated species could 

be omitted provided an additional ionic-strength dependent term with a 

large exponent a
2 

was added to the second virial coefficient, see 

equation (13). The coefficient in this term B~) is negative and, in 

the limit of low molality, is related to the association constant K by 

s(
2) = -K/2. Also the exponent a

2 
is related to the Debye-Hlickel para­

meter A¢. Indeed, the equation without the MS0 4 neutral species and 

with the s( 2) term represented the properties to high molality without 
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difficulty. In contrast, association treatments with the simple 

inclusion of the ion-pair association equilibrium constant are not sue-

cessful at high _molality; further terms are required - either virial 

coefficients involving the MS04 species or association equilibria to 

triple or quadruple ions. Thus the treatment with the 6( 2) term and 

without the association equilibrium has many advantages. 

With increase in temperature the dielectric constant of water de-

creases rather rapidly and one expects ion pairing to become stronger. 

Archer and Wood (1985) found this to be the case in a general treatment 

of MgS0
4

(aq). They included not only the neutral ion pair but also the 

+ 
~2 and a sextuplet M

3
x

3 
with association constants triplets·M

2
X , at 

25°C of 126.4, 557.3, and 3.813 6 
X 10 , respectively, and enthalpies of 

association of approximately 6, 6, and 27 kJ · mol- 1 . They also adjusted 

heat capacities of association for each reaction as well as a simple 

pattern of temperature-dependent second and third virial coefficients to 

account for repulsive interactions and obtained good agreement with the 

available data up to 3 mol • kg-l and 150°C. Soon thereafter Phutela and 

Pitzer (1986b) presented high-temperature heat capacity measurements 

for MgS0
4

(aq) and a comprehensive treatment of that system without 

. . (0) (1) (2) 
assoc1ation equilibria but w~th temperature-dependent 6 , 6 , 6 

and C~. They found that -6( 2) increased with temperature, as expected. 

They also investigated the effect of change of the exponent a 2 with 

temperature proportionally to A¢. The temperature-dependent a 2 gave 

-1 better agreement below 0.1 mol·kg , but there was no difference above 

-1 0.1 mol·kg . Thus for mixed electrolytes at ionic strength above 0.4 

-1 
mol·kg the simple treatment with constant a 2 is fully satisfactory. 

The general agreement for various properties for the two treatments was 

comparable; the treatment without association equilibria gave agreement 

20 



~ . 

for the osmotic coefficient at ll0°C to higher molality (5 mol·kg-i) and 

better agreement at 140°C. The association treatment gives a better fit 

to the heats of dilution at high temperatures in the dilute range below 

-1 
0.03 mol·kg The more recent heat capacity measurements were not 

available at the time of Archer and Wood's treatment; as expected, the 

Phutela and Pitzer treatment fits these data much more accurately. 

In estimating the need to introduce associated species, these 

results for Mgso4 give the best guide for 2-2 electrolytes. For less 

highly charged ions, the ion pairs must be recognized for somewhat 

smaller values of the association constant because the activity coef-

ficient for the ions decreases ·less rapidly with increase of molality. 

The case of aqueous HCl was investigated very thoroughly by Holmes et al. 

(1987). They found no need to include a 8( 2) term below 250°C. For 

higher temperatures up to 375°C, they obtained good agreement with an 

equation including a 8( 2) term. In the range of their data -8( 2) is as 

large as 32 corresponding to an association constant of 64. 

At room temperature most 1-1 electrolytes are either unambiguously 

associated, such as acetic acid or ammonia, or are clearly strong elec-

(2) 
trolytes where the present equations are adequate without the 8 term. 

The situation for 2-1 or 1-2 electrolytes at 25°C was studied carefully 

by Harvie et al. (1984); they concluded that association should be 

recognized for cases with association constants greater than 20 (or 

dissociation constants less than 0.05). This general topic is also 

discussed by Weare in the following chapter. 

TEMPERATURE AND PRESSURE EFFECTS ON STANDARD-STATE PROPERTIES 

For the calculation of equilibria one requires the chemical paten-

tials of all substances at the temperature and pressure of interest. 
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We first consider the change of the chemical potential from the reference 

temperature, normally 25°C, to another temperature. The entropy and 

heat capacity determine this difference as follows: 

or 

0 0 

\.l. T - \.li T 
l. , , r 

0 

0 

= -(T-T )S 
r i,T 

r 

0 

-s 
i 

0 

C idT' -T p, I: 
r 

0 

(C /T')dT' p,i 

Here S. represents the standard absolute entropy of component i, and 
l. 

0 

(43) 

(44) 

C is the standard state heat capacity (at constant pressure) which p,i 

itself is expressed as a function of temperature. T and T represent 
r 

the reference temperature and temperature of interest, respectively. An 

analogous but somewhat more complex expression for the temperature 

dependence of the chemical potential can be written in terms of the 

enthalpy and heat capacity. 

For aqueous species the heat capacities become large as the criti-

cal temperature of water is approached; for ions the heat capacity 

becomes negative but for neutral species it can be positive. At the 

critical pressure this trend becomes a divergence to plus or minus 

infinity at the critical point. 

For solids the heat capacities remain moderate in magnitude except 

at certain solid phase transitions. In the case of transitions, the 

integration is divided into ranges and the entropy change for the transi-

tion is included explicitly. 

The effect of pressure on the chemical potential is given by the 

molar or partial molar volume and can be determined from density data. 

At saturation pressure these effects are usually small, particularly for 

the solids, but can be significant at higher pressures (Rogers and 

Pitzer, 1982; Pitzer, 1986). 



The basic equation for pressure dependency is 

0 0 

~i,P - ~i P 
' r 

0 

= J: 
r 

0 

V.dP 
1 

(45) 

where Vi is the partial molar volume of solute species i in its standard 

state at the temperature of interest. The data base for volumes is 

discussed below. 

DATA BASE 

Standard State Values for 25°C 

There are many sources of standard-state chemical potentials (molar 

Gibbs energies) of formation, entropies, heat capacities, and volumes 

at 25°C (298.15 K) and 1 bar for substances of geological interest. 

Wagman et al (1982) give very extensive tables while Robie et al. (1978) 

consider geological interest in their selection. For solubility calcu-

lations, the accuracy of particular differences is especially important 

and the tables of Harvie and Weare (1980), of Harvie et al.(l984), and 

of Weare in the following chapter have been prepared to meet this need. 
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Table 1 contains, for convenience, an abbreviated list of chemical poten-

tials and enthalpies of formation, and of entropies and parameters for 

heat capacity equations. The sources of the entropies and heat capacities 

will be discussed below; the chemical potentials are from Harvie et al. 

(1984). 

Standard-State Enthalpies, Entropies, Heat Capacities, and Volumes 

The conversion of standard-state chemical potentials to other 

temperatures requires entropy values for the reference temperature and 

heat capacities as a function of temperature. The entropy values are 

generally available from the tables of Wagman et al.(l982) or Robie et al. 



(1978). In some cases the entropy was obtained indirectly from the 

enthalpy and the Gibbs energy (chemical potential), and in such cases 

one should revise the entropy to be consistent with any change in the 

Gibbs energy. The properties of solids do not ordinarily depend appre-

ciably on crystal size, but there are cases where extremely small 

crystals are obtained with significantly larger molar entropies and 

chemical potentials. Kieserite (Mgso
4

·H
2
0) is an example where the 

data of Ko and Daut (1979) for the enthalpy and Frost et al.(l957) for 

the heat capacity and entropy show significant differences with crystal 

size. 

In Table 1 parameters are given for the following equation for the 

heat capacity of a solid: 

C /R = a + bT + cT- 2 
p 

(46) 

The range of validity is also indicated. These heat capacity parameters 

were taken mostly from Kelley (1960). The coefficients given by Kelley 

(1960) for KCl(s) are incorrect, and the values listed are from Holmes 

and Mesmer (1983). The values for Na
2

so
4

·10 H
2
0(s) and Na 2so4 (s) were 

fitted by Pabalan and Pitzer (1987b) to data from Brodale and Giauque 

(1958, 1972), while those for MgS0
4

(s) were derived from JANAF data 

(Stull and Prophet, 1971). The Cp coefficients for MgS04 ·H20(s) and 

MgS0
4

·6H
2
0(s) were derived from linear fits to the low temperature data 

of Frost et al. (1957) and Cox et al.(l955), respectively. 

Heat capacity data for MgS0
4

·4H
2
0(s), Mgso4 ·5H20(s), and 

MgS0
4

·7H
2
0(s) are not available. However, the contribution of each 

water molecule to the entropy or heat capacity of a hydrated solid is 

expected to be about the same. Pabalan and Pitzer (1987b) present 

isothermal plots of the measured entropies and heat capacities of 

MgC1
2

·nH
2
0(s) and Mgso

4
·nH

2
0(s) versus the number of hydration waters 
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Table 1: The Chemical Potentials, Enthalpies of Formation, and Entropies at 298.15 K of the Species and 
Minerals of the Na-K-Mg-Cl-so4-oH-H2o System and the Temperature Functions of the Heat Capacity 
of the Solids 

Cp/R = a + bT + cT 
-2 

0 

10\ l0-5c Substance Formula -11f/RT -llfH 0 /RT S0 /R a T(K)range 

Water H20 ( £) 95.6635 115.304 8.409 
Hydroxide ion OH-(aq) 63.452 92.780 -1.293 
Chloride ion Cl-(aq) 52.955 67.432 6. 778 
Sulfate ion so 2-(aq) 300.386 366.800 2.42 
Magnesium ion MgH(aq) 183.468 188.329 -16.64 
Calcium ion CaH(aq) 223.30 218.98 -6.39 
Sodium ion Na+(aq) 105.651 96.865 7.096 
Potassium ion K+(aq) 113.957 101.81 12.33 
Arcanite K2SO,.(c) 532.39 580.01 21. 12 14.48 11.98 -2.144 298 - 856 
Bischofite MgCb·6H20(c) 853.1 1008.11 44.03 29.08 29.56 298 - 385 
Epsomite MgS0,.·7H 20(c) 1157.74 (1366.27) 44.79 11.8 118 - -273 --473 
Halite NaCl(c) 154.99 165.88 8.676 5.525 1. 963 - 298 -1073 
Hexahydrite MgS0,.·6H 2 0(c) 1061.37 (1244. 79) 41.87 10.9 104 - -273 --473 
Kieserite MgSO,.·H20(c) 579.184 649.34 (14.99) 6.89 31.05 - -273 --473 
Leonhardtite Mgso .. ·4H20(c) 868.55 1007.13 (30. 64) 9.39 74.8 - -273 --473 
Magnesium I MgClz (c) 238.74 258.71 
chloride 

10.78 9.511 0.7146 -1.037 298 - 987 

Magnesium I MgCl, ·H,O(c) chloride 347.66 389.94 16.505 10.95 9.788 - 298-650 
hydrate 
Magnesium 

I chloride MgCb • 2H 2 0(c) 451.06 516.24. 21.64 15.05 13.74 - 298 - 500 
dihydrate 
Magnesium I MgC1 2 • 4H 20(c) chloride 654.93 766.06 31.75 22.56 21.65 - 298 - 450 
tetrahydrate 
Magnesium j Mgso .. (c) 4 72.26 518.33 
sulfate 

11.02 6. 71 16.30 - 298 - 700 

Mirabilite Na2so .. ·lOH20(c) 1471.15 1475.75 71.21 10.65 196.0 - -200 --450 
Pentahydrite MgS0,.·5H20(c) 965.13 - (35. 7) 10.2 89.3 - -273 --473 
Sylvite KCl(c) 164.84 176.034 9.934 5.575 2.011 - -298 --700 
Thenardite Nazso .. (c) 512.39 559.55 17.99 13.16 13.70 -1.666 270 - 700 

N 
ln 



which show a linear trend. Thus the unknown C temperature functions 
p 

for Mgso
4

·4H20(s), MgS0
4

·5H
2
0(s), and MgS0

4
·7H

2
o(s) were estimated on 

this basis. 

The S0 /R values in Table 1 are mostly from Wagman et al.(l982). 

Values in parentheses were calculated from Wf 0 /RT and ~Hf 0 /RT. For 

pentahydrite, whose entropy is not known independently, its value was 

estimated from the entropy values of the other Mgso
4 

hydrous salts. 

With the exception of MgS0
4

·H
2
0(s), values of ~Hf 0 /RT values given in 

the table were calculated from Wf 0 /RT and S0 /R or were taken from 

Wagman et al.(l982) when the value of S0 /R is in parenthesis. For 

Mgso
4

·H
2
0(s), the enthalpy of formation at 25°C was taken from Ko and 

Daut (1979). 

Numerical equations for the aqueous standard state heat capacities 

as a function of temperature are given along with the solution proper-

ties for several solutes in Appendix B. Table 2 includes several other 

solutes for which this information is available (sometimes over a more 

limited range) together with appropriate references. 

The volumetric properties of many aqueous electrolytes have been 

measured to high pressure at 25°C or over the 0- 50°C range. This 

information is of oceanographic interest. Above 50°C the volumetric 

information is much more limited. NaCl(aq) has been investigated over 

a wide range of temperature and pressure and general correlations are 

available (Rogers and Pitzer, 1982). Gates (1985) has made further 

measurements by an additional method. Information on aqueous HCl is now 

extensive (Holmes et al·, 1987). The densities of a number of other 

aqueous systems have been measured at moderate pressure to 200°C and in 

additional cases to 100°C. Equations have been fitted to these data 

yielding standard state volumes; the particular solutes are listed in 

Table 2 which includes the pertinent references. 
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Table 2: Binary Electrolyte Solutions with Available High 
Temperature Data 

.. Range of T and P Ref. 

T/°C P/kbar 
.~ 1:1 Electrolytes 

HCl 0 - 375 0-0.4 a,b 
LiCl 0 - 250 c 
NaCl 0 - 300 0-1.0 d 
Nal 25 - 100 0-0.1 a 
NaOH 0 - 350 0-0.4 e 
KCl 0 - 250 c 
CsF 25 - 100 0-0.1 a 
CsCl 0 - 250 0-0.1 a,c 
Csl 25 - 100 0-0.1 a 

1:2 or 2:1 Electrolytes 

Li 2so4 0 - 225 f 

Na2so4 0 - 225 0-0.1 f,j 

K2so4 0 - 225 f 

Cs 2so4 0 - 225 f 

MgC1 2 25 - 200 0-0.1 g,h 

CaC1 2 25 - 250 0-0.1 k, £. 

SrC1 2 25 - 200 0-0.1 g 

2:2 Electrolytes 

MgS04 25-200 0-0.1 i,j 

a Saluja al. (1986). h Holmes et al. (1978) et 
b Holmes al. (1987). i Phutela and Putzer (1986b). et 
c Holmes and Mesmer (1983) j Phutela and Pitzer (1986c). 
d Pitzer et al. (1984). k Ananthaswamy and 
e Pabalan and Pitzer (1987a). Atkinson (1985). 

£. 
f Holmes and Mesmer (1986). M~ller (submitted). 

.~ 

g Phutela et al. (1987). 
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Since compressibilities of aqueous solutions decrease with increase 

in pressure, the assumption of a constant molar volume in equation (45) usually 

overestimates the effect of pressure on the chemical potential. In any 

case, there is no divergence of the partial molar volume at high pres-

sure as there is with temperature for the heat capacity as the critical 

point is approached. Thus one can make reasonable estimates of pressure 

effects to higher pressures than those listed in Table 2. 

There have been several general correlations of high-temperature 

volumetric data with use of approximate theory. A very recent study is 

by Tanger and Helgeson (1987), while an earlier paper was presented by 

Zaremba and L'vov (1982); these papers give references to additional 

experimental measurements. Thus it is possible to estimate the change 

of chemical potential with pressure even in cases where there are no 

experimental measurements for a particular solute. 

Pure Electrolyte Parameters for 25°C 

The activity and osmotic coefficients at 25°C of many electrolytes 

as well as neutral solutes in water were measured quite accurately many 

years ago. Robinson and Stokes with their collaborators made many of 

these measurements, and their book (Robinson and Stokes, 1965) includes 

excellent tables of selected values over wide ranges of molality. The 

parameters for the present equations were derived by least squares 

regression for a very wide range of electrolytes by Pitzer and Mayorga 

(1973, 1974) using more recent measurements as well as the selected 

values of Robinson and Stokes. Subsequently, Pitzer et al.(l978) 

obtained values for the parameters for the rare earth chlorides, 

nitrates, and perchlorates from the extensive measurements of Spedding 

and associates. Other research has contributed new or improved values 

for particular solutes. Table 3 contains values selected for possible 

geological interest. 
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Table 3: Single Electrolyte Solution Parameter Values for 25°Ca 

Cation 

H 
H 
H 
Li 
Na 
Na 
Na 
Na 
Na 
Na 
Na 
Na 
K 
K 
K 
K 
K 
K 
K 
Cs 
NH4 
Mg 
Mg 
Mg 
Mg 
Mg 
Mg 
MgOH 
Ca 
Ca 
Ca 
Ca 
Ca 
Ca 
UOz 
UOz 
Al 
La 
Th 

Anion 

Cl 
so'+ 
HS04 
Cl 
Cl 
Br 
S04 
HS0 4 

OH 
HC03 
co3 
SiO'+H3a 
Cl 
Br 
so4 
Hso .. 
OH 
HC03 
co3 
C1 
C1 
Cl 
Br 
so .. 
HS04 
OH 
HC03 
Cl 
Cl 
Br 
so'+ 
HS04 
OH 
HC03 
C1b 
so'+ 
Cl 
C1 
Cl 

0.1775 
0.0298 
0.2065 
0.1494 
0.0765 
0.0973 
0.01958 
0.0454 
0.0864 
0.0277 
0.0399 
0.043 
0.04835 
0.0569 
0.04995 

-0.0003 
0.1298 
0.0296 
0.1488 
0.0300 
0.0522 
0.35235 
0.43268 
0.2210 
0.4746 

0.329 
-0.010 
0.3159 
0.3816 
0.20 
0.2145 

-0.1747 
0.004 
0.4274 
0.322 
0.6993 
0.5889 
1.0138 

0.2945 

0.5556 
0.3074 
0.2644 
0.2791 
1.113 
0.398 
0.253 
0. 0411 
1. 389 
0.024 
0.2122 
0.2212 
0.7793 
0.1735 
0.320 

-0.013 
1.043 
0.0558 
0.1918 
1.6815 
1. 75275 
3.343b -37.23c 
1. 729 

0.6072 
1. 658 
1.614 
1.61325 
3.1973b -54.24c 
2.53 

-0.2303 -5.72c 
2.977 
1.644b 
1.827 (-40)c 
5.845 
5.600 

13.331 

0.0008 
0.0438 

0.00359 
0.00127 
0.00116 
0.00497 

0.0044 

0.0044 

-0.0084 
-0.00180 

0.0041 
-0.008 
-0.0015 
0.00038 

-0.00301 
0.00519 
0.00312 
0.0025 

-0.00034 
-0.00257 

-0.03686 
-0.0176 

0.00273 
-0.0238 
-0.1034 

a From Pitzer (1979) or Harvie et a1. (1984) exce~t Na(Si04H3) 
Hershey and Mil1ero (1986); note that C = c¢ /21z z I. b _1 ca ca c a 

a
1 

= 1.4 kg·mol (otherwise a1 = 2.0 kg·mol-1). 
c -1 a2 = 12 kg·mol 

from 
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Very recently, Kodytek and Dolejs (1986) refitted the rare-earth­

salt data including a S( 2) term. Their values of S( 2) are positive; 

thus there is no indication of ion-pairing. But the extra flexibility 

does give a better fit for the low molalities. Their treatment emphasi­

sized the dilute range, and the older values may be preferable at high 

molalities. 

Pure Electrolyte Parameters for High Temperature 

In an earlier section the various measurements were listed from 

which the pure electrolyte parameters can be derived. The isopiestic 

method, which is so useful at 25°C, has provided valuable data up to 

about 250°C. The reference solution is usually NaCl which has been 

thoroughly studied by other methods including the vapor pressure rela­

tive to that of pure water. Provided the heat of dilution as well as 

the excess Gibbs energy are known at 25°C, measurements of the heat 

capacity at higher temperatures provide the required information for 

both the solution parameters and the standard state entropy and chemical 

potential. In practice two or more methods are usually used, and the 

parameters determined from a least-squares optimization of the para-

meters to fit all of the accurate measurements. 

There is now an extensive array of data for the most important 

aqueous solutes extending upward in temperature as indicated in Table 2. 

But in many cases further work would be welcome to extend the tempera­

ture range further, to better account for the effect of pressure, and 

to increase accuracy. Appendix B gives a brief listing of the numerical 

parameters in the temperature dependency expressions for both standard­

state heat capacities and nonideality properties for several pure 

electrolytes and includes remarks concerning the Debye-HUckel 

parameter. 
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For NaCl(aq), there is an extensive array of thermodynamic data as 

reported by Pitzer, Peiper, and Busey (1984). Their evaluation of these 

data yield a complete set of parameters.valid in the region 0-300°C and 

saturation pressure to 1 kbar. Solubility data were not used in the 

general regression; hence a comparison of calculated solubilities with 

experimentally measured values is a check on a prediction. As shown in 

figures 1, there is excellent agreement between calculated and experi-

mentally determined values with a maximum deviation of 1.5% at 275°C. 

This general equation is also consistent with the very recent heat 

capacity measurements of Gates et al. (1987); most values agree within 

the uncertainty stated for the equation. For KCl(aq), Holmes and 

Mesmer (1983a) combined their isopiestic vapor pressure measurements to 

250°C with other literature data to yield a thermodynamically consistent 

set of parameters for KCl solutions. 

In the case of MgC1
2 

there is no fully satisfactory general treat­

ment. The ion-interaction parameters of de Lima and Pitzer (1983) were 

based on isopiestic measurements of Holmes et al.(l978) at high tempera-

ture and Rard and Miller (1981) at 25°C. Pabalan and Pitzer (1987b) 

adjusted the trend of C~ at the higher temperatures to better fit the 

-1 
solubility of the various hydrates of MgC1 2 which rises to 14 mol·kg 

at 200°C. This adjustment affects the agreement with the osmotic co­

-l 
efficients of Holmes et al, which extend only to 3.5 mol·kg , but the 

agreement is still good with standard deviations less than 0.003. The 

standard state heat capacity is taken from Phutela et al.(l987). This 

investigation also reported ion-interaction parameters, but their 

-1 validity is limited to about 2 mol•kg ; hence, they are not useful for 

solubility calculations. The final comparison of calculated and 

observed solubilities is shown on figure 2. 
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those below 75°C are from Linke and Seidell (1965). 
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For CaC1 2 Phutela and Pitzer (1983) gave equations valid to 200°C 

-1 
and 4.3 mol·kg based on osmotic-coefficient and heat-of-dilution data. 

-1 
Above 5 mol·kg the usual form of equation terminating with the third 

virial coefficient is inadequate, and Ananthaswamy and Atkinson (1985) 

used a form extended through the sixth virial coefficient. Their 

treatment is valid to 100°C. Very recently M0ller (submitted) has 

considered vapor pressure data for CaC1
2

(aq) above 200°C and derived 

equations for the ion-interaction parameters valid to 250°C. M0ller 

(submitted) also considered Caso4 and reported appropriate parameters. 

Although it is not necessary to recognize the neutral Caso
4 

species at 

25°C, M0ller found that the equilibrium forming this species should be 

included at higher temperature. 

For Na
2
so

4
(aq) and K

2
so

4
(aq), one has the equations of Holmes and 

Mesmer (1986) which were fit to data up to 225°C including heat capa-

cities of Na
2

so
4 

to 200°C from Rogers and Pitzer (1981). Pabalan and 

Pitzer (1987b) made solubility comparisons based on these equations and 

found excellent agreement to 175°C for Na2so4 but some deviation at 

higher temperature. For K
2
so

4 
the comparison showed some differences 

in the 100-215°C interval, but the agreement was reasonably good over 

the entire range. 

In the case of MgS0
4

(aq) solutions, a comprehensive regression of 

heat capacity, enthalpy, and osmotic coefficient data by Phutela and 

Pitzer (1986b) yielded parameters that are valid from 25-200°C. Figure 

3 shows that calculated solubilities are in very good agreement with 

experimental data to 200°C. 

Holmes et al. (1987) presented a comprehensive treatment for HCJ (aq). 

They gave three sets of parameters for the present model. The first, 

-1 
valid to 523 K and 7 mol·kg , involves only the usual terms for a 1-1 

electrolyte and is summarized in Appendix B. A second treatment adds a 
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fourth virial coefficient and is valid to 16 mol•kg-1 . For temperatures 

from 523 to 648 K and from 0 to 7 mol·kg- 1 , they include a s( 2) term. 

For NaOH(aq) the available volumetric and vapor pressure data to 

-1 
10 mol·kg were evaluated by Pabalan and Pitzer (1987a) who give 

equations for the virial coefficients extending to 350°C. Standard 

state heat capacities could not be obtained from these data, but this is 

not a deficiency for solubility calculations since the solubility of 

NaOH exceeds the range of validity of the solution model. These para-

meters are useful, however, for the calculation of the effect of NaOH 

on mixed solution properties including the solubility of other salts. 

Various forms have been used to describe the temperature dependency 

of the ion-interaction coefficients. No attempt has been made to find 

a singular form to describe this dependency; the parameters obtained in 

the cited studies are listed in Appendix B for the solutes discussed 

above. There are equations covering less extensive temperature ranges 

for a few other solutes as noted in Table 2 where references are listed. 

The initial change with temperature above 25°C for an even wider range 

of solutes is given by Silvester and Pitzer (1978). 

Mixing Parameters 

The mixing parameters eij and ~ijk for many simple ions at 25°C 

were derived from the available measurements of activity and osmotic 

coefficients by Pitzer and Kim (1974). These parameters are best 

evaluated from data for common-ion mixtures. For example, the values of 

8Na,K and ~Na,K,Cl may be determined from osmotic coefficient data for 

NaCl-KCl solutions. The 8 .. parameters are independent of the oppositely 
1] 

charged ions. Thus, all the data for Na+- K+ mixing are considered 

single value of eNa,K and values of ~Na,K,Cl' ~Na,K,S04 ' etc. Solubility 

.. 
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measurements also contribute valuable information concerning these para-

meters, and they were not considered by Pitzer and Kim. Harvie and 

Weare (1980) and Harvie et al. (1984) obtained additional values and 

recommended some changes, primarily of the third virial wijk' on the 

basis of solubility data. Since the effect of the term in w. 'k increases 
~J 

with the square of the molality, this quantity is best determined from 

measurements at the highest molalities, i.e., in saturated solutions 

where the solubility of a solid is measured. 

Tabl 4 li t 1 f 8 d ,,, f 25°C f i i t ' i e s s va ues o ij an o/ijk or or var ous n er~on c 

interactions while Table 5 lists values of \ij for ion-neutral inter­

actions on the basis of zero for the interaction with H+. The values 

in Tables 4 and 5 are the same as those of Harvie et al. (1984), except 

for the parameters involving Cl-so4 interactions~ where slightly dif­

ferent values from Downes and Pitzer (1976) and Pabalan and Pitzer 

(1987b) are listed. 

In their 1974 work Pitzer and Kim obtained reasonable results with-

out the higher-order electrostatic terms for cases of unsymmetrical 2-1 

mixing of ions of one sign and a common ion of the opposite sign. But 

they concluded that the more extreme 3-1 mixing showed clear deviation, 

and this was explained by the higher-order terms (Pitzer, 1975). Sub-

sequently, the case of Caso4 solubility in NaCl, with 2-1 mixing of both 

cations and anions, clearly required the higher-order terms (Harvie and 

Weare, 1980). The result is that two sets of values are often given 

for eij: one to be used with the higher-order electrostatic functions 

E E I 

S and 8iJ'' and the other to be used without these terms. ij 
It now 

E E I 

seems best always to include the 8 and 8 terms for all cases of un-

symmetrical mixing, and all values in Table 4 are for that basis. Once 

a modern computer has a subroutine for the calculation of these terms, 
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Table 4: Mixing Parameters for 25°C 

0 

c' 8 c cc' 1/icc'Cl ljicc'SO 1/icc'HSO ljicc'OH 1/icc'HCO ljicc'CO 
4 4 3 3 

Na K -0.012 -0.0018 -0.010 -0.003 0.003 
Na Ca 0.07 -0.007 -0.055 
Na "t-1g 0.07 -0.012 -0.015 
Na HgOH 
Na H 0.036 -0.004 -0.0129 
K Ca 0.032 -0.025 
K Mg 0. -0.022 -0.048 
K MgOH 
K H 0.005 -0.011 0.0197 -0.0265 
Ca Mg 0.007 -0.012 0.024 
Ca MgOH 
Ca H 0.092 -0.015 
Mg MgOH 0.028 
Mg H 0.010 -0.011 -0.0178 

a a' 8 aa' ljiaa'Na ljiaa'K 1/iaa'Ca ljiaa'Ng 1/iaa'MgOH ljiaa'H 

Cl SO~t 0.030 0.000 -0.005 -0.002 -0.008 
Cl HSO~t -0.006 -0.006 0.013 
Cl OH -0.050 -0.006 -0.006 -0.025 
Cl HC03 0.003 -0.015 -0.096 
Cl co3 -0.002 0.0085 0.004 
SO~t HSO~t -0.0094 -0.0677 -0.425 
so4 OH -0.013 -0.009 -0.050 
SO~t HCO,; 0.001 -0.005 -0.161 
SO~t co3 0.002 -0.005 -0.009 
OH co3 0.010 -0.017 -0.001 
HC03 co, -0.004 0.002 0.012 

.. 
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Table 5: Neutral-ion Parameter Values for 25°C 

i 
A co

2
,i A Caco 3 , i A MgC03,i 

H 0.0 
Na .100 
K .051 
Ca .183 
Mg .183 
MgOH 
Cl -.005 
S04 .097 
HS04 -.003 
HC0

3 co3 



the further complications are minimal. Thus, it is easier and less 

likely to lead to error if these terms are always included than if 

choices are made in each case to include or exclude them. 

Both eij and ~ijk undoubtedly vary with temperature, and there are 

heat of mixing data which give their te~perature derivatives at 25°C 

(Phutela and Pitzer, 1986a). Until heat of mixing measurements become 

generally available at higher temperature, however, we must depend 

primarily on solubility data for the values of ei. and ~ .. k at high 
J 1J 

temperatures. Pabalan and Pitzer (1987b) found that the mineral solu-

bilities in many systems could be fitted with constant e's at their 

25°C values together with ~'s either constant or varying with tempera-

ture in a simple manner. Figures 4 and 5 show the results for the 

systems NaCl-KCl-H
2
o and NaCl-MgC1 2-H2o, respectively. In each case 

the parameter giving the temperature dependence of ~Na,K,Cl or ~Na,Mg,Cl 

was determined to best fit the array of solubility measurements above 

25°C. M0ller (submitted) obtained excellent agreement for the solu-

bility of NaCl in the NaCl-CaC1
2

-H
2
o system with a temperature-inde­

pendent ~Na,Ca,Cl" Table 6 includes the 8's and ~'s valid at elevated 

temperatures for several systems of interest. 

APPLICATIONS 

Solubilities of Solids 

Since solubility calculations are discussed in detail by Weare in 

his chapter, only brief comments are included here. A multico~ponent 

example at high temperature is shown in Figure 6. Here the solubilities 

of both NaCl and of KCl at fixed MgC1 2 molality are indicated for the 

four-component system NaCl-KCl-MgC1
2

-H
2
0. Since all parameters were 

evaluated in simpler systems, the curves on Figure 6 are independently 
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Table 6: Mixed Electrolyte Parameters for 
High Temperatures 

i j k e .. 1P ijk l.J 

Na K Cl -0.012 -0.0068 + 1.68E-5T 
Na Mg Cl 0.07 0.0199 - 9.51/T 
Na Ca Cl 0.05 -0.003 
K Mg Cl 0 0.0259 - 14.27/T 
Cl 504 Na 0.030 0.00 

K -0.005 
Mg -0.1175 + 32.63/T 

Cl OH Na -0.050 0.0273 - 9.93/T 
504 OH Na -0.013 0.0302 - 11.69/T 
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determined predictions of the solubilities shm-m. While the agreement 

is not perfect, it approaches the accuracy of the solubility measure-

ments. This calculation was first presented by Pabalan and Pitzer 

(1987b). 

There are many calculations for 25°C of mineral solubilities in 

complex, concentrated brines. In addition to those of Harvie and Weare 

(1980) and Harvie et al. (1982, 1984), other notable examples include 

Krumgalz and Millero (1982, 1983), Gueddari et al. (1983), Monnin and 

Schott (1984), and Langmuir and Melchior (1985). 

Complex-Ion Equilibria 

Many heavy metals form a series of complex ions with chloride and 

other anions. Multiply charged cations also form various complex ions 

with hydroxide. Various other ions, if present in the solution, have 

specific effects on these complex-ion equilibria. A good example of the 

use of the present model is the treatment of lead chloride complexes 

by Millero and Byrne (1984). + + They consider the effects of H , Na , 

2+ 2+ Mg , and Ca on the effective complexation constants. 

Vapor-Phase Equilibria 

Within the criterion of the present model, water of liquid-like 

density as solvent, one can calculate the fugacities of vapor species 

in equilibrium. The activity of water is obtained from the osmotic 

coefficient. 

(47) 

where M
1 

is the molecular mass of water and the sum is over all solute 

species. The activity of a volatile solute species is given by 

(48) 



provided that species is recognized as a solute in the liquid phase. 

In some cases a solute is so fully dissociated in the liquid that one 

considers a direct relationship between the vM cations and vX anions of 

the ionized solute and the associated vapor, whereupon 

(49) 

Given the activities of the volatile species, one can calculate the 

vapor fugacities from the Henry's constants and the vapor fugacity of 

water. Then the pressure and composition of the vapor phase is easily 

calculated on an ideal-gas basis. For moderately imperfect gases, the 

fugacity coefficients are readily obtained if the pertinent gas-phase 

second virial coefficients are known or can be estimated by a method 

such as that of Tsonopoulos (1974). More substantial departure from 

the ideal gas requires the use of a more comprehensive equation of 

state to determine the fugacities (see Holloway, 1977). These methods 

are steadily improving and are often reported in the chemical engineer-

ing journals. 

An interesting application of the present solution model concerns 

46 

the vapor in equilibrium with atmospheric aerosols where droplets contain 

mixed electrolytes. When the relative humidity decreases below 75%, 

these solutions become very concentrated with ionic strength above 

-1 10 mol·kg • Clegg and Brimblecomb (submitted) show that strong acids 

such as HN0
3 

and HCl develop appreciable vapor pressure under these 

conditions. They have extended these studies to include the vapor 

pressures of various acids with marine seasalt aerosols (Brimblecomb 

and Clegg, submitted). 



47-

Another set of interesting applications involving neutral as well as 

ionized solutes and vapor equilibria were presented by Chen et al. (1979). 

One example involves vapor-liquid equilibrium for the system 

+ 2- -
K - co3 - HC0 3 - co2 - H2o at temperatures to 140°C and concentrations 

to 40 wt. % carbonate. 
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Thermal Properties 

The enthalpy, entropy, and heat capacity of the liquid are all given 

by appropriate temperature derivatives of the Gibbs energy. These are 

standard thermodynamic relationships. Since temperature dependent 

expressions are given in Appendix B for various parameters of the pre-

sent model, these derivatives are readily taken. Indeed, it is the 

standard-state heat capacity that is given, and it must be integrated 

to obtain the enthalpy or entropy. The total entropy of the liquid as 

a function of temperature and pressure is required for reversible flow 

processes where entropy is conserved. Similarly the enthalpy is re-

quired for irreversible, throttled processes. In other cases where 

heat transfer is recognized, the enthalpy of the fluid is also needed. 

The total fluid entropy and enthalpy for NaCl-H20 are tabulated by 

-1 
Pitzer et al. (1984) for the range to 6 mol·kg , 300 C, and 1 kbar. 

For calculations concerning seawater and related fluids, it is often 

sufficient to take the thermal properties of an appropriate molality of 

NaCl in H
2
o. The parameters of the present model, however, allow the 

explicit inclusion of other substantial components if desired. 

SUPPLEMENTARY COMMENTS 

With increasing accuracy and precision of experimental measurements, 

empirical functions that first seemed adequate will need to be improved 

or replaced. Some comments concerning the desirable procedure for 

improvement may be appropriate. Since there is now a very extensive 

base of parameters for various interactions, their continued validity 

should be retained as far as possible. Since the extended Debye-Huckel 

term f(I) or its derivative enters the equations for all properties, it 

should remain unchanged. It is sho'm in Appendix A that modifications 



of the ionic-strength dependence of this term will only make corres­

ponding changes in the ionic-strength dependence of the second virial 

coefficients. Thus one can accomplish an improvement of this type by a 

change in the second virial coefficients instead of f(I). 

Implicit in f(I) is the Debye-Huckel parameter A and in turn the 

dielectric constant or relative permittivity. At 25°C the uncertainty 
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is so small, that no problem seems likely, but the temperature dependence 

of the dielectric constant is not as accurately known as would be 

desired. Most of the high-temperature correlations within the present 

model have used the equation of Bradley and Pitzer (1979) for the 

dielectric constant. This equation is valid to 350°C and 1 kbar. Until 

an alternate equation is clearly established as superior, it seems 

desirable to retain the Bradley and Pitzer equation. 

At present, the other equation in significant use is that of 

Uematsu and Franck (1980). It is somewhat more complex but has the 

advantage of validity to higher temperature, 550°C. In the range below 

350°C it is not clear which equation better represents the true property 

of water, since measurements disagree by more than the difference 

between the equations. The values from 0 to 100°C recommended by the 

International Union of Pure and Applied Chemistry (Kienitz and Marsh, 

1981), fall closer to those given by the Bradley and Pitzer equation. 

Thus, for work below 350°C there is no need to change at this time. 

When a change to a definitely superior equation is made, it will be 

necessary to present alternate sets of values of those other parameters 

that are very accurately known for use with each dielectric constant 

equation until the entire array is available on the new basis. 

Fortunately, activity and osmotic coefficients and as a result, 



solubilities and vapor pressures, depend only on the dielectric constant 

itself,and the uncertainties are quite small. The problem is more 

serious where the temperature derivative is required for enthalpies and 

entropies, and it is much more serious for heat capacities which 

involve the second temperature derivative. 

In contrast to changes in f(I) which have a general effect, changes 

can be made in the ionic-strength dependence of the second virial co-

efficient for a particular ion interaction or even for a subcategory 

of ions without any affect on the rest of the model. Thus Holmes and 

Mesmer (1986) recommend the use of a
1 

= 1.4 instead of 2.0 for the 

alkali metal sulfates. Kodytek and Dolejs (1986) found that inclusion 

of a 8(
2

) term (with a
2 

= 6) for 3-1 electrolytes gave an appreciably 

better fit. Since their 8( 2 ) values are positive, this is not an indi-

cation of ion pairing in the lanthanide salts; rather it represents just 

a more flexible empirical expression for the ionic-strength dependence 

in this case. Improvements of this type can be made without disturbing 

the previously determined expressions for other parameters. 
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APPENDIX A: THEORETICAL BACKGROUND 

There are alternate formulations of rigorous statistical mechanics 

for multicomponent fluid systems. The McMillan-Mayer (1945) syste~ is 

appropriate where a solvent, in our case water, is always the most 

abundant component. In this system the interactions between solute 

species are given by potentials of mean force in the solvent and the 

detailed interaction of individual solvent molecules can lar~ely be 

ignored. The excess Helmholtz energy can be expressed in a power 

series in concentrations ci,cj, .. of solute species 

Aex/VkT = L L cicJ. Bi
0

J. + L L I c.c.ck c~.k +. . . (Al) 
i j i j k 1 J 1 J 

0 0 

The quantities Bij' Cijk' etc. arise from the binary, tertiary, etc. 

solute-solute interactions in the presence of the solvent and in the 

limit of low solute concentration; they depend on the solvent and the 

temperature but not on the solute concentrations. They can be calcu-

lated from the potentials of mean force and can be called the second, 

third, etc. virial coefficients. 

-1 
lfhen ions are present, with long-range (R ) interparticle paten-

0 0 

tials, the integrals for Bij' Cijk' etc. for interionic interactions 

diverge. Mayer (1950) showed how the calculation could be rearranged 

to avoid this divergence and Friedman (1962) developed further this 

method. Friedman's equations (6.10) and (13.44), with minor changes in 

s~bols, give for the excess Helmholtz energy 

The first term on the right is just the Debye-Htickel li~iting law with 

the reciprocal length K defined by 



. 
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2 
K (A3) 

Here E is the dielectric constant or relative permittivity of the solvent, 

e the electronic charge, and z. the number of charges on particle i. The 
1 

sum in equation (A3) is clearly related to the ionic strength . 

In equation (A2) the virial coefficients B .. , C. 'k' etc. differ 
1] 1] 

0 0 

from the corresponding Bij' Cijk' etc. in equation (Al) by the omission 

of the terms which, when rearranged, became the Debye-Huckel term. This 

transformation gives Bi'' ci]'k' etc. a dependence on Kin addition to 
J 

their dependence on solvent properties, etc. 

In proceeding to the general equation of the model, one shifts to 

the Gibbs energy and to molalities instead of concentrations. The 

Debye-Hlickel term can be transformed exactly. It is assumed that other 

effects of this transformation can be absorbed in the virial coefficients 

which will be determined empirically. One then has 

Gex/n RT = -ai 312 + \ \ S (I) w I i mimj ij + ... (A4) 

where n is number of kg of water and a is the Debye-Hlickel parameter. w 

If one sums only over interactions of ions of opposite sign and ignores 

the ionic strength dependency of si'' this is equivalent to the equation 
J 

proposed by Bronsted (1922). One now finds that the ionic strength 

dependency of sij is very great, but that it can be reduced by replacing 

the Debye-Hlickel limiting law by an extended term. This was first sug-

gested on an empirical basis by Guggenheim (1935). A test of several 

extended forms for the Debye-Hlickel term (Pitzer, 1973) led to the 

~ 
choice (a/b)Il~(l+bl-) with ban empirical constant. This can be 

rearranged 



aiZn (1 + bi 
1 12 ) /b = a(I 312 - bi 2 

/2 + b 2I 5 / 2 
/3 · · · ·) 

= ai 312 
- I

2
aq(I) 

= ai
312

- 0: <I-m.m.z.
2
z.

2
)q(I)(a/4) 

i j. 1 J 1 J 

where q(I) is a function of ionic strength but not of individual 

molalities. 3/2 Thus, in addition to the limiting law term ai , the 

(AS) 

remaining contribution of the extended D-H term has exactly the same 

molality dependence as the second virial coefficient term of equation 

(A4) and these can be combined. The particular form for the extended 

D-H term was chosen to minimize the ionic strength dependence of the 

resulting second virial coefficient term 

(A6) 

at high ionic strength. 

The higher-order electrostatic term for unsymmetrical mixing of 

ions of the same sign, which was identified by Friedman (1962), appears 

as a special term within the ionic strength dependent second virial co-

efficient. Hence it does not need to be recognized separately at this 

point. Its evaluation on the molality basis was given by Pitzer (1975, 

1983) and is discussed below. Our final form of equation can then be 

written as 

Gex/n RT 
w f(I) + L L m.m.\ .. (I) 

i . 1 J 1] 
J 

+ L L L m.m.~ ~- .k(I) + .... 
i j k 1 J 1<. 1J 

(A7) 

The Debye-Huckel term f(I) includes the limiting law and depends only on 

the ionic strength. The second virial coefficients \ .. (I) are functions 
1] 

of ionic strength and include terms for mixing of ions of the same sign 
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but different charge as appropriate. With increasing molalities of 

solutes, additional terms will be required in this power series to 

attain a given accuracy. In the semi-empirical application, the 

required number of terms will become apparent. 

An alternate presentation of basic theory (Pitzer, 1973, 1979) is 

less abstract and gives more of a physical picture and an estimate of 

the pattern of ionic strength dependency of the second virial coeffi-

cient. These aspects may be useful to readers. But this alternate 

presentation includes approximations which the Mayer-Friedman treatment 

avoids and which are not intrinsic to the form of equation (A7). 

We return now to the higher-order electrostatic term for unsym-

metrical mixing (Pitzer, 1975, 1983). The second virial coefficient 

Bij(K) of equation (A2) is shmm by Friedman (1962) to be given by 

(AS) 

with the electrostatic length 

2 
£ = e /E:kT (A9) 

We note that the interionic potential of mean force can be written as 

(AlO) 

where the second term is the electrostatic interaction and uij' a 

function of the interionic distance r, is the short-range potential. 

Then the function J
1

. of (A8) is 
J 
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J .. 
1J 

(All) 

with 

(A12) 



The integral in equation (All) cannot be evaluated, in general, 

'vithout knowledge of the short-range uotential u ... Since that quantity 
. . 1] -

is not known accurately, the entire second virial coefficient is treated 

as an empirical quantity. But for the particular case of ions of the 

same sign, an approximation yields useful results. 

Ions of the same sign repel one another strongly enough that they 

seldom approach one another closely; hence the short-range potential 

should have little or no effect. This can be seen mathematically in 

equation (All). If q .. is large and negative for the range of r for 
1] 

which uij differs from zero, then the value of exp(qij) is extremely 

small throughout this range. Thus, provided uij is positive (or if 

negative, is small), the effect of uij will be negligible. 

In view of this situation, one can evaluate the effect of electro-

static forces on the difference terms 9ij without making any detailed 

assumption about short-range forces. We write 

E =e .. + e .. (I) 
1] 1] 

(Al3) 

where the first term on the right arises from the combined effects of 

short-range forces acting directly or through the solvent, of the use of 

molalities instead of concentration, and of the difference in the Debye~ 
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ffuckel term in equation (A2) from that in (A7) or (28). The second 

E 
term eMN will be calculated from the corresponding terms of the cluster-

integral theory with the omission of short-range forces. From the 

definition of 9MN we have 

L 
A ij 

Ji. 
] 

= E, 
"MN 

(z
1
z./4I)J .. 

J 1] 

2 f"' K (1 
z.z.Q. I 

1 J I 
Jo 

with 0 ui. = 
_l 

1 2 q.. 2 
e 1 J)r dr + q .. + qij -

2 1] 

(Al4) 

(AlS) 

(Al6) 
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With the substitutions 

y Kr (A17) 

(A18) 

q = -(x/y)e-y (A19) 

J(x) -1 = X (A20) 

In our working units 

(A21) 

where for ions of the same sign x
1

j is always positive. Also 

(A22) 

E We also need the temperature derivative of 8 and therefore of J. 

If J' = 'dJ/'dx, 
E I 

we find for e the expression 

Ee:rn = _E8MN/I + (zMzN/8I2)[~J'(~)- i ~J'(xt-111)- i ~NJ'(xNN)] 
(A23) 

For J the integrals of the second and third terms in the parentheses in 

equation (A20) are straightforward with the results 

J 1 
- 1 + J = 4 X 2 

(A24) 

J' 1 
(J2/x) + 1 3 =--

4 
(A25) 

-1 
roo 

(1- eq)y 2dy J2 = X Jo 
(A26) 

J3 
-1 foo exp(q-y)ydy X 

Jo 
(A27) 
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There are no simple integrals for J 2 and J 3 but they are readily evaluated 

E E I 

numerically with modern computers. The resulting functions 8 and 8 

for 2-1, 3-1, and 4-1 mixing are shown in figure Al. 

For more efficient cornpution of these functions than numerical 

integration, several methods have been proposed (Pitzer, 1975), (Roy 

et al., 1983), (Harvie, 1981). Harvie's method uses two Chebyshev 

polynomial approximations, one for x ~ 1 and the other for x ~ 1. The 

appropriate equations for these regions follow: 

Region I. X .5, 1 

4 
1/5 

- 2 z = X 

dz 4 -4/5 
dx =-x 

5 

bk = z bk+l bk+2 

Region II. x ~ 1 

dz 40 
dx = - 90 

-11/10 
X 

+ 
I 

ak 

(A28) 

(A2 9) 

l k = 0, 20 

(A30) 

(A31) 

(A32) 

(A33) 

l k = 0, 20 

(A34) 

(A35) 

Using the calculated values for the bk and the dk' J(x) and J'(x) can 

be calculated from the following formulas: 

J (x) 
1 
4 X (A36) 

J' (x) (A37) 
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Some discussion with regard to the calculation of the arrays bk 

and dk is appropriate. 
I II 

The coefficients ak and ak are given in Table 

Al. By definition b
21 

= b
22 

= d
21 

= d
22 

= 0. Therefore, by using 

Eq. (A30) or (A34) the numbers b can be generated in decreasing sequence. 

Similar arguments apply to the array d. The values J(l} = 0.116437 and 

J' (1) = 0.160527 can be used to check a program for this calculation. 

Another theoretical topic concerns the possible ionic-strength 

dependence of second virial coefficients for interactions of ions with 

neutral molecules containing dipole or higher electrical moments. The 

work of Kirkwood (1934) pertains to this question, but it considers only 

electrical effects subject to a distance of closest approach and ignores 

all other effects of short range forces which are normally the dominant 

terms. For charge-dipole effects on the activity coefficient of the 

dipolar molecule i, Kirkwood's equation (21) yields 

6 ln yi 

2 2 \ 2 
3-rre \.l . L c. z. 

= - --~~~~1---~~J~J~~--
2aE2k2T2(1 + 'Ka + K2a 2 /3) 

(A38) 

with \.li the dipole moment of i and c. and z. the concentration and 
J J 

charge on ion j. Also a is the distance of closest approach of an ion 

to the molecule and K is the Debye reciprocal length which is related 

to the ionic strength. For each term in the sum, equation (A38) yields 

the electrical contribution to a second virial coefficient \ ... The 
1] 

appearance of K in the denominator indicates an ionic strength dependence. 

But for typical values of the dipole moment and other quantities, this 

term is very small compared to that for short-range forces. For quadru-

pole or higher moments the corresponding term is even smaller. Hence 

there is no present indication that an ionic-strength dependence need be 

considered for the second virial coefficients for neutral-ion interactions. 
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Table Al. Numerical arrays for calculating 
J(x) and J' (x) 

k I II 
ak ak 

0 1.925154014814667 .628023320520852 
1 -.060076477753119 .462762985338493 
2 -.029779077456514 .150044637187895 
3 -.007299499690937 -.028796057604906 
4 .000388260636404 -.036552745910311 
5 .000636874599598 -.001668087945272 
6 .000036583601823 .006519840398744 
7 -.000045036975204 .001130378079086 
8 -.000004537895710 -.000887171310131 
9 .000002937706971 -.000242107641309 

10 .000000396566462 .000087294451594 
11 -.000000202099617 .000034682122751 
12 -.000000025267769 -.000004583768938 
13 .000000013522610 -.000003548684306 
14 .000000001229405 -.000000250453880 
15 -.000000000821969 .000000216991779 
16 -.000000000050847 .000000080779570 
17 .000000000046333 .000000004558555 
18 .000000000001943 -.000000006944757 
19 -.000000000002563 -.000000002849257 
20 -.000000000010991 .000000000237816 



APPENDIX B: N~1ERICAL PARAMETERS FOR TEMPERATURE DEPENDENCY EXPRESSIONS 

The following are the temperature functions for the parameters of 

the present solution model and for the standard state heat capacities 

of aqueous electrolytes reported by various investigators. The pres-

sure dependencies of the ion-interaction coefficients are currently 

neglected except for NaCl(aq), HCl(aq), and NaOH(aq), which have the 

requisite PVT data available in sufficient quantity to allow their 

evaluation. In the case of standard state heat capacities, only 

NaCl(aq) and HCl(aq) have both P- and T-dependent functions. The 

standard state heat capacities of NaOH(aq) are not included since present 

information is inadequate. This lack is not important for the solu-

bility of NaOH, however, since it is beyond the valid concentration 

range of the present model. In all the equations, TR and T refer to the 

reference temperature of 298.15 K and the temperature of interest, 

respectively. Pressures are designated by P and are in bars; standard 

h i i · units of J K-l mol-l. state eat capac t es are ~n 

NaCl(aq) 

Ion-interaction parameters- Pitzer et al. (1984), 273-573 K and 

saturation pressure to 1 kbar. P refers to pressure in bars. 

p2 p3 + Q6 
? 

f(T) = Ql/T + Q2 + Q3 P + Q4 + Q5 lr.(T) + (Q7 + Q8 p + Q9 p-

+ QlO P3)T + (Qll + Q12 P + Ql3 P2)T2 + (Ql4 + Ql5 p + Ql6 P2 

+ Ql7 P3)/(T-227) + (Ql8 + Ql9 P + Q20 P2 + Q21 P3)/(680-T) 
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B(O) B (1) ccp = 2c 

Ql -656.81518 119.31966 -6.1084589 
Q2 24.86912950 -0.48309327 4.0217793£-1 
Q3 5.381275267£-5 0 2.2902837E-5 
Q4 -5.588746990£-8 0 0 
Q5 6.589326333£-12 0 0 
Q6 -4.4640952 0 -0.075354649 
Q7 0. 01110991383 1. 4068095E-3 1. 531767295£-4 
Q8 -2.657339906£-7 0 -9.0550901£-8 
Q9 1. 746006963£-10 0 0 

Q10 1.046261900£-14 0 0 
Q11 -5.307012889£-6 0 -1.538600820£-8 
Q12 8.634023325£-10 0 8.6926600£-11 
Q13 -4.178596200£-13 0 0 
Q14 -1.579365943 -4.2345814 0.3531041360 
Q15 2.202282079£-3 0 -4.3314252£-4 
Q16 -1.310550324£-7 0 0 
Q17 -6.381368333£-11 0 0 
Q18 9.706578079 0 -0.09187145529 
Q19 -0.02686039622 0 5.1904777£-4 
Q20 1. 5344 7 4401E-5 0 0 
Q21 -3.215398267£-9 0 0 

Standard state heat capacity - the following equation was fit to values 

from 273-573 K and at 1 bar or saturation pressure tabulated by Pitzer 

et al. (1984), Table A-4). For values at other pressures, the reader 

is referred to the tables and equations given by Pitzer et al. (1984) 

which are valid in the range 273-573 K and to 1 kbar pressure. 

KCl(aq) 

C0 = -1.848175£6 + 4.411878£7/T + 3.390654E5ln(T) 
p 

- 8.893249E2T + 4.005770E-1T2 - 7.244279£4/(T-227) 

- 4.098218£5/(647-T) 
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Ion-interaction parameters- Holmes and Mesmer (1983a), 273-523 K. 

f(T) = Ql + Q2(1/T-l/TR) + Q3ln(T/TR) + Q4(T-TR) + Q5(T
2
-TR

2
) + Q6~n(T-260) 

Ql 
Q2 
Q3 
Q4 
Q5 
Q6 

0.04808 
-758.48 

-4.7062 
0.010072 

-3.7599E-6 
0 

0.0476 
303.9 

1.066 
0 
0 

0.0470 

-7.88E-4 
91.270 
0.58643 

-0.0012980 
4.9567E-7 

0 



Standard state heat capacity- Holmes and Mesmer (1983a), 273-523 K. 

C0 = -991.51 + 5.56452T - 0.00852996T 2 - 686/(T-270) 
p 

Ion-interaction parameters- de Lima and Pitzer (1983b), with 

equation for c!x modified to fit the solubility data, 298-473 K. 

f(T) = Ql T2 + Q2 T + Q3 

Ql 
Q2 
Q3 

5. 93915E-7 
-9.31654E-4 

0.576066 

2.60169E-5 
-1.09438E-2 

2.60135 

2.41831E-7 
-2.49949E-4 

5.95320E-2 

Standard state heat capacity- Phutela et al. (1987), 298-453 K 

C0 = -7.39872E6/T + 7.96487E4 - 3.25868E2T 
p 

+ 5.98722E-1T2 - 4.21187E-4T3 

Ion-interaction parameters- M~ller (submitted), 298-523 K, 0-4 

-1 mol· kg 

f(T) = Ql + Q2 T + Q3/T + Q4 lnT + Q5/(T-263) + Q6 T
2 + Q7/(680-T) 

B(O) B(l) c¢ = 2312 c 

Ql -9.41895832El 3.4787 -3.03578731El 
Q2 -4.0475002E-2 -1. 5417E-2 -1. 36264 728E-2 
Q3 2.34550368E3 0 7.64582238E2 
Q4 1. 70912300El 0 5.50458061 
Q5 -9.22885841E-l 0 -3.27377782E-l 
Q6 1. 51488122E-5 3.1791E-5 5.69405869E-6 
Q7 -1.39082000 0 -5.36231106E-l 

-1 
A simpler equation valid to 473 K and 4.3 mol·kg is given by Phutela 

and Pitzer (1983). 

Standard state heat capacity- Phutela et al. (1987), 298-373 K. 

C0 = -1.26721E6/T + 7.41013E3 - 11.5222 T 
p 
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Ion-interaction parameters- Holmes and Mesmer (1986), 273-498 K. 

Note: these parameters are consistent with using a value of a1 = 1.4, 

instead of the usual value of 2.0. 

f(T) = Ql + Q2(TR-TR
2

/T) + Q3(T
2 + 2TR

3
/T-3TR

2
) + Q4(T + TR

2
/T-2TR) 

+ Q5[ln(T/TR) + TR/T-1] + Q6{1/(T-263) 

Standard 

+ (263T-TR2)/[T(TR-263) 2]} + Q7{1/(680-T) 

+ (TR
2
-680T)/[T(680-TR)

2
]} 

8(0) 8(1) c<P = 23/2 c 

Ql -1. 727E-2 0.7534 1.1745E-2 
Q2 1. 7828E-3 5.61E-3 -3.3038E-4 
Q3 9.133E-6 -5.7513E-4 1.85794E-5 
Q4 0 1.11068 -3.9200E-2 
Q5 -6.552 -378.82 14.2130 
Q6 0 0 0 
Q7 -96.90 1861.3 -24.950 

state heat capacity - Holmes and Mesmer (1986), 273-498 

co = -1206.2 + 7.6405T- 1.23672E-2T
2

- 6045/(T-263) p 

K. 

Ion-interaction parameters- Holmes and Mesmer (1986), 273-498 K. 

Note: these parameters are consistent with using a value of a 1 = 1.4, 

instead of the usual value of 2.0. 

f(T) = Ql + Q2(TR-TR
2

/T) + Q3(T
2 + 2TR

3
/T-3TR

2
) 

+ Q4(T + TR
2

/T-2TR) + Q5[ln(T/TR) + TR.T-1] + Q6{1/(T-263) 

+ (263T- TR2)/[T(TR-263) 2]} + Q7{1/(680-T) 

+ (TR
2
-680T)/[T(680- TR)

2
]} 
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s<o) Q (1) 
,.) 

ctP = 23/2 c 

Ql 0 0.6179 9.1547E-3 
Q2 7.476E-4 6.85E-3 0 
Q3 0 5.576E-5 0 
Q4 4.265E-3 -5.841E-2 -1. 81E-4 
QS -3.088 0 0 
Q6 0 -0.90 0 
Q7 0 0 0 

Standard state heat capacity; 

MgS04 (aq) 

Ion-interaction parameters- Phutela and Pitzer (1986), 298-473 K. 

Note that the final column gives the temperature coefficients for C. 

For MgS04 , this is related to Ccp by: Ccp = 4C (see equation 22). 

f(T) = Ql(T/2 + 2982/2T- 298) + Q2(T2/6 + 2983/3T- 298 2/2) 

+ Q3(T3/12 + 298 4/4T-298 3/3) + Q4(T4/20 + 2985/ST- 298 4/4) 

+ (298 - 298 2/T)QS + Q6 

B(O) s (1) s<2) c = c¢ /4 

Ql -1.0282 -2.9596E-l -1. 3764E-l 1. 0541E-l 
Q2 8.4790E-3 9.4564E-4 1. 2121E-l -8.9316E-4 
Q3 -2.33667E-5 0 -2.7642E-4 2.51E-6 
Q4 2.1575E-8 0 0 -2.3436E-9 
QS 6.8402E-4 1.1028E-2 -2.1515E-l -8.7899E-5 
Q6 0.21499 3.3646 -32.743 0.006993 

Standard state heat capacity- Phutela and Pitzer (1986), 298-473 K. 

C0 = -6.2543E6/T + 6.5277E4 - 2.6044E2T + 4.6930E-1T
2 

- 3.2656E-4T3 
p 

HCl(aq) 

Ion-interaction parameters- Holmes et al. (1987), 273-523 K. The 

-1 equation and parameters listed are valid to 7 mol·kg , but this paper 

-1 also includes more complex equations valid to 648 K and to 16 mol·kg 

-3 also note that the equations use o, the density in kg·m of pure water 

at the particular P and T and that they include pressure dependence to 

400 bars. 
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f(T) = Ql + Q2 ln(p/997) + Q3(p-997) + Q4(T-TR) + Q5(P-l) 

s<o) s<l) c = c¢1 /2 

Ql 0.17690 0.2973 0.362E-3 
Q2 -9.140E-2 16.147 0 
Q3 0 -1. 7631E-2 0 
Q4 -4.034E-4 0 -3.036E-5 
Q5 6.20E-6 7.20E-5 0 

Standard State heat capacity- Holmes et al. (1987), 273-648 K. 

c; = 17.93 - 16.79T/(T-240) + 6.4579E5 T~ 

where 

with £ the dielectric constant (relative permittivity) 

NaOH(aq) 

Ion-interaction parameters- Pabalan and Pitzer (1987a), 0-350°C 

and saturation pressure to 400 bars. P refers to pressure in bars. 

f(T) = Ql + Q2 P + (Q3 + Q4 P)/T + Q5 ln(T) + (Q6 + Q7 P)T 

+ (Q8 + Q9 P)T2 + QlO/(T-227.) + (Qll + q12 P)/(647.-T) 

s<o) s (1) c¢ = 2 c 

Ql 2.7682478E+2 4. 6286977E+2 -1. 6686897E+l 
Q2 -2. 8131778E-3 0 4.0534778E-4 
Q3 -7.3755443E+3 -1. 0294181E+4 4.5364961E+2 
Q4 3.7012540E-l 0 -5.1714017E-2 
QS -4.9359970E+l -8.5960581E+l 2. 9680772 
Q6 1.0945106E-l 2.3905969E-l -6.5161667E-3 
Q7 7.1788733E-6 0 -1.0553037 3E-6 
Q8 -4.0218506E-5 -1.0795894E-4 2.3765786E-6 
Q9 -5.88474E-9 0 8.9893405E-10 

QlO 1.1931144E-l 0 -6.8923899E-l 
Qll 2.4824963 0 -8.1156286£-2 
Ql2 -4.8217410£-3 0 0 

Debye-Huckel Parameter 

Most calculations for the present model have used the equation of 

Bradley and Pitzer (1979) for the dielectric const?.nt and the density of 
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water fro~ the equation of Haar et al. (1984). Tables of values of A¢ and 
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of the corresponding parameters for enthalpy, heat capacity, and volume 

were given by Bradley and Pitzer (1979) and are also available in other 

papers including Pitzer et al.(l984) and Ananthaswa~y and Atkinson (1984). 

~1~ller (submitted) gives a seven-constant equation for A¢ at saturation 

pressure to 300°C. 
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