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Abstract

Modified scattering for a scalar quasilinear wave equation satisfying the weak null condition

by

Dongxiao Yu

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Daniel Tataru, Chair

The objective of this dissertation is to study the long time dynamics of a scalar quasilinear
wave equation

gαβ(u)∂α∂βu = 0, in R1+3
t,x .

This equation satisfies the weak null condition introduced by Lindblad and Rodnianski [25,
24]. Lindblad [21] proved that, for small and localized initial data, this equation has a
global solution. In the present work, we establish a modified scattering theory for the above
equation. Such a modified scattering theory provides an accurate description of asymptotic
behavior of the global solutions.

To study modified scattering, we first identify a notion of asymptotic profile and an associated
notion of scattering data. One candidate for the asymptotic profile is given by the asymptotic
PDE

2Usq +G(ω)UUqq = 0

which was derived by Hörmander [9, 7, 8]. In Chapter 2, we derive a new reduced system,
called the geometric reduced system, by modifying Hörmander’s method. In our derivation,
we make use of the optical function, i.e. a solution to the eikonal equation. In this setting,
the scattering data is the initial data for our geometric reduced system, and it is chosen in a
way such that the global solution to the quasilinear wave equation and the exact solution to
the reduced system match at infinite time. One may infer, from this dissertation, that this
new system is more accurate, in that it both describes the long time evolution and contains
full information about it.

In Chapter 3, we prove the existence of the modified wave operators for the scalar quasilinear
wave equation. Fixing a scattering data which is the initial data for the geometric reduced
system, we can first construct an approximate solution to the model equation. Then, by
studying a backward Cauchy problem, we show that there exists a global solution to the
scalar quasilinear wave equation which matches the approximate solution at infinite time.
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In Chapter 4, we prove the asymptotic completeness for the same equation. Given a global
solution to the scalar quasilinear wave equation, we rigorously derive the geometric reduced
system with error terms. These allow us to recover the scattering data, as well as to construct
a matching exact solution to the reduced system.
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Chapter 1

Introduction

This dissertation is devoted to the study for the long time dynamics of a scalar quasilinear
wave equation in R1+3

t,x , of the form

gαβ(u)∂α∂βu = 0. (1.1)
Here we use the Einstein summation convention, with the sum taken over α, β = 0, 1, 2, 3
with ∂0 = ∂t, ∂i = ∂xi

, i = 1, 2, 3. We assume that gαβ(u) are smooth functions of u, such
that gαβ = gβα and gαβ(0)∂α∂β = □ = −∂2t + ∆x. We also assume that g00 ≡ −1. In fact,
since we expect |u| � 1, we have g00(u) < 0, so we can replace (gαβ) with (gαβ/(−g00)) if
necessary.

This model equation is closely related to General Relativity. The vector-valued version
of gαβ(u)∂α∂βu is the principal part of the Einstein equations in wave coordinates. For more
physical background for the equation (1.1), we refer the readers to [21, 25, 24].

The study of global well-posededness theory of (1.1) started with Lindblad’s paper [20].
Given the initial data

u(0) = εu0, ∂tu(0) = εu1, where u1, u2 ∈ C∞
c (R3) and ε > 0 is small, (1.2)

Lindblad conjectured that the equation (1.1) has a global solution if ε is sufficiently small.
In the same paper, he proved the small data global existence for a special case

∂2t u− c(u)2∆xu = 0, where c(0) = 1 (1.3)
for radially symmetric data. Later, Alinhac [1] generalized the result to general initial data
for (1.3). The small data global existence result to the general case (1.1) was finally proved
by Lindblad in [21].

Our main goal is to establish a modified scattering theory for (1.1).

1.1 Background
The equation (1.1) is a special case for a general scalar nonlinear wave equation in R1+3

t,x

□u = F (u, ∂u, ∂2u). (1.4)
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Here the nonlinear term is of the form

F (u, ∂u, ∂2u) =
∑

aαβ∂
αu∂βu+O(|u|3 + |∂u|3 + |∂2u|3). (1.5)

The sum in (1.5) is taken over all multiindices α, β with |α| ≤ |β| ≤ 2, |β| ≥ 1 and
|α|+ |β| ≤ 3.

Since 1980’s, there have been many results on the lifespan of the solutions to the Cauchy
problem (1.4) with initial data (1.2). In [11, 12], John proved that (1.4) does not necessarily
have a global solution for all t ≥ 0: any nontrivial solution to □u = ut∆u or □u = u2t blows
up in finite time. In contrast, (1.4) in R1+d for d ≥ 4 has small data global existence, proved
by Hörmander [8]. For arbitrary nonlinearities in three space dimensions, the best result on
the lifespan is the almost global existence: the solution exists for t ≤ ec/ε, for sufficiently
small ε and some constant c > 0. The almost global existence for (1.4) was proved by
Lindblad [23]. We also refer to John and Klainerman [13], Klainerman [18], and Hörmander
[9, 7] for some earlier work on almost global existence.

In contrast to the finite-time blowup in John’s examples, it was proved by Klainerman [17]
and by Christodoulou [3] that if the null condition is satisfied, then (1.4) has a global solution
for any sufficiently small and localized initial data. The null condition was first introduced
by Klainerman [16]. It states that for each 0 ≤ m ≤ n ≤ 2 with m+ n ≤ 3, we have

Amn(ω) :=
∑

|α|=m,|β|=n

aαβω̂
αω̂β = 0, for all ω̂ = (−1, ω) ∈ R× S2. (1.6)

Equivalently, we assume Amn ≡ 0 for all ω̂ lying on the null cone {mαβξαξβ = 0}. The null
condition leads to cancellations in the nonlinear terms (1.5) so that the nonlinear effects of the
equations are much weaker than the linear effects. Note that the null condition is sufficient
but not necessary for the small data global existence. For example, the null condition fails
for (1.1) in general, but (1.1) still has small data global existence. We also refer our readers
to [32] for a general introduction on the null condition.

Later, in [25, 24], Lindblad and Rodnianski introduced the weak null condition. To
state the weak null condition, we start with the asymptotic equations first introduced by
Hörmander in [9, 7, 8]. We make the ansatz

u(t, x) ≈ ε

r
U(s, q, ω), r = |x|, ωi = xi/r, s = ε ln(t), q = r − t. (1.7)

Substituting this ansatz into (1.4), we can derive the following asymptotic PDE for U(s, q, ω)

2∂s∂qU +
∑

Amn(ω)∂
m
q U∂

n
q U = 0. (1.8)

Here Amn is defined in (1.6) and the sum is taken over 0 ≤ m ≤ n ≤ 2 with m+ n ≤ 3. We
say that the weak null condition is satisfied if (1.8) has a global solution for all s ≥ 0 and if
the solution and all its derivatives grow at most exponentially in s, provided that the initial
data decay sufficiently fast in q. In the same papers, Lindblad and Rodnianski conjectured
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that the weak null condition is sufficient for small data global existence. To the best of the
author’s knowledge, this conjecture remains open until today.

There are three remarks about the weak null condition and the corresponding conjecture.
First, the weak null condition is weaker than the null condition. In fact, if the null condition
is satisfied, then (1.8) becomes ∂s∂qU = 0. Secondly, though the conjecture remains open,
there are many examples of (1.4) satisfying the weak null condition and admitting small
data global existence at the same time. The equation (1.1) is one of several such examples:
the small data global existence for (1.1) has been proved by Lindblad [21]; meanwhile, the
asymptotic equation (1.8) now becomes

2∂s∂qU +G(ω)U∂2qU = 0, (1.9)

where
G(ω) := gαβ0 ω̂αω̂β, gαβ0 =

d

du
gαβ(u)|u=0, ω̂ = (−1, ω) ∈ R× S2,

whose solutions exist globally in s and satisfy the decay requirements, so (1.1) satisfies
the weak null condition. There are also many examples violating the weak null condition
and admitting finite-time blowup at the same time. Two such examples are □u = ut∆u and
□u = u2t : the corresponding asymptotic equations are (2∂s−Uq∂q)Uq = 0 (Burger’s equation)
and ∂sUq = U2

q , respectively, whose solutions are known to blow up in finite time. Thirdly, in
recent years, Keir has made some further progress. In [15], he proved the small data global
existence for a large class of quasilinear wave equations satisfying the weak null condition,
significantly enlarging upon the class of equations for which global existence is known. His
proof also applies to (1.1). In [14], he proved that if the solutions to the asymptotic system
are bounded (given small initial data) and stable against rapidly decaying perturbations, then
the corresponding system of nonlinear wave equations admits small data global existence.

1.2 A new reduced system
Instead of working with Hörmander’s asymptotic system (1.9) directly, in this dissertation we
will construct a new system of asymptotic equations. Our analysis starts as in Hörmander’s
derivation in [9, 7, 8], but diverges at a key point: the choice of q is different. One may
contend from this work that this new system is more accurate than (1.9), in that it both
describes the long time evolution and contains full information about it. In addition, if we
choose the initial data appropriately, our reduced system will reduce to linear first order
ODE’s on µ and Uq, so it is easier to solve it than to solve (1.9).

To derive the new equations, we still make the ansatz (1.7), but now we replace q = r− t
with a solution q(t, r, ω) to the eikonal equation related to (1.1)

gαβ(u)∂αq∂βq = 0. (1.10)

In other words, q(t, r, ω) is an optical function. There are two reasons why we choose q in
this way. First, if we substitute u = εr−1U(s, q, ω) in (1.1) where q(t, r, ω) is an arbitrary
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function, then we obtain two terms in the expansion

εr−1gαβ(u)qαβUq + εr−1gαβ(u)qαqβUqq.

All the other terms either decay faster than ε2r−2 for t ≈ r → ∞, or do not contain U
itself (but may contain Uq, Uqq, Usq and etc.). If q satisfies the eikonal equation, then the
second term vanishes. From the eikonal equation, we can also prove that the first term is
approximately equal to a function depending on Uq but not on U . Thus, in contrast to the
second order PDE (1.9) for U , we expect to get a first-order ODE for Uq which is simpler.

Secondly, the eikonal equations have been used in the previous works on the small data
global existence for (1.1). In [1], Alinhac followed the method used in Christodoulou and
Klainerman [4], and adapted the vector fields to the characteristic surfaces, i.e. the level
surfaces of solutions to the eikonal equations. In [21], Lindblad considered the radial eikonal
equations when he derived the pointwise bounds of solutions to (1.1). When they derived
the energy estimates, both Alinhac and Lindblad considered a weight w(q) where q is an
approximate solution to the eikonal equation. Their works suggest that the eikonal equation
plays an important role when we study the long time behavior of solutions to (1.1). We
remark that the eikonal equations have also been used in the study of the asymptotic behavior
of solutions to the Einstein vacuum equations, an analogue of (1.1); we refer our readers to
[4, 22].

Since u is unknown, it is difficult to solve (1.10) directly. Instead, we introduce a new
auxiliary function µ = µ(s, q, ω) such that qt − qr = µ. From (1.10), we can express qt + qr
in terms of µ and U , and then solve for all partial derivatives of q, assuming that all the
angular derivatives are negligible. Then from (1.1), we can derive the following asymptotic
equations for µ(s, q, ω) and U(s, q, ω):

∂sµ =
1

4
G(ω)µ2Uq,

∂sUq = −1

4
G(ω)µU2

q .
(1.11)

We call this new system of asymptotic equations the geometric reduced system. The deriva-
tion of (1.11) is given in Chapter 2 of this dissertation; we also refer our readers to Section
3 in [34]. In Chapter 2, we also obtain the geometric reduced system for a system of gen-
eral quasilinear wave equations, which generalizes the reduced system derived in Section 3,
[34]. Heuristically, one expects the solution to a system of quasilinear wave equations to
correspond to an approximate solution to this geometric reduced system, and to be well
approximated by an exact solution to the geometric reduced system. We then introduce the
geometric weak null condition: for any initial data decaying sufficiently fast, the geometric
reduced system has a global solution which grows at most exponentially in s. The author
believes that the geometric reduced system and the geometric weak null condition might
help us get a better understanding of the long time dynamics of general quasilinear wave
equations.
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Note that (1.11) is a system of two ODE’s for (µ, Uq). Besides, we have ∂s(µUq) = 0 for
each (s, q, ω). That is, if the initial data are given by

(µ, Uq)|s=0(q, ω) = (A1, A2)(q, ω),

then we have µUq = A1 · A2 at each (s, q, ω). In this dissertation, we define a function
A = A(q, ω) for (q, ω) ∈ R× S2 by

A(q, ω) := −1

2
A1(q, ω) · A2(q, ω),

and we call the function A a scattering data associated to a solution u to the quasilinear
wave equation (1.1). Now (1.11) reduces to a linear system of ODE’s

∂sµ = −1

2
G(ω)A(q, ω)µ,

∂sUq =
1

2
G(ω)A(q, ω)Uq,

whose solutions are given by
µ(s, q, ω) = A1(q, ω) exp(−

1

2
G(ω)A(q, ω)s),

Uq(s, q, ω) = A2(q, ω) exp(
1

2
G(ω)A(q, ω)s),

To solve for U(s, q, ω) uniquely, we assume that

lim
q→−∞

U(s, q, ω) = 0 or lim
q→∞

U(s, q, ω) = 0,

depending on which problem we are studying.

1.3 Modified scattering theory: an overview
The objective of this dissertation and [34, 33] is to study the long time dynamics, and more
specifically, scattering theory for highly nonlinear dispersive equations. In other words, we
would like to provide an accurate description of asymptotic behavior of the global solutions.
For many nonlinear dispersive PDE’s, one can establish a linear scattering theory. That
is, a global solution to a nonlinear PDE scatters to a solution to the corresponding linear
equation as time goes to infinity. Take the cubic defocusing NLS

iut +∆u = u|u|2 in R1+3
t,x

as an example. Its corresponding linear equation is the linear Schrödinger equation (LS)

iwt +∆w = 0 in R1+3
t,x .
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One can prove that for each u0 ∈ H1, there exists a unique u+ ∈ H1 such that

‖u(t)− w(t)‖H1 → 0 as t→ ∞

where u (or w) is the global solution to NLS (or LS) with data u0 (or u+). This result is
called the asymptotic completeness. One can also prove that for each u+ ∈ H1, there exists
a unique u0 ∈ H1 such that the same conclusion holds. This result is called the existence
of wave operators, where the wave operator is defined by Ω+u+ = u0. We refer to Section
3.6 of [31] for this result. Some other nonlinear PDE’s have modified scattering instead of
linear scattering. That is, each of their global solutions scatters to a suitable modification
of a linear solution. Here the modification can be made in more than one way: we can add
a phase correction term, an amplitude correction term, or a velocity correction term to the
linear solution. For example, in [10], when the authors study modified scattering for the
cubic 1D NLS, they make use of the following asymptotic approximation:

û(t, ξ) ≈ e−itξ2W (ξ)ei|W (ξ)|2 ln t.

That is, a phase shift term is introduced. For nonlinear wave equations, the modification
often corresponds to a change of the geometry of the light cone foliation of the space-time.
This point is reflected in the ansatz used in Section 1.2.

In general, the following steps are taken in order to study modified scattering. Given
a nonlinear dispersive PDE, we hope to identify a good notion of asymptotic profile and
an associated notion of scattering data for the model equation. This can be achieved by
introducing some type of asymptotic equations. Like linear scattering, the two main problems
in modified scattering theory are as follows:

1. Asymptotic completeness. Given an exact global solution to the model equation, can we
find the corresponding asymptotic profile and scattering data?

2. Existence of (modified) wave operators. Given an asymptotic profile constructed for a
scattering data, can we construct a unique exact global solution to the model equation
which matches the asymptotic profile at infinite time?

There have been only a few previous results on the (modified) scattering for general
quasilinear wave equations and the Einstein’s equations. In [5], Dafermos, Holzegel and
Rodnianski gave a scattering theory construction of nontrivial black hole solutions to the
vacuum Einstein equations. That is a backward scattering problem in General Relativity.
In [26], Lindblad and Schlue proved the existence of the wave operators for the semilinear
models of Einstein’s equations. In [6], Deng and Pusateri used the original Hörmander’s
asymptotic system (1.9) to prove a partial scattering result for (1.1). In their proof, they
applied the spacetime resonance method; we refer to [28, 27] for some earlier applications of
this method to the first order systems of wave equation.
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1.4 Modified wave operators
Making use of the reduced system (1.11), we are able to prove the existence of the modified
wave operators for (1.1). This result has been proved in the author’s paper [34], though the
assumptions made in this dissertation are weaker than those in [34]. In this dissertation, we
assume that the scattering data A = A(q, ω), i.e. the initial data for Uq at s = 0, satisfies
the following assumption:

A ∈ C∞(R× S2), A ≡ 0 whenever q ≤ −R, (∂mq ∂
n
ωA)(q, ω) = Om,n(〈q〉−1−γ−m), ∀m,n.

(1.12)
Here R ≥ 1 and γ > 0 are two fixed constants, and ∂nω denotes any angular derivatives of
order n. In contrast, recall that we assume A ∈ C∞

c (R×S2) in [34]. As a result, the proof in
this dissertation requires a more delicate analysis and substantial changes of the arguments
in [34].

The first step in the proof is to construct an approximate solution to (1.1). We start by
solving (1.11) explicitly with the initial data (µ, Uq)|s=0 = (−2, A). To get a unique solution
(µ, U)(s, q, ω), we assume that limq→−∞ U(s, q, ω) = 0. Then, we construct an approximate
solution q(t, r, ω) to the eikonal equation (1.10) by solving qt − qr = µ and q(t, 0, ω) = −t;
we can apply the method of characteristics. Both s and q are now functions of (t, r, ω), so
we also obtain a function U(t, r, ω) from U(s, q, ω). Here U(t, r, ω) is our asymptotic profile.
Next, we define uapp by multiplying εr−1U by some cutoff functions. We expect that uapp is
an approximate solution to (1.1), that uapp = εr−1U(t, r, ω) in a conic neighborhood of the
light cone {t = r} and that uapp is supported in a slightly larger conic neighborhood of the
light cone.

The second step is to show that there exists an exact solution to (1.1) which matches
uapp at infinite time. Fixing a large time T > 0, we solve a backward Cauchy problem for
v = u−uapp with zero data for t ≥ 2T , such that v+uapp solves (1.1) for t ≤ T . We then prove
that v = vT converges to some function v∞ as T → ∞. It turns out that u∞ = v∞ + uapp
is a solution to (1.1) which matches the asymptotic profile at infinite time. This shows the
existence of the modified wave operators.

We end this subsection with the main theorem on modified wave operators, which is
Theorem 3.1. We denote by Z any of the commuting vector fields: translations ∂α, scaling
t∂t + r∂r, rotations xi∂j − xj∂i and Lorentz boosts xi∂t + t∂i.

Theorem 1.1. Consider a scattering data A = A(q, ω) be a function satisfying (1.12) for
some R ≥ 1 and γ > 0. Fix an integer N ≥ 2 and any sufficiently small ε > 0 depending
on A and N . Let q(t, r, ω) and U(t, r, ω) be the associated approximate optical function and
asymptotic profile. Then, there is a CN solution u to (1.1) for t ≥ 0 with the following
properties:

(i) The solution vanishes for |x| = r ≤ t−R.
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(ii) The solution satisfies the energy bounds: for all |I| ≤ N − 1 and all t�A 1, we have∥∥∂ZI(u− εr−1U)(t)
∥∥
L2({x∈R3: |x|≤5t/4}) +

∥∥∂ZIu(t)
∥∥
L2({x∈R3: |x|≥5t/4}) ≲I εt

−1/2+CIε.

(iii) The solution satisfies the pointwise bounds: for all (t, r, ω) with t�A 1, we have

|(∂t − ∂r)u+ 2εr−1A(q(t, r, ω), ω)| ≲ εt−3/2+Cε.

Moreover, for all |I| ≤ N − 1 and all (t, x) with t�A 1,

|∂ZI(u− εr−1U)(t, x)|χ|x|≤5t/4 + |∂ZIu(t, x)|χ|x|≥5t/4 ≲I εt
−1/2+CIε〈t+ r〉−1〈t− r〉−1/2,

|ZI(u− εr−1U)(t, x)|χ|x|≤5t/4 + |ZIu(t, x)|χ|x|≥5t/4 ≲I min{εt−1+CIε, εt−3/2+CIε〈r − t〉}.

For several remarks and a detailed proof, we refer our readers to Chapter 3 or [34].

1.5 Asymptotic completeness
Next we consider the asymptotic completeness question for our quasilinear wave equation
(1.1). For a fixed global solution u constructed in Lindblad [21], we seek to find the corre-
sponding asymptotic profile and scattering data.

We start the proof with the construction of a global optical function q = q(t, x). In other
words, we solve the eikonal equation gαβ(u)qαqβ = 0 in a spacetime region Ω contained in
{2r ≥ t ≥ exp(δ/ε)}. Here δ > 0 is a fixed parameter. We apply the method of characteris-
tics and then follow the idea in Christodoulou-Klainerman [4]. By viewing (gαβ), the inverse
of the coefficient matrix (gαβ(u)), as a Lorentzian metric in [0,∞)×R3, we construct a null
frame {ek}4k=1 in Ω. Then, most importantly, we define the second fundamental forms χab

for a, b = 1, 2 which are related to the Levi-Civita connection and the null frame under the
metric (gαβ). By studying the Raychaudhuri equation and using a continuity argument, we
can show that trχ > 0 everywhere. This is the key step. In addition, we can prove that
q = q(t, x) is smooth in some weak sense (see Section 4.2.1).

Next, we define (µ, U)(t, x) := (qt − qr, ε
−1ru)(t, x). The map

Ω → [0,∞)× R× S2 : (t, x) 7→ (ε ln t− δ, q(t, x), x/|x|) := (s, q, ω)

is an invertible smooth function with a smooth inverse, so a function (µ, U)(s, q, ω) is ob-
tained. It can be proved that (µ, U)(s, q, ω) is an approximate solution to the reduced system
(1.11), and that there is an exact solution (µ̃, Ũ)(s, q, ω) to the geometric reduced system
(1.11) which matches (µ, U)(s, q, ω) as s → ∞. A key step is to prove that A(q, ω) :=
−1

2
lims→∞(µUq)(s, q, ω) is well-defined for each (q, ω). The function A is called the scatter-

ing data in this problem. We also show a gauge independence result, which states that the
scattering data is independent of the choice of q in some specific way.
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Finally, we construct an approximate solution ũ to (1.1) in Ω. The construction here is
similar to that in Section 4 of [34]. That is, we construct a function q̃ by solving

q̃t − q̃r = µ(ε ln t− δ, q̃(t, x), ω)

by the method of characteristics, and then define

ũ(t, x) := εr−1Ũ(ε ln t− δ, q̃(t, x), ω).

Then, in Ω, q̃ is an approximate optical function, and ũ is an approximate solution to (1.1).
In addition, near the light cone t = r, the difference u− ũ, along with its derivatives, decays
much faster than εt−1+Cε. Since u and its derivatives is of size O(εt−1+Cε), we conclude that
ũ offers a good approximation of u.

We end this subsection with a rough version of the main theorem. For a precise statement,
we refer to Theorem 4.1.

Theorem 1.2 (Rough version). Let u be a global solution to the Cauchy problem (1.1)
and (1.2). Fix a parameter δ > 0 and a sufficiently small ε > 0. We define a region
Ω ⊂ {2r > t > exp(δ/ε)} ⊂ R1+3

t,x . Then we have

(i) There exists a solution to the eikonal equation

gαβ(u)∂αq∂βq = 0 in Ω; q = |x| − t on ∂Ω.

Moreover, the map

Ω → [0,∞)× R× S2 : (t, x) 7→ (ε ln t− δ, q(t, x), x/|x|)

is a diffeomorphism. Thus, a smooth function F = F (t, x) induces a smooth function
F = F (s, q, ω) and vice versa.

(ii) In Ω, we set (µ, U)(t, x) := (qt − qr, ε
−1ru)(t, x) which induces a smooth function

(µ, U)(s, q, ω). Then, (µ, U)(s, q, ω) is an approximate solution to the geometric reduced
system (2.4). In addition, the following three limits exist for all (q, ω) ∈ R× S2:

A(q, ω) := −1

2
lim
s→∞

(µUq)(s, q, ω),

A1(q, ω) := lim
s→∞

exp(
1

2
G(ω)A(q, ω)s)µ(s, q, ω),

A2(q, ω) := lim
s→∞

exp(−1

2
G(ω)A(q, ω)s)Uq(s, q, ω).

All of them are smooth functions of (q, ω) for ε � 1, and we have A1A2 ≡ −2A.
Making use of these functions, we are able to obtain an exact solution to our reduced
system (2.4).
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(iii) The above results are gauge independent. That is, the scattering data A = A(q, ω) is
independent of the choice of the optical function q = q(t, x) in some suitable sense.

(iv) We define ũ = ũ(t, x) as in Section 4.1.3. Then ũ = ũ(t, x) is an approximate solution
to (1.1). Moreover, the difference u − ũ decays much faster than the solution u itself
as t→ ∞.

For several remarks and a detailed proof, we refer our readers to Chapter 4 of this disser-
tation. We also remark that a paper [33] including the results listed above is in preparation
by the author.

1.6 Preliminaries
1.6.1 Notations
We use C to denote universal positive constants. We write A ≲ B or A = O(B) if |A| ≤ CB
for some C > 0. We write A ∼ B if A ≲ B and B ≲ A. We use Cv or ≲v if we want to
emphasize that the constant depends on a parameter v. We make an additional convention
that the constants C are always independent of ε; that is, we would never write Cε or ≲ε in
this dissertation. The values of all constants in this dissertation may vary from line to line.

In this dissertation, we always assume that ε � 1 which means 0 < ε < ε0 for some
sufficiently small constant ε0 < 1. Again, we write ε �v 1 if we want to emphasize that ε0
depends on a parameter v.

Unless specified otherwise, we always assume that the Latin indices i, j, l take values in
{1, 2, 3} and the Greek indices α, β take values in {0, 1, 2, 3}. In Chapter 4 we also assume
a, b ∈ {1, 2}. We use subscript to denote partial derivatives, unless specified otherwise. For
example, uαβ = ∂α∂βu, qr = ∂rq =

∑
i ωi∂iq, Aq = ∂qA and etc. For a fixed integer k ≥ 0,

we use ∂k to denote either a specific partial derivative of order k, or the collection of partial
derivatives of order k.

To prevent confusion, we will only use ∂ω to denote the angular derivatives under the
coordinate (s, q, ω), and will never use it under the coordinate (t, r, ω). For a fixed integer
k ≥ 0, we will use ∂kω to denote either a specific angular derivative of order k, or the collection
of all angular derivatives of order k.

1.6.2 Commuting vector fields
Let Z be any of the following vector fields:

∂α, α = 0, 1, 2, 3; S = t∂t+r∂r; Ωij = xi∂j−xj∂i, 1 ≤ i < j ≤ 3; Ω0i = xi∂t+t∂i, i = 1, 2, 3.
(1.13)
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We write these vector fields as Z1, Z2, . . . , Z11, respectively. For any multiindex I = (i1, . . . , im)
with length m = |I| such that 1 ≤ i∗ ≤ 11, we set ZI = Zi1Zi2 · · ·Zim . Then we have the
Leibniz’s rule

ZI(fg) =
∑

|J |+|K|=|I|

CI
JKZ

JfZKg, where CI
JK are constants. (1.14)

We have the following commutation properties.

[S,□] = −2□, [Z,□] = 0 for other Z; (1.15)

[Z1, Z2] =
∑
|I|=1

CZ1,Z2,IZ
I , where CZ1,Z2,I are constants; (1.16)

[Z, ∂α] =
∑
β

CZ,αβ∂β, where CZ,αβ are constants. (1.17)

In this dissertation, we need the following lemma related to the commuting vector fields.
Here we use f0 to denote an arbitrary polynomial of {ZIω}. It is then clear that ZIf0 = f0
for each I. We also remark that while the definition of f0 will be modified in the rest of this
dissertation, an arbitrary polynomial of {ZIω} could always be denoted as f0.

Lemma 1.3. For each multiindex I and each function F , we have

(∂t − ∂r)Z
IF = ZI(Ft − Fr) +

∑
|J |<|I|

[f0Z
J(Ft − Fr) +

∑
i

f0(∂i + ωi∂t)Z
JF ]. (1.18)

Besides, for each 1 ≤ k < k′ ≤ 3, we have

(∂t − ∂r)Z
IΩkk′F = ZIΩkk′(Ft − Fr) +

∑
|J |<|I|

[f0Z
JΩkk′(Ft − Fr) +

∑
i

f0(∂i + ωi∂t)Z
JΩkk′F ].

(1.19)
Note that in

∑
i(. . . ), the sum is taken over all i = 1, 2, 3.

Proof. First, note that [∂t − ∂r, Z] = f0 · ∂ and ∂ = f0(∂t − ∂r) +
∑

i f0(∂i + ωi∂t). We now
prove (1.18) by induction on |I|. If |I| = 0, there is nothing to prove. Now suppose we have
proved (1.18) for each |I| < n. Now we fix a multiindex I with |I| = n > 0. Then, by writing
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ZI = ZZI′ , we have

(∂t − ∂r)Z
IF = [∂t − ∂r, Z]Z

I′F + Z((∂t − ∂r)Z
I′F )

= f0 · ∂ZI′F + Z(ZI′(Ft − Fr) +
∑

|J |<n−1

[f0Z
J(Ft − Fr) +

∑
i

f0(∂i + ωi∂t)Z
JF ]

= f0(f0(∂t − ∂r) +
∑
j

f0(∂j + ωj∂t))Z
I′F + ZI(Ft − Fr)

+
∑

|J |<n−1

Z[f0Z
J(Ft − Fr) +

∑
i

f0(∂i + ωi∂t)Z
JF ]

= f0(∂t − ∂r)Z
I′F +

∑
j

f0(∂j + ωj∂t)Z
I′F + ZI(Ft − Fr)

+
∑

|J |<n−1

[(Zf0)Z
J(Ft − Fr) +

∑
i

(Zf0)(∂i + ωi∂t)Z
JF ]

+
∑

|J |<n−1

[f0ZZ
J(Ft − Fr) +

∑
i

f0Z(∂i + ωi∂t)Z
JF ].

In the second equality, we can apply (1.18) by the induction hypotheses. Moreover, we note
that [∂i + ωi∂t, Z] = f0 · ∂, so

Z(∂i + ωi∂t)Z
JF = (∂i + ωi∂t)ZZ

JF + f0 · ∂ZJF

= (∂i + ωi∂t)ZZ
JF + f0(∂t − ∂r)Z

JF +
∑
j

f0(∂j + ωj∂t)Z
JF.

Now (1.18) follows from the induction hypotheses and the computations above.
To prove (1.19), we replace F with Ωkk′F in (1.18) and note that

[∂t − ∂r,Ωkk′ ] = −∂r(xk)∂k′ + ∂r(xk′)∂k +
∑
i

Ωkk′(ωi)∂i

= −ωk∂k′ + ωk′∂k +
∑
i

ωk(δik′ − ωiωk′)∂i −
∑
i

ωk′(δik − ωiωk)∂i = 0.

Now, (1.19) is obvious.

1.6.3 Several pointwise bounds
We have the pointwise estimates for partial derivatives.

Lemma 1.4. For any function ϕ, we have

|∂kϕ| ≤ C〈t− r〉−k
∑
|I|≤k

|ZIϕ|, ∀k ≥ 1, (1.20)
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and
|(∂t + ∂r)ϕ|+ |(∂i − ωi∂r)ϕ| ≤ C〈t+ r〉−1|Zϕ|. (1.21)

Here, for each x ∈ R, we define the Japanese bracket 〈x〉 :=
√

1 + |x|2. We also define
|Zϕ| :=

∑
|I|=1 |ZIϕ|.

In addition, we have the Klainerman-Sobolev inequality.

Proposition 1.5. For ϕ ∈ C∞(R1+3) which vanishes for large |x|, we have

(1 + t+ |x|)(1 + |t− |x||)1/2|ϕ(t, x)| ≤ C
∑
|I|≤2

∥∥ZIϕ(t, ·)
∥∥
L2(R3)

. (1.22)

We also state the Gronwall’s inequality.

Proposition 1.6. Suppose A,E, r are bounded functions from [a, b] to [0,∞). Suppose that
E is increasing. If

A(t) ≤ E(t) +

∫ b

a

r(s)A(s) ds, ∀t ∈ [a, b],

then
A(t) ≤ E(t) exp(

∫ t

a

r(s) ds), ∀t ∈ [a, b].

The proofs of these results are standard. See, for example, [21, 30, 7] for the proofs.
We also need the following lemma, which can be viewed as the estimates for Taylor’s

series adapted to Z vector fields.

Lemma 1.7. Fix ε > 0, an integer k ≥ 0 and a multiindex I. Suppose there are two
functions u, v on (t, x) such that |u| + |v| ≤ 1 for all (t, x). Suppose f ∈ C∞(R) with
f(0) = f ′(0) = 0. Then, for all (t, x), we have

|∂kZI(f(u+ v)− f(u))|

≲k,I

∑
k1+k2≤k, |I1|+|I2|≤|I|

pk,I |∂k1ZI1v(t, x)|(|∂k2ZI2v(t, x)|+ |∂k2ZI2u(t, x)|). (1.23)

where
pk,I(t, x) = 1 + max

k1+|J |≤(k+|I|)/2
(|∂k1ZJu(t, x)|+ |∂k1ZJv(t, x)|)k+|I|.

Proof. By the chain rule and Leibniz’s rule, ∂kZI(f(u)) can be written as a sum of terms of
the form

f (l)(u)∂k1ZI1u∂k2ZI2u · · · ∂klZIlu
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where l ≤ k+|I|, ki+|Ii| > 0 for each i and
∑

i ki = k,
∑

i Ii = I. Thus, ∂kZI(f(u+v)−f(u))
can be written as a sum of terms of the form
f (l)(u+ v)∂k1ZI1(u+ v)∂k2ZI2(u+ v) · · · ∂klZIl(u+ v)− f (l)(u)∂k1ZI1u∂k2ZI2u · · · ∂klZIlu

= (f (l)(u+ v)− f (l)(u))∂k1ZI1(u+ v) · · · ∂klZIl(u+ v)

+
l∑

j=1

f (l)(u)∂k1ZI1u · · · ∂kj−1ZIj−1u · ∂kjZIjv · ∂kj+1ZIj+1(u+ v) · · · ∂klZIl(u+ v)

where ki + |Ii| > 0 for each i and
∑

i ki = k,
∑

i Ii = I. When l = 0, we must have
k = |I| = 0, so (1.23) follows from

|f(u+ v)− f(u)| ≤ sup
β∈[0,1]

|f ′(u+ βv)||v| ≤ sup
|z|≤1

|f ′′(z)| · sup
β∈[0,1]

|u+ βv| · |v| ≤ C(|u|+ |v|)|v|.

Note that now p0,0 = 2. When l ≥ 1, since ki + |Ii| > (k + |I|)/2 > 0 for at most one i and
since the product of all other terms of the form ∂kiZIi(u + v) can be controlled by pk,I , we
have

|(f (l)(u+ v)− f (l)(u))∂k1ZI1(u+ v) · · · ∂klZIl(u+ v)|
≤ sup

β∈[0,1]
|f (l+1)(u+ βv)||v · ∂k1ZI1(u+ v) · · · ∂klZIl(u+ v)|

≤ Ck,Ipk,I |v|
∑

k1≤k,|J |≤|I|

(|∂k1ZJu|+ |∂k1ZJv|).

When l = 1, we have
|f ′(u)∂kZIv| ≤ C|u||∂kZIv|.

When l ≥ 2, since ki + |Ii| > (k + |I|)/2 for at most one i and since the product of all other
terms of the form ∂kiZIi(u+ v) or ∂kiZIiu can be controlled by pk,I , we have

|f (l)(u)∂k1ZI1u · · · ∂kj−1ZIj−1u · ∂kjZIjv · ∂kj+1ZIj+1(u+ v) · · · ∂klZIl(u+ v)|

≤ Ck,Ipk,I
∑

k1+k2≤k, |I1|+|I2|≤|I|

|∂k1ZI1v|(|∂k2ZI2u|+ |∂k2ZI2v|).

1.6.4 A function space
Fix a domain D ⊂ R1+3

t,x which may depend on the parameter ε. Suppose that in D we have
t ≥ 2C and r/t ∈ [1/C,C] for some constant C > 1 which is independent of ε. We make the
following definition.

Definition 1.8. Fix n, s, p ∈ R. We say that a function F = Fε(t, x) is in εnSs,p = εnSs,p
D ,

if for each fixed integer N ≥ 1, for all ε�n,s,p,N 1, we have F ∈ CN(D) and∑
|I|≤N

|ZIF (t, x)| ≲ εnts+Cε〈r − t〉p, ∀(t, x) ∈ D. (1.24)
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Here F is allowed to depend on ε, but all the constants in (1.24) must be independent of ε.
If n = 0, we write ε0Ss,p as Ss,p for simplicity.

We have the following key lemma.

Lemma 1.9. We have the following two properties.
(a) For any F1 ∈ εn1Ss1,p1 and F2 ∈ εn2Ss2,p2, we have

F1 + F2 ∈ εmin{n1,n2}Smax{s1,s2},max{p1,p2}, F1F2 ∈ εn1+n2Ss1+s2,p1+p2 .

(b) For any F ∈ εnSs,p, we have ZF ∈ εnSs,p, ∂F ∈ εnSs,p−1 and (∂i+ωi∂t)F ∈ εnSs−1,p.

Proof. Note that (a) follows directly from the definition and the Leibniz’s rule. In (b), if
F ∈ εnSs,p, then ZF ∈ εnSs,p follows directly from the definition. Next, we fix an arbitrary
integer N ≥ 1. Since F ∈ εnSs,p, for all ε�n,s,p,N+1 1 we have F ∈ CN+1(D) and∑

|I|≤N+1

|ZIF (t, x)| ≲ εnts+Cε〈r − t〉p, ∀(t, x) ∈ D.

Thus, ∂F ∈ CN(D). Moreover, by (1.17) and Lemma 1.4, in D we have∑
|I|≤N

|ZI∂F | ≲
∑
|I|≤N

|∂ZIF | ≲
∑

|J |≤N+1

〈r − t〉−1|ZJF | ≲ εnts+Cε〈r − t〉p−1.

In conclusion, ∂F ∈ εnSs,p−1.
Next, we note that

(∂i + ωi∂t)F = r−1Ω0iF + (r + t)−1r−1ωi(rSF −
∑
j

tωjΩ0jF ) + (r − t)r−2
∑
j

ωjΩjiF.

By the definition, we can easily show tm, rm, (r+ t)m ∈ Sm,0 for each m ∈ R, r− t ∈ S0,1 and
∂mωi ∈ S−m,0 for each integer m ≥ 0. And since ZF ∈ Ss,p, by part (a) we conclude that

(∂i + ωi∂t)F ∈ εnSs−1,p + εnSs−2,p−1 = εnSs−1,p.

Here we have εnSs−2,p−1 ⊂ εnSs−1,p. In fact, recall that t ≥ 2C and C−1 ≤ r/t ≤ C for some
constant C independent of ε. Thus, in D we have

〈r − t〉/t =
√
t−2 + (r/t− 1)2 ≤

√
1/(4C2) + C2 ≲ 1.

In summary, in D we have

εnts−2+Cε〈r − t〉p−1 ≲ εnts−1+Cε〈r − t〉p,

so Ss−2,p−1 ⊂ Ss−1,p. This finishes the proof.
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Example 1.10. We have

tm, rm, (r + t)m ∈ Sm,0, ∀m ∈ R; r − t ∈ S0,1; ∂mωi ∈ S−m,0 ∀m ≥ 0, m ∈ Z.

It also follows from d
ds
〈s〉 = s/〈s〉, the chain rule and Lemma 1.9 that

(r − t)m, 〈r − t〉m ∈ S0,m, ∀m ∈ R.

These estimates would be very useful in the rest of this dissertation.

In addition, we have the following lemma which is relevant to the Taylor’s expansion of
a function.

Lemma 1.11. Suppose f ∈ C∞(R) and let u ∈ εnSs,p for some n > 0, s < 0 and p ≤ 0.
Then, we have f(u)− f(0)− f ′(0)u ∈ ε2nS2s,2p.

Proof. Since u ∈ εnSs,p, t ≳ 1, s < 0 and p ≤ 0, by choosing ε�n,s 1, we have

|u| ≤ Cεnts+Cε〈r − t〉p ≤ Cεn ≤ 1.

In this estimate, we can choose ε�n,m,s,p 1 so that s+ Cε < 0. Then,

|f(u)− f(0)− f ′(0)u| = |
∫ u

0

f ′(v)− f ′(u) dv| ≤
∫
|v|≤|u|

|
∫ v

u

f ′′(w) dw| dv

≤
∫
|v|≤|u|

∫
|w|≤|u|

|f ′′(w)| dwdv ≤ ‖f‖C2([−1,1]) |u|
2 ≲f ε

2nt2s+Cε〈r − t〉2p.

In general, we fix a multiindex I with |I| =: m > 0. Suppose we have proved that for
ε �n,s,p,m 1, the function f(u) − f(0) − f ′(0)u is in Cm−1(D), such that (1.24) holds with
N = m− 1 and F = f(u)− f(0)− f ′(0)u. By the Leibinz’s rule and the chain rule, we can
write ZI(f(u) − f(0) − f ′(0)u) as a sum of (f ′(u) − f ′(0))ZIu and a linear combination of
terms of the form

f (l)(u) ·
l∏

j=1

ZIju, where 2 ≤ l ≤ m,
∑

|Ij| = m, |Ij| > 0 for each j.

Since u ∈ εnSs,p, we can choose ε�m,n,s,p 1 such that u ∈ Cm(D) such that in D∑
|J |≤m

|ZJu| ≲ εnts+Cε〈r − t〉p.

Since
∑

l≤m |f (l)(u)| ≤ ‖f‖Cm([−1,1]) and |f ′(u)− f ′(0)| ≤ ‖f‖C2([−1,1]) · |u|, we have

|(f ′(u)− f ′(0))ZIu| ≲f |u||Zu| ≲ ε2nt2s+Cε〈r − t〉2p,

|f (l)(u) ·
l∏

j=1

ZIju| ≲f (εnts+Cε〈r − t〉p)m ≲ ε2nt2s+Cε〈r − t〉2p.
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In conclusion, as long as ε�m,s,p,n 1, in D we have

|ZI(f(u)− f(0)− f ′(0)u)| ≲ ε2nt2s+Cε〈r − t〉2p.

We thus conclude that f(u)− f(0)− f ′(0)u ∈ ε2nS2s,2p.
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Chapter 2

A New Reduced System

2.1 The asymptotic equations for the quasilinear wave
equation (1.1)

Let u = u(t, x) be a global solution to (1.1). Let q = q(t, x) be a solution of the eikonal
equation (1.10) related to (1.1), and let µ = qt − qr. Suppose u has the form

u(t, x) ≈ εr−1U(s, q, ω) (2.1)

where ωi = xi/r, s = ε ln(t) and q = q(t, x). Our goal in this section is to derive the
asymptotic equations for (µ, U).

We make the following assumptions:

1. Every function is smooth.

2. There is a diffeomorphism between two coordinates (t, r, ω) and (s, q, ω), so any func-
tion F can be written as F (t, r, ω) and F (s, q, ω) at the same time.

3. ε > 0 is sufficiently small, t, r > 0 are both sufficiently large with t ≈ r.

4. All the angular derivatives are negligible. In particular, ∂i ≈ ωi∂r.

5. µ, U ∼ 1 and ν ≲ εt−1, where ν := qt + qr. The same estimates hold if we apply ZI or
∂as∂

b
q∂

c
ω to the left hand sides.

Here are two useful remarks. First, the solutions (µ, U) to the reduced system may
not exactly satisfy the assumptions listed above. They only satisfy some weaker versions
of those assumptions. For example, instead of µ ∼ 1, we may only get t−Cε ≲ |µ| ≲ tCε;
by solving qt − qr = µ, instead of an exact optical function, i.e. a solution to (1.10), we
may only get an approximate optical function q in the sense that gαβ(u)qαqβ = O(t−2+Cε).
However, such differences are usually negligible in the derivation of a reduced system. Thus,
our assumptions above are very reasonable.
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Secondly, it may seem strange that we ignore the angular derivatives of q which is ≲ t−1

but keep ν ≲ εt−1. This, however, is reasonable according to the form of (1.1) and (1.10).
For example, if we expand the eikonal equation, we get (2.3) below. The angular derivatives
are either squared or multiplied by εr−1U , while the major terms in (2.3) are of the order
εt−1. On the other hand, ν is not negligible since there is a term µν in the expansion.

Recall that
□u = r−1((−∂t + ∂r)(∂t + ∂r) + r−2∆ω)ru

where ∆ω =
∑

i<j Ω
2
ij is the Laplacian on the sphere S2. By the chain rule we have

∂t = εt−1∂s + qt∂q, ∂r = qr∂q.

By the assumptions, we have

□u ≈ εr−1(−∂t + ∂r)(∂t + ∂r)U ≈ −εr−1µ∂q(εt
−1Us + νUq)

≈ −ε2(tr)−1µUsq − εr−1µνqUq − εr−1µνUqq.

Since

qt =
1

2
(µ+ ν) ≈ 1

2
µ, qi ≈ ωiqr ≈

ωi

2
(ν − µ) ≈ −1

2
ωiµ,

qtt ≈
1

2
µt ≈

1

2
µqqt ≈

1

4
µµq, qit ≈

1

2
µi ≈

1

2
µqqi ≈ −1

4
ωiµµq,

qij ≈ −1

2
ωiµj ≈ −1

2
ωiµqqj ≈

1

4
ωiωjµqµ,

we have
gαβ0 qαqβ ≈ 1

4
G(ω)µ2, gαβqαβ ≈ 1

4
G(ω)µµq,

where
G(ω) = gαβ0 ω̂αω̂β, gαβ0 =

d

du
gαβ(u)|u=0, ω̂ = (−1, ω) ∈ R× S2.

And since

Utt ≈ Uqqqtt + Uqq
2
t , Uit ≈ Uqqqiqt + Uqqit, Uij ≈ Uqqqiqj + Uqqij,

we have from (1.1)

0 = g̃αβ(u)∂α∂βu ≈ □u+ gαβ0 u∂α∂βu

≈ −ε2(tr)−1µUsq − εr−1µνqUq − εr−1µνUqq + ε2r−2gαβ0 U(Uqqαβ + Uqqqαqβ)

≈ −ε2(tr)−1µUsq − εr−1µνqUq − εr−1µνUqq +
1

4
G(ω)ε2r−2(µµqUUq + µ2UUqq).

(2.2)

By the eikonal equation, we have

0 = gαβ(u)qαqβ ≈ −q2t +
∑
i

q2i + εr−1gαβ0 Uqαqβ ≈ −µν + 1

4
εr−1G(ω)µ2U, (2.3)
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so we conclude that

ν ≈ 1

4
εr−1G(ω)µU, νq ≈

1

4
εr−1G(ω)(µqU + µUq).

Plug everything back in (2.2). We thus have

0 ≈ −ε2(tr)−1µUsq −
1

4
ε2r−2G(ω)(µqU + µUq)µUq

− 1

4
ε2r−2G(ω)µ2UUqq +

1

4
G(ω)ε2r−2(µµqUUq + µ2UUqq)

= −ε2(tr)−1µUsq −
1

4
ε2r−2G(ω)µ2U2

q .

Assuming that t = r, we get the first asymptotic equation

Usq = −1

4
G(ω)µU2

q .

Meanwhile, note that from (∂t − ∂r)ν = (∂t + ∂r)µ, we have
νqµ ≈ νqµ+ εt−1νs = µqν + εt−1µs

and thus

µs ≈ tε−1(νqµ− µqν) ≈ tε−1(
1

4
εr−1G(ω)(µqU + µUq)µ− 1

4
εr−1G(ω)µUµq)

≈ t

4r
G(ω)µ2Uq.

Again, assuming that t = r, we get the second asymptotic equation

µs =
1

4
G(ω)µ2Uq.

In conclusion, our system of asymptotic equations is
∂sµ =

1

4
G(ω)µ2Uq,

∂sUq = −1

4
G(ω)µU2

q .
(2.4)

We call (2.4) a geometric reduced system for (1.1), since it is related to the geometry of the
null cone with respect to the metric gαβ = (gαβ(u))−1 instead of the Minkowski metric.

If the initial data is given by (µ, Uq)|s=0(q, ω) = (A1, A2)(q, ω), and if we set A :=
−(A1A2)/2, then (2.4) has an explicit solution

µ(s, q, ω) = A1(q, ω) exp(−
1

2
G(ω)A(q, ω)s),

Uq(s, q, ω) = A2(q, ω) exp(
1

2
G(ω)A(q, ω)s),

(2.5)

To solve for U(s, q, ω) uniquely, we assume limq→−∞ U(s, q, ω) = 0 in the modified wave
operator problem, or limq→∞ U(s, q, ω) = 0 in the asymptotic completeness problem.
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2.2 The asymptotic equations for the general case
Though the derivation of the asymptotic system (2.4) is already sufficient for this dissertation,
let us also do the corresponding computations in a more general case. In this section, we
study a system of general quasilinear wave equations

gαβ(u, ∂u)∂α∂βu
j = f j(u, ∂u), j = 1, . . . , N. (2.6)

Here our unknown function u is a vector-valued function. That is, we have u = (u1, . . . , uN) :
R1+3

t,x → RN for some positive integer N . In addition, we assume that (gαβ) are smooth,
symmetric and independent of j and that gαβ(0, 0) = mαβ. Moreover, we assume that f j are
all smooth functions such that f j(0, 0) = 0 and df j(0, 0) = 0.

Assume that we have Taylor expansions

gαβ(u, ∂u) = mαβ + gαβk uk + gαβλk ∂λu
k +O(|u|2 + |∂u|2),

f j(u, ∂u) = f j
kk′u

kuk
′
+ f j,α

kk′u
k∂αu

k′ + f j,αβ
kk′ ∂αu

k∂βu
k′ +O(|u|3 + |∂u|3).

Heremαβ, g∗∗, f
∗
∗ are all real constants. In addition, we use the Einstein summation convention

and we take sum over all 1 ≤ k, k′ ≤ N .
We make the ansatz

uj(t, x) ≈ εr−1U j(s, q, ω), j = 1, 2, . . . , N

with the same s, ω, r. We now assume that q is the solution to the eikonal equation

gαβ(u, ∂u)∂αq∂βq = 0. (2.7)

Set µ = qt − qr and ν = qt + qr. Again, we assume that all the assumptions made in Section
2.1 remain valid.

Following the computations in Section 2.1, we have

□uj ≈ −ε2(tr)−1µU j
sq − εr−1µνqU

j
q − εr−1µνU j

qq;

qα ≈ −1

2
µω̂α, qαβ =

1

4
µµqω̂αω̂β, where ω̂ := (−1, ω) ∈ R× S2;

∂αu
j ≈ εr−1U j

q qα ≈ − ε

2r
U j
qµω̂α, ∂α∂βu

j ≈ εr−1(U j
qqqαqβ + U j

q qαβ) ≈
ε

4r
(U j

qqµ+ U j
qµq)µω̂αω̂β.

It then follows that

gαβ(u, ∂u) ≈ mαβ + gαβk uk + gαβλk ∂λu
k ≈ mαβ +

ε

r
gαβk Uk − ε

2r
gαβλk ω̂λµU

k
q

gαβ(u, ∂u)qαqβ ≈ −µν + 1

4
µ2ω̂αω̂β(

ε

r
gαβk Uk − ε

2r
gαβλk ω̂λµU

k
q ),

gαβ(u, ∂u)∂α∂βu
j ≈ □uj + (

ε

r
gαβk Uk − ε

2r
gαβλk ω̂λµU

k
q ) ·

ε

4r
(U j

qqµ+ U j
qµq)µω̂αω̂β
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and that

f j(u, ∂u) ≈ f j
kk′u

kuk
′
+ f j,α

kk′u
k∂αu

k′ + f j,αβ
kk′ ∂αu

k∂βu
k′

≈ ε2

r2
f j
kk′U

kUk′ − ε2

2r2
f j,α
kk′ ω̂αU

kµUk′

q +
ε2

4r2
f j,αβ
kk′ ω̂αω̂βµ

2Uk
q U

k′

q .

For simplicity, we set

G2,k(ω) := gαβk ω̂αω̂β, G3,k(ω) := gαβλk ω̂αω̂βω̂λ;

F j
0,kk′(ω) := f j

kk′ , F j
1,kk′(ω) := f j,α

kk′ ω̂α, F j
2,kk′(ω) := f j,αβ

kk′ ω̂αω̂β.

Then, by the eikonal equation, we have

0 ≈ −µν + ε

4r
µ2G2,k(ω)U

k − ε

8r
G3,k(ω)µ

3Uk
q ,

and thus
ν ≈ ε

4r
G2,k(ω)µU

k − ε

8r
G3,k(ω)µ

2Uk
q ,

νq ≈
ε

4r
G2,k(ω)∂q(µU

k)− ε

8r
G3,k(ω)∂q(µ

2Uk
q ).

It follows that

□uj ≈ −ε
2

tr
µU j

sq −
ε2

8r2
µ(2G2,k(ω)∂q(µU

k)−G3,k(ω)∂q(µ
2Uk

q ))U
j
q

− ε2

8r2
µ(2G2,k(ω)µU

k −G3,k(ω)µ
2Uk

q )U
j
qq.

Besides, by (2.1), we have

0 ≈ □uj + ε2

8r2
(2G2,k(ω)U

k −G3,k(ω)µU
k
q )(U

j
qqµ+ U j

qµq)µ

− ε2

r2
F j
0,kk′(ω)U

kUk′ +
ε2

2r2
F j
1,kk′(ω)U

kµUk′

q − ε2

4r2
F j
2,kk′(ω)µ

2Uk
q U

k′

q

≈ −ε
2

tr
µU j

sq −
ε2

4r2
G2,k(ω)µ

2Uk
q U

j
q +

ε2

8r2
G3,k(ω)µ

2U j
q (µqU

k
q + µUk

qq)

− ε2

r2
F j
0,kk′(ω)U

kUk′ +
ε2

2r2
F j
1,kk′(ω)U

kµUk′

q − ε2

4r2
F j
2,kk′(ω)µ

2Uk
q U

k′

q .

By setting t = r, we obtain the first asymptotic equation

µU j
sq = −1

4
G2,k(ω)µ

2Uk
q U

j
q +

1

8
G3,k(ω)µ

2U j
q (µqU

k
q + µUk

qq)

− F j
0,kk′(ω)U

kUk′ +
1

2
F j
1,kk′(ω)U

kµUk′

q − 1

4
F j
2,kk′(ω)µ

2Uk
q U

k′

q .
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In addition, since (∂t + ∂r)µ = (∂t − ∂r)ν, we have εt−1µs + νµq ≈ µνq. This implies

εt−1µs ≈ µνq − µqν

≈ µ(
ε

4r
G2,k(ω)∂q(µU

k)− ε

8r
G3,k(ω)∂q(µ

2Uk
q ))− µq(

ε

4r
G2,k(ω)µU

k − ε

8r
G3,k(ω)µ

2Uk
q )

≈ ε

4r
G2,k(ω)µ

2Uk
q − ε

8r
G3,k(ω)(µ

3Uk
qq + µ2µqU

k
q ).

By setting t = r, we obtain the second asymptotic equation

µs =
1

4
G2,k(ω)µ

2Uk
q − 1

8
G3,k(ω)(µ

3Uk
qq + µ2µqU

k
q ).

Finally, we note that

∂s(µU
j
q ) = −F j

0,kk′(ω)U
kUk′ +

1

2
F j
1,kk′(ω)U

kµUk′

q − 1

4
F j
2,kk′(ω)µ

2Uk
q U

k′

q .

In summary, we make the following definition.

Definition 2.1. The system of differential equations
∂s(µU

j
q ) = −F j

0,kk′(ω)U
kUk′ +

1

2
F j
1,kk′(ω)U

kµUk′

q − 1

4
F j
2,kk′(ω)µ

2Uk
q U

k′

q , j = 1, . . . , N

∂sµ =
1

4
G2,k(ω)µ

2Uk
q − 1

8
G3,k(ω)(µ

3Uk
qq + µ2µqU

k
q )

(2.8)
is called a geometric reduced system for (2.1).

We can then define a variant of the weak null condition.

Definition 2.2. We say that a system (2.1) of quasilinear wave equations satisfies the
geometric weak null condition, if for any initial data at s = 0 decaying sufficiently fast in q,
we have a global solution to the corresponding new reduced system for all s ≥ 0, and if the
solution and all the derivatives grow at most exponentially in s.

Two questions arise naturally from these definitions.

1. To what extent is the geometric weak null condition equivalent to the weak null con-
dition?

2. Is the geometric weak null condition sufficient for the global existence of general quasi-
linear wave equations with small and localized initial data?

The answers to these two questions are still unclear, and the author believes that answering
them might give us a better understanding of the long time dynamics of general quasilinear
wave equations.

We end this section with two examples.
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Example 2.3. Suppose N = 1, f ≡ 0 and gαβ(u, ∂u) = gαβ(∂u). In this case, (2.8) becomes
∂s(µUq) = 0,

∂sµ = −1

8
G3(ω)(µ

3Uqq + µ2µqUq) = −1

8
G3(ω)µ

2∂q(µUq).

Here we are working in the scalar case N = 1, so we can write U = U1 and G3(ω) = G3,1(ω)
for simplicity.

We claim that here the geometric weak null condition is satisfied if and only if G3(ω) ≡ 0
on S2, i.e. the null condition is satisfied. In fact, by the first equation, for all s we have

µUq(s, q, ω) = µUq(0, q, ω).

We set B(q, ω) = µUq(0, q, ω). Then, then second equation now becomes

∂sµ = −1

8
G3(ω)µ

2Bq =⇒ ∂s(1/µ) =
1

8
G3(ω)Bq(q, ω).

This equation has a solution for all

0 ≤ s < inf
(q,ω)∈R×S2

8

max{0,−µ(0, q, ω)G3(ω)Bq(q, ω)}.

Here we use the convention that 8/0 = ∞. If G3(ω) ≡ 0, it is obvious that the geometric
weak null condition is satisfied. Otherwise, by choosing (µ|s=0, B)(q, ω) appropriately, we
can make µ(0, q, ω)G3(ω)Bq(q, ω) < 0 for some (q, ω) ∈ R× S2.

Meanwhile, the Hörmander asymptotc PDE now becomes

2Usq +G3(ω)UqUqq = 0.

We recall from Section 6.5 in [7] that this asymptotic PDE blows up in finite time unless
G3(ω) ≡ 0. We thus conclude that in this example, the geometric weak null condition is
equivalent to the weak null condition.

Example 2.4. In wave coordinates, the Einstein vacuum equations become a system of
quasilinear wave equations with unknown functions hαβ := gαβ −mαβ for α, β = 0, 1, 2, 3:

gαβ∂α∂βhµν = P (∂µh, ∂νh) +Qµν(∂h, ∂h) +Gµν(h)(∂h, ∂h). (2.9)

Here (gαβ) is the inverse of (gαβ) = (mαβ + hαβ), and the bilinear form P is given by

P (∂µh, ∂νh) =
1

4
mαα′

mββ′
∂µhαα′hββ′ − 1

2
mαα′

mββ′
∂µhαβhα′β′ ,

Qαβ(∂h, ∂h) is a null form and G(h)(∂h, ∂h) is a quadratic form in ∂h with coefficients
smoothly dependent on h and G(0)(∂h, ∂h) = 0. In addition, from the wave coordinate
condition, for γ = 0, 1, 2, 3, we have the constraint equation

mαβ∂αhβγ =
1

2
mαβ∂γhαβ +Gγ(h)(∂h). (2.10)
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Here G(h)(∂h) is a linear function of ∂h with coefficients smoothly dependent on h and
G(0)(∂h) = 0. We refer our readers to Lemma 3.1 in Lindblad-Rodnianski [25], or Lemma
3.2 in Lindblad-Rodnianski [24]. It is known that this system of quasilinear wave equations
satisfies the weak null condition. We claim that it also satisfies the geometric weak null
condition.

Using the ansatz hαβ ≈ εr−1U(αβ), we obtain a geometric reduced system
∂s(µ∂qU(γσ)) = −1

4
ω̂γω̂σ(

1

4
mαα′

mββ′ − 1

2
mαβmα′β′

)µ2∂qU(αα′) · ∂qU(ββ′),

γ, σ = 0, 1, 2, 3;

∂sµ = −1

4
mαβmα′β′

ω̂βω̂β′µ2∂qU(αα′).

(2.11)
We remark that in order to get the equation for ∂sµ, we use the following identity:

gαβ = mαβ −mαα′
mββ′

hα′β′ +O(|h|2).

Recall that (gαβ) is the inverse of (mαβ + hαβ). In addition, from the constraint equation
(2.10), we have an additional constraint equation

mαβµω̂α∂qU(βγ) =
1

2
mαβµω̂γ∂qU(αβ), γ = 0, 1, 2, 3. (2.12)

To solve (2.11) with a constraint (2.12), we set L = −∂t + ∂r, L = ∂t + ∂r and

Q(X,Y ) := XαY βµ∂qU(αβ), for any vector fields X = Xα∂α, Y = Y β∂β.

In this example, we always assume that Xα and Y α are functions of ω which are independent
of t and r, so we have

∂s(Q(X,Y )) = XαY β∂s(µ∂qU(αβ)).

As a result, if X(r − t) = 0 or Y (r − t) = 0 everywhere, we have

∂s(Q(X,Y )) = XαY βω̂αω̂β(. . . ) = 0

and thus
Q(X,Y ) = Q(X,Y )|s=0 = XαY β(µ∂qU(αβ))|s=0, ∀s ≥ 0.

Note that the map (X,Y ) 7→ Q(X,Y ) is a bilinear form. By setting Tα := ∂α − 1
2
ω̂αL,

we have

µ∂qU(αβ) = Q(∂α, ∂β) =
1

4
ω̂αω̂βQ(L,L) +

1

2
ω̂αQ(L, Tβ) +

1

2
ω̂βQ(Tα, L) +Q(Tα, Tβ)

=:
1

4
ω̂αω̂βQ(L,L) +Kα,β(q, ω).

(2.13)
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As explained above, Kα,β is independent of s since Tα(r− t) = 0 everywhere. It follows from
(2.12) that for each fixed γ = 0, 1, 2, 3,

mαβω̂α(
1

4
ω̂βω̂γQ(L,L) +Kβ,γ) =

1

2
mαβω̂γ(

1

4
ω̂αω̂βQ(L,L) +Kα,β)

and thus
mαβω̂αKβ,γ =

1

2
mαβω̂γKα,β. (2.14)

Next, we note that

∂s(Q(L,L)) = −(
1

4
mαα′

mββ′ − 1

2
mαβmα′β′

)µ2∂qU(αα′) · ∂qU(ββ′)

= −(
1

4
mαα′

mββ′ − 1

2
mαβmα′β′

)(
1

4
ω̂αω̂α′Q(L,L) +Kα,α′)(

1

4
ω̂βω̂β′Q(L,L) +Kβ,β′).

A key observation is that there is no term involving [Q(L,L)]2 on the right hand side.
Moreover, if we compute the coefficient of Q(L,L), we have

− (
1

4
mαα′

mββ′ − 1

2
mαβmα′β′

)(
1

4
ω̂αω̂α′Kβ,β′ +

1

4
ω̂βω̂β′Kα,α′)

=
1

8
mαβmα′β′

(ω̂αω̂α′Kβ,β′ + ω̂βω̂β′Kα,α′) =
1

16
mαβmα′β′

(ω̂β′ω̂α′Kα,β + ω̂α′ω̂β′Kβ,α) = 0.

Here in the second identity we make use of (2.14). We thus obtain

∂s(Q(L,L)) = −(
1

4
mαα′

mββ′ − 1

2
mαβmα′β′

)Kα,α′Kβ,β′ . (2.15)

Since K∗,∗’s are functions independent of s and determined by the initial data (µ, ∂qU(∗∗))|s=0,
the solution to the ODE (2.15) is of the form

Q(L,L) = −(
1

4
mαα′

mββ′ − 1

2
mαβmα′β′

)Kα,α′Kβ,β′s+Q(L,L)|s=0

=: K1(q, ω)s+K2(q, ω),
(2.16)

whereK1, K2 are functions independent of s and determined by the initial data (µ, ∂qU(∗∗))|s=0.
Making use of (2.13), we obtain µ∂qU(∗∗)(s, q, ω) for all s ≥ 0.

By (2.13) and (2.14), we can rewrite the second equation in (2.11) as

∂sµ = −1

4
mαβmα′β′

ω̂βω̂β′(
1

4
ω̂αω̂α′Q(L,L) +Kα,α′) · µ

= −1

4
mαβmα′β′

ω̂βω̂β′Kα,α′ · µ = −1

8
mαβmα′β′

ω̂α′ω̂β′Kβ,α · µ = 0.
(2.17)

Thus, µ(s, q, ω) = µ(0, q, ω) for all s ≥ 0. We conclude by (2.13) that our reduced system
(2.11) has a solution ∂qU(αβ)(s, q, ω) = K1,(αβ)(q, ω)s+K2,(αβ)(q, ω),

µ(s, q, ω) = K0(q, ω).
(2.18)
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Here K∗,(∗∗) and K0 are all are functions independent of s and determined by the initial data
(µ, ∂qU(∗∗))|s=0. Explicitly, we have K0(q, ω) = µ(0, q, ω),

K1,(αβ) =
1

4
ω̂αω̂β(K1/K0), K2,(αβ)(q, ω) =

1

4
ω̂αω̂β(K2/K0) + (Kα,β/K0). (2.19)

Note that
(Q(X,Y )/µ)|s=0 = XαY β(∂qU(αβ))|s=0

and that

K2/K0 = (Q(L,L)/µ)|s=0,

Kα,β/K0 =
1

2
ω̂α(Q(L, Tβ)/µ)|s=0 +

1

2
ω̂β(Q(Tα, L)/µ)|s=0 + (Q(Tα, Tβ)/µ)|s=0,

K1/K0 = C ·K∗,∗ · (K∗,∗/K0).

Thus, the solution (2.18), along with all its derivatives, grows linearly in s. We conclude
that the geometric weak null condition is satisfied. We also remark that the linear growth
in the solution (2.18) is consistent with the results in Lindblad’s paper [22].
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Chapter 3

Existence of Modified Wave Operators

3.1 Introduction
In this chapter, our main goal is to prove the existence of the modified wave operators for
our model equation. This is accomplished in two steps.

The first step is to construct an approximate solution to the quasilinear wave equation
(1.1). We start with solving the asymptotic system (1.11) explicitly with the initial data
(µ, Uq)|s=0 = (−2, A). Here A = A(q, ω) is the scattering data associated to a solution u to
the quasilinear wave equation (1.1). Then, we construct an approximate solution q(t, r, ω) to
the eikonal equation (1.10) by solving qt−qr = µ and q(t, 0, ω) = −t; this equation is an ODE
along each characteristic line. Both s and q are now functions of (t, r, ω), so we also obtain
a function U(t, r, ω) from U(s, q, ω). Here U(t, r, ω) is the asymptotic profile associated to a
solution u to the quasilinear wave equation (1.1). Thirdly, we define uapp. We expect that
uapp is an approximate solution to (1.1), that uapp = εr−1U(t, r, ω) in a conic neighborhood
of the light cone {t = r} and that uapp is supported in a slightly larger conic neighborhood
of the light cone.

The second step is to show that there is an exact solution to (1.1) which matches uapp at
infinite time. Fixing a large time T > 0, we solve a backward Cauchy problem for v = u−uapp
with zero data for t ≥ 2T , such that v + uapp solves (1.1) for t ≤ T . We then prove that
v = vT converges to some function v∞ as T → ∞. It turns out that u∞ = v∞ + uapp is
a solution to (1.1) which matches the asymptotic profile at infinite time. This shows the
existence of the modified wave operators.

A more detailed discussion is given below.

3.1.1 Approximate solution
To construct an approximate solution to (1.1), we start by solving our reduced system (1.11).
This requires us to assign the initial data at s = 0. To choose µ|s=0, we use the gauge freedom.
Note that if qt−qr = µ and if q̃ = F (q, ω), then we have q̃t− q̃r = (∂qF )µ. Thus, by choosing
the function F appropriately, we can prescribe µ|s=0 freely. We now set µ|s=0 ≡ −2 since we
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expect q ≈ r − t. The initial data of Uq can be chosen arbitrarily, so we set Uq|s=0 = A for
an arbitrary function A = A(q, ω), which is called the scattering data in this chapter. An
explicit solution (µ, Uq)(s, q, ω) is given by (2.5) with (A1, A2) replaced by (−2, A). To solve
for U uniquely, in this chapter we add an assumption that limq→−∞ U(s, q, ω) = 0.

In the author’s previous paper [34], it was assumed that the scattering data A belongs
to C∞

c (R × S2). As commented in that paper, this assumption can be relaxed. In this
dissertation, we assume that A ∈ C∞(R× S2) and that

A(q, ω) = 0, whenever q ≤ −R; (3.1)

∂mq ∂
n
ωA = Om,n(〈q〉−1−γ−m) in R× S2, for all m,n ≥ 0. (3.2)

Here R ≥ 1 and γ > 0 are two fixed constants, and ∂nω denotes any angular derivatives of
order n.

Next we make a change of coordinates. For a small ε > 0, we set s = ε ln(t) − δ, where
δ > 0 is a sufficiently small constant to be chosen. We remark that this choice of s is related
to the almost global existence, since now s = 0 if and only if t = eδ/ε. In fact, when t ≤ eδ/ε,
we expect the solution to (1.1) behaves as a solution to □u = 0, so our asymptotic equations
play a role only when t ≥ eδ/ε. Let q(t, r, ω) be the solution to

qt − qr = µ(ε ln(t)− δ, q(t, r, ω), ω), q(t, 0, ω) = −t.

We can use the method of characteristics to solve this equation. Then, any function of
(s, q, ω) induces a new function of (t, r, ω). With an abuse of notation, we set

U(t, r, ω) = U(ε ln(t)− δ, q(t, r, ω), ω).

The function U(t, r, ω) is called the asymptotic profile in this chapter. We will prove that,
near the light cone {t = r}, εr−1U(t, r, ω) is an approximate solution to (1.1), and q(t, r, ω)
is an approximate optical function, i.e. an approximate solution to the eikonal equation
corresponding to the metric gαβ(εr−1U).

3.1.2 The main theorem
We denote by Z any of the commuting vector fields: translations ∂α, scaling t∂t + r∂r,
rotations xi∂j − xj∂i and Lorentz boosts xi∂t + t∂i. Our main theorem in this chapter is the
following.

Theorem 3.1. Consider a scattering data A(q, ω) be a function in C∞(R × S2) satisfying
the support assumption (3.1) and the decay assumption (3.2) for some R ≥ 1 and γ > 0. Fix
an integer N ≥ 2 and any sufficiently small ε > 0 depending on A and N . Let q(t, r, ω) and
U(t, r, ω) be the associated approximate optical function and asymptotic profile. Then, there
exists a CN solution u to (1.1) for t ≥ 0 with the following properties:

(i) The solution vanishes for |x| = r ≤ t−R.
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(ii) The solution satisfies good energy bounds: for all |I| ≤ N − 1 and all t�A 1, we have∥∥∂ZI(u− εr−1U)(t)
∥∥
L2({x∈R3: |x|≤5t/4}) +

∥∥∂ZIu(t)
∥∥
L2({x∈R3: |x|≥5t/4}) ≲I εt

−1/2+CIε.

(iii) The solution satisfies good pointwise bounds: for all (t, r, ω) with t�A 1, we have
|(∂t − ∂r)u+ 2εr−1A(q(t, r, ω), ω)| ≲ εt−3/2+Cε.

Moreover, for all |I| ≤ N − 1 and all (t, x) with t�A 1,
|∂ZI(u− εr−1U)(t, x)|χ|x|≤5t/4 + |∂ZIu(t, x)|χ|x|≥5t/4 ≲I εt

−1/2+CIε〈t+ r〉−1〈t− r〉−1/2,

|ZI(u− εr−1U)(t, x)|χ|x|≤5t/4 + |ZIu(t, x)|χ|x|≥5t/4 ≲I min{εt−1+CIε, εt−3/2+CIε〈r − t〉}.

Remark 3.1.1. In [34], the author has proved Theorem 3.1 with a stronger assumption
A ∈ C∞

c (R × S2). The proof in this dissertation requires a more delicate analysis and
substantial changes corresponding to the arguments in [34].

Remark 3.1.2. The solution in the main theorem is unique in the following sense. Suppose
N ≥ 7. Suppose u1, u2 are two CN solutions to (1.1), such that they correspond to the same
scattering data and that they satisfy the energy bounds and pointwise bounds in the main
theorem. Then, we have u1 = u2, assuming ε � 1. We also remark that u does not depend
on the value 5/4 in the estimates: for each fixed κ > 1, if uκ is a solution satisfying all the
estimates above with 5/4 replaced by κ, then u = uκ for ε �κ 1, where u is the unique
solution from the main theorem. We will prove these statements after the proof of the main
theorem.

Remark 3.1.3. By the main theorem, we have the following pointwise bound near the light
cone (e.g. when |t− r| ≲ tCε):

|∂ZI(u− εr−1U)(t, x)|+ |ZI(u− εr−1U)(t, x)| ≲I εt
−3/2+CIε. (3.3)

Note that, for the free constant coefficient linear wave equation, we can prove a stronger
pointwise estimate with t−3/2+CIε replaced by t−2 on the right hand side. This is suggested
by the fact that the solution to the forward Cauchy problem □w = 0 with compactly
supported initial data satisfies such a stronger pointwise estimate (see Theorem 6.2.1 in [7]).
In our construction, we can achieve this stronger estimate if we add an additional assumption∫∞
−∞A(q, ω) dq = 0 on the scattering data. We refer our readers to Remark (2) after Theorem

1 in [34].

Remark 3.1.4. Here we make three remarks about the scattering data A. First, the as-
sumption that A ∈ C∞(R × S2) can be relaxed. Instead, we can assume that A is CN ′ for
some large integer N ′ �N 1. Secondly, the support assumption (3.1) is necessary. In fact,
it guarantees that the asymptotic profile U(t, r, ω) vanishes whenever r − t ≤ −R, which is
important in our proof. Thirdly, the decay assumption (3.2) is motivated by Lindblad-Schlue
[26]. There the authors assumed that (〈q〉∂q)m∂nωF0 = O(〈q〉−γ) for some γ ∈ (1/2, 1), where
F0 is their radiation field. For a linear wave equation, in our setting we have A = Uq = ∂qF0,
so we expect ∂mq ∂nωA = ∂m+1

q ∂nωF0 = O(〈q〉−m−1−γ).
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3.1.3 Idea of the proof
Here we outline the main idea of the construction of u in Theorem 3.1. Roughly speaking,
our starting point begins from the ideas from both Lindblad [21] and Lindblad-Schlue [26].
To construct a matching global solution, we follow the idea in Lindblad-Schlue [26]: we solve
a backward Cauchy problem with some initial data at t = T and then send T to infinity.
However, the backward Cauchy problems in [26] are of simpler form, and their solutions
can be constructed by Duhamel’s formula explicitly. Here, our backward Cauchy problem
is quasilinear, and it is necessary to prove that the solution does exist for all 0 ≤ t ≤ T .
We follow the proof of the small data global existence in [21]: we use a continuity argument
with the help of the adapted energy estimates and Poincaré’s lemma.

We now provide more detailed descriptions of the proof. First, we construct an approxi-
mate solution to (1.1). Let q(t, r, ω) and U(t, r, ω) be the approximate optical function and
asymptotic profile associated to some scattering data A(q, ω). We set

uapp(t, x) = εr−1η(t)ψ(r/t)U(ε ln(t)− δ, q(t, r, ω), ω) (3.4)

for all t ≥ 0 and x ∈ R3. Here ψ ≡ 1 when |r− t| ≤ t/4 and ψ ≡ 0 when |r− t| ≥ t/2, which
is used to localize εr−1U near the light cone {r = t}; η is a cutoff function such that η ≡ 0
for t ≤ 2R, which is used to remove the singularity at |x| = 0 and t = 0. We can check that
uapp is a good approximate solution to (1.1) in the sense that

gαβ(uapp)∂α∂βuapp = O(εt−3+Cε), t�A 1.

Next we seek to construct an exact solution matching uapp at infinite time. Fixing a large
time T , we consider the following equation

gαβ(uapp + v)∂α∂βv = −χ(t/T )gαβ(uapp + v)∂α∂βuapp, t > 0; v ≡ 0, t ≥ 2T. (3.5)

Here χ ∈ C∞(R) satisfies χ(t/T ) = 1 for t ≤ T and χ(t/T ) = 0 for t ≥ 2T . Note that uapp+v
is now an exact solution to (1.1) for t ≤ T . In Section 3.4 we prove that, if ε is sufficiently
small, then (3.5) has a solution v = vT for all t ≥ 0 which satisfies some decay in energy
as t → ∞. To prove this, we use a continuity argument. The proof relies on the energy
estimates and Poincaré’s lemma, which are established in Section 3.3. Note that the small
constant δ > 0 is not chosen until the proof of the Poincaré’s lemma, and we remark that δ
depends only on the scattering data A(q, ω). We also remark that the energy estimates and
Poincaré’s lemma in this dissertation are closely related to those in [21, 1].

Finally we prove in Section 3.5 that vT does converge to some v∞ in suitable function
spaces, as T → ∞. Thus we obtain a global solution uapp + v∞ to (1.1) for t ≥ 0, such
that it “agrees with” uapp at infinite time, in the sense that the energy of v∞ tends to 0 as
t → ∞. By the Klainerman-Sobolev inequality, we can derive the pointwise bounds in the
main theorem from the estimates for the energy of v∞.

Note that to obtain a candidate for v∞, we have a more natural choice of PDE than (3.5).
We may consider the Cauchy problem (1.1) for t ≤ T with initial data (uapp(T ), ∂tuapp(T )).
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The problem with such a choice is that for uapp constructed above, ZI(u−uapp)(T ) does not
seem to have a good decay in T if ZI only contains the scaling S = t∂t + r∂r and Lorentz
boosts Ω0i = t∂i + xi∂t. For example, we can consider the linear wave equation □u = 0. We
set v = u− uapp, then v = vt = 0 at t = T . Then, at t = T we have S2v = t2vtt = −t2□uapp.
However, in the linear case, uapp = εr−1F0(r − t, ω) for t ≈ r and thus □uapp = O(εr−3).
The power −3 cannot be improved, so we can only get S2v = O(εr−1) for t ≈ r, while we
expect S2v = O(εr−3/2+Cε) for t ≈ r from Theorem 3.1. Similarly, the same applies for Skv
if k ≥ 3. In the linear case, one possible way to deal with this difficulty is to consider more
terms in the asymptotic expansion of the solutions, say take

uapp =
N∑

n=0

ε

rn+1
Fn(r − t, ω)

where F0 is the usual Friedlander radiation field, and Fn satisfies some PDE based on Fn−1.
This method was used by Lindblad and Schlue in their construction. However, it does not
seem to work in the quasilinear case, since we do not have such a good asymptotic expansion
for a solution to (1.1). In this dissertation, we avoid such a difficulty by considering a variant
(3.5) of (1.1). Such a difficulty does not appear in (3.5), since v ≡ 0 for all t ≥ 2T .

3.2 The Asymptotic Profile and the Approximate
Solution

Our main goal in this section is to construct an approximate solution uapp to (1.1). Fix a
scattering data A = A(q, ω) ∈ C∞(R× S2) such that

A(q, ω) = 0, whenever q ≤ −R; (3.6)

∂mq ∂
n
ωA = Om,n(〈q〉−1−γ−m) in R× S2, for all m,n ≥ 0. (3.7)

Here R ≥ 1 and γ > 0 are two fixed constants, and ∂nω denotes any angular derivatives
of order n. Fix a sufficiently large TA > 0 and a sufficiently small ε > 0, both depend-
ing on A(q, ω). Let (µ, U)(s, q, ω) be the solution to (2.4) with (µ, Uq)|s=0 = (−2, A) and
limq→−∞ U(s, q, ω) = 0. Let q(t, r, ω) be the solution to the PDE

(∂t − ∂r)q(t, r, ω) = µ(ε ln(t)− δ, q(t, r, ω), ω), q(t, 0, ω) = −t

and set
U(t, r, ω) = U(ε ln(t)− δ, q(t, r, ω), ω).

Here δ > 0 is a sufficiently small constant depending only on the scattering data. In this
section, we will show that near the light cone {t = r + R}, εr−1U(t, r, ω) and q(t, r, ω) are
the approximate solution to (1.1) and the approximate optical function, respectively, in the
sense that for all (t, r, ω) with t ≥ TA and −R ≤ r − t ≲ tCε, we have

gαβ(εr−1U)∂α∂β(εr
−1U) = O(εt−3+Cε),
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gαβ(εr−1U)qαqβ = O(t−2+Cε).

For all t ≥ 0 and x ∈ R3, we set

uapp(t, x) = εr−1η(t)ψ(r/t)U(ε ln(t)− δ, q(t, r, ω), ω).

Here ψ ≡ 1 when |r − t| ≤ t/4 and ψ ≡ 0 when |r − t| ≥ t/2, which is used to localize
εr−1U near the light cone {r = t}; η is a cutoff function such that η ≡ 0 when t ≤ 2R. The
definitions of ψ and η will be given later.

Our main proposition in this section is the following:

Proposition 3.2. Fix a scattering data A ∈ C∞(R× S2) satisfying the support assumption
(3.6) and the decay assumption (3.7). Fix a sufficiently small ε > 0 depending on A. Let
uapp be the function defined as above. Then, for all (t, x) with t ≥ TA, we have

|∂uapp(t, x)| ≲ ε(1 + t)−1.

Moreover, for all multiindices I and for all (t, x) with t ≥ 0, we have

|ZIuapp(t, x)| ≲I ε(1 + t)−1+CIε,

|ZI(gαβ(uapp)∂α∂βuapp)(t, x)| ≲I ε(1 + t)−3+CIε.

Remark 3.2.1. If we have 0 < δ < 1, then all the constants involved in this section are
uniform in δ. Thus, it would not impact any result in this section if we do not choose the
value of δ until the proof of the Poincaré’s lemma in the next section.

This proposition is proved in three steps. First, in Section 3.2.1, we construct q(t, r, ω)
and U(t, r, ω) for all (t, x) with t > 0, by solving the reduced system (2.4) and qt − qr = µ
explicitly. Next, in Section 3.2.2, we prove that εr−1U(t, r, ω) is an approximate solution to
(1.1) near the light cone {t = r + R} when t is sufficiently large. To achieve this goal we
prove several estimates for q and U in the region t ∼ r. Finally, in Section 3.2.3, we define
uapp and prove the pointwise bounds for large t. To define uapp, we use cutoff functions to
restrict εr−1U in a conical neighborhood of {t = r} and remove the singularities at |x| = 0
or t = 0.

3.2.1 Construction of q and U

Fix ε� 1. Fix a scattering data A as in the statement of Proposition 3.2. Also fix 0 < δ < 1
depending on A(q, ω) but not on ε. Its value will be chosen in Section 3.3. We define q(t, r, ω)
by solving

(∂t − ∂r)q(t, r, ω) = µ(ε ln(t)− δ, q(t, r, ω), ω), q(t, 0, ω) = −t, (3.8)

where
µ(s, q, ω) := −2 exp(−1

2
G(ω)A(q, ω)s). (3.9)
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Here we set

G(ω) := gαβ0 ω̂αω̂β, gαβ0 :=
d

dv
gαβ(v)|v=0, ω̂ := (−1, ω) ∈ R× S2.

By the chain rule and the estimates for A, we have

|µ| ≲ exp(C|s|); |∂bs∂aq ∂cωµ| ≲ 〈q〉−1−γ−a exp(C|s|), ∀a+ b+ c > 0. (3.10)

Note that (3.8) has a solution q(t, r, ω) for all t > 0. In fact, if we apply method of
characteristics, for z(τ) = q(τ, r+ t− τ, ω) and s(τ) = ln(τ) we have an autonomous system
of ODE’s {

ż(τ) = µ(εs(τ)− δ, z(τ), ω)
ṡ(τ) = exp(−s(τ))

with initial data (z, s)(r + t) = (−r − t, ln(r + t)). Whenever 0 < τ < r + t, we have

|ż(τ)| ≲ exp(C〈z(τ)〉−1−γ(|ε ln(τ)|+ 1)) ≲ max{τCε, τ−Cε},

and then
|z(τ)| ≲ r + t+

∫ r+t

τ

max{(τ ′)Cε, (τ ′)−Cε} dτ ′

≲ r + t+ (τ ′)1+Cε
∣∣r+t

0
+ (τ ′)1−Cε

∣∣r+t

0
≲ (r + t+ 1)1+Cε.

Here we choose ε � 1 so that Cε < 1. Thus, |z(τ)| cannot blow up when τ > 0. Neither
can |s(τ)| since s(τ) = ln(τ). We are thus able to solve this system of ODE’s for all τ > 0
by Picard’s theorem.

We have

q(t, r, ω) = −(r + t)−
∫ r+t

t

µ(ε ln(τ)− δ, q(τ, r + t− τ, ω), ω) dτ. (3.11)

Note that if G(ω) ≡ 0, we have µ ≡ −2 and thus q = r − t, which coincides with the choice
of q in Hörmander’s setting.

We also define U(s, q, ω) by solving the following equation

(∂qU)(s, q, ω) = A(q, ω) exp(
1

2
G(ω)A(q, ω)s), lim

q→−∞
U(s, q, ω) = 0. (3.12)

The equation (3.12) has a solution U(s, q, ω) for all s, which comes from taking the following
integral:

U(s, q, ω) =

∫ q

−∞
A(p, ω) exp(

1

2
G(ω)A(p, ω)s) dp. (3.13)

Since A ≡ 0 for q ≤ −R, we have U(s, q, ω) = 0 unless q ≥ −R. In addition, by the decay
assumption (3.7), we have

|U | ≲
∫
R
〈p〉−1−γ exp(C|s|) dp ≲ exp(C|s|).



CHAPTER 3. EXISTENCE OF MODIFIED WAVE OPERATORS 35

In general, it is easy to check that for all s ≥ −1 and all (q, ω) ∈ R× S2,

|∂bs∂cωU | ≲ exp(C|s|), ∀b, c ≥ 0;

|∂aq ∂bs∂cωU | ≲ exp(C|s|)〈q〉−a−γ, ∀a > 0, b, c ≥ 0.
(3.14)

Here the constants depend on a, b, c, but they are uniform for all (s, q, ω) ∈ R× R× S2.
From now on, we use U to denote the function on (t, r, ω):

U = U(t, r, ω) = U(ε ln(t)− δ, q(t, r, ω), ω). (3.15)

Such a U is called the asymptotic profile in this chapter. Note that

(∂t − ∂r)U = µUq + εt−1Us = −2A+O(εt−1+Cε).

This explains the meaning of the scattering data A in our construction.

3.2.2 Estimates for q and U

Fix TA � 1. We then choose ε� 1, so ε can depend on TA but not vice versa. We set

D := {(t, x) : t ≥ TA, t/2 ≤ r ≤ 2t} (3.16)

and recall Definition 1.8 in Section 1.6.4. Our main goal now is to prove that εr−1U(t, r, ω) ∈
εS−1 and gαβ(εr−1U)∂α∂β(εr

−1U) ∈ εS−3. In other words, εr−1U has some good pointwise
bounds and is an approximate solution whenever t ≥ TA and t ∼ r.

We start with a lemma for q(t, r, ω).

Lemma 3.3. Fix (t, r, ω) with t ≥ TA � 1 and we set t1 = (t+ r +R)/2. Then we have

q(τ, r + t− τ, ω) = r + t− 2τ, ∀τ ≥ t1. (3.17)

Thus, when t1 ≤ t, i.e. r ≤ t−R, we have q = r − t.
If 1 � TA ≤ t ≤ t1, we have

(t+ r)−Cε(q +R) ≲ (r − t+R) ≲ (t+ r)Cε(q +R), (3.18)

|q(t, r, ω)− (r − t)| ≲ (t+ r)Cε〈q〉. (3.19)
As a result, whenever r − t ≥ −R and t ≥ TA � 1, we have

(t+ r)−Cε ≲ 〈r − t〉/〈q〉 ≲ (t+ r)Cε.

Moreover, if |q(t, r, ω)| ≲ tκ for some 0 ≤ κ < 1, then (t, x) ∈ D as long as TA �κ 1 and
ε�κ 1.
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Proof. Note that µ ≡ −2 for q ≤ −R. Then the first part of this lemma follows directly
from (3.11). Now we assume 1 � TA ≤ t ≤ t1, i.e. r− t ≥ −R. Since −2eC|s| ≤ µ ≤ −2e−C|s|

and since

t ≥ TA ≥ 1, 0 < δ < 1 =⇒ |ε ln(t)− δ| ≤ |ε ln(t)|+ 1 = ε ln(t) + 1,

we have

−R− q(t, r, ω) =

∫ t1

t

µ(τ, r + t− τ, ω) dτ ≤ −2eC
∫ t1

t

τ−Cε dτ ≤ −C(t1 − t)t−Cε
1 ,

−R− q(t, r, ω) =

∫ t1

t

µ(τ, r + t− τ, ω) dτ ≥ −2e−C

∫ t1

t

τCε dτ ≥ −C−1(t1 − t)tCε
1 .

It follows that
t1 − t ≤ tCε

1 (R + q(t, r, ω)) ≲ (q +R)(t+ r)Cε,

t1 − t ≥ t−Cε
1 (R + q(t, r, ω)) ≳ (q +R)(t+ r)−Cε.

Since t1 − t = (r − t+R)/2, we have r − t = 2(t1 − t)−R and thus

〈r − t〉 ∼ (t1 − t+R) ≲ (q +R)(t+ r)Cε +R(t+ r)Cε ≲ 〈q〉(t+ r)Cε,

〈r − t〉 ∼ (t1 − t+R) ≳ (q +R)(t+ r)−Cε +R(t+ r)−Cε ≳ 〈q〉(t+ r)−Cε.

Moreover, we have

|q(t, r, ω)− (r − t)| ≤ |q(t, r, ω) +R|+ 2|t1 − t| ≲ 〈q〉+ 〈q〉(t+ r)Cε ≲ 〈q〉(t+ r)Cε.

Finally, if t ≥ TA � 1, r − t ≥ −R and |q| ≲ tκ, we obtain an inequality

|r − t| ≲ (t+ r)Cε〈q〉 ≲ (t+ r)Cεtκ.

If (t, x) /∈ D, then we must have r > 2t > 1, so

r/2 = r − r/2 < r − t ≲ (r/2 + r)Cεtκ ≲ rCεtκ.

However, if we choose ε�κ 1, we have 1− Cε > (κ+ 1)/2. We thus obtain

tκ ≳ r1−Cε ≳ t1−Cε ≳ t(κ+1)/2 =⇒ t(κ−1)/2 ≳ 1.

This estimate clearly fails for t �κ 1 as κ < 1. Thus, by choosing TA �κ 1, we conclude
that (t, x) ∈ D.

We now move on to estimates for ∂q. In Lemma 3.4, we give the pointwise bounds for
ν = qt + qr, ∂rν and λi = qi − ωiqr. In Lemma 3.5, we find the first terms in the asymptotic
expansion of ν and νq when t ∼ r and t� 1.
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Lemma 3.4. For t ≥ TA,

ν(t, x) := (∂t + ∂r)q = O(εt−1+Cε), (3.20)

λi(t, x) := (∂i − ωi∂r)q = O((t+ r)−1+Cε). (3.21)
Note that we do not need to assume that (t, x) ∈ D in this lemma.

Proof. Fix (t, r, ω). Since ν = νr = λi = 0 when r − t ≤ −R, we now assume r − t ≥ −R.
Then

(∂t − ∂r)ν = (∂t + ∂r)µ = (∂qµ)ν −
ε

2t
G(ω)Aµ. (3.22)

By Lemma 3.3, for all t > TA, we have∫ r+t

t

|∂qµ| dτ =

∫ r+t

t

1

2
|G(ω)∂qA| · |ε ln(τ)− δ| · |µ| dτ

≲ (ε ln(t+ r) + 1)

∫ t1

t

(−ż(τ))〈z(τ)〉−2−γ dτ

≲ ε ln(t+ r) + 1.

Here the integral is taken along the characteristic (τ, r + t − τ, ω) for τ ≥ TA, as in (3.11).
Also recall that z(τ) = q(τ, r + t − τ, ω). From now on,

∫
(. . . ) dτ would always denote an

integral along a characteristic. Similarly, we have∫ r+t

t

|G(ω)Aµ ε

2τ
| dτ ≲ ε

t

∫ t1

t

|µ|〈q〉−1−γ dτ ≲ ε

t

∫ t1

t

(−ż(τ))〈z(τ)〉−1−γ dτ ≲ εt−1.

Now, we integrate (3.22) along the characteristic and then apply the Gronwall’s inequality.
Note that the initial value of (∂t + ∂r)q is 0 as q = r − t for r ≤ t−R by Lemma 3.3. Then
we have ν = O(εt−1(t + r)Cε). This finishes the proof of (3.20) when r ≲ t. If r > 2t, for
t ≤ τ ≤ (r + t)/3, by Lemma 3.3 we have

〈z(τ)〉 ≳ (r + t)−Cε〈(r + t− τ)− τ〉 ≳ (r + t)−Cε〈r + t〉,

|µq(τ, r + t− τ, ω)| ≲ |Aq(ε ln τ − δ)µ| ≲ 〈z(τ)〉−2−γ · τCε ≲ 〈r + t〉−2−γ+Cε.

We integrate (3.22) along the characteristic for t ≤ τ ≤ (r + t)/3. It follows that for each
t ≤ t′ ≤ (t+ r)/3 we have

|ν|τ=t′ | ≲
∣∣ν|τ=(r+t)/3

∣∣+ ∫ (r+t)/3

t′
|µqν|(τ) dτ + ε(t′)−1

≲
∫ (r+t)/3

t′
〈r + t〉−2|ν|(τ) dτ + ε(t′)−1 + ε(r + t)−1+Cε.
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Note that at τ = (r + t)/3 we have (r + t − τ) ∼ τ , so ν|τ=(r+t)/3 = O(ε(t + r)−1+Cε). By
the Gronwall’s inequality we conclude that ν(t, r, ω) = O(εt−1+Cε) for r > 2t. This finishes
the proof of (3.20).

To prove (3.21), we note that

(∂t − ∂r)λi = (∂i − ωi∂r)µ+ r−1λi

= (µq + r−1)λi −
1

2
(ε ln(t)− δ)

∑
l

∂ωl
(GA) · δil − ωiωl

r
µ

= (µq + r−1)λi +O(r−1|ε ln(t)− δ| · |µ|〈q〉−1−γ).

(3.23)

Note that λi ≡ 0 when r < t−R and that for 0 < t−R ≤ r, we have

0 ≤
∫ t1

t

(r + t− τ)−1 dτ = ln
2r

r + t−R
≤ ln 2,

∫ t1

t

(r + t− τ)−1|ε ln(τ)− δ||µ|〈q〉−1−γ dτ ≤
∫ t1

t

(r + t− τ)−1(ε ln(τ) + 1) · |µ|〈q〉−1−γ dτ

≤ ε ln(t+ r) + 1

r + t− t1

∫ t1

t

|µ|〈q〉−1−γ dτ

≲ (t+ r)−1+Cε.

Apply the Gronwall’s inequality again and we obtain (3.21).

Remark 3.4.1. Since |µ| = −µ ≥ 2C−1t−Cε, we conclude that qt, qr 6= 0 for all t ≥ TA if ε
is small enough. In particular, for ε� 1 and t� 1,

qr =
−µ+ ν

2
≥ C−1t−Cε − Cεt−1+Cε ≥ (2C)−1t−Cε,

qt =
µ+ ν

2
≤ −C−1t−Cε + Cεt−1+Cε ≤ −(2C)−1t−Cε.

So for each fixed t ≥ TA and ω ∈ S2, the map r 7→ q(t, r, ω) is strictly increasing and
continuous for each fixed t. Moreover, limr→∞ q(t, r, ω) = ∞. This implies that for each
t ≥ TA and q0 ≥ −t, there exists a unique r such that q(t, r, ω) = q0. So {t ≥ TA, r ≲ t} 3
(t, r, ω) 7→ (ε ln(t)− δ, q(t, r, ω), ω) has an inverse map (s, q, ω) 7→ (e(s+δ)/ε, r(s, q, ω), ω). By
the inverse function theorem, the map (t, r, ω) 7→ (s, q, ω) is a diffeomorphism.

From now on, any function V can be written as both V (t, r, ω) and V (s, q, ω) at the same
time. Thus, for any function V on (t, r, ω), we can define ∂as∂bq∂cωV using the chain rule and
Leibniz’s rule. Note that in this paper, ∂ω will only be used under the coordinate (s, q, ω)
and will never be used under the coordinate (t, r, ω).

Lemma 3.5. For t ≥ TA and r ≲ t,

ν − εG(ω)

4t
µU = O(εt−2+Cε〈q〉), (3.24)
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νq −
εG(ω)

4t
µqU − εG(ω)

4t
µUq = O(εt−2+Cε). (3.25)

Proof. Again, we may assume r ≥ t−R. We have

(∂t − ∂r)(ν −
εG(ω)

4t
µU) = (∂t + ∂r)µ− εG(ω)

4t
(∂t − ∂r)(µU) +

εG(ω)

4t2
µU

= µqν + µs
ε

t
− εG(ω)

4t
(∂q(µU)µ+ ∂s(µU)

ε

t
) +

εG(ω)

4t2
µU

= µq(ν −
εG(ω)

4t
µU) +

ε2G(ω)

4t2
(−Us +

1

2
G(ω)AU)µ+

εG(ω)

4t2
µU.

(3.26)
In particular, note that µs = εG(ω)µ2Uq/4.

Fix (t, r, ω). Integrate this equation along the characteristic (τ, r + t − τ, ω). Note that
U vanishes if τ ≥ t1 and U,Us = O(tCε). We have∫ r+t

t

ε|G(ω)|
4τ 2

|µU | dτ ≤ Cε(t+ r)Cε

4t2

∫ t1

t

|µ| dτ ≲ εt−2+Cε〈q〉

and ∫ r+t

t

∣∣∣∣ε2G(ω)4τ 2
(−Us +

1

2
G(ω)AU)µ

∣∣∣∣ dτ ≤ Cε2
(t+ r)Cε

t2

∫ t1

t

|µ| dτ ≲ ε2t−2+Cε〈q〉.

Finally, since
∫ r+t

t
|µq| dτ ≲ ε ln(t + r) + 1 ≲ ε ln(t) + 1 and since ν = U = 0 at τ > t1, by

Gronwall’s inequality we conclude (3.24).
To prove (3.25), we first prove it with ∂q replaced by ∂r. By (3.26), we have

(∂t − ∂r)∂r(ν −
εG(ω)

4t
µU) = ∂r(∂t − ∂r)(ν −

εG(ω)

4t
µU)

= µq∂r(ν −
εG(ω)

4t
µU) + qrµqq(ν −

εG(ω)

4t
µU)

+
εG(ω)

4t2
(µU)qqr +

ε2G(ω)

4t2
∂q((−Us +

1

2
G(ω)AU)µ)qr.

(3.27)

Note that µq = −1
2
GAqsµ and µqq = −1

2
GAqqsµ + (1

2
GAqs)

2µ. Integrate along the charac-
teristic and we have∫ r+t

t

|qrµqq(ν −
εG(ω)

4τ
µU)| dτ ≲

∫ t1

t

(|ν|+ |µ|)|µ|〈q〉−3−γ · ετ−2+Cε〈q〉 dτ

≲ εt−2+Cε

∫ t1

t

|µ|〈q〉−2−γ dτ ≲ εt−2+Cε,



CHAPTER 3. EXISTENCE OF MODIFIED WAVE OPERATORS 40

∫ r+t

t

|εG(ω)
4τ 2

(µU)qqr| dτ ≲
∫ t1

t

ετ−2(|A|+ |µqU |)(|µ|+ |ν|) dτ

≲
∫ t1

t

ετ−2+Cε〈q〉−1−γ|µ| dτ +
∫ t1

t

ε2τ−3+Cε dτ

≲ εt−2+Cε

and∫ r+t

t

|ε
2G(ω)

4τ 2
∂q((−Us +

1

2
G(ω)AU)µ)qr| dτ ≲

∫ t1

t

ε2τ−2+Cε〈q〉−2−γ|µ| dτ ≲ ε2t−2+Cε.

In the last estimate, we note that

∂q((−Us +
1

2
G(ω)AU)µ =

1

2
G(ω)AqUµ+ (−Us +

1

2
G(ω)AU)µq = O(tCε〈q〉−2−γ).

Recall that
∫ r+t

t
|µq| dτ ≲ ε ln(t + r) + 1, ν = U = 0 at τ = r + t, ∂r = qr∂q and qr ≳ t−Cε.

Apply the Gronwall’s inequality and we conclude (3.25).

Remark 3.5.1. We now prove some estimates for νq which will be used in the proof of the
Poincaré’s lemma (i.e. Lemma 3.13).

It follows from (3.25) that

|νq| ≲ εt−1+Cε〈q〉−1−γ + εt−2+Cε

whenever t ≥ TA � 1 and r ≲ t.
Now fix (t, x) such that t ≥ TA and r > 2t. We seek to prove an estimate for νq. By

differentiating (3.22), we have

(∂t − ∂r)∂rν = µqνr + ∂r(µq)ν −
ε

2t
G∂r(Aµ)

= µqνr −
1

2
νGs∂r(Aqµ)−

ε

2t
G∂r(Aµ)

= µqνr +O(εt−1+Cε〈q〉−2−γ|µ|).

Besides, whenever r > 2t, we have r ∼ (r + t) and thus

〈q〉 ≲ (t+ r)Cε〈r − t〉 ≲ (t+ r)1+Cε,

〈q〉 ≳ (t+ r)−Cε〈r − t〉 ≳ (t+ r)1−Cε.

Here we apply Lemma 3.3. It follows that

|µq| ≲ 〈q〉−2−γ|sµ| ≲ (r + t)−2−γ+Cε · tCε ≲ (r + t)−2.

By setting ℓ(τ) := νr(τ, r + t− τ, ω), we have for t ≤ τ ≤ (r + t)/3,

|ℓ̇(τ)| ≲ (r + t)−2|ℓ(τ)|+ ετ−1+Cε〈z(τ)〉−2−γ · τCε

≲ (r + t)−2|ℓ(τ)|+ ετ−1+Cε(r + t)−2−γ+Cε.
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Moreover, we have

|ℓ((r + t)/3)| ≲ ε(r + t)−1+Cε〈z((r + t)/3)〉−2−γ + ε(r + t)−2+Cε ≲ ε(r + t)−2+Cε,∫ (r+t)/3

t

ετ−1+Cε(r + t)−2−γ+Cε dτ ≲ ε(r + t)−2−γ+Cεt−1+Cε · ((r + t)/3− t)

≲ εt−1+Cε(r + t)−1−γ+Cε,∫ (r+t)/3

t

(r + t)−2 dτ ≲ (r + t)−2 · ((r + t)/3− t) ≲ (r + t)−1 ≲ 1.

It follows from the Gronwall’s inequality that

|ℓ(t)| ≲ ε(r + t)−2+Cε + εt−1+Cε(r + t)−1−γ+Cε.

Then, for r > 2t, we have

|νq| ≲ q−1
r |νr| ≲ tCε(ε(t+ r)−2+Cε + εt−1+Cε(r + t)−1−γ+Cε)

≲ ε(t+ r)−2+Cε + εt−1+Cε(r + t)−1−γ+Cε.

Most of the estimates in the previous three lemmas will still hold, if ZI is applied to the
left hand sides for each multiindex I. We recall (3.16) and Definition 1.8.

Lemma 3.6. (a) We have q ∈ S0,1 and Ωkk′q ∈ S0,0 for each 1 ≤ k < k′ ≤ 3. That is, for
all (t, x) ∈ D and for all I, we have

|ZIq(t, r, ω)| ≲I 〈r − t〉tCIε, (3.28)

|ZIΩkk′q(t, r, ω)| ≲I t
CIε. (3.29)

(b) We have ∂aq ∂cωA ∈ S0,−1−a−γ; µ ∈ S0,0 and ∂bs∂
q
a∂

c
ωµ ∈ S0,−1−a−γ for a + b + c > 0;

∂bs∂
c
ωU ∈ S0,0 for all b, c ≥ 0, and ∂aq ∂bs∂cωU ∈ S0,−a−γ for all a > 0 and b, c ≥ 0. Here all the

functions are of (s, q, ω) = (ε ln t− δ, q(t, x), ω) defined in D.
(c) We have ν ∈ εS−1,0, νq ∈ εS−1,−1, λi ∈ S−1,0, and

ν − ε

4t
G(ω)µU ∈ εS−2,1, νq −

ε

4t
G(ω)∂q(µU) ∈ εS−2,0.

Here all the functions are of (s, q, ω) = (ε ln t− δ, q(t, x), ω) defined in D.

Proof. (a) We first prove (3.28) by induction on |I|. The case |I| = 0 has been proved in
Lemma 3.3. In general, we fix an integer k ≥ 0 and suppose (3.28) holds for all |I| ≤ k. Now
fix a multiindex I with |I| = k + 1. By the chain rule and Leibniz’s rule, we express ZIµ as
a linear combination of terms of the form

(∂bs∂
a
q ∂

c
ωµ) · ZI1q · · ·ZIaq · ZJ1(ε ln t− δ) · · ·ZJb(ε ln t− δ) · ZK1ω · · ·ZKcω (3.30)
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where a + b + c > 0, |I∗|, |J∗|, |K∗,∗| are nonzero, and the sum of all these multiindices is
k + 1. The only term with some |I∗| > k is µqZ

Iq. By (3.10) and our induction hypotheses,
the remaining terms of the form (3.30) are controlled by

〈q〉−1−a−γ exp(C|ε ln t− δ|) · 〈q〉atCε · εb ≲ 〈q〉−1−γtCε.

Here we recall that t−Cε ≲ 〈r − t〉/〈q〉 ≲ tCε by Lemma 3.3. In summary, we have

ZIµ = µqZ
Iq +O(〈q〉−1−γtCε).

Following the same proof, we can also show that∑
0<|J |≤k

|ZJµ| ≲ 〈q〉−1−γtCε,
∑
|J |≤k

|ZJµ| ≲ |µ|+ 〈q〉−1−γtCε ≲ tCε.

By (1.18), we have

(∂t − ∂r)Z
Iq = ZIµ+

∑
|J |<|I|

[f0Z
Jµ+

∑
i

f0(∂i + ωi∂t)Z
Jq]

where f0 denotes an arbitrary polynomial of {ZIω}. Thus, we have

|(∂t − ∂r)Z
Iq| ≲ |µqZ

Iq|+ tCε +
∑
|J |≤k

∑
i

|(∂i + ωi∂t)Z
Jq|

≲ |µqZ
Iq|+ tCε + (t+ r)−1

∑
|J |≤k+1

|ZJq|

≲ |µqZ
Iq|+ (t+ r)−1

∑
|J |=k+1

|ZJq|+ tCε.

In the second inequality, we apply Lemma 1.4; in the last one, we apply the induction
hypotheses to control |ZJq| for |J | ≤ k.

Now we fix (t, x) ∈ D. Since (3.28) clearly holds for q = r− t, we can assume r− t > −R.
By integrating along the characteristic (τ, r + t − τ, ω) for t ≤ τ ≤ t1 and taking sum over
all multiindices I with |I| = k + 1, we have∑

|I|=k+1

|ZIq(t1, r + t− t1, ω)− ZIq(t, r, ω)|

≲
∫ t1

t

(|µq|+ (t+ r)−1)
∑

|I|=k+1

|ZIq|+ τCε dτ

≲
∫ t1

t

(|µq|+ (t+ r)−1)
∑

|I|=k+1

|ZIq| dτ + tCε
1 |t1 − t|

≲
∫ t1

t

(|µq|+ (t+ r)−1)
∑

|I|=k+1

|ZIq| dτ + tCε〈r − t〉.
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In the last inequality, we recall that t ∼ r in D, so t1 = (r + t + R)/2 ∼ t; we also recall
that t1 − t = (r − t + R)/2 ∼ 〈r − t〉. Also note that ZIq(t1, t + r − t1, ω) = O(1), since
Z(r − t) = O(1) when r = t−R and t� 1. Finally, recall that∫ t1

t

|µq(τ)|+ (r + t)−1 dτ ≲ ε ln(t+ r) + 1 ≲ ε ln(t) + 1

as proved in Lemma 3.4. By applying the Gronwall’s inequality, we conclude that∑
|I|=k+1

|ZIq| ≲ tCε〈r − t〉.

As a result, by (3.10), we also have for each I with |I| > 0,

|ZIµ| ≲ |µq||ZIq|+ 〈q〉−1−γtCε ≲ 〈q〉−2−γtCε〈r − t〉+ 〈q〉−1−γtCε ≲ 〈q〉−1−γtCε. (3.31)

Next we prove (3.29) by induction on |I|. By Lemma 3.4 we have

Ωkk′q = xkλk′ − xk′λk = O(r · (t+ r)−1+Cε) = O(tCε).

So the base case |I| = 0 is proved. In general we fix I with |I| > 0. By the induction
hypotheses

∑
|J |<|I| |ZJΩkk′q| ≲ tCε, (1.19) and (3.31), we have

|(∂t − ∂r)Z
IΩkk′q| = |ZIΩkk′µ+

∑
|J |<|I|

[f0Z
IΩkk′µ+

∑
i

f0(∂i + ωi∂t)Z
JΩkk′q]|

≲
∑

0<|J |≤|I|+1

|ZJµ|+
∑

|J |≤|I|

(t+ r)−1|ZJΩkk′q|

≲ 〈q〉−1−γtCε + (t+ r)−1
∑

|J |=|I|

|ZJΩkk′q|+ t−1+Cε.

Fix (t, x) ∈ D. Since Ωkk′(r − t) = 0, we can assume r − t ≥ −R. Then,∫ t1

t

τ−1+Cε + 〈q(τ, r + t− τ, ω)〉−1−γτCε dτ

≲ t−1+Cε|t1 − t|+ tCε

∫ t1

t

〈z(τ)〉−1−γ(−ż(τ)) dτ ≲ tCε.

In the first inequality, we note that |µ|tCε ≳ 1 and −µ = |µ|. Similar to the previous proof,
we conclude by the Gronwall’s inequality that ZIΩkk′q = O(tCε).

(b) Let Q = Q(s, q, ω) be a function of (s, q, ω). By the chain rule and Leibniz’s rule,
we can again write ZIQ as a sum of terms of the form (3.30) with µ replaced by Q. In
conclusion, we have

|ZIQ| ≲
∑

a+b+c≤|I|

|∂bs∂aq ∂cωQ| · εb〈r − t〉atCε.
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Combine this estimate with (3.7), (3.10) and (3.14) and recall that t−Cε ≲ 〈r− t〉/〈q〉 ≲ tCε

in D. We thus conclude that ∂aq ∂cωA ∈ S0,−1−a−γ; µ ∈ S0,0 and ∂bs∂
q
a∂

c
ωµ ∈ S0,−1−a−γ for

a+ b+ c > 0; ∂bs∂cωU ∈ S0,0 for all b, c ≥ 0, and ∂aq ∂bs∂cωU ∈ S0,−a−γ for all a > 0 and b, c ≥ 0.
(c) In (a) we have proved that Ωkk′q ∈ S0,0 for each 1 ≤ k < k′ ≤ 3. Thus,

λi = r−1
∑
j

ωjΩjiq ∈ S−1,0 · S0,0 · S0,0 ⊂ S−1,0.

Here we recall from Example 1.10 that r−1 ∈ S−1,0 and ω ∈ S0,0.
Next we set Q = ν − εG(ω)µU/(4t). By Lemma 3.5 we have Q = O(εt−2+Cε〈r − t〉).

Moreover, as computed in the proof of Lemma 3.5, we have

Qt −Qr = µqQ+
ε2G(ω)

4t2
(−Us +

1

2
G(ω)AU)µ+

εG(ω)

4t2
µU = µqQ+ εS−2,0.

Fix a multiindex I with |I| > 0, and suppose |ZJQ| ≲ εt−2+Cε〈r − t〉 for all |J | < |I|. By
(1.18), we have

|(∂t − ∂r)Z
IQ| ≲

∑
|J |≤|I|

|µqZ
JQ|+ εt−2+Cε + (t+ r)−1

∑
|J |≤|I|

|ZJQ|

≲ (|µq|+ (t+ r)−1)
∑

|J |=|I|

|ZJQ|+ εt−2+Cε.

Note that Q ≡ 0 in the region r − t < −R, and note that when r − t ≥ −R we have∫ t1

t

ετ−2+Cε dτ ≲ εt−2+Cε(t1 − t) ≲ εt−2+Cε〈r − t〉.

By the Gronwall’s inequality, we conclude that
∑

|J |=|I| |ZIQ| ≲ εt−2+Cε〈r − t〉. Thus, we
have Q ∈ εS−2,1. By Lemma 1.9, we have ∂Q ∈ εS−2,0 and thus Qr ∈ εS−2,0. This implies
that

qrνq −
ε

4t
G(ω)qr∂q(µU) ∈ εS−2,0.

Since qr ≥ C−1t−Cε and qr = ∂q ∈ S0,0, we can show that q−1
r ∈ S0,0. This easily follows

from the fact that ZI(q−1
r ) can be written as a linear combination of terms of the form

q−1−m
r ZI1qr · · ·ZImqr,

∑
|I∗| = |I|.

We thus conclude that
νq −

ε

4t
G(ω)∂q(µU) ∈ εS−2,0.

Finally, note that
ε

4t
G(ω)µU ∈ εS−1,0,

ε

4t
G(ω)∂q(µU) =

ε

4t
G(ω)(µqU − 2A) ∈ εS−1,−1−γ.
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And since 〈r − t〉 ≲ t in D, we conclude that

ν = Q+
ε

4t
G(ω)µU ∈ εS−1,0 + εS−2,1 ⊂ εS1,0,

νq = νq −
ε

4t
G(ω)∂q(µU) +

ε

4t
G(ω)∂q(µU) ∈ εS−2,0 + εS−1,−1−γ ⊂ εS−1,−1.

The following proposition states that q is an approximate optical function.

Proposition 3.7. We have gαβ(εr−1U)qαqβ ∈ S−2,1.

Proof. Since ν ∈ εS−1,0 and λi ∈ S−1,0, we have

gαβ0 qαqβ

= g000 (
µ+ ν

2
)2 + 2g0i0 (

µ+ ν

2
)(λi +

ωi(ν − µ)

2
) + gij0 (λi +

ωi(ν − µ)

2
)(λj +

ωj(ν − µ)

2
)

=
1

4
G(ω)µ2 +

1

2
(g000 − gij0 ωiωj)µν + (g0i0 − gij0 ωj)µλi +

1

4
g00ν2 +

1

2
g0i0 ν(2λi + ωiν)

+
1

4
gij0 (2λi + ωiν)(2λj + ωjν)

=
1

4
G(ω)µ2 +

1

2
(g000 − gij0 ωiωj)µν + (g0i0 − gij0 ωj)µλi mod S−2,0

=
1

4
G(ω)µ2 mod S−1,0.

If we replace (gαβ0 ) with (mαβ) in the computations above, we have

mαβqαqβ = −µν −mijωjµλi mod S−2,0 = −µν mod S−2,0.

Here note that mijωjλi =
∑

i ωi(qi − ωiqr) = 0. Moreover, since εr−1U ∈ εS−1,0, by Lemma
1.11 we have

gαβ(εr−1U)−mαβ − gαβ0 εr−1U ∈ ε2S−2,0.

Moreover, by Lemma 1.9 and q ∈ S0,1, we have ∂q ∈ S0,0. We thus conclude that

gαβ(εr−1U)qαqβ = mαβqαqβ + gαβ0 εr−1Uqαqβ + (gαβ(εr−1U)−mαβ − gαβ0 εr−1U)qαqβ

= −µν + ε

4r
G(ω)µ2U mod S−2,0

= −µ(ν − ε

4t
G(ω)µU) +

ε(t− r)

4rt
G(ω)µ2U mod S−2,0

∈ εS−2,1 + S−2,0 ⊂ S−2,1.

In the last line we apply Lemma 3.6.
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In order to prove that εr−1U is an approximate solution to (1.1), we need the following
lemma.

Lemma 3.8. We have gαβ(εr−1U)qαβ = ε
2t
GAµ− r−1µ mod S−2,0.

Proof. We first note that
εt−1νs = νt − qtνq = (νt + νr)− ννq,∑

l

∂iωlνωl
= νi − qiνq = (νi − ωiνr)− λiνq.

By Lemma 1.9 and since ν ∈ εS−1,0, we conclude that νt+ νr, νi−ωiνr ∈ εS−2,0. By Lemma
3.6, we have ννq ∈ ε2S−2,−1 and λiνq ∈ εS−2,−1. Thus, we have εt−1νs,

∑
l ∂iωlνωl

∈ εS−2,0.
Moreover, we have ∂λi ∈ S−1,−1 by Lemma 1.9 and Lemma 3.6. It follows that

qtt = ∂t(
µ+ ν

2
) =

1

4
µq(µ+ ν) +

ε

2t
µs +

1

4
νq(µ+ ν) +

ε

2t
νs

=
1

4
µqµ+

1

4
µqν +

ε

2t
µs +

1

4
νqµ mod εS−2,0 =

1

4
µqµ mod S−1,−1,

qti = ∂i(
µ+ ν

2
) =

1

2
(µq + νq)(λi +

ωi(ν − µ)

2
) +

1

2

∑
l

(µωl
+ νωl

)∂iωl

= −1

4
ωiµqµ mod S−1,−1,

qij = ∂i(λj +
ωj(ν − µ)

2
)

= ∂iλj +
1

2
∂iωj(ν − µ) +

1

2
ωj(νq − µq)(λi +

ωi(ν − µ)

2
) +

1

2
ωj

∑
l

(µωl
+ νωl

)∂iωl

=
1

4
ωiωjµµq + ∂iλj −

1

2
µ∂iωj −

1

4
ωjµq(2λi + ωiν)

− 1

4
ωjνqωiµ+

1

2
ωj

∑
l

µωl
∂iωl mod εS−2,0

=
1

4
ωiωjµµq mod S−1,0.

Thus, we have ∂2q ∈ S0,−1 and

gαβ0 qαβ =
1

4
G(ω)µqµ mod S−1,0

and
□q = −(

1

4
µqµ+

1

4
µqν +

ε

2t
µs +

1

4
νqµ) +

1

4
µµq −

1

4
µνq −

1

4
µqν

+
∑
i

[∂iλi −
1

2
µ∂iωi −

1

2
ωiµqλi +

1

2
ωi

∑
l

µωl
∂iωl] mod εS−2,0

=
ε

4t
GAµ− 1

2
µνq −

1

2
µqν − r−1µ+

∑
i

∂iλi mod εS−2,0.
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Here we note that
∑

i ∂iωi = 2/r,
∑

i ωi∂iωl = 0 and
∑

i ωiλi = 0. Moreover, we have∑
i ωi∂rλi = ∂r(

∑
i ωiλi) = 0 and (∂i − ωi∂r)λi ∈ S−2,0, so∑

i

∂iλi =
∑
i

ωi∂rλi +
∑
i

(∂i − ωi∂r)λi ∈ S−2,0.

By Lemma 3.6, we conclude that

□q = ε

4t
GAµ− 1

2
µ · ε

4t
G∂q(µU)−

1

2
µq ·

ε

4t
GµU − r−1µ mod S−2,0

=
ε

2t
GAµ− ε

4t
GµµqU − r−1µ mod S−2,0.

In conclusion, we have

gαβ(εr−1U)qαβ = □q + gαβ0 εr−1Uqαβ + (gαβ(εr−1U)−mαβ − gαβ0 εr−1U)qαβ

=
ε

2t
GAµ− ε

4t
GµµqU − r−1µ+

ε

4r
GµqµU mod S−2,0

=
ε

2t
GAµ+

ε(t− r)

4tr
GµµqU − r−1µ mod S−2,0

=
ε

2t
GAµ− r−1µ mod S−2,0.

Finally we prove that εr−1U has good pointwise bounds and is an approximate solution
to (1.1) in D.

Proposition 3.9. We have

εr−1U ∈ εS−1,0, gαβ(εr−1U)∂α∂β(εr
−1U) ∈ εS−3,0.

In other word, for (t, r, ω) ∈ D,

|ZI(εr−1U)| ≲I εt
−1+CIε,

|ZI(gαβ(εr−1U)∂α∂β(εr
−1U))| ≲I εt

−3+CIε.

Note that we have a better bound for ∂(εr−1U): for all (t, r, ω) ∈ D,

|∂(εr−1U)| ≲ εt−1.

Proof. We have proved U ∈ S0,0 in Lemma 3.6, so it is clear that εr−1U ∈ εS−1,0. In
addition,

∂t(εr
−1U) = εr−1(Uqqt + Usεt

−1) = εr−1(
1

2
(µ+ ν)Uq + Usεt

−1)

= −εr−1A mod εS−2,0,
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∂i(εr
−1U) = εr−2ωiU + εr−1(Uqqi +

∑
j

Uωj
∂iωj)

= εr−1Uq(
1

2
(ν − µ)ωi + λi) mod εS−2,0 = εr−1Aωi mod εS−2,0.

Since |A| ≲ 1, we conclude that |∂(εr−1U)| ≲ εt−1 in D.
We have

(εr−1U)tt = εr−1(−Usεt
−2 + 2Usqqtεt

−1 + Ussε
2t−2 + qttUq + q2tUqq)

= εr−1(2Usqqtεt
−1 + qttUq + q2tUqq) mod εS−3,0

= εr−1(qttUq + q2tUqq) mod εS−2,−1,

(εr−1U)ti = εr−1(Uqqqtqi +
∑
l

Uωlqqt∂iωl + Uqqit + Usqqiεt
−1 +

∑
l

Usωl
∂iωlεt

−1)

− εr−2ωi(Uqqt + Usεt
−1)

= εr−1(Uqqqtqi + Uqqit) mod εS−2,−1,

(εr−1U)ij = εr−1(Uqqqiqj +
∑
l

Uqωl
(qi∂jωl + qj∂iωl) + Uqqij +

∑
l,l′

Uωlωl′
∂iωl∂jωl′)

− εr−2ωi(Uqqj +
∑
l

Uωl
∂jωl)− εr−2ωj(Uqqi +

∑
l

Uωl
∂iωl) + ε∂j(r

−2ωi)

= εr−1(Uqqqiqj +
∑
l

Uqωl
(qi∂jωl + qj∂iωl) + Uqqij)− εr−2Uq(ωiqj + ωjqi) mod εS−3,0

= εr−1(Uqqqiqj + Uqqij) mod εS−2,−1

Here we note that εS−2,−1−γ+εS−3,0 ⊂ εS−2,−1. Besides, we have gαβ(εr−1U)−mαβ ∈ εS−1,0.
In summary, we have

gαβ(εr−1U)∂α∂β(εr
−1U)

= gαβ(εr−1U)qαqβεr
−1Uqq + gαβ(εr−1U)qαβεr

−1Uq + g00(εr−1U)εr−1(2Usqqtεt
−1)

+ gij(εr−1U)[εr−1
∑
l

Uqωl
(qi∂jωl + qj∂iωl)− εr−2Uq(ωiqj + ωjqi)] mod εS−3,0

= gαβ(εr−1U)qαqβεr
−1Uqq + gαβ(εr−1U)qαβεr

−1Uq − εr−1(2Usqqtεt
−1)

+
∑
i

[2εr−1
∑
l

Uqωl
qi∂iωl − 2εr−2Uqωiqi] mod εS−3,0.

Here we have ∑
i

qi∂iωl =
∑
i

λi∂iωl +
∑
i

ωiqr∂iωl =
∑
i

λi∂iωl + 0 ∈ S−2,0.

By Proposition 3.7 and Lemma 3.8, we have

gαβ(εr−1U)∂α∂β(εr
−1U) = (

ε

2t
GAµ− r−1µ)εr−1Uq −

ε2

rt
GAUqqt − 2εr−2Uqqr mod εS−3,0

= − ε2

2tr
GAνUq − εr−2νUq mod εS−3,0 ∈ εS−3,0.
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This finishes the proof.

3.2.3 Approximate solution uapp

Let TA � 1 be a large constant such that all the estimates in Section 3.2.2 hold for t ≥ TA.
Choose η ∈ C∞(R) such that η ≡ 1 on [2TA,∞) and η ≡ 0 on (−∞, TA]. In addition, choose
ψ ∈ C∞

c (R) such that ψ ≡ 1 on [3/4, 5/4] and ψ ≡ 0 outsides [1/2, 3/2].
We now define the approximate solution uapp by

uapp(t, x) := εr−1η(t)ψ(r/t)U(ε ln(t)− δ, q(t, r, ω), ω), r = |x|, ωi = xi/r. (3.32)

Note that uapp(t, x) is defined for all (t, x) ∈ [0,∞)×R3. If t ≤ TA, then we have uapp ≡ 0. If
t ≥ TA ≥ 2R, since U ≡ 0 for r ≤ t− R, uapp has no singularity at |x| = 0. Moreover, since
ψ ≡ 0 when |t− r| > t/2, we have uapp ≡ 0 unless (t, x) ∈ D; since ψ ≡ 1 when |t− r| ≤ t/4,
we have uapp = εr−1U whenever |t− r| ≤ t/4 and t ≥ 2TA.

We now prove the estimates for uapp in Proposition 3.2. The estimates are in fact the
same as those in Proposition 3.9. However, note that in Proposition 3.9 we assume that
(t, x) ∈ D while here we only assume t ≥ 0.

Proof of Proposition 3.2. When t ≤ TA, we have uapp ≡ 0. When TA ≤ t ≤ 2TA, we have
ZIuapp = OR(ε). This is because the support of uapp lies in |x| ∼A 1, and because U, η, ψ and
all their derivatives are O(1). Also note that ε ≤ (2TA)

Mεt−M for each M and all t ≤ 2TA.
Suppose t ≥ 2TA. Now η plays no role since η(t) = 1 for all t ≥ 2TA � 1. For |r−t| ≤ t/4,

all the estimates follow directly from Proposition 3.9. If q(t, r, ω) ≤ −R i.e. r − t ≤ −R, or
if r > 3t/2, then uapp ≡ 0 so there is nothing to prove. So now we can assume t ≥ 2TA,
5t/4 ≤ r ≤ 3t/2. Note that now we have |r − t| ∼ t and (t, x) ∈ D, so

|∂kZI(εr−1U)| ≲ 〈t− r〉−k
∑

|J |≤|I|+k

|ZJ(εr−1U)| ≲ εt−1−k+Cε.

Since ∂kZI(r/t) = O(t−k) for t ∼ r, we have ∂kZI(ψ(r/t)) = O(t−k) for all t ≥ TA. In
particular, we have ∂(ψ(r/t)) = ψ′∂(r/t) = O(t−1). It follows that for each I,

|∂uapp| ≲ |∂(ψ(r/t))| · |εr−1U |+ |ψ(r/t)| · |∂(εr−1U)| ≲ εt−2+Cε ≲ εt−1, (3.33)

|ZIuapp| ≲
∑

|J |+|K|=|I|

|ZJ(ψ(r/t))| · |ZK(εr−1U)| ≲ εt−1+Cε, (3.34)

|ZI∂2uapp| ≲
∑

|J |≤|I|

|∂2ZJuapp| ≲ 〈r − t〉−2
∑

|J |≤|I|+2

|ZJuapp| ≲ εt−3+Cε. (3.35)

And since ZI(gαβ(uapp)) = O(1) for each I, we conclude that

|ZI(gαβ(uapp)∂α∂βuapp)(t, x)| ≲ ε(1 + t)−3+Cε.
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3.3 Energy estimates and Poincare’s lemma
We now derive the energy estimates and Poincaré’s lemma, which are the main tools in the
proof of our main theorem. The results in this section are similar to those in [21, 1].

3.3.1 Setup
Suppose t ≥ TA � 1 and ε� 1. Assume that u is a solution of (1.1) vanishing for r ≤ t−R
and satisfying the pointwise estimates: for all t ≥ TA � 1 we have

|u| ≲ εt−1+Cε, |∂u(t, x)| ≲ εt−1; (3.36)

if q(t, r, ω) ≤ t1/4 and t ≥ TA, we have

|u− εr−1U | ≲ εt−5/4+Cε. (3.37)

Recall that U = U(t, r, ω) is the asymptotic profile defined in (3.15). In Section 3.4 we will
check these estimates when we apply the energy estimates.

3.3.2 Energy estimates
Fix a smooth function ϕ(t, x) with ϕ(t) ∈ C∞

c (R3) for each t ≥ TA and ϕ is supported in
r ≥ t−R. We define the energy

Eu(ϕ)(t) =

∫
R3

w(t, x)(−2g0α(u)ϕtϕα + gαβ(u)ϕαϕβ)(t, x) dx

=

∫
R3

w(t, x)(|∂ϕ|2 − 2(g0α(u)−m0α)ϕtϕα − (gαβ(u)−mαβ)ϕαϕβ)(t, x) dx.

(3.38)
The weight function w is defined by

w(t, x) = exp(c0ε ln(t) · σ(q(t, r, ω))) (3.39)

with
σ(q) = (R + q + 1)−λ.

Here q(t, r, ω) is defined in Section 3.2; c0 �A 1 is a large constant to be chosen; 0 < λ < γ
where γ comes from the decay assumption (3.7) of A. Note that ϕ ≡ 0 unless r ≥ t − R,
and q(t, r, ω) ≥ −R when r ≥ t−R. So w(t, x) is well-defined in the support of ϕ.

We remark that this type of the weight w was already used in the previous work on small
data global existence by Lindblad [21] and Alinhac [1]. It can be viewed as an extended
version of the method of ghost weight introduced by Alinhac; see [2].

Our goal is to prove the following energy estimates.
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Proposition 3.10. For 1 � TA ≤ t ≤ T , we have

Eu(ϕ)(t) ≤ Eu(ϕ)(T ) +

∫ T

t

2
∥∥gαβ(u)∂α∂βϕ(τ)∥∥L2(w)

‖∂ϕ(τ)‖L2(w) + Cετ−1 ‖∂ϕ‖2L2(w) dτ.

(3.40)
Here ‖f‖2L2(w) :=

∫
R3 |f |2w dx and C > 0 is a constant (which could depend on u, ∂u and the

weight w).

The proof starts with a computation of d
dt
Eu(ϕ)(t). For simplicity, we write gαβ = gαβ(u).

Then, by applying integration by parts, we have
d

dt
Eu(ϕ)(t)

=

∫
R3

wt(−2g0αϕtϕα + gαβϕαϕβ)

+ w(−2g0αϕttϕα − 2g0αϕtϕαt − 2∂tg
0αϕtϕα + 2gαβϕαtϕβ + ∂tg

αβϕαϕβ) dx

=

∫
R3

wt(−2g0αϕtϕα + gαβϕαϕβ) + w(−2g0αϕαtϕt + 2giβϕitϕβ − 2∂tg
0αϕtϕα + ∂tg

αβϕαϕβ) dx

=

∫
R3

wt(−2g0αϕtϕα + gαβϕαϕβ)− 2wig
iβϕtϕβ

+ w(−2g0αϕαtϕt − 2giβϕtϕiβ − 2∂tg
0αϕtϕα − 2∂ig

iβϕtϕβ + ∂tg
αβϕαϕβ) dx

=

∫
R3

wtg
αβϕαϕβ + w(−2gαβϕαβϕt − 2∂αg

αβϕtϕβ + ∂tg
αβϕαϕβ)− 2wαg

αβϕtϕβ dx.

By setting Tα := qt∂α − qα∂t, we have ϕα = q−1
t (Tαϕ+ qαϕt). Note that

wt = c0(εt
−1σ(q) + ε ln(t)σ′(q)qt)w, wi = c0ε ln(t)σ

′(q)qiw.

Thus,

gαβϕαϕβqt − 2gαβϕtϕβqα = gαβq−1
t (Tαϕ+ qαϕt)(Tβϕ+ qβϕt)− 2gαβqαϕtq

−1
t (Tβϕ+ qβϕt)

= gαβq−1
t TαϕTβϕ− gαβq−1

t qαqβϕ
2
t

and
wtg

αβϕαϕβ − 2wαg
αβϕtϕβ = c0ε ln(t)σ

′(q)w(gαβq−1
t TαϕTβϕ− gαβq−1

t qαqβϕ
2
t )

+ c0εt
−1σ(q)w(−g00ϕ2

t + gijϕiϕj).

Note that T0 = 0, (gij) = (δij+O(εt
−1+Cε)) is positive definite for ε� 1 and t ≥ TA � 1;

σ′(q) = −λ(R + q + 1)−1−λ < 0; by Lemma 3.4 we have

qt = (µ+ ν)/2 ≤ −ct−Cε + Cε(t+ r)−1+Cε < 0.

We conclude that
c0ε ln(t)σ

′(q)wgαβq−1
t TαϕTβϕ ≥ 0.

In addition, we have the following lemma.
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Lemma 3.11. For all t ≥ TA, we have

|c0ε ln(t)σ′(q)wgαβq−1
t qαqβϕ

2
t | ≤ Cc0εt

−1σ(q)wϕ2
t .

Note that we do not need to assume that (t, x) ∈ D in this lemma.

Proof. First, we suppose q(t, r, ω) ≤ t1/4. By Proposition 3.7 and (3.37), we have

|gαβ(u)qαqβ| ≤ |(gαβ(u)− gαβ(εr−1U))qαqβ|+ |gαβ(εr−1U)qαqβ|
≲ |u− εr−1U | · |∂q|2 + t−2+Cε〈r − t〉 ≲ t−5/4+Cε.

Here we note that ∂q = O(tCε) since |µ| ≲ tCε and |ν|+
∑

i |λi| ≲ t−1+Cε by Lemma 3.4. We
also note that 〈r − t〉 ≲ 〈q〉tCε ≲ t1/4+Cε by Lemma 3.3. Thus,

|c0ε ln(t)σ′(q)wgαβq−1
t qαqβϕ

2
t | ≲ c0ε ln(t) · λ(q +R + 1)−1σ(q)w · tCε · t−5/4+Cε · ϕ2

t

≲ c0εt
−5/4+1/8+Cεσ(q)wϕ2

t

≲ c0εt
−1σ(q)wϕ2

t .

Here we note that ln(t) ≲ t1/8 and that |qt| ≳ t−Cε by Remark 3.4.1.
Next we suppose q(t, r, ω) ≥ t1/4. Since µ = O(tCε) and ν, λi = O(t−1+Cε) for all t ≥ TA

(we do not need to assume (t, x) ∈ D; see Lemma 3.4), we have ∂q = O(tCε) and |qt| ≳ t−Cε.
Thus,

|gαβqαqβ| ≲ |mαβqαqβ|+ |u||∂q|2 ≲ |µν|+
∑
i

|λi|2 + εt−1+Cε ≲ t−1+Cε.

It follows that

|c0ε ln(t)σ′(q)wgαβq−1
t qαqβϕ

2
t | ≲ c0ε ln t · λ(q +R + 1)−1σ(q)|qt|−1|gαβqαqβ| · wϕ2

t

≲ c0ε(ln t)t
−1/4σ(q) · εt−1+Cε · wϕ2

t

≲ c0εt
−9/8+Cεσ(q)wϕ2

t ≲ c0εt
−1σ(q)wϕ2

t .

We now finish the proof of Proposition 3.10. Since

−g00ϕ2
t + gijϕiϕj = |∂ϕ|2 +O(|u||∂ϕ|2) ∼ |∂ϕ|2,

we have
gαβϕαϕβwt − 2gαβϕtϕβwα ≥ −Cc0εt−1σ(q)w|∂ϕ|2.
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In conclusion,

d

dt
Eu(ϕ)(t) ≥

∫
R3

w(−2gαβϕαβϕt − 2∂αg
αβϕtϕβ + ∂tg

αβϕαϕβ)− Cc0εt
−1σ(q)w|∂ϕ|2 dx

≥
∫
R3

−2w|gαβϕαβ||ϕt| − Cεt−1w|∂ϕ|2 dx

≥ −2
∥∥gαβϕαβ

∥∥
L2(w)

‖ϕt‖L2(w) − Cεt−1 ‖∂ϕ‖2L2(w) .

Here we note that ∂g∗∗ = O(εt−1) because of (3.36). We also note that our constant C
depends on c0 from (3.39). Integrate this inequality with respect to t on [t, T ] and we
conclude (3.40).

3.3.3 Poincare’s lemma
Fix a smooth function ϕ(t, x) with ϕ(t) ∈ C∞

c (R3) for each t ≥ TA and ϕ is supported in
r ≥ t−R. As in the previous sections, we shall assume that t ≥ TA � 1 and ε� 1.

Lemma 3.12. For ϕ as above, we have∫
R3

〈t− r〉−2|ϕ|2 dx ≲
∫
R3

|∂ϕ|2 dx. (3.41)

Proof. Note that 〈r − t〉 ∼ (r − t+R + 1) if r − t ≥ −R. Then we have∫
〈t− r〉−2|ϕ|2 dx ≲R

∫
S2

∫ ∞

0

(r − t+R + 1)−2|ϕ|2 r2drdSω

=

∫
S2

∫ ∞

0

|ϕ|2 r2∂r(−(r − t+R + 1)−1) drdSω

=

∫
S2

∫ ∞

0

∂r(|ϕ|2r2)(r − t+R + 1)−1 drdSω

=

∫
S2

∫ ∞

0

(2|ϕ|2r + 2ϕϕrr
2)(r − t+R + 1)−1 drdSω

≲R

∫
S2

∫ ∞

0

2|ϕr−1 + ϕr| · |ϕ|〈t− r〉−1 r2drdSω

≲
(∫

〈t− r〉−2|ϕ|2 dx
)1/2(∫

|ϕr−1 + ϕr|2 dx
)1/2

.

Since∫
2ϕϕrr

−1 dx =

∫
S2

∫ ∞

0

∂r(ϕ
2)r drdSω =

∫
S2

∫ ∞

0

−ϕ2 drdSω = −
∫
ϕ2r−2 dx,
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we have ∫
|ϕr−1 + ϕr|2 dx =

∫
ϕ2
r dx.

We then conclude (3.41).

We can also prove a weighted version of Poincaré’s lemma. Note that the value of δ in
s = ε ln(t)− δ is chosen in the proof of the next lemma.

Lemma 3.13. For ϕ as above, we have∫
ϕ2q2r〈q〉−2w dx ≲

∫
|∂ϕ|2w dx. (3.42)

Proof. Note that 〈q〉 ∼ (q + R + 1) since ϕ is supported in q ≥ −R. We first claim that
whenever r − t ≥ −R and t ≥ TA, we have

∂q(qr)w + qrwq ≤ Cδ〈q〉−1wqr. (3.43)

Since qr ∼ |µ| whenever t ≥ TA, it suffices to prove (3.43) with qr replaced by |µ| on the
right hand side.

Note that

∂q(qr)w + qrwq = w(∂q(qr)− qrc0ε ln(t) · λ(q +R + 1)−1−λ)

=
1

2
w(νq − µq − c0ε ln(t) · λ(q +R + 1)−1−λ(ν − µ))

=
1

2
w(

1

2
GAq(ε ln(t)− δ) + c0ε ln(t) · λ(q +R + 1)−1−λ)µ

+O(w(|νq|+ c0λε ln(t) · (q +R + 1)−1−λ|ν|)).

First we suppose r ≲ t. In this case, recall from Remark 3.5.1 and Lemma 3.4 that

|νq|+ c0λε ln(t) · (q +R + 1)−1−λ|ν|
≲ εt−1+Cε〈q〉−1−γ + εt−2+Cε + c0λε ln(t)(q +R + 1)−1−λ · εt−1+Cε

≲ (εt−1+Cε〈q〉−1−γ + εt−2+Cε + c0λε ln(t)(q +R + 1)−1−λ · εt−1+Cε)|µ|.

In the last estimate, we note that |µ| ≳ t−Cε. It follows that

∂q(qr)w + qrwq ≤
1

2
wε ln(t) · (1

2
GAq − c0 · λ(q +R + 1)−1−λ)|µ| − 1

4
wGAqδµ

+ Cw(εt−1+Cε〈q〉−1−γ + εt−2+Cε + c0λε ln(t)(q +R + 1)−1−λ · εt−1+Cε)|µ|

≤ wε ln(t) · (C(q +R + 1)−2−γ + (−1

2
+ Cεt−1+Cε)c0λ(q +R + 1)−1−λ)|µ|

+ Cδ〈q〉−2−γ|µ|+ Cεt−1+Cε〈q〉−1−γ|µ|+ Cεt−2+Cε|µ|.
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We choose ε � 1 and TA � 1 so that CεT−1+Cε
A ≤ 1/6. We also choose c0 �λ 1 so that

c0λ > 6C. It follows that
C + (−1

2
+ Cεt−1+Cε)c0λ < 0.

Also note that 〈q〉 ≲ (t+ r)Cε〈r − t〉 ≲ t1+Cε whenever t ∼ r. Thus, for ε < δ we have

∂q(qr)w + qrwq ≤ 0 + Cδ〈q〉−2−γ|µ|+ Cε〈q〉−2−γ+Cε|µ|+ Cε〈q〉−2+Cε|µ| ≤ Cδ〈q〉−1|µ|.

Next we suppose r > 2t. As proved in Remark 3.5.1, we have (r + t)1−Cε ≲ 〈q〉 ≲
(r + t)1+Cε and |νq| ≲ ε(t+ r)−2+Cε + εt−1+Cε(r + t)−1−γ+Cε. It follows that

∂q(qr)w + qrwq ≤ wε ln(t) · (C〈q〉−2−γ + (−1

2
+ Cεt−1+Cε)c0λ(q +R + 1)−1−λ)|µ|

+ Cδw〈q〉−2−γ|µ|+ Cw|µ|(ε(t+ r)−2+Cε + εt−1+Cε(r + t)−1−γ+Cε)

≤ wε ln(t) · (C〈q〉−2−γ + (−1

2
+ Cεt−1+Cε)c0λ(q +R + 1)−1−λ)|µ|

+ Cδw〈q〉−2−γ|µ|+ Cεw|µ|(〈q〉−2+Cε + t−1+Cε〈q〉−1−γ+Cε).

Again, by choosing ε�δ 1 and c0 �λ 1, we have

∂q(qr)w + qrwq ≤ 0 + Cδw〈q〉−2−γ|µ|+ Cεw|µ|〈q〉−1 ≤ Cδw〈q〉−1|µ|.

This finishes the proof of (3.43).
Now we have∫

|ϕ|2q2r〈q〉−2w dx

≤ C

∫
S2

∫ ∞

0

|ϕ(t, rω)|2r2q2r(q +R + 1)−2w drdSω

= C

∫
S2

∫ ∞

0

(q +R + 1)−1∂r(ϕ
2r2qrw) drdSω

= C

∫
S2

∫ ∞

0

(q +R + 1)−1[2ϕϕrr
2w + 2ϕ2rw + ϕ2r2∂q(qr)w + ϕ2r2qrwq]qr drdSω

≤ C

∫
S2

∫ ∞

0

(q +R + 1)−1(2ϕϕr + 2ϕ2r−1)r2qrw drdSω

+ C

∫
S2

∫ ∞

0

(q +R + 1)−1ϕ2r2 · Cδ〈q〉−1qrw · qr drdSω

≤ C

(∫
(|ϕr|2 + r−2|ϕ|2)w dx

)1/2

·
(∫

ϕ2〈q〉−2q2rw dx

)1/2

+ CAδ

∫
〈q〉−2ϕ2q2rw dx.
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Here the constant CA in the second term only depends on the scattering data, and in par-
ticular it does not depend on ε, t or TA. Thus, by choosing δ := 1

4CA
, we conclude that∫

|ϕ|2q2r〈q〉−2w dx ≲
∫
(|ϕr|2 + r−2|ϕ|2)w dx.

Now recall that r ≥ t−R when ϕ 6= 0. If q ≤ t1/2 we have 〈q〉2 ≤ Ct and qr ≥ C−1t−Cε,
as proved before. Thus, if t ≥ TA � 1,∫

q≤t1/2
r−2ϕ2w dx ≲ (t−R)−2 · CtCε · Ct

∫
ϕ2q2r〈q〉−2w dx

≲ t−1+Cε

∫
ϕ2q2r〈q〉−2w dx.

If q ≥ t1/2, we have w(q) ≤ exp(Cc0ε ln(t) · t−λ/2) ≤ C for t �A 1 and ε � 1. Besides,
we also have w ≥ 1. Thus, by Hardy’s inequality,∫

q≥t1/2
r−2ϕ2w dx ≲

∫
r−2ϕ2 dx ≲

∫
|∂ϕ|2 dx ≲

∫
|∂ϕ|2w dx.

By choosing TA � 1 and ε� 1, we have∫
|ϕ|2q2r〈q〉−2w dx ≤ C

∫
|ϕr|2w dx+ C

∫
q≥t1/2

r−2|ϕ|2w dx+ C

∫
q<t1/2

r−2|ϕ|2w dx

≤ C

∫
|∂ϕ|2w dx+ Ct−1+Cε

∫
ϕ2q2r〈q〉−2w dx

≤ C

∫
|∂ϕ|2w dx+

1

2

∫
ϕ2q2r〈q〉−2w dx.

This finishes the proof.

We end this section with the following key lemma. It is crucial that we get a factor εt−1

instead of εt−1+Cε in the estimate below.

Lemma 3.14. Suppose ϕ is supported in |x| − t ≥ −R and ϕ(t) ∈ C∞
c (R3) for each t. Let

F := gαβ0 ∂α∂βuapp where uapp is defined in (3.32). Then for t ≥ TA � 1, we have

‖ϕF‖L2(w) ≲ εt−1 ‖∂ϕ‖L2(w) .

Proof. Write F = ε
4r
G(ω)qrAq + F2. By the weighted Poincaré’s lemma, i.e. Lemma 3.13,

we have∥∥εr−1G(ω)qrAqϕ
∥∥2

L2(w)
≲ ε2(t−R)−2

∫
q2r〈q〉−2ϕ2w dx ≲ ε2t−2 ‖∂ϕ‖2L2(w) .
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We next estimate F2. If −R ≤ r − t ≤ t/4, we have uapp = εr−1U and (t, x) ∈ D. As
computed in the proofs of Proposition 3.7, Lemma 3.8 and Proposition 3.9, we have

F = εr−1(gαβ0 qαβUq + gαβ0 qαqβUqq) mod εS−2,−1

= εr−1(
1

4
G(ω)µqµUq +

1

4
G(ω)µ2Uqq) mod εS−2,−1

= − ε

2r
G(ω)µAq mod εS−2,−1

=
ε

4r
G(ω)qrAq mod εS−2,−1.

Here we also apply Lemma 3.6 to control the remainder terms. Thus, F2 = O(εt−2+Cε〈r −
t〉−1) whenever −R ≤ r−R ≤ t/4. If r−t < −R, we have A ≡ 0 and uapp ≡ 0. Thus F2 ≡ 0.
If r− t > t/4, we have uapp ≡ 0 if r− t > t/2, or ∂2uapp = O(εt−3+Cε) if t/4 ≤ r− t ≤ t/2 by
(3.35). In both cases, we have F = O(εr−3+Cε). Moreover, whenever r− t ≥ t/4, by Lemma
3.3 we have 〈q〉 ≳ 〈r− t〉(t+ r)−Cε ≳ r1−Cε; by Lemma 3.4 we have qr = (ν−µ)/2 = O(tCε).
Thus,

| ε
4r
G(ω)qrAq| ≲ εr−1 · tCε · 〈q〉−2−γ ≲ εr−3−γ+Cε.

It follows that F2 = O(εr−3+Cε) whenever r − t ≥ t/4.
Since 1 ≤ w ≤ CtCε, we have

‖ϕF2‖2L2(w) =
∥∥ϕF2χr−t≤t/4

∥∥2

L2(w)
+
∥∥ϕF2χr−t≥t/4

∥∥2

L2(w)

≲
∫
r−t≤t/4

ε2t−4+Cε〈r − t〉−2|ϕ|2 dx+
∫
r−t≥t/4

ε2r−6+Cε|ϕ|2 dx

≲
∫
ε2t−2〈t− r〉−2ϕ2 dx ≲ ε2t−2 ‖∂ϕ‖2L2(R3) ≲ ε2t−2 ‖∂ϕ‖2L2(w) .

Here we use the Poincaré’s lemma, i.e. Lemma 3.12. We are done.

3.4 Continuity Argument
3.4.1 Setup
Fix χ(s) ∈ C∞

c (R) such that χ ∈ [0, 1] for all s, χ ≡ 1 for |s| ≤ 1 and χ ≡ 0 for |s| ≥ 2. Also
fix a large time T > 0. Consider the equation of v = vT (t, x)

gαβ(uapp + v)∂α∂βv = −χ(t/T )gαβ(uapp + v)∂α∂βuapp, t > 0; v ≡ 0, t ≥ 2T. (3.44)

We have the following results.

(a) By the local existence theory of quasilinear wave equations, we can find a local smooth
solution to (3.44) near t = 2T .
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(b) The solution on [T1,∞) can be extended to [T1 − ϵ,∞) for some small ϵ > 0 if∥∥∂kv∥∥
L∞([T1,∞)×R3)

<∞, for all k ≤ 4.

(c) The solution to (3.44) has a finite speed of propagation: vT (t, x) = 0 if r + t > 6T or
r < t−R, so ZI(t/T ) = O(1) when T/2 ≤ t ≤ 2T .

(d) If the solution exists for t ≤ T , we have gαβ(u)∂α∂βu = 0 for t ≤ T where u = uapp + v.

The proofs of these statements are standard. We refer to [30] for the proofs of (a) and
(b). In this section, our goal is to prove the following proposition.

Proposition 3.15. Fix an integer N ≥ 6. Then there exist constants εN > 0 which depend
on N and R, such that for any 0 < ε < εN , (3.44) has a solution v = vT (t, x) for all t ≥ 0.
In addition, v ≡ 0 if r < t−R; for all |I| ≤ N , we have∥∥∂ZIv(t)

∥∥
L2(R3)

≲I ε(1 + t)−1/2+CIε, ∀t ≥ 0. (3.45)

Recall that we choose R based on the support assumption (3.6) of our scattering data A.
It should be pointed out that the N in this proposition is different from the N in Theorem

3.1.
We use a continuity argument to prove this proposition. From now on we assume ε� 1,

which means ε is arbitrary in (0, εN) for some fixed small constant εN depending on N .
First we prove the result for t ≥ TN,A, where TN,A �N,A 1 is a sufficiently large constant
depending on N . We start with a solution v(t, x) for t ≥ T1 such that for all t ≥ T1 ≥ TN,A

and k + i ≤ N ,
Ek,i(t) :=

∑
l≤k,|I|≤i

Eu(∂
lZIv)(t) ≤ Bk,iε

2t−1+Ck,iε, (3.46)

|u| ≤ B0εt
−1+C0,2ε/2, |∂u| ≤ B1εt

−1. (3.47)
Here u := v + uapp and Eu is defined in (3.38). We remark that Ck,i, Bk,i depend on k, i but
not on N . Our goal is to prove that (3.46) and (3.47) hold with Bk,i, B0, B1 replaced by
smaller constants B′

k,i, B
′
0, B

′
1, and with Ck,i unchanged, assuming that ε� 1 and TN,A � 1.

To achieve this goal, we first induct on i, and then we induct on k for each fixed i. For each
(k, i), we want to prove the following inequality∑

l≤k,|I|≤i

∥∥gαβ(u)∂α∂β∂lZIv
∥∥
L2(w)

≤ CNεt
−1Ek,i(t)

1/2

+ CNεt
−1+Cε(Ek−1,i(t)

1/2 + Ek+1,i−1(t)
1/2)

+ Cεt−3/2+Cε.

(3.48)

Here E−1,· = E·,−1 = 0, and C,CN are constants whose meanings will be explained later. We
then combine (3.48) with the energy estimates (3.40) to derive an inequality on Ek,i(t).



CHAPTER 3. EXISTENCE OF MODIFIED WAVE OPERATORS 59

We remark that the proof in this section is closely related to that of the energy estimates
in Section 9 of Lindblad [21].

In the following computation, let C denote a universal constant or a constant from the
previous estimates for q and uapp (e.g. from Proposition 3.2). Here C is allowed to depend
on (k, i) or N , but we will never write it as Ck,i or CN . We will choose the constants in the
following order:

C → C0,0, B0,0 → C1,0, B1,0 → · · · → CN,0, BN,0

→ C0,1, B0,1 → · · · → CN−1,1, BN−1,1

→ C0,2, B0,2 → · · · → CN−2,2, BN−2,2

. . .

→ C0,N , B0,N

→ B0, B1 → CN → TN,A → ε.

We emphasize that if a constant B appears before a constant B′, then B cannot depend
on B′.

In addition, since TN,A � 1 and ε � 1 are chosen at the end, we can control terms like
CNε and CNT

−γ+CNε
N,A for γ > 0 for any (k, i) by a universal constant, e.g. 1.

To end the setup, we derive a differential equation for ZIv from (3.44). If we commute
(3.44) with ZI , we have

gαβ(u)∂α∂βZ
Iv

= [□, ZI ]v + [gαβ(u)−mαβ, ZI ]∂α∂βv + (gαβ(u)−mαβ)[∂α∂β, Z
I ]v

− ZI(χ(t/T )(gαβ(u)− gαβ(uapp))∂α∂βuapp)− ZI(χ(t/T )gαβ(uapp)∂α∂βuapp)

=: R1 +R2 +R3 +R4 +R5

(3.49)

with ZIv ≡ 0 for t ≥ 2T .

3.4.2 Pointwise bounds (3.47)
In the next few subsections, we always assume t ≥ TN,A � 1. Since 1 ≤ w ≤ CtCε, by (3.47)
and (3.38) we have

C−1 ‖∂ϕ‖L2(R3) ≤ ‖∂ϕ‖L2(w) ∼ Eu(ϕ)
1/2 ≤ CtCε ‖∂ϕ‖L2(R3) . (3.50)

Here we can choose ε� 1 and TN,A � 1 so that all constants in this inequality are universal.
If we combine this inequality with (3.46), we have∥∥∂ZIv(t)

∥∥2

L2(R3)
≤ CEu(Z

Iv)(t) ≤ CB0,iε
2t−1+C0,iε, |I| = i ≤ N,

so by the Klainerman-Sobolev inequality, we have

|∂ZIv(t)| ≤ CB
1/2
0,i+2εt

−1/2+C0,i+2ε/2(1 + t+ r)−1〈t− r〉−1/2, |I| = i ≤ N − 2. (3.51)
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Note that ∫ 2t

0

(1 + t+ ρ)−1〈t− ρ〉−1/2 dρ ≤ (1 + t)−1

∫ 2t

0

〈t− ρ〉−1/2 dρ

≤ 2(1 + t)−1

∫ t

0

(1 + ρ)−1/2 dρ

≲ (1 + t)−1/2,∫ ∞

2t

(1 + t+ ρ)−1〈t− ρ〉−1/2 dρ ≲
∫ ∞

2t

(1 + ρ)−3/2 dρ ≲ (1 + t)−1/2.

Thus, by integrating ∂rZIv(t, ρω) from ρ = t−R to ρ = r, we conclude that

|ZIv(t)| ≤ CB
1/2
0,i+2εt

−1+C0,i+2ε/2, |I| = i ≤ N − 2. (3.52)

If we let I = 0 in (3.51) and (3.52), we have

|∂v| ≤ CB
1/2
0,2 εt

−3/2+C0,2ε/2, |v| ≤ CB
1/2
0,2 εt

−1+C0,2ε/2.

Note that |uapp| ≤ Cεt−1+Cε and |∂uapp| ≤ Cεt−1. This allows us to replace B0, B1 with
B0/2, B1/2 in (3.47) as long as we choose TN,A, B0, B1 sufficiently large and ε sufficiently
small (e.g. CB1/2

0,2 < B0/4, C < B0/4; same for B1; TN,A > 10; C0,2ε < 1/4).
In the following computation, we will use (3.51) and (3.52) directly instead of (3.47) for

the pointwise bounds, so the choice of Ck,i, Bk,i will be independent of B0, B1.
We remark that if N ≥ 6, (3.51) and (3.52) allow us to extend the solution v(t, x) of

(3.44) below t = T1, by the local existence theory of quasilinear wave equations. Moreover,
these two pointwise bounds, together with ZIuapp = O(ε(1+t)−1+Cε), allow us to use Lemma
1.7 freely, as long as ε� 1 and TN,A � 1.

3.4.3 Energy estimate (3.46) with k = i = 0

Let k = i = 0 and fix T1 ≤ t ≤ 2T . Now R1 = R2 = R3 = 0 in (3.49).
For R4, since |χ(t/T )| ≤ 1, we have

‖R4‖L2(w) ≤
∥∥∥gαβ0 v∂α∂βuapp

∥∥∥
L2(w)

+ C
∥∥|v|(|uapp|+ |v|)|∂2uapp|

∥∥
L2(w)

≤ Cεt−1 ‖∂v‖L2(w) + CNε
2t−2+CNε

∥∥|v|〈t− r〉−1
∥∥
L2(w)

≤ Cεt−1Eu(v)(t)
1/2.

Here we apply Lemma 1.7 in the first inequality, Lemma 3.14 in the second inequality, Lemma
3.12 and (3.50) in the third inequality.

For R5, since uapp is supported in the ball centered at origin with radius 2t, by Proposition
3.2 we have

‖R5‖L2(w) ≤ Cεt−3/2+Cε.
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Thus, by (3.40), we conclude that

Eu(v)(t) ≤
∫ 2T

t

CNετ
−1Eu(v)(τ) + Cετ−3/2+CεEu(v)(τ)

1/2 dτ

≤
∫ 2T

t

CNB0,0ε
3τ−2+C0,0ε + CB

1/2
0,0 ε

2τ−2+(C+C0,0/2)ε dτ

≤ CCNB0,0ε
3t−1+C0,0ε + CB

1/2
0,0 ε

2t−1+(C+C0,0/2)ε.

In particular, the constants C do not depend on CN or Ck,i, Bk,i in (3.46). If ε � 1 (say
CCNε ≤ 1/4) and C0,0, B0,0 are large enough (say C0,0/2 + C < C0,0, C

√
B0,0 < B0,0/4), we

obtain (3.46) with B0,0 replaced by B0,0/2.

3.4.4 Energy estimate (3.46) with i = 0 and k > 0

Let i = 0 and k > 0 and fix T1 ≤ t ≤ 2T . Now R1 = R3 = 0.
For R2, we have

‖R2‖L2(w) ≤
∥∥∥[gαβ0 u, ∂k]∂α∂βv

∥∥∥
L2(w)

+
∥∥∥[gαβ(u)−mαβ − gαβ0 u, ∂k]∂α∂βv

∥∥∥
L2(w)

≤ C
∑

k1+k2≤k,k1>0

∥∥|∂k1u||∂k2+2v|
∥∥
L2(w)

+ C
∑

k1+k2+k3≤k,k3<k

∥∥|∂k1u||∂k2u||∂k3+2v|
∥∥
L2(w)

.

The second sum comes from Lemma 1.7. By writing u = v + uapp, we have the following
terms in the sums:∥∥|∂uapp||∂k2+2v|

∥∥
L2(w)

≤ Cεt−1Ek,0(t)
1/2, k2 < k;∥∥|∂k1uapp||∂k2+2v|

∥∥
L2(w)

≤ Cεt−1+CεEk−1,0(t)
1/2, k1 + k2 ≤ k, k1 > 1;∥∥|∂k1v||∂k2+2v|

∥∥
L2(w)

≤ CNεt
−3/2+CNεEk,0(t)

1/2, k1 + k2 ≤ k, k1 > 0;∥∥|∂k1uapp||∂k2uapp||∂k3+2v|
∥∥
L2(w)

≤ Cε2t−2+CεEk,0(t)
1/2, k1 + k2 + k3 ≤ k, k3 < k;∥∥|∂k1uapp||∂k2v||∂k3+2v|

∥∥
L2(w)

≤ CNε
2t−2+CNεEk,0(t)

1/2, k1 + k2 + k3 ≤ k, k3 < k;∥∥|∂k1v||∂k2v||∂k3+2v|
∥∥
L2(w)

≤ CNε
2t−2+CNεEk,0(t)

1/2, k1 + k2 + k3 ≤ k, k3 < k.

Here we use Proposition 3.2, (3.51) and (3.52). We take L2(w) norm on the derivative of v
with the highest order, and apply pointwise bounds on the derivatives of uapp or derivatives
of v with lower orders. Here we need N/2 + 1 ≤ N − 2, i.e. N ≥ 6, to apply the pointwise
bounds. Thus, we have

‖R2‖L2(w) ≤ Cεt−1Ek,0(t)
1/2 + Cεt−1+CεEk−1,0(t)

1/2.
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The constants here are universal, as long as we choose ε � 1 (say CNε < 1) and TN,A

sufficiently large (say CN/
√
TN,A ≤ 1).

For R4, since ∂l(χ(t/T )) = O(1) for all l, by Lemma 1.7 we have

‖R4‖L2(w) ≤ C
∑
k1≤k

∥∥∥gαβ0 ∂k1v∂α∂βuapp

∥∥∥
L2(w)

+ C
∑

k1+k2≤k, k2>0

∥∥|∂k1v||∂k2+2uapp|
∥∥
L2(w)

+ C
∑

k1+k2+k3≤k

∥∥|∂k1v|(|∂k2uapp|+ |∂k2v|)|∂k3+2uapp|
∥∥
L2(w)

.

By Lemma 3.14, the first sum has an upper bound

Cεt−1
∑
k1≤k

∥∥∂∂k1v∥∥
L2(w)

≤ Cεt−1Ek,0(t)
1/2.

By Lemma 3.12, the second sum has an upper bound

Cεt−1+Cε
∑
k1<k

∥∥∂k1v〈t− r〉−2
∥∥
L2(w)

≤ Cεt−1+Cε
∑
k1<k

∥∥∂∂k1v∥∥
L2(R3)

≤ Cεt−1+CεEk−1,0(t)
1/2.

The third sum is controlled by the second one, because |∂k2uapp| ≤ Cεt−1+Cε ≤ 1, and at least
one of |∂k1v| and |∂k2v| are controlled by CNεt

−1+CNε ≤ 1 (since min{k1, k2} ≤ k/2 ≤ N−2).
In conclusion,

‖R4‖L2(w) ≤ Cεt−1Ek,0(t)
1/2 + Cεt−1+CεEk−1,0(t)

1/2.

The constants here are again universal.
For R5, we have

‖R5‖L2(w) ≤ Cεt−3/2+Cε.

Thus, by (3.40), we have

Ek,0(t) ≤
∫ 2T

t

CNε(1 + τ)−1Ek,0(τ) + CNετ
−1+CεEk−1,0(τ)

1/2Ek,0(τ)
1/2

+ Cετ−3/2+CεEk,0(τ)
1/2dτ

≤
∫ 2T

t

CNBk,0ε
3τ−2+Ck,0ε + CNBk,0ε

3τ−2+(C+Ck,0/2+Ck−1,0/2)ε

+ CB
1/2
k,0 ε

2τ−2+(C+Ck,0/2)ε dτ

≤ CCNBk,0ε
3t−1+Ck,0ε + CCNBk,0ε

3t−1+(C+Ck,0/2+Ck−1,0/2)ε

+ CB
1/2
k,0 ε

2t−1+(C+Ck,0/2)ε.

Similarly we can prove (3.46) with Bk,0 replaced by Bk,0/2, if we assume that Bk,0, Ck,0 are
large enough and ε� 1 (say CCNε < 1/8, Ck,0 ≥ Ck−1,0, C

√
Bk,0 ≤ Bk,0/8).
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3.4.5 Energy estimate (3.46) with k = 0 and i > 0

Let k = 0 and i > 0 and fix T1 ≤ t ≤ 2T . Also fix ZI with |I| = i.
For R2, we have

‖R2‖L2(w) ≤
∥∥∥[gαβ0 u, ZI ]∂α∂βv

∥∥∥
L2(w)

+
∥∥∥[gαβ(u)−mαβ − gαβ0 u, ZI ]∂α∂βv

∥∥∥
L2(w)

≤ C
∑

|J1|+|J2|≤i, |J1|>0

∥∥|ZJ1u||∂2ZJ2v|
∥∥
L2(w)

+ C
∑

|J1|+|J2|+|J3|≤i, |J3|<i

∥∥ZJ1uZJ2u∂2ZJ3v
∥∥
L2(w)

.

The second sum comes from Lemma 1.7. Note that the second sum is controlled by the first
sum. In fact, since |J1|, |J2| cannot be greater than i/2 at the same time, without loss of
generality we assume |J1| ≤ i/2 ≤ N − 2. Thus |ZJ1u| ≤ CNεt

−1+CNε ≤ 1 by (3.52) if we
choose ε� 1. For the first sum, by writing u = v+ uapp, we have the following terms in the
sum: ∥∥|ZJ1uapp||∂2ZJ2v|

∥∥
L2(w)

, |J1|+ |J2| ≤ i, |J1| > 0;∥∥|ZJ1v||∂2ZJ2v|
∥∥
L2(w)

, |J1|+ |J2| ≤ i, |J1| > 0.

The first term has an upper bound

Cεt−1+CεE1,i−1(t)
1/2.

By Lemma 1.4, we can see that the second term is controlled by

C
∥∥|〈t− r〉−1ZJ1v||∂ZZJ2v|

∥∥
L2(w)

, |J2| < i.

If |J1| ≤ N − 2, then by (3.51) we have

|〈t− r〉−1ZJ1v| ≤ 〈t− r〉−1

∫ r

t−R

|∂ρZJ1(t, ρω)| dρ ≤ C
∥∥∂ZJ1v(t)

∥∥
L∞(R3)

≤ CNεt
−3/2+CNε,

which implies that

C
∥∥|〈t− r〉−1ZJ1v||∂ZZJ2v|

∥∥
L2(w)

≤ CCN t
−3/2+CNεE0,i(t)

1/2.

If |J1| ≥ N − 1, then |J2| ≤ 1. In this case, by (3.51), (3.50) and Lemma 3.12, we have

|∂ZZJ2v| ≤ CNεt
−3/2+CNε,∥∥〈t− r〉−1ZJ1v

∥∥
L2(w)

≤ CtCε
∥∥〈t− r〉−1ZJ1v

∥∥
L2(R3)

≤ CtCε
∥∥∂ZJ1v

∥∥
L2(R3)

≤ CtCεE0,i(t)
1/2.
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Thus, the term above is controlled by

CCNεt
−3/2+(CN+C)εE0,i(t)

1/2.

For R3, following the same discussion as above, we have

‖R3‖L2(w) ≤ C
∑
|J |<i

∥∥|u||∂2ZJv|
∥∥
L2(w)

≤ Cεt−1+Cε
∑
|J |<i

∥∥∂2ZJv
∥∥
L2(w)

+ C
∑
|J |<i

∥∥|v||∂2ZJv|
∥∥
L2(w)

≤ Cεt−1+CεE1,i−1(t)
1/2 + CCNεt

−3/2+(CN+C)εE0,i(t)
1/2.

For R4, since ZJ(χ(t/T )) = O(1) for all J by finite speed of propagation, we have

‖R4‖L2(w) ≤ C
∑
|J |≤i

∥∥∥gαβ0 ZJv∂α∂βuapp

∥∥∥
L2(w)

+ C
∑

|J1|+|J2|≤i,|J2|>0

∥∥|ZJ1v||∂2ZJ2uapp|
∥∥
L2(w)

+ C
∑

|J1|+|J2|+|J3|≤i

∥∥|ZJ1v|(|ZJ2v|+ |ZJ2uapp|)|∂2ZJ3uapp|
∥∥
L2(w)

≤ Cεt−1E0,i(t)
1/2 + Cεt−1+CεE0,i−1(t)

1/2.

The proof is very similar to the proof on estiamte of R4 in the case i = 0 and k > 0.
For R5, again we have

‖R5‖L2(w) ≤ Cεt−3/2+Cε.

For R1, we have

|[□, ZI ]v| ≲
∑

|J1|+|J2|<i

|ZJ1□ZJ2v| ≲
∑
|J |<i

|ZJ□v|

≲
∑
|J |<i

|ZJ(gαβ(u)∂α∂βv)|+ |ZJ((gαβ(u)−mαβ)∂α∂βv)|

≲
∑
|J |<i

|ZJ(χ(t/T )gαβ(u)∂α∂βuapp)|+ |ZJ((gαβ(u)−mαβ)∂α∂βv)|.

Here all the constants are universal which depend only on i, N . The first term is simply
R4 + R5 with a lower order I. The second term can be controlled in the same way as we
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control R2, R3. In conclusion,

E0,i(t) ≤
∫ 2T

t

CCNετ
−1E0,i(τ) + CCNετ

−1+CεE1,i−1(τ)
1/2E0,i(τ)

1/2

+ Cετ−3/2+CεE0,i(τ)
1/2 dτ

≤
∫ 2T

t

CCNB0,iε
3τ−2+C0,iε + CCNB0,iε

3τ−2+(C+C1,i−1/2+C0,i/2)ε

+ CB
1/2
0,i ε

2τ−2+(C+C0,i/2)ε dτ

≤ CCNB0,iε
3t−1+C0,iε + CCNB0,iε

3t−1+(C+C0,i/2+C1,i−1/2)ε

+ CB
1/2
0,i ε

2t−1+(C+C0,i/2)ε.

Again, we can choose B0,i, C0,i sufficiently large such that (3.46) holds with B0,i replaced by
B0,i/2. Note that B1,i−1, C1,i−1 are already chosen when we consider the case k = 0, i > 0.

3.4.6 Energy estimate (3.46) with k, i > 0

Let k, i > 0 and fix T1 ≤ t ≤ 2T . Also fix ZI with |I| = i. This case can be viewed as a
combination of the case k = 0, i > 0 and the case i = 0, k > 0.

For R2, we have

‖R2‖L2(w) ≤
∥∥∥[gαβ0 u, ∂kZI ]∂α∂βv

∥∥∥
L2(w)

+
∥∥∥[gαβ(u)−mαβ − gαβ0 u, ∂kZI ]∂α∂βv

∥∥∥
L2(w)

≤ C
∑

k1+k2≤k,|J1|+|J2|≤i,k1+|J1|>0

∥∥|∂k1ZJ1u||∂2+k2ZJ2v|
∥∥
L2(w)

+ C
∑

k1 + k2 + k3 ≤ k
|J1|+ |J2|+ |J3| ≤ i
k3 + |J3| < k + i

∥∥∂k1ZJ1u∂k2ZJ2u∂2+k3ZJ3v
∥∥
L2(w)

.

The second sum is again easy to handle. For the first sum, we consider the following three
cases: k1 = 0 and |J1| > 0; k1 = 1 and |J1| = 0; all the remaining choices of (k, J1). For
the first case, we apply Proposition 3.2 and Lemma 1.4 to obtain a factor 〈t − r〉−1 with
one ∂ replaced by Z; for the second case, we use |∂u| ≤ CNεt

−1; for the third, we use (3.51)
directly. The proof here is very similar to the proof in the previous cases. We thus have

‖R2‖L2(w) ≤ CNεt
−1Ek,i(t)

1/2 + CNεt
−1+Cε(Ek−1,i(t)

1/2 + Ek+1,i−1(t)
1/2).

For R3, we have

‖R3‖L2(w) ≤ C
∑

k1≤k,|J |<i

∥∥|u||∂k1+2ZJv|
∥∥
L2(w)

.
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We can use Proposition 3.2 and Lemma 1.4 to obtain

‖R3‖L2(w) ≤ CNεt
−1Ek,i(t)

1/2 + CNεt
−1+Cε(Ek−1,i(t)

1/2 + Ek+1,i−1(t)
1/2).

For R4, we have

‖R4‖L2(w) ≤ C
∑

k1≤k,|J |≤i

∥∥∥gαβ0 ∂k1ZJv∂α∂βuapp

∥∥∥
L2(w)

+ C
∑

k1+k2≤k,|J1|+|J2|≤i,k2+|J2|>0

∥∥|∂k1ZJ1v||∂k2+2ZJ2uapp|
∥∥
L2(w)

+ C
∑

k1 + k2 + k3 ≤ k
|J1|+ |J2|+ |J3| ≤ i
k3 + |J3| < k + i

∥∥|∂k1ZJ1v|(|∂k2ZJ2v|+ |∂k2ZJ2uapp|)|∂k3+2ZJ3uapp|
∥∥
L2(w)

≤ CNεt
−1Ek,i(t)

1/2 + CNεt
−1+Cε(Ek−1,i(t)

1/2 + Ek+1,i−1(t)
1/2).

This can be handled in the same way as we handle R4 in the case k = 0, i > 0 or i = 0, k > 0.
For R5, again we have

‖R5‖L2(w) ≤ Cεt−3/2+Cε.

For R1, since [□, ∂kZI ] = ∂k[□, ZI ], we can conclude that the L2(w) norm of R1 can be
controlled by the bounds of the L2(w) norms of all other Ri.

In conclusion, we have

Ek,i(t) ≤
∫ 2T

t

CCNετ
−1Ek,i(τ) + CCNετ

−1+Cε(Ek−1,i(τ)
1/2 + Ek+1,i−1(τ)

1/2)Ek,i(τ)
1/2

+ Cετ−3/2+CεEk,i(τ)
1/2 dτ

≤
∫ 2T

t

CCNBk,iε
3τ−2+Ck,iε + CCNBk,iε

3τ−2+(C+Ck+1,i−1/2+Ck−1,i/2+Ck,i/2)ε

+ CB
1/2
k,i ε

2τ−2+(C+Ck,i/2)ε dτ

≤ CCNBk,iε
3t−1+Ck,iε + CCNBk,iε

3t−1+(C+Ck+1,i−1/2+Ck−1,i/2+Ck,i/2)ε

+ CB
1/2
k,i ε

2t−1+(C+Ck,i/2).

Again, we can choose Bk,i, Ck,i sufficiently large such that (3.46) holds with Bk,i replaced by
Bk,i/2. Note that Bk+1,i−1, Ck+1,i−1, Bk−1,i, Ck−1,i are already chosen when we consider the
case k, i > 0.

3.4.7 Existence for 0 ≤ t ≤ TN,A

In the previous subsections, we prove that there exists a solution v to (3.44) for all t ≥ TN,A

with (3.45) hold for all |I| ≤ N and t ≥ TN,A. Now we finish the proof of Proposition 3.15
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by extending the solution to all t ≥ 0. At a small time, uapp does not approximate u well,
but uapp and all its derivatives stay bounded for all (t, x) with 0 ≤ t ≤ TN,A. See Proposition
3.2. So, it is better to use (1.1) to control u directly instead of using (3.44).

Fix N ≥ 6. By using the pointwise bounds in Proposition 3.2 and the support of uapp,
we have ∥∥ZIuapp(t)

∥∥
L2(R3)

≲I,N,R ε, 0 ≤ t ≤ TN,A.

Thus, it suffices to prove that the solution u to (1.1) with u = v + uapp for t ≥ TN,A exists
for 0 ≤ t ≤ TN,A, with∥∥∂ZIu(t)

∥∥
L2(R3)

≲I,N,R ε, 0 ≤ t ≤ TN,A, |I| ≤ N.

If we apply ZI to (1.1), we have

gαβ(u)∂α∂βZ
Iu = [□, ZI ]u+ [gαβ(u)−mαβ, ZI ]∂α∂βu+ (gαβ(u)−mαβ)[∂α∂β, Z

I ]u.
(3.53)

We can now set up the continuity argument. Suppose that we have a solution u to (1.1)
for T1 ≤ t ≤ TN,A for some 0 ≤ T1 ≤ TN,A, such that∥∥∂ZIu(t)

∥∥
L2(R3)

≤ Bε, |I| ≤ N, T1 ≤ t ≤ TN,A. (3.54)

Here B = BN depends on N . We remark that (3.54) implies (3.45) for t ≤ TN,A, where the
power is the same but the constant in ≲I now depends on N . This is because 1 ≲N t−1/2+CIε

for t ≤ TN,A, assuming ε� 1.
By the Klainerman-Sobolev inequality, we conclude that for t ≥ T1

|∂ZIu(t, x)| ≤ CBε(1 + t+ r)−1〈t− r〉−1/2, |I| ≤ N − 2

and
|ZIu(t, x)| ≤ CBε(1 + t)−1/2, |I| ≤ N − 2.

The proof of the second estimate is similar to that of (3.52). Thus, assuming ε � 1, from
(3.53) we have for |I| ≤ N

|gαβ(u)∂α∂βZIu| ≤ C
∑

|J |+|K|≤|I|,|K|<|I|

|ZJu||∂2ZKu|

≤ C
∑

|J |+|K|≤|I|,|K|<|I|

〈t− r〉−1|ZJu||∂ZZKu|

≤ CNε
∑

|J |≤|I|

(|∂ZJu|+ 〈t− r〉−1|ZJu|).

Here we apply Lemma 1.7 in the first inequality and the pointwise bounds in the third one.
Note that if |J |+ |K| ≤ |I| and |K| < |I|, then min{|J |, |K|+ 1} ≤ N/2 + 1 ≤ N − 2 when
N ≥ 6.



CHAPTER 3. EXISTENCE OF MODIFIED WAVE OPERATORS 68

Now we can use the standard energy estimates, say Proposition 2.1 in Chapter I in Sogge
[30] or Proposition 6.3.2 in Hörmander [7]. We apply the Poincaré’s lemma, i.e. Lemma 3.12,
to 〈t− r〉−1|ZJu|, so its L2(R3) norm is controlled by the that of |∂ZJu|. By setting

EN(t) =
∑
|I|≤N

∥∥∂ZIv(t)
∥∥2

L2(R3)
,

for small ε� 1, we have

EN(t)
1/2 ≤ 2(EN(TN,A)

1/2 + CNε

∫ TN,A

t

EN(τ)
1/2 dτ) exp(

∫ TN,A

t

CNε dτ)

≤ CNε+ CNB
1/2ε2.

Then by choosing ε small enough and B large enough, both depending on N , we can replace
B with B/2 in (3.54). We are done.

Finally, we remark that for each |I| ≤ N and ε� 1, we can apply Proposition 3.15 with
N replaced by N ′ = max{6, |I|} ≤ N . Note that when ε < εN ≤ εN ′ and T > TN,A ≥ TN ′,R,
the solution for N and the solution for N ′ are exactly the same. But the constants in (3.45)
now depend on max{6, |I|} instead of N . This allows us to remove the dependence of N in
the coefficients of (3.45).

3.5 Limit as T → ∞
Our goal for this section is to prove the following proposition.

Proposition 3.16. Fix N ≥ 6. Then for the same εN in Proposition 3.15 and for 0 < ε <
εN , there is a solution u to (1.1) in CN−4 for all t ≥ 0, such that for all |I| ≤ N − 5∥∥∂ZI(u− uapp)(t)

∥∥
L2(R3)

≲I ε(1 + t)−1/2+CIε, t ≥ 0. (3.55)

Besides, for all |I| ≤ N − 5 and t�A 1,

|∂ZI(u− uapp)(t, x)| ≲I εt
−1/2+CIε〈r + t〉−1〈t− r〉−1/2, (3.56)

|ZI(u− uapp)(t, x)| ≲I min{εt−1+CIε, εt−3/2+CIε〈r − t〉}. (3.57)
It should be pointed out that the value of “N” in Theorem 3.1 is equal to N − 4 for the

N in this proposition.
From now on, the constant C is allowed to depend on all the constants in the previous

sections (say Ck,i, Bk,i, N), but it must be independent of ε and T .
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3.5.1 Existence of the limit
Fix N ≥ 6 and T2 > T1 � 1. By Proposition 3.15, for each 0 < ε < εN , we get two
corresponding solutions v1 = vT1 and v2 = vT2 which exist for all t ≥ 0. Our goal now is to
prove that v1 − v2 tends to 0 in some Banach space as T2 > T1 → ∞.

Recall that εN , TN,A are independent of the choice of T , as long as T > TN,A. In addition,
v1 and v2 satisfy (3.45), (3.46), (3.47), (3.51) and (3.52), as shown in the continuity argument,
for t ≥ TN,A, and they satisfy (3.54) along with the pointwise bounds for 0 ≤ t ≤ TN,A. All
the constants involved in these estimates are independent of T . We define u1 = vT1 + uapp,
u2 = vT2 + uapp and ṽ = vT2 − vT1 . Then, for t ≥ T1 and |I| ≤ N , by (3.45), we have∥∥∂ZI ṽ(t)

∥∥
L2(R3)

≤
∥∥∂ZIv1(t)

∥∥
L2(R3)

+
∥∥∂ZIv2(t)

∥∥
L2(R3)

≤ Cε2T−1+Cε
1 .

In addition, for t ≤ T1 (now χ(t/T1) = χ(t/T2) = 1) and for each |I| ≤ N , we have

gαβ(u1)∂α∂βZ
I ṽ = [□, ZI ]ṽ + [gαβ(u1)−mαβ, ZI ]∂α∂β ṽ + [gαβ(u2)− gαβ(u1), Z

I ]∂α∂βv2

+ (gαβ(u1)−mαβ)[∂α∂β, Z
I ]ṽ + (gαβ(u2)− gαβ(u1))[∂α∂β, Z

I ]v2

− ZI((gαβ(u2)− gαβ(u1))∂α∂βuapp)− (gαβ(u2)− gαβ(u1))∂α∂βZ
Iv2.
(3.58)

Define a new energy
Ẽk,i(t) :=

∑
l≤k,|I|≤i

Eu1(∂
lZI ṽ)(t).

Here Eu1 is defined in (3.38) with u replaced by u1. For k + i ≤ N − 3 with |I| = i, and for
t ≥ TN,A we have∥∥gαβ(u1)∂α∂β∂kZI ṽ

∥∥
L2(w)

≤ Cεt−1Ẽk,i(t)
1/2+Cεt−1+Cε(Ẽk−1,i(t)

1/2+Ẽk+1,i−1(t)
1/2) (3.59)

with Ẽ−1,· = Ẽ·,−1 = 0. This is a simple application of Lemma 1.4, Lemma 1.7 and the
estimates for u1, v1, u2, v2. We skip the detail of the proof here, since it is very similar to the
proof of (3.48) on Ek,i. However, we should always put L2(w) norm on the terms involving
ṽ and put L∞ norm on terms involving u1, u2, v1, v2. The pointwise bounds only holds for
|I| ≤ N − 2, as seen in (3.51) and (3.52), so we need to assume k + i ≤ N − 3 instead of
k+ i ≤ N above. Besides, there is no term like R5 in the previous section, so we expect Ẽk,i

to have a better decay than Ek,i.
Since (3.51) and (3.52) hold for v1, we can apply energy estimate (3.40) for Eu1 . Thus,

for all TN,A ≤ t ≤ T1 and for k + i ≤ N − 3,

Ẽk,i(t) ≤ Cε2T−1+Cε
1 +B

∫ T1

t

ετ−1Ẽk,i(τ) dτ

+ Cε

∫ T1

t

τ−1+Cε(Ẽk−1,i(τ)
1/2 + Ẽk+1,i−1(τ)

1/2)Ẽk,i(τ)
1/2 dτ.
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Using this estimate, we claim that Ẽk,i(t) ≤ Cε2T−1+Cε
1 for all k + i ≤ N − 3. Here C

may depend on k, i. To prove this claim, we first induct on i = 0, 1, . . . , N and then on
k = 0, . . . , N − 3− i for each fixed i. If we fix (k, i) and let V (t) = Vk,i(t) be the right hand
side, then we have

dV/dt = −Bεt−1Ẽk,i(t)− Cεt−1+Cε(Ẽk−1,i(t)
1/2 + Ẽk+1,i−1(t)

1/2)Ẽk,i(t)
1/2

≥ −Bεt−1V (t)− Cεt−1+Cε(Ẽk−1,i(t)
1/2 + Ẽk+1,i−1(t)

1/2)V (t)1/2.

Thus,
d

dt
(tBε/2

√
V ) =

1

2
Bεt−1+Bε/2

√
V + tBε/2dV/dt

2
√
V

=
1

2
√
V
tBε/2(Bεt−1V + dV/dt)

≥ −Cεt−1+(C+B/2)ε(Ẽk−1,i(t)
1/2 + Ẽk+1,i−1(t)

1/2)

≥ −Cε2t−1+CεT−1+Cε
1 .

The last line holds by induction hypothesis. We then have

tBε/2
√
V (t) ≤ T

Bε/2
1

√
V (T1) +

∫ T1

t

Cε2τ−1+CεT
−1/2+Cε
1 dτ

≤ CεT
−1/2+Cε
1 ,

and thus for all t ≥ TN,A, we have

Ẽk,i(t) ≤ V (t) ≤ tBεV (t) ≤ Cε2T−1+Cε
1 .

Here C in different places may denote different values.
For 0 ≤ t ≤ TN,A, we can also prove that∥∥∂ZI(v2 − v1)(t)

∥∥
L2(R3)

≤ CNεT
−1/2+CNε
1 .

The proof is very similar to the proof in Section 3.4. We can use the equation

gαβ(u1)∂α∂β(u2 − u1) = −(gαβ(u2)− gαβ(u1))∂α∂βu2

and apply the standard energy estimates to establish the continuity argument. Again, we
can remove the dependence of N in the constants, using the same argument in Section 3.4.

By (3.50), for each |I| ≤ N − 3 and ε� 1, we have

sup
t≥0

∥∥∂ZI(v2 − v1)(t)
∥∥
L2(R3)

≤ CεT
−1/2+Cε
1 → 0

as T2 > T1 → ∞. By the Klainerman-Sobolev inequality and∫ ∞

0

(1 + t+ ρ)−1〈t− ρ〉−1/2 dρ ≲ (1 + t)−1/2,
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for all |I| ≤ N − 5, we have

sup
t≥0, x∈R3

|∂ZI(v2 − v1)(t, x)| ≤ CεT
−1/2+Cε
1 → 0

sup
t≥0, x∈R3

|ZI(v2 − v1)(t, x)| ≤ CεT
−1/2+Cε
1 → 0,

as T2 > T1 → ∞. Then, there is v∞ ∈ CN−4({(t, x) : t ≥ 0}), such that ∂ZIvT → ∂ZIv∞

and ZIvT → ZIv∞ pointwisely for t ≥ 0 as T → ∞, for each |I| ≤ N − 5. It is clear that
the pointwise bounds (3.51) and (3.52) also hold for v∞ for |I| ≤ N − 5. By Fatou’s lemma,
for each |I| ≤ N − 5 we have∥∥∂ZIv∞(t)

∥∥
L2(R3)

≤ lim inf
T→∞

∥∥∂ZIvT (t)
∥∥
L2(R3)

≤ CIε(1 + t)−1/2+CIε. (3.60)

Meanwhile, if N ≥ 6, then by taking T → ∞ in

gαβ(uapp + vT )∂α∂βv
T = −χ(t/T )gαβ(uapp + vT )∂α∂βuapp,

we conclude that u∞ := v∞ + uapp is a solution to (1.1) for t ≥ 0.

3.5.2 End of the proof of Theorem 3.1
For t ≥ TA � 1 and t ≤ 3t/2, we have uapp = εr−1U if r ≤ 5t/4, and ∂kZI(uapp, εr

−1U) =
O(εt−k−1+Cε) if t/4 ≤ r − t ≤ t/2. See the proof of Proposition 3.2. Thus,

|∂ZI(uapp − εr−1U)(t, x)|χ|x|≤3t/2 ≲I εt
−2+CIε

and ∥∥∂ZI(uapp − εr−1U)(t)
∥∥
L2({x∈R3: |x|≤3t/2})

=
∥∥∂ZI((1− ψ(r/t))εr−1U)(t)

∥∥
L2({x∈R3: 5t/4≤|x|≤3t/2})

≲I εt
−2+CIε · |{x ∈ R3 : 5t/4 ≤ |x| ≤ 3t/2}|1/2

≲I εt
−1/2+CIε.

These two bounds allows us to get the estimates in Theorem 3.1 from (3.55), (3.56) and
(3.57), since

u− uapp = (u− εr−1U)χ|x|≤3t/2 − (uapp − εr−1U)χ|x|≤3t/2 + uχ|x|>3t/2.

We also remark that starting from the estimates in Theorem 3.1, we can also derive (3.55),
(3.56) and (3.57), using the essentially same derivation here.

By (3.60), for t�A 1, we have

|(∂t − ∂r)(u
∞ − uapp)(t, x)| ≲ εt−1/2+CIε(1 + t+ r)−1.
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Since ψ(r/t) = 0 unless t ∼ r, for t�A 1 we have

(∂t − ∂r)uapp = (∂t − ∂r)(εr
−1ψ(r/t)U)

= −εr−2ψU + εr−1ψµUq + ε2r−1t−1ψUs

+ εr−1t−2(t− r)ψ′U

= −2εr−1ψA+O(εt−2+Cε).

When r ≤ 5t/4, we have ψ = 1 or A = 0, so here we have ψA = A. When r > 5t/4, we have

|(1− ψ(r/t))A(q(t, r, ω), ω)| ≲ 〈q(t, r, ω)〉−1−γ ≲ (t+ r)Cε〈r − t〉−1−γ ≲ (t+ r)−1−γ+Cε.

Here we apply Lemma 3.3 and we note that 〈r − t〉 ∼ r ∼ (t + r) if r ≥ 5t/4. In summary,
for all t�A 1, we have

|(∂t − ∂r)u
∞ +

2ε

r
A(q(t, r, ω), ω)| ≲ εt−3/2+Cε. (3.61)

This finishes the proof of part (iii) in Theorem 3.1.

3.5.3 Uniqueness
Now we give a brief proof of the uniqueness statement given in the remark of Theorem 3.1.
It suffices to prove the uniqueness of Proposition 3.16, assuming N ≥ 11 and ε� 1. This is
because (3.55), (3.56) and (3.57) are equivalent to the estimates in the main theorem, even
if we replace 5/4 with a fixed constant κ > 1. We refer to Section 3.5.2 for the proof.

Now, suppose we have two CN−4 solutions u1, u2 constructed in Proposition 3.16. Fix
T � 1. We can prove that

∥∥∂ZI(u1 − u2)(t)
∥∥ ≲ εT−1/2+Cε for all t ≥ 0 and |I| ≤ N − 10.

Here the constants are independent of T . The proof is essentially the same as that in Section
3.5.1. Let T → ∞ and we get u1 ≡ u2.
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Chapter 4

Asymptotic Completeness

4.1 Introduction
In this chapter, our main goal is to prove the asymptotic completeness for our model equation.
For a fixed global solution u constructed in Lindblad [21], we seek to find the corresponding
asymptotic profile and scattering data.

We start the proof with construction of a global optical function q = q(t, x). In other
words, we solve the eikonal equation gαβ(u)qαqβ = 0 in a spacetime region Ω contained
in {2r ≥ t ≥ exp(δ/ε)}. Here δ > 0 is a fixed parameter. We apply the method of
characteristics and then follow the idea in Christodoulou-Klainerman [4]. By viewing (gαβ),
the inverse of the coefficient matrix (gαβ(u)), as a Lorentzian metric in [0,∞) × R3, we
construct a null frame {ek}4k=1 in Ω. Then, most importantly, we define χab for a, b = 1, 2
which are related to the Levi-Civita connection and the null frame under the metric (gαβ).
By studying the Raychaudhuri equation and using a continuity argument, we can show that
the trχ > 0 everywhere. This is the key step. In addition, we can prove that q = q(t, x)
is smooth in some weak sense (see Section 4.2.1). We refer our readers to Section 4.3 and
Section 4.4 for more details in the proof.

Next, we define (µ, U)(t, x) := (qt − qr, ε
−1ru)(t, x). The map

Ω → [0,∞)× R× S2 : (t, x) 7→ (ε ln t− δ, q(t, x), x/|x|) := (s, q, ω)

is an invertible smooth function with a smooth inverse, so a function (µ, U)(s, q, ω) is ob-
tained. It can be proved that (µ, U)(s, q, ω) is an approximate solution to the reduced system
(2.4), and that there is an exact solution (µ̃, Ũ)(s, q, ω) to(2.4) which matches (µ, U)(s, q, ω)
as s → ∞. A key step is to prove that A(q, ω) := −1

2
lims→∞(µUq)(s, q, ω) is well-defined

for each (q, ω). The function A is called the scattering data in this chapter. We also show a
gauge independence result, which states that the scattering data is independent of the choice
of the optical function q in a suitable sense. We refer our readers to Section 4.5 and Section
4.6.

Finally, we construct an approximate solution ũ to (1.1) in Ω. The construction here is
similar to that in Section 4 of [34], or in Section 3.2 in this dissertation. That is, we construct
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a function q̃ by solving
q̃t − q̃r = µ(ε ln t− δ, q̃(t, x), ω)

by the method of characteristics, and then define

ũ(t, x) := εr−1Ũ(ε ln t− δ, q̃(t, x), ω).

Then, in Ω, q̃ is an approximate optical function, and ũ is an approximate solution to (1.1).
In addition, near the light cone t = r, the difference u− ũ, along with its derivatives, decays
much faster than εt−1+Cε. Since u and its derivatives is of size O(εt−1+Cε), we conclude that
ũ offers a good approximation of u.

A more detailed discussion is given below.

4.1.1 Construction of an optical function
Let u = u(t, x) be a global solution to (1.1) and (1.2) constructed in Lindblad [21]. Here we
fix a constant R > 0 such that supp (u0, u1) ⊂ {|x| ≤ R}, so we have u ≡ 0 for |x| ≥ t+R by
the finite speed of propagation. Our goal in this section is to construct an optical function,
i.e. a solution to the eikonal equation

gαβ(u)qαqβ = 0. (4.1)

Here we do not expect to solve (4.1) for all (t, x) ∈ R1+3
t,x . Instead, we solve it in a region

Ω ⊂ R1+3
t,x which is defined by

Ω := {(t, x) : t > T0, |x| > (t+ T0)/2 + 2R}.

Here T0 = exp(δ/ε) and δ > 0 is a fixed constant independent of ε. We also assign the initial
data by setting q = r − t on ∂Ω. It is then clear that q = r − t in Ω ∩ {r − t > R}, so from
now on we focus on the region Ω ∩ {r − t < 2R}.

To construct an optical function, we apply the method of characteristics. In fact, the
characteristics for (4.1) are the geodesics with respect to the Lorentzian metric (gαβ) which
is the inverse of the matrix (gαβ(u)). Moreover, we only need to study those geodesics
emanating from the cone

H := ∂Ω ∩ {t > T0} = {(t, x) : t > T0, |x| = (t+ T0)/2 + 2R}.

Now we follow the idea in Christodoulou-Klainerman [4]. Fix T > T0 and suppose that
the optical function exists in ΩT := Ω∩{t ≤ T, r− t ≤ 2R}. Then, every point in ΩT can be
reached by a unique characteristic emanating from H. We first define a null frame {ek}4k=1

in ΩT , such that e4 is tangent to the unique characteristic passing through that point. We
then define the second fundamental form of the time slices of the null cones:

χab := 〈Deae4, eb〉, a, b ∈ {1, 2}.
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Here D is the Levi-Civita connection associated to the Lorentzian metric (gαβ), and 〈·, ·〉 is
the bilinear form associated to the metric (gαβ). We now use a continuity argument. Suppose
that in ΩT we have

max
a,b=1,2

|χab − δabr
−1| ≤ At−2+Bε. (4.2)

The positive constants A and B are both independent of ε and T . Our goal is to prove that
(4.2) holds with A replaced by A/2. It follows that trχ := χ11 + χ22, sometimes called the
null mean curvature of the level sets of q, is positive everywhere, and that the characteristics
emanating from H will not intersect with each other. This allows us to extend the optical
function to ΩT+ϵ for a small ϵ > 0, such that (4.2) holds everywhere in ΩT+ϵ. We conclude
from this continuity argument that the optical function exists everywhere in Ω.

In order to prove that (4.2) holds with A replaced by A/2, we make use of the Raychaud-
huri equation

e4(χab) = −
∑
c=1,2

χacχcb + Γ0
αβe

α
4 e

β
4χab + 〈R(e4, ea)e4, eb〉,

which describes the evolution of χ along the null geodesics foliating the light cones. In this
equation, Γ∗

∗∗’s are the Christoffel symbols, and 〈R(X,Y )Z,W 〉 is the curvature tensor, both
with respect to the Lorentzian metric (gαβ). Note that we have a decomposition

〈R(e4, ea)e4, eb〉 = e4(f1) + f2

where f1 = O(εt−2+Cε) and f2 = O(εt−3+Cε); see Lemma 4.17 for a more accurate statement.
We also refer our readers to Corollary 5.9 in [29] for a similar decomposition of curvature
tensors. Moreover, it follows from (1.1) that

|e4(e3(u)) + r−1e3(u)| ≲ εAt−3+Bε, |e4(e3(u))| ≲ εt−2.

Combining all these estimates and the Gronwall’s inequality, we are able to prove (4.2) with
A replaced by A/2.

So far, we have constructed a global optical function q = q(t, x) in Ω which is C2 by
the method of characteristics. In fact, the optical function q = q(t, x) is smooth1 in Ω in
the followings sense: for each integer N ≥ 2, there exists εN > 0 such that q is a CN

function in Ω for each 0 < ε < εN . Moreover, if Z is one of the commuting vector fields:
translations ∂α, scaling t∂t + r∂r, rotations xi∂j − xj∂i and Lorentz boosts xi∂t + t∂i, then
in Ω we have ZIq = O(〈q〉tCε) and ZIΩijq = O(tCε) for each multiindex I and ε �I 1. To
prove these estimates, we introduce the commutator coefficients {ξlk1k2}1≤k1,k2,l≤4 for which
we have [ek1 , ek2 ] = ξlk1k2el. We also introduce a weighted null frame

(V1, V2, V3, V4) := (re1, re2, (3R− r + t)e3, te4)

1See Section 4.2.1. In particular, a smooth function may not be C∞.
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which combines the advantages of a usual null frame {ek} and the commuting vector fields
Z’s. By computing e4(V Iξlk1k2) for each multiindex I and applying the Gronwall’s inequality,
we are able to obtain several estimates for V I(ξlk1k2); see Proposition 4.31. These estiamtes
for ξ then imply the estimates for q, so we finish the proof.

We finally remark that the map

Ω → [0,∞)× R× S2 : (t, x) 7→ (ε ln t− δ, q(t, x), x/|x|) := (s, q, ω)

is an invertible smooth function with a smooth inverse. This is because qr > 0 everywhere
in Ω. Thus, a smooth function F = F (t, x) induces a smooth function F = F (s, q, ω) and
vice versa.

4.1.2 The asymptotic equations and the scattering data
For each (t, x) ∈ Ω, we define

µ(t, x) := (qt − qr)(t, x), U(t, x) := ε−1ru(t, x).

We then obtain two smooth functions µ(s, q, ω) and U(s, q, ω) as discussed at the end of
Section 4.1.1.

To state the results in this subsection, we introduce a new notation Rs,p for each s, p ∈ R.
For a function F = F (t, x) defined in Ω∩{r− t < 2R}, we write F = Rs,p if for each integer
N ≥ 1 and for each ε�N 1, we have∑

|I|≤N

|V I(F )| ≲ ts+Cε〈q〉p, ∀(t, x) ∈ Ω ∩ {r − t < 2R}.

Here recall that {V∗} is the weighted null frame.
By the chain rule, we have

∂s = ε−1t(∂t − qtq
−1
r ∂r), ∂q = q−1

r ∂r, ∂ωi
= r(∂i − qiq

−1
r ∂r).

Then we can express (∂s, ∂q, ∂ω) in terms of the weighted null frame {V∗}. In fact, we have

∂s =
∑
a

ε−1R−1,0Va + (ε−1 +R−1,0)V4, ∂q =
∑
k

R0,−1Vk,

∂ωi
=

∑
k ̸=3

R−1,0Vk +
∑
a

eiaVa =
∑
k ̸=3

R0,0Vk.

Meanwhile, from (1.1) and e4(e3(q)) = −Γ0
αβe

α
4 e

β
4e3(q), we can show that

e4(e3(u)) + r−1e3(u) = εR−3,0, e4(e3(q)) = −1

4
e3(u)G(ω)e3(q) + εR−2,0.
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Combine these estimates, and we obtain that
∂sµ =

1

4
G(ω)µ2Uq + ε−1R−1,0,

∂sUq = −1

4
G(ω)µU2

q + ε−1R−1,0.

(4.3)

That is, (µ, U)(s, q, ω) is an approximate solution to the geometric reduced system (2.4).
Next, we note from (4.3) that ∂s(µUq) = O(ε−1t−1+Cε). By integrating the remainder

term ε−1t−1+Cε (viewed as a function of s) with respect to s, we can show that {(µUq)(s, q, ω)}s≫1

is uniformly Cauchy for each (q, ω) ∈ R× S2. Thus, the limit

A(q, ω) := −1

2
lim
s→∞

(µUq)(s, q, ω)

exists and the convergence is uniform in (q, ω). This function A is then the scattering data
in the asymptotic completeness problem.

Similarly, we can show that for each m and n, the limit

Am,n(q, ω) := −1

2
lim
s→∞

(〈q〉∂q)m∂nω(µUq)(s, q, ω)

exists and the convergence is uniform in (q, ω). The uniform convergences of these limits
imply that

(〈q〉∂q)m∂nωA(q, ω) = Am,n(q, ω).

Following the same method, we can define

A1(q, ω) := lim
s→∞

exp(
1

2
G(ω)A(q, ω)s)µ(s, q, ω),

A2(q, ω) := lim
s→∞

exp(−1

2
G(ω)A(q, ω)s)Uq(s, q, ω).

Both of these limits exist and have derivatives of any order with respect to q and ω, as long
as ε is sufficiently small. It is clear that A1A2 ≡ −2A, so we obtain an exact solution to the
reduced system (2.4): 

µ̃(s, q, ω) = A1(q, ω) exp(−
1

2
G(ω)A(q, ω)s),

Ũq(s, q, ω) = A2(q, ω) exp(
1

2
G(ω)A(q, ω)s),

(4.4)

By assuming limq→∞ Ũ(s, q, ω) = 0, we obtain a unique function Ũ = Ũ(s, q, ω). By the
definition of (A,A1, A2), we expect the (µ − µ̃, U − Ũ), along with their derivatives with
respect to (s, q, ω) of any order, decays faster than µ and U .

We refer our readers to Proposition 4.49 for a complete list of estimates.
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4.1.3 Approximation
We now show that the exact solution (4.4) gives a good approximation of the exact solution
u to (1.1).

We first solve

q̃t − q̃r = µ̃(ε ln(t)− δ, q̃(t, x), ω) in Ω ∩ {r − t < 2R}; q̃ = r − t when r − t ≥ 2R

and set
ũ(t, x) = εr−1Ũ(ε ln(t)− δ, q̃(t, x), ω) in Ω ∩ {r − t < 2R}.

Then, we can prove that ũ is an approximate solution to (1.1) in the following sense: for
each integer N ≥ 1 and ε�N 1, we have∑

|I|≤N

|ZI(gαβ(ũ)∂α∂βũ)| ≲ εt−3+Cε, in Ω ∩ {r − t < 2R}. (4.5)

To make our proof simpler, we introduce a new function F = F (q, ω) such that Fq = −2/A1.
It can be shown that q 7→ F (q, ω) has an inverse q 7→ F̂ (q, ω). Now we define Â(q, ω) :=
A(F̂ (q, ω), ω) and define (µ̂, Ûq)(s, q, ω) by replacing (A1, A2, A) in (4.4) with (−2, Â, Â).
Then, q̂(t, x) := F (q̃(t, x), ω) is a solution to

q̂t − q̂r = µ̂(ε ln t− δ, q̂(t, x), ω) in Ω ∩ {r − t < 2R}; q̂ = r − t when r − t ≥ 2R.

In addition, we have

Ũ(ε ln(t)− δ, q̃(t, x), ω) = Û(ε ln(t)− δ, q̂(t, x), ω).

We can now follow the proof in Section 4 of [34] to prove (4.5).
In order to estimate u − ũ, we set p(t, x) := F (q(t, x), ω) − q̂(t, x) in Ω. We claim that,

for each fixed γ ∈ (0, 1/2), an integer N ≥ 1, and for each ε �γ,N 1, whenever (t, x) ∈ Ω
such that |r − t| ≲ tγ, we have |ZIp(t, x)| ≲ t−1+Cε〈r − t〉 for each |I| ≤ N . To show this
claim, we compute pt − pr and apply a continuity argument. This claim then implies that,
under the same assumptions on γ, N and ε, whenever (t, x) ∈ Ω such that |r − t| ≲ tγ, we
have |ZI(u− ũ)(t, x)| ≲ εt−2+Cε〈r − t〉 for each |I| ≤ N . Recall from Lindblad [21] that we
only have ZIu = O(εt−1+Cε), so ũ provides a good approximation of u.

4.1.4 The main theorem
We now state the main theorem which is a summary of the previous subsections. In this
theorem, we say that a function f = f(t, x) is smooth if for each large integer N , f is CN

whenever ε�N 1. See Section 4.2.1 for details.

Theorem 4.1. Let u be a smooth solution to the Cauchy problem (1.1) and (1.2). Fix a
constant R > 0 such that supp (u0, u1) ⊂ {|x| ≤ R}, so u ≡ 0 for |x| ≥ t + R by the finite
speed of propagation. Set T0 := exp(δ/ε) for a fixed constant δ > 0. Then we have
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a) There exists a smooth solution to the eikonal equation

gαβ(u)∂αq∂βq = 0 in Ω; q = |x| − t on ∂Ω.

Here the region Ω ⊂ R1+3
t,x is defined by

Ω := {(t, x) : t > T0, |x| > (t+ T0)/2 + 2R}.

In Ω, for each I we have

|ZIq| ≲ 〈q〉tCε,
∑

1≤i,j≤3

|ZIΩijq| ≲ tCε.

Moreover, the map

Ω → [0,∞)× R× S2 : (t, x) 7→ (ε ln t− δ, q(t, x), x/|x|)

is an invertible smooth function with a smooth inverse. Thus, a smooth function F =
F (t, x) induces a smooth function F = F (s, q, ω) and vice versa.

b) In Ω, we set (µ, U)(t, x) := (qt−qr, ε−1ru)(t, x) which induces a smooth function (µ, U)(s, q, ω).
Then, (µ, U)(s, q, ω) is an approximate solution to the geometric reduced system (2.4) in
the sense that 

∂sµ =
1

4
G(ω)µ2Uq + ε−1R−1,0,

∂sUq = −1

4
G(ω)µU2

q + ε−1R−1,0.

Here the notation R∗,∗ has been defined in Section 4.1.1. In addition, the following three
limits exist for all (q, ω) ∈ R× S2:

A(q, ω) := −1

2
lim
s→∞

(µUq)(s, q, ω),

A1(q, ω) := lim
s→∞

exp(
1

2
G(ω)A(q, ω)s)µ(s, q, ω),

A2(q, ω) := lim
s→∞

exp(−1

2
G(ω)A(q, ω)s)Uq(s, q, ω).

All of them are smooth functions of (q, ω) for ε � 1, and we have A1A2 ≡ −2A. By
setting 

µ̃(s, q, ω) := A1 exp(−
1

2
GAs),

Ũq(s, q, ω) := A2 exp(
1

2
GAs).

we obtain an exact solution to our reduced system (2.4).
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c) We define ũ = ũ(t, x) as in Section 4.1.3. The function ũ = ũ(t, x) is an approximate
solution to (1.1) in the following sense:

|ZI(gαβ(ũ)∂α∂βũ)(t, x)| ≲ εt−3+Cε, ∀(t, x) ∈ Ω, ∀I.

Moreover, if we fix a constant 0 < γ < 1 and a large integer N . Then, for ε �γ,N 1, at
each (t, x) ∈ Ω such that |r − t| ≲ tγ, we have

|ZI(u− ũ)| ≲γ εt
−2+Cε〈r − t〉, ∀|I| ≤ N.

Remark 4.1.1. We choose the region Ω in a way that t ∼ r in Ω ∩ {r − t < 2R}, that
t ≥ T0 = exp(δ/ε) in Ω, and that u ≡ 0 in ∂Ω ∩ {t = T0}. The proof in this chapter is
expected to work if we start with a different region Ω with these three properties hold. For
example, we can replace the definition of Ω with

Ω = Ωκ,δ := {(t, x) : t > exp(δ/ε), |x| − exp(δ/ε)− 2R > κ(t− exp(δ/ε))}

for some fixed constants δ > 0 and 0 < κ < 1. For different pairs of (κ, δ), we do not expect
to get the same scattering data. However, Proposition 4.57 states that the scattering data
associated to different regions Ωκ,δ are in fact related to each other in some sense. This is a
result on gauge independence.

Remark 4.1.2. In our construction, we fix a parameter δ > 0 and solve the eikonal equation
in a region contained in {t > exp(δ/ε)}. In fact, the proof in this chapter is expected to
work for each fixed δ > 0. However, we do not simply set δ = 1 here. Instead, we choose a
sufficiently small δ > 0 which depends on the pair (u0, u1), such that the nonlinear effects
of (1.1) are negligible until we reach the time exp(δ/ε). For example, we can set δ to be the
small constant c in the almost global existence result.

Remark 4.1.3. We compare the results in this work with those in Deng-Pusateri [6]. First,
the approximation result (i.e. part c) in Theorem 4.1) is better than that in [6] (i.e. The-
orem 2.3). This suggests that the geometric reduced system (2.4) gives a more accurate
descriptions of the global solutions to (1.1) than the Hörmander’s asymptotic PDE (1.9)
does. Further, the proof in this chapter relies on the null geometry while the authors in [6]
made use of the spacetime resonance method.

4.2 Preliminaries for this chapter
In addition to Section 1.6, we need to introduce some notations and lemmas which are only
used in this chapter.
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4.2.1 A key theorem and a convention
This chapter is based on the following global existence result.

Theorem 4.2 (Lindblad [21]). Fix a large integer N � 1. Then, for ε �N 1, the Cauchy
problem (1.1) with the initial data (1.2) has a global CN solution u = u(t, x) for all t ≥ 0.
Moreover, we have pointwise decays: ZIu = OI(ε〈t〉−1+CIε) for each multiindex I such that
|I| ≤ N . Moreover, we have ∂u = O(ε〈t〉−1).

Most of the functions in this chapter have similar properties. That is, they depend on
a small parameter ε, and they are CN for any large integer N as long as ε �N 1. For
convenience, we make the following definition.

Definition 4.3. Fix a function f = fε(t, x) which depends on a small parameter ε. In this
chapter, we say that f is smooth, if for each large integer N , f is CN whenever ε�N 1.

Following the same spirits, we say that all derivatives of a function satisfy some properties,
if for each large integer N , all its derivatives of order ≤ N exist and satisfy such properties
whenever ε�N 1.

We remark that under this definition, a smooth function does not need to be a C∞

function. It would be more convenient to work with this seemingly strange definition.
Under such a convention, we can state Theorem 4.2 as follows: For ε � 1, the Cauchy

problem (1.1) with the initial data (1.2) has a global smooth solution u = u(t, x) for all
t ≥ 0. Moreover, we have pointwise decays: ZIu = OI(ε〈t〉−1+CIε) for each multiindex I and
∂u = O(ε〈t〉−1).

4.2.2 The null condition of a matrix
The definition and lemmas in this subsection will be used in Section 4.4.2. In this subsection,
we assume that every matrix is in R4×4 and is a symmetric constant matrix.

Definition 4.4. A matrix g = (gαβ)α,β=0,1,2,3 satisfies the null condition if

gαβξαξβ = 0, whenever ξ ∈ R1+3 and |ξ0|2 = |ξ1|2 + |ξ2|2 + |ξ3|2.

We remark that a real symmetric constant matrix g satisfies the null condition if and
only if gαβξαηβ is a linear combination of −ξ0η0 +

∑3
j=1 ξjηj and ξαηβ − ξβηα.

We start with the following useful lemma.

Lemma 4.5. Suppose g is a constant matrix satisfying the null condition. Then, for any
two functions ϕ = ϕ(t, x) and ψ = ψ(t, x), we have

Z(gαβϕαψβ) = gαβ(∂αZϕ)ψβ + gαβϕα(∂βZψ) + gαβ1 ϕαψβ.

Here g1 is another symmetric constant matrix satisfying the null condition. Moreover, if
Z = Ωij for 1 ≤ i, j ≤ 3 and if (gαβ) = (mαβ) is the usual Minkowski metric, then g1 = 0.
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We refer our readers to Lemma 6.6.5 in [7] for the proof.
In addition, we have the following pointwise estimates related to the null condition.

Lemma 4.6. Suppose g is a matrix satisfying the null condition. Then, for any two functions
ϕ = ϕ(t, x) and ψ = ψ(t, x), if t ∼ r � 1, we have

|gαβϕαψβ| ≲ 〈t〉−1(|Zϕ||∂ψ|+ |Zψ||∂ϕ|).

Here |Zf | =
∑

|J |=1 |ZJf | for a function f = f(t, x).
We refer our readers to Lemma I.5.4 in [30] for the proof.

4.3 Construction of the optical function
Let u = u(t, x) be a global solution to (1.1) and (1.2) constructed in Theorem 4.2. If we fix
a constant R > 0 such that supp (u0, u1) ⊂ {|x| ≤ R}, then u ≡ 0 for |x| ≥ t + R by the
finite speed of propagation. Our goal in this section is to construct an optical function, i.e.
a solution to the eikonal equation

gαβ(u)∂αq∂βq = 0 in Ω; q = |x| − t on ∂Ω. (4.6)

The region Ω ⊂ R1+3
t,x is defined by

Ω := {(t, x) : t > T0, |x| > (t+ T0)/2 + 2R}. (4.7)

Here T0 := exp(δ/ε) for a fixed constant δ > 0.
Our main result of this section is the following proposition.

Proposition 4.7. The eikonal equation (4.6) has a global C2 solution in the region Ω.

In Section 4.4, we will show that this C2 solution is in fact smooth (in the sense defined
in Section 4.2.1).

Here we briefly explain how the optical function is constructed. In Section 4.3.1, we apply
the method of characteristics and solve the characteristic ODE’s. Here the characteristics
are in fact the geodesics with respect to the Lorentzian metric (gαβ) which is the inverse of
the coefficients (gαβ(u)) in (4.6). In Section 4.3.2, assuming that the optical function q exists
in some region, we prove several preliminary estimates for q by studying the characteristic
ODE’s.

To finish the proof, we need to show that the characteristics, i.e. the geodesics, do not
intersect with each other. This is related to the null geometry of the level sets of the optical
function. In Section 4.3.3 and 4.3.4, we construct a null frame {ek}4k=1 and then define several
connection coefficients under the Lorentzian metric (gαβ). Most importantly, we define

χab := 〈Deae4, eb〉, a, b = 1, 2.
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Here D is the Levi-Civita connection and 〈·, ·〉 is the bilinear form, both with respect to
(gαβ). It suffices to prove that the trace of χ, sometimes called the null mean curvature, is
positive everywhere.

We now follow the idea in Christodoulou-Klainerman [4]. In Section 4.3.5, we derive
an equation for χ, called the Raychaudhuri equation. In Section 4.3.6, we use a continuity
argument and the Raychaudhuri equation to prove that in the region where the optical
function exists, we have

max
a,b=1,2

|χab − δabr
−1| ≲ t−2+Cε.

We conclude that trχ > 0 everywhere, and thus end the proof.

4.3.1 The method of characteristics
Now we use the method of characteristics to solve (4.6). We have the characteristic ODE’s

ẋα(s) = 2gαβ(x(s))pβ(s),
ż(s) = 2gαβ(x(s))pβ(s)pα(s) = 0,
ṗα(s) = −(∂αg

µν)(x(s))pµ(s)pν(s).
(4.8)

Here we write gαβ(t, x) = gαβ(u(t, x)) with an abuse of notation. We expect that z(s) =
q(x(s)) and p(s) = (∂q)(x(s)) for some optical function q(t, x). By differentiating the first
equation, we obtain the geodesic equation

ẍα(s) + Γα
µν ẋ

µ(s)ẋν(s) = 0. (4.9)

Here Γ is the Christoffel symbol of the Levi-Civita connection D of the Lorentzian metric
(gαβ). Thus, in this chapter, the curve x(s) is either called a characteristic curve, or a
geodesic.

To solve the eikonal equation (4.6), we only need to consider the geodesics emanating
from the surface

H := {(t, x) : t ≥ T0, r = (t+ T0)/2 + 2R} ⊂ ∂Ω. (4.10)

From these geodesics, later we will construct a solution q(t, x) in the region Ω∩{r− t < 2R}
such that q = r − t in Ω ∩ {R < r − t < 2R}. Since u ≡ 0 in the region r − t > R, we can
then extend our solution to the whole region Ω by defining q = r − t when r > t+R.

To solve the characteristic ODE’s (4.8) and the geodesic equation (4.9), we need to first
determine (∂q)|H . Fix (t, x) ∈ H and recall that q = r − t on H. Since Xi := ∂i + 2ωi∂t
is tangent to H, we have Xiq = Xi(r − t) = −ωi on H. Thus, for (t, x) ∈ H we have
qi = Xiq − 2ωiqt = −ωi − 2ωiqt and

0 = −q2t + 2g0iqt(−ωi − 2ωiqt) + gij(−ωi − 2ωiqt)(−ωj − 2ωjqt)

= (−1− 4g0iωi + 4gijωiωj)q
2
t + (4gijωiωj − 2g0iωi)qt + gijωiωj.
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Since gαβ(u) = mαβ +O(|u|), we have

0 = (−1 + 4mijωiωj +O(|u|))q2t + (4mijωiωj +O(|u|))qt + (mijωiωj +O(|u|))
= (3 +O(|u|))q2t + (4 +O(|u|))qt + (1 +O(|u|)).

Since |u| � 1, by the root formula we can uniquely determine qt = −1 + O(|u|) at (t, x)
(the other root qt = −1/3 + O(|u|) is discarded since we expect q to behave like r − t). We
also have qi = −ωi − 2ωiqt = ωi + O(|u|) and qr = ωiqr. If moreover t < T0 + 2R, then
r = (t + T0)/2 + 2R > t + R and thus gαβ ≡ mαβ. Thus, we have qt = −1 and qi = ωi for
(t, x) ∈ H such that t < T0 + 2R.

Now fix x(0) ∈ H. We set

z(0) = r(x(0))− x0(0), pα(0) = (∂αq)(x(0))

where we set

r(V ) :=
( 3∑

i=1

(V i)2
)1/2

, for a vector V = (V α)3α=0.

We have the following lemma.

Lemma 4.8. Fix x(0) ∈ H and construct z(0), p(0) as above. Then the system (4.8) along
with the initial data (x(0), z(0), p(0)) has a unique solution (x(s), z(s), p(s)) on [0,∞). In
addition, we have ẋ0(s) > 0 for all s ≥ 0, and x0(s) → ∞ as s→ ∞.

If moreover we have x(0) ∈ H ∩ {t < T0 + 2R}, then x(s) = (2s, 2sω) + x(0). In other
words, the geodesics emanating from H ∩ {t < T0 + 2R} are straight lines. Thus q = r − t
whenever r > t+R.

Proof. We apply the Picard existence and uniqueness theorem, e.g. Theorem 1.17 in [31], to
(4.8). From the theorem, we obtain a unique solution (x(s), z(s), p(s)) for all 0 ≤ s < smax.
By the blowup criterion in the theorem, either we have smax <∞ and |x(s)|+|z(s)|+|p(s)| →
∞ as s → smax, or we have smax = ∞. Here |x(s)| + |z(s)| + |p(s)| → ∞ is equivalent to
|x(s)|+ |ẋ(s)| → ∞ due to z(s) = z(0) and the first equation in (4.8).

We claim that, along each geodesic, for all s ≥ 0 we have

4gαβ(x(s))pα(s)pβ(s) = 2ẋα(s)pα(s) = gαβ(x(s))ẋ
α(s)ẋβ(s) = 0. (4.11)

In other words, the geodesics x(s) are null curves. The first two equations follow from the
first equation in (4.8), so here we only prove the last one. Note that the equality holds for
s = 0 by the construction of (∂q)|H . In addition,

d

ds
(gαβ(x(s))pα(s)pβ(s)) = 2gαβ(x(s))ṗα(s)pβ(s) + (∂µg

αβ)(x(s))ẋµ(s)pα(s)pβ(s)

= ẋα(s)ṗα(s)− ṗµ(s)ẋ
µ(s) = 0.

In the last line we use the third equation in (4.8). This ends the proof of (4.11).
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Next we claim that ẋ0(s) > 0 for all s. Since gαβ(u) = mαβ + O(|u|) for |u| � 1, its
inverse (gαβ(u)) is also a small pertubation of the Minkowski metric, i.e. gαβ = mαβ+O(|u|).
Thus, (4.11) implies

0 = g00(ẋ
0)2 + 2g0iẋ

0ẋi + gijẋ
iẋj = −(ẋ0(s))2 +

∑
i

(ẋi(s))2 +O(|u(x(s))||ẋ|2).

We first show that ẋ0(s) 6= 0 for all s. If ẋ0(s0) = 0 for some s0 > 0, then we have gijẋiẋj = 0
at s = s0. Since gij = δij + O(|u|), the symmetric matrix (gij) is positive definite. Then
ẋ(s0) = 0. However, recall that x(s) is a geodesic, and the only geodesic passing through
x(s0) with ẋ(s0) = 0 is the constant curve x(s) = x(s0). This leads to a contradiction. In
addition, since qt = −1 + O(|u|) on H and ẋ0(0) = 2g0βpβ(0), we have ẋ0(0) = 2 + O(|u|).
Thus ẋ0(s) > 0 for all s.

Moreover, since u = O(ε〈t〉−1+Cε), we have

| − (ẋ0(s))2 +
∑
i

(ẋi(s))2| ≤ Cε〈x0(s)〉−1+Cε(|ẋ0(s)|2 +
∑
i

(ẋi(s))2).

By choosing ε� 1, we can make Cε ≤ 1/2. Thus, for ε� 1, we have∑
i

(ẋi(s))2 ≤ (ẋ0(s))2 +
1

2
(|ẋ0(s)|2 +

∑
i

(ẋi(s))2) =⇒
∑
i

(ẋi(s))2 ≲ (ẋ0(s))2.

Thus, for each i we have

|xi(s)| = |xi(0) +
∫ s

0

ẋi(τ) dτ | ≤ |xi(0)|+ C

∫ s

0

ẋ0(τ) dτ = |xi(0)|+ Cx0(s).

In conclusion, if |x(s)|+ |ẋ(s)| → ∞, then we must have x0(s) + ẋ0(s) → ∞.
If we differentiate the first equation in (4.8) and use the third one, we obtain

|ẍ0(s)| ≤ |2g0β ṗβ|+ |2(∂µg0β)ẋµpβ| ≲ |∂u(x(s))||ẋ(s)|2 ≲ ε〈x0(s)〉−1(ẋ0(s))2.

The last inequality follows since |ẋi(s)| ≲ ẋ0(s) and since ∂u = O(ε〈t〉−1). Since ẋ0 > 0, we
then have

| d
ds

ln ẋ0| = |ẍ0|
ẋ0

≤ Cε
ẋ0

x0
= Cε

d

ds
lnx0,

which implies that

| ln ẋ0(s)− ln ẋ0(0)| ≲ ε(lnx0(s)− lnx0(0)).

The last inequality is equivalent to

ẋ0(0)(
x0(s)

x0(0)
)−Cε ≤ ẋ0(s) ≤ ẋ0(0)(

x0(s)

x0(0)
)Cε.
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It follows that
d

ds
((x0(s))1−Cε) = (1− Cε)(x0(s))−Cεẋ0(s) ≤ ẋ0(0)(x0(0))−Cε,

d

ds
((x0(s))1+Cε) = (1 + Cε)(x0(s))Cεẋ0(s) ≥ ẋ0(0)(x0(0))Cε > 0,

and thus
(x0(s))1−Cε ≤ (x0(0))1−Cε + ẋ0(0)s(x0(0))−Cε, (4.12)

(x0(s))1+Cε ≥ (x0(0))1+Cε + ẋ0(0)s(x0(0))Cε. (4.13)
If smax < ∞, then x0(s) → ∞ as s → smax fails because of (4.12). On the other hand, if
smax <∞, then x0(s)+ẋ0(s) → ∞ as discussed above. But since ẋ0(s) ≤ ẋ0(0)(x0(s)/x0(0))Cε,
we must have x0(s) → ∞ as s→ smax. A contradiction. Thus, smax = ∞. We thus conclude
x0(s) → ∞ as s→ ∞ by (4.13).

The proof of the second half of this lemma is easy. We simply use the fact that gαβ(u) =
mαβ when r ≥ t+R.

Remark 4.8.1. We let A denote the set of all the geodesics constructed in this lemma.

4.3.2 Estimates for the optical function
Fix a time T > T0 = exp(δ/ε) and we set ΩT = Ω ∩ {t ≤ T, r − t ≤ 2R}. Note that r ∼ t
in ΩT . From now on, we assume that the optical function q = q(t, x) exists in ΩT , that q is
C2 and that qt < 0 everywhere. We remark that the assumptions are true for T = T0 + 2R
since gαβ ≡ mαβ in ΩT0+2R. Our goal is to derive some estimates which allow us to extend
the optical function to ΩT+ϵ for some ϵ > 0.

First of all, we claim that each point in ΩT lies on exactly one geodesic in A (which is
defined in Remark 4.8.1). A direct corollary is that to define a function F (t, x) in ΩT , we
can define F (x(s)) along each geodesic in A. To prove this claim, we define a vector field
L = Lα∂α by Lα := 2gαβqβ. Note that L0 > 0 everywhere. In fact, we have

gαβL
αLβ = 4gαβg

αα′
gββ

′
qα′qβ′ = 4gα

′β′
qα′qβ′ = 0.

If L0 = 0, then gijL
iLj = 0. But gij = δij + O(|u|), so (gij) is positive definite for ε � 1.

Thus, Lα = 0 and qt =
1
2
g0βL

β = 0. This contradicts with the assumption that qt < 0. And
since L0 = −2qt + O(|u∂q|) = 2 + O(|u|) > 0 on ∂Ω, we have L0 > 0 in ΩT . Moreover,
because of the characteristic ODE’s (4.8), a curve in ΩT is a geodesic in A if and only if it
is an integral curve of L emanating from H. By the existence and uniqueness of integral
curves, we finish the proof of the claim.

We also claim that each geodesic emanating from H ∩ ∂ΩT must stay in ΩT until it
intersects with {t = T}. This claim simply follows from the fact that the optical function
remains constant along each geodesic and that the optical function is injective when restricted
to (∂ΩT ) \ {t = T}.
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Here a useful lemma which follows directly from the chain rule and the pointwise estimates
in Theorem 4.2 (also see Proposition 6.1 in Lindblad [21]).

Lemma 4.9. For each k ≥ 0 and ε�k 1, we have∑
|I|≤k

(|ZI(gαβ −mαβ)|+ |ZI(gαβ −mαβ)|) ≲k

∑
|I|≤k

|ZIu| ≲k ε〈t〉−1+Ckε.

Moreover,
|∂gαβ|+ |∂gαβ|+ |Γα

µν | ≲ |∂u| ≲ ε〈t〉−1.

Now we can prove several useful estimates for q in ΩT .

Lemma 4.10. In ΩT , we have |Sq| +
∑

i |Ω0iq| ≲ |q| + tCε, |∂q| +
∑

i,j |Ωijq| ≲ tCε and∑
i |qi − ωiqr| ≲ t−1+Cε.

Proof. If we apply a vector field Z defined by (1.13) to the eikonal equation, we obtain

0 = (Zgαβ)qαqβ + 2gαβqαZqβ = (Zgαβ)qαqβ + 2gαβqα∂βZq + 2gαβqα[Z, ∂β]q.

It is easy to check that 2mαβqα[Z, ∂β]q = 0 if Z 6= S and [S, ∂β] = −∂β. Thus, for some
geodesic x(s), we have

| d
ds

(Zq(x(s)))| ≲ (|Zgαβ|+ |gαβ −mαβ|)|p(s)|2 ≲ ε(x0(s))−1+Cε|ẋ(s)|2 ≲ ε(x0(s))−1+Cεẋ0(s).

Recall that p(s) = (∂q)(x(s)) and that we have |ẋi(s)| ≲ ẋ0(s) ≲ (x0(s))Cε from the proof
of Lemma 4.8. Since ∂q = (−1, ω) +O(|u|) on H, we have |Sq|+ |Ω0jq| = O(|q|+ εtCε) and
|Ωijq| = O(εtCε) on H. By integrating the inequality, we have

|Zq(x(s))− Zq(x(0))| ≲
∫ s

0

ε(x0(τ))−1+Cεẋ0(τ) dτ ≲ (x0(s))Cε,

so we have

|Zq(x(s))| ≲ |Zq(x(0))|+ (x0(s))Cε ≲ 1 + |q(x(0))|+ (x0(s))Cε = 1 + |q(x(s))|+ (x0(s))Cε.

In conclusion, we have |Zq| = O(|q|+ tCε) in ΩT . For Z = ∂α or Ωij we have better bounds
|Ωijq| + |∂q| = O(tCε), since the estimates for ∂q|H and Ωijq|H are better. In addition, we
have |qi − ωiqr| = r−1|

∑
j ωjΩijq| ≲ t−1+Cε.

Lemma 4.11. For each (t, x) ∈ ΩT , we have qr ≥ C−1t−Cε, −qt ≥ C−1t−Cε and |qt + qr| ≲
εt−1+Cε.
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Proof. Recall that from the proof of Lemma (4.8), we have |ẋi(s)| ≲ ẋ0(s) and

(x0(s))−Cε ≤ ẋ0(0)(
x0(s)

x0(0)
)−Cε ≤ ẋ0(s) ≤ ẋ0(0)(

x0(s)

x0(0)
)Cε ≤ (x0(s))Cε

along each geodesic x(s) in A. At (t0, x0) = x(s0) for some geodesic x(s) in A, we have

qt =
1

2
g0αẋ

α(s0) = −1

2
ẋ0(s0) +O(|u(x(s0))||ẋ(s0)|) ≤ −1

2
t−Cε
0 + Cεt−1+Cε

0 ≤ −1

4
t−Cε
0 .

(4.14)
Here we take ε� 1 as usual.

To prove the estimate for qr, we first prove that qr > 0 in ΩT . Assume qr = 0 at some
(t0, x0) ∈ ΩT . By the eikonal equation (4.6) and the previous lemma, at (t0, x0) we have

0 = g00q2t + 2g0iqt(qi − qrωi) + gij(qi − ωiqr)(qj − ωjqr)

= −q2t +O(|u||qt|
∑
i

|qi − qrωi|) +O((
∑
i

|qi − ωiqr|)2)

= −q2t +O(t−2+Cε
0 ).

(4.15)

Plug (4.14) into (4.15), and we conclude that t−2Cε
0 ≲ q2t ≲ t−2+Cε

0 and t2−3Cε
0 ≲ 1. This is

impossible, since t2−3Cε
0 ≥ t0 ≥ T0 = exp(δ/ε) � 1 for ε� 1. So we have qr 6= 0 everywhere

in ΩT . Since qr = 1 + O(|u|) > 0 on H, we have qr > 0 everywhere in ΩT . By (4.14), we
have −qt + qr ≥ −qt ≥ 1

4
t−Cε. Then since

0 = −q2t +
∑
i

q2i +O(|u||∂q|2) = (qt + qr)(−qt + qr) +
∑
i

(qi − qrωi)
2 +O(εt−1+Cε|∂q|2)

= (qt + qr)(−qt + qr) +O(t−2+2Cε + εt−1+Cε)

and since t−1 ≤ T−1
0 � ε, we have

|qt + qr| = (−qt + qr)
−1O(εt−1+Cε) ≲ tCε · εt−1+Cε ≲ εt−1+Cε.

Then we have qr = −qt + (qt + qr) ≥ C−1t−Cε − Cεt−1+Cε ≥ C−1t−Cε.

4.3.3 A null frame
We construct a null frame {e1, e2, e3, e4} in ΩT as follows. Define two vector fields e3, e4 by

e4 := (L0)−1L, e3 := e4 + 2g0α∂α.

Since g00 ≡ −1, we have e04 ≡ 1 and e03 ≡ −1. Moreover, we have

〈e4, e4〉 = (L0)−2〈L,L〉 = (L0)−2gαβL
αLβ = 0,

〈e4, e3〉 = 〈e3, e4〉 = 〈2g0α∂α, e4〉 = 2gαβg
0αeβ4 = 2e04 = 2,

〈e3, e3〉 = 〈e4, e3〉+ 〈2g0α∂α, e3〉 = 2 + 2gαβg
0αeβ3 = 2 + 2e03 = 0.

(4.16)
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Here 〈·, ·〉 is the bilinear form defined by the Lorentzian metric (gαβ) = (gαβ)−1.
Next we define {ea}a=1,2. When restricted to the 2-sphere H∩{t = T ′} for some T ′ ≥ T0,

the metric (gαβ) is positive definite. Thus, we can choose a smooth orthonormal basis
{Ea}a=1,2 locally on this 2-sphere. Here we make our choice such that Ea|H depends only
on ω and not on t. Note that Ea is tangent to H ∩ {t = T ′}, that E0

a = 0 and that
〈Ea, Eb〉 = δab. Then we take the parallel transport of Ea along the geodesics. That is, we
consider the equations D4Ea = 0 for a = 1, 2. Here D is the Levi-Civita connection of the
Lorentzian metric, and D4 := De4 . Since e4 is tangent to the geodesic, equivalently we need
to solve the ODE’s

d

ds
Eα

a (x(s)) + ẋµ(s)Eν
a (x(s))Γ

α
µν(x(s)) = 0. (4.17)

By the existence and uniqueness for linear ODE’s (e.g. Theorem 4.12 in [19]), these ODE’s
admit a unique solution for all 0 ≤ s ≤ s0. Finally, we define

ea := Ea − E0
ae4, a = 1, 2.

Thus e0a = 0. Unlike e3, e4, the vector fields e1, e2 cannot be defined globally in ΩT . This is
because there is no global orthonormal basis on a 2-sphere. In the rest of this chapter, when
we state a property of ea on ΩT , we mean that any locally defined ea satisfies this property.

We conclude that {ek}k=1,2,3,4 is a null frame by (4.16) and the following lemma.

Lemma 4.12. In ΩT we have 〈ea, eb〉 = δab and 〈e4, ea〉 = 〈e3, ea〉 = 0 for each a, b = 1, 2.

Proof. We first prove that 〈Ea, Eb〉 = δab and 〈e4, Ea〉 = 0 on H. The first equality follows
directly from the construction of {Ea}. To prove the second one, we recall that qi = qrωi on
H; see the computations right above Lemma 4.8. Moreover, note that

∑
i x

i(0)Ei
a = 0 since

Ea is tangent to the sphere on H. Thus, on H, we have

〈L,Ea〉 = gαβL
αEβ

a = 2qβE
β
a = 2qiE

i
a = 2qrωiE

i
a = 0.

And since e4 = (L0)−1L, we have 〈e4, Ea〉 = 0 at x(0).
Along each geodesic x(s) in A, we have

e4〈Ea, Eb〉 = 〈D4Ea, Eb〉+ 〈Ea, D4Eb〉 = 0,

e4〈L,Ea〉 = 〈D4L,Ea〉+ 〈L,D4Ea〉 = 0.

Because of the equalities at s = 0, we conclude that 〈Ea, Eb〉 = δab and 〈L,Ea〉 = 0 (and
thus 〈e4, Ea〉 = 0) along each geodesic.

Finally, note that

〈ea, eb〉 = 〈Ea, Eb〉 − E0
a〈e4, Eb〉 − E0

b 〈Ea, e4〉+ E0
aE

0
b 〈e4, e4〉 = δab,

〈e4, ea〉 = 〈e4, Ea〉 − E0
a〈e4, e4〉 = 0,

〈e3, ea〉 = 〈2g0α∂α, ea〉+ 〈e4, ea〉 = 2gαβg
0αeβa = 2e0a = 0.

This finishes the proof.
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Before we move on to the next lemma, we summarize some important properties of a
null frame. First, any vector field X can be uniquely expressed as a linear combination of
the null frame:

X =
∑
a=1,2

〈X, ea〉ea +
1

2
〈X, e4〉e3 +

1

2
〈X, e3〉e4. (4.18)

In addition, for each k = 1, 2, 3, 4 we have
〈gαβ∂β, ek〉 = gαβgβµe

µ
k = eαk ,

so we obtain

gαβ∂β =
∑
a=1,2

eαaea +
1

2
eα4 e3 +

1

2
eα3 e4 =⇒ gαβ =

∑
a=1,2

eαae
β
a +

1

2
eα4 e

β
3 +

1

2
eα3 e

β
4 . (4.19)

Finally, we have e1(q) = e2(q) = e4(q) = 0 and e3(q) = L0 in ΩT . In fact, since
qα = 1

2
gαβL

β, we have Xq = 1
2
〈X,L〉 = 1

2
L0〈e4, X〉 for each vector field X. Then we use the

properties of a null frame. The equality e1(q) = e2(q) = e4(q) = 0 implies that e1, e2, e4 are
tangent to the level set of q, so e1, e2, e4 are sometimes called the tangential derivatives.

The next lemma shows several better estimates for the tangential derivatives.

Lemma 4.13. In ΩT , we have e4 = ∂t + ∂r + O(t−1+Cε)∂, e3 = e4 + 2g0α∂α = −∂t + ∂r +
O(t−1+Cε)∂ and ea = O(1)∂. Then, for all I, s, l, we have∑

k=1,2,4

(|ek(∂sZIu)|+ |ek(∂sZIgαβ)|+ |ek(∂sZIgαβ)|) ≲ εt−2+Cε〈r − t〉−s.

Here we use the convention given in Section 4.2.1. Moreover, we have
|e1(∂αgµν)eα2 |+ |e2(∂αgµν)eα1 |+ |e1(∂αgµν)eα1 − e2(∂αgµν)e

α
2 | ≲ εt−3+Cε.

Proof. By the lemmas in Section 4.3.2, we have

ei4 − ωi =
Li − L0ωi

L0
=

2qi + 2qtωi +O(|u||∂q|)
−2qt +O(|u||∂q|)

=
2(qi − qrωi) + 2(qr + qt)ωi +O(|u||∂q|)

−2qt +O(|u||∂q|)
.

By Lemma 4.10 and Lemma 4.11, the denominator has a lower bound C−1t−Cε−Cεt−1+Cε ≥
(2C)−1t−Cε and the numerator is O(t−1+Cε). In conclusion, e4 = ∂t + ∂r + O(t−1+Cε)∂. It
follows that for each I,

|e4(∂sZIu)| ≲ |(∂t + ∂r)∂
sZIu|+ t−1+Cε|∂∂sZIu|

≲ 〈t+ r〉−1
∑
|J |=1

|ZJ∂sZIu|+ t−1+Cε〈r − t〉−s−1
∑

|J |≤s+1

|ZJZIu|

≲ 〈t+ r〉−1
∑
|J |≤1

|∂sZJZIu|+ t−1+Cε〈r − t〉−s−1 · εt−1+Cε

≲ 〈t+ r〉−1 · εt−1+Cε〈r − t〉−s + εt−2+Cε〈r − t〉−s−1

≲ εt−2+Cε〈r − t〉−s.
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Here we apply Lemma 1.4, the pointwise decays in Theorem 4.2, and (1.17). By the chain
rule and Leibniz’s rule, we can express e4(∂sZI(gαβ, gαβ)) as a linear combination of terms
of the form

dm

dum
(gαβ, gαβ)(u) · (∂s1ZI1u) · · · (∂sm−1ZIm−1u) · e4(∂smZImu)

where
∑
s∗ = s,

∑
|I∗| = |I| and m > 0. These terms have an upper bound

εt−1+Cε〈r − t〉−s1 · · · εt−1+Cε〈r − t〉−sm−1 · εt−2+Cε〈r − t〉−sm ≲ εt−2+Cε〈r − t〉−s.

We thus have e4(∂sZI(gαβ, gαβ)) = O(εt−2+Cε〈r − t〉−s).
Next we fix (t0, x0) ∈ ΩT . Without loss of generality, we assume |q3| = max{|qj| : j =

1, 2, 3} at (t0, x0). For i = 1, 2, we define

Yi := qi∂3 − q3∂i = r−1qrΩi3 + (qi − ωiqr)∂3 − (q3 − ω3qr)∂i = r−1qrΩi3 +O(t−1+Cε)∂.

Here {Y1, Y2} is a basis of the tangent space of the 2-sphere Σ(t0,x0) = {t = t0, q = q(t0, x0)}
at (t0, x0). Since ea lies in the tangent space (as e0a = 0 and ea(q) = 0), we can write
ea =

∑
i=1,2 caiYi in a unique way. Since

〈Yi, Yj〉 = qiqjg33 + q23gij − qiq3g3j − qjq3g3i = qiqj + q23δij +O(|u|q23), i, j = 1, 2,

we have
1 = 〈ea, ea〉 =

∑
i,j

caicaj〈Yi, Yj〉 = (
∑
i

caiqi)
2 + (1 +O(|u|))q23

∑
i

c2ai.

Then, for ε� 1 we have

1 ≥ 0 + (1 +O(εt−1+Cε))q23
∑
i

c2ai ≥
1

2
q23

∑
i

c2ai.

Thus, we have |q3cai| ≲ 1 for each a, i and thus eαa =
∑

i caiY
α
i = O(|caiq3|) = O(1). And

since C−1t−Cε ≤ |qr| = |
∑

i ωiqi| ≤
∑

i |qi| ≤ 3|q3|, for each multiindex I, we have

|ea(∂sZIu)| ≤
∑
i

|caiYi(∂sZIu)| ≲
∑
i

|cai|(r−1|qr||Ω∂sZIu|+ t−1+Cε|∂∂sZIu|)

≲ εt−2+Cε〈r − t〉−s.

By the chain rule and Leibniz’s rule, we finish the proof of the first estimate.
In addition,

0 = 〈e1, e1〉 − 〈e2, e2〉 = (
∑
i

c1iqi)
2 − (

∑
i

c2iqi)
2 + q23

∑
i

(c21i − c22i) +O(|u|q23
∑
a,i

c2ai)

= (
∑
i

c1iqi)
2 − (

∑
i

c2iqi)
2 + q23

∑
i

(c21i − c22i) +O(|u|)

=
∑
i,j

(c1ic1j − c2ic2j)qiqj − (
∑
i

c2iqi)
2 + q23

∑
i

(c21i − c22i) +O(|u|),

(4.20)
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0 = 〈e1, e2〉 =
∑
i,j

c1ic2j〈Yi, Yj〉 =
∑
i,j

c1ic2jqiqj +
∑
i

c1ic2iq
2
3 +O(|u|q23

∑
i,j

|c1ic2j|)

=
∑
i,j

c1ic2jqiqj +
∑
i

c1ic2iq
2
3 +O(|u|).

(4.21)

Then, we have
Yi(Zg) = r−1qrΩi3g +O(t−1+Cε|∂g|) = O(εt−2+Cε),

Yi(∂αg)Y
α
j = (r−1qrΩi3(∂αg) + (qi − ωiqr)∂3∂αg − (q3 − ω3qr)∂i∂αg)Y

α
j

= r−1qr(Y
α
j [Ωi3, ∂α]g + YjΩi3g) + (qi − ωiqr)Yj(∂3g)− (q3 − ω3qr)Yj(∂ig)

= r−1qr(−Y i
j ∂3g + Y 3

j ∂ig) + r−1qrYjΩi3g +O(t−1+Cε|Yj(∂g)|)
= r−1qr(δijq3∂3g + qj∂ig) +O(εt−3+Cε),

ea(∂αg)e
α
b =

∑
i,j

caiYi(∂αg)cbjY
α
j =

∑
i,j

caicbj(r
−1qr(δijq3∂3g + qj∂ig) +O(εt−3+Cε))

=
∑
i

r−1caicbiqrq3∂3g +
∑
i,j

r−1caicbjqrqj∂ig +O(
∑
i,j

|caicbj||q3|εt−3+Cε)

=
∑
i

r−1caicbiqrq3∂3g +
∑
i,j

r−1caicbjqrqj∂ig +O(εt−3+Cε).

When a 6= b, by (4.21) we have

ea(∂αg)e
α
b = r−1qrq

−1
3 (−

∑
i,j

caicbjqiqj +O(|u|))∂3g +
∑
i,j

r−1caicbjqrqj∂ig +O(εt−3+Cε)

= r−1qrq
−1
3

∑
i,j

caicbjqj(−qi∂3g + q3∂ig) +O(r−1|qrq−1
3 ||u||∂g|) +O(εt−3+Cε)

= r−1qrq
−1
3

∑
i,j

caicbjqj(−Yig) +O(εt−3+Cε) = O(εt−3+Cε).

By (4.20) we have

e1(∂αg)e
α
1 − e2(∂αg)e

α
2

=
∑
i

r−1(c21i − c22i)qrq3∂3g +
∑
i,j

r−1(c1ic1j − c2ic2j)qrqj∂ig +O(εt−3+Cε)

= r−1qrq
−1
3 (−

∑
i,j

(c1ic1j − c2ic2j)qiqj)∂3g +
∑
i,j

r−1(c1ic1j − c2ic2j)qrqj∂ig +O(εt−3+Cε)

=
∑
i,j

r−1qrq
−1
3 qj(c1ic1j − c2ic2j)(−Yig) +O(εt−3+Cε) = O(εt−3+Cε).

It is clear that our proof would still work if we assume |q1| = max{|qj| : j = 1, 2, 3} or
|q2| = max{|qj| : j = 1, 2, 3}. This ends the proof.
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Lemma 4.14. In ΩT , we have |q − (r − t)| ≲ tCε.

Proof. By the previous lemma and Lemma 4.11, we have

ei4 − ωi =
2(qi − qrωi) + 2(qr + qt)ωi +O(|u||∂q|)

L0
= 2(L0)−1(qi − qrωi) +O(εt−1+Cε).

Thus,

e4(q − r + t) = (∂t + ∂r)(−r + t)− 2(L0)−1
∑
i

(qi − qrωi)ωi +O(εt−1+Cε) = O(εt−1+Cε).

Suppose (t, x) ∈ ΩT lies on a geodesic x(s) in ΩT . Since q − r + t = 0 on H, by integrating
e4(q − r + t) along this geodesic, we have

|q − r + t| ≲
∫ t

x0(0)

ετ−1+Cε dτ ≲ tCε.

4.3.4 Connection coefficients
From now on, we write Dk = Dek for k = 1, 2, 3, 4 for simplicity.

Lemma 4.15. In ΩT , we have

D4ek = (Γ0
αβe

α
4 e

β
k)e4, k = 1, 2, 4.

As a result, we have e4(eαk ) = O(εt−2+Cε) for each k = 1, 2, 3, 4.

Proof. Since a geodesic in A is an integral curve of L, we have Lα = ẋα(s) at x(s). Then,
the geodesic equation (4.9) implies

L(L0) = ẋα(s)(∂αL
0) =

d

ds
L0(x(s)) = ẍ0(s) = −Γ0

µνL
µLν , at x(s).

Divide both sides by L0, and we conclude e4(L0) = −Γ0
µνe

µ
4L

ν in ΩT and thus e4(lnL0) =
−Γ0

µνe
µ
4e

ν
4. Similarly, from (4.17) we obtain e4(E

0
a) = −Γ0

µνe
µ
4E

ν
a . Thus, we have

D4e4 = D4((L
0)−1L) = −(L0)−2e4(L

0)L+ (L0)−1D4L = −(L0)−1e4(L
0)e4 = (Γ0

µνe
µ
4e

ν
4)e4.

For a = 1, 2, since D4Ea = 0, we have

D4ea = D4(Ea − E0
ae4) = −D4(E

0
ae4) = −e4(E0

a)e4 − E0
aD4e4

= (Γ0
µνe

µ
4E

ν
a )e4 − (E0

aΓ
0
µνe

µ
4e

ν
4)e4 = Γ0

µνe
µ
4(E

ν
a − E0

ae
ν
4)e4

= (Γ0
µνe

µ
4e

ν
a)e4.
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In addition, D4ek = e4(e
α
k )∂α + Γα

µνe
µ
4e

ν
k∂α. If we consider the coefficients of ∂α in D4ek for

k = 1, 2, 4, we have e4(eαk ) = Γ0
µνe

µ
4e

ν
ke

α
4 − Γα

µνe
µ
4e

ν
k. By Lemma 4.13, we have

Γα
µν =

1

2
gαβ(∂µgνβ + ∂νgµβ − ∂βgµν)

=
1

2
gαβ(∂µgνβ + ∂νgµβ)−

1

2
(
∑
a

eαaea(gµν) +
1

2
(eα3 e4(gµν) + eα4 e3(gµν)))

=
1

2
gαβ(∂µgνβ + ∂νgµβ)−

1

4
eα4 e3(gµν) +O(εt−2+Cε).

(4.22)

Then, since e04 = 1, for k = 1, 2, 4 we have

e4(e
α
k ) = (

1

2
g0β(∂µgνβ + ∂νgµβ)−

1

4
e04e3(gµν) +O(εt−2+Cε))eµ4e

ν
ke

α
4

− (
1

2
gαβ(∂µgνβ + ∂νgµβ)−

1

4
eα4 e3(gµν) +O(εt−2+Cε))eµ4e

ν
k

=
1

2
g0β(e4(gνβ)e

ν
ke

α
4 + ek(gµβ)e

µ
4e

α
4 ) +

1

2
gαβ(e4(gνβ)e

ν
k + ek(gµβ)e

µ
4)

− 1

4
e3(gµν)(e

µ
4e

ν
ke

α
4 e

0
4 − eµ4e

ν
ke

α
4 ) +O(εt−2+Cε)

= O(εt−2+Cε).

It follows that e4(eα3 ) = e4(e
α
4 ) + e4(2g

0α) = O(εt−2+Cε). This finishes the proof.

Remark 4.15.1. Since e3(q) = L0, we have

e4(e3(q)) = e4(L
0) = −Γ0

αβe
α
4L

β = −Γ0
αβe

α
4 e

β
4e3(q).

This equality is useful in the rest of this chapter.
Next, we set χab := 〈Dae4, eb〉 for a, b = 1, 2.

Lemma 4.16. In ΩT , we have
(a) χ12 = χ21.
(b) trχ := χ11 + χ22 is independent of the choice of e1 and e2.
(c)

[e4, ea] = −
∑
b

χabeb, Dae4 =
∑
b

χabeb + (eµ4e
ν
aΓ

0
µν)e4, ea(e

α
4 ) =

∑
b

χabe
α
b +O(εt−2+Cε).

Proof. (a) Since ea(q) = 0, we have

〈e4, [e1, e2]〉 = (L0)−1〈L, [e1, e2]〉 = 2(L0)−1[e1, e2]q = 2(L0)−1(e1(e2(q))− e2(e1(q))) = 0.
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And since

〈Dkel, em〉 = ek(〈el, em〉)− 〈el, Dkem〉 = −〈el, Dkem〉, k, l,m = 1, 2, 3, 4,

we have

χ12 − χ21 = 〈D1e4, e2〉 − 〈D2e4, e1〉 = 〈e4,−D1e2 +D2e1〉 = −〈e4, [e1, e2]〉 = 0.

(b) Suppose that {e′k} is another null frame with e3 = e′3 and e4 = e′4. Then we have
e′a =

∑
b〈e′a, eb〉eb, ea =

∑
b〈ea, e′b〉e′b and thus

ea =
∑
b

〈ea, e′b〉e′b =
∑
b,c

〈ea, e′b〉〈e′b, ec〉ec =⇒
∑
b,c

〈ea, e′b〉〈e′b, ec〉 = δac.

Then,
χ′
11 + χ′

22 =
∑
a

〈De′ae4, e
′
a〉 =

∑
a

∑
b,c

〈e′a, eb〉〈e′a, ec〉〈Dbe4, ec〉

=
∑
b,c

∑
a

〈e′a, eb〉〈e′a, ec〉χbc =
∑
b,c

δbcχbc = χ11 + χ22.

(c) Since D4ek = (Γ0
αβe

α
4 e

β
k)e4 for k = 1, 2, 4, we have 〈D4ek, ea〉 = 0 for k = 1, 2, 4 and

thus
〈e4, [e4, ea]〉 = 〈e4, D4ea −Dae4〉 = −〈D4e4, ea〉 −

1

2
ea〈e4, e4〉 = 0,

〈eb, [e4, ea]〉 = 〈eb, D4ea −Dae4〉 = 〈eb, D4ea〉 − χab = −χab.

Since e04 = 1 and e0a = 0, we have [e4, ea]
0 = 0 (where [e4, ea] = [e4, ea]

α∂α) and thus

〈e3, [e4, ea]〉 = 〈e4, [e4, ea]〉+ 2g0αgαβ[e4, ea]
β = 0 + 2[e4, ea]

0 = 0.

By (4.18) we conclude that [e4, ea] = −
∑

b=1,2 χabeb. The second equality follows from
Dae4 = [ea, e4] + D4ea. The third one follows from ea(e

α
4 ) − e4(e

α
a ) = [ea, e4]

α and the
previous lemma.

4.3.5 The Raychaudhuri equation
It turns out the estimates for χab are crucial in the proof of the global existence of the optical
function. To obtain such estimates, we need the Raychaudhuri equation

e4(χab) = −
∑
c

χacχcb + Γ0
αβe

α
4 e

β
4χab + 〈R(e4, ea)e4, eb〉. (4.23)
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Here 〈R(X,Y )Z,W 〉 := 〈DXDYZ −DYDXZ −D[X,Y ]Z,W 〉 is the curvature tensor. In fact,
since 2〈Dae4, e4〉 = ea〈e4, e4〉 = 0, we have

e4(χab) = e4〈Dae4, eb〉 = 〈D4Dae4, eb〉+ 〈Dae4, D4eb〉
= 〈DaD4e4, eb〉+ 〈D[e4,ea]e4, eb〉+ 〈R(e4, ea)e4, eb〉+ Γ0

αβe
α
4 e

β
b 〈Dae4, e4〉

= 〈Da(Γ
0
αβe

α
4 e

β
4e4), eb〉 −

∑
c

χac〈Dce4, eb〉+ 〈R(e4, ea)e4, eb〉

= ea(Γ
0
αβe

α
4 e

β
4 )〈e4, eb〉+ Γ0

αβe
α
4 e

β
4χab −

∑
c

χacχcb + 〈R(e4, ea)e4, eb〉

= Γ0
αβe

α
4 e

β
4χab −

∑
c

χacχcb + 〈R(e4, ea)e4, eb〉.

From (4.23), we can compute e4(χ11 − χ22), e4(χ12) and e4(trχ). Note that∑
c

χ1cχc1 −
∑
c

χ2cχc2 = χ2
11 − χ2

22 = trχ(χ11 − χ22),

∑
c

χ1cχc2 =
∑
c

χ2cχc1 = χ11χ12 + χ12χ22 = χ12trχ,

∑
c

χ1cχc1 +
∑
c

χ2cχc2 = χ2
11 + χ2

22 + 2χ2
12 =

1

2
(trχ)2 +

1

2
(χ11 − χ22)

2 + 2χ2
12.

As for the curvature tensor, we have the following lemma.

Lemma 4.17. In ΩT , we have

〈R(e4, ea)e4, eb〉 = e4(fab) +
1

2
eα4 e

β
ae

µ
4e

ν
b∂β∂νgαµ +O(ε2t−3+Cε)

where
fab :=

1

2
(eβae

ν
be4(gβν)− eβae

µ
4eb(gβµ))−

1

2
eα4 ea(gαν)e

ν
b = O(εt−2+Cε).

Moreover,

〈R(e4, e1)e4, e1〉 − 〈R(e4, e2)e4, e2〉 = e4(f11 − f22) +O(εt−3+Cε),

〈R(e4, e1)e4, e2〉 = e4(f12) +O(εt−3+Cε),

〈R(e4, e1)e4, e1〉+ 〈R(e4, e2)e4, e2〉 = e4(trf − 1

2
eα4 e

µ
4e3(gαµ)) +O(ε2t−3+Cε).
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Proof. We have 〈R(e4, ea)e4, eb〉 = eα4 e
β
ae

µ
4e

ν
bRαβµν where Rαβµν is given by

Rαβµν := 〈R(∂α, ∂β)∂µ, ∂ν〉 = gσν(∂αΓ
σ
βµ − ∂βΓ

σ
αµ + Γδ

βµΓ
σ
αδ − Γδ

αµΓ
σ
βδ)

= ∂αΓνβµ − ∂βΓναµ − Γσ
βµ∂αgσν + Γσ

αµ∂βgσν + Γδ
βµΓναδ − Γδ

αµΓνβδ

= ∂αΓνβµ − ∂βΓναµ − Γδ
βµΓδνα + Γδ

αµΓδνβ

=
1

2
(∂α∂µgβν − ∂α∂νgβµ − ∂β∂µgαν + ∂β∂νgαµ)− Γδ

βµΓδνα + Γδ
αµΓδνβ.

Here for simplicity we set Γαµν := gαβΓ
β
µν = 1

2
(∂µgαν + ∂νgαµ − ∂αgµν). Then

1

2
eα4 e

β
ae

µ
4e

ν
b (∂α∂µgβν − ∂α∂νgβµ − ∂β∂µgαν + ∂β∂νgαµ)

=
1

2
e4(∂µgβν − ∂νgβµ)e

β
ae

µ
4e

ν
b −

1

2
eα4 e

β
ae4(∂βgαν)e

ν
b +

1

2
eα4 e

β
ae

µ
4e

ν
b∂β∂νgαµ

= e4(
1

2
(∂µgβν − ∂νgβµ)e

β
ae

µ
4e

ν
b −

1

2
eα4 e

β
a(∂βgαν)e

ν
b ) +

1

2
eα4 e

β
ae

µ
4e

ν
b∂β∂νgαµ

+O(|∂g|
∑

k=1,2,4

|e4(eαk )|)

= e4(fab) +
1

2
eα4 e

β
ae

µ
4e

ν
b∂β∂νgαµ +O(ε2t−3+Cε).

To finish the proof of the first part, we note that

Γδ
βµΓδνα = gσδΓσβµΓδνα =

1

4
gσδ(∂βgσµ + ∂µgβσ − ∂σgβµ)(∂αgδν + ∂νgαδ − ∂δgαν).

By (4.19), we have

eα4 e
β
ae

µ
4e

ν
bΓ

δ
βµΓδνα =

1

4
gσδ∂σg∂δg +

∑
k=1,2,4

O(1)ek(g)∂g

=
1

4

∑
c=1,2

ec(g)ec(g) +
1

8
e3(g)e4(g) +

1

8
e4(g)e3(g) +O(

∑
k=1,2,4

|ek(g)||∂g|)

= O(εt−2+Cε · εt−1+Cε) = O(ε2t−3+Cε).

Similarly, we have eα4 eβae
µ
4e

ν
bΓ

δ
αµΓδνβ = O(ε2t−3+Cε).

To prove the second half, we only need to consider the term 1
2
eα4 e

β
ae

µ
4e

ν
b∂β∂νgαµ. By

Lemma 4.13, we have

1

2
eα4 e

β
1e

µ
4e

ν
2∂β∂νgαµ =

1

2
eα4 e

µ
4e

β
1e2(∂βgαµ) = O(εt−3+Cε),

1

2
eα4 e

β
1e

µ
4e

ν
1∂β∂νgαµ −

1

2
eα4 e

β
2e

µ
4e

ν
2∂β∂νgαµ =

1

2
eα4 e

µ
4(e

β
1e1(∂βgαµ)− eβ2e2(∂βgαµ)) = O(εt−3+Cε).
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Finally, note that∑
a

eα4 e
β
ae

µ
4e

ν
a∂β∂νgαµ =

1

2
eα4 e

µ
4(g

βν − 1

2
eβ3e

ν
4 −

1

2
eβ4e

ν
3)∂β∂νgαµ

=
1

2
eα4 e

µ
4g

βν∂β∂νgαµ −
1

2
eα4 e

µ
4e

β
3e4(∂βgαµ)

= −e4(
1

2
eα4 e

µ
4e

β
3∂βgαµ) +O(ε2t−3+Cε).

We briefly explain how we obtain the third estimate here. If F = F (u) is a function of u
which is a solution to (1.1), then by (4.19)

gβν∂β∂ν(F (u)) = F ′(u)gβνuβν + F ′′(u)gβνuβuν = 0 + F ′′(u)(
∑
c

ec(u)ec(u) + e3(u)e4(u))

= O(εt−3+Cε).

We thus have eα4 e
µ
4g

βν∂β∂νgαµ = O(εt−3+Cε). To handle the other term, we note that

e4(
1

2
eα4 e

µ
4e

β
3∂βgαµ)−

1

2
eα4 e

µ
4e

β
3e4(∂βgαµ) =

1

2
e4(e

α
4 e

µ
4e

β
3 )∂βgαµ = O(ε2t−3+Cε).

Thus, it follows from (4.23) that

e4(χ11 − χ22) = −trχ(χ11 − χ22) + Γ0
αβe

α
4 e

β
4 (χ11 − χ22) + e4(f11 − f22) +O(εt−3+Cε),

e4(χ12) = −χ12trχ+ Γ0
αβe

α
4 e

β
4χ12 + e4(f12) +O(εt−3+Cε),

e4(trχ) = −1

2
(trχ)2 − 1

2
(χ11 − χ22)

2 − 2χ2
12 + Γ0

αβe
α
4 e

β
4 trχ

+e4(trf − 1

2
eα4 e

µ
4e3(gαµ)) +O(ε2t−3+Cε).

(4.24)
It turns out to be more convenient to work with (4.24) instead of (4.23).

4.3.6 Continuity argument
Fix a geodesic x(s) in A with x0(0) ∈ H ∩ {t < T}. Since ẋ0(s) > 0 for all s ≥ 0 and
lims→∞ x0(s) = ∞, there exists a unique 0 < s0 < ∞ such that x0(s0) = T . Also fix some
s1 ∈ [0, s0]. Our assumption is that for all s ∈ [0, s1], at (t, x) = x(s) ∈ ΩT we have

max
a,b=1,2

|χab − δabr
−1| ≤ At−2+Bε. (4.25)
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Here A and B are large constants which are independent of T, ε, s1, s0 and the geodesic x(s).
In the derivation below, we always assume that the constants C in the inequalities are given
before we choose A,B, and that the constants C are also independent of T, ε, s1, s0 and x(s).
Note that for A,B � 1, we have (4.25) for s1 = 0 by the next lemma.

Lemma 4.18. On H, we have |∂2q| ≲ t−1 and maxa,b=1,2 |χab − δabr
−1| ≲ t−2+Cε.

Proof. Recall from Section 4.3.1 that on H we have

(−1− 4g0iωi + 4gijωiωj)q
2
t + (4gijωiωj − 2g0iωi)qt + gijωiωj = 0.

To compute Xiqt where Xi = ∂i + 2ωi∂t, we apply Xi to the equation and then solve for
Xiqt. Then,

Xiqt = −q
2
tXi(−1− 4g0iωi + 4gijωiωj) + qtXi(4g

ijωiωj − 2g0iωi) +Xi(g
ijωiωj)

2qt(−1− 4g0iωi + 4gijωiωj) + 4gijωiωj − 2g0iωi

.

Note that every term on the right hand side is known. The denominator is equal to −2 +
O(|u|) on H, so it is nonzero for ε � 1. In addition, we have Xiωj = O(r−1) = O(t−1) and
Xiu = O(|∂u|) = O(εt−1), so Xiqt = O(t−1). Next, we have

Xiqj = Xi(−ωj − 2ωjqt) = −(∂iωj)(1 + 2qt)− ωiXiqt = O(t−1).

By applying ∂t to the eikonal equation, we have

0 = 2gαβqβqtα + (∂tg
αβ)qαqβ = 2g0βqβqtt + 2giβqβ(Xiqt − 2ωiqtt) + (∂tg

αβ)qαqβ.

And since (qt, qi) = (−1, ω) +O(|u|) on H, we have

qtt = −2giβqβXiqt + (∂tg
αβ)qαqβ

2g0βqβ − 4giβωiqβ
= − O(|∂q|t−1 + εt−1|∂q|2)

−2qt − 4qr +O(|u||∂q|)
= O(t−1).

Finally we note that qit = Xiqt − 2ωiqtt = O(t−1) and qij = Xiqj − 2ωiqjt = O(t−1).
We move on to the estimates for χ. By definition, we have

χab = 〈Dae4, eb〉 = (ea(e
α
4 ) + eµae

ν
4Γ

α
µν)e

β
b gαβ.

As computed in Lemma 4.13, we have

eµae
ν
4Γ

α
µνe

β
b gαβ = (

1

2
gαγ(∂µgνγ + ∂νgµγ)−

1

4
eα4 e3(gµν) +O(εt−2+Cε))eµae

ν
4e

β
b gαβ

=
1

2
(ea(gνβ)e

ν
4e

β
b gαβ + e4(gµβ)e

µ
ae

β
b gαβ)−

1

4
e3(gµν)e

µ
ae

ν
4〈e4, eb〉+O(εt−2+Cε)

= O(εt−2+Cε).
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In addition, recall from Section 4.3.1 that qi = ωiqr on H. Since ea is tangent to H, on H
we have

ea(qi) = ea(ωiqr) = ejar
−1(δij − ωiωj)qr + ωiea(qr) = eiar

−1 − ωiqrr
−1ea(r) + ωiea(qr).

Since ea is tangent to the 2-sphere {t = t0, q = q(t0, x0)} = {t = t0, |x| = |x0|} at (t0, x0) ∈ H,
we have ea(r) = eiaωi = 0 on H. Thus, on H we have

eγb ea(qγ) = eibea(qi) =
∑
i

eib(e
i
ar

−1 − 0 + ωiea(qr))

= r−1gije
i
ae

j
b − r−1(gij − δij)e

i
ae

j
b + 0 = r−1δab +O(εt−2+Cε).

It follows that

ea(e
α
4 ) = ea(

Lα

L0
) =

L0ea(2g
αγqγ)− Lαea(2g

0γqγ)

(L0)2
=

2(gαγ − eα4 g
0γ)ea(qγ)

L0
+O(εt−2+Cε),

ea(e
α
4 )e

β
b gαβ =

2(eγb − 〈e4, eb〉g0γ)ea(qγ)
−2qt +O(|u||∂q|)

+O(εt−2+Cε) =
2eγb ea(qγ)

2 +O(|u|)
+O(εt−2+Cε)

= r−1δab +O(εt−2+Cε).

This finishes the proof.

To complete the continuity argument, we need to prove (4.25) with A replaced by A/2.
We start with χ12 and χ11 − χ22. By (4.24), we have

e4(r
2(χ12 − f12)) = 2re4(r)(χ12 − f12) + r2e4(χ12 − f12)

= 2re4(r)(χ12 − f12) + r2((−trχ+ Γ0
αβe

α
4 e

β
4 )χ12 +O(εt−3+Cε))

= r(2e4(r)− rtrχ+ rΓ0
αβe

α
4 e

β
4 )χ12 − 2re4(r)f12 +O(εt−1+Cε).

Recall that e4(r) = 1 + O(t−1+Cε), f12 = O(εt−2+Cε) and rΓ0
αβe

α
4 e

β
4 = O(r|∂g|) = O(ε). By

(4.25), we have |2− rtrχ| ≤ 2Art−2+Bε. In conclusion,

|e4(r2(χ12 − f12))| ≤ r(2Art−2+Bε + Cε+ Ct−1+Cε) · At−2+Bε + Cεt−1+Cε

≤ CA2t−2+2Bε + CAεt−1+Bε + CAt−2+(B+C)ε + Cεt−1+Cε

≤ CA2t−2+2Bε + CAεt−1+Bε.

By choosing A,B � C, we obtain the last inequality. On H, we have |r2(χ12 − f12)| ≤ CtCε

by the previous lemma. Thus, by integrating e4(r2(χ12 − f12)) along the geodesic, we have

|r2(χ12 − f12)| ≤ C(x0(0))Cε + CA2(x0(0))−1+2Bε + CAB−1tBε

≤ CtCε + CA2T−1+2Bε
0 + CAB−1tBε.
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Since T0 � ε−1, we have A2T−1+2Bε
0 ≤ 1 for ε � 1. In addition, by choosing B ≥ A, we

have
|χ12| ≤ r−2(|f12|+ CtCε + C + CtBε) ≤ Ct−2+Bε.

Here C is independent of A and B, so if we choose A ≥ 4C, we obtain with |χ12| ≤ 1
4
At−2+Bε.

The proof for |χ11 − χ22| ≤ 1
4
At−2+Bε is essentially the same.

To finish the continuity argument, we need to prove that |trχ − 2r−1| ≤ 1
4
At−2+Bε. For

h = trχ− trf = trχ+O(εt−2+Cε), by (4.25) we have h = 2r−1 +O(At−2+Bε) ∼ 2r−1. Then,
for ε� 1, by the last equation in (4.24) we have

e4(h
−1) = −h−2e4(h)

= −h−2(−1

2
(trχ)2 + Γ0

αβe
α
4 e

β
4 trχ− 1

2
e4(e

α
4 e

β
4e3(gαβ)) +O(ε2t−3+Cε + (χ11 − χ22)

2 + χ2
12))

= −h−2(−1

2
h2 + Γ0

αβe
α
4 e

β
4h− 1

2
e4(e

α
4 e

β
4e3(gαβ)) +O(εt−3+Cε + ε2t−3+Cε + A2t−4+2Bε))

=
1

2
− Γ0

αβe
α
4 e

β
4h

−1 +
1

2
h−2eα4 e

β
4e4(e3(gαβ)) +O(εt−1+Cε).

In the last line we use the product rule and the estimate e4(eα4 ) = O(εt−2+Cε). In addition,
we have

|h−1 − r/2| = |2− r(trχ− trf)|
2h

≲ r(|2− rtrχ|+ |rtrf |) ≲ AtBε;

by (4.22), we have

Γ0
αβe

α
4 e

β
4 =

1

2
g0γ(eβ4e4(gβγ) + eα4 e4(gαγ))−

1

4
e04e3(gαβ)e

α
4 e

β
4 +O(εt−2+Cε)

= −1

4
e3(gαβ)e

α
4 e

β
4 +O(εt−2+Cε).

Thus, we have

e4(h
−1) =

1

2
+

1

4
eα4 e

β
4e3(gαβ)h

−1 +
1

4
rh−1eα4 e

β
4e4(e3(gαβ))

+O(εt−1+Cε + h−1εt−2+Cε + AtBεh−1|e4(e3(g))|)

=
1

2
+

1

4
h−1eα4 e

β
4 (e3(gαβ) + re4(e3(gαβ))) +O(At1+Bε|e4(e3(gαβ))|+ εt−1+Cε).

(4.26)
The next three lemmas are necessary for us to control e3(gαβ)+re4(e3(gαβ)) and e4(e3(gαβ)).

Lemma 4.19. Under the assumption (4.25), in ΩT we have |ea(e3(q))|+ |ea(∂q)| ≲ t−1+Cε,
|ea(Ωijq)| ≲ At−1+Bε|e3(q)|+ t−1+Cε and |∂2q| ≲ tCε.
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Proof. We have (assuming {a, a′} = {1, 2})

e4(ea(e3(q))) = [e4, ea]e3(q) + ea(e4(e3(q))) = −
∑
b

χabeb(e3(q))− ea(Γ
0
µνe

µ
4e

ν
4e3(q))

= −
∑
b

χabeb(e3(q))− 2Γ0
µν(

∑
b

χabe
µ
b +O(εt−2+Cε))eν4e3(q)

− Γ0
µνe

µ
4e

ν
4ea(e3(q))− ea(Γ

0
µν)e

µ
4e

ν
4e3(q)

= −(χaa + Γ0
µνe

µ
4e

ν
4)ea(e3(q))− χ12ea′(e3(q))

− (2Γ0
µν

∑
b

χabe
µ
b e

ν
4 + ea(Γ

0
µν)e

µ
4e

ν
4 +O(εt−2+Cε|Γ|))e3(q).

Since χab = r−1δab + O(At−2+Bε) ∼ r−1 for ε �A,B 1, the last term is O(εt−2+Cε|e3(q)|) =
O(εt−2+Cε). Then,

|e4(rea(e3(q)))| = |e4(r)ea(e3(q)) + re4(ea(e3(q)))|
≤ |(1 +O(t−1+Cε))ea(e3(q))− r(χaa + Γ0

µνe
µ
4e

ν
4)ea(e3(q))− rχ12ea′(e3(q))|+ Cεt−1+Cε

≤ (|r−1 − χaa|+ |Γ0
µνe

µ
4e

ν
4|+O(t−2+Cε))|rea(e3(q))|+ |rχ12ea′(e3(q))|+ Cεt−1+Cε

≤ (At−2+Bε + Cεt−1 + Ct−2+Cε)|rea(e3(q))|+ CAt−2+Bε|rea′(e3(q))|+ Cεt−1+Cε

≤ Cεt−1
∑
b

|reb(e3(q))|+ Cεt−1+Cε.

In the last line, we choose ε � 1 so that Cεt−1 ≥ At−2+Bε + t−2+Cε for t ≥ T0 = exp(δ/ε).
Since ea is tangent toH, onH we have ea(e3(q)) = ea(2g

0αqα) = O(|∂2q|+|ea(g)∂q|) = O(t−1)
by Lemma 4.18. In conclusion, if (t, x) ∈ ΩT lies on a geodesic x(s) in A, at (t, x) we have∑

a

|rea(e3(q))| ≤
∑
a

|rea(e3(q))|(x(0)) +
∫ t

x0(0)

Cετ−1
∑
a

|rea(e3(q))|(τ, x̃(τ)) dτ + CtCε

≤ C + CtCε +

∫ t

x0(0)

Cετ−1
∑
a

|rea(e3(q))|(τ, x̃(τ)) dτ.

Here (τ, x̃(τ)) is a reparametrization of the geodesic x(s). We conclude that
∑

a |rea(e3(q))| ≲
CtCε by the Gronwall’s inequality. In addition, in ΩT we have

ea(qα) = ea(
1

2
〈∂α, e4〉e3(q)) = ea(

1

2
eβ4gαβe3(q))

=
1

2
ea(e

β
4 )gαβe3(q) +

1

2
eβ4ea(gαβ)e3(q) +

1

2
eβ4gαβea(e3(q)) = O(t−1+Cε).

Next we compute ea(Ωijq). Note that

Ωijq =
1

2
〈Ωij, e4〉e3(q) =

1

2
(xigjβ − xjgiβ)e

β
4e3(q) =

1

2
r(ωigjβe

β
4 − ωjgiβe

β
4 )e3(q).
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We have

ωigjβe
β
4 − ωjgiβe

β
4 = ωie

j
4 − ωje

i
4 +O(|u|) = O(

∑
j

|ej4 − ωj|) +O(|u|) = O(t−1+Cε),

so r(ωigjβe
β
4 − ωjgiβe

β
4 )ea(e3(q)) = O(t−1+Cε). In addition,

ea((xigjβ − xjgiβ)e
β
4 )

= (eiagjβ − ejagiβ)e
β
4 + (xigjβ − xjgiβ)ea(e

β
4 ) +O(|ea(g)|)

= eiae
j
4 − ejae

i
4 + (xigjβ − xjgiβ)

∑
b

(χabe
β
b +O(εt−2+Cε)) +O(|ea(g)|+ |u|)

= eiae
j
4 − ejae

i
4 +

∑
b

χab(xie
j
b − xje

i
b +O(r|u|)) +O(εt−1+Cε)

= eiae
j
4 − ejae

i
4 + r−1(xie

j
a − xje

i
a) +O(r(|χaa − r−1|+ |χ12|)) +O(εt−1+Cε)

= eia(e
j
4 − ωj)− eja(e

i
4 − ωi) +O(At−1+Bε) +O(εt−1+Cε) = O(At−1+Bε).

By the product rule we obtain the second estimate.
Finally, we consider ∂2q. Recall that eα4 = Lα/L0 and that |∂q| ∼ |qr| ∼ |qt| ∼ e3(q). By

the characteristic ODE’s, we have

e4(qα) =
−(∂αg

µν)qµqν
e3(q)

= O(εt−1)e3(q)

and thus

∂α(e4(qβ)) =
−∂α((∂βgµν)qµqν)e3(q) + (∂βg

µν)qµqν · 2∂α(g0γqγ)
(e3(q))2

=
−2(∂βg

µν)qµqανe3(q) + (∂βg
µν)qµqν · 2g0γqαγ

(e3(q))2
+O(εt−1+Cε)

= O(|∂g||∂2q|) +O(εt−1+Cε) = O(εt−1|∂2q|) +O(εt−1+Cε).

In the second line, we take out those terms without ∂2q and control them using the estimates
for g and ∂q. In the last line, we use the estimate |∂q| ∼ e3(q). Besides, we have

∂αe
β
4 =

∂α(L
β)L0 − Lβ∂α(L

0)

(L0)2
=

2∂α(g
βνqν)− 2eβ4∂α(g

0νqν)

e3(q)

=
2(gβν − eβ4g

0ν)qαν
e3(q)

+O(|∂g||∂q|(e3(q))−1)

=
(
∑

a 2e
β
ae

ν
a + eβ3e

ν
4 + eβ4e

ν
4)qαν

e3(q)
+O(εt−1)

=
2
∑

a e
β
aea(qα) + (eβ3 + eβ4 )e4(qα)

e3(q)
+O(εt−1) =

2
∑

a e
β
aea(qα)

e3(q)
+O(εt−1).
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Thus, we have

e4(qαβ) = [e4, ∂α]qβ + ∂α(e4(qβ)) = −∂α(eµ4)∂µ(qβ) + ∂α(e4(qβ))

= O((e3(q))
−1

∑
a

|ea(qβ)ea(qα)|) +O(εt−1|∂2q|) +O(εt−1+Cε)

= O(εt−1|∂2q|) +O(εt−1+Cε + t−2+Cε).

In the last line we use the estimate e3(q) ≥ C−1t−Cε. Since ∂2q = O(t−1) on H, we conclude
∂2q = O(tCε) by the Gronwall’s inequality.

Lemma 4.20. Set hi := r(∂i(ru) − qiq
−1
r ∂r(ru)). Under the assumption (4.25), in ΩT we

have |hi| ≲ εtCε, |ea(hi)| ≲ Aεt−1+Bε and ea(ru) =
∑

i ea(ωi)hi.

Proof. We have

hi = r(ωiu+ rui − qiq
−1
r u− qiq

−1
r rur) = ruq−1

r (qrωi − qi) + r2(ui − qiq
−1
r ur)

= (ru+ r2ur)q
−1
r (qrωi − qi) + r2(ui − ωiur) = (u+ rur)q

−1
r

∑
j

ωjΩijq +
∑
j

xjΩjiu.

Since |u|+|ur| ≲ εt−1+Cε, |qi−ωiqr| ≲ t−1+Cε and |ui−ωiur| ≲ εt−2+Cε, we obtain |hi| ≲ εtCε.
Moreover,

ea(xjΩiju) = ejaΩiju+ xjea(Ωiju) = O(εt−1+Cε),

ea((u+ rur)q
−1
r ωjΩijq) = ea(u+ rur)q

−1
r ωjΩijq − (u+ rur)q

−2
r ea(qr)ωjΩijq

+ (u+ rur)q
−1
r ea(ωj)Ωijq + (u+ rur)q

−1
r ωjea(Ωijq)

= O(εt−1+Cε) +O(ε|qr|−1|ea(Ωq)|)

= O(εt−1+Cε) +O(Aεt−1+Bε e3(q)

qr
) = O(Aεt−1+Bε).

Here we apply many estimates such as ea(r) = O(1), ea(ωi) = O(r−1), Ωq = O(tCε), qr ≥
C−1t−Cε and etc. In particular, we apply ea(Ωq) = O(At−1+Bεe3(q) + t−1+Cε) from the
previous lemma. Thus, we have ea(hi) = O(Aεt−1+Bε).

Finally, we have∑
i

ea(ωi)hi =
∑
i,j

ejar
−1(δij − ωiωj)hi

=
∑
i

eia(∂i(ru)− qiq
−1
r ∂r(ru))−

∑
i,j

ejaωiωj(∂i(ru)− qiq
−1
r ∂r(ru))

= ea(ru)− ea(q)q
−1
r ∂r(ru)−

∑
j

ejaωj

∑
i

(ωi∂i(ru)− ωiqiq
−1
r ∂r(ru))

= ea(ru).
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Lemma 4.21. Under the assumption (4.25), in ΩT we have |r−1e3(u)+e4(e3(u))| ≲ εAt−3+Bε

and |e4(e3(u))| ≲ εt−2.

Proof. The second inequality follows directly from the first one. To prove the first one, we
note that for each function F = F (t, x), we have

gαβ∂α∂βF = (
∑
a

eαae
β
a +

1

2
eα4 e

β
3 +

1

2
eα3 e

β
4 )∂α∂βF

=
∑
a

(ea(ea(F ))− ea(e
α
a )Fα) + e4(e3(F ))− e4(e

α
3 )Fα

=
∑
a

(ea(ea(F ))− (Daea)F + eµae
ν
aΓ

α
µνFα) + e4(e3(F ))− (D4e3)F + eµ4e

ν
3Γ

α
µνFα.

By (4.22), we have

eµae
ν
aΓ

α
µνFα =

1

2
gαβFα(e

ν
aea(gνβ) + eµaea(gµβ))−

1

4
e3(gµν)e

µ
ae

ν
ae4(F ) +O(εt−2+Cε|∂F |)

= O(εt−2+Cε|∂F |+ εt−1|e4(F )|),

eµ4e
ν
3Γ

α
µνFα =

1

2
gαβFα(e

ν
3e4(gνβ) + eµ4e3(gµβ))−

1

4
eµ4e

ν
3e3(gµν)e4(F ) +O(εt−2+Cε|∂F |)

=
1

2
(
∑
a

eβaea(F ) +
1

2
eβ3e4(F ) +

1

2
eβ4e3(F ))e

µ
4e3(gµβ) +O(εt−2+Cε|∂F |+ εt−1|e4(F )|)

=
1

4
e3(F )e

β
4e

µ
4e3(gµβ) +O(εt−2+Cε|∂F |+ εt−1

∑
k=1,2,4

|ek(F )|).

Moreover, since

Daea = 〈Daea, ea′〉ea′ +
1

2
〈Daea, e4〉e3 +

1

2
〈Daea, e3〉e4

= 〈Daea, ea′〉ea′ +
1

2
(−χaa)e3 + (−1

2
χaa + eµae

ν
aΓ

0
µν)e4, a 6= a′

D4e3 =
∑
b

〈D4e3, eb〉eb +
1

2
〈D4e3, e4〉e3 +

1

2
〈D4e3, e3〉e4

= −2
∑
b

Γ0
µνe

µ
4e

ν
beb − Γ0

µνe
µ
4e

ν
4e3,
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we have∑
a

(Daea)F = 〈D1e1, e2〉e2(F ) + 〈D2e2, e1〉e1(F )−
1

2
(trχ)(e3(F ) + e4(F )) +

∑
a

eµae
ν
aΓ

0
µνe4(F )

= 〈D1e1, e2〉e2(F ) + 〈D2e2, e1〉e1(F )−
1

2
(trχ)e3(F ) +O(t−1|e4(F )|)

= 〈D1e1, e2〉e2(F ) + 〈D2e2, e1〉e1(F )− r−1e3(F ) +O(t−1|e4(F )|+ At−2+Bε|e3(F )|),

(D4e3)F = −2
∑
b

Γ0
µνe

µ
4e

ν
beb(F )− Γ0

µνe
µ
4e

ν
4e3(F )

=
1

4
e3(gαβ)e

α
4 e

β
4e3(F ) +O(εt−1

∑
b

|eb(F )|+ εt−2+Cε|e3(F )|).

Here we use the assumption (4.25) and |e3(u)| ≲ |∂u| ≲ εt−1. In conclusion, we have

gαβ∂α∂βF =
∑
a

ea(ea(F ))− 〈D1e1, e2〉e2(F )− 〈D2e2, e1〉e1(F ) + e4(e3(F )) + r−1e3(F )

+O(t−1|e4(F )|+ At−2+Bε|e3(F )|) +O(εt−2+Cε|∂F |+ εt−1
∑

k=1,2,4

|ek(F )|).

By taking F = u, we obtain

0 = gαβ∂α∂βu =
∑
a

ea(ea(u))− 〈D1e1, e2〉e2(u)− 〈D2e2, e1〉e1(u)

+ r−1e3(u) + e4(e3(u)) +O(Aεt−3+Bε).

(4.27)

In addition, note that

e4(e3(F )) + r−1e3(F ) = e4(2g
0α + eα4 )Fα + (2g0α + eα4 )e4(Fα) + r−1e3(F )

= O((|e4(g0α)|+ |e4(eα4 )|)|∂F |+ |e4(Fα)|+ r−1|e3(F )|)
= O(εt−2+Cε|∂F |+ |e4(∂F )|+ r−1|e3(F )|).

Thus, we have

|
∑
a

ea(ea(F ))− 〈D1e1, e2〉e2(F )− 〈D2e2, e1〉e1(F )|

≲ |∂2F |+ εt−2+Cε|∂F |+ r−1|e3(F )|+ t−1|e4(F )|+ At−2+Bε|e3(F )|) + εt−1
∑

k=1,2,4

|ek(F )|.

When F = r−1, the right hand side has an upper bound Ct−3+Cε. When F = ωi, the right
hand side has an upper bound Ct−2+Cε. Here we choose ε�A,B 1 so that At−2+Bε|e3(r−1)| ≲
At−4+Bε ≲ t−3 and At−2+Bε|e3(ωi)| ≲ At−3+Bε ≲ t−2.
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We set U(t, x) = ru(t, x). Then, by the previous lemma,

ea(u) = ea(r
−1U) = ea(r

−1)U + r−1ea(U) = ea(r
−1)U + r−1

∑
i

ea(ωi)hi,

ea(ea(u)) = ea(ea(r
−1))U + 2ea(r

−1)
∑
i

ea(ωi)hi + r−1
∑
i

ea(ea(ωi))hi + r−1
∑
i

ea(ωi)ea(hi)

= ea(ea(r
−1))U + r−1

∑
i

ea(ea(ωi))hi +O(Aεt−3+Bε + εt−3+Cε).

Thus, we have∑
a

ea(ea(u))− 〈D1e1, e2〉e2(u)− 〈D2e2, e1〉e1(u)

= (
∑
a

ea(ea(r
−1))− 〈D1e1, e2〉e2(r−1)− 〈D2e2, e1〉e1(r−1))U

+ r−1
∑
i

(
∑
a

ea(ea(ωi))− 〈D1e1, e2〉e2(ωi)− 〈D2e2, e1〉e1(ωi))hi +O(Aεt−3+Bε + εt−3+Cε)

= O(t−3+Cε|ru|+ t−2+Cεr−1|hi|+ Aεt−3+Bε + εt−3+Cε) = O(Aεt−3+Bε).

We finish the proof by this estimate and (4.27).

We now finish the continuity argument. By writing g′αβ := d
du
|u=0g

αβ(u), we have

e3(gαβ) = g′αβ(u)e3(u),

e4(e3(gαβ)) = g′αβ(u)e4(e3(u)) + g′′αβ(u)e4(u)e3(u)

= O(εt−2 + εt−2+Cε · εt−1) = O(εt−2),

and thus
e3(gαβ) + re4(e3(gαβ)) = g′αβ(u)(e3(u) + re4(e3(u))) + g′′αβ(u)e4(u)e3(u)

= O(rAεt−3+Bε + rεt−2+Cε · εt−1) = O(Aεt−2+Bε).

Thus, by (4.26),

|e4(h−1)− 1

2
| ≲ t · Aεt−2+Bε + At1+Bε · εt−2 + εt−1+Cε ≲ Aεt−1+Bε.

By the initial condition, on H we have

|h−1 − r/2| = |2− r(trχ− trf)|
2h

≲ r(|2− rtrχ|+ |rtrf |) ≲ tCε

where the constants are known before we choose A,B. Now, suppose that (t, x) ∈ ΩT lies
on a geodesic x(s) in A. At x(0), we have h−1|x(0) = r(x(0))/2 +O((x0(0))Cε). Thus,

|h−1|(t,x) −
1

2
r(x(0))− 1

2
(t− x0(0))| ≤ |h−1|(t,x) − h−1|x(0) −

1

2
(t− x0(0))|+ CtCε

≲
∫ t

x0(0)

Aετ−1+Bε dτ + tCε ≲ B−1AtBε + tCε.
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Also note that r(x(0))− x0(0) + t = q(t, x) + t = r +O(tCε) by Lemma 4.14. In conclusion,
|h−1 − r/2| ≲ tCε +B−1AtBε at (t, x). This implies that h−1 ∼ r and

|trχ− 2

r
| ≤ |h− 2

r
|+ Cεt−2+Cε ≲ |r − 2h−1

rh−1
|+ Cεt−2+Cε

≤ Cr−2(CtCε + CB−1AtBε) + Cεt−2+Cε ≤ Ct−2+Cε + CB−1At−2+Bε.

By choosing B ≥ A �C 1, we conclude that |trχ − 2/r| ≤ 1
4
At−2+Bε. This finishes the

continuity argument as we have proved that (4.25) holds with A replaced by A/4.

4.4 Derivatives of the optical function
In this section, we aim to prove that q is smooth in Ω, where smoothness is defined in Section
4.2.1. Our main result is the following proposition.

Proposition 4.22. The optical function q = q(t, x) constructed in Proposition 4.7 is a
smooth function in Ω. Moreover, in Ω, we have ZIq = O(〈q〉tCε) and ZIΩijq = O(tCε) for
each multiindex I and 1 ≤ i < j ≤ 3.

In Section 4.4.1, we define the commutator coefficients ξ∗∗∗ with respect to the null frame
{ek}, and derive several differential equations for ξ and their derivatives. Note that the
estimates for these ξ would imply the estimates for q in Proposition 4.22. We also define a
weighted null frame {Vk} which will be used in the rest of this chapter. In Section 4.4.2, we
focus on the estimates for q on the surface H where the initial data of q are assigned. In
Section 4.4.3, we prove Proposition 4.31 which gives several important estimates for ξ. Here
we make use of the differential equations and the estimates on H proved in the first two
subsections. Finally, in Section 4.4.4, we conclude the proof of Proposition 4.22 by applying
Proposition 4.31.

To end this section, in Section 4.4.5 we derive two equations (4.58) and (4.59) for e3(u)
and e3(q), respectively. In these two equations, we have estimates for all derivatives of the
remainder terms. While they are not related to the proof of Proposition 4.22, they will be
very useful in the next section.

4.4.1 Setup
As a convention, we use k, l to denote a number in {1, 2, 3, 4}, and we use a, b, c to denote
a number in {1, 2}. For a finite sequence of indices K = (k1, . . . , km), we set |K| = m,
nK,k = {j : kj = k} and eK = ek1ek2 · · · ekm .

4.4.1.1 Commutator coefficients

We define

ξakl = 〈[ek, el], ea〉, a = 1, 2; ξ3kl =
1

2
〈[ek, el], e4〉, ξ4kl =

1

2
〈[ek, el], e3〉.
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By (4.18) we have [ek1 , ek2 ] = ξlk1k2el. Thus these ξ∗∗∗’s are also called commutator coefficients
in this chapter.

We now derive several equations for ξ. Note that ξlk1k2 = −ξlk2k1 (so ξlkk = 0) and that
ξ3kl = ξ4kl since [ek, el] never contains ∂t. Thus, we only need to study those ξlk1k2 ’s with
k1 < k2 and l ≤ 3.

We start with [e3, e4]. By Lemma 4.15 we have

〈[e3, e4], e4〉 = 〈D3e4 −D4e3, e4〉 = −〈D4e3, e4〉 = 〈e3, D4e4〉 = 2Γ0
αβe

α
4 e

β
4 ,

so ξ334 = Γ0
αβe

α
4 e

β
4 . For ξa34, we have the following equation

e4(ξ
a
34) = e4(〈D3e4 −D4e3, ea〉) = e4(〈D3e4, ea〉) + e4(〈e3, D4ea〉)

= 〈D4D3e4, ea〉+ 〈D3e4, D4ea〉+ 2e4(Γ
0
αβe

α
4 e

β
a)

= 〈D3D4e4, ea〉+ 〈D[e4,e3]e4, ea〉+ 〈R(e4, e3)e4, ea〉+ 〈D3e4, (. . . )e4〉+ 2e4(Γ
0
αβe

α
4 e

β
a)

= 〈D3((Γ
0
αβe

α
4 e

β
4 )e4), ea〉 − ξl34〈Dle4, ea〉+ 〈R(e4, e3)e4, ea〉+ 2e4(Γ

0
αβe

α
4 e

β
a)

= −χbaξ
b
34 + 〈R(e4, e3)e4, ea〉+ 2e4(Γ

0
αβe

α
4 e

β
a).

Next we consider [ea, e4]. From Lemma 4.16, we have ξba4 = χab and ξ3a4 = 0. Thus we
have the Raychaudhuri equation

e4(χab) = Γ0
αβe

α
4 e

β
4χab −

∑
c

χacχcb + 〈R(e4, ea)e4, eb〉.

Next we consider [e1, e2]. Note that ξ312 = 0 as 〈[e1, e2], e4〉 = 0. For ξa12, we have
ξ112 = 〈D1e2 −D2e1, e1〉 = 〈D1e2, e1〉 and ξ212 = 〈D1e2 −D2e1, e2〉 = −〈D2e1, e2〉 = 〈D2e2, e1〉.
So, ξa12 = 〈Dae2, e1〉 and

e4(ξ
a
12) = e4(〈Dae2, e1〉) = 〈D4Dae2, e1〉+ 〈Dae2, D4e1〉

= 〈DaD4e2, e1〉+ 〈D[e4,ea]e2, e1〉+ 〈R(e4, ea)e2, e1〉+ Γ0
αβe

α
4 e

β
1 〈Dae2, e4〉

= Γ0
αβe

α
4 e

β
2χa1 − Γ0

αβe
α
4 e

β
1χa2 − χacξ

c
12 + 〈R(e4, ea)e2, e1〉.

We end with [ea, e3]. Note that

ξ3a3 =
1

2
〈Dae3 −D3ea, e4〉 = −1

2
〈e3, Dae4〉+

1

2
〈ea, D3e4〉

= −1

2
ξ4a4 −

1

2
〈e3, D4ea〉+

1

2
ξa34 +

1

2
〈ea, D4e3〉 = −〈e3, D4ea〉+

1

2
ξa34

= −2Γ0
αβe

α
4 e

β
a +

1

2
ξa34,

ξaa3 = 〈Dae3 −D3ea, ea〉 = 〈Dae3, ea〉 = χaa + 〈Da(2g
0α∂α), ea〉

= χaa + 2ea(g
0α)gαβe

β
a + 2g0αeβaΓ

µ
βαgµνe

ν
a.
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For ξba3 where a 6= b, we have

e4(ξ
b
a3) = e4(〈Dae3 −D3ea, eb〉) = e4(χab + 〈Da(2g

0α∂α), eb〉 − 〈D3ea, eb〉)
= e4(χab + 2ea(g

0α)gαβe
β
b + 2g0αeβaΓ

µ
βαgµνe

ν
b )− 〈D4D3ea, eb〉 − 〈D3ea, D4eb〉

= e4(χab + 2ea(g
0α)gαβe

β
b + 2g0αeβaΓ

µ
βαgµνe

ν
b )− 〈D3D4ea, eb〉 − 〈D[e4,e3]ea, eb〉

− 〈R(e4, e3)ea, eb〉 − Γ0
αβe

α
4 e

β
b 〈D3ea, e4〉

= (e4 + Γ0
µνe

µ
4e

ν
4)(χab + 2ea(g

0α)gαβe
β
b + 2g0αeβaΓ

µ
βαgµνe

ν
b )− Γ0

µνe
µ
4e

ν
4ξ

b
a3 −

∑
c

ξc34ξ
c
ab

− 〈R(e4, e3)ea, eb〉 − Γ0
αβe

α
4 e

β
aξ

b
34 + Γ0

αβe
α
4 e

β
b ξ

a
34.

Given ξ, we can express ek1(eαk2) in terms of e∗∗ and ξ∗∗∗. In fact, the formulas for e4(eαk )
follow from Lemma 4.15. Besides,

ek(e
α
4 ) = [ek, e4]

α + e4(e
α
k ) = ξlk4e

α
l + e4(e

α
k ),

ek(e
α
3 ) = ek(e

α
4 ) + 2ek(g

0α),

e3(e
α
k ) = [e3, ek]

α + ek(e
α
3 ) = ξl3ke

α
l + ek(e

α
3 ),

ea(e
α
b ) = (Daeb)

α − eµae
ν
bΓ

α
µν

=
∑
c

〈Daeb, ec〉eαc +
1

2
〈Daeb, e3〉eα4 +

1

2
〈Daeb, e4〉eα3 − eµae

ν
bΓ

α
µν

= −
∑
c

ξabce
α
c − 1

2
χab(e

α
4 + eα3 )− 〈eb, Da(g

0β∂β)〉eα4 − eµae
ν
bΓ

α
µν

= −
∑
c

ξabce
α
c − 1

2
χab(e

α
4 + eα3 )− (eµb gµβea(g

0β) + eµb gµνg
0βeσaΓ

ν
σβ)e

α
4 − eµae

ν
bΓ

α
µν .

4.4.1.2 A weighted null frame

A new frame {Vk} defined below turns out to be very useful in this section.

Definition 4.23. We define a new frame {Vk}4k=1 by Va = rea for a = 1, 2 and V3 =
(3R− r+ t)e3 and V4 = te4. We call {Vk}4k=1 a weighted null frame, since Vk is a multiple of
ek for each k.

As usual, for each multiindex K = (k1, . . . , km) with k∗ ∈ {1, 2, 3, 4}, we define V I =
Vk1 · · ·Vkm as the product of |I| vector fields.

It is easy to see that
V4 = t(t+ r)−1S + (t+ r)−1tωjΩ0j + t(ei4 − ωi)∂i,
V3 = (3R− r + t)r−1V4 + 2g0α(3R− r + t)∂α,
Va = Va(r)ωi∂i + eiaωjΩji;

(4.28)
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Z = r−1
∑
a

〈Z, ea〉Va +
1

2
t−1〈Z, e3〉V4 +

1

2
(3R− r + t)−1〈Z, e4〉V3. (4.29)

These formulas illustrate the connection between the weighted null frame and the commuting
vector fields.

Here we briefly explain why we work with {Vk}. First, we note that

Z ≈
∑
k ̸=3

O(t)ek +O(〈r − t〉)e3 ≈
∑
k

O(1)Vk.

If we work with a usual null frame, then in order to prove ZIq = O(〈q〉tCε), we might need
to prove

|eI(q)| ≲ 〈r − t〉1−nI,3t−nI,1−nI,2−nI,4+Cε (4.30)
where eI and nI,∗ are defined at the beginning of Section 4.4.1. In contrast, if we work with
a weighted null frame, then we can prove

|V Iq| ≲ 〈r − t〉tCε. (4.31)

Since (4.30) is much more complicated than (4.31), we expect the proof to be much simpler
if we choose to work with the new weighted null frame.

Next, to prove an estimate for V Iq, we need to compute

e4(V
Iq) = t−1

∑
I=(J,j,J ′)

V J [V4, Vj]V
J ′
q.

Since Vk is a multiple of ek for each k, we expect [V4, Vk] to be relatively simple. If we choose
to work with the commuting vector fields defined in (1.13), then we need to compute either
[e4, Z] or [V4, Z]. Neither of these two terms has a simple form.

4.4.2 Estimates on H

We start with the estimates on the surface H. Recall that the vector fields Xi = ∂i + 2ωi∂t
are tangent to H for i = 1, 2, 3. For a multiindex I = (i1, . . . , im) where ij ∈ {1, 2, 3}, we
write XI = Xi1 · · ·Xim and |I| = m.

In this subsection, we keep using the convention stated in Section 4.2.1.
We have the following pointwise estimate. We ask our readers to compare this lemma

with Lemma 1.4.

Lemma 4.24. Suppose that F = F (t, x) is a smooth function whose domain is contained in
{(t, x) ∈ R1+3 : r ∼ t ≳ 1}. Then, for nonnegative integers m,n, we have∑

|I|=m, |J |=n

|ZIXJF | ≲ 〈r − t〉−n
∑

|I|≤m+n

|ZIF |.
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Proof. We induct first on m + n and then on n. There is nothing to prove when n = 0. If
m = 0 and n = 1, we simply apply Lemma 1.4. In general, we fix multiindicies I, J such
that |I| = m and |J | = n, such that m + n > 1 and n > 0. We can write XJ = XJ ′

Xj.
Then, by our induction hypotheses, we have

|ZIXJF | ≤ |ZIXJ ′
∂jF |+ |ZIXJ ′

(ωj∂tF )|

≲ 〈r − t〉1−n
∑

|K|≤n+m−1

(|ZK∂F |+ |ZK(ωj∂tF )|).

Since ZKω = O(1) for each |K| ≥ 0, by the Leibniz’s rule we have

|ZIXJF | ≲ 〈r − t〉1−n
∑

|K|≤n+m−1

|ZK∂F | ≲ 〈r − t〉1−n
∑

|K|≤n+m−1

|∂ZKF |

≲ 〈r − t〉−n
∑

|K|≤n+m

|ZKF |.

In the second inequality here we use the commutation property [Z, ∂] = C∂.

The next lemma is a variant of Lemma 4.5 with Z replaced by X. Note that we do not
need to assume that (mαβ

0 ) satisfies the null condition defined in Section 4.2.

Lemma 4.25. Fix two functions ϕ(t, x) and ψ(t, x). Let (mαβ
0 ) be a constant matrix. Then,

Xi(m
αβ
0 ϕαψβ) = mαβ

0 (∂αXiϕ)ψβ +mαβ
0 ϕα(∂βXiψ) + r−1

∑
α,β

f0ϕαψβ.

Here f0 denotes a polynomial of ω; we allow f0 to vary from line to line.

Proof. We have [Xi, ∂α] = −2(∂αωi)∂t. By the Leibniz’s rule, we have

Xi(m
αβ
0 ϕαψβ) = mαβ

0 (∂αXiϕ)ψβ +mαβ
0 ϕα(∂βXiψ)− 2mαβ

0 (∂αωi)ϕtψβ − 2mαβ
0 (∂βωi)ψtϕα

= mαβ
0 (∂αXiϕ)ψβ +mαβ

0 ϕα(∂βXiψ)

− 2r−1[mjβ
0 (δji − ωjωi)ϕtψβ +mαj

0 (δji − ωjωi)ψtϕα]

= mαβ
0 (∂αXiϕ)ψβ +mαβ

0 ϕα(∂βXiψ) + r−1
∑
α,β

f0ϕαψβ.

Using the previous two lemmas, we can now prove the estimates for ZIq on H. In the
next two lemmas, ΩI denotes the product of |I| vector fields in {Ω12,Ω23,Ω13}. In the rest
of Section 4.4.2, we would use Ω to denote any vector field in {Ω12,Ω23,Ω13} instead of the
region. There should be no confusion as we focus on estimates on H.

Lemma 4.26. On H, for all multiindices I, we have ZIq = O(〈q〉tCε) and ZIΩq = O(tCε).
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Proof. For convenience, we set

Om,n,p = Om,n,p(t, x) :=
∑

|I|=m, |J |=n, |K|=p

|ZIXJΩKq|.

On H, we claim that

Om,n,0 ≲ 〈q〉1−ntCε, ∀m,n ≥ 0; Om,n,p ≲ 〈q〉−ntCε, ∀m,n ≥ 0, p > 0.

We first assume m = 0. Since Ω and X are tangent to H and since q|H = r− t, we have
XJΩKq = XJΩK(r − t) for all multiindices J,K. If |K| > 0, we have XJΩK(r − t) = 0;
if |J | > 0, we have XJ(r − t) = O(r1−|J |) = O(〈q〉1−|J |). Then, on H we have O0,0,0 = |q|,
O0,n,p = 0 for p > 0, and O0,n,0 = O(〈q〉1−n) for n > 0. So the claim is true for m = 0.

In general, we fix (m,n, p) with m > 0. Suppose we have proved

Om′,n′,0 ≲ 〈q〉1−n′
tCε, ∀m′, n′ ≥ 0 such that m′ + n′ < m+ n+ p

or m′ + n′ = m+ n+ p, m′ < m;

Om′,n′,p′ ≲ 〈q〉−n′
tCε, ∀m′, n′ ≥ 0, p′ > 0 such that m′ + n′ + p′ < m+ n+ p

or m′ + n′ + p′ = m+ n+ p, m′ < m.

(4.32)

From now on, we fix three multiindices I, J,K such that |I| = m, |J | = n, and |K| = p.
We write ZI = ZZI′ and apply ZI′XJΩK to the eikonal equation. We have

0 = 2gαβqβ(∂αZ
I′XJΩKq) +R1 +R2 +R3

where the remainders are given by

R1 = ZI′XJΩK(mαβqαqβ)− 2mαβ(∂αZ
I′XJΩKq)qβ,

R2 = ZI′XJΩK((gαβ −mαβ)qαqβ)− 2(gαβ −mαβ)qβ(Z
I′XJΩKqα),

R3 = 2(gαβ −mαβ)qβ(Z
I′XJΩKqα − ∂αZ

I′XJΩKq)

We start with R3. Recall that g − m = O(εt−1+Cε) and qβ = O(1) on H. Besides,
ZI′XJΩKqα − ∂αZ

I′XJΩKq is a linear combination of terms of the following forms

ZI1 [Z, ∂α]Z
I2XJΩKq = CZI1∂ZI2XJΩKq, ZI1ZZI2 = ZI′ ;

ZI′XJ1 [X, ∂α]X
J2ΩKq = CZI′XJ1((∂αω)∂tX

J2ΩKq), XJ1XXJ2 = XJ ;

ZI′XJΩK1 [Ω, ∂α]Ω
K2q = CZI′XJΩK1∂ΩK2q, ΩK1ΩΩK2 = ΩK .

The first row has an upper bound∑
|K′|≤|I1|+|I2|

|∂ZK′
XJΩKq| ≲ 〈r − t〉−1

∑
|K′|≤m−1

|ZK′
XJΩKq| = 〈q〉−1

∑
m′≤m−1

Om′,n,p

≲ 〈q〉−1 · 〈q〉1−ntCε ≲ 〈q〉−ntCε.
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We can use the induction hypotheses (4.32) to control the sum
∑

m′≤m−1Om′,n,p, since m′ +
n+ p ≤ m− 1 + n+ p < m+ n+ p. The second row has an upper bound∑

|I1|+|I2|=m−1

|J′
1|+|J′

2|=|J1|

|ZI1XJ ′
1∂ω| · |ZI2XJ ′

2∂XJ2ΩKq|

≲
∑

|J ′
1|+|J ′

2|=|J1|

r−1−|J ′
1| · 〈r − t〉−|J ′

2|−1−|J2|
∑

|K′|≤|I2|+|J ′
2|+1+|J2|

|ZK′
ΩKq|

≲ 〈q〉−1−n
∑

m′≤m−1+n

Om′,0,p ≲ 〈q〉−ntCε.

In the first inequality we apply Lemma 1.4 and Lemma 4.24. In the second line, we apply
(4.32). The third row has an upper bound

〈r − t〉−n
∑

|K′|≤m−1+n

|ZK′
ΩK1∂ΩK2q| ≲ 〈r − t〉−1−n

∑
|K′|≤m−1+n+|K1|+1

|ZK′
ΩK2q|

≲ 〈q〉−1−n
∑

m′≤m−1+n+p

Om′,0,0 ≲ 〈q〉−ntCε.

In conclusion, R3 = O(εt−1+Cε〈q〉−n).
We move on to R2. By the Leibniz’s rule, we can express R2 as a linear combination of

terms of the form

ZI1XJ1ΩK1(gαβ −mαβ) · ZI2XJ2ΩK2qα · ZI3XJ3ΩK3qβ,

where
∑

|I∗| = m− 1,
∑

|J∗| = n,
∑

|K∗| = p, maxl=2,3{|Il|+ |Jl|+ |Kl|} < m+ n+ p− 1.
On H, by Lemma 4.24 and (4.32) we have

|ZI2XJ2ΩK2qα| ≲ 〈q〉−|J2|
∑

|K′|≤|I2|+|J2|+|K2|

|ZK′
qα| ≲ 〈q〉−|J2|−1

∑
|K′|<m+n+p

|ZK′
q| ≲ 〈q〉−|J2|tCε.

We can estimate ZI3XJ3ΩK3qβ in the same way. And since ZI1XJ1ΩK1(gαβ − mαβ) =
O(ε〈q〉−|J1|t−1+Cε) by Lemma 4.24, we conclude that R2 = O(ε〈q〉−nt−1+Cε) on H.

We move on to R1. By Lemma 4.5, we can write ΩK(mαβqαqβ) as a linear combination
(with real constant coefficients) of terms of the form

mαβ(∂αΩ
K1q)(∂βΩ

K2q), min{1, p} ≤ |K1|+ |K2| ≤ p. (4.33)

Here (mαβ) is the usual Minkowski metric. In fact, if p = 0, then (4.33) is mαβqαqβ so there
is nothing to prove; if p > 0, then we guarantee that |K1|+ |K2| > 0 in (4.33) since

ΩK(mαβqαqβ) = ΩK′
(mαβ(∂αΩq)qβ +mαβqα(∂βΩq)), ΩK = ΩK′

Ω.
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Next we consider XJΩK(mαβqαqβ), so we apply XJ to (4.33). By Lemma 4.25, we can write
XJΩK(mαβqαqβ) as a linear combination (with real constant coefficients) of terms of the
form 

mαβ(∂αX
J1ΩK1q)(∂βX

J2ΩK2q), |J1|+ |J2| = n,
min{1, p} ≤ |K1|+ |K2| ≤ p;

XJ1(r−1f0) · (XJ2∂XJ ′
2ΩK1q)(XJ3∂XJ ′

3ΩK2q),
∑

|J∗|+ |J ′
∗| = n− 1,

min{1, p} ≤ |K1|+ |K2| ≤ p.

Again (mαβ) is the Minkowski metric. We finally apply ZI′ to each of these terms. By
Lemma 4.5 and the Leibniz’s rule, we can write R1 as a linear combination (with real
constant coefficients) of terms of the form

mαβ
0 (∂αZ

I1XJ1ΩK1q)(∂βZ
I2XJ2ΩK2q),

|I1|+ |I2| ≤ m− 1, |J1|+ |J2| = n, min{1, p} ≤ |K1|+ |K2| ≤ p
|I1|+ |J1|+ |K1|, |I2|+ |J2|+ |K2| < m− 1 + n+ p;

ZI3XJ3(r−1f0) · (ZI1XJ1∂XJ ′
1ΩK1q)(ZI2XJ2∂XJ ′

2ΩK2q),∑
|I∗| = m− 1,

∑
|J∗|+ |J ′

∗| = n− 1, min{1, p} ≤ |K1|+ |K2| ≤ p.

(4.34)

Here (mαβ
0 ) is some constant matrix satisfying the null condition defined in Section 4.2. It

follows from Lemma 4.6 that on H the terms of the first type in (4.34) has an upper bound

〈t〉−1
∑
|L|=1

(|ZLZI1XJ1ΩK1q||∂ZI2XJ2ΩK2q|+ |∂ZI1XJ1ΩK1q||ZLZI2XJ2ΩK2q|)

≲ t−1〈q〉−1
∑

|L1|=|L2|=1

|ZL1ZI1XJ1ΩK1q||ZL2ZI2XJ2ΩK2q| ≲ t−1〈q〉−1O1+|I1|,|J1|,|K1|O1+|I2|,|J2|,|K2|.

Since minl=1,2{|Il| + |Jl| + |Kl| + 1} < m + n + p and since |J1| + |J2| = n, we can apply
(4.32) to conclude that on H

|mαβ
0 (∂αZ

I1XJ1ΩK1q)(∂βZ
I2XJ2ΩK2q)| ≲ t−1+Cε〈q〉1−n, if p = 0;

|mαβ
0 (∂αZ

I1XJ1ΩK1q)(∂βZ
I2XJ2ΩK2q)| ≲ t−1+Cε〈q〉−n, if p > 0.

Meanwhile, by Lemma 4.24 and (4.32), on H we have

|ZI3XJ3(r−1f0)| ≲ t−1+Cε〈q〉−|J3|,

|ZI1XJ1∂XJ ′
1ΩK1q| ≲ 〈q〉−1−|J1|−|J ′

1|
∑

m′≤|I1|+1+|J1|+|J ′
1|

Om′,0,|K1|,

|ZI2XJ2∂XJ ′
2ΩK2q| ≲ 〈q〉−1−|J2|−|J ′

2|
∑

m′≤|I2|+1+|J2|+|J ′
2|

Om′,0,|K2|.
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Here we can apply (4.32) as maxl=1,2{|Il| + |Jl| + |J ′
l | + |Kl| + 1} < m + n + p. Thus, the

product of these terms is O(t−1+Cε〈q〉1−n) if p = 0, or O(t−1+Cε〈q〉−n) if p > 0. Thus, on H
we have R1 = O(t−1+Cε〈q〉1−n) if p = 0, and R1 = O(t−1+Cε〈q〉−n) if p > 0. In conclusion,
we have

2gαβqβ(∂αZ
I′XJΩKq) = O(t−1+Cε〈q〉1−n), if p = 0;

2gαβqβ(∂αZ
I′XJΩKq) = O(t−1+Cε〈q〉−n), if p > 0.

Next, we note that

XjZ
I′XJΩKq = ZI′XjX

JΩKq +
∑

I′=(I1,i,I2)

ZI1 [Xj, Zi]Z
I2XJΩKq,

Ωkk′Z
I′XJΩKq = ZI′XJΩkk′Ω

Kq +
∑

I′=(I1,i,I2)

ZI1 [Ωkk′ , Zi]Z
I2XJΩKq

+
∑

J=(J1,j,J2)

ZI′XJ1 [Ωkk′ , Xj]X
J2ΩKq.

Recall that [Ω, Z] =
∑
f0Z and [X,Z] =

∑
f0∂ where f0 denotes any function such that

ZK′
f0 = O(1) for all K ′. By Lemma 1.4 we have

|XjZ
I′XJΩKq| ≲ Om−1,n+1,p +

∑
I′=(I1,i,I2)

|ZI1(f0∂Z
I2XJΩKq)|

≲ Om−1,n+1,p + 〈q〉−1
∑

m′≤m−1

Om′,n,p,

|Ωkk′Z
I′XJΩKq|

≲ Om−1,n,p+1 +
∑

I′=(I1,i,I2)

|ZI1(f0ZZ
I2XJΩKq)|+

∑
J=(J1,j,J2)

|ZI′XJ1(f0∂X
J2ΩKq)|

≲ Om−1,n,p+1 +
∑

m′≤m−1

Om′,n,p +
∑

|J1|+|J2|=n−1

〈q〉−|J1||ZI′ZJ1(f0∂X
J2ΩKq)|

≲ Om−1,n,p+1 +
∑

m′≤m−1

Om′,n,p + 〈q〉−n
∑

m′≤m+n−1

Om′,0,p.

In conclusion, on H we have

|XZI′XJΩKq| ≲ 〈q〉−ntCε, if p = 0; |XZI′XJΩKq| ≲ 〈q〉−1−ntCε, if p > 0;

|ΩZI′XJΩKq| ≲ 〈q〉1−ntCε, if p = 0; |ΩZI′XJΩKq| ≲ 〈q〉−ntCε, if p > 0.

We now end the proof. By setting Lα = 2gαβqβ and L = Lα∂α, we have

∂t =
L− LiXi

L0 − 2ωiLi
= −1

2
L+

∑
i

ωiXi +O(|u|)L+
∑
i

O(|u|)Xi,

∂j = Xj − 2ωj∂t = ωjL+Xj − 2ωj

∑
i

ωiXi +O(|u|)L+
∑
i

O(|u|)Xi.
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Note that L0 = 2 +O(|u|) and Li = 2ωi +O(|u|) on H. Then, we have

S = (−1

2
t+ r)L+ (t− r)

∑
i

ωiXi +O((r + t)|u|)L+
∑
i

O((r + t)|u|)Xi

= O(t+ εtCε)L+
∑
i

O(〈q〉+ εtCε)Xi.

And since Ωkk′ = xkXk′ − xk′Xk, we have
∑

k r
−1ωkΩkk′ = Xk′ −

∑
k ωk′ωkXk. Thus,

Ω0j = (−1

2
xj + tωj)L+ tXj + (xj − 2tωj)

∑
i

ωiXi +O((r + t)|u|)L+
∑
i

O((r + t)|u|)Xi

= t(Xj − ωjωiXi) +O(t+ εtCε)L+
∑
i

O(〈q〉+ εtCε)Xi

= tr−1
∑
i

ωiΩij +O(t+ εtCε)L+
∑
i

O(〈q〉+ εtCε)Xi.

In conclusion, for each Z ∈ {∂α, S,Ω0j}, we have

|ZZI′XJΩKq| ≲
∑

1≤i<j≤3

|ΩijZ
I′XJΩKq|+ t|LZI′XJΩKq|+ (〈q〉+ tCε)

∑
i

|XiZ
I′XJΩKq|.

If p = 0, the right hand side has an upper bound 〈q〉1−ntCε; if p > 0, the right hand side has
an upper bound 〈q〉−ntCε. We finish the proof by induction.

Lemma 4.27. On H, we have ZI(qi − ωiqr) = O(t−1+Cε) and ZI(qt + qr) = O(εt−1+Cε) for
each I. As a result, ZI(qi + ωiqt) = O(t−1+Cε).

Proof. Recall that qi − ωiqr =
∑

j r
−1ωjΩjiq. By Lemma 4.26 and the Leibniz’s rule, for

each I we have

|ZI(r−1ωjΩjiq)| ≲
∑

|I1|+|I2|=|I|

|ZI1(r−1ωj)| · |ZI2Ωq| ≲ t−1+Cε.

So ZI(qi − ωiqr) = O(t−1+Cε). Moreover, by the eikonal equation we have

−(qt + qr)(qt − qr) +
∑
i

(qi − ωiqr)
2 + (gα(u)−mαβ)qαqβ = 0,

so
qt + qr =

∑
i(qi − ωiqr)

2 + (gα(u)−mαβ)qαqβ
qt − qr

.

Thus, ZI(qt + qr) is a linear combination of terms of the form

(qt − qr)
−1−s · ZI1(qt − qr) · · ·ZIs(qt − qr) · ZI0(

∑
i

(qi − ωiqr)
2 + (gα(u)−mαβ)qαqβ)
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where
∑

|I∗| = |I|. It is clear that ZI∗(qt−qr) = O(tCε) and that qt−qr = −2+O(εt−1+Cε) ≤
−1 on H. Moreover, since ZI(r−1Ωq) = O(t−1+Cε) for each I, we have ZI0((qi − ωiqr)

2) =
O(t−2+Cε). Finally, for each I we have

|ZI((gαβ −mαβ)qαqβ)| ≲
∑

|I1|+|I2|+|I3|=|I|

|ZI1(g −m)||ZI2∂q||ZI3∂q| ≲ εt−1+Cε.

In conclusion, ZI(qt + qr) = O(t−2+Cε + εt−1+Cε) = O(εt−1+Cε), as t ≥ T0 = exp(δ/ε). Since
qi + ωiqt = qi − ωiqr + ωi(qt + qr), we can easily show ZI(qi + ωiqt) = O(t−1+Cε) by the
Leibniz’s rule.

We move on to estimates for e∗∗ and ξ∗∗∗ on H.

Lemma 4.28. On H, we have ZIeαk = O(tCε) and ZI(ei3 − ωi, e
i
4 − ωi) = O(t−1+Cε) for

each I.

Proof. Since e04 = 1, e03 = −1 and e0a = 0, we can ignore the case α = 0. We write

ei4 − ωi = (g0µqµ)
−1(giβqβ − ωig

0βqβ)

= (g0µqµ)
−1(qi + ωiqt + (giβ −miβ)qβ − ωi(g

0β −m0β)qβ)

=: (g0µqµ)
−1Q.

By Lemma 4.26, Lemma 4.27 and the Leibniz’s rule, we have

ZIQ = O(t−1+Cε), ZI(g0µqµ) = O(tCε), g0µqµ = 1 +O(εt−1+Cε) ≥ 1/2.

Besides, ZI(ei4 − ωi) is a linear combination of terms of the form

(g0µqµ)
−1−sZI1(g0µqµ) · · ·ZIs(g0µqµ)Z

I0Q,
∑

|I∗| = |I|, |Ij| > 0 for j 6= 0.

We conclude that ZI(ei4 − ωi) = O(t−1+Cε). Since ZIω = O(1) on H, we conclude that
ZIei4 = O(tCε). And since ZI(ei3−ei4) = 2ZIg0i = O(εt−1+Cε), we conclude that ZI(ei3−ωi) =
O(t−1+Cε) and ZIei3 = O(tCε) on H for each I. The proofs of these estimates do not rely on
the estimates for ZIe∗a, so we can use them freely in the following proof.

Next, we claim that ZIXJΩKeia = O(〈q〉−|J |tCε) on H for all I, J,K and a = 1, 2. Recall
that ΩK is the product of |K| vector fields in {Ω12,Ω23,Ω13}. We induct first on |I|+|J |+|K|
and then on |I|. When |I| + |J | + |K| = 0, there is nothing to prove. When |I| = 0 and
|J |+ |K| > 0, we have XJΩKeia = O(r−|K|) on H, since eia|H is a locally defined function of
ω and it is independent of t.

In general, we fix I, J,K such that |I| > 0. Suppose we have proved the claim for all
(I ′, J ′, K ′) such that |I ′|+ |J ′|+ |K ′| < |I|+ |J |+ |K|, or |I ′|+ |J ′|+ |K ′| = |I|+ |J |+ |K|
and |I ′| < |I|. We write ZI = ZZI′ . For a = 1, 2 we have

ZI′XJΩKe4(e
i
a) = ZI′XJΩK(eα4 e

β
aΓ

0
αβe

i
4 − eα4 e

β
aΓ

i
αβ).
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Since we can write Γ = g · ∂g, for each K ′, we have ZK′
Γ = O(εt−1+Cε〈q〉−1) on H. By

induction hypotheses, Lemma 4.24 and the Leibniz’s rule, we conclude that

ZI′XJΩKe4(e
i
a) = O(εt−1+Cε〈q〉−1−|J |).

Moreover, ZI′XJΩKe4(e
i
a) is equal to the sum of e4(ZI′XJΩKeia) and a linear combination

of terms of the form

ZI1 [e4, Z
I2 ]ZI3XJΩKeia, (I1, I2, I3) = I ′, |I2| = 1;

ZI′XJ1 [e4, X
J2 ]XJ3ΩKeia, (J1, J2, J3) = J, |J2| = 1;

ZI′XJΩK1 [e4,Ω
K2 ]ΩK3eia, (K1, K2, K3) = K, |K2| = 1.

(4.35)

Note that

[e4, Z] = e4(z
ν)∂ν − Z(eν4)∂ν = e4(z

ν)∂ν − Z(ωj)∂j − Z(ej4 − ωj)∂j,

[e4, Xl] = e4(2ωl)∂t −Xl(e
j
4)∂j = 2r−1(el4 − ωl − (ωj − ej4)ωjωl)∂t − (∂lωj)∂j −Xl(e

j
4 − ωj)∂j

where we write Z = zν(t, x)∂ν . We have

e4(z
ν)∂ν − Z(ωj)∂j =


−∂(ωj)∂j, Z = ∂;

(r + t)−1S + (r + t)−1ωlΩ0l + (ej4 − ωj)∂j, Z = S;

r−1Ωij + (ei4 − ωi)∂j − (ej4 − ωj)∂i − r−1Ωij, Z = Ωij;
r−1Ω0i + r−1(t− r)∂i + (ei4 − ωi)∂t − tr−2ωlΩli, Z = Ω0i.

In conclusion,
[e4, Z] = f1 · Z, [e4, X] = f1 · ∂

where f1 denotes any function satisfying ZJ ′
f1 = O(t−1+Cε) for each J ′ on H. Thus, the

first row in (4.35) has an upper bound

|ZI1(f1ZZ
I3XJΩKeia)| ≲

∑
|J ′|≤|I1|

t−1+Cε|ZJ ′
ZZI3XJΩKeia| ≲ t−1+Cε〈q〉−|J |.

We can use the induction hypotheses here as

|J ′|+ 1 + |I3|+ |J |+ |K| ≤ |I1|+ 1 + |I3|+ |J |+ |K| = |I ′|+ |J |+ |K| < |I|+ |J |+ |K|.

The second row in (4.35) has an upper bound

|ZI′XJ1(f1∂X
J3ΩKeia)| ≲

∑
|J ′|≤|I′|+|J1|

〈q〉−|J1||ZJ ′
(f1∂X

J3ΩKeia)|

≲
∑

|J ′|≤|I′|+|J1|

〈q〉−|J1|t−1+Cε|ZJ ′
∂XJ3ΩKeia|

≲
∑

|J ′|≤|I′|+|J1|+1

〈q〉−|J1|−1t−1+Cε|ZJ ′
XJ3ΩKeia| ≲ 〈q〉−|J |t−1+Cε.
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We can use the induction hypotheses here as

|J ′|+ |J3|+ |K| ≤ |I ′|+ |J1|+ 1 + |J3|+ |K| = |I ′|+ |J |+ |K| < |I|+ |J |+ |K|.

The third row in (4.35) has an upper bound

|ZI′XJΩK1(f1ZΩ
K3eia)| ≲

∑
|J ′|≤|I′|+|J |

〈q〉−|J ||ZJ ′
ΩK1(f1ZΩ

K3eia)|

≲
∑

|J ′|≤|I′|+|J |+|K1|

〈q〉−|J |t−1+Cε|ZJ ′
ZΩK3eia| ≲ 〈q〉−|J |t−1+Cε.

We can use the induction hypotheses here as

|J ′|+ |K3|+ 1 ≤ |I ′|+ |J |+ |K1|+ 1 + |K3| = |I ′|+ |J |+ |K| < |I|+ |J |+ |K|.

In conclusion, on H we have

e4(Z
I′XJΩKeia) = ZI′XJΩKe4(e

i
a) +O(t−1+Cε〈q〉−|J |) = O(t−1+Cε〈q〉−|J |).

We recall from the proof of Lemma 4.24 that [Z,Ω] = C · Z and [Z,X] = f0 · ∂ where
f0 denotes any function such that ZK′

f0 = O(tCε) on H for each K ′. If we keep commuting
Ω with each vector field in ZI′XJ and applying the Leibniz’s rule, we get ΩZI′XJΩKeia =
O(tCε〈q〉−|J |). If we keep commuting Xl with each vector field in ZI′ and applying the
Leibniz’s rule, we get XlZ

I′XJΩKeia = O(tCε〈q〉−1−|J |). Finally, we recall from the proof of
Lemma 4.24 that we can write

(∂, S,Ω0j) = O(t)L+O(1) · Ω +O(〈q〉+ εtCε) ·X

where L = 2gαβqβ∂α = O(1)e4 on H. In conclusion, when Z = ∂, S,Ω0j, we have

|ZZI′XJΩKeia| ≲ t|e4(ZI′XJΩKeia)|+ |ΩZI′XJΩKeia|+ 〈q〉tCε|XZI′XJΩKeia| ≲ tCε〈q〉−|J |.

We finish the proof by induction.

We now prove the following lemma which illustrates the connection between the weighted
null frame and the commuting vector fields.

Lemma 4.29. Let F = F (t, x) be a smooth function defined near H. Then, on H we have

|V IF | ≲
∑

|J |≤|I|

tCε|ZIF |.
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Proof. We induct on |I|. When |I| = 0, there is nothing to prove. Suppose we have proved
the estimate for each function F and for each multiindex I ′ such that |I ′| < |I|. Then, by
writing V I = V I′Vk and applying the induction hypotheses, we have

|V IF | ≲
∑

|J |≤|I|−1

tCε|ZJ(VkF )|.

We then apply (4.28). When k = 4, we have V4F = f0 · ZF . Here f0 denotes any function
such that ZJ ′

f0 = O(tCε) on H for each J ′. In particular, since ZJ ′
(ei4 − ωi) = O(t−1+Cε)

for each J ′ by Lemma 4.28, we have ZJ ′
(t(ei4 − ωi)) = O(t−1+Cε) and thus t(ei4 − ωi) = f0.

By the Leibniz’s rule, we have

|V IF | ≲
∑

|J |≤|I|−1

tCε|ZJ(f0 · ZF )| ≲
∑

|J |≤|I|−1

tCε|ZJZF | ≲
∑

|J |≤|I|

tCε|ZJF |.

The proof for k = 3 follows from the case k = 4 and the estimate ZJ ′
(r− t) = O(〈r− t〉) for

all J ′. Finally, when k = a ∈ {1, 2}, we note that

Va(r) = rejaωj = reαa (−gαβ +mαβ)eβ4 + rejam
jl(−el4 + ωl).

By Lemma 4.28, we have ZJ ′
(ω∗, e

∗
∗) = O(tCε) and thus ZJ ′

(Va(r)) = O(tCε) on H for each
|J ′|. Thus, for all |J | ≤ |I| − 1, we have

|ZJ(VaF )| ≲ |ZJ(Va(r)ωi∂iF )|+ |ZJ(eiaωjΩjiF )|

≲ tCε
∑

|K|≤|J |

|ZK∂F |+ tCε
∑

|K|≤|J |

|ZKF | ≲ tCε
∑

|K|≤|I|

|ZKF |.

This finishes the proof.

Remark 4.29.1. With the help of this lemma, we conclude immediately that

V I(g −m) = O(εt−1+Cε), V I((3R− r + t)−1) = O(〈q〉−1tCε), V I(r−1, t−1) = O(t−1+Cε),

V I(q) = 〈q〉tCε, V Ieαk = O(tCε), V I(ei3 − ωi, e
i
4 − ωi) = O(t−1+Cε)

on H for each I.

Lemma 4.30. For each I, on H we have V I(ξ213, ξ
1
23) = O(〈q〉−1tCε), V I(ξa34) = O(t−1+Cε〈q〉−1)

and V I(ξak1k2) = O(t−1+Cε) for all other k1 < k2 and a ∈ {1, 2}; V I(ξ3k1k2) = O(t−1+Cε〈q〉−1)
for all k1 < k2; V I(χab − r−1δab) = O(t−2+Cε).

Proof. First, for any function F = F (t, x) and for each 1 ≤ k ≤ 4, on H we have

|V I(ek(F ))| ≲ 〈q〉−1tCε
∑

|J |≤|I|+1

|V J(F )|. (4.36)
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This inequality easily follows from the Leibniz’s rule, Remark 4.29.1 and the estimate 〈r−t〉 ≲
t on H.

Since el(〈ek1 , ek2〉) = 0 for each k1, k2, l, we have

2ξ3k1k2 = 〈[ek1 , ek2 ], e4〉 = ek1(e
α
k2
)gαβe

β
4 − ek2(e

α
k1
)gαβe

β
4

= −eαk2ek1(gαβ)e
β
4 − eαk2gαβek1(e

β
4 ) + eαk1ek2(gαβ)e

β
4 + eαk1gαβek2(e

β
4 ).

We assume k1 6= k2 as ξ∗k1k1 ≡ 0. By (4.36) and the Leibniz’s rule, on H for each I we have

|V I(−eαk2ek1(gαβ)e
β
4 + eαk1ek2(gαβ)e

β
4 )| ≲ εt−1+Cε〈q〉−1.

Moreover, since e04 ≡ 1, we have

eαk2gαβek1(e
β
4 ) = eαk2gαjek1(e

j
4 − ωj) + eαk2gαjek1(ωj)

= eαk2gαjek1(e
j
4 − ωj) + r−1eαk2gαj(e

j
k1
− elk1ωlωj).

Again, by (4.36) and the Leibniz’s rule, on H for each I we have

|V I(eαk2gαjek1(e
j
4 − ωj))| ≲ t−1+Cε〈q〉−1.

If k1 = 3 or 4, then since

ejk1 − elk1ωlωj = ejk1 − ωj + (1− elk1ωl)ωj = ejk1 − ωj +
∑
l

(ωl − ekl)ωlωj,

by the Leibniz’s rule and the estimate V I(ei3−ωi, e
i
4−ωi) = O(t−1+Cε) for each I, we conclude

that
|V I(r−1eαk2gαj(e

j
k1
− ωj + (1− elk1ωl)ωj))| ≲ t−2+Cε, k1 ≥ 3.

If k1 = 1 or 2, then e0k1 = 0.

r−1eαk2gαj(e
j
k1
− elk1ωlωj) = r−1〈ek2 , ek1〉 − r−1eαk2gαje

l
k1
ωlωj = −r−1eαk2gαje

l
k1
ωlωj.

Note that

elk1ωl = elk1δll′e
l′

4 + elk1δll′(ωl′ − el
′

4 ) = eµk1gµνe
ν
4 − eµk1(gµν −mµν)e

ν
4 + elk1δll′(ωl′ − el

′

4 )

= −eµk1(gµν −mµν)e
ν
4 + elk1δll′(ωl′ − el

′

4 ).

Thus, by the Leibniz’s rule, we have V I(elk1ωl) = O(t−1+Cε) and thus

|V I(r−1eαk2gαj(e
j
k1
− elk1ωlωj))| ≲ t−2+Cε, k1 ≤ 2.

In conclusion, for each I, on H we have

|V I(ξ3k1k2)| ≲ t−1+Cε〈q〉−1 + t−2+Cε ≲ t−1+Cε〈q〉−1.
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Next, we have

ξck1k2 = 〈[ek1 , ek2 ], ec〉 = ek1(e
α
k2
)gαβe

β
c − ek2(e

α
k1
)gαβe

β
c .

We first prove some estimates for ek1(eαk2)gαβe
β
c with k1 6= k2. If k1 = a ∈ {1, 2} and

k2 = b ∈ {1, 2}, we have ea = r−1Va and thus V I(ea(e
α
b )gαβe

β
c ) = O(t−1+Cε) on H. If k2 = 3

and k1 = a ∈ {1, 2}, then

ea(e
α
3 )gαβe

β
c = ea(ωi)giβe

β
c + ea(e

i
3 − ωi)giβe

β
c = r−1(eia − elaωlωi)gije

j
c + ea(e

i
3 − ωi)giβe

β
c

= r−1δac − r−1(elaωl)ωigije
j
c + r−1Va(e

i
3 − ωi)giβe

β
c .

Recall that V I(elaωl) = O(t−1+Cε) on H. By Remark 4.29.1, we have V I(ea(e
α
3 )gαβe

β
c −

r−1δac) = O(t−2+Cε) on H. Following the same proof, we can show that V I(ea(e
α
4 )gαβe

β
c −

r−1δac) = O(t−2+Cε) on H. Next, for k 6= 3 we have

e4(e
α
k )gαβe

β
c = eµ4e

ν
k(Γ

0
µνe

α
4 − Γα

µν)gαβe
β
c = −eµ4eνkΓα

µνgαβe
β
c

= −1

2
eµ4e

ν
ke

β
c (∂µgβν + ∂νgβµ − ∂βgµν)

= −1

2
(t−1eνke

β
cV4(gβν) + eµ4e

β
c (t

−1, r−1)Vk(gβµ)− r−1eµ4e
ν
kVc(gµν)).

e4(e
α
3 )gαβe

β
c = e4(2g

0α)gαβe
β
c + e4(e

α
4 )gαβe

β
c = t−1V4(2g

0α)gαβe
β
c + e4(e

α
4 )gαβe

β
c .

Then, on H we have V I(e4(e
α
k )gαβe

β
c ) = O(εt−2+Cε). Next, we have

e3(e
α
4 )gαβe

β
c = e3(ωj)gjβe

β
c + (3R− r + t)−1V3(e

j
4 − ωj)gjβe

β
c

= r−1(ej3 − ωj + (1−
∑
l

el3ωl)ωj)gjβe
β
c + (3R− r + t)−1V3(e

j
4 − ωj)gjβe

β
c .

Then, on H we have V I(e3(e
α
4 )gαβe

β
c ) = O(t−1+Cε〈q〉−1). Besides, we have

e3(e
α
c )gαβe

β
c = −eαc gαβe3(eβc )− eαc e3(gαβ)e

β
c =⇒ e3(e

α
c )gαβe

β
c = −1

2
(3R− r + t)−1eαc V3(gαβ)e

β
c ,

so we have V I(e3(e
α
c )gαβe

β
c ) = O(εt−1+Cε〈q〉−1) on H. If c′ 6= c, then

e3(e
α
c′)gαβe

β
c = (3R− r + t)−1V3(e

α
c′)gαβe

β
c ,

so we have V I(e3(e
α
c′)gαβe

β
c ) = O(〈q〉−1tCε) on H if c 6= c′. All these estimates imply that on

H, we have

V I(ξcab, ξ
c
a4, ξ

c
c3) = O(t−1+Cε); V I(ξcc′3) = O(〈q〉−1tCε), c 6= c′; V I(ξc34) = O(t−1+Cε〈q〉−1).

Moreover,

|V I(χab − r−1δab)| ≤ |V I(ea(e
α
4 )g

αβeβb − r−1δab)|+ |V I(ea(e
α
4 )g

αβeβb )| ≲ t−2+Cε.
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4.4.3 Estimates in Ω

Recall that we defined a weighted null frame {Vk}4k=1 in Section 4.4.1. Our goal in this
section is to prove the following proposition. Note that the estimates here are the same as
those in Lemma 4.30.

Proposition 4.31. In Ω ∩ {r − t < 2R}, for each I we have the following estimates:

|V I(ξ213)|+ |V I(ξ123)| ≲ 〈q〉−1tCε; (4.37)

|V I(ξa34)| ≲ 〈q〉−1t−1+Cε; (4.38)
for all other (k1, k2, a) such that k1 < k2 and a = 1, 2, we have

|V I(ξak1k2)| ≲ t−1+Cε; (4.39)

for all k1 < k2, we have
|V I(ξ3k1k2)| ≲ t−1+Cε〈q〉−1; (4.40)

for ξba4 = χab, we have
|V I(χab − r−1δab)| ≲ t−2+Cε. (4.41)

In this proposition we use the convention given in Section 4.2.1. That is, for each fixed
integer N > 0, we can choose ε �N 1, such that the estimates in this proposition hold for
all multiindices I with |I| ≤ N .

Since it is known that q = r − t for r − t > R, we only care about the region where
r − t < 2R in this subsection. Recall that every point in Ω ∩ {r − t < 2R} lies on exactly
one geodesic in A emanating from H. The following lemma would be the key lemma in the
proof of Proposition 4.31.

Lemma 4.32. Fix 0 < ε� 1. Let Q1, . . . , Qm be m functions defined in Ω ∩ {r − t < 2R}.
For each i = 1, . . . ,m, suppose in Ω ∩ {r − t < 2R} we have

e4(Qi) = (−n0r
−1 + n1e4(ln(3R− r + t)))Qi +O(εt−1

∑
j

|Qj|) +O(f(t)). (4.42)

Here n0, n1 ≥ 0 are two fixed real numbers which do not depend on i. Moreover, for some
fixed s ≥ 1, we suppose that Qi|H = O(h(t)) for each i. Then, in Ω ∩ {r − t < 2R} we have

∑
i

|Qi| ≲ t−n0+Cε((x0(0))n0h(x0(0)) +

∫ t

x0(0)

τn0+Cεf(τ) dτ). (4.43)

Here we suppose that (t, x) lies on the geodesic x(s) in A and that the integral is taken along
the geodeisc x(s).
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Proof. Recall that e4(r) = 1 + O(t−1+Cε). If we define Q′
i = (3R − r + t)−n1rn0Qi, then by

(4.42), we have

e4(Q
′
i) = −n1(3R− r + t)−n1−1e4(3R− r + t)rn0Qi + n0(3R− r + t)−n1rn0−1e4(r)Qi

+ (3R− r + t)−n1rn0e4(Qi)

= n0r
−1(e4(r)− 1)Q′

i +O(εt−1
∑
j

|Q′
j|+ (3R− r + t)−n1rn0f(t))

= O(εt−1
∑
j

|Q′
j|+ (3R− r + t)−n1rn0f(t)).

To get the last equality, we note that r−1(e4(r)− 1) = O(t−2+Cε) = O(εt−1) as t ≥ exp(δ/ε).
In addition, we have 〈q〉/〈r−t〉 = tO(ε). In fact, by Lemma 4.14, we have |q−(r−t)| ≲ tCε

and thus
1 + |q| ≲ 1 + |r − t|+ tCε ≲ tCε〈r − t〉 =⇒ 〈r − t〉−1 ≲ 〈q〉−1tCε

1 + |r − t| ≲ 1 + |q|+ tCε ≲ tCε〈q〉 =⇒ 〈q〉−1 ≲ 〈r − t〉−1tCε.

Thus, in Ω ∩ {r − t < 2R} we have

(3R− r + t)−n1rn0f(t) ≲ 〈q〉−n1tn0+Cεf(t).

Fix a point (t0, x0) in Ω∩{r− t < 2R}, and let x(s) be the unique geodesic in A passing
through (t0, x0). Note that t0 ≥ x0(0) ≥ T0 and that q remains constant along each geodesic
in A. Then by integrating e4(Q′

i), we have

∑
i

|Q′
i(t0, x0)| ≲

∑
i

|Q′
i(x(0))|+

∫ t0

x0(0)

ετ−1
∑
j

|Q′
j(τ, y(τ))|+ 〈q〉−n1τn0+Cεf(τ) dτ

≲ 〈q〉−n1(x0(0))n0h(x0(0)) +

∫ t0

x0(0)

ετ−1
∑
j

|Q′
j(τ, y(τ))|+ 〈q〉−n1τn0+Cεf(τ) dτ.

Here (τ, y(τ)) is a reparameterization of x(s) such that y(t0) = x0. By the Gronwall’s
inequality, we conclude that∑

i

|Q′
i(t0, x0)| ≲ tCε

0 〈q〉−n1((x0(0))n0h(x0(0)) +

∫ t0

x0(0)

τn0+Cεf(τ) dτ).

To end the proof, we multiply both sides by r−n0(3R − r + t)n1 , and recall that t ∼ r in
Ω ∩ {r − t < 2R}.

To prove Proposition 4.31, we induct on |I|.
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4.4.3.1 The base case I = 0.

From Section 4.4.1, in Ω ∩ {r − t < 2R} we already have the following estimates: ξ334 =
O(|Γ|) = O(min{εt−1, εt−1+Cε〈r − t〉−1}), ξba4 = χab = δabr

−1 + O(t−2+Cε) = O(t−1), ξaa3 =
χaa +O(εt−1) = O(t−1), ξ3a4 = ξ312 = 0. To control the rest ξ, we recall that

〈R(ek, el)er, es〉 = eαke
β
l e

µ
r e

ν
sRαβµν

= eαke
β
l e

µ
r e

ν
s(
1

2
(∂α∂µgβν − ∂α∂νgβµ − ∂β∂µgαν + ∂β∂νgαµ)− Γδ

βµΓδνα + Γδ
αµΓδνβ).

(4.44)

If at most one of k, l, r, s is equal to 3, then we have 〈R(ek, el)er, es〉 = O(εt−2+Cε〈r − t〉−1)
by Lemma 4.13. From the equations in Section 4.4.1 we have

|e4(ξa34) + r−1ξa34| ≲ t−2+Cε
∑
b

|ξb34|+ εt−2+Cε〈q〉−1,

|e4(ξa12) + r−1ξa12| ≲ t−2+Cε
∑
b

|ξb12|+ εt−2+Cε〈q〉−1.

By Lemma 4.32 with n0 = 1, n1 = 0 and f(t) = εt−2+Cε〈q〉−1, we have

|ξa34| ≲ t−1+Cε(〈q〉−1(x0(0))Cε + tCε〈q〉−1) ≲ t−1+Cε〈q〉−1,

|ξa12| ≲ t−1+Cε((x0(0))Cε + tCε〈q〉−1) ≲ t−1+Cε.

Here we get different estimates for ξa34 and ξa12 because their estimates on H are different;
see Lemma 4.30.

It follows from Section 4.4.1 that ξ3a3 = 1
2
ξa34 + O(εt−1) = O(t−1+Cε). It remains to

estimate ξa′a3 where a 6= a′. Note that

e4(ξ
a′

a3) = (e4 + Γ0
µνe

µ
4e

ν
4)(χaa′ + 2ea(g

0α)gαβe
β
a′ + 2g0αeβaΓ

µ
βαgµνe

ν
a′)− Γ0

µνe
µ
4e

ν
4ξ

a′

a3 −
∑
c

ξc34ξ
c
aa′

− 〈R(e4, e3)ea, ea′〉 − Γ0
αβe

α
4 e

β
aξ

a′

34 + Γ0
αβe

α
4 e

β
a′ξ

a
34

= e4(χaa′)− Γ0
µνe

µ
4e

ν
4ξ

a′

a3 −
∑
c

ξc34ξ
c
aa′ +O(εt−2+Cε) = O(εt−1|ξa′a3|) +O(t−2+Cε).

By Lemma 4.32 with n0 = n1 = 0 and f(t) = t−2+Cε we have |ξa′a3| ≲ (x0(0))−1+CεtCε. Here
note that if (t, x) lies on a geodesic x(s) in A, then

q(t, x) = q(x(0)) = r(x(0))− x0(0) =
T0 − x0(0)

2
+ 2R =⇒ x0(0) = T0 − 2(q − 2R).

And since we only care about the region where q < 2R, we have t ≥ x0(0) ∼ (T0+〈q〉) ≥ 〈q〉.
In conclusion, we prove Proposition 4.31 in the case I = 0.
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4.4.3.2 The general case.

Fix m > 0. Suppose we have proved Proposition 4.31 for all |I| < m. Our goal is to prove
Proposition 4.31 for |I| = m.

Under the induction hypotheses, we can prove a key lemma which is Lemma 4.34 below.
For convenience, we introduce the following notation.

Definition 4.33. Let F = F (t, x) be a function with domain Ω ∩ {r − t < 2R}. For any
integer m ≥ 0 and any real numbers s, p, we write F = Rm

s,p if for ε�s,p,m 1 we have∑
|I|≤m

|V I(F )| ≲ ts+Cε〈q〉p in Ω ∩ {r − t < 2R}.

By the Leibniz’s rule, we can easily prove that Rm1
s1,p1

·Rm2
s2,p2

= R
min{m1,m2}
s1+s2,p1+p2 . In addition,

under the induction hypotheses, we have

(ξ213, ξ
1
23) = Rm−1

0,−1 ; ξ
a
34 = Rm−1

−1,−1; ξ
a
k1k2

= Rm−1
−1,0 for all other k1 < k2 and a = 1, 2;

ξ3k1k2 = Rm−1
−1,−1 for all k1 < k2; χab − r−1δab = Rm−1

−2,0 .
(4.45)

Lemma 4.34. For ε�m 1, we have

eαk = Rm
0,0; (4.46)

(ei4 − ωi, e
i
3 − ωi) = Rm

−1,0; (4.47)

(gαβ −mαβ, gαβ −mαβ) = εRm+1
−1,0 , Γα

µν = εRm+1
−1,−1; (4.48)

for each fixed s ∈ R, we have

ωi = Rm+1
0,0 , (ts, rs) = Rm+1

s,0 , (3R− r + t)s = Rm+1
0,s . (4.49)

Proof. We prove by induction. First, since e∗∗ = O(1), we have eαk = R0
0,0; by Lemma 4.13,

we have (ei4 − ωi, e
i
3 − ωi) = R0

−1,0. Besides, (g∗∗ −m∗∗, g
∗∗ −m∗∗) = O(εt−1+Cε) and

|Γ| ≲ |g||∂g| ≲ εt−1+Cε〈r − t〉−1 ≲ εt−1+Cε〈q〉−1.

Here we use the estimate 〈r − t〉/〈q〉 = tO(ε). Besides,∑
k

|Vk(g)| ≲
∑
k ̸=3

(t+ r)|ek(g)|+ 〈r − t〉|∂g| ≲ εt−1+Cε.
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Since Γ is a linear combination of terms of the form g · ∂g with constant real coefficients, by
Lemma 4.13 we have∑

k

|Vk(Γ)| ≲
∑
k

(|Vk(g)||∂g|+ |g| · |Vk(∂g)|)

≲ εt−1+Cε · ε〈r − t〉−1t−1+Cε +
∑
k ̸=3

(t+ r)|ek(∂g)|+ 〈r − t〉|∂2g|

≲ ε〈q〉−1t−1+Cε.

We thus obtain (4.48) with m = 0. Since 3R − r + t ∼ 〈r − t〉 in Ω ∩ {r − t < 2R}, (4.49)
with m + 1 replaced by 0 is obvious. In addition, by writing V f := (V1f, V2f, V3f, V4f), we
have

V (t) = (0, 0,−(3R− r + t), t);
V (r) = (re1(r), re2(r), (3R− r + t)(ei3ωi), te

i
4ωi);

V (ωi) = (ei1 − ωie1(r), e
i
2 − ωie2(r), r

−1(3R− r + t)(ei3 − ωie
j
3ωj), r

−1t(ei4 − ωie
j
4ωj));

V (3R− r + t) = (−re1(r),−re2(r), (3R− r + t)(−1− ei3ωi), t(1− ei4ωi))
(4.50)

Since e3, e4 = ±∂t + ∂r +O(t−1+Cε)∂, we have

ea(r) = eiaωi =
∑
i

eiae
i
4 +

∑
i

eia(ωi − ei4)

= 〈ea, e4〉 − (gαβ −mαβ)eα4 e
β
a +

∑
i

eia(ωi − ei4) = O(t−1+Cε),

1− ei4ωi = −
∑
i

(ei4 − ωi)ωi = O(t−1+Cε).

(4.51)

Also note that for each fixed s ∈ R and for each funtion ϕ(t, x), V (ϕs) = sϕs−1V (ϕ). Then,
we have V (ω) = O(tCε), V (ts, rs) = O(ts+Cε), V ((3R − r + t)s) = O(〈r − t〉stCε). We thus
obtain (4.49) with m = 0. This finishes the proof in the base case.

In general, we assume that we have proved (4.46)-(4.49) with m replaced by n where
0 ≤ n < m. We first prove (4.46) with m replaced by n + 1. Fix a multiindex I such
that |I| = n + 1. If I = (I ′, 4), note that te4(eαk ) is a linear combination (with constant
real coefficients) of terms of the form tΓ∗

∗∗(e
∗
∗)(e

∗
∗)(e

∗
∗), −tΓ∗

∗∗(e
∗
∗)(e

∗
∗) and V4(g

0α). By the
induction hypotheses, we notice that

tΓ∗
∗∗(e

∗
∗)(e

∗
∗)(e

∗
∗) = Rn+1

1,0 · εRn+1
−1,−1 ·Rn

0,0 ·Rn
0,0 ·Rn

0,0 = εRn
0,−1

and similarly
tΓ∗

∗∗(e
∗
∗)(e

∗
∗) = εRn

0,−1.

Besides,
g0α −m0α = εRn+1

−1,0 =⇒ Vk(g
0α) = εRn

−1,0.
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So in conclusion,
V4(e

α
k ) = εRn

0,−1 =⇒ V I(eαk ) = O(ε〈q〉−1tCε).

If I = (I ′, k′) where k′ 6= 4, then by the formulas at the end of Section 4.4.1, we have
Vk′(e

α
4 ) = rξla4e

α
l + rt−1V4(e

α
a )

= Rn+1
1,0 ·Rm−1

−1,0 ·Rn
0,0 +Rn+1

1,0 ·Rn+1
−1,0 · εRn

0,−1 = Rn
0,0, k′ = a = 1, 2;

V3(e
α
4 ) = (3R− r + t)ξl34e

α
l + t−1(3R− r + t)V4(e

α
3 )

= Rn+1
0,1 ·Rm−1

−1,−1 ·Rn
0,0 +Rn+1

−1,0 ·Rn+1
0,1 · εRn

0,−1 = Rn
−1,0.

In addition, note that eα3 = eα4 + 2g0α, so
Vk′(e

α
4 , e

α
3 ) = Rn

0,0 =⇒ V I(eα4 , e
α
3 ) = O(tCε).

If I = (I ′, 3), we have
V3(e

α
a ) = (3R− r + t)ξla3e

α
l + r−1(3R− r + t)Va(e

α
3 )

= Rn+1
0,1 ·Rm−1

0,−1 ·Rn
0,0 +Rn+1

−1,0 ·Rn+1
0,1 ·Rn

0,0 = Rn
0,0.

Here we recall that t ≳ x0(0) ∼ 〈q〉+ T0, so Rn
−s,s = Rn

0,0 for each s > 0. Thus,

V I(eαa ) = O(tCε).

If I = (I ′, a), then

Va(e
α
b ) = −

∑
c

rξabce
α
c − 1

2
rχab(e

α
4 + eα3 )− (eµb gµβVa(g

0β) + reµb gµνg
0βeσaΓ

ν
σβ)e

α
4 − reµae

ν
bΓ

α
µν .

Again, by our induction hypotheses, we conclude that
Va(e

α
b ) = Rn

0,0 =⇒ V I(eαb ) = O(tCε).

Summarize all the results above and we conclude that e∗∗ = Rn+1
0,0 . Note that the computa-

tions above work as long as n ≤ m− 1.
Next we prove (4.47) with m replaced by n+1. It suffices to consider ei4−ωi as ei3−ei4 =

2g0i = εRn+1
−1,0. Fix a multiindex I with |I| = n+ 1. Note that

Va(e
i
4 − ωi) = rea(e

i
4 − ωi) = r(ξla4e

i
l + e4(e

i
a)− r−1(eia − ωiea(r)))

= r(χab − δabr
−1)eib + re4(e

i
a) + r−1ωiVa(r)

= Rn+1
1,0 ·Rm−1

−2,0 ·Rn
0,0 + re4(e

i
a) +Rn

−1,0 = re4(e
i
a) +Rn

−1,0,

V4(e
i
4 − ωi) = te4(e

i
4 − ωi) = t(e4(e

i
4)− (ej4 − ωj)∂jωi)

= te4(e
i
4)− tr−1(ei4 − ωi − ωiωj(e

j
4 − ωj))

= te4(e
i
4) +Rn+1

0,0 · (Rn
−1,0 +Rn+1

0,0 ·Rn
−1,0) = te4(e

i
4) +Rn

−1,0,

V3(e
i
4 − ωi) = (3R− r + t)e3(e

i
4 − ωi) = (3R− r + t)(ξl34e

i
l + e4(e

i
3)− (ej3 − ωj)∂jωi)

= (3R− r + t)(ξl34e
i
l + e4(e

i
4) + 2t−1V4(g

0i)− r−1(ei3 − ωi − (ej3 − ωj)ωiωj))

= (3R− r + t)e4(e
i
4) +Rn+1

0,1 · (Rm−1
−1,−1 ·Rn

0,0 + εRn
−2,0 +Rn+1

−1,0 ·Rn
−1,0)

= (3R− r + t)e4(e
i
4) +Rn

−1,0.
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Here we use (4.45). To finish the proof, we note that for k 6= 3,

2e4(e
i
k) = 2eα4 e

β
k(Γ

0
αβe

i
4 − Γi

αβ) = eα4 e
β
k(g

0δei4 − giδ)(∂αgδβ + ∂βgδα − ∂δgαβ)

= (g0δei4 − giδ)(e4(gδβ)e
β
k + ek(gδα)e

α
4 ) + eα4 e

β
k(−

1

2
e4(gαβ)(e

i
4 + ei3)−

∑
b

eibeb(gαβ))

= Rn+1
0,0 t

−1V4(g) +Rn+1
0,0 r

−1Va(g) = εRn+1
−2,0.

Also note that e4(g) = t−1V4(g) = εRn+1
−2,0 and that e0k is a constant, so we have e4(eαk ) =

εRn+1
−2,0 for each k, α. Thus,

V (ei4 − ωi) = Rn+1
−1,0 =⇒ ei4 − ωi = Rn+1

−1,0.

Finally, we prove (4.48) and (4.49) with m + 1 replaced by n + 2. Fix a multiindex I
such that |I| = n+ 2. Note that

(3R + t− r)∂t = 3R∂t +
tS − xiΩ0i

r + t
= Rn+1

0,0 · Z,

(3R + t− r)∂r = 3R∂r +
tωiΩ0i − rS

r + t
= Rn+1

0,0 · Z,

(3R + t− r)∂i = 3R∂i + (t− r)ωi∂r + (t− r)r−1ωjΩji = Rn+1
0,0 · Z.

Thus, ∂ = (3R + t − r)−1Rn+1
0,0 · Z = Rn+1

0,−1 · Z. Since we have just proved e∗∗ = Rn+1
0,0 and

ei4 − ωi = Rn+1
−1,0, by (4.51) we have ea(r) = Rn+1

−1,0. In conclusion, by (4.28) we have

V4 = t(t+ r)−1S + (t+ r)−1tωjΩ0j + t(ei4 − ωi)∂i = Rn+1
0,0 · Z,

V3 = (3R− r + t)r−1V4 + 2g0α(3R− r + t)∂α = Rn+1
0,0 · Z,

Va = rea(r)ωi∂i + eiaωjΩji = Rn+1
−1,0 ·Rn+1

0,−1 · Z +Rn+1
0,0 · Z = Rn+1

0,0 · Z.

Now, given a function F = F (t, x), if |I| = n+2, we can write V IF as a linear combination
of terms of the form

V I1(Rn+1
0,0 ) · · ·V Is(Rn+1

0,0 )ZsF,
∑

|I∗|+ s = n+ 2, s > 0. (4.52)

Since |Ij| < n+2 for each j, we have V Ij(Rn+1
0,0 ) = O(tCε). Note that for each J with |J | > 0,

we have ZJg = O(εt−1+Cε), ZJω = O(1), ZJ(ts, rs) = O(ts), ZJ((3R− r+ t)s) = O(〈r− t〉s)
and ZJ(Γ) = O(εt−1+Cε〈q〉−1). The last one is true because ZJΓ is a linear combination
(with constant real coefficients) of terms of the form (ZJ1g) · (ZJ2∂g) = O(εt−1+Cε〈r− t〉−1).
By plugging these estimates into (4.52), we conclude (4.48) and (4.49) with m+ 1 replaced
by n+ 2.

Remark 4.34.1. We have ZI∂kg = εRm+1
−1,−k for each I and k, as long as ε �I,k 1. This

follows directly from (4.52), Lemma 1.4 and [Z, ∂] = C · ∂.
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From the proof, we note that e4(eαk ) = εRm
−2,0 and ea(r) = Rm

−1,0. These estimates are
better than what we can get from (4.46) and (4.49).

By Lemma 4.34, we have ei4ωi − 1 = (ei4 −ωi)ωi = Rm
−1,0. This result can be improved as

shown in the next lemma.

Lemma 4.35. For ε�m 1, we have ei4ωi − 1 = εRm
−1,0.

Proof. By Lemma 4.34, we have

ejaωj = −(gαβ −mαβ)eα4 e
β
a +

∑
i

eia(ωi − ei4) = Rm
−1,0.

Recall that
gαβ =

∑
a

eαae
β
a +

1

2
(eα4 e

β
3 + eα3 e

β
4 ).

Then,
gαβ(∂α(r − t))(∂β(r − t)) =

∑
a

(eiaωi)(e
j
aωj) + (ei4ωi − 1)(ej3ωj + 1)

= Rm
−2,0 + (ei4ωi − 1)(2 + (ej3 − ωj)ωj).

Meanwhile, we have

gαβ(∂α(r − t))(∂β(r − t)) = g00 − 2g0iωi + gijωiωj

= −2g0iωi + (gij −mij)ωiωj = εRm+1
−1,0 .

Thus,

ei4ωi − 1 = (2 + (ej3 − ωj)ωj)
−1(εRm

−1,0 +Rm
−2,0) = (2 + (ej3 − ωj)ωj)

−1 · εRm
−1,0.

Here we note that Rm
−2,0 = εRm

−1,0 as t ≥ exp(δ/ε).
Fix a multiindx I with |I| ≤ m. Then, V I(ei4ωi − 1) is a linear combination of terms of

the form

(2 + (ej3 − ωj)ωj)
−s−1V I0(εRm

−1,0)V
I2(2 + (ej3 − ωj)ωj) · · ·V Is(2 + (ej3 − ωj)ωj)

where
∑

|I∗| = |I| ≤ m such that |Ik| > 0 for each k > 0. Thus, we can replace V I∗(2+(ej3−
ωj)ωj) with V I∗((ej3 − ωj)ωj) in the product. By Lemma 4.34 we have (ej3 − ωj)ωj = Rm

−1,0.
Since ej3 − ωj = O(t−1+Cε), we have 2 + (ej3 − ωj)ωj ≥ 1 for ε� 1. In conclusion, we have

|V I(ei4ωi − 1)| ≲ εt−1+Cε · max
0≤s≤m

{(t−1+Cε)s} ≲ εt−1+Cε.

Thus, ei4ωi − 1 = εRm
−1,0.

We can now control the curvature tensor terms.
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Lemma 4.36. We have 〈R(e4, ek)el, ep〉) = εRm
−2,−1 if l, p 6= 3.

Proof. By (4.44), we can express eα4 e
β
ke

µ
l e

ν
pRαβµν as a linear combination of terms of the form

e4(∂µgβν − ∂νgβµ)e
β
ke

µ
l e

ν
p, el(∂βgαν)e

α
4 e

β
ke

ν
p, ep(∂βgαµ)e

α
4 e

β
ke

µ
l , e

α
4 e

β
ke

µ
l e

ν
p · Γ · (g · Γ).

By Lemma 4.34 and Remark 4.34.1, we have

e4(∂µgβν − ∂νgβµ)e
β
ke

µ
l e

ν
p = t−1V4(∂g) ·Rm

0,0 = Rm
−1,0 · Z(∂g) = εRm

−2,−1.

Since l 6= 3, we either have el = t−1Vl or el = r−1Vl. In both cases, we can follow the same
proof as above to conclude that

el(∂βgαν)e
α
4 e

β
ke

ν
p = εRm

−2,−1.

Similarly, we also have
ep(∂βgαµ)e

α
4 e

β
ke

µ
l = εRm

−2,−1.

Finally, note that

eα4 e
β
ke

µ
l e

ν
p · Γ · (g · Γ) = (εRm+1

−1,−1)
2 ·Rm

0,0 = ε2Rm
−2,−2.

Thus, 〈R(e4, ek)el, ep〉 = εRm
−2,−1.

Lemma 4.36 can be improved in a special case.

Lemma 4.37. (a) We have

〈R(e4, ea)e4, eb〉 = e4(fab) +
1

4
eα4 e

µ
4r

−1δabe3(gαµ) + εRm
−3,0.

Here we set

fab =
1

2
(eβae

ν
be4(gβν)− eβae

µ
4eb(gβµ))−

1

2
eα4 ea(gαν)e

ν
b = εRm

−2,0.

(b) Assume that χab = Rm
−1,0. Then we have

Γ0
αβe

α
4 e

β
4χab +

1

4
eα4 e

β
4e3(gαβ)χab = εRm

−3,0.

Proof. (a) Recall that 〈R(e4, ea)e4, eb〉 = eα4 e
β
ae

µ
4e

ν
bRαβµν where Rαβµν is given by

Rαβµν =
1

2
(∂α∂µgβν − ∂α∂νgβµ − ∂β∂µgαν + ∂β∂νgαµ)− Γδ

βµΓδνα + Γδ
αµΓδνβ.
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Note that (for simplicity we take the sum over all the indices without writing the summation)

1

2
eα4 e

β
ae

µ
4e

ν
b∂β∂νgαµ

=
1

2
eα4 e

β
ae

µ
4e

i
b(ωi∂r)(∂βgαµ) +

1

2
eα4 e

β
ae

µ
4e

i
b(∂i − ωi∂r)(∂βgαµ)

=
1

2
eα4 e

µ
4eb(r)e

β
a∂r(∂βgαµ) +

1

2
eα4 e

β
ae

µ
4e

i
br

−1ωjΩji(∂βgαµ)

=
1

2
eα4 e

µ
4eb(r)ωjea(∂jgαµ) +

1

2
eα4 e

β
ae

µ
4e

i
br

−1ωj[Ωji, ∂β](gαµ) +
1

2
eα4 e

µ
4e

i
br

−1ωjea(Ωjigαµ)

=
1

2
eα4 e

µ
4eb(r)ωjea(∂jgαµ) +

1

2
eα4 e

µ
4r

−1(−ea(r)eb(gαµ) + eiae
i
b∂r(gαµ))

+
1

2
eα4 e

µ
4e

i
br

−1ωjea(Ωjigαµ)

=
1

2
eα4 e

µ
4eb(r)ωjea(∂jgαµ) +

1

2
eα4 e

µ
4r

−1(−ea(r)eb(gαµ) + (δab − eβa(gβν −mβν)e
ν
b )∂r(gαµ))

+
1

2
eα4 e

µ
4e

i
br

−1ωjea(Ωjigαµ)

=
1

2
eα4 e

µ
4r

−1eb(r)ωjVa(∂jgαµ) +
1

2
eα4 e

µ
4r

−1(−r−1ea(r)Vb(gαµ) + (δab − eβa(gβν −mβν)e
ν
b )∂r(gαµ))

+
1

2
eα4 e

µ
4e

i
br

−2ωjVa(Ωjigαµ).

Recall that in Lemma 4.34, we have proved that ea(r) = Rm
−1,0. Thus, we have

1

2
eα4 e

β
ae

µ
4e

ν
b∂β∂νgαµ =

1

2
eα4 e

µ
4r

−1δab(∂rgαµ) + εRm
−3,0

=
1

2
eα4 e

µ
4r

−1δab(ωj −
1

2
ej3 −

1

2
ej4)∂jgαµ +

1

4
eα4 e

µ
4r

−1δab(e3(gαµ) + e4(gαµ)) + εRm
−3,0

=
1

4
eα4 e

µ
4r

−1δabe3(gαµ) + εRm
−3,0.

Next, we note that

1

2
eα4 e

β
ae

µ
4e

ν
b (∂α∂µgβν − ∂α∂νgβµ − ∂β∂µgαν)

=
1

2
eβae

µ
4e

ν
be4(∂µgβν − ∂νgβµ)−

1

2
eα4 e

β
ae

ν
be4(∂βgαν)

= e4(fab)−
1

2
e4(e

β
ae

µ
4e

ν
b )(∂µgβν − ∂νgβµ)−

1

2
e4(e

α
4 e

β
ae

ν
b )(∂βgαν).

In Lemma 4.34, we have proved that e4(eαk ) = εRm
−2,0. By Lemma 4.34, we can easily prove

that fab = εRm
−2,0. This implies that

1

2
eα4 e

β
ae

µ
4e

ν
b (∂α∂µgβν − ∂α∂νgβµ − ∂β∂µgαν) = e4(fab) + εRm

−3,0.
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Finally, we note that

eα4 e
β
ae

µ
4e

ν
b (−Γδ

βµΓδνα + Γδ
αµΓδνβ)

= −1

2
eα4 e

β
ae

µ
4e

ν
bΓ

δ
βµΓδνα +

1

2
eα4 e

β
ae

µ
4e

ν
bΓ

δ
αµΓδνβ

= −1

2
eα4 e

β
ae

µ
4e

ν
bg

δσ(∂βgµσ + ∂µgβσ − ∂σgβµ)(∂αgνδ + ∂νgαδ − ∂δgαν)

+
1

2
eα4 e

β
ae

µ
4e

ν
bg

δσ(∂αgµσ + ∂µgασ − ∂σgαµ)(∂βgνδ + ∂νgβδ − ∂δgβν).

Note that in the expansion of the right hand side, each term contains a product ek(g) · el(g)
where l 6= 3, except

I := −1

2
eα4 e

β
ae

µ
4e

ν
bg

δσ∂σgβµ∂δgαν +
1

2
eα4 e

β
ae

µ
4e

ν
bg

δσ∂σgαµ∂δgβν .

Now we apply gδσ =
∑

a e
δ
ae

σ
a +

1
2
(eδ3e

σ
4 + e

σ
3e

δ
4). Then, we can also write I as a sum of several

terms containing ek(g) · el(g) where l 6= 3. Since el(g) = Vl(g) · Rm+1
−1,0 , the whole sum is

ε2Rm
−3,0. Combine all the disccussion above and we finish the proof.
(b) We have

Γ0
αβe

α
4 e

β
4χab =

1

2
g0µ(eβ4e4(gβµ) + eα4 e4(gαµ)− eα4 e

β
4∂µgαβ)χab

= −1

2
g0µeα4 e

β
4∂µgαβχab +R = −1

4
eα4 e

β
4 (e3(gαβ)− e4(gαβ))χab +R

= −1

4
eα4 e

β
4e3(gαβ)χab +R.

Here the remainder R is a linear combination of g · (e∗∗) · e4(g) · χ or (e∗∗) · (e∗∗) · e4(g) · χ.
Since e4(g) = t−1V4(g) = εRm

−2,0 and (g, e∗∗) = Rm
0,0, under our assumption on χ, it follows

from the Leibniz’s rule that R = εRm
−3,0.

Remark 4.37.1. Note we only have χ = Rm−1
−1,0 from our induction hypotheses, so we cannot

apply (b) directly assuming (4.45) only.

We now prove Proposition 4.31 for |I| = m. Fix a multiindex I such that |I| = m. We
have

[V4, V4] = 0,

[V4, Va] = t(ei4 − ωi)ωiea − t(rχab − δab)eb,

[V4, V3] = −t(ei4 − ωi)ωie3 + (3R− r + t)e4 − t(3R− r + t)ξl34el.
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We write [V4, Vk] := ηlkVl. Then by Lemma 4.34, Lemma 4.35 and the inudction hypotheses
(4.45), we have 

ηaa = (ei4 − ωi)ωitr
−1 − t(χaa − r−1) = Rm−1

−1,0 ;

ηa
′

a = −tχ12 = Rm−1
−1,0 , a 6= a′

η33 = −t(ei4 − ωi)ωi(3R− r + t)−1 − tξ334 = εRm
0,−1;

η43 = (3R− r + t)t−1 − (3R− r + t)ξ434 = Rm
−1,1

ηa3 = −(3R− r + t)ξa34tr
−1 = Rm−1

−1,0 ;

η∗∗ ≡ 0 in all other cases.

(4.53)

In summary we have η∗∗ = Rm−1
−1,1 . Here we briefly explain why η33 = εRm

0,−1, since all
other estimates are clear. Note that (ei4 − ωi)ωi = εRm

−1,0 by Lemma 4.35. Also note that
ξ434 = ξ334 = eα4 e

β
4Γ

0
αβ = εRm

−1,−1. Thus,

η33 = −t(ei4 − ωi)ωi(3R− r + t)−1 − tξ334 = Rm+1
1,0 · εRm

−1,0 ·Rm+1
0,−1 +Rm+1

1,0 · εRm
−1,−1 = εRm

0,−1.

In addition, since Γ = O(εt−1), we have

η33 = (3R− r + t)−1te4(3R− r + t)− tξ334 = V4(ln(3R− r + t)) +O(ε).

Next, we note that

V4(V
I(ξl1k1k2))

=
∑

(J,k,J ′)=I

V J [V4, Vk]V
J ′
(ξl1k1k2) + V I(V4(ξ

l1
k1k2

))

=
∑

(J,k,J ′)=I

V J(ηlkVl(V
J ′
(ξl1k1k2))) + V I(V4(ξ

l1
k1k2

))

=
∑

(J,k,J ′)=I

ηlkV
(J,l,J ′)(ξl1k1k2) +

∑
|J1|+|J2|=m
0<|J1|<m

CJ1,J2V
J1(ηlk)V

J2(ξl1k1k2) + V I(V4(ξ
l1
k1k2

))

=: Q1 +Q2 +Q3.

(4.54)

In Q1, we note that if ηlk 6≡ 0, then we must have n(J,l,J ′),3 ≤ n(J,k,J ′),3. Recall that nJ,3

denotes the number of V3 in the product V J . This is because η3k ≡ 0 for k 6= 3. In addition,
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we note that n(J,l,J ′),3 < n(J,k,J ′),3 if k = 3 and l 6= 3. Then,

Q1 = (nI,3η
3
3 −

∑
a

nI,aη
a
a)V

I(ξl1k1k2) +O((|η21|+ |η12|)
∑
|J|=m

nJ,3=nI,3

|V J(ξl1k1k2)|)

+O(
∑
l ̸=3

|ηl3|
∑

(J1,3,J2)=I

|V (J1,l,J2)(ξl1k1k2)|)

= nI,3V4(ln(3R− r + t))V I(ξl1k1k2) +O((ε+ t−1+Cε)
∑

|J|=m,
nJ,3=nI,3

|V J(ξl1k1k2)|)

+O(〈q〉t−1+Cε
∑

|J|=m,
nJ,3<nI,3

|V J(ξl1k1k2)|).

(4.55)

In Q2, we have |J1|, |J2| < m. Since η∗∗ = Rm−1
−1,1 , we have

|Q2| ≲
∑

|J1|+|J2|=m
0<|J1|<m

|V J1(Rm−1
−1,1 )V

J2(ξl1k1k2)| ≲ t−1+Cε〈q〉
∑

0<|J |<m

|V J(ξl1k1k2)|. (4.56)

Now we combine (4.54) with Section 4.4.1. First, note that ξ334 = Γ0
αβe

α
4 e

β
4 = εRm

−1,−1

by Lemma 4.34, so |V I(ξ334)| ≲ εt−1+Cε〈q〉−1 whenever |I| ≤ m. There is no need to apply
(4.54).

Next, we consider χab = ξba4.

Proposition 4.38. Under our induction hypotheses (4.45), for |I| = m we have
|V I(χab)| ≲ t−1+Cε, |V I(χab − r−1δab)| ≲ t−2+Cε.

So χab = Rm
−1,0 and χab − r−1δab = Rm

−2,0.

Proof. We first prove that V I(χab) = O(t−1+Cε) whenever |I| = m. Fix I such that |I| = m
and nI,3 = n ≤ m. Recall from (4.45) that χab = Rm−1

−1,0 and χab − r−1δab = Rm−1
−2,0 . Suppose

that we have proved V J(χab) = O(t−1+Cε) for all J such that |J | = m and nJ,3 < n. Note
that

χacχcb = δabr
−2 + 2(χab − δabr

−1)r−1 + (χac − δacr
−1)(χcb − δcbr

−1).

By Lemma 4.34, we have r−1 = Rm+1
−1,0 and t = Rm+1

1,0 . Also note that V (tr−1) = V ((t −
r)r−1) = Rm

−1,1. Thus,

|
∑
c

V I(tχacχcb)− 2tr−1V I(χab − δabr
−1)− V I(δabr

−2t)|

≲
∑

|J1|+|J2|=m
|J1|>0

|V J1(tr−1)V J2(χab − r−1δab)|+ t|χ∗∗ − δ∗∗r
−1||V I(χ∗∗ − δ∗∗r

−1)|

+
∑

|J1|+|J2|+|J3|=m
|J2|<m, |J3|<m

|V J1(t)V J2(χ∗∗ − δ∗∗r
−1)V J3(χ∗∗ − δ∗∗r

−1)|

≲ 〈q〉t−3+Cε + t−1+Cε|V I(χ∗∗ − δ∗∗r
−1)|.
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By the Raychaudhuri equation, we have

V I(V4(χab)) = V I(tΓ0
αβe

α
4 e

β
4χab)−

∑
c

V I(tχacχcb) + V I(t〈R(e4, ea)e4, eb〉)

= tΓ0
αβe

α
4 e

β
4V

I(χab) +O(
∑

|J1|+|J2|=m
|J2|<m

|V J1(εRm
0,−1)V

J2(χab)|)

− 2tr−1V I(χab − δabr
−1)− V I(δabr

−2t) +O(〈q〉t−3+Cε + t−1+Cε|V I(χ∗∗ − δ∗∗r
−1)|)

+ V I(εtRm
−2,−1)

= −2tr−1V I(χab) +O((ε+ t−1+Cε)|V I(χ∗∗)|) +O(t−1+Cε).

Besides, by (4.55) and our induction hypotheses, we have

|Q1 − nV4(ln(3R− r + t))V I(χab)| ≲ ε
∑

|J|=m,
nJ,3=n

|V J(χab)|+ 〈q〉t−1+Cε
∑

|J|=m,
nJ,3<n

|V J(χab)|

≲ ε
∑
|J|=m
nJ,3=n

|V J(χab)|+ 〈q〉t−2+Cε.

By (4.56) and our induction hypotheses, we have

|Q2| ≲ t−1+Cε〈q〉
∑
|J |<m

|V J(χab)| ≲ t−2+Cε〈q〉.

In conclusion, by (4.54) we have

|e4(V I(χab)) + (−ne4(ln(3R− r + t)) + 2r−1)V I(χab)|
≲ t−1(|Q1 − nV4(ln(3R− r + t))V I(χab)|+ |Q2|+ |V I(V4(χab)) + 2tr−1V I(χab)|)

≲ εt−1
∑
c,c′

∑
|J|=m
nJ,3=n

|V J(χcc′)|+ t−2+Cε + 〈q〉t−3+Cε ≲ εt−1
∑
c,c′

∑
|J|=m
nJ,3=n

|V J(χcc′)|+ t−2+Cε.

The last inequality holds as 〈q〉 ≲ t. By Lemma 4.32 with n0 = 2, n1 = n and Lemma 4.30,
we conclude that∑

a,b

∑
|I|=m
nI,3=n

|V I(χab)| ≲ t−2+Cε(x0(0)2 · x0(0)−1+Cε +

∫ t

x0(0)

τ 2+Cε · τ−2+Cε dτ)

≲ t−2+Cε · t1+Cε ≲ t−1+Cε.

By induction we obtain χab = Rm
−1,0.

Next we prove V I(χab − r−1δab) = O(t−2+Cε) whenever |I| = m. Again fix I such that
|I| = m and nI,3 = n ≤ m. Suppose we have proved that V J(χab − r−1δab) = O(t−2+Cε) for
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|J | = m and nJ,3 < n. Now we can apply Lemma 4.37. We have

V I(V4(χab)) = V I(tΓ0
αβe

α
4 e

β
4χab)−

∑
c

V I(tχacχcb) + V I(t〈R(e4, ea)e4, eb〉)

= V I(−1

4
eα4 e

β
4e3(gαβ)tχab + tεRm

−3,0) + V I(V4(fab) +
1

4
eα4 e

β
4 tr

−1δabe3(gαβ) + tεRm
−3,0)

− 2tr−1V I(χab − δabr
−1)− V I(δabr

−2t) +O(t−3+Cε〈q〉+ t−1+Cε|V I(χ∗∗ − r−1δ∗∗)|)

= V I(−1

4
eα4 e

β
4e3(gαβ)t(χab − r−1δab)) + V I(V4(fab)) +O(εt−2+Cε)

− 2tr−1V I(χab − δabr
−1)− V I(δabr

−2t) +O(t−3+Cε〈q〉+ t−1+Cε|V I(χ∗∗ − r−1δ∗∗)|).

Also note that
V I(V4(r

−1)) = V I(te4(r
−1)) = V I(−tr−2e4(r))

and that e4(r)− 1 = εRm
−1,0 by Lemma 4.35. In conclusion,

V I(V4(χab − r−1δab − fab))

= V I(−1

4
eα4 e

β
4e3(gαβ)t(χab − r−1δab))− 2tr−1V I(χab − δabr

−1) + V I(δabr
−2t(e4(r)− 1))

+O(t−3+Cε〈q〉+ εt−2+Cε + t−1+Cε|V I(χ∗∗ − r−1δ∗∗)|)

= V I(−1

4
eα4 e

β
4e3(gαβ)t(χab − r−1δab))− 2tr−1V I(χab − δabr

−1)

+O(t−3+Cε〈q〉+ εt−2+Cε + t−1+Cε|V I(χ∗∗ − r−1δ∗∗)|).

Besides, we note that

V I(−1

4
eα4 e

β
4e3(gαβ)t(χab − r−1δab)) +

1

4
eα4 e

β
4e3(gαβ)tV

I(χab − r−1δab)

is a linear combination of terms of the form

V I1(eα4 e
β
4 t(3R− r + t)−1V3(gαβ))V

I2(χab − r−1δab)

where |I1|+ |I2| = |I| = m and |I2| < m. By the induction hypotheses and since

eα4 e
β
4 t(3R− r + t)−1V3(gαβ) = Rm

1,−1 · εRm
−1,0 = εRm

0,−1

by Lemma 4.34, we conclude that

V I(−1

4
eα4 e

β
4e3(gαβ)t(χab − r−1δab)) +

1

4
eα4 e

β
4e3(gαβ)tV

I(χab − r−1δab) = O(εt−2+Cε〈q〉−1).

Thus, by setting Fab = χab − r−1δab − fab = Rm−1
−2,0 and noting that fab = εRm

−2,0, we have

V I(V4(Fab)) = −2tr−1V I(Fab + fab) +O(ε|V I(Fab + fab)|)
+O(εt−2+Cε + t−3+Cε〈q〉+ t−1+Cε|V I(F∗∗ + f∗∗)|)

= −2tr−1V I(Fab) +O(ε|V I(Fab)|+ εt−2+Cε + t−3+Cε〈q〉+ t−1+Cε|V I(F∗∗)|).
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In (4.54), (4.55) and (4.56), we can replace ξl1k1k2 with Fab. Thus, we have V4(V I(Fab)) =
Q1 +Q2 + V I(V4(Fab)), where by the induction hypotheses we have

Q1 = nV4(ln(3R− r + t))V I(Fab) +O(ε
∑
|J|=m
nJ,3=n

|V J(Fab)|) +O(〈q〉t−1+Cε
∑
|J|=m
nJ,3<n

|V J(Fab)|)

= nV4(ln(3R− r + t))V I(Fab) +O(ε
∑
|J|=m
nJ,3=n

|V J(Fab)|) +O(〈q〉t−3+Cε),

|Q2| ≲ 〈q〉t−1+Cε
∑

0<|J |<m

|V J(Fab)| ≲ 〈q〉t−3+Cε.

Thus,
|e4(V I(Fab))− ne4(ln(3R− r + t))V I(Fab) + 2r−1V I(Fab)|

≲ εt−1
∑
|J|=m
nJ,3=n

|V J(Fab)|+ t−2+Cε|V I(F∗∗)|+ t−4+Cε〈q〉+ εt−3+Cε.

By Lemma 4.32 with n0 = 2, n1 = n and Lemma 4.30, we have∑
a,b

∑
|I|=m
nI,3=n

|V I(Fab)| ≲ t−2+Cε(x0(0)Cε +

∫ t

x0(0)

〈q〉τ−2+Cε + ετ−1+Cε dτ)

≲ t−2+Cε(x0(0)Cε + 〈q〉(x0(0))−1+Cε + tCε) ≲ t−2+Cε.

Here we recall that t ≥ x0(0) ∼ T0 + 〈q〉. We then finish the proof by induction.

Next, we consider ξa12.

Proposition 4.39. Under our induction hypotheses (4.45), for |I| = m, we have

|V I(ξa12)| ≲ t−1+Cε.

So ξa12 = Rm
−1,0.

Proof. Fix I such that |I| = m and nI,3 = n ≤ m. Recall from (4.45) that ξa12 = Rm−1
−1,0 .

Suppose that V J(ξa12) = O(t−1+Cε) for |J | = m and nJ,3 < n. By the equation in Section
4.4.1 we have

V I(V4(ξ
a
12)) = V I(tΓ0

αβe
α
4 e

β
2χa1 − tΓ0

αβe
α
4 e

β
1χa2)− V I(tχacξ

c
12) + V I(t〈R(e4, ea)e2, e1〉).

(4.57)
By Lemma 4.36, the last term is O(ε〈q〉−1t−1+Cε). By Lemma 4.34 and Proposition 4.38, we
note that

tΓ0
αβe

α
4 e

β
2χa1 − tΓ0

αβe
α
4 e

β
1χa2 = Rm+1

1,0 · εRm+1
−1,−1 ·Rm

0,0 ·Rm
0,0 ·Rm

−1,0 = εRm
−1,−1.
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Thus, the first term in (4.57) is also O(ε〈q〉−1t−1+Cε). Next, by the Leibniz’s rule we have

|V I(tχacξ
c
12)− tχacV

I(ξc12)| ≲
∑

|J1|+|J2|=m
|J1|>0

|V J1(tχac)V
J2(ξc12)|

≲
∑

|J1|+|J2|=m
|J1|>0

(|V J1(t(χac − δacr
−1))V J2(ξc12)|+ |V J1(tr−1)V J2(ξa12)|).

By Proposition 4.38 we have t(χac − δacr
−1) = Rm

−1,0. Also recall that V (tr−1) = V ((t −
r)r−1) = Rm

−1,1. Thus,

|V I(tχacξ
c
12)− tr−1V I(ξa12)| ≲ |V I(tχacξ

c
12)− tχacV

I(ξc12)|+ |t(χac − r−1δac)V
I(ξc12)|

≲ t−2+Cε〈q〉+ t−1+Cε|V I(ξ∗12)|.

In conclusion, we have

V I(V4(ξ
a
12)) = −tr−1V I(ξa12) +O(t−1+Cε|V I(ξ∗12)|+ t−2+Cε〈q〉+ ε〈q〉−1t−1+Cε).

Moreover, by (4.55), we have

|Q1 − nV4(ln(3R− r + t))V I(ξa12)| ≲ ε
∑
|J|=m
nJ,3=n

|V J(ξa12)|+ 〈q〉t−1+Cε
∑
|J|=m
nJ,3<n

|V J(ξa12)|

≲ ε
∑
|J|=m
nJ,3=n

|V J(ξa12)|+ 〈q〉t−2+Cε.

By (4.56), we have

|Q2| ≲ t−1+Cε〈q〉
∑

0<|J |<m

|V J(ξa12)| ≲ t−2+Cε〈q〉.

Thus,
|e4(V I(ξa12)) + (−ne4(ln(3R− r + t)) + r−1)V I(ξa12)|

≲ εt−1
∑
|J|=m
nJ,3=n

|V J(ξa12)|+ t−2+Cε|V I(ξ∗12)|+ t−3+Cε〈q〉+ ε〈q〉−1t−2+Cε.

We now apply Lemma 4.32 with n0 = 1, n1 = n and Lemma 4.30. Then,∑
a

∑
|I|=m
nI,3=n

|V I(ξa12)| ≲ t−1+Cε(x0(0)Cε +

∫ t

x0(0)

τ−2+Cε〈q〉+ ε〈q〉−1τ−1+Cε dτ)

≲ t−1+Cε(x0(0)Cε + x0(0)−1+Cε〈q〉+ 〈q〉−1tCε) ≲ t−1+Cε.

Again recall that t ≥ x0(0) ∼ 〈q〉+ T0. We finish the proof by induction.
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Next we study ξa34. The proof of the following proposition is very similar to that of the
previous one.

Proposition 4.40. Under our induction hypotheses (4.45), for |I| = m, we have

|V I(ξa34)| ≲ t−1+Cε〈q〉−1.

So ξa34 = Rm
−1,−1.

Proof. Fix I such that |I| = m and nI,3 = n ≤ m. Recall from (4.45) that ξa34 = Rm−1
−1,−1.

Suppose that V J(ξa34) = O(t−1+Cε〈q〉−1) for |J | = m and nJ,3 < n. By the equation in
Section 4.4.1 we have

V I(V4(ξ
a
34)) = −V I(tχbaξ

b
34) + V I(t〈R(e4, e3)e4, ea〉) + 2V I(V4(Γ

0
αβe

α
4 e

β
a)).

By Lemma 4.36, the second term is O(εt−1+Cε〈q〉−1). In the third term, we note that

V4(Γ
0
αβe

α
4 e

β
a) = V4(Γ

0
αβ)e

α
4 e

β
a + Γ0

αβV4(e
α
4 )e

β
a + Γ0

αβe
α
4V4(e

β
a)

= εRm
−1,−1 + εRm

−1,−1 · εR−1,0 + εRm
−1,−1 · εR−1,0 = εRm

−1,−1.

We recall from Remark 4.34.1 that e4(e∗∗) = εRm
−2,0. Thus, V I(V4(Γ

0
αβ)) = O(ε〈q〉−1t−1+Cε).

Following the computation in Proposition 4.39, we can prove that

|V I(tχbaξ
b
34)− tr−1V I(ξa34)| ≲ |V I(tχabξ

b
34)− tχabV

I(ξb34)|+ |t(χab − r−1δab)V
I(ξb34)|

≲
∑

|J1|+|J2|=m
|J1|>0

(|V J1(t(χab − δabr
−1))V J2(ξb34)|+ |V J1(tr−1)V J2(ξa34)|) + t−1+Cε|V I(ξb34)|

≲ t−2+Cε + t−1+Cε|V I(ξ∗34)|.

Moreover, by (4.55) we have

|Q1 − nV4(ln(3R− r + t))V I(ξa34)| ≲ ε
∑
|J|=m
nJ,3=n

|V J(ξa34)|+ 〈q〉t−1+Cε
∑
|J|=m
nJ,3<n

|V J(ξa34)|

≲ ε
∑
|J|=m
nJ,3=n

|V J(ξa34)|+ t−2+Cε.

By (4.56), we have

|Q2| ≲ t−1+Cε〈q〉
∑

0<|J |<m

|V J(ξa34)| ≲ t−2+Cε.

Thus,
|e4(V I(ξa34)) + (−ne4(ln(3R− r + t)) + r−1)V I(ξa34)|

≲ εt−1
∑
|J|=m
nJ,3=n

|V J(ξa34)|+ t−2+Cε|V I(ξ∗34)|+ t−3+Cε + ε〈q〉−1t−2+Cε.
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We now apply Lemma 4.32 with n0 = 1, n1 = n and Lemma 4.30. Then,∑
a

∑
|I|=m
nI,3=n

|V I(ξa12)| ≲ t−1+Cε(x0(0)Cε〈q〉−1 +

∫ t

x0(0)

τ−2+Cε + ε〈q〉−1τ−1+Cε dτ)

≲ t−1+Cε(x0(0)Cε〈q〉−1 + x0(0)−1+Cε + 〈q〉−1tCε) ≲ t−1+Cε〈q〉−1.

Again recall that t ≥ x0(0) ∼ 〈q〉+ T0. We finish the proof by induction.

Finally, we consider ξla3. The case when l ∈ {a, 3} is easy.

Proposition 4.41. Under our induction hypotheses (4.45), for |I| = m, we have

〈q〉|V I(ξ3a3)|+ |V I(ξaa3)| ≲ t−1+Cε.

So ξ3a3 = Rm
−1,−1 and ξaa3 = Rm

−1,0.

Proof. Recall from Section 4.4.1 that

ξ3a3 = −2Γ0
αβe

α
4 e

β
a +

1

2
ξa34, ξaa3 = χaa + 2ea(g

0α)gαβe
β
a + 2g0αeβaΓ

µ
βαgµνe

ν
a.

Now we apply Lemma 4.34. Since Γ = εRm+1
−1,−1 and (g, e∗∗) = Rm

0,0, we have Γ0
αβe

α
4 e

β
a =

εRm
−1,−1 and g0αeβaΓ

µ
βαgµνe

ν
a = εRm

−1,−1. Since e4(g0α) = t−1V4(g) = εRm
−2,0 and ea(g

0α) =

r−1Va(g) = εRm
−2,0, we have ea(g0α)gαβeβa = εRm

−2,0. We thus conclude that

(ξ3a3, ξ
a
a3) = (

1

2
ξa34, χaa) + εRm

−1,−1.

We finally apply Proposition 4.38, Proposition 4.39 and Proposition 4.40 to conclude that
ξ3a3 = Rm

−1,−1 and ξaa3 = Rm
−1,0.

The case l = a′ where {a, a′} = {1, 2} is harder.

Proposition 4.42. Under our induction hypotheses (4.45), for |I| = m, we have

|V I(ξa
′

a3)| ≲ 〈q〉−1tCε.

So ξa′a3 = Rm
0,−1.

Proof. Fix I such that |I| = m and nI,3 = n ≤ m. Recall from (4.45) that ξa′a3 = Rm−1
0,−1 .

Suppose that V J(ξa
′

a3) = O(〈q〉−1tCε) for |J | = m and nJ,3 < n. By the equation in Section
4.4.1 we have

V I(V4(ξ
a′

a3)) = V I((V4 + tΓ0
µνe

µ
4e

ν
4)(χaa′ + 2ea(g

0α)gαβe
β
a′ + 2g0αeβaΓ

µ
βαgµνe

ν
a′))− V I(tΓ0

µνe
µ
4e

ν
4ξ

a′

a3)

−
∑
c

V I(tξc34ξ
c
aa′)− V I(t〈R(e4, e3)ea, ea′〉)− V I(tΓ0

αβe
α
4 e

β
aξ

a′

34 + tΓ0
αβe

α
4 e

β
a′ξ

a
34).
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By the Leibniz’s rule and all the previous results, we conclude that the second line has an
upper bound

t−1+Cε〈q〉−1 + ε〈q〉−1t−1+Cε ≲ t−1+Cε〈q〉−1.

In the first line, we note that

tΓ0
µνe

µ
4e

ν
4(2ea(g

0α)gαβe
β
a′ + 2g0αeβaΓ

µ
βαgµνe

ν
a′) = εRm

0,−1 · (εRm
−2,0 + εRm

−1,−1) = ε2Rm
−1,−2.

Besides, since χaa′ = Rm
−2,0 and since

∑
c χacχca′ = χ12trχ, we have

|V I(V4(χaa′) + tΓ0
µνe

µ
4e

ν
4χaa′)|

≲ |V I(2tΓ0
αβe

α
4 e

β
4χaa′)|+ |V I(tχ12(χ11 + χ22))|+ |V I(t〈R(e4, ea)e4, ea′〉)|

≲ |V I(εRm
−2,−1)|+ |V I(Rm+1

1,0 ·Rm
−2,0 ·Rm

−1,0)|+ |V I(εRm
−1,−1)| ≲ t−2+Cε + εt−1+Cε〈q〉−1 ≲ t−1+Cε〈q〉−1.

Moreover, recall that V4(e∗∗) = εRm
−1,0. We also have ∂g = εRm+1

−1,−1 by Remark 4.34.1. Thus,
we have

V4(2ea(g
0α)gαβe

β
a′ + 2g0αeβaΓ

µ
βαgµνe

ν
a′) = 2V4(ea(g

0α))gαβe
β
a′ + εRm

−1,−1

= 2eσaV4(∂σg
0α)gαβe

β
a′ + 2V4(e

σ
a)(∂σg

0α)gαβe
β
a′ + εRm

−1,−1 = εRm
−1,−1.

In conclusion,

|V I(V4(ξ
a′

a3)| ≲ |V I(tΓ0
µνe

µ
4e

ν
4ξ

a′

a3)|+ t−1+Cε〈q〉−1

≲ |tΓ0
µνe

µ
4e

ν
4V

I(ξa
′

a3)|+
∑

|J1|+|J2|=m
|J2|<m

|V J1(εRm
0,−1)V

J2(ξa
′

a3)|+ t−1+Cε〈q〉−1

≲ ε|V I(ξa
′

a3)|+ ε〈q〉−2tCε + t−1+Cε〈q〉−1.

Next, by (4.55), we have

|Q1 − nV4(ln(3R− r + t))V I(ξa
′

a3)| ≲ ε
∑
|J|=m
nJ,3=n

|V J(ξa
′

a3)|+ 〈q〉t−1+Cε
∑
|J|=m
nJ,3<n

|V J(ξa
′

a3)|

≲ ε
∑
|J|=m
nJ,3=n

|V J(ξa
′

a3)|+ t−1+Cε.

By (4.56), we have

|Q2| ≲ t−1+Cε〈q〉
∑

0<|J |<m

|V J(ξa
′

a3)| ≲ t−1+Cε.

Thus,

|e4(V I(ξa
′

a3))− ne4(ln(3R− r + t))V I(ξa
′

a3)| ≲ εt−1
∑
|J|=m
nJ,3=n

|V J(ξa
′

a3)|+ ε〈q〉−2t−1+Cε + t−2+Cε.
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By Lemma 4.32 with n0 = 0, n1 = n and Lemma 4.30, we have∑
a,a′

∑
|I|=m
nI,3=n

|V I(ξa
′

a3)| ≲ tCε(〈q〉−1x0(0)Cε +

∫ t

x0(0)

ε〈q〉−2τ−1+Cε + τ−2+Cε dτ)

≲ tCε(〈q〉−1tCε + 〈q〉−2tCε + (x0(0))−1+Cε) ≲ 〈q〉−1tCε.

We finish the proof by induction.

Combining Proposition 4.38-4.42, we finish the proof of Proposition 4.31 by induction.

4.4.4 Estimates for higher derivatives of q
Now we can prove the estimates for higher derivatives of q. We first note that (4.53) holds
for each m ≥ 1, as long as ε �m 1. This is because (4.53) is a result of (4.45) which then
results from Proposition 4.31.

Lemma 4.43. In Ω ∩ {r − t < 2R}, we have V Iq = O(〈q〉tCε) for each multiindex I.

Proof. We induct on |I|. If |I| = 0, there is nothing to prove. If |I| = 1, the estimates are
clear since V1(q) = V2(q) = V4(q) = 0 and V3(q) = O((3R− r + t)|∂q|) = O(〈q〉tCε).

In general, we fix an integer m > 1. By choosing ε�m 1, we can assume that Proposition
4.31 holds for all |I| ≤ m. Suppose we have proved the estiamtes for |I| < m, so q = Rm−1

0,1 .
Fix a multiindex I such that |I| = m. If nI,4 > 0, we can write I = (J ′, 4, J). Here we can
assume |J | > 0 since otherwise we have V I(q) = VJ ′(V4(q)) = 0. By (4.53), we have

V I(q) = V J ′
(V4(V

J(q)) =
∑

J=(J1,k,J2)

V (J ′,J1)[V4, Vk]V
J2(q)

=
∑

J=(J1,k,J2)

V (J ′,J1)(ηlkV
(l,J2)(q)) =

∑
J=(J1,k,J2)

V (J ′,J1)(Rm−1
−1,1 ·R

m−1−(1+|J2|)
0,1 )

=
∑

J=(J1,k,J2)

V (J ′,J1)(R
m−1−(1+|J2|)
−1,2 ) = O(〈q〉2t−1+Cε) = O(〈q〉tCε).

Here we note that |J2| + 1 = |J | − |J1| = m − 1 − |J ′| − |J1|, so we are able to apply the
definition of R∗

∗∗ here.
Next suppose nI,3 < m and nI,4 = 0. Thus we can write I = (J ′, a, J) where nJ,3 = |J |.

Here we can assume |J | > 0 since Va(q) = 0. Then

V I(q) = V J ′
Va(V

J(q)) =
∑

J=(J1,3,J2)

V (J ′,J1)[Va, V3]V
J2(q).
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Note that

[Va, V3]F = Va((3R− r + t)e3(F ))− V3(rea(F ))

= Va(3R− r + t)e3(F )− V3(r)ea(F ) + (3R− r + t)r[ea, e3](F )

= −(3R− r + t)−1Va(r)V3(F )− r−1V3(r)Va(F )

+ (3R− r + t)ξba3Vb(F ) + rξ3a3V3(F ) + (3R− r + t)rt−1ξ4a3V4(F ).

By Lemma 4.34 and Remark 4.34.1, we have Va(r) = Rm
0,0, V3(r) = (3R− r + t)ei3ωi = Rm

0,1.
By Proposition 4.31, we have

[Va, V3] =
4∑

k=1

Rm
0,0 · Vk = Rm

0,0 · V.

Thus,
V I(q) =

∑
J=(J1,3,J2)

V (J ′,J1)(Rm
0,0 · V (V J2(q)))

=
∑

J=(J1,3,J2)

V (J ′,J1)(Rm
0,0 ·R

m−1−(1+|J2|)
0,1 ) = O(tCε〈q〉).

Again, we have m− 1 = 1 + |J2|+ |J1|+ |J ′|.
Finally, suppose nI,3 = |I|. We have

V4(V
I(q)) =

∑
I=(J1,3,J2)

nJ1,3
=|J1|, nJ2,3

=|J2|

V J1 [V4, V3]V
J2(q) =

∑
I=(J1,3,J2)

nJ1,3
=|J1|, nJ2,3

=|J2|

V J1(ηl3V
(l,J2)(q)).

By the Leibniz’s rule, we can express V J1(ηl3V
(l,J2)(q)) as a linear combination of terms of the

form V K1(ηl3)V
K2(q), where |K1|+|K2| = m, K2 contains l, and (K1, K2) is an rearrangement

of (J1, l, J2). Now recall from (4.53) that ηl3 = Rm−1
−1,1 + εRm

0,−1. Since V J(q) = O(〈q〉tCε) for
|J | = m and nJ,3 < |J |, we have

V J1(ηl3V
(l,J2)(q))

= η33V
I(q) +O(

∑
|K1|+|K2|=m, 0<|K1|<m

n|K1|,3
=|K1|, n|K2|,3

=|K2|

|V K1(η33)V
K2(q)|)

+O(
∑
l ̸=3

∑
|K1|+|K2|=m, |K2|>0

nK1,3
=|K1|, nK2,3

=|K2|−1

|V K1(ηl3)V
K2(q)|)

= (te4(ln(3R− r + t)) +O(ε))V I(q) +O(
∑

0<|K1|<m

|V K1(εRm
0,−1 +Rm−1

−1,1 )| · tCε〈q〉)

+O(
∑

|K1|<m

|V K1(εRm
0,−1 +Rm−1

−1,1 ) · 〈q〉tCε|

= te4(ln(3R− r + t))V I(q) +O(ε|V I(q)|) +O(εtCε + t−1+Cε〈q〉2).
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Thus,
|e4(V I(q))−me4(ln(3R− r + t))V I(q)| ≲ εt−1|V I(q)|+ εt−1+Cε + t−2+Cε〈q〉2.

Recall from Remark 4.29.1 that V I(q) = O(tCε〈q〉) on H. Then, by Lemma 4.32 with n0 = 0
and n1 = |I|, we have

|V I(q)| ≲ tCε(〈q〉x0(0)Cε +

∫ t

x0(0)

ετ−1+Cε + τ−2+Cε〈q〉2 dτ)

≲ tCε(〈q〉tCε + tCε + (x0(0))−1+Cε〈q〉2) ≲ 〈q〉tCε.

We have the following important corollary.

Corollary 4.43.1. The function q(t, x) is a smooth function (in the sense defined in Section
4.2.1) in Ω. Moreover, we have ZIq = O(〈q〉tCε) and ZIΩijq = O(tCε) for each multiindex
I and 1 ≤ i < j ≤ 3.

Proof. Fix an integer m > 1. We seek to prove that for ε �m 1, q is a Cm function and
ZIq = O(〈q〉tCε) for |I| ≤ m. By writing Z = zν(t, x)∂ν , we have

r−1〈Z, ea〉 = r−1zαeβagαβ = Rm
0,0, t−1〈Z, e3〉 = t−1zαeβ3gαβ = Rm

0,0.

Moreover,
〈Z, e4〉 = zαeβ4gαβ = zαeβ4 (gαβ −mαβ) + zαeβ4mαβ

= εRm
0,0 − z0 + zi(ei4 − ωi) + ziωi = Rm

0,1 + Z(r − t).

We can easily check that Z(r − t) = Rm
0,1, so (3R− r + t)−1〈Z, e4〉 = Rm

0,0. Then, by (4.29),
Z = Rm

0,0 · V , so ZIq is a linear combination of terms of the form

ZI1(Rm
0,0) · · ·ZIs(Rm

0,0)V
s(q),

∑
|I∗|+ s = |I|, s > 0.

Each of such terms is O(tCε〈q〉) if |I| ≤ m, so we have ZIq = O(tCε〈q〉) for |I| ≤ m.
Moreover, for each m > 1, as long as ε�m 1, we have q = Rm+1

0,1 by Lemma 4.43. Then
we have

Ωijq =
1

2
〈Ωij, e4〉e3(q) =

1

2
(xigjβ − xjgiβ)e

β
4e3(q)

=
1

2
(ximjk − xjmik)ωke3(q) +

1

2
(xi(gjk −mjk)− xj(gik −mik))ωke3(q)

+
1

2
(xigjk − xjgik)(e

k
4 − ωk)e3(q)

= 0 + εRm
0,0 +Rm

0,0 = Rm
0,0.

Again, for each multiindex I with |I| ≤ m, we can write ZIΩijq as a linear combination of
terms of the form

ZI1(Rm
0,0) · · ·ZIs(Rm

0,0)V
sΩij(q),

∑
|I∗|+ s = m, s > 0.

Each of such terms is O(tCε), so we have ZIΩijq = O(tCε) for |I| ≤ m.
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4.4.5 More estimates
We end this section with some estimates derived from our original wave equation (1.1). We
first introduce a new definition.

Definition 4.44. Let F = F (t, x) be a function with domain Ω ∩ {r − t < 2R}. For any
integer m ≥ 0 and any real numbers s, p, we have defined F = Rm

s,p in Section 4.4.3 prior to
Lemma 4.34. We now define F = Rs,p, if F = Rm

s,p for each m ≥ 0.
Again, by the Leibniz’s rule, we have V I(Rs,p) = Rs,p and Rs1,p1 ·Rs2,p2 = Rs1+s2,p1+p2 .

In addition, by Proposition 4.31, we have

(ξ213, ξ
1
23) = R0,−1; ξ

a
34 = R−1,−1; ξ

a
k1k2

= R−1,0 for all other k1 < k2 and a = 1, 2;

ξ3k1k2 = R−1,−1 for all k1 < k2; χab − r−1δab = R−2,0.

There are many other estimates in Section 4.4.3 invovling R∗
∗,∗. They would still hold if all

the superscripts are removed, because they all rely on Proposition 4.31. For example, by
Lemma 4.34 we have

e∗∗ = R0,0, (e
i
4 − ωi, e

i
3 − ωi) = R−1,0; ∂

sZI(g −m) = εR−1,−s, Γ
∗
∗∗ = εR−1,−1;

ω = R0,0, (t
s, rs) = Rs,0, (3R− r + t)s = R0,s.

We remark that this definition follows the spirits of the convention in Section 4.2.1. In
the defintion of Rm

s,p, we require some estimates to hold for all ε �s,p,m 1. The dependence
on m here should be emphasized.

Our goal in this subsection is to prove that

e4(e3(u)) + r−1e3(u) = εR−3,0, e4(e3(u)) = εR−2,0; (4.58)

e4(e3(q)) = −1

4
e3(u)G(ω)e3(q) + εR−2,0. (4.59)

We start our proof with the following lemma.

Lemma 4.45. We have the following estimates.

(a) qα = R0,0, q−1
r = R0,0; ek(qr) = R−1,−1, ek(q−1

r ) = R−1,−1 for k 6= 3.

(b) qi + ωiqt = R−1,0, ui + ωiut = εR−2,0.

(c) ek(qi + ωiqt) = R−2,0, ek(ui + ωiut) = εR−3,0, for k 6= 3.

(d) In (b) and (c) we can replace qi + ωiqt with qt + qr or qi − ωiqr, and replace ui + ωiut
with ut + ur or ui − ωiur. The results are the same.
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Proof. (a) By Lemma 4.43, we have V3(q) = R0,1 and e3(q) = V3(q) = R0,0. Then,

qα =
1

2
gαβe

β
4e3(q) = R0,0 ·R0,0 ·R0,0 = R0,0.

Since ωi = R0,0, we have qr = R0,0. Since qr ≥ C−1t−Cε and since V I(q−1
r ) is a linear

combination of terms of the form

q−s−1
r V I1(qr) · · ·V Is(qr), where

∑
|Ij| = |I|, |Ij| > 0, (4.60)

we conclude that V I(q−1
r ) = O(tCε) for each I and thus q−1

r = R0,0. Besides, we have

ek(e3(q)) = [ek, e3]q = ξ3k3e3(q), k = 1, 2, 3, 4;

2ωigiβe
β
4 = 〈e3 + e4, e4〉+ (2ωi − ei4 − ei3)giβe

β
4 = 2 +R−1,0.

Thus, for k 6= 3,

ek(qr) = ek(
1

2
ωigiβe

β
4e3(q)) = ek(

1

2
ωigiβe

β
4 )e3(q) +

1

2
ωigiβe

β
4ek(e3(q))

= ek(
1

2
+R−1,0)e3(q) + (

1

2
+R−1,0)ξ

3
k3e3(q)

= R−1,0 · Vk(R−1,0) ·R0,0 +R−1,−1 = R−1,−1.

Now if we expand V I(ek(q
−1
r )), each term is still of the form (4.60) with s > 0 and V Is(qr)

replaced by V Is(ek(qr)). We thus conclude that ek(q−1
r ) = R−1,−1 for k 6= 3.

(b) We have
qi + ωiqt =

1

2
(giβ + ωig0β)e

β
4e3(q)

and

ui + ωiut =
1

2
(giβ + ωig0β)e

β
4e3(u) +

1

2
(giβ + ωig0β)e

β
3e4(u) +

∑
a

(giβ + ωig0β)e
β
aea(u)

=
1

2
(giβ + ωig0β)e

β
4 (3R− r + t)−1V3(u) + εR−2,0.

Here we have

(giβ + ωig0β)e
β
4 = ei4 − ωi + ((giβ −miβ) + ωi(g0β −m0β))e

β
4 = R−1,0.

We thus conclude that qi + ωiqt = R−1,0 and ui + ωiut = εR−2,0.
(c) Recall that ea(r) = R−1,0, e4(ωi) = r−1(ei4 − ωi + (1− ej4ωj)ωi) = R−2,0 and e4(eαk ) =

εR−2,0 by Lemma 4.34 and Lemma 4.35. Besides, note that

ea(ωi) = r−1(eia − ea(r)ωi) = r−1eia +R−2,0,

e4(ωi) = (ej4 − ωj)∂jωi = r−1(ei4 − ωi − (ej4 − ωj)ωjωi) = R−2,0.
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Thus we have

ea((giβ + ωig0β)e
β
4 ) = ea(giβ + ωig0β)e

β
4 + (giβ + ωig0β)ea(e

β
4 )

= (ea(giβ) + ωiea(g0β) + ea(ωi)g0β)e
β
4 + (giβ + ωig0β)(ξ

l
a4e

β
l + e4(e

β
a))

= (εR−2,0 + (r−1eia +R−2,0)g0β)e
β
4 + (giβ + ωig0β)(ξ

b
a4e

β
b + εR−2,0)

= r−1eiag0βe
β
4 + r−1(giβ + ωig0β)e

β
a + (giβ + ωig0β)(χab − δabr

−1)eβb +R−2,0

= r−1(−eia + eia(g0β −m0β)e
β
4 + eia + ((giβ −miβ) + ωi(g0β −m0β))e

β
a) +R−2,0 = R−2,0,

and
e4((giβ + ωig0β)e

β
4 ) = e4(giβ + ωig0β)e

β
4 + (giβ + ωig0β)e4(e

β
4 )

= (e4(giβ) + ωie4(g0β) + e4(ωi)g0β)e
β
4 + εR−2,0

= R−2,0 + εR−2,0 = R−2,0.

Since (giβ + ωig0β)e
β
4 = R−1,0 and ek(e3(q)) = ξ3k3e3(q) = R−1,−1, we conclude from the

Leibniz’s rule that for k 6= 3,

ek(qi + ωiqt) =
1

2
ek((giβ + ωig0β)e

β
4 )e3(q) +

1

2
(giβ + ωig0β)e

β
4ek(e3(q))

= R−2,0 ·R0,0 +R−1,0 ·R−1,−1 = R−2,0.

Besides,

ui + ωiut = r−1
∑
j

ωjΩjiu+ r−1ωiSu+ r−1ωi(t+ r)−1(tSu−
∑
j

xjΩ0ju) = R−1,0 · Zu.

Note that Zu = εR−1,0 and ek = R−1,0 · V for k 6= 3. We conclude that

ek(ui + ωiut) = ek(R−1,0) · Zu+R−1,0 · ek(Zu)
= R−1,0 · Vk(R−1,0) · εR−1,0 +R−1,0 ·R−1,0 · Vk(εR−1,0) = εR−3,0.

(d) This part follows directly from

∂t + ∂r =
∑

ωi(∂i + ωi∂t), ∂i − ωi∂r = ∂i + ωi∂t −
∑

ωiωj(∂j + ωj∂t).

Proposition 4.46. We have e4(e3(u)) + r−1e3(u) = εR−3,0 and e4(e3(ru)) = εR−2,0.

Proof. Note that

gαβ(u)∂α∂βu =
∑
a

eαae
β
a∂α∂βu+

1

2
eα4 e

β
3∂α∂βu+

1

2
eα3 e

β
4∂α∂βu

=
∑
a

(ea(ea(u))− ea(e
α
a )∂αu) + e4(e3(u))− e4(e

α
3 )∂αu.
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Here we have

ea(e
α
a )∂αu

= −ξaaa′ea′(u)−
1

2
χaa(e3(u) + e4(u))− 〈ea, ea(g0β)∂β + g0βeαaΓ

ν
αβ∂ν〉e4(u)− eµae

ν
aΓ

α
µνuα

= −ξaaa′ea′(u)−
1

2
χaa(e3(u) + e4(u))− (eαagαβea(g

0β) + eµagµνg
0βeαaΓ

ν
αβ)e4(u)− eµae

ν
aΓ

α
µνuα

= −1

2
χaae3(u)− eµae

ν
aΓ

α
µνuα + εR−3,0

and
e4(e

α
3 )∂αu = εR−2,0 · εR−1,−1 = ε2R−3,−1.

In addition, for k, l 6= 3, we have

eµke
ν
l Γ

α
µνuα =

1

2
gαβ(∂µgνβ + ∂νgµα − ∂βgµν)e

µ
ke

ν
l uα

=
1

2
gαβek(gνβ)e

ν
l uα +

1

2
gαβel(gµα)e

µ
kuα − 1

2
gαβ∂βgµνe

µ
ke

ν
l uα

= ε2R−3,−1 −
1

2

∑
c

ec(gµν)ec(u)e
µ
ke

ν
l −

1

4
e3(gµν)e4(u)e

µ
ke

ν
l −

1

4
e4(gµν)e3(u)e

µ
ke

ν
l

= ε2R−3,−1.

Since χab − δabr
−1 = R−2,0 and e3(u) = (3R − r + t)−1V3(u) = εR−1,−1, their product is

εR−3,−1. Thus we have

0 =
∑
a

ea(ea(u)) + e4(e3(u)) +
1

2
trχe3(u) + εR−3,0

=
∑
a

ea(ea(u)) + e4(e3(u)) + r−1e3(u) + εR−3,0.

Next, as in Lemma 4.20, we set

hi := r(∂i(ru)− qiq
−1
r ∂r(ru)) = −r(u+ rur)q

−1
r (qi − ωiqr) + r2(ui − ωiur).

Recall from Lemma 4.20 that
ea(ru) =

∑
i

ea(ωi)hi.

We claim that hi = εR0,0 and ea(hi) = εR−1,0. In fact, note that u + rur = εR−1,0 +R1,0 ·
εR−1,−1 = εR0,−1. We also recall that ea(r) = R−1,0, so ea(r−1) = −r−2ea(r) = R−3,0. Thus
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by Lemma 4.45, we have hi = εR0,0 and ea(hi) = εR−1,0. We thus have

ea(ea(u))

= ea(r
−1ea(ru) + ea(r

−1)ru)

= r−1ea(ea(ru)) + 2ea(r
−1)ea(ru) + ea(ea(r

−1))ru

= r−1ea(ea(ru)) +R−3,0 · r−1Va(εR0,0) + Va(R−3,0) · εR−1,0

= r−1
∑
i

ea(ea(ωi))hi + r−1
∑
i

ea(ωi)ea(hi) + εR−4,0

= r−1
∑
i

ea(r
−1(eia − ωiωje

j
a))hi +R−1,0 · r−1Va(R0,0) · εR−1,0 + εR−4,0

= r−2
∑
i

ea(e
i
a − ωiωje

j
a)hi + r−1

∑
i

ea(r
−1)(eia − ωiωje

j
a)hi + εR−3,0

= r−2ea(R0,0) · εR0,0 + r−1R−3,0 · εR0,0 + εR−3,0 = εR−3,0.

Thus,
0 = e4(e3(u)) + r−1e3(u) + εR−3,0.

Finally, we have

e4(e3(ru)) = e4(re3(u)) + e4(e3(r)u) = re4(e3(u)) + e4(r)e3(u) + e3(r)e4(u) + e4(e3(r))u

= −e3(u) + e4(r)e3(u) + e4(e
i
3ωi)u+ εrR−3,0 + εR−2,0

= (e4(r)− 1)e3(u) + t−1V4(1 + (ei3 − ωi)ωi)u+ εR−2,0

= R−1,0 · εR−1,−1 +R−1,0 · V4(R−1,0) · εR−1,0 + εR−2,0 = εR−2,0.

Next we prove an estimate for e3(q). We start with the following lemma.

Lemma 4.47. Fix a function f ∈ C∞(R). Then, for ε� 1, f(u)− f(0)− f ′(0)u = ε2R−2,0

where u is a solution to (1.1).

Proof. For ε � 1, we have f(u) − f(0) − f ′(0)u = O(|u|2) = O(ε2t−2+Cε). Now, for each I
with |I| > 0, we can write V I(f(u)) − f ′(u)(V Iu) as a linear combination of terms of the
form

f (s)(u)V I1u · · ·V Isu,
∑

|I∗| = |I|, s ≥ 2, |I∗| > 0.

Since u = εR−1,0, we can prove that each of these terms are O((εt−1+Cε)s) = O(ε2t−2+Cε).
Finally, note that f ′(u)V Iu − f ′(0)V Iu = O(|u| · |V Iu|) = O(ε2t−1+Cε). This finishes the
proof.

Our main result is as follows.
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Proposition 4.48. In Ω ∩ {r − t < 2R}, we have

e4(e3(q)) = −1

4
e3(u)G(ω)e3(q) + εR−2,0.

Proof. We recall that

e4(e3(q)) = −Γ0
αβe

α
4 e

β
4e3(q) = −1

2
g0ν(eβ4e4(gνβ) + eα4 e4(gνα))e3(q) +

1

2
g0ν∂νgαβe

α
4 e

β
4e3(q).

Here e3(q) = (3R− r + t)−1V3(q) = R0,0 and e4(g) = t−1V4(g) = εR−2,0. Thus,

e4(e3(q)) =
1

2
g0ν∂νgαβe

α
4 e

β
4e3(q) + εR−2,0 =

1

4
(e3 − e4)(gαβ)e

α
4 e

β
4e3(q) + εR−2,0

=
1

4
e3(gαβ)e

α
4 e

β
4e3(q) + εR−2,0.

Recall that the coefficients (gαβ(v)) in (1.1) are known smooth functions, and that for all
|v| � 1 the matrix (gαβ(v)) has a smooth inverse (gαβ(v)). We differentiate gασ(v)gσβ(v) =
δαβ with respect to v and then set v = 0. Thus,

d

dv
gασ|v=0 ·mσβ +mασ · d

dv
gσβ|v=0 = 0.

By setting g0αβ = d
dv
gαβ|v=0 and gαβ0 = d

dv
gαβ|v=0, we conclude that

g0αβ = −mααmββg
αβ
0 .

Here we do not take sum over α, β. Thus we have

g0αβe
α
4 e

β
4 = −g00e04e04 + 2g0i0 e

0
4e

i
4 − gij0 e

i
4e

j
4

= −G(ω) + 2g0i0 (e
i
4 − ωi)− gij0 e

i
4(e

j
4 − ωj)− gij0 (e

i
4 − ωi)ωj = −G(ω) +R−1,0.

By the previous lemma we have

e4(e3(q)) =
1

4
e3(g

0
αβu)e

α
4 e

β
4e3(q) + εR−2,0 = −1

4
e3(u)G(ω)e3(q) + εR−2,0.

4.5 The asymptotic equations and the scattering data
In Section 4.3, we have constructed a global optical function q(t, x) in Ω such that −qt, qr ≥
C−1t−Cε > 0. By setting

Ω′ := {(s, q, ω) : s > 0, q > (exp(δ/ε)− exp((s+ δ)/ε))/2 + 2R, ω ∈ S2},
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we have an invertible map from Ω to Ω′, defined by

Φ(t, r, ω) = (s, q, ω) := (ε ln(t)− δ, q(t, rω), ω).

In fact, we have t = exp((s + δ)/ε) and the map r 7→ q(t, rω) is strictly increasing for each
fixed (t, ω). Thus, Φ is injective. Since q = r− t when r ≥ t+2R, we have limr→∞ q(t, rω) =
∞. Thus, Φ is surjective. This gives us a new coordinate (s, q, ω) on Ω.

In addition, Φ is smooth since q is a smooth function. Its inverse Φ−1 is also smooth,
since we have qr > 0. So, any smooth function F (t, x) induces a smooth function F ◦ Φ−1.
With an abuse of notation, we still write F ◦ Φ−1(s, q, ω) as F (s, q, ω).

We define
(µ, U)(t, x) = (qt − qr, ε

−1ru)(t, x), (t, x) ∈ Ω.

Since q and u are both smooth, µ(t, x) and U(t, x) are smooth. As discussed above, we also
obtain two smooth functions µ(s, q, ω) and U(s, q, ω) in Ω′. Our goal in this section is to
derive a system of asymptotic equations for (µ, U) in the coordinate set (s, q, ω). Our main
result is the following proposition.

Proposition 4.49. Let (µ, U)(s, q, ω) be defined as above. Then, by writing t = exp(ε−1(s+
δ)) we have 

∂sµ =
1

4
G(ω)µ2Uq + ε−1R−1,0,

∂sUq = −1

4
G(ω)µU2

q + ε−1R−1,0.

In addition, the following three limits exist for all (q, ω) ∈ R× S2:
A(q, ω) := −1

2
lim
s→∞

(µUq)(s, q, ω),

A1(q, ω) := lim
s→∞

exp(
1

2
G(ω)A(q, ω)s)µ(s, q, ω),

A2(q, ω) := lim
s→∞

exp(−1

2
G(ω)A(q, ω)s)Uq(s, q, ω).

All of them are smooth functions of (q, ω) for ε� 1. By setting
µ̃(s, q, ω) := A1 exp(−

1

2
GAs),

Ũq(s, q, ω) := A2 exp(
1

2
GAs).

we obtain an exact solution to our reduced system
µ̃s =

1

4
G(ω)µ̃2Ũq,

Ũsq = −1

4
G(ω)µ̃Ũ2

q .
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We also have the following estimates:
(〈q〉∂q)m∂nω(µUq + 2A) = O(t−1+Cε), (〈q〉∂q)m∂nωA = O(〈q〉−1+Cε);

(〈q〉∂q)m∂nω(exp(12GAs)µ− A1) = O(t−1+Cε), (〈q〉∂q)m∂nωA1 = O(〈q〉Cε),

(〈q〉∂q)m∂nω(exp(−1
2
GAs)Uq − A2) = O(t−1+Cε), (〈q〉∂q)m∂nωA2 = O(〈q〉−1+Cε);

∂ps (〈q〉∂q)m∂nω(µ̃− µ, Ũq − Uq) = O(ε−pt−1+Cε), ∂ps∂
n
ω(Ũ − U) = O(ε−p〈q〉t−1+Cε).

Remark 4.49.1. Here A is called the scattering data.

After some preliminary computations in the new coordinate set (s, q, ω) in Section 4.5.1,
we derive the asymptotic equations for µ and U in Section 4.5.2 and Section 4.5.3, respec-
tively. Next, in Section 4.5.4, we make use of the asymptotic equations to construct our
scattering data. The main propositions in this subsection are Proposition 4.53 and Proposi-
tion 4.55. Finally, in Section 4.5.5, we define an exact solution (µ̃, Ũ)(s, q, ω) to our reduced
system and we show that it provides a good approximation of (µ, U)(s, q, ω).

4.5.1 Derivatives under the new coordinate
For convenience, from now on we make the following convention. For a function F =
F (s, q, ω) where ω ∈ S2, we extend it to all ω 6= 0 by setting F (s, q, λω) = F (s, q, ω) for each
λ > 0. Under such a setting, it is easy to compute the angular derivatives of F since we can
now define ∂ωi

. To avoid ambiguity, we will only use ∂ωi
in the coordinate (s, q, ω) and will

never use it in the coordinate (t, r, ω).
First we explain how to compute the derivatives of U in (s, q, ω). Note by the chain rule,

for any function F = F (s, q, ω) = F (t, r, ω) we have{
Ft = εt−1Fs + qtFq

Fr = qrFq
=⇒

{
Fs = ε−1t(Ft − qtq

−1
r Fr)

Fq = q−1
r Fr

.

In addition, by the homogeneity, we have F (s, q, ω) = F (s, q, λω) and ∂ωi
F (s, q, ω) =

λ∂ωi
F (s, q, λω) for each λ > 0. At (t, x), we set λ = |x| which gives

Fi = qiFq + r−1Fωi
=⇒ Fωi

= r(Fi − qiq
−1
r Fr).

Now we can explain the meaning of the function hi defined in Lemma 4.20; it is the derivative
of ru with respect to ωi under the coordinate (s, q, ω).

To simplify our future computations, we note that ∂q, ∂s and ∂ωi
commute with each

other. In fact,
[∂q, ∂ωi

] = [q−1
r ∂r, r∂i − rqiq

−1
r ∂r]

= q−1
r ∂i − q−1

r ∂r(rqiq
−1
r )∂r − r∂i(q

−1
r ωj)∂j + rqiq

−1
r ∂r(q

−1
r )∂r

= q−1
r ∂i − q−2

r ∂r(rqi)∂r − r∂i(q
−1
r )∂r − q−1

r (∂i − ωi∂r)

= −q−2
r (qi + r∂rqi)∂r + rq−2

r (∂r(qi) + r−1(qi − ωiqr))∂r + q−1
r ωi∂r

= 0,
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[∂s, ∂q] = [ε−1t∂t − ε−1tqtq
−1
r ∂r, q

−1
r ∂r]

= ε−1t∂t(q
−1
r )∂r − ε−1tqtq

−1
r ∂r(q

−1
r )∂r + ε−1tq−1

r ∂r(qtq
−1
r )∂r

= ε−1t∂t(q
−1
r )∂r + ε−1tq−2

r qtr∂r = 0,

[∂s, ∂ωi
] = [ε−1t∂t − ε−1tqtq

−1
r ∂r, r∂i − rqiq

−1
r ∂r]

= −ε−1tr∂t(qiq
−1
r )∂r − ε−1tqtq

−1
r (∂i − ∂r(rqiq

−1
r )∂r)

+ ε−1tr∂i(qtq
−1
r ωj)∂j − ε−1trqiq

−1
r ∂r(qtq

−1
r )∂r

= −ε−1trqitq
−1
r ∂r − ε−1tqtq

−1
r ∂i + ε−1tqtq

−2
r qi∂r + ε−1trqtq

−2
r ∂r(qi)∂r

+ ε−1trqtiq
−1
r ∂r − ε−1trqtq

−2
r ∂i(qr)∂r + ε−1tqtq

−1
r (∂i − ωi∂r)

= ε−1tqtq
−2
r qi∂r − ε−1tqtq

−2
r (qi − ωiqr)∂r − ε−1tqtq

−1
r ωi∂r = 0.

Moreover, we can express (∂s, ∂q, ∂ωi
) in terms of the weighted null frame {Vk}.

Lemma 4.50. We have
∂s =

∑
a

ε−1R−1,0Va + (ε−1 +R−1,0)V4,

∂ωi
=

∑
k ̸=3

R−1,0Vk +
∑
a

eiaVa =
∑
k ̸=3

R0,0Vk,

∂q =
∑
k

R0,−1Vk.

Proof. We can express ∂s, ∂ωi
in terms of the null frame:

∂s = ε−1t(g0βe
β
aea +

1

2
g0βe

β
4e3 +

1

2
g0βe

β
3e4)− ε−1tqtq

−1
r (ωigiβe

β
aea +

1

2
ωigiβe

β
4e3 +

1

2
ωigiβe

β
3e4)

= ε−1t((g0β − qtq
−1
r ωigiβ)e

β
aea +

1

2
(g0β − qtq

−1
r ωigiβ)e

β
3e4),

∂ωi
= r(giβe

β
aea +

1

2
giβe

β
4e3 +

1

2
giβe

β
3e4)− rqiq

−1
r (ωjgjβe

β
aea +

1

2
ωjgjβe

β
4e3 +

1

2
ωjgjβe

β
3e4)

= r((giβ − qiq
−1
r ωjgjβ)e

β
aea +

1

2
(giβ − qiq

−1
r ωjgjβ)e

β
3e4).

We note that there is no term with e3 in ∂s and ∂ωi
, since

(g0β − qtq
−1
r ωigiβ)e

β
4 = q−1

r (qrg0β − qtωigiβ)e
β
4 =

1

2
q−1
r e3(q)(ωigiνe

ν
4g0βe

β
4 − g0νe

ν
4ωigiβe

β
4 ) = 0,

(giβ − qiq
−1
r ωjgjβ)e

β
4 = q−1

r (qrgiβ − qiωjgjβ)e
β
4 =

1

2
q−1
r e3(q)(ωjgjνe

ν
4giβe

β
4 − giνe

ν
4ωjgjβe

β
4 ) = 0.

In these computations we use the equality qα = 1
2
gαβe

β
4e3(q). In addition, we have

ε−1t(g0β − qtq
−1
r ωigiβ)e

β
a = ε−1t((g0j −m0j)− qtq

−1
r ωi(gij −mij))e

j
a − ε−1tqtq

−1
r ea(r)

= R0,0 + ε−1R0,0 = ε−1R0,0,

r(giβ − qiq
−1
r ωjgjβ)e

β
a = r((gij′ −mij′)− qiq

−1
r ωj(gjj′ −mjj′))e

j′

a + r(eia − qiq
−1
r ea(r))

= R0,0 + reia.
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Besides, since ei3ωi = 2g0iωi + ei4ωi = 1 + εR−1,0, we have

ε−1t(g0β − qtq
−1
r ωigiβ)e

β
3 = ε−1t((g0β −m0β)− qtq

−1
r ωi(giβ −miβ))e

β
3 + ε−1t(1− qtq

−1
r ei3ωi)

= R0,0 + ε−1tq−1
r (2qr − (qt + qr)− qt(e

i
3ωi − 1)) = R0,0 + 2ε−1t,

r(giβ − qiq
−1
r ωjgjβ)e

β
3 = r((giβ −miβ)− qiq

−1
r ωj(gjβ −mjβ))e

β
3 + r(ei3 − qiq

−1
r ωje

j
3)

= εR0,0 + rq−1
r ((ei3 − ωi)qr − (qi − ωiqr)− qi(e

j
3ωj − 1)) = R0,0.

Thus,

∂s =
∑
a

ε−1R0,0ea + (ε−1t+R0,0)e4 =
∑
a

ε−1R−1,0Va + (ε−1 +R−1,0)V4,

∂ωi
=

∑
k ̸=3

R0,0ek +
∑
a

reiaea =
∑
k ̸=3

R−1,0Vk +
∑
a

eiaVa =
∑
k ̸=3

R0,0Vk.

It is also clear that
∂q =

∑
k

R0,0ek =
∑
k

R0,−1Vk.

We end this subsection with the following estimates for U .

Lemma 4.51. We have

(U,Uq, Us, Uωi
) = (R0,0,R0,−1, ε

−1R0,0,R0,0).

In conclusion, we have µUq = R0,−1.

Proof. We have

U = ε−1ru,

Uq = q−1
r ∂r(ε

−1ru) = ε−1q−1
r (u+ rur),

Us = ε−2tr(ut + ur − q−1
r (qt + qr)ur)− ε−2tqtq

−1
r u,

Uωi
= −ε−1r(qi − ωiqr)q

−1
r (u+ rur) + ε−1r2(ui − ωiur).

It follows directly from Lemma 4.34, Lemma 4.45 and the proof of Proposition 4.46 that
(U,Uq, Us, Uωi

) = (R0,0,R0,−1, ε
−1R0,0,R0,0). Since µ = R0,0, we have µUq = R0,−1.

4.5.2 The asymptotic equation for µ
We start with several estimates for µ = qt − qr. By Proposition 4.48, we have

e4(e3(q)) = −1

4
e3(u)G(ω)e3(q) + εR−2,0

= −1

4
(εr−1e3(U)− εr−2e3(r)U)G(ω)e3(q) + εR−2,0

= − ε

4r
e3(U)G(ω)e3(q) + εR−2,0.
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Since ei3 − ωi = R−1,0, we have

e3(q) = −µ+R−1,0 · ∂q = −µ+R−1,0.

Moreover,

e4(e3(q) + µ) = e4((e
i
3 − ωi)qi) = e4(e

i
3 − ωi)qi + (ei3 − ωi)e4(qi)

= −(ej4 − ωj)r
−1(δij − ωiωj)qi + (ei3 − ωi)e4(

1

2
giβe

β
4e3(q)) + εR−2,0

= −r−1(−qt − qr − qr(e4(r)− 1)) +
1

2
giβ(e

i
3 − ωi)e

β
4e4(e3(q)) + εR−2,0 = εR−2,0.

To get the last equality, we use the following estimates: e4(r)− 1 = εR−1,0 by Lemma 4.35,
e4(e3(q)) = ξ343e3(q) = εR−1,−1, and

qt + qr =
1

2
(g0β + ωigiβ)e

β
4e3(q) =

1

2
(−1 + ei4ωi)e3(q) + (g∗∗ −m∗∗) ·R0,0 = εR−1,0.

Besides, by the chain rule, we have

e3(U) = e3(q)Uq − εt−1Us +
∑
i

e3(ωi)Uωi
= −µUq +R−1,0.

Here we apply Lemma 4.51 and we note that e3(ωi) = (ej3 − ωj)r
−1(δij − ωiωj) = R−2,0.

Thus, we have

e4(−µ) + εR−2,0 = − ε

4r
G(ω)(−µUq +R−1,0)(−µ+R−1,0) + εR−2,0

= − ε

4r
G(ω)µ2Uq + εR−2,0.

Then,
e4(µ) =

ε

4r
G(ω)µ2Uq + εR−2,0. (4.61)

By Lemma 4.50 we have

µs = ε−1te4(µ) +
∑
k ̸=3

ε−1R−1,0Vk(µ) = ε−1t(
ε

4r
G(ω)µ2Uq + εR−2,0) +

∑
k ̸=3

ε−1R−1,0Vk(R0,0)

=
t

4r
G(ω)µ2Uq + ε−1R−1,0 =

1

4
G(ω)µ2Uq +

ε(t− r)

4r
G(ω)µ2Uq + ε−1R−1,0

=
1

4
G(ω)µ2Uq + εR−1,1 ·R0,0 ·R0,−1 + ε−1R−1,0 =

1

4
G(ω)µ2Uq + ε−1R−1,0.

We thus obtain the first asymptotic equation

µs =
1

4
G(ω)µ2Uq + ε−1R−1,0. (4.62)
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4.5.3 The asymptotic equation for U
By Proposition 4.46, we have

e4(e3(U)) = ε−1e4(e3(ru)) = R−2,0.

Meanwhile, by Lemma 4.51 we have
e4(e3(U)) = e4(e3(q)Uq + εt−1Us + e3(ωi)Uωi

)

= −e4(µUq) + e4((e
i
3 − ωi)qiUq + εt−1Us + (ej3 − ωj)r

−1(δij − ωiωj)Uωi
)

= −e4(µUq) +R−1,0 · V4(R−1,−1 + εt−1 · ε−1R0,0 +R−1,0 · r−1 ·R0,0)

= −e4(µUq) +R−2,0.

Thus, e4(µUq) = R−2,0.
Now, we compute ∂s(µUq). By Lemma 4.50 we have

∂s(µUq) =
∑
a

ε−1R−1,0Va(µUq) + (ε−1 +R−1,0)V4(µUq)

=
∑
a

ε−1R−1,0Va(R0,−1) + (ε−1 +R−1,0)R−1,0 = ε−1R−1,0.

Thus, we have

µUsq = ∂s(µUq)− µsUq = ε−1R−1,0 − (
1

4
G(ω)µ2Uq + ε−1R−1,−1 +R−1,0)Uq

= −1

4
G(ω)µ2U2

q + ε−1R−1,0.

Since |µ| > C−1t−Cε, we have µ−1 = R0,0. Thus we obtain the second asymptotic equation

Usq = −1

4
G(ω)µU2

q + ε−1R−1,0. (4.63)

In summary, by (4.62) and (4.63), we have proved the following proposition.

Proposition 4.52. We have
∂sµ =

1

4
G(ω)µ2Uq + ε−1R−1,0,

∂sUq = −1

4
G(ω)µU2

q + ε−1R−1,0.

(4.64)

In other words, (µ, Uq)(s, q, ω) is an apporximate solution to the reduced system of ODE’s
∂sµ̃ =

1

4
G(ω)µ̃2Ũq,

∂sŨq = −1

4
G(ω)µ̃Ũ2

q .

(4.65)

We remark that this proposition verifies the nonrigorous derivation in Section 3 of the
author’s previous paper [34].
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4.5.4 The scattering data
From the previous subsections, we have proved that (µ, Uq)(s, q, ω) is an approximate solution
to the reduced system (4.65). In this subsection, we seek to construct an exact solution (µ̃, Ũq)
to (4.65) which is a good approximation of (µ, Uq).

We start with the following key proposition. In this proposition, we define the scattering
data A = A(q, ω) for each (q, ω) ∈ R× S2 and we show that it is a smooth function (in the
sense defined in Section 4.2.1).

Proposition 4.53. In Ω′, we have

(〈q〉∂q)m∂nω(µUq) = O(〈q〉−1tCε), ∂ps (〈q〉∂q)m∂nω(µUq) = O(ε−pt−1+Cε), p ≥ 1.

Moreover, for each m,n, the limit

Am,n(q, ω) := −1

2
lim
s→∞

(〈q〉∂q)m∂nω(µUq)(s, q, ω)

exists for all (q, ω) ∈ R×S2, and the convergence is uniform in (q, ω). So A(q, ω) := A0,0(q, ω)
is a smooth function of (q, ω) in R×S2 such that (〈q〉∂q)m∂nωA = Am,n. We call this function
A the scattering data. It is clear that A ≡ 0 for q > R.

Finally, we have

(〈q〉∂q)m∂nω(µUq + 2A) = O(t−1+Cε), (〈q〉∂q)m∂nωA = O(〈q〉−1+Cε).

Proof. First we note that in the region r − t > R, we have q = r − t and u = 0. In this
case, every estimate in the statement of this proposition is equal to 0, so there is nothing to
prove. Thus, we can assume that q < 2R and r − t < 2R in the rest of this proof.

We need to derive an estimate for ∂s∂mq ∂nω(µUq). Here we apply Lemma 4.50. Recall that
µUq = R0,−1 and V4(µUq) = R−1,0. By the Leibniz’s rule, we have

(〈q〉∂q)m∂nω(µUq) = (
∑
k

R0,0Vk)
m+n(R0,−1) = O(〈q〉−1+CεtCε) = O(〈q〉−1tCε).

In addition, for p ≥ 1 we have

∂ps (〈q〉∂q)m∂nω(µUq) = ∂p−1
s (〈q〉∂q)m∂nω∂s(µUq)

= ∂p−1
s (〈q〉∂q)m∂nω(

∑
k ̸=3

ε−1R−1,0 · Vk(µUq) + ε−1V4(µUq))

= ∂p−1
s (〈q〉∂q)m∂nω(

∑
a

ε−1R−1,0 ·R0,−1 + ε−1R−1,0)

= ε1−p(
∑

R0,0Vk)
p+m+n−1(ε−1R−1,0) = O(ε−pt−1+Cε).

(4.66)
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In both these estimates, we view t as a function of s.
For fixed q < 2R and ω ∈ S2, by the definition of Ω′, we have (s, q, ω) ∈ Ω′ if and only if

s > 0 and
exp((s+ δ)/ε) > exp(δ/ε)− 2q + 4R. (4.67)

We can write this condition as s > sq,δ,ε where sq,δ,ε ≥ 0 is a constant depending on its
subscripts, such that (sq,δ,ε, q, ω) ∈ ∂Ω′ corresponds with a point on H. Thus, for each fixed
(q, ω) and s2 > s1 ≥ sq,δ,ε = exp(δ/ε)− 2q + 4R, by (4.66) with p = 1, we have

|(〈q〉∂q)m∂nω(µUq)(s2, q, ω)− (〈q〉∂q)m∂nω(µUq)(s1, q, ω)|

≲
∫ s2

s1

ε−1 exp((−1 + Cε)ε−1(s+ δ)) ds ≲ exp((−1 + Cε)ε−1(s1 + δ)).

In conclusion, {(〈q〉∂q)m∂nω(µUq)(s, q, ω)}s≥sq,δ,ε is uniformly Cauchy for each (q, ω). Thus,
the limit

Am,n(q, ω) := −1

2
lim
s→∞

(〈q〉∂q)m∂nω(µUq)(s, q, ω)

exists, and the convergence is uniform in (q, ω). Besides, for each s ≥ sq,δ,ε, we have

|(〈q〉∂q)m∂nω(µUq) + 2Am,n| ≲ t−1+Cε = exp((−1 + Cε)ε−1(s+ δ)). (4.68)

By evaluating (4.68) at (sq,δ,ε, q, ω), we have

|Am,n(q, ω)| ≲ |(〈q〉∂q)m∂nω(µUq) + 2Am,n|+ |(〈q〉∂q)m∂nω(µUq)|
≲ (exp(δ/ε)− 2q + 4R)−1+Cε + 〈q〉−1(exp(δ/ε)− 2q + 4R)Cε ≲ 〈q〉−1+Cε.

In the last inequality, we note that (a+ b)Cε ≤ 2Cε max{a, b}Cε ≤ 2(aCε+ bCε) for each pairs
a, b ≥ 0. Since the convergence is uniform in (q, ω), if we define A := A0,0, then we have

(〈q〉∂q)m∂nωA = Am,n = O(〈q〉−1+Cε).

Note that each function of (s, q, ω) can be viewed as a function of (t, x). We then have
the following lemma.

Lemma 4.54. By viewing each function of (s, q, ω) as a function of (t, x) ∈ Ω∩{r−t < 2R},
we have (A, ∂ωA) = R0,−1, µUq + 2A = R−1,0 and exp(±1

2
G(ω)As)− 1 = R0,−1.

Proof. Note that V IA is a linear combination of terms of the form

∂mq ∂
n
ωA · V I1q · · ·V Imq · V J1ω · · ·V Jnω,

∑
|I∗|+

∑
|J∗| = |I|.

Each of these terms is O(〈q〉−1−m+Cε · 〈q〉mtCε) = O(〈q〉−1tCε), so A = R0,−1. The proof of
∂ωA = R0,−1 is essentially the same.
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Moreover, V I(µUq + 2A) is a linear combination of terms of the form

∂mq ∂
n
ω(µUq + A) · V I1q · · ·V Imq · V J1ω · · ·V Jnω,

∑
|I∗|+

∑
|J∗| = |I|;

∂ps∂
m
q ∂

n
ω(µUq) · V K1s · · ·V Kps · V I1q · · ·V Imq · ·V J1ω · · ·V Jnω,∑

|I∗|+
∑

|J∗|+
∑

|K∗| = |I|, p > 0.

By applying (4.68) to the first row and (4.66) to the second row, we conclude that V I(µUq+
2A) = O(t−1+Cε) and thus µUq + 2A = R−1,0.

Finally, by the chain rule, for each |I| > 0 we can write V I(exp(±1
2
G(ω)As) − 1) as a

linear combination of terms of the form

exp(±1

2
G(ω)As) · V I1(±1

2
G(ω)As) · · ·V Im(±1

2
G(ω)As),

∑
|I∗| = |I|, |I∗| > 0.

The first term in this product is O(tCε), and each of the rest terms are O(V I∗(R0,−1)) =
O(〈q〉−1tCε), so we conclude that V I(exp(±1

2
G(ω)As)− 1) = O(〈q〉−1tCε) for |I| > 0. When

|I| = 0, since |eρ − 1| ≲ |ρ|e|ρ|, we have

| exp(±1

2
G(ω)As)− 1| ≲ 〈q〉−1+Cεs exp(C〈q〉−1+Cεs) ≲ 〈q〉−1tCε.

Here we note that s = ε ln(t)− δ = O(tCε). In conclusion, exp(±1
2
GAs)− 1 = R0,−1.

By (4.64) and Lemma 4.54, we have
∂sµ = −1

2
G(ω)A(q, ω)µ+ ε−1R−1,0,

∂sUq =
1

2
G(ω)A(q, ω)Uq + ε−1R−1,0.

With the remainder terms omitted, we obtain two linear ODE’s for µ and Uq. They motivate
us to define 

Ṽ1 := exp(
1

2
G(ω)A(q, ω)s)µ,

Ṽ2 := exp(−1

2
G(ω)A(q, ω)s)Uq.

(4.69)

Now we can prove the following proposition.

Proposition 4.55. We have

(〈q〉∂q)m∂nωṼ1 = O(tCε), ∂ps (〈q〉∂q)m∂nωṼ1 = O(ε−pt−1+Cε), p ≥ 1;

(〈q〉∂q)m∂nωṼ2 = O(〈q〉−1tCε), ∂ps (〈q〉∂q)m∂nωṼ2 = O(ε−pt−1+Cε), p ≥ 1.
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Moreover, for each m,n, the limit

Aj,m,n(q, ω) := lim
s→∞

Ṽj(s, q, ω), j = 1, 2

exists for all (q, ω) ∈ R × S2, and the convergence is uniform in (q, ω). So, for j = 1, 2,
Aj := Aj,0,0 is smooth functions of (q, ω) in R × S2 such that (〈q〉∂q)m∂nωAj = Aj,m,n. It is
clear that A1 ≡ −2 and A2 ≡ 0 for q > R. Besides, we have A1A2 = −2A everywhere.

Finally, we have

(〈q〉∂q)m∂nω(Ṽ1 − A1) = O(t−1+Cε), (〈q〉∂q)m∂nωA1 = O(〈q〉Cε),

(〈q〉∂q)m∂nω(Ṽ2 − A2) = O(t−1+Cε), (〈q〉∂q)m∂nωA2 = O(〈q〉−1+Cε).

Proof. By (4.61) and since t/r = 1 +R−1,1, we have

V4(µ) =
εt

4r
G(ω)µ2Uq + εR−1,0 =

ε

4
G(ω)µ2Uq + εR−1,0.

Moreover, by viewing (s, q, ω) as functions of (t, x), we have

e4(G(ω)A(q, ω)s) = εG(ω)At−1 + e4(ωj)∂ωj
(GA)s = εG(ω)At−1 +R−2,−1.

Here we note that ∂ωj
(GA) = R0,−1 by Lemma 4.54 and e4(ωi) = (ej4 − ωj)∂jωi = R−2,0.

Then, by Lemma 4.54, we have Ṽ1 = R0,0 ·R0,0 = R0,0 and

V4(Ṽ1) =
1

2
V4(GAs)Ṽ1 + exp(

1

2
GAs)V4(µ)

=
1

4
(2εGA+ εGµUq +R−1,−1)Ṽ1 + εR−1,0 · exp(

1

2
GAs)

=
1

4
(εR−1,0 +R−1,−1) ·R0,0 + εR−1,0 ·R0,0 = εR−1,0 +R−1,−1 = R−1,0.

Next, we have Ṽ1Ṽ2 = µUq and µUq = R0,−1, V4(µUq) = R−1,0 from Proposition 4.53.
Since µ = qt − qr ≤ −2C−1t−Cε and exp(1

2
GAs) ≥ exp(−Cs) = exp(Cδ)t−Cε, we have

|Ṽ1| = −Ṽ1 ≥ C−1t−Cε. We can express V I(Ṽ2) = V I((µUq)/Ṽ1) as a linear combination of
terms of the form

Ṽ −m−1
1 · V I1(Ṽ1) · · ·V Im(Ṽ1) · V I0(µUq),

∑
|I∗| = |I|.

It is easy to conclude that Ṽ2 = R0,−1 and V4(Ṽ2) = R−1,0.
Now we can follow the proof in Proposition 4.53 to prove every estimate involving A2 in

the statement. As for A1, we note that

(〈q〉∂q)m∂nω(Ṽ1) = (
∑
k

R0,0Vk)
m+n(R0,0) = O(tCε).
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In addition, for p ≥ 1 we have

∂ps (〈q〉∂q)m∂nω(Ṽ1) = ∂p−1
s (〈q〉∂q)m∂nω∂s(Ṽ1)

= ∂p−1
s (〈q〉∂q)m∂nω(

∑
k ̸=3

ε−1R−1,0 · Vk(Ṽ1) + ε−1V4(Ṽ1))

= ∂p−1
s (〈q〉∂q)m∂nω(

∑
a

ε−1R−1,0 ·R0,0 + ε−1R−1,0)

= ε1−p(
∑

R0,0Vk)
p+m+n−1(ε−1R−1,0) = O(ε−pt−1+Cε).

It is then clear that the estimates for Ṽ1 − A1 are the same as those for µUq + 2A. Finally,
at (s, q, ω) = (sq,δ,ε, q, ω) we have

|(〈q〉∂q)∂nωA1(q, ω)| ≲ |(〈q〉∂q)∂nω(Ṽ1 − A1)(s, q, ω)|+ |(〈q〉∂q)∂nω(Ṽ1)(s, q, ω)|
≲ (exp(δ/ε)− 2q + 4R)−1+Cε + (exp(δ/ε)− 2q + 4R)Cε ≲ 〈q〉Cε.

In the last inequality, we note that (a+ b)Cε ≤ 2Cε max{a, b}Cε ≤ 2(aCε+ bCε) for each pairs
a, b ≥ 0.

Remark 4.55.1. Following the proof of Lemma 4.54, we can show that (A1, ∂ωA1) = R0,0,
Ṽ1 − A1 = R−1,0, (A2, ∂ωA2) = R0,−1 and Ṽ2 − A2 = R−1,0.

Moreover, we note that A1 ≈ −2 in the following sense.

Lemma 4.56. Fix 0 < κ < 1. For ε� 1 and for all (q, ω) ∈ R×S2, we have |A1(q, ω)+2| ≤
κ〈q〉−1+Cε. The constant in the power may depend on κ. As a result, we have A1(q, ω) <
−1 < 0.

Proof. Since A1 ≡ −2 for q > R, we can assume q < 2R in the proof. Recall from the proof
of Proposition 4.55 that

e4(Ṽ1) = εR−2,0 +R−2,−1 = O(εt−2+Cε + t−2+Cε〈q〉−1).

Next we consider Ṽ1|H . On H we have µ = −2+O(|u|) = −2+O(εt−1+Cε). As computed
in Lemma 4.54, on H we have

|(exp(1
2
GAs)− 1)µ| ≲ 〈q〉−1+Cεs exp(C〈q〉−1+Cεs) · (2 +O(εt−1+Cε))

≲ 〈q〉−1+Cεs exp(C〈q〉−1+Cεs).

Thus, Ṽ1|H = −2 +O(εt−1+Cε + 〈q〉−1+Cεs exp(C〈q〉−1+Cεs)).
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We integrate e4(Ṽ1) along the geodesic in A passing through (t, x) ∈ Ω ∩ {r − t < 2R}.
Then,

|Ṽ1(t, x) + 2| ≲ ε(x0(0))−1+Cε + 〈q〉−1+Cε(ε lnx0(0)− δ) exp(C〈q〉−1+Cε(ε lnx0(0)− δ))

+ (ε+ 〈q〉−1)

∫ t

x0(0)

τ−2+Cε dτ

≲ ε(x0(0))−1+Cε + 〈q〉−1+Cε(ε lnx0(0)− δ) exp(C〈q〉−1+Cε(ε lnx0(0)− δ))

+ (ε+ 〈q〉−1)(x0(0))−1+Cε.

If ε lnx0(0)− δ ≤ c for some small constant c > 0, we have

|Ṽ1(t, x) + 2| ≤ Cε〈q〉−1+Cε + Cc〈q〉−1+Cε exp(Cc〈q〉−1+Cε) + C(ε+ 〈q〉−1)(〈q〉+ exp(δ/ε))−1+Cε

≤ Cε〈q〉−1+Cε + Cc〈q〉−1+Cε.

By choosing c, ε �κ 1, we can make Cc + Cε < κ. Thus, |Ṽ1(t, x) + 2| ≤ κ〈q〉−1+Cε. If
ε ln(x0(0))−δ > c, we have x0(0) > exp((c+δ)/ε) and thus q = (exp(δ/ε)−x0(0))/2+2R <
−C−1 exp((c+ δ)/ε) for ε� 1. Then we have 〈q〉C′ε ≥ C−C′ε exp(C ′(c+ δ)) and thus

|Ṽ1(t, x) + 2| ≲ (ε+ 〈q〉−1)(x0(0))−1+Cε + 〈q〉−1+Cε(x0(0))Cε

≲ (ε+ 〈q〉−1)〈q〉−1(exp(δ/ε) + 〈q〉)Cε + 〈q〉−1+Cε(exp(δ/ε) + 〈q〉)Cε

≲ 〈q〉−1+Cε ≲ 〈q〉−1+(C+C′)εCC′ε exp(−C ′c).

The second last inequality holds since aCε + bCε ≤ (2max{a, b})Cε ≤ 2Cε(aCε + bCε) for
a, b > 0. By choosing C ′ �κ 1 and ε�κ 1, again we have |Ṽ1(t, x) + 2| ≤ κ〈q〉−1+Cε.

We finish the proof by sending s→ ∞.

4.5.5 An exact solution to the reduced system
For each (s, q, ω) ∈ R× R× S2, we define

µ̃(s, q, ω) = A1(q, ω) exp(−
1

2
G(ω)A(q, ω)s),

Ũq(s, q, ω) = A2(q, ω) exp(
1

2
G(ω)A(q, ω)s).

(4.70)

Since µ̃Ũq = A1A2 = −2A, it is easy to show that (µ̃, Ũq) is indeed a solution to the
reduced system (4.65). To solve for Ũ uniquely, we assume that limq→∞ Ũ(s, q, ω) = 0 (since
limq→∞ U(s, q, ω) = 0). This also implies that Ũ ≡ 0 for q ≥ 2R. At (s, q, ω) ∈ Ω′∩{q < 2R}
we have

µ̃ = R0,0 · (1 +R0,−1) = R0,0, Ũq = R0,−1(1 +R0,0) = R0,−1,
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µ̃− µ = exp(−1

2
G(ω)A(q, ω)s)(A1 − Ṽ1) = R−1,0,

Ũq − Uq = exp(
1

2
G(ω)A(q, ω)s)(A2 − Ṽ2) = R−1,0.

Thus, for each p,m, n, we have

∂ps (〈q〉∂q)m∂nωµ̃ = ε−p(
∑
k

R0,0Vk)
p+m+n(R0,0) = O(ε−ptCε),

∂ps (〈q〉∂q)m∂nωŨq = ε−p(
∑
k

R0,0Vk)
p+m+n(R0,−1) = O(ε−p〈q〉−1tCε),

∂ps (〈q〉∂q)m∂nω(µ̃− µ, Ũq − Uq) = ε−p(
∑
k

R0,0Vk)
p+m+n(R−1,0) = O(ε−pt−1+Cε).

(4.71)

Moreover, since U = ε−1ru = R0,0, we can also show that ∂ps (〈q〉∂q)m∂nωU = O(ε−ptCε). Now,
by integrating ∂ps∂nω(Ũq − Uq) with respect to q, we have

∂ps∂
n
ω(Ũ − U) = O(ε−p〈q〉t−1+Cε), ∂ps∂

n
ωŨ = O(ε−p〈q〉t−1+Cε + ε−ptCε) = O(ε−ptCε).

(4.72)
Here we note that 〈q〉 ≲ t in Ω′ ∩ {q < 2R}. The estimates (4.71) and (4.72) will be used in
Section 4.7.

4.6 Gauge independence
At the beginning of Section 4.3, we define a region Ω by (4.7) and then construct an optical
function in Ω. If we replace (4.7) with

Ωκ,δ := {(t, x) : t > exp(δ/ε), |x| − exp(δ/ε)− 2R > κ(t− exp(δ/ε))}

for some fixed constants δ > 0 and 0 < κ < 1, we are still able to construct an optical
function in Ωκ,δ by following the proofs in Section 4.3 and Section 4.4. We are also able to
construct a scattering data by following the proofs in Section 4.5. We do not expect that
the scattering data to be independent of (κ, δ), but we have the next proposition.

Proposition 4.57. Suppose q(t, x) and q̄(t, x) are two solutions to the same eikonal equation

gαβ(u)qαqβ = 0

in different regions Ωκ,δ and Ωκ̄,δ̄, respectively, as constructed in Section 4.3 and Section 4.4.
Let A(q, ω) and Ā(q̄, ω) be the corresponding scattering data constructed in Section 4.5.4.
Under the change of coordinates (s, q, ω) = (ε ln(t) − δ, q(t, x), ω), we can view q̄(t, x) as a
function of (s, q, ω) in Ωκ,δ ∩ Ωκ̄∩δ̄. Then, the limit q̄∞(q, ω) := lims→∞ q̄(s, q, ω) exists for
which we have

A(q, ω) = Ā(q̄∞(q, ω), ω).
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Proof. We first recall several notations and estimates in Section 4.3. For example, we have
µ = qt− qr = O(tCε), ν = qt+ qr = O(t−1+Cε), and we have similar definitions and estimates
for µ̄ and ν̄. By viewing q̄(t, x) as a function of (s, q, ω) = (ε ln(t)− δ, q(t, x), ω), we have

∂sq̄ = ε−1t(q̄t − qtq
−1
r q̄r) = tε−1q̄r(ν̄q̄

−1
r − νq−1

r ).

By the eikonal equation, we have

0 = −(qr − qr)(qr + qr) +O(t−2+Cε) + (gαβ(u)−mαβ)qαqβ = −νµ+
1

4
uG(ω)µ2 +O(t−2+Cε).

Since µ ≤ −C−1t−Cε, we have

ν =
1

4
uG(ω)µ+O(t−2+Cε)

and thus
ν

qr
=

1

4
uG(ω)

µ

qr
+O(t−2+Cε) =

1

4
uG(ω)(

ν

qr
− 2) +O(t−2+Cε) = −1

2
uG(ω) +O(t−2+Cε).

We conclude that

∂sq̄ = tε−1q̄−1
r (−1

2
uG(ω) +O(t−2+Cε)− (−1

2
uG(ω) +O(t−2+Cε)))

= O(ε−1t−1+Cε) = O(ε−1 exp((−ε−1 + C)(s+ δ))).

As computed in Section 4.5.4, we can show that q̄∞(q, ω) := lims→∞ q̄(s, q, ω) exists for all
(q, ω). Moreover, we can show that

|q̄(s, q, ω)− q̄∞(q, ω)| ≲ t−1+Cε.

Since lims→∞(µUq)(s, q, ω) = −2A(q, ω) and lims̄→∞(µ̄Ūq)(s̄, q̄, ω) = −2Ā(q̄, ω) (recall
that s̄+ δ̄ = s+ δ), we have

∂r(ε
−1ru) = qrUq = −1

2
µUq +O(t−1+Cε); ∂r(ε

−1ru) = q̄rŪq̄ = −1

2
µ̄Ūq̄ +O(t−1+Cε).

Then,
(µUq)(s, q, ω) = (µ̄Ūq)(s+ δ − δ̄, q̄(s, q, ω), ω) +O(t−1+Cε).

By sending s (and thus t) to infinity, we conclude that A(q, ω) = Ā(q̄∞(q, ω), ω).

4.7 Approximation
Recall that we have constructed an exact solution to our reduced system in (4.70). In this
section, we seek to prove that this exact solution gives a good approximation of the exact
solution to (1.1).
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To state the result, we first recall the solution (µ̃, Ũ)(s, q, ω) to the reduced system defined
in Proposition 4.49, or in (4.70). We now solve

q̃t − q̃r = µ̃(ε ln(t)− δ, q̃(t, x), ω) in Ω ∩ {r − t < 2R}; q̃ = r − t when r − t ≥ 2R

and set
ũ(t, x) = εr−1Ũ(ε ln(t)− δ, q̃(t, x), ω) in Ω ∩ {r − t < 2R}.

We remark that the construction here is very similar to that in Section 4 of the author’s
prevoius paper [34]. We then have the following approximation result.

Proposition 4.58. The function ũ = ũ(t, x) is an approximate solution to (1.1) in the
following sense:

|ZI(gαβ(ũ)∂α∂βũ)(t, x)| ≲ εt−3+Cε, ∀(t, x) ∈ Ω, ∀I.

Moreover, if we fix a constant 0 < γ < 1 and a large integer N , then for ε �γ,N 1, at each
(t, x) ∈ Ω such that |r − t| ≲ tγ, we have |ZI(u− ũ)| ≲γ εt

−2+Cε〈r − t〉 for each |I| ≤ N .

The estimates for u− ũ in this proposition is better than the estimates for u itself.
After making several definitions in Section 4.7.1, we introduce a simplification in Section

4.7.2. Instead of (µ̃, Ũq), the simplification in Section 4.7.2 allows us work with (µ̂, Ũq) which
is an exact solution to the reduced system (4.70) with initial data (−2, Â). We thus get a
new function q̂ which is a solution to q̂t − q̂r = µ̂. In Section 4.7.3, we follow Section 4 of
[34] to prove several estimates for q̂ and Û . The most important result here is Proposition
4.68 which states that ũ = û is indeed an approximate solution to (1.1). In Section 4.7.4, we
show that q̂ approximates the optical function q in a certain sense. Finally, in Section 4.7.5,
we make use of the estimates in Section 4.7.4 to prove Proposition 4.58.

4.7.1 Definitions
We first define a function q̃(t, x) in Ω by solving the following equation

q̃t − q̃r = µ̃(ε ln(t)− δ, q̃(t, x), ω) in Ω ∩ {r − t < 2R}; q̃ = r − t when r − t ≥ 2R.
(4.73)

Recall that µ̃ is defined by

µ̃(s, q, ω) := A1(q, ω) exp(−
1

2
G(ω)A(q, ω)s), ∀(s, q, ω) ∈ R× R× S2.

In this section, when we write q, we usually mean a variable instead of the optical function
q(t, x).

As in [34], we can use the method of characteristics to solve (4.73). We fix (t, x) ∈
Ω ∩ {r − t < 2R} and set z(τ) := q̃(τ, r + t− τ, ω). Then, the function z(τ) is a solution to
the autonomous system of ODE’s

ż(τ) = µ̃(εs(τ)− δ, z(τ), ω), ṡ(τ) = ετ−1.
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The initial data is given by (z, s)((r+t)/2−R) = (2R, ε ln((r+t)/2−R)−δ). By Proposition
4.53, Proposition 4.55 and Lemma 4.56, we have |A1 + 2| = O(〈q〉−1+Cε), (A2, A)(q, ω) =
O(〈q〉−1+Cε) and A1 < −1 for all (q, ω). Thus,

0 ≥ µ(εs(τ)− δ, z(τ), ω) = A1(z(τ), ω) exp(−
1

2
G(ω)A(z(τ), ω)(εs(τ)− δ))

≥ −CτCε⟨z(τ)⟩−1+Cε ≥ −CτCε.

Then, −CτCε ≤ ż(τ) ≤ 0, so |z(τ)| cannot blow up in finite time. By the Picard’s theorem,
the system of ODE’s above has a solution for all (r+t)/2−R ≤ τ < 1

3
(2(r+t)−4R−exp(δ/ε)).

The upper bound here guarantees that (τ, r + t − τ, ω) ∈ Ω. Thus, (4.73) has a solution
q̃(t, x) in Ω.

Next, we define Ũ(s, q, ω) by

Ũ(s, q, ω) = −
∫ ∞

q

A2(p, ω) exp(
1

2
G(ω)A(p, ω)s) dp. (4.74)

Note that A2(q, ω) = 0 whenever q > R, so when q < R, we can replace ∞ with R in (4.74).
In Ω we set

ũ(t, x) = εr−1Ũ(ε ln(t)− δ, q̃(t, x), ω).

We seek to prove that ũ(t, x) provides a good approximation of u(t, x).

4.7.2 Simplification
We aim to introduce some simplification in this subsection. Define a new function F (q, ω)
on R× S2 by

F (q, ω) := 2R−
∫ q

2R

2

A1(p, ω)
dp.

Then, we have

a) F is defined everywhere, and 2(q − R) ≤ F (q, ω) ≤ 2(q + R)/3 for all q < 2R. This is
because A1 ∈ [−3,−1] by Lemma 4.56.

b) F is a smooth function of (q, ω), in the sense that for each large integer N and ε �N 1,
F is in CN . This is because A1 ∈ [−3,−1] and by Proposition 4.55.

c) F (q, ω) = q for q > R, and 〈F (q, ω)〉 ∼ 〈q〉. This is because A1 ≡ −2 for q > R.

d) For each fixed ω, the map q 7→ F (q, ω) has an inverse denoted by F̂ (q, ω) which is also
smooth (in the same sense as in a) above) in R×S2. This is because Fq = −2/A1 ∈ [2/3, 2].

e) ∂aq ∂
c
ωF = O(〈q〉1−a+Cε). Recall that A1 < −1 and ∂aq ∂

c
ωA1 = O(〈q〉−a+Cε). If a = 0, then

|∂cωF | ≲
∫
[q,2R]

〈p〉Cε dp ≲ 〈q〉1+Cε. If a ≥ 1, then |∂aq ∂cωF | = |∂a−1
q ∂cω(2/A1)| ≲ 〈q〉1−a+Cε.
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For each (s, q, ω), we set
Â(q, ω) := A(F̂ (q, ω), ω)

and 
µ̂(s, q, ω) := −2 exp(−1

2
G(ω)Â(q, ω)s),

Û(s, q, ω) := −
∫ ∞

q

Â(p, ω) exp(
1

2
G(ω)Â(p, ω)s) dp.

(4.75)

It is clear that (µ̂, Û) is a solution to the reduced system (4.65).
For each (t, x) ∈ Ω, we set

q̂(t, x) := F (q̃(t, x), ω), û(t, x) := εr−1Û(ε ln t− δ, q̂(t, x), ω).

We then have the next key lemma.

Lemma 4.59. In Ω, we have

q̂t − q̂r = µ̂(ε ln t− δ, q̂(t, x), ω)

and q̂ = r − t whenever r − t > R. Moreover, we have û(t, x) = ũ(t, x) everywhere.

Proof. At (t, x) ∈ Ω, we first have

q̃(t, x) = F̂ (F (q̃(t, x), ω), ω) = F̂ (q̂(t, x), ω).

Thus,

q̂t − q̂r = (∂t − ∂r)F (q̃(t, x), ω) = Fq(q̃(t, x), ω) · µ̃(ε ln t− δ, q̃(t, x), ω)

= (−2/A1 · A1 exp(−
1

2
GAs))(ε ln t− δ, q̃(t, x), ω)

= −2 exp(−1

2
G(ω)A(q̃(t, x), ω)(ε ln t− δ))

= −2 exp(−1

2
G(ω)A(F̂ (q̂(t, x), ω), ω)(ε ln t− δ))

= −2 exp(−1

2
G(ω)Â(q̂(t, x), ω)(ε ln t− δ)) = µ̂(ε ln t− δ, q̂(t, x), ω).

Since F (q, ω) = q for all q > R, we have q̂(t, x) = q̃(t, x) = r − t whenever r − t > R.
Moreover, if ρ = F̂ (p, ω), then we have p = F (ρ, ω) and thus

A(ρ, ω) = A(F̂ (p, ω), ω) = Â(p, ω).
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Then by the change of variables (ρ = F̂ (p, ω) and thus p = F (ρ, ω)), we have

Û(s, q̂, ω) = −
∫ ∞

q̂

Â(p, ω) exp(
1

2
G(ω)Â(p, ω)s) dp

= −
∫ ∞

q̃

A(ρ, ω) exp(
1

2
G(ω)A(ρ, ω)s)Fρ(ρ, ω) dρ

= −
∫ ∞

q̃

A2(ρ, ω) exp(
1

2
G(ω)A(ρ, ω)s) dρ = Ũ(s, q̃, ω).

Here we note that AFq = −2A/A1 = A2. That is, for each (s, q, ω) (not viewed as functions
of (t, x)),

Û(s, q, ω) = Ũ(s, F̂ (q, ω), ω). (4.76)
We thus have ũ(t, x) = û(t, x).

Because of Lemma 4.59, we can work with (û, q̂) instead of (ũ, q̃).
We end this subsection with several useful estimates for (Â, µ̂, Û).

Proposition 4.60. For each (q, ω), we have

(〈q〉∂q)a∂cωF̂ (q, ω) = O(〈q〉1+Cε), (〈q〉∂q)a∂cωÂ(q, ω) = O(〈q〉−1+Cε).

Besides, for each (s, q, ω) ∈ Ω′ ∩ {q < 2R}, we have

∂bs(〈q〉∂q)a∂cωÛ = O(ε−btCε), ∂bs(〈q〉∂q)a+1∂cωÛ = O(tCε);

µ̂ = O(tCε), ∂bs(〈q〉∂q)a∂cωµ̂ = O(〈q〉−1+CεtCε|µ̂|), a+ b+ |c| > 0.

Proof. First, it is clear that 〈F̂ (q, ω)〉 ∼ 〈q〉 and that F̂q(q, ω) = 1/(Fq(F̂ (q, ω), ω)) =

−A1(F̂ (q, ω), ω)/2 ∼ 〈q〉Cε. In general we induct on m + |n|. By differentiating q =
F (F̂ (q, ω), ω), for (a, c) /∈ {(0, 0), (1, 0)}, we have

0 = Fq(F̂ (q, ω), ω) · ∂aq ∂cωF̂ (q, ω) +
∑

C[(∂mq ∂
c′

ωF )(F̂ (q, ω), ω) ·
m∏
j=1

(∂ajq ∂
cj
ω F̂ )(q, ω)].

Here the sum on the right hand side is taken over all (m, c′, a∗, c∗) such that
∑
aj = a,

c′ +
∑
cj = c, aj + |cj| < a + |c|. We can now apply the induction hypotheses to conclude

that
0 = Fq(F̂ (q, ω), ω) · ∂aq ∂cωF̂ (q, ω) +

∑
O(〈F̂ (q, ω)〉1−m+Cε · 〈q̂〉m−

∑
aj+Cε)

= Fq(F̂ (q, ω), ω) · ∂aq ∂cωF̂ (q, ω) +O(〈q〉1−a+Cε).

And since Fq ∼ 1, we conclude that ∂aq ∂cωF̂ (q, ω) = O(〈q〉1−a+Cε).
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Next, recall that

Â(q, ω) = A(F̂ (q, ω), ω), Û(s, q, ω) = Ũ(s, F̂ (q, ω), ω).

Then, ∂bs∂aq ∂cωÛ(s, q, ω) is a linear combination of terms of the form

∂bs∂
m
q ∂

c′

ω Ũ(s, F̂ (q, ω), ω) ·
m∏
j=1

∂ajq ∂
cj
ω F̂ (q, ω),

∑
aj = a, c′ +

∑
cj = c.

By (4.71) and (4.72), we conclude that each of these terms are controlled by

ε−b〈F̂ (q, ω)〉−mtCε · 〈q〉m−
∑

aj+Cε ≲ ε−b〈q〉−atCε.

Thus, ∂bs(〈q〉∂q)a∂cωÛ(s, q, ω) = O(ε−btCε). Following the same proof, we can show that
(〈q〉∂q)a∂cωÂ(q, ω) = O(〈q〉−1+Cε).

Finally, by (4.75), we can write ∂bs∂aq ∂cωÛq(s, q, ω) as a linear combination of terms of the
form

∂a
′

q ∂
c′

ω Â(q, ω) · exp(
1

2
GÂs)

m∏
j=1

∂bjs ∂
aj
q ∂

cj
ω (

1

2
GÂs)

where a′ +
∑
aj = a,

∑
bj = b, c′ +

∑
cj = c. Each of these terms are controlled by

〈q〉−1−a′+Cε · tCε · 〈q〉−m−
∑

aj tCε ≲ 〈q〉−1−atCε.

In conclusion, we have ∂bs(〈q〉∂q)a+1∂cωÛ(s, q, ω) = O(tCε). Here we do not have the factor
ε−b which is better. Moreover, we have µ̂ = O(tCε) and

(µ̂s, 〈q〉µ̂q, µ̂ω) = −1

2
(GA, 〈q〉GAqs, ∂ω(GA)s)µ̂.

Following the same proof, we can show that ∂bs(〈q〉∂q)a∂cωµ̂(s, q, ω) = O(〈q〉−1+CεtCε|µ̂|) if
a+ b+ |c| > 0.

4.7.3 Estimates for q̂ and Û

We now follow Section 4 in [34] to prove several useful estimates. In this subsection, all
functions of (s, q, ω) ∈ [0,∞) × R × S2 are viewed as functions of (t, x) ∈ Ω by setting
(s, q, ω) = (ε ln t − δ, q̂(t, x), ω). This setting is different from that in the previous sections
of this chapter, where we take q = q(t, x).

Lemma 4.61. In Ω ∩ {r − t < 2R}, we have 〈q̂〉/〈r − t〉 = tO(ε) and q̂(t, x) − r + t =
O(min{ε−1, 〈q̂〉}tCε).
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Proof. Fix (t, x) ∈ Ω ∩ {r − t < 2R}. Then, we have

|q̂(t, x)− 2R| =
∫ t

(r+t)/2−R

(−µ̂(ε ln τ − δ, q̂(τ, r + t− τ, ω), ω)) dτ

≲
∫ t

(r+t)/2−R

exp(C〈q̂〉−1+Cεs)(τ, r + t− τ, ω) dτ

≲ ((r − t)/2 +R)tCε ≲ 〈r − t〉tCε;

|q̂(t, x)− 2R| =
∫ t

(r+t)/2−R

(−µ̂(ε ln τ − δ, q̂(τ, r + t− τ, ω), ω)) dτ

≳
∫ t

(r+t)/2−R

exp(−C〈q̂〉−1+Cεs)(τ, r + t− τ, ω) dτ

≳ ((r − t)/2 +R)t−Cε ≳ 〈r − t〉t−Cε.

Thus, we have t−Cε〈q̂〉 ≲ 〈r − t〉 ≲ tCε〈q̂〉. It follows that

|q̂(t, x)− (r − t)| ≤ |q̂ − 2R|+ |r − t− 2R| ≲ tCε〈q̂〉+ 〈r − t〉 ≲ 〈q̂〉tCε.

To improve the estimate above, we note that

q̂(t, x) = 2R +

∫ t

(r+t)/2−R

µ̂(ε ln τ − δ, q̂(τ, r + t− τ, ω), ω) dτ

= r − t+

∫ t

(r+t)/2−R

(µ̂(ε ln τ − δ, q̂(τ, r + t− τ, ω), ω) + 2) dτ.

For each (s, q, ω) ∈ [0,∞)× R× S2, by Proposition 4.54 and Lemma 4.56 we have

|µ̂(s, q, ω) + 2| ≲ |1− exp(−1

2
GAs)| ≲ 〈q〉−1+Cε|s| exp(C〈q〉−1+Cεs).

By setting (s, q, ω) = (ε ln τ − δ, q̂(τ, r + t− τ, ω), ω), we have

|µ̂+ 2|(τ) ≲ 〈r + t− 2τ〉−1+CετCε ≲ (3R− r − t+ 2τ)−1+CεtCε

and then

|q̂ − r + t| ≲ tCε

∫ t

(r+t)/2−R

(3R− r − t+ 2τ)−1+Cε dτ ≲ ε−1tCε(3R− r + t)Cε.

And since 0 ≤ 3R− r + t ≲ 1 + t ≲ t, we have |q̂ − r + t| ≲ ε−1tCε.

Lemma 4.62. In Ω we have

ν̂ := q̂t + q̂r = O(t−1+Cε), λ̂i := q̂i − ωiq̂r = O((1 + ln〈r − t〉)t−1+Cε).

It follows that q̂r = (ν̂ − µ̂)/2 > C−1t−Cε and q̂t = (ν̂ + µ̂)/2 < −C−1t−Cε. Thus, for each
fixed (t, ω) the function r 7→ q̂(t, rω) is continuous and strictly increasing.
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Proof. There is nothing to prove when r − t > R. Fix (t, x) ∈ Ω ∩ {r − t < 2R}. Then,

(∂t − ∂r)ν̂ = (∂t + ∂r)µ̂ = µ̂qν̂ + εt−1µ̂s = µ̂qν̂ −
ε

2t
G(ω)A(q̂, ω)µ̂

= −1

2
GÂqsµ̂ν̂ −

ε

2t
GÂµ̂.

By setting z(τ) := q̂(τ, r + t− τ, ω), we have ż = µ̂ < 0 and thus∫ t

(r+t)/2−R

|GÂqsµ̂|(τ, r + t− τ, ω) dτ ≲
∫ t

(r+t)/2−R

(ε ln τ + 1)〈q̂〉−2+Cε(−µ̂) dτ

≲ (ε ln t+ 1)

∫ t

(r+t)/2−R

〈z〉−2+Cε(−ż) dτ ≲ ε ln t+ 1,∫ t

(r+t)/2−R

|ετ−1GÂµ̂|(τ, r + t− τ, ω) dτ ≲ ε((r + t)/2−R)−1

∫ t

(r+t)/2−R

〈q̂〉−1+Cε(−µ̂) dτ

≲ εt−1

∫ t

(r+t)/2−R

〈z〉−1+Cε(−ż) dτ ≲ t−1〈q̂〉Cε ≲ t−1+Cε.

Here we note that 〈q̂〉 ≲ 〈r − t〉tCε ≲ t1+Cε. Since ν̂ = 0 at τ = (r + t)/2 − R, by the
Gronwall’s inequality we conclude that ν̂ = O(t−1+Cε).

Next, we have

(∂t − ∂r)λ̂i = (∂i − ωi∂r)µ̂+ r−1λ̂i = (µ̂q + r−1)λ̂i +
∑
l

(∂ωl
µ̂)(∂iωl)

= (µ̂q + r−1)λ̂i −
1

2

∑
l

(∂ωl
(GÂ))(ε ln t− δ)µ̂r−1(δil − ωiωl)

= (µ̂q + r−1)λ̂i +O(〈q̂〉−1+Cεt−1+Cε|µ̂|).

We have proved that
∫ t

(r+t)/2−R
|µq| dτ ≲ ε ln t+ 1. Integrate along the characteristic (τ, r +

t− τ, ω) and we have∫ t

(r+t)/2−R

(r + t− τ)−1 dτ = ln
(r + t)/2 +R

r
= O(1),

∫ t

(r+t)/2−R

〈q̂〉−1+Cε(−µ̂)τ−1+Cε dτ ≲
∫ t

(r+t)/2−R

〈q̂〉−1(−µ̂)τ−1+Cε dτ

≲ t−1+Cε

∫ t

(r+t)/2−R

〈z〉−1(−ż) dτ

≲ (1 + ln〈q̂〉)t−1+Cε ≲ (1 + ln〈r − t〉)t−1+Cε.

Here note that 〈q̂〉 ≲ t1+Cε and ln〈q̂〉 ≲ ln〈r− t〉+Cε ln t in Ω∩{r− t < 2R}. Since λ̂i = 0 at
τ = (r+t)/2−R, by Gronwall’s inequality we conclude that λ̂i = O((1+ln〈r−t〉)t−1+Cε).
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Lemma 4.63. In Ω, we have

ν̂ =
εG(ω)

4t
µ̂Û +O(εt−2+Cε〈r − t〉), ν̂q =

εG(ω)

4t
(µ̂Ûq + µ̂qÛ) +O(ε(1 + ln〈r − t〉)t−2+Cε).

Proof. We have

(∂t − ∂r)(ν̂ −
εG(ω)

4t
µ̂Û)

= µ̂qν̂ −
ε

2t
GÂµ̂+

εGµ̂Û

4t2
− εG

4t
(µ̂qÛ + µ̂Ûq)µ̂− εG

4t
(µ̂sÛ + µ̂Ûs)εt

−1

= µ̂qν̂ −
ε

2t
GÂµ̂+

εGµ̂Û

4t2
− εG

4t
(µ̂qÛ − 2Â)µ̂− εG

4t
(−1

2
GÂµ̂Û + µ̂Ûs)εt

−1

= µ̂q(ν̂ −
εG

4t
µ̂Û) +

εGµ̂Û

4t2
− ε2G

4t2
(−1

2
GÂÛ + Ûs)µ̂.

Since Û = O(tCε) and Ûs = O(ε−1tCε) by Proposition 4.60, we have

|εGµ̂Û
4t2

− ε2G

4t2
(−1

2
GÂÛ + Ûs)µ̂| ≲ εt−2+Cε.

Besides, we have∫ t

(r+t)/2−R

ετ−2+Cε ≲ ((r + t)/2−R)−2+Cε · ε((t− r)/2−R) ≲ εt−2+Cε〈r − t〉.

And since ν̂ − εG
4t
µ̂Û = 0 at τ = (r + t)/2−R, by Gronwall’s inequality we conclude that

ν̂ − εG

4t
µ̂Û = O(εt−2+Cε〈r − t〉).

Next, we have

(∂t − ∂r)∂r(ν̂ −
εG(ω)

4t
µ̂Û) = ∂r(∂t − ∂r)(ν̂ −

εG(ω)

4t
µ̂Û)

= ∂r(µ̂q(ν̂ −
εG

4t
µ̂Û) +

εGµ̂Û

4t2
− ε2G

4t2
(−1

2
GÂÛ + Ûs)µ̂)

= µ̂q∂r(ν̂ −
εG

4t
µ̂Û) + q̂rµ̂qq(ν̂ −

εG

4t
µ̂Û) +

εGq̂r∂q(µ̂Û)

4t2

− ε2G

4t2
(−1

2
GÂÛ + Ûs)µ̂q q̂r −

ε2G

4t2
(−1

2
G∂q(ÂÛ) + Ûsq)µ̂q̂r.

By Proposition 4.60, we have

|µ̂qq(ν̂ −
εG

4t
µ̂Û)| ≲ |∂q(GÂqsµ̂)| · εt−2+Cε〈r − t〉 ≲ εt−2+Cε〈q̂〉−2+Cε,
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|∂q(µ̂Û)| ≲ |µ̂qÛ |+ |2Â| ≲ tCε〈q̂〉−2+Cε + 〈q̂〉−1+Cε ≲ tCε〈q̂〉−1+Cε,

|(−1

2
GÂÛ + Ûs)µ̂q| ≲ (〈q〉−1+CεtCε + ε−1tCε) · 〈q〉−2+CεtCε ≲ ε−1〈q̂〉−2+CεtCε,

|(−1

2
G∂q(ÂÛ) + Ûsq)µ̂| ≲ |(−1

2
G∂q(ÂÛ) +

1

2
GÂÛq)µ̂| ≲ |(−1

2
GÂqÛ)µ̂| ≲ 〈q̂〉−2+CεtCε.

In conclusion,

(∂t − ∂r)∂r(ν̂ −
εG(ω)

4t
µ̂Û)

= µ̂q∂r(ν̂ −
εG

4t
µ̂Û) +O(|q̂r|ε〈q̂〉−1+Cεt−2+Cε)

= µ̂q∂r(ν̂ −
εG

4t
µ̂Û) +O((−µ̂)ε〈q̂〉−1+Cεt−2+Cε + |ν̂|ε〈q̂〉−1+Cεt−2+Cε)

= µ̂q∂r(ν̂ −
εG

4t
µ̂Û) +O((−µ̂)ε〈q̂〉−1+Cεt−2+Cε + ε〈q̂〉−1+Cεt−3+Cε).

Take integral of the remainder terms along a charactersitic (τ, r+ t−τ, ω) for (r+ t)/2−R ≤
τ ≤ t. We have∫ t

(r+t)/2−R

τ−2+Cεε〈z〉−1+Cε(−ż) + ετ−3+Cε dτ ≲ ε(1 + ln〈r − t〉)t−2+Cε.

The proof of this estimate can be found in the proof of Lemma 4.62. Since ν̂ − εG(ω)
4t

µ̂Û = 0

whenever r − t > R, we have ∂r(ν̂ − εG(ω)
4t

µ̂Û) = 0 at τ = (r + t)/2 − R. By Gronwall’s
inequality, we conclude that ∂r(ν̂ − εG(ω)

4t
µ̂Û) = O(ε(1 + ln〈r− t〉)t−2+Cε). To end the proof,

we recall that ∂r = q̂r∂q where q̂r > C−1t−Cε in Ω ∩ {r − t < 2R}.

Before we state the next lemma, we recall the definition in Section 1.6.4. We set D =
Ω ∩ {r − t < 2R} and define εnSs,p = εnSs,p

D as in Definition 1.8.
Following the proof of Corollary 4.43.1, we can show that Rs,p ∈ Ss,p. Here we prefer the

notation S∗,∗ since it does not rely on the optical function q(t, x) and the corresponding null
frames.

Lemma 4.64. We have q̂ ∈ S0,1. We also have Ωkk′ q̂ ∈ S0,γ for each 1 ≤ k < k′ ≤ 3 and
0 < γ < 1. In other words, in Ω ∩ {r − t < 2R}, for each I we have

|ZI q̂| ≲I 〈r − t〉tCIε; (4.77)

|ZIΩkk′ q̂| ≲I t
CIε〈r − t〉γ. (4.78)

As a result, we have ∂mq ∂nωÂ ∈ S0,−1−m, µ̂ ∈ S0,0, ∂ps∂mq ∂nωµ̂ ∈ S0,−1−m for m + n + p > 0,
∂ps∂

n
ωÛ ∈ ε−pS0,0 and ∂ps∂

m
q ∂

n
ωÛq ∈ S0,−1−m. All functions here are of (s, q, ω) = (ε ln t −

δ, q̂(t, x), ω).
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Proof. We prove (4.77) by induction on |I|. The case |I| = 0 has been proved in Lemma
4.61. In general, suppose (4.77) holds for all |I| ≤ k, and fix a multiindex I with |I| = k+1.
By the chain rule and Leibniz’s rule, we express ZI µ̂ as a linear combination of terms of the
form

(∂bs∂
a
q ∂

c
ωµ̂) · ZI1 q̂ · · ·ZIa q̂ · ZJ1(ε ln t− δ) · · ·ZJb(ε ln t− δ) ·

∏
l

ZKl,1ωl · · ·ZKl,clωl (4.79)

where a + b + |c| > 0, |I∗|, |J∗|, |K∗,∗| are nonzero, and the sum of all these multiindices is
k+1. The only term with some |I∗| > k is µ̂qZ

I q̂. All the other terms have an upper bound

〈q̂〉−1−a+CεtCε|µ̂| · (〈r − t〉tCε)a · εb · 1 ≲ 〈q̂〉−1tCε|µ̂|.

Here we apply Proposition 4.60 and the induction hypotheses to control ZI∗ q̂. In summary,
we have ZI µ̂ = µ̂qZ

I q̂ +O(〈q̂〉−1+CεtCε|µ̂|). Following the same proof, we also have∑
0<|J |≤k

|ZJ µ̂| = O(〈q̂〉−1+CεtCε|µ̂|).

In addition, by the induction hypotheses and Lemma 1.4, we have∑
|J |<|I|

|(∂i + ωi∂t)Z
J q̂| ≲

∑
|J |<k+1

(1 + t+ r)−1|ZZJ q̂|

≲ (1 + t+ r)−1
∑

|J |=k+1

|ZJ q̂|+ t−1+Cε〈r − t〉.

In summary, by (1.18) in Lemma 1.3 we have

|(∂t − ∂r)Z
I q̂| ≲ |µ̂qZ

I q̂|+ (1 + t+ r)−1
∑

|J |=k+1

|ZJ q̂|+ tCε(−µ̂) + t−1+Cε〈r − t〉.

Here we note that ∑
|J |≤k

|ZJ µ̂| ≲ |µ̂|+ 〈q̂〉−1+CεtCε|µ̂| ≲ tCε(−µ̂).

Now, we fix (t, x) ∈ Ω ∩ {r − t < 2R}, integrate (∂t − ∂r)Z
I q̂ along the characteristic

(τ, r + t− τ, ω) for (t+ r)/2−R ≤ τ ≤ t, and sum over all |I| = k + 1. We then have∑
|I|=k+1

|ZI q̂(t, x)− ZI q̂|τ=(r+t)/2−R|

≲
∫ t

(r+t)/2−R

(|µ̂q|+ (1 + t+ r)−1)
∑

|I|=k+1

|ZI q̂|(τ) + τCε(−µ̂) + τCε dτ

≲
∫ t

(r+t)/2−R

(|µ̂q|+ (1 + t+ r)−1)
∑

|I|=k+1

|ZI q̂|(τ) dτ + tCε〈q̂〉+ 〈r − t〉tCε.
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Moreover, we have q̂ = r − t for r − t > R and q̂ = 2R at τ = (r + t)/2−R, so

|ZI q̂|τ=(r+t)/2−R| = |ZI(r − t)|τ=(r+t)/2−R| ≲ tCε.

By Gronwall’s inequality, we conclude that
∑

|I|=k+1 |ZI q̂(t, x)| ≲ 〈r − t〉tCε.
Fix γ > 0. Now we prove (4.78) by induction on |I|. First, in Lemma 4.62 we have proved

λ̂i = O((1 + ln〈r − t〉)t−1+Cε) = Oγ(〈r − t〉γt−1+Cε). So we have Ωkk′ q̂ = xkλk′ − xk′λk =
O(〈r − t〉γrt−1+Cε) = O(〈r − t〉γtCε), so the case |I| = 0 is proved. In general, we fix I with
|I| > 0. As computed above, we have

ZIΩkk′µ̂ = µ̂qZ
IΩkk′ q̂ +O(〈q̂〉−1+CεtCε|µ̂|),

∑
|J |≤|I|

|ZJ µ̂| = O(〈q̂〉−1+CεtCε|µ̂|);

∑
|J |<|I|

|(∂i + ωi∂t)Z
JΩkk′ q̂| ≲ (1 + t+ r)−1

∑
|J |≤|I|

|ZJΩkk′ q̂|

≲ (1 + t+ r)−1
∑

|J |=|I|

|ZJΩkk′ q̂|+ t−1+Cε〈r − t〉γ.

Thus, by (1.19), we have

|(∂t − ∂r)Z
IΩkk′ q̂| ≲ |µ̂qZ

IΩkk′ q̂|+ (1 + t+ r)−1
∑

|J |=|I|

|ZJΩkk′ q̂|

+ 〈q̂〉−1+CεtCε(−µ̂) + t−1+Cε〈r − t〉γ.

Fix (t, x) ∈ Ω ∩ {r − t < 2R} and take integrals along a geodesic (τ, r + t− τ, ω). We note
that ∫ t

(r+t)/2−R

〈q̂(τ)〉−1+CετCε(−µ̂(τ)) + τ−1+Cε〈r + t− 2τ〉γ dτ

≲ tCε

∫ t

(r+t)/2−R

〈z(τ)〉−1(−ż(τ)) dτ + t−1+Cε〈r − t〉1+γ

≲ (1 + ln〈r − t〉)tCε + tCε〈r − t〉γ ≲ tCε〈r − t〉γ.

In addition, recall that ZIq|τ=(r+t)/2−R = O(tCε). We finish the proof by applying Gronwall.
Finally, if Q = Q(s, q, ω) is a given function of (s, q, ω) and if we take (s, q, ω) = (ε ln t−

δ, q̂(t, x), ω), then ZIQ is a linear combination of terms of the form (4.79) with µ̂ replaced
by Q. Thus,

|ZIQ| ≲
∑

a+b+|c|≤|I|

εb〈r − t〉atCε|∂bs∂aq ∂cωQ|.

We combine this inequality with Proposition 4.60. As a result, we have ∂mq ∂nωÂ ∈ S0,−1−m,
µ̂ ∈ S0,0, ∂ps∂mq ∂nωµ̂ ∈ S0,−1−m for m + n + p > 0, ∂ps∂nωÛ ∈ ε−pS0,0 and ∂ps∂

m
q ∂

n
ωÛq ∈

S0,−1−m.
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Lemma 4.65. Fix γ ∈ (0, 1). We have ν̂ ∈ εS−1,0, ν̂q ∈ εS−1,−1, λ̂i ∈ S−1,γ and

ν̂ − ε

4t
G(ω)µ̂Û ∈ εS−2,1, ν̂q −

ε

4t
G(ω)(µ̂qÛ − 2Â) ∈ εS−2,0.

All functions here are of (s, q, ω) = (ε ln t− δ, q̂(t, x), ω).

Proof. First, we have

λ̂i =
∑
j

r−1ωjΩjiq̂ ∈ S−1,0 · S0,γ ⊂ S−1,γ.

Next, we set Q := ν̂ − εG(ω)µ̂Û/(4t). We have proved Q = O(εt−2+Cε〈r− t〉) in Lemma
4.63. In general, we fix I with |I| > 0 and suppose ZJQ = O(εt−2+Cε〈r − t〉) whenever
|J | < |I|. As computed in Lemma 4.63, we have

Qt −Qr = µ̂qQ+
εGµ̂Û

4t2
− ε2G

4t2
(−1

2
GÂÛ + Ûs)µ̂ = µ̂qQ+ εS−2,0.

By (1.18) in Lemma 1.3, we have

|(∂t − ∂r)Z
IQ| ≲ |ZI(µ̂qQ+ εS−2,0)|+

∑
|J |<|I|

[|ZJ(µ̂qQ+ εS−2,0)|+ (1 + t+ r)−1|ZZJQ|]

≲ |µ̂qZ
IQ|+ (1 + t+ r)−1

∑
|J |=|I|

|ZJQ|+
∑

|K1|+|K2|≤|I|
|K2|<|I|

(|ZK1µ̂q|+ t−1)|ZK2Q|+ εt−2+Cε

≲ |µ̂qZ
IQ|+ (1 + t+ r)−1

∑
|J |=|I|

|ZJQ|+ εt−2+Cε〈r − t〉−1 + εt−2+Cε.

The last estimate follows from µ̂q ∈ S0,−2 and the induction hypotheses. Since Q ≡ 0 near
τ = (r + t)/2−R, and since∫ t

(r+t)/2−R

ετ−2+Cε dτ ≲ εt−2+Cε〈r − t〉,

we conclude by Gronwall that ZIQ = O(εt−2+Cε〈r − t〉). So Q ∈ εS−2,1.
Since µ̂, Û ∈ S0,0 and since 〈r − t〉 ≲ t in Ω ∩ {r − t < 2R}, we have ν̂ = Q +

εG(ω)µ̂Û/(4t) ∈ εS−2,1 + εS−1,0 ⊂ εS−1,0. Moreover, for each I we have

|ZIQq| ≲ |ZI(q̂−1
r ω · ∂Q)| ≲

∑
|J |≤|I|

tCε|ZJ∂Q|

≲
∑

|J |≤|I|

tCε|∂ZJQ| ≲ 〈r − t〉−1tCε
∑

|J |≤|I|+1

|ZJQ| ≲ εt−2+Cε.

Here we use the estimate q̂−1
r ∈ S0,0 which follows from q̂r ∈ S0,0 and q̂r > C−1t−Cε. Thus,

Qq = ν̂q −
ε

4t
G(ω)(µ̂qÛ − 2Â) ∈ εS−2,0.

Since µ̂qÛ ∈ S0,−2 and Â ∈ S0,−1, we conclude that ν̂q ∈ εS−1,−1 + εS−2,0 = εS−1,−1.
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Now we prove that q̂ is an approximate optical function.

Proposition 4.66. We have
gαβ(û)q̂αq̂β ∈ S−2,1.

Proof. Fix γ ∈ (0, 1/2) and suppose we have obtained λ̂i ∈ S−1,γ from the pervious lemma.
We note that q̂t = 1

2
(µ̂+ ν̂) ∈ S0,0 and q̂i =

1
2
(−µ̂+ ν̂)ωi + λ̂i ∈ S0,0. Thus,

gαβ0 q̂αq̂β =
1

4
g000 (µ̂+ ν̂)2 +

1

2
g0i(µ̂+ ν̂)((−µ̂+ ν̂)ωi + 2λ̂i)

+
1

4
gij0 ((−µ̂+ ν̂)ωi + 2λ̂i)((−µ̂+ ν̂)ωj + 2λ̂j)

=
1

4
G(ω)µ̂2 +

1

2
g000 µ̂ν̂ +

1

4
g000 ν̂

2 +
1

2
g0i0 (2µ̂λ̂i + ν̂2ωi + 2ν̂λ̂i)

+
1

4
gij0 (−µ̂(2ν̂ωjωi + 2λ̂jωi + 2λ̂iωj) + (ν̂ωi + 2λ̂i)(ν̂ωj + 2λ̂j)).

Since ν̂ ∈ εS−1,0 and λ̂i ∈ S−1,γ, we have ν̂2, ν̂λ̂i, λ̂iλ̂j ∈ S−2,2γ and thus

gαβ0 q̂αq̂β =
1

4
G(ω)µ̂2 +

1

2
(g000 − gij0 ωiωj)µ̂ν̂ + g0i0 µ̂λ̂i −

1

2
gij0 µ̂(λ̂jωi + λ̂iωj) mod S−2,2γ

=
1

4
G(ω)µ̂2 mod S−1,γ.

If we replace (gαβ0 ) with (mαβ) in the computations, we have

−q̂2t +
∑
j

q̂2j = −µ̂ν̂ − 1

2
mijµ̂(λ̂jωi + λ̂iωj) mod S−2,2γ = −µ̂ν̂ mod S−2,2γ.

Here we note that mijλ̂jωi = mijλ̂iωj =
∑

j ωj(q̂j − ωj q̂r) = 0.
Moreover, note that û = εr−1Û ∈ εS−1,0. Following the proof of Lemma 4.47 with V

replaced by Z, we can prove that f(û) − f(0) − f ′(0)û ∈ ε2S−2,0 for each smooth function
f . Thus,

gαβ(û)q̂αq̂β = −q̂2t +
∑
j

q̂2j + gαβ0 ûq̂αq̂β + (gαβ(û)− gαβ0 û−mαβ)q̂αq̂β

= −µ̂(ν̂ − ε

4r
G(ω)µ̂Û) mod S−2,2γ

= −µ̂(ν̂ − ε

4t
G(ω)µ̂Û) +

ε(t− r)

4rt
G(ω)µ̂2Û mod S−2,2γ

= εS−2,1 mod S−2,2γ.

Since γ ∈ (0, 1/2), we have εS−2,1 ⊂ S−2,1 and S−2,2γ ⊂ S−2,1.
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In order to prove that û is an approximate solution to (1.1), we need the following lemma.

Lemma 4.67. For each γ ∈ (0, 1/2), we have

gαβ(û)∂α∂β q̂ = −r−1µ̂+
ε

2t
GÂµ̂ mod S−2,γ.

Proof. Fix γ ∈ (0, 1/2) and suppose we have obtained λ̂i ∈ S−1,γ. First we note that

εt−1ν̂s = ν̂t − ν̂q q̂t = ν̂t + ν̂r − ν̂ν̂q,∑
j

(∂iωj)ν̂ωj
= ν̂i − ν̂q q̂i = ν̂i − ωiν̂r − λ̂iν̂q.

Note that
∂t + ∂r =

∑
j ωjΩ0j + S

r + t
, ∂i − ωi∂r = r−1

∑
j

ωjΩji,

and that ν̂ ∈ εS−1,0. Thus, we conclude that ν̂t + ν̂r, ν̂i − ωiν̂r ∈ εS−2,0. Besides, we have
ν̂ν̂q ∈ ε2S−2,−1 and λ̂iν̂q ∈ εS−2,−1+γ. We conclude that εt−1ν̂s,

∑
j(∂iωj)ν̂ωj

∈ εS−2,0.
Now, we have

q̂tt = ∂t(
1

2
(µ̂+ ν̂)) =

1

2
((µ̂q + ν̂q) ·

1

2
(µ̂+ ν̂) + εt−1µ̂s + εt−1ν̂s)

=
1

4
µ̂qµ̂+

1

4
µ̂qν̂ +

1

4
ν̂qµ̂+

ε

2t
µ̂s mod εS−2,0 =

1

4
µ̂qµ̂ mod εS−1,−1,

q̂ti = ∂i(
1

2
(µ̂+ ν̂)) =

1

2
((µ̂q + ν̂q) · (

1

2
(ν̂ − µ̂)ωi + λ̂i) +

∑
j

(∂iωj)µ̂ωj
+
∑
j

(∂iωj)ν̂ωj
)

= −1

4
µ̂µ̂qωi mod S−1,−1,

q̂ij = ∂i(
1

2
(ν̂ − µ̂)ωj + λ̂j)

=
1

2
(ν̂q − µ̂q)(

1

2
(ν̂ − µ̂)ωi + λ̂i)ωj +

1

2

∑
k

(ν̂ωk
− µ̂ωk

)(∂iωk)ωj +
1

2
(ν̂ − µ̂)∂iωj + ∂iλ̂j

=
1

4
(µ̂µ̂q − µ̂qν̂ − ν̂qµ̂)ωiωj −

1

2
µ̂qλ̂iωj −

1

2

∑
k

µ̂ωk
(∂iωk)ωj −

1

2
µ̂∂iωj + ∂iλ̂j mod εS−2,0

=
1

4
µ̂µ̂qωiωj mod S−1,0.

In the last estimate, we note that ∂iλ̂j ∈ S−1,0 since for each I,

|ZI∂iλ̂j| ≲
∑

|J |≤|I|

|∂ZJ λ̂j| ≲ 〈r − t〉−1
∑

|J |≤|I|+1

|ZJ λ̂j|

≲ 〈r − t〉−1 · t−1+Cε〈r − t〉γ ≲ t−1+Cε〈r − t〉1−γ.
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Thus, we have ∂2q̂ ∈ S0,−2 + S−1,−1 = S0,−2 and

gαβ0 q̂αβ =
1

4
G(ω)µ̂qµ̂ mod S−1,0.

In addition,

□q̂ = −(
1

4
µ̂qµ̂+

1

4
µ̂qν̂ +

1

4
ν̂qµ̂+

ε

2t
µ̂s) + [

1

4
(µ̂µ̂q − µ̂qν̂ − ν̂qµ̂)− r−1µ̂+

∑
i

∂iλ̂i] mod εS−2,0

= −(
1

2
µ̂qν̂ +

1

2
ν̂qµ̂+

ε

2t
µ̂s)− r−1µ̂+

∑
i

∂iλ̂i mod εS−2,0.

Since
∑

i ωiλ̂i = 0, we have 0 = ∂r(
∑

i ωiλ̂i) =
∑

i ωi∂rλ̂i. And since λ̂i ∈ S−1,γ, we have∑
i

∂iλ̂i =
∑
i

(∂i − ωi∂r)λ̂i =
∑
i,j

r−1ωiΩjiλ̂i ∈ S−2,γ

Finally, we have

gαβ(û)∂α∂β q̂ = □q̂ + gαβ0 û∂α∂β q̂ + (gαβ(û)− gαβ0 û−mαβ)∂α∂β q̂

= −(
1

2
µ̂qν̂ +

1

2
ν̂qµ̂+

ε

2t
µ̂s)− r−1µ̂+

ε

4r
G(ω)µ̂µ̂qÛ mod S−2,γ

= −1

2
µ̂q ·

ε

4t
Gµ̂Û − 1

2
µ̂ · ε

4t
G(µ̂qÛ − 2Â) +

ε

4t
GÂµ̂− r−1µ̂

+
ε

4t
Gµ̂µ̂qÛ +

ε(t− r)

4tr
Gµ̂µ̂qÛ mod S−2,γ

= −r−1µ̂+
ε

2t
GÂµ̂ mod S−2,γ.

Now we claim that û = εr−1Û(ε ln t− δ, q̂(t, x), ω) is an approximate solution to (1.1).

Proposition 4.68. We have
gαβ(û)∂α∂βû ∈ εS−3,0.

Proof. We have

ût = εr−1(εt−1Ûs + q̂tÛq), ûi = −εr−2ωiÛ + εr−1(Ûq q̂i +
∑
k

Ûωk
∂iωk).

By Lemma 4.64, we have ∂bs∂cωÛ ∈ ε−bS0,0. Thus we have

ûtt = εr−1(−εt−2Ûs + ε2t−2Ûss + 2εt−1q̂tÛsq + q̂ttÛq + q̂2t Ûqq)

= εr−1(2εt−1q̂tÛsq + q̂ttÛq + q̂2t Ûqq) mod εS−3,0

= εr−1(q̂ttÛq + q̂2t Ûqq) mod εS−2,−1,
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ûti = −εr−2ωi(εt
−1Ûs + q̂tÛq)

+ εr−1(εt−1Ûsq q̂i + εt−1
∑
k

Ûsωk
∂iωk + q̂tiÛq + q̂tÛqq q̂i + q̂t

∑
k

Ûqωk
∂iωk)

= εr−1(q̂tiÛq + q̂tÛqq q̂i) mod εS−2,−1,

ûij = −ε∂i(r−2ωj)Û − εr−2ωj(Ûq q̂i +
∑
k

Ûωk
∂iωk)− εr−2ωi(Ûq q̂j +

∑
k

Ûωk
∂jωk)

+ εr−1[Ûqq q̂iq̂j +
∑
k

Ûqωk
(∂iωk)q̂j + Ûq q̂ij

+
∑
k

(Ûωkq q̂i∂jωk + Ûωk
∂i∂jωk) +

∑
k,k′

Ûωkωk′
(∂iωk)(∂jωk′)]

= −εr−2ωjÛq q̂i − εr−2ωiÛq q̂j

+ εr−1[Ûqq q̂iq̂j +
∑
k

Ûqωk
((∂iωk)q̂j + (∂jωk)q̂i) + Ûq q̂ij] mod εS−3,0

= εr−1(Ûqq q̂iq̂j + Ûq q̂ij) mod εS−2,−1.

Since gαβ(û)−mαβ = gαβ0 û mod ε2S−2,0 ∈ εS−1,0, we have

gαβ(û)∂α∂βû = □û+ (gαβ(û)−mαβ)∂α∂βû

= −εr−1(2εt−1q̂tÛsq + q̂ttÛq + q̂2t Ûqq)− 2εr−2Ûq q̂r

+ εr−1
∑
i

[Ûqq q̂
2
i +

∑
k

2Ûqωk
(∂iωk)q̂i + Ûq q̂ii]

+ (gαβ(û)−mαβ) · εr−1(q̂αβÛq + q̂αq̂βÛqq) mod εS−3,0

= −ε2(tr)−1q̂tGÂÛq − 2εr−2Ûq q̂r + εr−1
∑
i

∑
k

2Ûqωk
(∂iωk)(λ̂i + ωiq̂r)

+ εr−1(gαβ(û)q̂αβÛq + gαβ(û)q̂αq̂βÛqq) mod εS−3,0

= −ε2(rt)−1q̂tGÂÛq − 2εr−2Ûq q̂r − εr−2µ̂Ûq + ε2(2tr)−1GÂµ̂Ûq mod εS−3,0

= −1

2
ε2r−2ν̂GÂÛq − εr−2ν̂Ûq mod εS−3,0 ∈ εS−3,0.

In the third equality, we note that

εr−1[gαβ(û)q̂αβ + r−1µ̂− ε

2t
GÂµ̂]Ûq ∈ εS−1,0 · S−2,γ · S0,−1 ⊂ εS−3,0,

εr−1gαβ(û)q̂αq̂βÛqq ∈ εS−1,0 · S−2,1 · S0,−2 ⊂ εS−3,0

and that
εr−1

∑
i

∑
k

2Ûqωk
(∂iωk)(λ̂i + ωiq̂r) = εr−1

∑
i

∑
k

2Ûqωk
(∂iωk)λ̂i + εr−1

∑
k

2Ûqωk
(∂rωk)q̂r

∈ εS−1,0 · S0,−1 · S−1,0 · S−1,γ + 0 ⊂ εS−3,0.



CHAPTER 4. ASYMPTOTIC COMPLETENESS 183

4.7.4 Approximation of the optical function
We set p(t, x) := F (q(t, x), ω)− q̂(t, x) in Ω, where q(t, x) is the optical function constructed
in Section 4.3.

Proposition 4.69. Fix a constant γ ∈ (0, 1). Then, for ε �γ 1, at each (t, x) ∈ Ω such
that |r − t| ≲ tγ, we have |p(t, x)| ≲γ t

−1+Cε〈r − t〉.

Proof. It is clear that p ≡ 0 in the region {r − t > R}. In Ω ∩ {r − t < 2R}, by setting
s = ε ln t− δ we have
pt − pr = Fqµ(s, q(t, x), ω)− µ̂(s, q̂(t, x), ω)

= [Fqµ(s, q(t, x), ω)− µ̂(s, F (q(t, x), ω), ω)] + [µ̂(s, F (q(t, x), ω), ω)− µ̂(s, q̂(t, x), ω)]

=: R1 +R2.
(4.80)

Since Â(F (q, ω), ω) = A(q, ω), we have

R1 = − 2

A1(q(t, x), ω)
Ṽ1(s, q(t, x), ω) exp(−

1

2
G(ω)A(q(t, x), ω)s)

+ 2 exp(−1

2
G(ω)Â(F (q(t, x), ω), ω)s)

= (− 2

A1(q(t, x), ω)
Ṽ1(s, q(t, x), ω) + 2) exp(−1

2
G(ω)A(q(t, x), ω)s)

= − 2

A1(q(t, x), ω)
(Ṽ1(s, q(t, x), ω)− A1(q(t, x), ω)) exp(−

1

2
G(ω)A(q(t, x), ω)s).

(4.81)

By Proposition 4.55, we have

|R1| ≲ |Ṽ1(s, q(t, x), ω)− A1(q(t, x), ω)| exp(C〈q〉−1+Cεs) ≲ t−1+Cε.

Moreover,

|R2| = |
∫ F (q,ω)

q̂

µ̂ρ(s, ρ, ω) dρ| ≲
∣∣∣∣∣
∫ F (q,ω)

q̂

〈ρ〉−2+Cεs|µ̂(s, ρ, ω)| dρ

∣∣∣∣∣
≲ (ε ln t− δ)|p| · max

κ∈[0,1]

[
〈q̂ + κp〉−2+Cε exp(−1

2
G(ω)Â(q̂ + κp, ω)s)

]
.

We now use a continuity argument to end the proof. Fix (t, x) ∈ Ω∩{r−t < 2R, |r−t| ≲
tγ}. Suppose that for some t0 ∈ [(r + t)/2−R, t), we have

|p(τ, r + t− τ, ω)| ≤ δ

10ε ln τ
, ∀τ ∈ [(r + t)/2−R, t0]. (4.82)

Note that (4.82) holds for t0 = (r + t)/2 − R, since p((r + t)/2 − R, (r + t)/2 + R,ω) = 0.
At (τ, r + t− τ, ω) for (r + t)/2−R ≤ τ ≤ t0 and for each κ ∈ [0, 1], we have

〈q̂ + κp〉 ∼ 1 + |q̂ + κp| ≥ 1 + |q̂| − |κp| ≥ 1 + |q̂| − 1

10
≳ 〈q̂〉.
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In the second last inequality we note that τ > exp(δ/ε), so ε ln τ > δ and thus |p| ≤ 1/10.
Moreover,

exp(−1

2
G(ω)(Â(q̂ + κp, ω)− Â(q̂, ω))s) ≲ exp(Cκ|p|s) ≲ exp(δ/10) ≲ 1.

In conclusion, at (τ, r + t− τ, ω) for (r + t)/2−R ≤ τ ≤ t0, we have

|R2| ≲ (ε ln τ − δ)[|p|〈q̂〉−2+Cε exp(−1

2
G(ω)Â(q̂, ω)s)](τ, r + t− τ, ω)

≲ (ε ln τ − δ)[|p|〈q̂〉−2+Cε(−µ̂)](τ, r + t− τ, ω).

If we fix any t1 ∈ [(r + t)/2−R, t0], then∫ t1

(r+t)/2−R

(ε ln τ − δ)〈q̂〉−2+Cε(−µ̂)(τ, r + t− τ, ω) dτ ≲ ε ln t1

∫ t1

(r+t)/2−R

〈z〉−2+Cε(−ż) dτ

≲ ε ln t1

and ∫ t1

(r+t)/2−R

|R1|(τ, r + t− τ, ω) dτ ≲
∫ t1

(r+t)/2−R

τ−1+Cε dτ

≲ ((r + t)/2−R)−1+Cε(t1 − (r + t)/2 +R)

≲ t−1+Cε
1 〈r − t〉.

Here we recall that [(r + t)/2 − R] ∼ t ∼ t1. And since p = 0 at τ = (r + t)/2 − R, by
applying the Gronwall’s inequality to pt − pr = R1 +R2, we conclude that

|p(t1, r + t− t1, ω)| ≲ t−1+Cε
1 〈r − t〉 · exp(Cε ln(Ct1)) ≲ t−1+Cε

1 〈r − t〉,
∀t1 ∈ [(r + t)/2−R, t0].

(4.83)

For ε �γ 1 (where ε does not depend on (t, x)) and t1 ∈ [(r + t)/2 − R, t0], we have
|r − t| ≲ tγ ∼ tγ1 and thus

t−1+Cε
1 〈r − t〉 ≲ t−1+γ+Cε

1 ≤ t
(γ−1)/2
1 ≤ δ/(20ε ln t1).

And since τ 7→ ε(ln τ)p(τ, r+ t− τ, ω) is a continuous function, (4.82) holds with t0 replaced
by some t′0 > t0. By the continuity argument we conclude that |p(t, x)| ≲ t−1+Cε〈r− t〉. The
constants here do not depend on (t, x).

Next we consider ZIp. We need the following lemma.

Lemma 4.70. Let R1 and R2 be defined as in (4.80). Then, we have R1 ∈ S−1,0 and for
|I| > 0 we have

|ZIR2| ≲ 〈r − t〉−2tCε
∑

|J |<|I|

|ZJp|+ |µ̂qZ
Ip|.
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Proof. By (4.81), Remark 4.55.1 and Lemma 4.54, and since A1 < −1 everywhere, we have
R1 = R0,0 ·R−1,0 ·R0,0 = R−1,0 ∈ S−1,0.

To estimate R2, we fix an arbitrary multiindex I with |I| > 0. By the chain rule
and Leibniz’s rule, we can express ZI µ̂(s, F (q(t, x), ω), ω) − ZI µ̂(s, q̂(t, x), ω) as a linear
combination of terms of the form

[(∂bs∂
a
q ∂

c
ωµ̂)(s, F (q, ω), ω) ·

a∏
i=1

ZIi(F (q, ω))− (∂bs∂
a
q ∂

c
ωµ̂)(s, q̂, ω) ·

a∏
i=1

ZIi q̂]

·
b∏

j=1

ZJj(ε ln t− δ) ·
c∏

l=1

ZKl,1ωl · · ·ZKl,clωl

(4.84)

where |I∗|, |J∗|, |K∗,∗| are nonzero, and the sum of all these multiindices is |I|. The only term
with |Ij| = |I| for some j is µ̂qZ

Ip, so from now on we assume |Ij| < |I| for each j in (4.84).
Here the second row in (4.84) is O(εb). The first row is equal to the sum of

[(∂bs∂
a
q ∂

c
ωµ̂)(s, F (q, ω), ω)− (∂bs∂

a
q ∂

c
ωµ̂)(s, q̂, ω)] ·

a∏
i=1

ZIi(F (q, ω)) (4.85)

and for each j = 1, 2, . . . , a

(∂bs∂
a
q ∂

c
ωµ̂)(s, q̂, ω) ·

j−1∏
i=1

ZIi(F (q, ω)) · ZIjp ·
a∏

i=j+1

ZIi q̂. (4.86)

Since |I| > 0, we must have a > 0 if (4.86) does appear.
To control (4.85) and (4.86), we first recall from Lemma 4.64 and Proposition 4.60 that

ZI∗(q̂(t, x), F (q(t, x), ω)) = O(〈r − t〉tCε);

(∂bs∂
a
q ∂

c
ωµ̂)(s, q̂, ω) = O(〈q̂〉−a−1+CεtCε) = O(〈r − t〉−a−1tCε), when a+ b+ |c| > 0.

It follows immediately that (4.86) is O(
∑

|J |<|I| t
Cε〈r − t〉−2|ZJp|). In addition, we have

〈F (q, ω)〉/〈r − t〉 ∼ 〈q〉/〈r − t〉 = tO(ε) and 〈q̂〉/〈r − t〉 = tO(ε). Thus, for each τ ∈ [0, 1],

〈τ q̂ + (1− τ)F (q, ω)〉 ∼ τ〈q̂〉+ (1− τ)〈F (q, ω)〉 ≳ 〈r − t〉t−Cε. (4.87)

Then, we have

|(∂bs∂aq ∂cωµ̂)(s, F (q, ω), ω)− (∂bs∂
a
q ∂

c
ωµ̂)(s, q̂, ω)| = |

∫ F (q,ω)

q̂

(∂bs∂
a+1
q ∂cωµ̂)(s, ρ, ω) dρ|

≲ |
∫ F (q,ω)

q̂

〈ρ〉−2−a+Cε exp(Cs) dρ| ≲ |p(t, x)|tCε〈r − t〉−a−2.

Thus, (4.85) is O(|p|tCε〈r − t〉−2).
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In conclusion, for |I| > 0 we have

|ZIR2| ≲ 〈r − t〉−2tCε
∑

|J |<|I|

|ZJp|+ |µ̂qZ
Ip|.

Proposition 4.71. Fix a constant γ ∈ (0, 1/2) and a large integer N . Then, for ε�γ,N 1,
at each (t, x) ∈ Ω such that |r−t| ≲ tγ, we have |ZIp(t, x)| ≲γ t

−1+Cε〈r−t〉 for each |I| ≤ N .

Proof. We prove by induction on |I|. The case |I| = 0 has been proved in Proposition 4.69.
Fix a multiindex I with |I| > 0, and suppose that we have proved the proposition for all
|J | < |I|. By Lemma 1.3, we have

(∂t − ∂r)Z
Ip = ZI(pt − pr) +

∑
|J |<|I|

[f0Z
J(pt − pr) +

∑
i

f0(∂i + ωi∂t)Z
Jp].

By Lemma 4.70 and our induction hypotheses, in Ω ∩ {r − t < 2R, |r − t| ≲ tγ} we have

|(∂t − ∂r)Z
Ip| ≲ |ZI(R1 +R2)|+

∑
|J |<|I|

|ZJ(R1 +R2)|+ t−1|ZZJp|]

≲ t−1+Cε + 〈r − t〉−2tCε
∑

|J |<|I|

|ZJp|+ |µ̂qZ
Ip|+

∑
|J |≤|I|

t−1|ZJp|

≲ t−1+Cε + 〈r − t〉−2 · t−1+Cε〈r − t〉+ |µ̂qZ
Ip|+

∑
|J |=|I|

t−1|ZJp|+ t−2+Cε〈r − t〉

≲ t−1+Cε + |µ̂qZ
Ip|+

∑
|J |=|I|

t−1|ZJp|.

The integral of |µ̂q| and t−1 along a characteristic (τ, r + t − τ, ω), τ ∈ [(r + t)/2 − R, t], is
O(ε ln t+ 1). Moreover,∫ t

(r+t)/2−R

τ−1+Cε dτ ≲ ((r + t)/2−R)−1+Cε((t− r)/2 +R) ≲ t−1+Cε〈r − t〉.

Since ZIp ≡ 0 in the region Ω ∩ {r − t > R}, by Gronwall’s inequality we conclude that
|ZIp| ≲ t−1+Cε〈r − t〉.

4.7.5 Approximation of the solution to (1.1)
We can now discuss the difference u − û where u is a solution to (1.1) and û is defined in
Section 4.7.2. Again, we fix a point in region Ω ∩ {|r − t| ≲ tγ} for some 0 < γ < 1. Note
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that
u− û = εr−1U(s, q(t, x), ω)− εr−1Û(s, q̂(t, x), ω)

= εr−1U(s, q(t, x), ω)− εr−1Û(s, F (q(t, x), ω), ω)

+ εr−1Û(s, F (q(t, x), ω), ω)− εr−1Û(s, q̂(t, x), ω)

=: R3 +R4.

Now we estimate R3 and R4 separately.

Lemma 4.72. Fix a constant 0 < γ < 1 and a large integer N . Then, for ε�γ,N 1, at each
(t, x) ∈ Ω such that |r − t| ≲ tγ, we have |ZIR3| ≲γ εt

−2+Cε〈r − t〉 for each |I| ≤ N .

Proof. As computed in Lemma 4.59, by change of variables we can prove that

Û(s, F (q(t, x), ω), ω) = Ũ(s, q(t, x), ω).

Thus,
R3 = εr−1(U(s, q(t, x), ω)− Ũ(s, q(t, x), ω)).

By (4.72), we have |U − Ũ | ≲ 〈q〉t−1+Cε at (s, q, ω) = (ε ln t− δ, q(t, x), ω), so

|R3| ≲ εt−2+Cε〈q〉 ≲ εt−2+Cε〈r − t〉.

Next we fix a multiindex I with |I| > 0. Then, ZIR3 can be expressed as a linear
combination of terms of the form

ZI′(εr−1) · (∂bs∂aq ∂cω(U − Ũ))(s, q, ω) ·
a∏

i=1

ZIiq ·
b∏

i=1

ZJis ·
c∏

i=1

ZKiω. (4.88)

The sum of all the |I ′|, |I∗|, |J∗|, |K∗| is |I|. If a ≥ 1, by (4.71), we have

|∂bs∂a−1
q ∂cω(Uq − Ũq)| ≲ ε−b〈q〉1−at−1+Cε.

Thus, the terms (4.88) with a > 0 have an upper bound

εt−1 · ε−b〈q〉1−at−1+Cε · (〈q〉tCε)a · εb ≲ ε〈q〉t−2+Cε ≲ ε〈r − t〉t−2+Cε.

Moreover, by (4.72), we have

|∂bs∂cω(U − Ũ)| ≲ ε−b〈q〉t−1+Cε.

Thus, the terms (4.88) with a = 0 have an upper bound

εt−1 · ε−b〈q〉t−1+Cε · εb ≲ ε〈q〉t−2+Cε ≲ ε〈r − t〉t−2+Cε.

In conclusion, |ZIR3| ≲ εt−2+Cε〈r − t〉 for |I| > 0.
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Lemma 4.73. Fix a constant 0 < γ < 1 and a large integer N . Then, for ε�γ,N 1, at each
(t, x) ∈ Ω such that |r − t| ≲ tγ, we have |ZIR4| ≲γ εt

−2+Cε〈r − t〉 for each |I| ≤ N .

Proof. First we consider the case |I| = 0. We have

|R4| ≲ εr−1|Û(s, F (q(t, x), ω), ω)− εr−1Û(s, q̂(t, x), ω)|

≲ εt−1|
∫ F (q,ω)

q̂

|Ûρ(s, ρ, ω)| dρ| ≲ εt−1|
∫ F (q,ω)

q̂

(|∂ρA2|+ |A2||∂ρA|)tCε dρ|

≲ ε〈r − t〉−2t−1+Cε|p(t, x)| ≲ εt−2+Cε〈r − t〉−1.

In the second last inequality, we apply (4.87) to see that the integrand is O(〈r − t〉−2tCε).
In the last inequality we apply Proposition 4.69.

In general, fix a multiindex I with |I| > 0. Then, we can express ZIR4 as a linear
combination of terms of the form

[(∂bs∂
a
q ∂

c
ωÛ)(s, F (q, ω), ω) ·

a∏
i=1

ZIi(F (q, ω))− (∂bs∂
a
q ∂

c
ωÛ)(s, q̂, ω) ·

a∏
i=1

ZIi q̂]

·ZI′(εr−1) ·
b∏

j=1

ZJj(ε ln t− δ) ·
c∏

l=1

ZKlω

(4.89)

where the sum of all these multiindices is |I|. The estimates for such terms are similar to
those for (4.84). The second row is O(εb+1t−1+Cε) while the first row is equal to the sum of

[(∂bs∂
a
q ∂

c
ωÛ)(s, F (q, ω), ω)− (∂bs∂

a
q ∂

c
ωÛ)(s, q̂, ω)] ·

a∏
i=1

ZIi(F (q, ω)) (4.90)

and for each j = 1, 2, . . . , a

(∂bs∂
a
q ∂

c
ωÛ)(s, q̂, ω) ·

j−1∏
i=1

ZIi(F (q, ω)) · ZIjp ·
a∏

i=j+1

ZIi q̂. (4.91)

Since |I| > 0, we must have a+ b+ |c| > 0 if (4.91) appears.
Note that

ZI∗(q̂, F (q, ω)) = O(〈r − t〉tCε), ZI∗p = O(t−1+γ+Cε);

(∂bs∂
a
q ∂

c
ωÛ)(s, q̂, ω) = O(ε−b〈q̂〉1−a+CεtCε) = O(ε−b〈r − t〉1−atCε), when a+ b+ |c| > 0.

So (4.91) has an upper bound

ε−b〈r − t〉1−atCε · (〈r − t〉tCε)a−1 · t−1+Cε〈r − t〉 ≲ ε−bt−1+Cε〈r − t〉.
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Besides, by applying Proposition 4.60 and (4.87), we have

|(∂bs∂aq ∂cωÛ)(s, F (q, ω), ω)− (∂bs∂
a
q ∂

c
ωÛ)(s, q̂, ω)| ≲ |

∫ F (q,ω)

q̂

|∂bs∂a+1
q ∂cωÛ |(s, ρ, ω) dρ|

≲ |
∫ F (q,ω)

q̂

〈ρ〉−a−1+CεtCε dρ| ≲ |p(t, x)| · 〈r − t〉−a−1+CεtCε ≲ t−1+Cε · 〈r − t〉−a.

In conclusion, (4.90) has an upper bound

t−1+Cε〈r − t〉−a · (〈r − t〉tCε)a ≲ t−1+Cε.

Combine all the estimates above and we conclude that |ZIR4| ≲ εt−2+Cε〈r − t〉.

We thus conclude the following approximation result.

Proposition 4.74. Fix a constant 0 < γ < 1 and a large integer N . Then, for ε�γ,N 1, at
each (t, x) ∈ Ω such that |r− t| ≲ tγ, we have |ZI(u− ũ)| ≲γ εt

−2+Cε〈r− t〉 for each |I| ≤ N .
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