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Abstract
Modified scattering for a scalar quasilinear wave equation satisfying the weak null condition
by
Dongxiao Yu
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Daniel Tataru, Chair

The objective of this dissertation is to study the long time dynamics of a scalar quasilinear
wave equation
9°?(u)0a0pu = 0, in R} 3%

This equation satisfies the weak null condition introduced by Lindblad and Rodnianski [25,
24]. Lindblad [21] proved that, for small and localized initial data, this equation has a
global solution. In the present work, we establish a modified scattering theory for the above
equation. Such a modified scattering theory provides an accurate description of asymptotic
behavior of the global solutions.

To study modified scattering, we first identify a notion of asymptotic profile and an associated
notion of scattering data. One candidate for the asymptotic profile is given by the asymptotic
PDE

2Usg + G(w)UU, =0

which was derived by Hérmander [9, [7, 8]. In Chapter 2, we derive a new reduced system,
called the geometric reduced system, by modifying Hormander’s method. In our derivation,
we make use of the optical function, i.e. a solution to the eikonal equation. In this setting,
the scattering data is the initial data for our geometric reduced system, and it is chosen in a
way such that the global solution to the quasilinear wave equation and the exact solution to
the reduced system match at infinite time. One may infer, from this dissertation, that this
new system is more accurate, in that it both describes the long time evolution and contains
full information about it.

In Chapter 3, we prove the existence of the modified wave operators for the scalar quasilinear
wave equation. Fixing a scattering data which is the initial data for the geometric reduced
system, we can first construct an approximate solution to the model equation. Then, by
studying a backward Cauchy problem, we show that there exists a global solution to the
scalar quasilinear wave equation which matches the approximate solution at infinite time.



In Chapter 4, we prove the asymptotic completeness for the same equation. Given a global
solution to the scalar quasilinear wave equation, we rigorously derive the geometric reduced
system with error terms. These allow us to recover the scattering data, as well as to construct
a matching exact solution to the reduced system.
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Chapter 1

Introduction

This dissertation is devoted to the study for the long time dynamics of a scalar quasilinear

wave equation in RH?’, of the form

9°? (u)0a0pu = 0. (1.1)
Here we use the Einstein summation convention, with the sum taken over a, 5 = 0,1,2,3
with 9y = 0y, 95 = 0,,, i = 1,2,3. We assume that ¢®*(u) are smooth functions of u, such
that g*# = g7 and ¢*?(0)0,0s = O = —0? + A,. We also assume that ¢° = —1. In fact,
since we expect |u| < 1, we have g% (u) < 0, so we can replace (¢*¥) with (g*#/(—g¢")) if
necessary.

This model equation is closely related to General Relativity. The vector-valued version
of ¢g*?(u)0,0su is the principal part of the Einstein equations in wave coordinates. For more
physical background for the equation (), we refer the readers to [21, 25, 24].

The study of global well-posededness theory of ([L.1)) started with Lindblad’s paper [20].
Given the initial data

u(0) = eug, Ou(0) = euy, where uy, uy € C°(R?) and & > 0 is small, (1.2)

Lindblad conjectured that the equation () has a global solution if € is sufficiently small.
In the same paper, he proved the small data global existence for a special case

Otu — c(u)?*Agu = 0, where ¢(0) =1 (1.3)

for radially symmetric data. Later, Alinhac [I] generalized the result to general initial data
for () The small data global existence result to the general case ([l.1)) was finally proved
by Lindblad in [21].

Our main goal is to establish a modified scattering theory for (El!)

1.1 Background

The equation () is a special case for a general scalar nonlinear wave equation in Rt{f’
Ou = F(u, du, 0*u). (1.4)
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Here the nonlinear term is of the form
F(u, 0u, 0*u) =Y~ aasd®ud’u+ O(Juf* + [0uf’ + [0uf*). (1.5)

The sum in (@) is taken over all multiindices a, 8 with |a| < |8] < 2, |B] > 1 and
ol +18] < 3.

Since 1980’s, there have been many results on the lifespan of the solutions to the Cauchy
problem () with initial data () In [11, 12], John proved that (@) does not necessarily
have a global solution for all ¢ > 0: any nontrivial solution to Cu = u;Au or Uu = u? blows
up in finite time. In contrast, (@) in R'*9 for d > 4 has small data global existence, proved
by Hérmander [§]. For arbitrary nonlinearities in three space dimensions, the best result on
the lifespan is the almost global existence: the solution exists for ¢t < e“¢, for sufficiently
small ¢ and some constant ¢ > 0. The almost global existence for (|L.4) was proved by
Lindblad [23]. We also refer to John and Klainerman [13], Klainerman [18], and Hérmander
[9, 7] for some earlier work on almost global existence.

In contrast to the finite-time blowup in John’s examples, it was proved by Klainerman [17]
and by Christodoulou [3] that if the null condition is satisfied, then (@) has a global solution
for any sufficiently small and localized initial data. The null condition was first introduced
by Klainerman [16]. It states that for each 0 < m <n <2 with m + n < 3, we have

An(w) = D anp0°w” =0, for all & = (—1,w) € R x S%. (1.6)

|lal=m,|B|=n

Equivalently, we assume A,,, = 0 for all @ lying on the null cone {m*?¢,&; = 0}. The null
condition leads to cancellations in the nonlinear terms () so that the nonlinear effects of the
equations are much weaker than the linear effects. Note that the null condition is sufficient
but not necessary for the small data global existence. For example, the null condition fails
for ( ﬂ) in general, but ([l.1)) still has small data global existence. We also refer our readers
to [B2] for a general introduction on the null condition.

Later, in [25, 24], Lindblad and Rodnianski introduced the weak null condition. To
state the weak null condition, we start with the asymptotic equations first introduced by
Hormander in [9, [7, 8]. We make the ansatz

u(t,z) ~

<M

U(s,q,w), r=lz|, wi=uz;/r, s=¢eln(t), g=r —t. (1.7)
Substituting this ansatz into (), we can derive the following asymptotic PDE for U(s, ¢, w)
20,0,U + Y Apn(w) 0 UORU = 0. (1.8)

Here A,,,, is defined in () and the sum is taken over 0 < m <n < 2 with m +n < 3. We
say that the weak null condition is satisfied if () has a global solution for all s > 0 and if
the solution and all its derivatives grow at most exponentially in s, provided that the initial
data decay sufficiently fast in ¢. In the same papers, Lindblad and Rodnianski conjectured
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that the weak null condition is sufficient for small data global existence. To the best of the
author’s knowledge, this conjecture remains open until today.

There are three remarks about the weak null condition and the corresponding conjecture.
First, the weak null condition is weaker than the null condition. In fact, if the null condition
is satisfied, then ([l.§) becomes 0,0,U = 0. Secondly, though the conjecture remains open,
there are many examples of ( satisfying the weak null condition and admitting small
data global existence at the same time. The equation (|L.1]) is one of several such examples:
the small data global existence for () has been proved by Lindblad [21]; meanwhile, the
asymptotic equation ([L.§) now becomes

20,0,U + G(w)UIZU = 0, (1.9)
where q
Gw) = g5 Ba0s, gof = @gaﬂ(uﬂu:o, o= (-1,w) eRxS?

whose solutions exist globally in s and satisfy the decay requirements, so () satisfies
the weak null condition. There are also many examples violating the weak null condition
and admitting finite-time blowup at the same time. Two such examples are u = u;Au and
Ou = u?: the corresponding asymptotic equations are (20,—U,d,)U, = 0 (Burger’s equation)
and 0,U, = U, q2, respectively, whose solutions are known to blow up in finite time. Thirdly, in
recent years, Keir has made some further progress. In [[15], he proved the small data global
existence for a large class of quasilinear wave equations satisfying the weak null condition,
significantly enlarging upon the class of equations for which global existence is known. His
proof also applies to ([L.1). In [14], he proved that if the solutions to the asymptotic system
are bounded (given small initial data) and stable against rapidly decaying perturbations, then
the corresponding system of nonlinear wave equations admits small data global existence.

1.2 A new reduced system

Instead of working with Hérmander’s asymptotic system () directly, in this dissertation we
will construct a new system of asymptotic equations. Our analysis starts as in Hérmander’s
derivation in [9, [7, 8], but diverges at a key point: the choice of ¢ is_different. One may
contend from this work that this new system is more accurate than ([l.9), in that it both
describes the long time evolution and contains full information about it. In addition, if we
choose the initial data appropriately, our reduced system will reduce to linear first order
ODE’s on i and Uy, so it is easier to solve it than to solve

To derive the new equations, we still make the ansatz (
with a solution ¢(¢,7,w) to the eikonal equation related to (

but now we replace g =r —t

9°° (1)8aqdpq = 0. (1.10)

In other words, ¢(t,r,w) is an optical function. There are two reasons why we choose ¢ in
this way. First, if we substitute u = er~'U(s, q,w) in () where ¢(t,r,w) is an arbitrary
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function, then we obtain two terms in the expansion

er g™ (u)qapUy + e g% (1) quqsUyy-
All the other terms either decay faster than ?r—2 for t ~ r — oo, or do not contain U
itself (but may contain U,, U, Us, and etc.). If ¢ satisfies the eikonal equation, then the
second term vanishes. From the eikonal equation, we can also prove that the first term is
approximately equal to a function depending on U, but not on U. Thus, in contrast to the
second order PDE () for U, we expect to get a first-order ODE for U, which is simpler.

Secondly, the eikonal equations have been used in the previous works on the small data
global existence for () In [1], Alinhac followed the method used in Christodoulou and
Klainerman [4], and adapted the vector fields to the characteristic surfaces, i.e. the level
surfaces of solutions to the eikonal equations. In [21], Lindblad considered the radial eikonal
equations when he derived the pointwise bounds of solutions to (@) When they derived
the energy estimates, both Alinhac and Lindblad considered a weight w(q) where ¢ is an
approximate solution to the eikonal equation. Their works suggest that the eikonal equation
plays an important role when we study the long time behavior of solutions to (d) We
remark that the eikonal equations have also been used in the study of the asymptotic behavior
of solutions to the Einstein vacuum equations, an analogue of (EI), we refer our readers to
U 22].

Since u is unknown, it is difficult to solve () directly. Instead, we introduce a new
auxiliary function p = (s, q,w) such that ¢ — ¢, = . From ([L.1(), we can express ¢; + ¢,
in terms of p and U, and then solve for all partial derivatives of ¢, assuming that all the
angular derivatives are negligible. Then from ([L.1), we can derive the following asymptotic
equations for p(s,q,w) and U(s, q,w):

1
aSM = _G(W)I'LQU%

4 ) (1.11)
oU, = _ZG(w)’UUS'

We call this new system of asymptotic equations the geometric reduced system. The deriva-
tion of ([L.11)) is given in Chapter P} of this dissertation; we also refer our readers to Section
3 in [B4]. In Chapter P, we also obtain the geometric reduced system for a system of gen-
eral quasilinear wave equations, which generalizes the reduced system derived in Section 3,
[B4]. Heuristically, one expects the solution to a system of quasilinear wave equations to
correspond to an approximate solution to this geometric reduced system, and to be well
approximated by an exact solution to the geometric reduced system. We then introduce the
geometric weak null condition: for any initial data decaying sufficiently fast, the geometric
reduced system has a global solution which grows at most exponentially in s. The author
believes that the geometric reduced system and the geometric weak null condition might
help us get a better understanding of the long time dynamics of general quasilinear wave
equations.
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Note that () is a system of two ODE’s for (u,U,). Besides, we have d,(uU,) = 0 for
each (s,q,w). That is, if the initial data are given by

(M? UQ>’S=0<Q7 w) = (Al’ AQ)(Q? w)?

then we have pU, = A; - Ay at each (s,q,w). In this dissertation, we define a function
A = A(q,w) for (q,w) € R x S* by

Alg0) = — 3 A1 (0,0) - A0,

and we call the function A a scattering data associated to a solution u to the quasilinear
wave equation () Now () reduces to a linear system of ODE’s

1

Osp = —5Gw)Alg, w)n,
1

0sUq = 5G(w)Alg,w)Uy,

whose solutions are given by

p(s,4,) = A1(g,) exp(~ 5C(w) Alg, w)3),
Uyf5,0,) = Asla, ) exp(5C(w) Alg, w)3)

To solve for U(s, ¢, w) uniquely, we assume that

lim U(s,q,w) =0 or lim U(s,q,w) =0,

q——00 q—00

depending on which problem we are studying.

1.3 Modified scattering theory: an overview

The objective of this dissertation and [34, B3] is to study the long time dynamics, and more
specifically, scattering theory for highly nonlinear dispersive equations. In other words, we
would like to provide an accurate description of asymptotic behavior of the global solutions.
For many nonlinear dispersive PDE’s, one can establish a linear scattering theory. That
is, a global solution to a nonlinear PDE scatters to a solution to the corresponding linear
equation as time goes to infinity. Take the cubic defocusing NLS

iuy + Au = ulul? in R
as an example. Its corresponding linear equation is the linear Schrodinger equation (LS)

iw, + Aw =0 in R} 3.
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One can prove that for each ug € H', there exists a unique u, € H' such that
|lu(t) —w(®) || — 0 ast — oo

where u (or w) is the global solution to NLS (or LS) with data uy (or uy). This result is
called the asymptotic completeness. One can also prove that for each u, € H!, there exists
a unique ug € H' such that the same conclusion holds. This result is called the ezistence
of wave operators, where the wave operator is defined by Q,u, = ug. We refer to Section
3.6 of [31] for this result. Some other nonlinear PDE’s have modified scattering instead of
linear scattering. That is, each of their global solutions scatters to a suitable modification
of a linear solution. Here the modification can be made in more than one way: we can add
a phase correction term, an amplitude correction term, or a velocity correction term to the
linear solution. For example, in [[10], when the authors study modified scattering for the
cubic 1D NLS, they make use of the following asymptotic approximation:

At €) ~ e MW (€)W O Int,

That is, a phase shift term is introduced. For nonlinear wave equations, the modification
often corresponds to a change of the geometry of the light cone foliation of the space-time.
This point is reflected in the ansatz used in Section .

In general, the following steps are taken in order to study modified scattering. Given
a nonlinear dispersive PDE, we hope to identify a good notion of asymptotic profile and
an associated notion of scattering data for the model equation. This can be achieved by
introducing some type of asymptotic equations. Like linear scattering, the two main problems
in modified scattering theory are as follows:

1. Asymptotic completeness. Given an exact global solution to the model equation, can we
find the corresponding asymptotic profile and scattering data?

2. Existence of (modified) wave operators. Given an asymptotic profile constructed for a
scattering data, can we construct a unique exact global solution to the model equation
which matches the asymptotic profile at infinite time?

There have been only a few previous results on the (modified) scattering for general
quasilinear wave equations and the Einstein’s equations. In [5], Dafermos, Holzegel and
Rodnianski gave a scattering theory construction of nontrivial black hole solutions to the
vacuum Einstein equations. That is a backward scattering problem in General Relativity.
In [26], Lindblad and Schlue proved the existence of the wave operators for the semilinear
models of Einstein’s_equations. In [6], Deng and Pusateri used the original Hérmander’s
asymptotic system () to prove a partial scattering result for () In their proof, they
applied the spacetime resonance method; we refer to [28, 27] for some earlier applications of
this method to the first order systems of wave equation.
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1.4 Modified wave operators

Making use of the reduced system ([l.11)), we are able to prove the existence of the modified
wave operators for () This result has been proved in the author’s paper [34], though the
assumptions made in this dissertation are weaker than those in [34]. In this dissertation, we
assume that the scattering data A = A(q,w), i.e. the initial data for U, at s = 0, satisfies
the following assumption:

AeC®(RxS%, A=0whenever g < —R, (9]90A)(q,w) = Omn({g)”"7"™), Vm,n.

(1.12)
Here R > 1 and v > 0 are two fixed constants, and 0] denotes any angular derivatives of
order n. In contrast, recall that we assume A € C>°(R x S?) in [34]. As a result, the proof in
this dissertation requires a more delicate analysis and substantial changes of the arguments
in [34].

The first step in the proof is to construct an approximate solution to () We start by
solving (ﬂ) explicitly with the initial data (u, Uy)|s=0 = (=2, A). To get a unique solution
(i, U)(s,q,w), we assume that lim, , . U(s.q.w) = 0. Then, we construct an approximate
solution ¢(¢,r,w) to the eikonal equation (@) by solving ¢; — ¢ = p and ¢(t,0,w) = —t;
we can apply the method of characteristics. Both s and ¢ are now functions of (¢,r,w), so
we also obtain a function U(t,r,w) from U(s, q,w). Here U(t,r,w) is our asymptotic profile.
Next, we define u,y,, by multiplying er~'U by some cutoff functions. We expect that ugy, is
an approximate solution to (, that gy, = er 'U(t,r,w) in a conic neighborhood of the
light cone {t = r} and that ug,, is supported in a slightly larger conic neighborhood of the
light cone.

The second step is to show that there exists an exact solution to () which matches
Uqpp at infinite time. Fixing a large time 7" > 0, we solve a backward Cauchy problem for
U = U—Ugpp With zero data for t > 27", such that v+u,y, solves (@) for ¢ <T'. We then prove
that v = v” converges to some function v>® as T'— co. It turns out that u™ = v™ 4 g,
is a solution to ([L.1}) which matches the asymptotic profile at infinite time. This shows the
existence of the modified wave operators.

We end this subsection with the main theorem on modified wave operators, which is
Theorem B.1. We denote by Z any of the commuting vector fields: translations 0,, scaling
t0y + r0,, rotations z;0; — x;0; and Lorentz boosts x;0, + t0;.

Theorem 1.1. Consider a scattering data A = A(q,w) be a function satisfying () for
some R > 1 and v > 0. Fixz an integer N > 2 and any sufficiently small € > 0 depending
on A and N. Let q(t,r,w) and U(t,r,w) be the associated_approximate optical function and
asymptotic profile. Then, there is a CV solution u to (d) for t > 0 with the following
properties:

(i) The solution vanishes for |x| =r <t — R.



CHAPTER 1. INTRODUCTION 8

(ii) The solution satisfies the energy bounds: for all |I| < N —1 and all t >4 1, we have

H&Zl(u - grilU)(t)”LQ({xeR& |z|<5t/4}) + Hazlu(t>HL2({xeR3: |z|>5¢t/4}) ,S] €t71/2+0]8.

(iii) The solution satisfies the pointwise bounds: for all (t,r,w) with t >4 1, we have
(0, — D )u + 2er Y A(q(t, r,w), w)| < et=3/2+C¢,
Moreover, for all |I| < N — 1 and all (t,x) with t >4 1,
02" (u — er™'U)(t, 2)|Xjap<se/a + 102 u(t, )| Xpalzst/a Sret™ /25t + 1)t =) 712,

| Z8(w — er ™ U) (t, @) | Xjaj<st/a + |2 ut, @) | Xjais5t/a Srmin{et 1O e =3/250e (1)1,

For several remarks and a detailed proof, we refer our readers to Chapter a or [B4].

1.5 Asymptotic completeness

Next we consider the asymptotic completeness question for our quasilinear wave equation
(@) For a fixed global solution u constructed in Lindblad [21], we seek to find the corre-
sponding asymptotic profile and scattering data.

We start the proof with the construction of a global optical function ¢ = ¢(¢, x). In other
words, we solve the eikonal equation ¢**(u)g.qs = 0 in a spacetime region €2 contained in
{2r >t > exp(d/e)}. Here § > 0 is a fixed parameter. We apply the method of characteris-
tics and then follow the idea in Christodoulou-Klainerman [4]. By viewing (g.z), the inverse
of the coefficient matrix (g*?(u)), as a Lorentzian metric in [0, 00) x R?, we construct a null
frame {e;};_, in Q. Then, most importantly, we define the second fundamental forms Y,
for a,b = 1,2 which are related to the Levi-Civita connection and the null frame under the
metric (o). By studying the Raychaudhuri equation and using a continuity argument, we
can show that try > 0 everywhere. This is the key step. In addition, we can prove that
q = q(t, x) is smooth in some weak sense (see Section @)

Next, we define (u, U)(t,z) := (¢ — q,,e *ru)(t,x). The map

Q —[0,00) x R x §*: (t,x) — (elnt — 6,q(t,x), z/|x|) := (s, ¢, w)

is an invertible smooth function with a smooth inverse, so a function (i, U)(s,q,w) is ob-
tained. It can be proved that (u, U)(s, ¢,w) is an approximate solution to the reduced system
(), and that there is an exact solution (ji,U)(s,q,w) to the geometric reduced system
(I.11)) which matches (;1, U)(s,q,w) as s — co. A key step is to prove that A(q,w) :=
— 2 lim, o0 (uUy) (s, ¢, w) is well-defined for each (¢,w). The function A is called the scatter-
ing data in this problem. We also show a gauge independence result, which states that the
scattering data is independent of the choice of ¢ in some specific way.
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Finally, we construct an approximate solution u to (@) in €. The construction here is
similar to that in Section 4 of [34]. That is, we construct a function ¢ by solving

G — ¢r = plelnt = 6,q(t, x),w)
by the method of characteristics, and then define
u(t,z) == er 'Ulelnt — 6,4(t, z),w).

Then, in €2, ¢ is an approximate optical function, and u is an approximate solution to (@)
In addition, near the light cone ¢t = r, the difference u — u, along with its derivatives, decays
much faster than e¢717“¢. Since u and its derivatives is of size O(et~**%), we conclude that
u offers a good approximation of u.

We end this subsection with a rough version of the main theorem. For a precise statement,
we refer to Theorem K. 1|.

Theorem 1.2 (Rough version). Let u be a global solution to the Cauchy problem ()
and () Fiz a parameter 6 > 0 and a sufficiently small ¢ > 0. We define a region
QC{2r>t>exp(d/e)} C R Then we have

(i) There exists a solution to the eikonal equation
9°?(u)0aq0sq = 0 in Q; q=|x| —t on 0.
Moreover, the map
Q —[0,00) x R x §*: (t,x) — (elnt — 6,q(t, x), xz/|x|)

is a diffeomorphism. Thus, a smooth function F' = F(t,x) induces a smooth function
F = F(s,q,w) and vice versa.

(i) In Q, we set (u,U)(t,x) := (¢ — ¢, 'ru)(t,x) which induces a smooth function
(u, U)(s,q.w). Then, (u,U)(s,q,w) is an approzimate solution to the geometric reduced
system (@) In addition, the following three limits exist for all (q,w) € R x $?:

1.
A(Q,W) = _isliglo(:qu)(s7Q7w)7

i 1
Al(Qaw) = 51LI& exp(ﬁG(w)A(q,w)s)u(s, Q7w)7
1
Ay(q,w) = 1i_>m exp(—iG(w)A(q, w)s)Uy,(s,q,w).
All of them are smooth functions of (q,w) for e < 1, and we have A;Ay = —2A.

Making use of these functions, we are able to obtain an exact solution to our reduced
system (R.4).
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(iii) The above results are gauge independent. That is, the scattering data A = A(q,w) is
independent of the choice of the optical function q = q(t,x) in some suitable sense.

(iv) We define u = u(t,x) as in Section . Then uw = u(t,x) is an approximate solution
to (.1). Moreover, the difference uw — u decays much faster than the solution u itself
as t — 0o.

For several remarks and a detailed proof, we refer our readers to Chapter @ of this disser-
tation. We also remark that a paper [33] including the results listed above is in preparation
by the author.

1.6 Preliminaries

1.6.1 Notations

We use C to denote universal positive constants. We write A < B or A = O(B) if |A| < CB
for some C' > 0. We write A ~ Bif A< Band B < A We use C, or <, if we want to
emphasize that the constant depends on a parameter v. We make an additional convention
that the constants C' are always independent of ; that is, we would never write C. or <. in
this dissertation. The values of all constants in this dissertation may vary from line to line.

In this dissertation, we always assume that ¢ < 1 which means 0 < ¢ < gy for some
sufficiently small constant ¢g < 1. Again, we write ¢ <, 1 if we want to emphasize that ¢,
depends on a parameter v.

Unless specified otherwise, we always assume that the Latin indices i, 7, take values in
{1,2,3} and the Greek indices a, § take values in {0, 1,2,3}. In Chapter ff we also assume
a,b € {1,2}. We use subscript to denote partial derivatives, unless specified otherwise. For
example, uag = 0,0pu, ¢ = 0,¢ = Y, w;0;q, Ay = 0,A and etc. For a fixed integer k& > 0,
we use 0* to denote either a specific partial derivative of order k, or the collection of partial
derivatives of order k.

To prevent confusion, we will only use d, to denote the angular derivatives under the
coordinate (s,q,w), and will never use it under the coordinate (¢,7,w). For a fixed integer
k > 0, we will use 9* to denote either a specific angular derivative of order k, or the collection
of all angular derivatives of order k.

1.6.2 Commuting vector fields
Let Z be any of the following vector fields:

aa, a = O, 1,2,3, S = tat—i—r&, Qij = :Uiaj—:cj&-, 1<q <] < 3, QOi = xﬁt—i—t@l, 1= 1,2,3.
(1.13)
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We write these vector fields as Z1, Zs, . .., Z11, respectively. For any multiindex I = (iy, ..., 4,,)
with length m = |I| such that 1 < i, < 11, we set Z! = Z;, Z;,--- Z; . Then we have the
Leibniz’s rule

ZI(fg) = Z C’fKZJfZKg, where C§K are constants. (1.14)
||+ K|=|1]

We have the following commutation properties.

1S, 0] = —20, [Z,0] = 0 for other Z; (1.15)

(21, Zs) = Z Cp 2027, where Cy, z, 1 are constants; (1.16)
7]=1

[Z,0,] = Z C2.0508, where Cy .5 are constants. (1.17)
B

In this dissertation, we need the following lemma related to the commuting vector fields.
Here we use fy to denote an arbitrary polynomial of {Zw}. It is then clear that Z7f, = f
for each I. We also remark that while the definition of f; will be modified in the rest of this
dissertation, an arbitrary polynomial of {Zw} could always be denoted as f;.

Lemma 1.3. For each multiindex I and each function F, we have

(0= 0)Z'F = ZF, = F)+ Y [foZ(F,— F,) + Z Jo@i +wid)Z'Fl. (1 1)

1<

Besides, for each 1 < k < k' <3, we have

(0 — 0)Z" Qe F = Z' Qo (Fy = F) + Y [foZQuw(Fy = )+ fol0i + with) 27 Qe F).
<[] g
(1.19)
Note that in )_,(...), the sum is taken over alli=1,2,3.

Proof. First, note that [0, — 0., Z] = fo- 0 and 0 = fo(0r — 0;) + Y, fo(0i + w;0:). We now
prove ( by induction on |I|. If |I| = 0, there is nothing to prove. Now suppose we have
proved () for each |I| < n. Now we fix a multiindex I with |I| = n > 0. Then, by writing
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ZT = 727", we have

(8, —0,)Z'F =8, — 8,, Z)1Z"F + Z((8, — ,) Z" F)
=fo-0Z"F+ Z(Z"(F, = F)+ Y [foZ (F = F) + Y fol0i +wi0h) 2’ F]
J|<n—1 i
= fo(fo(8: — 0,) + Z fo(0; + wjat;)zf’F + Z1(F, - F,)
+ > ZlfoZ(F : )+ Zfo : + wi0y) Z7 F
= foi(;fn 1 02" F + Zfo (9; +w;0) 2" F + Z(F, - F,)

+ Y (Zf)Z/(F, = F)+ Y (Zfo)(0; + wid) Z” F]

|J|<n—1

+ Z [fOZZJ(Ft - F)+ ZfOZ(ai +wi(9t)Z‘]F].

|J|<n—1

In the second equality, we can apply () by the induction hypotheses. Moreover, we note
that [0; + w;0;, Z] = fo - O, so

Z(0; + wi0) Z'F = (0; + wi0) ZZ'F + fy - 02’ F
= (0 + wid)ZZ'F + fo(0r — 0)Z'F + > fol0; +w;0,) Z’F.

J

Now (M) follows from the induction hypotheses and the computations above.
To prove ([1.19), we replace F with Qg F in ([1.18) and note that

0 = D1, Q] = =0 (@)D + 0, (2)Oh + 3 g (wi)

= —wk(“)k/ + wk@k + Zwk(éik/ — wiwk/)ai - Zwk/(@-k - wiwk)&- =0.
Now, ([L.19) is obvious. O

1.6.3 Several pointwise bounds

We have the pointwise estimates for partial derivatives.

Lemma 1.4. For any function ¢, we have

Dol <Clt-nTFY 12 k=1 (1.20)

1<k
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and

[(8: + 0)] + (8 — wid,)g| < Clt+ 1)1 Zg). (1.21)
Here, for each x € R, we define the Japanese bracket (x) := \/1+ |z|>. We also define
Z6] =32 2112 9).

In addition, we have the Klainerman-Sobolev inequality.

Proposition 1.5. For ¢ € C*°(R'") which vanishes for large |x|, we have

(Lt 4+ )1+ [t~ 2l ) 2160 @) < C 3 (12708 e - (1.22)

17]<2
We also state the Gronwall’s inequality.

Proposition 1.6. Suppose A, E,r are bounded functions from |a,b] to [0,00). Suppose that
E is increasing. If

b
A(t) < E(t) +/ r(s)A(s) ds, vt € |a, b],

then
A(t) < E(t) exp(/ r(s) ds), Vt € [a,b].

The proofs of these results are standard. See, for example, [21, B0, 7] for the proofs.
We also need the following lemma, which can be viewed as the estimates for Taylor’s
series adapted to Z vector fields.

Lemma 1.7. Fiz ¢ > 0, an integer k > 0 and a multiindex I. Suppose there are two
functions u,v on (t,x) such that |u| + |v] < 1 for all (t,z). Suppose f € C>®°(R) with
f(0) = f'(0) =0. Then, for all (t,x), we have

0°Z1(f(u+v) = f(u))l
Skl > Prr| 0" Z0(t, 2)| (107 Z20(t, z)| + 0% Z2u(t, 7))). (1.23)
ki+ko<k, |I1]+|12|<|I]

where ki 7 ki rpJ k+|1]
t,x) =1+ max 0 Z u(t,x)| + [0 Z7v(t, x )
pk,l( ) k1+|J|§(kz+\I|)/2<| ( )‘ ‘ ( )‘)

Proof. By the chain rule and Leibniz’s rule, 9*Z7(f(u)) can be written as a sum of terms of
the form

o (u)OM ZM k2 7%y - - - Okt 7y
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where | < k+|1|, k;+|L;] > 0foreachiand Y ; k; = k, >, I; = I. Thus, 0" Z(f(u+v)— f(u))
can be written as a sum of terms of the form

FOu+0)0" Z0 (u + v)o*2 22 (u + v) - - - M 21 (u + v) — fO(w)OF Z1ud™ 22w - - 9% Z 1w
= (fO%u+v) — fOW)o Zh (u+v) - - 0" Z% (u + v)

l
+ Z FOwW)OM zlhy - ki1 Zlimvy . 9% Zhiy - 9Fivr 2l (u 4 v) - 9 21 (u 4 )
j=1
where k; + |I;] > 0 for each ¢ and ) . k; = k, >, I; = I. When | = 0, we must have
k=1Il=0,so () follows from
<

|f(u+v) = fw)] < sup [f'(u+Bo)|v] < sup [f(2)] - sup |u+ Bo|-|v] < C(lu] + |v])|v].

Bel0,1] |z|<1 Belo,1]

Note that now pgo = 2. When [ > 1, since k; + |I;| > (k + |I|)/2 > 0 for at most one i and
since the product of all other terms of the form 9% Z% (u + v) can be controlled by py r, we

have
O+ ) = fO@NZ o) -2 + )

< s £t Bl 920 )2 )
€[0,1

< Crprtlol Y (107 27u| + 10" Z70)).
ki <k,|J|<|I]
When [ = 1, we have
|f'(w)0* Z | < Clul|0" Z'v|.
When [ > 2, since k; + |I;| > (k + |I])/2 for at most one ¢ and since the product of all other
terms of the form 9% Z% (u + v) or 8% Z%u can be controlled by py,;, we have
|f(l) (u)akl Zhy . gRi—r gl 9k 7ty . akj+1Z1j+1(u + ) - Ok 7 (u+ v)]
< Ch1pr 1 > |01 Z10|(|0%2 22| + |0%2 Z2"20)).

k1+ko<k, |I1|+|I12|<|I|

1.6.4 A function space

Fix a domain D C R,};‘?’ which may depend on the parameter €. Suppose that in D we have
t >2C and r/t € [1/C, C] for some constant C' > 1 which is independent of . We make the
following definition.

Definition 1.8. Fix n,s,p € R. We say that a function F' = F.(t,z) is in e"S%P = e"S3F,
if for each fixed integer N > 1, for all € <, 5, x 1, we have F € CY (D) and

S Z'P(tx)| ST (r — )P, Y(tx) €D.

(1.24)
I[<N
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Here F' is allowed to depend on ¢, but all the constants in () must be independent of €.
If n =0, we write e25%? as S*P for simplicity.

We have the following key lemma.

Lemma 1.9. We have the following two properties.
(a) For any Fy € e S*VP and Fy € €52 we have

Fi+F € 6min{m,712}Sr11ax{51752},]rnax{201,1172} F\F, € gnitne gsi+s2,p1tpe
, .

(b) For any F € €"S*P, we have ZF € €"S*?, OF € e"S*P~ and (0;+w;0,)F € e"S*~1P.

Proof. Note that (a) follows directly from the definition and the Leibniz’s rule. In (b), if
F e¢e"S5%P then ZF € " S*P follows directly from the definition. Next, we fix an arbitrary
integer N > 1. Since F € e"S®P, for all £ <, 5 n+1 1 we have F € CVT(D) and

Z |ZTF(t,z)] < ™57 (r — )P, V(t,x) € D.

[I|<N+1

Thus, OF € CN(D). Moreover, by () and Lemma @, in D we have

N NZoF| < Y 10Z'FI S Y (r=)7NZ P St (e —

[I|<N [I|<N |J|<N+1

In conclusion, OF € "S*P~L,
Next, we note that

(0 + w0 F = r Qo F + (r +t) 'rtw(rSF — th]QOJF (r—=t)r QZ%

J

By the definition, we can easily show t™, 7™, (r+t)™ € S™ for each m € R, r —t € %! and
O"Mw; € S7™0 for each integer m > 0. And since ZF € S*P, by part (a) we conclude that

(0; + w0, F € e"§571P 4 gngs—2rl — gngs=lp,

Here we have e"S*72P~1 C enSs~1P_ In fact, recall that ¢ > 2C and C~! < r/t < C for some
constant C' independent of €. Thus, in D we have

(r—t)/t =/t2+ (r/t —1)2 < \/1/(4C?) + C2 < 1.
In summary, in D we have

Ents—2+C’a <7" . t>p—1 5 gnts—l—i-Ca <7, . t>p7

so §¢72P~1 c §s=LP_ This finishes the proof. O
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Example 1.10. We have
t"or™ (r+t)™ € S™0 Vm € R, r—te S% 0w, € ST™0VYm >0, m e Z.
It also follows from £ (s) = s/(s), the chain rule and Lemma [L.9 that
(r—t)™ {r —t)™ € S Vm € R.
These estimates would be very useful in the rest of this dissertation.

In addition, we have the following lemma which is relevant to the Taylor’s expansion of
a function.

Lemma 1.11. Suppose f € C®(R) and let v € e"S*P for somen >0, s < 0 and p < 0.
Then, we have f(u) — f(0) — f'(0)u € e2"S%2P.

Proof. Since u € e"S*P, t 2 1, s < 0 and p <0, by choosing € <, s 1, we have
lu| < Cs”ts+c‘3<r —HP < Ce" < 1.

In this estimate, we can choose € <, 1,5, 1 so that s + Ce < 0. Then,

) $0) = Ol =1 [ £0) = f vl < [ [ i i
v|<|u
</ / )] duwdy < [l [l S5 625 =)
[l <[ul V' w|<[ul

In general, we fix a multiindex [ with |I| =@ m > 0. Suppose we have proved that for
€ Kpspm 1, the function f(u) — f(0) — f'(0)u is in C™ (D), such that (@) holds with
N=m—1and F = f(u) — f(0) — f’(0)u. By the Leibinz’s rule and the chain rule, we can
write Z1(f(u) — f(0) — f'(0)u) as a sum of (f'(u) — f/(0))Z’u and a linear combination of
terms of the form

FO ) - HZIju, where 2 <[ <'m, Z |I;| = m, |I;] > 0 for each j.

Since u € €"S*P, we can choose € <y, .55 1 such that v € C™(D) such that in D

Z | Z7u| < ™t O (r — )P,

[J]<m
Since ey, O] < 1 lom s,y and 1) = FO] < 1 lgur -l we have

|(f"(w) = f( NZ"u| S |ullZu] < e (r — 1),

1) u) . H ZIju| /Sf <€nts+Cs<7, _ t>p)m S €2nt25+05<7, _ t>2p.
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In conclusion, as long as € <, spn 1, in D we have
|Zl(f(u) - f(O) — f/(O)u)| 5 €2nt28+05<r

We thus conclude that f(u) — f(0) — f'(0)u € e?n5%2P,

_ t>2p‘

17
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Chapter 2

A New Reduced System

2.1 The asymptotic equations for the quasilinear wave

equation (|1.1))

Let u = u(t.x) be a global solution to (ll:l]) Let ¢ = q(t,z) be a solution of the eikonal
equation ([l.1() related to (), and let ;. = q; — ¢.. Suppose u has the form

u(t,x) = er'U(s,q,w) (2.1)

where w; = x;/r, s = eln(t) and ¢ = ¢(t,x). Our goal in this section is to derive the
asymptotic equations for (u, U).
We make the following assumptions:

1. Every function is smooth.

2. There is a diffeomorphism between two coordinates (¢,r,w) and (s, q,w), so any func-
tion F' can be written as F'(t,r,w) and F(s,q,w) at the same time.

3. € > 0 is sufficiently small, ¢, > 0 are both sufficiently large with ¢ ~ r.
4. All the angular derivatives are negligible. In particular, 9; ~ w;0,.

5. i, U ~1and v < et !, where v := ¢, + ¢.. The same estimates hold if we apply Z7 or
0°0°0¢ to the left hand sides.

s7q-w

Here are two useful remarks. First, the solutions (u,U) to the reduced system may
not exactly satisfy the assumptions listed above. They only satisfy some weaker versions
of those assumptions. For example, instead of 4 ~ 1, we may only get t=¢¢ < |u| < t°%;
by solving ¢; — ¢, = u, instead of an exact optical function, i.e. a solution to (@,
may only get an approximate optical function ¢ in the sense that ¢**(u)q.qs = O(t721%).
However, such differences are usually negligible in the derivation of a reduced system. Thus,
our assumptions above are very reasonable.

we
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Secondly, it may seem strange that we ignore the angular derivatives of ¢ which is < ¢7!
but keep v < et~!. This, however, is reasonable according to the form of () and ()
For example, if we expand the eikonal equation, we get (@) below. The angular derivatives
are either squared or multiplied by er~'U, while the major terms in (R.3) are of the order
et~!. On the other hand, v is not negligible since there is a term pv in the expansion.
Recall that
Ou=r~'((=0; + 0,)(0; + 0,) + 1 2A,)ru

where A, = 3. ; Q?j is the Laplacian on the sphere S?. By the chain rule we have
at = 8tilas + Qtam ar = QTaq'
By the assumptions, we have

Ou ~ er ' (=0 + 0,)(0; + 0,)U = —er™ ' 1ud, (st U, + vU,)
~ —e?(tr) U,y — er Uy — er™ vy,

Since
1 1 w; 1
qt—§(,u+V) ~ o qi%wiqrwg(’/—u)*—§wi%
1 1 1 1 1 1
Gy ~ §Mt ~ §Mq% ~ ZMMqa it = §Mi ~ §MqC]z‘ ~ —szﬂ/ﬁm
1 1 1
Qij = _§Wiﬂj ~ _iwi,quj ~ Zwiwj,uq/vba
we have 1 ]
96 qaas ~ LG, 97 0p ~ G (@)pptg,
where p
G(w) = g5 @alds, 95" = @90‘5(”)&:07 &= (-1,w) eRxS%
And since
Utt ~ quqtt + UqQ?y Uit ~ qqqiqt + Uquta Uij ~ quQin + Uquj>
we have from (@)
0 = 3% (1)8a0pu ~ Ou + g5 udadsu
~ _52(”)71#(]&1 - 57"71:“”qu - 57”71,“”qu + 52r72935U(UqQaﬁ + UgqGads) (2.2)

1
~ —e*(tr) Uy — eruv U, — er ™t uvUy, + Z—lG(w)52r_2(uquUq + 112UU,,).
By the eikonal equation, we have

—_ e} 1 —
0=g"%(u)gags = —¢; + Y _ ¢ + 17" 95 " Uats = —pw + Jer ™ G(w)’U, (2.3)

)
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so we conclude that

1 1
RS Z&T_lG(w),uU, vy R Zgr_lG(w)(,qu + puU,).

Plug everything back in (@) We thus have

_ Ly
0= —?(tr) " plsy — 1627’ G (w) (U + pUyg) U,

1 1
— Z€2r’2G(w),LL2Uqu + Z—lG(w)gr’z(uquUq + 1*UU,,)

_ 1,
= —*(tr) ' ulU,, — ZE2T 2G(cu)p,QUqQ.
Assuming that t = r, we get the first asymptotic equation
1
Usg = —ZG(w)uU(?.
Meanwhile, note that from (9, — 9,)v = (0, + 0,)u, we have
Vgl & Vgt + et vy = pgv + et g
and thus
_ 1 1 _
s~ A (vop = pgv) & te (Zer T G(w) (U + pUg)p — zer™ Glw)ulpy)
t
~ —G(w)p*U,.
ir (w)pUy
Again, assuming that t = r, we get the second asymptotic equation

1
Hs = ZG(C‘))MzUQ‘
In conclusion, our system of asymptotic equations is

1
Oupt = GV,
(2.4)

1
aqu = _Z__LG(M)MU(IQ

We call (@) a geometric reduced system for (), since it is related to the geometry of the
null cone with respect to the metric gos = (9% (u))~! instead of the Minkowski metric.

If the initial data is given by (u,U;)|s=0(q,w) = (A1, A3)(q,w), and if we set A :=
—(A14,)/2, then (@) has an explicit solution

(s, ,) = Ar(0,0) exp(~ 5G(@) Alg,)s),

Uyls,,) = Aa(0,) expl5Gl) Alg, 0)s),

(2.5)

To solve for Uf(s,q,w) uniquely, we assume lim,, ~ U(s,q,w) = 0 in the modified wave
operator problem, or lim, . U(s, ¢, w) = 0 in the asymptotic completeness problem.



CHAPTER 2. A NEW REDUCED SYSTEM 21

2.2 The asymptotic equations for the general case

Though the derivation of the asymptotic system (@) is already sufficient for this dissertation,
let us also do the corresponding computations in a more general case. In this section, we
study a system of general quasilinear wave equations

B (1w, 0u)0a05u? = fI(u,Ou), j=1...,N. (2.6)
Here our unknown function u is a vector-valued function. That is, we have u = (u!,... u’V) :
R; ¥ — RY for some positive integer N. In addition, we assume that (¢*?) are smooth,
symmetric and independent of j and that g®?(0,0) = m®?. Moreover, we assume that f7 are
all smooth functions such that f7(0,0) = 0 and df?(0,0) = 0.

Assume that we have Taylor expansions

9" (u, Ou) = m* + g"u + g Ot + O(ful® +10ul?),
F(u,0u) = fluf " + flouF o, + 37 0,ut0gu? + O(Jul® + |0ul).

Here m®?, g*, f* are all real constants. In addition, we use the Einstein summation convention
and we take sum over all 1 < k, k' < N.
We make the ansatz

ul (t,x) ~ er U (s, q,w), ji=12,...,N
with the same s,w,r. We now assume that ¢ is the solution to the eikonal equation
9°? (u, 0u)0aq0sq = 0. (2.7)

Set = q; — q, and v = ¢; + ¢.. Again, we assume that all the assumptions made in Section
remain valid.
Following the computations in Section @, we have

O’ =~ —&(tr) ' pUl, — er™ pv Ul — er ™ poUl;

qq9’

1 1 PN N
Go ™ ~5HBa: Qop = H11PaBs,  Where @ = (~1,w) € R x 8%
aau] ~er 1qua ~ _gU(gHwa, 8a8gu] ~er 1(quQOzQB + UgQa,3> (U]q:u + U]MQ)uwawﬁ'

It then follows that
B (4, Ou) ~ m™ + gaﬂ ky gaﬁ/\ﬁ,\u ~ m* + g
9% (u, Ou)qaqs ~ —pv + iu @a@ﬂ(;g? U - %g?ﬁ "Guly),
9" (u, 0u)0aOpu’ ~ D! + (;g;‘i‘ﬁU’“ - ;—Tg;?m@w[ff) : 48 (Ul + U} 1) o
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and that

£ (u, 0u) = fl uFu? + flouFour + f,gkﬁ“ﬁ@ u*dpu¥
2
5

2 2
5 y ! /
~ J UkUk Ja~ 17k K’ JyaB s 2UkUl~c
-~ Tkak/ 22 it WU Uy Waldpht &g Uqg -

42 kK’

For simplicity, we set
B _ oBAS ~
Gop(w) == g;, WaWs, G (w) == g, WaWply;

A i A  ian A  iafe ~
Fg,kk’ (W) = fip Flj,kk’ (W) = fliWa; Fikk/ (W) = fli" Wl
Then, by the eikonal equation, we have

~ € 2 k& 377k
0/ —pw+ p Gaop(W)U" — §G3,k(w)ﬂ Uy

and thus . .
~ k 277k
v EGgyk(w),uU — gGg,k((JJ”L U,

c 3
vy % - Go k()0 (U"*) = G ()0, (1*Uy).

It follows that

2 2

€ £ .
Ou’ ~ ——MUJ - @N(2G2,k(w)aq(MUk) — Gio(w) 0y (12 U))U;
T
£ .
- @M(QGz,k(w)MUk — Gap(w)p*Uy) U3,

Besides, by (@), we have

2
. €
0~ D + @(QGM(W)U]g — Gy (W)U (U + Uqu)
2

8 y / /
R UMY+ S F Uy U

92 qg 4 2
g2 g2 .
~ —;MUS(] — —GQ k( ) 2UkUJ + ﬁGg k( ) 2UJ(,qu(;C + ,UU;q)
€2 ! 2 y / !
- ,’,,_Qng‘k’( )UkUk 27,2F1],kk/(w)Uk/iU; - FFQJkk’( )Mquka .

By setting t = r, we obtain the first asymptotic equation

. 1 1 ;
pUy, = _ZG2,k(w)M2U;Ug T §G3,k(w)/ﬁ2Ug(“qU; + 1)

1 . P 1
3 P (@)U UG = B () p? U Uy

- Fg’kk/(W)UkUk/ + 2 4

22
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In addition, since (9; + 9,)u = (0; — 9, )v, we have et s + v, ~ uv,. This implies

é?t*lus R Vg — MgV

19 13 19
~ M(EGz,k(w)aq(/ﬁUk) - §G3,k(w)aq(M2Uf)) - Mq(ng,k(w)MUk - 7G3 k(W) pUY)

q

€ €
~ 4—TG2,k(W)#2Uf - gGs,k(W)(M?’Uf + 17 pgUY).
By setting t = r, we obtain the second asymptotic equation
1 1
s = 7 Gak(@)?Uy = SGa(w) (0 Ugy + 121Uy

Finally, we note that

1 1

3S<MU§) = _Fg,kka)UkUk/ + §F1j,kk'(w)UkMU(f/ - ZFg,kk/(W)MgUfol-
In summary, we make the following definition.
Definition 2.1. The system of differential equations
. . ’ 1 - ’ 1 ; / .
0s(nUy) = — Iy o (W)U*U* + §F1J,kk:'(w)UkﬂU§ - ZFg,kk/(w)“ZUfU; ,j=L....,N

| 1
Oupt = 3G (W)U = 2 G p(w) (1Ug + 11 Uy)
(2.8)

is called a geometric reduced system for (@)

We can then define a variant of the weak null condition.

Definition 2.2. We say that a system (@) of quasilinear wave equations satisfies the
geometric weak null condition, if for any initial data at s = 0 decaying sufficiently fast in g,
we have a global solution to the corresponding new reduced system for all s > 0, and if the
solution and all the derivatives grow at most exponentially in s.

Two questions arise naturally from these definitions.

1. To what extent is the geometric weak null condition equivalent to the weak null con-
dition?

2. Is the geometric weak null condition sufficient for the global existence of general quasi-
linear wave equations with small and localized initial data?

The answers to these two questions are still unclear, and the author believes that answering
them might give us a better understanding of the long time dynamics of general quasilinear
wave equations.

We end this section with two examples.
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Example 2.3. Suppose N = 1, f = 0 and ¢*’(u, Ou) = ¢g*(0u). In this case, (@) becomes
as (MUQ) = 07

1 1
Dot = =2 Ga(w) (1" Usq + 11 1gUy) = =2 G(w)ir* 0y (uUy).

Here we are working in the scalar case N = 1, so we can write U = U! and G3(w) = G3;(w)
for simplicity.

We claim that here the geometric weak null condition is satisfied if and only if G3(w) =0
on S?, i.e. the null condition is satisfied. In fact, by the first equation, for all s we have

,LLUq(S, q, w) = :U’UQ(Ov 4, (,U).
We set B(q,w) = pU,(0, ¢, w). Then, then second equation now becomes
1 1
Ot = —§G3(W)M23q = 0,(1/p) = §G3<W)Bq(q7w>~
This equation has a solution for all

inf 8

0<s< 1
(qw)eRxs? max{0, —u(0, ¢, w)G3(w)B,(q, w)}-

Here we use the convention that 8/0 = oco. If G3(w) = 0, it is obvious that the geometric
weak null condition is satisfied. Otherwise, by choosing (p|s—o, B)(q,w) appropriately, we
can make (0, ¢, w)G3(w)B,(q,w) < 0 for some (¢,w) € R x $2.

Meanwhile, the Hormander asymptotc PDE now becomes

2U,, + G3(w)UyUyg = 0.

We recall from Section 6.5 in [[7] that this asymptotic PDE blows up in finite time unless
G3(w) = 0. We thus conclude that in this example, the geometric weak null condition is
equivalent to the weak null condition.

Example 2.4. In wave coordinates, the Einstein vacuum equations become a system of
quasilinear wave equations with unknown functions h.g 1= gag — mag for a, 8 =0,1,2, 3:

9°700,05h,, = P(0,h, 0,h) + Q,u(0h, OR) + G, (h)(Oh, OR). (2.9)
Here (g°?) is the inverse of (gag) = (Maps + hagp), and the bilinear form P is given by
1 / / 1 / !
P(a,uha (9Vh> = é_lmaa m’B’B 8uhaa’h6,8’ — §m°‘a mﬁﬁ a,uha,@ha’ﬁ’a

Qap(0h,0h) is a null form and G(h)(0h,0h) is a quadratic form in Oh with coefficients
smoothly dependent on h and G(0)(0h,0h) = 0. In addition, from the wave coordinate
condition, for v =0, 1,2, 3, we have the constraint equation

M0l = 50, s + G ()(OR). (2.10)
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Here G(h)(0h) is a linear function of Oh with coefficients smoothly dependent on h and
G(0)(Oh) = 0. We refer our readers to Lemma 3.1 in Lindblad-Rodnianski [25], or Lemma
3.2 in Lindblad-Rodnianski [24]. It is known that this system of quasilinear wave equations
satisfies the weak null condition. We claim that it also satisfies the geometric weak null
condition.

Using the ansatz has ~ er™'U,g), we obtain a geometric reduced system

1/\ e ]_ aal / 1 o o' B!
0s(10Utre)) = =W (m m? — oM Pm* Y0, Utaary - 0gU ),
v,0=0,1,2,3;
a o 1 Gfﬁ a’ﬁ’/\ ~ 28 U
s = —Zm m WpWp b OqU(aa’)-
(2.11)

We remark that in order to get the equation for Osu, we use the following identity:
g°% = m —m*mP hys + O(|h)?).

Recall that (g®%) is the inverse of (map + hap). In addition, from the constraint equation
(E.l(]), we have an additional constraint equation

~ 1 s ~
m 185,0,U 5y = g™ P 18,0,U ap), v=0,1,2,3. (2.12)

To solve () with a constraint (), we set L = —0; + 0,, L = 0; + 0, and
QX,)Y):= XO‘YB,u(‘?qU(ag), for any vector fields X = X“0,, Y = Yﬁ(‘?g.

In this example, we always assume that X and Y are functions of w which are independent

of t and r, so we have
05(Q(X,Y)) = XY 70,(10,U(ag))-

As a result, if X(r —t) =0 or Y(r —t) = 0 everywhere, we have
05(Q(X,Y)) = XYVPG,05(...) =0
and thus
QX,Y) = Q(X,Y)|sm0 = XY P (u0yUtap)) s, Vs > 0.
Note that the map (X,Y) — Q(X,Y) is a bilinear form. By setting T,, := 9, — 1@0,L,
we have
1 1

@a@gQ(z, Z) + 50/.\10(@(3, Tg) + 5@5Q(Ta,f) + Q(Ta, Tﬁ)

e

110,Ucap) = Q(Oa, ) =
1/\ R _
=: ZWO‘WBQ(L’

(2.13)

Sy

) + Ko p(g:w).
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As explained above, K, s is independent of s since T,,(r —t) = 0 everywhere. It follows from
(@) that for each fixed v =0, 1, 2, 3,

0050, Q(E. T) + K) = 5m0,(10a55Q(E, ) + Kos)
and thus
m*Po,Kg., = %ma%vl(aﬁ. (2.14)
Next, we note that
OQ(L ) = — (g m® — Zn®m Y0, Ui - 4 o)
= G — ) (28,80 QL D) + Ko (0505 Q(L.T) + Ko ).

A key observation is that there is no term involving [Q(L,L)]? on the right hand side.
Moreover, if we compute the coefficient of Q(L, L), we have

(G — L ) (L 0uBur Ky + 1050 Ko
= %maﬂmalﬁ' (Daldar Kp g + Wpg Ko o) = %maﬁma/5/ (W Kop + Oowwp Kaa) =0.
Here in the second identity we make use of () We thus obtain
OUQ(LT)) = ~(m™m* — ) Koo K . (2.15)

Since K ,’s are functions independent of s and determined by the initial data (1, 0;U (s )|s=0,
the solution to the ODE (R.15) is of the form

—_ = ]_ / / 1 1l —_
QL) = ~ (g m? = Gm O m™) Koo K 5+ QUL Il

= KI(QJ W)S + KQ(CI7 w)7

where K, K are functions independent of s and determined by the initial data (4, 0;U )| s=o0-
Making use of (2.13). we obtain (10,U(w) (s, ¢, w) for all s > 0.
By () and (M), we can rewrite the second equation in () as

1 1R " 1/\ o~ - T
Oupt = =y D50 (1 BaB QL L) o+ Kowew) -

(2.16)

(2.17)

_ s

4

Thus, (s, q,w) = u(0,q,w) for all s > 0. We conclude by () that our reduced system
2.11[) has a solution

1Al ]_ 12l o~
m* P Gslp Koo - b = —gmo‘ﬁm"‘ P Ga@a Ko =0.

~—

aqU(a,B)<S7 q, w) = Kl,(a,@) (q7 CL))S + KQ,(a,B) (q7 CU),
(2.18)

/L(Sv g, w) = K()(q, w)'
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Here K, (.. and Kj are all are functions independent of s and determined by the initial data
(:ua aqu(>|<>x<))|S:0- ExphCItIY7 we have KO(qv W) = M(O, qaw)a

1. 1.
Kiap) = 70als(K1/Ko)y  Kaap(,w) = 70als(Ko/Ko) + (Kap/Ko).  (219)
Note that
(QX,Y)/1)]s=0 = XY (93U (ap))]s=0
and that

Ky /Ko = (Q(L, L)/ 1) s=o;
Kaﬂ/KO = %GG<Q(Z7 TB)/M)|5:0 + %QB(Q(TOME)/NMSO + (Q(TOM Tﬂ)/u)|s:0;
K\ JKo=C K., (K../K).

Thus, the solution (), along with all its derivatives, grows linearly in s. We conclude
that the geometric weak null condition is satisfied. We also remark that the linear growth
in the solution (R.1§) is consistent with the results in Lindblad’s paper [22].
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Chapter 3

Existence of Modified Wave Operators

3.1 Introduction

In this chapter, our main goal is to prove the existence of the modified wave operators for
our model equation. This is accomplished in two steps.

The first step is to construct an approximate solution to the quasilinear wave equation
(El!) We start with solving the asymptotic system () explicitly with the initial data
(1, Uy)|s=0 = (—2,A). Here A = A(q,w) is the scattering data associated to a solution u to
the quasilinear wave equation ([l.1). Then, we construct an approximate solution ¢(t, r,w) to
the eikonal equation () by solving ¢;—q, = p and ¢(t,0,w) = —t; this equation is an ODE
along each characteristic line. Both s and ¢ are now functions of (¢,7,w), so we also obtain
a function U(t,r,w) from U(s,q,w). Here U(t.r,w) is the asymptotic profile associated to a
solution u to the quasilinear wave equation (E]) Thirdly, we define ug,,. We expect that
Uqpp 1S an approximate solution to (h), that wa,, = er *U(t,7,w) in a conic neighborhood
of the light cone {t = r} and that wu,y, is supported in a slightly larger conic neighborhood
of the light cone.

The second step is to show that there is an exact solution to (ll:ll) which matches u,,, at
infinite time. Fixing a large time 7" > 0, we solve a backward Cauchy problem for v = u—14y,
with zero data for ¢ > 27", such that v + u,y, solves () for t <T. We then prove that
v = vT converges to some function v>® as T — oo. It turns out that u>® = v> + Ugpp 1S
a solution to () which matches the asymptotic profile at infinite time. This shows the
existence of the modified wave operators.

A more detailed discussion is given below.

3.1.1 Approximate solution

To construct an approximate solution to (), we start by solving our reduced system ([L.11).
This requires us to assign the initial data at s = 0. To choose p|s—¢, we use the gauge freedom.
Note that if ¢; — ¢, = p and if ¢ = F'(q,w), then we have ¢; — ¢, = (9,F)p. Thus, by choosing
the function F' appropriately, we can prescribe pi|s— freely. We now set p|s—9 = —2 since we
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expect ¢ = r —t. The initial data of U, can be chosen arbitrarily, so we set U,|s—o = A for
an arbitrary function A = A(q,w), which is called the scattering data in this chapter. An
explicit solution (i, U,)(s, ¢, w) is given by (@) with (A, Ay) replaced by (=2, A). To solve
for U uniquely, in this chapter we add an assumption that lim, , ., U(s, ¢, w) = 0.

In the author’s previous paper [34], it was assumed that the scattering data A belongs
to C®(R x S?). As commented in that paper, this assumption can be relaxed. In this
dissertation, we assume that A € C*(R x S?) and that

A(q,w) = 0, whenever ¢ < —R; (3.1)

OMNA=0Opun((@)"'77™) in R x §?, for all m,n > 0. (3.2)

Here R > 1 and v > 0 are two fixed constants, and 9" denotes any angular derivatives of
order n.

Next we make a change of coordinates. For a small € > 0, we set s = £In(t) — §, where
0 > 0 is a sufficiently small constant to be chosen. We remark that this choice of s is related
to the almost global existence, since now s = 0 if and only if t = €%/¢. In fact, when t < /¢,
we expect the solution to (@) behaves as a solution to [Ju = 0, so our asymptotic equations
play a role only when ¢ > e%/¢. Let q(¢,7,w) be the solution to

qt — qr = H(S ln(t) - 5: Q<t7 r, w)a w)> Q(ta 07 W) = —t.

We can use the method of characteristics to solve this equation. Then, any function of
(s,q,w) induces a new function of (¢,r,w). With an abuse of notation, we set

U(t,r,w) =U(eln(t) — 6,q(t,r,w),w).

The function U(t,r,w) is called the asymptotic profile in this chapter. We will prove that,
near the light cone {t = r}, er *U(t,r,w) is an approximate solution to ([L.1), and ¢(¢,7,w)
is an approximate optical function, i.e. an approximate solution to the eikonal equation
corresponding to the metric g*%(sr=1U).

3.1.2 The main theorem

We denote by Z any of the commuting vector fields: translations 0,, scaling t0;, + r0,,
rotations z,;0; — x;0; and Lorentz boosts x;0; +t0;. Our main theorem in this chapter is the
following.

Theorem 3.1. Consider a scattering data A(q,w) be a_function in C°(R x S?) satisfying
the support assumption (@) and the decay assumption (@) for some R>1 and~y > 0. Fix
an integer N > 2 and any sufficiently small € > 0 depending on A and N. Let q(t,r,w) and
U(t,r,w) be the associated approximate optical function and asymptotic profile. Then, there
exists a CN solution u to (ﬂﬂ) for t > 0 with the following properties:

(i) The solution vanishes for |x| =r <t — R.
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(ii) The solution satisfies good energy bounds: for all |[I| < N —1 and all t >4 1, we have

102" (u—er™'U ) 102 u L/2+Ce

)(t)||L2({x€R3: |w|<5¢/4} (t>HL2({zeR3: |z|>5t/4}) Sret”

(iii) The solution satisfies good pointwise bounds: for all (t,r,w) with t >4 1, we have
(0, — O )u + 2er P A(q(t, r,w), w)| < et=3/2+C¢,
Moreover, for all |I| < N —1 and all (t,x) witht >4 1,
02" (u — er™'U)(t, 2)|Xjap<se/a + 102 u(t, )| Xpapz5t/a Sret™ /2=t + 1)t =) 7Y%,
| Z8(w — er P U) (t, @) | Xjaj<st/a + |2 u(t, @) | Xjais5t/a Srmin{et 1O e =3/200e ()1,

Remark 3.1.1. In [34], the author has proved Theorem @ with a stronger assumption
A € C(R x S*). The proof in this dissertation requires a more delicate analysis and
substantial changes corresponding to the arguments in [34].

Remark 3.1.2. The solution in the main theorem is unique in the following sense. Suppose
N > 7. Suppose uy, us are two CV solutions to (), such that they correspond to the same
scattering data and that they satisfy the energy bounds and pointwise bounds in the main
theorem. Then, we have u; = us, assuming ¢ < 1. We also remark that u does not depend
on the value 5/4 in the estimates: for each fixed k > 1, if u, is a solution satisfying all the
estimates above with 5/4 replaced by k, then u = u, for ¢ <, 1, where u is the unique
solution from the main theorem. We will prove these statements after the proof of the main
theorem.

Remark 3.1.3. By the main theorem, we have the following pointwise bound near the light
cone (e.g. when |t — 7| < t%¢):

0721 (u — er MUY (t, 2)| + |21 (u — er U (¢, 2)| Sy et 3270, (3.3)

Note that, for the free constant coefficient linear wave equation, we can prove a stronger
pointwise estimate with ¢~3/27C¢ replaced by t=2 on the right hand side. This is suggested
by the fact that the solution to the forward Cauchy problem [w = 0 with compactly
supported initial data satisfies such a stronger pointwise estimate (see Theorem 6.2.1 in [7]).
In our construction, we can achieve this stronger estimate if we add an additional assumption
J72. A(g,w) dg = 0 on the scattering data. We refer our readers to Remark (2) after Theorem
1 in [34].

Remark 3.1.4. Here we make three remarks about the scattering data A. First, the as-
sumption that A € C°(R x S?) can be relaxed. Instead, we can assume that A is CV' for
some large integer N’ >y 1. Secondly, the support assumption (B.1]) is necessary. In fact,
it guarantees that the asymptotic profile U(¢,r,w) vanishes whenever r — ¢t < —R, which is
important in our proof. Thirdly, the decay assumption (@) is motivated by Lindblad-Schlue
[26]. There the authors assumed that ((q)0,)" 0" Fy = O({q)~") for some vy € (1/2,1), where
F} is their radiation field. For a linear wave equation, in our setting we have A = U, = 0,Fp,
so we expect OO A = O OLFy = O((g)~™'77).
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3.1.3 Idea of the proof

Here we outline the main idea of the construction of u in Theorem @ Roughly speaking,
our starting point begins from the ideas from both Lindblad [21] and Lindblad-Schlue [26].
To construct a matching global solution, we follow the idea in Lindblad-Schlue [26]: we solve
a backward Cauchy problem with some initial data at ¢ = 7" and then send 7" to infinity.
However, the backward Cauchy problems in [26] are of simpler form, and their solutions
can be constructed by Duhamel’s formula explicitly. Here, our backward Cauchy problem
is quasilinear, and it is necessary to prove that the solution does exist for all 0 < ¢ < T
We follow the proof of the small data global existence in [21]: we use a continuity argument
with the help of the adapted energy estimates and Poincaré’s lemma.

We now provide more detailed descriptions of the proof. First, we construct an approxi-
mate solution to (@) Let q(t,7,w) and U(t,r,w) be the approximate optical function and
asymptotic profile associated to some scattering data A(q,w). We set

Uapp(t, ) = er () (r/H)U (e In(t) — 3, q(t,r,w),w) (3.4)

for all ¢ > 0 and 2 € R®. Here ¢y = 1 when |r —t| < t/4 and ¢ = 0 when |r —t| > ¢/2, which
is used to localize er~'U near the light cone {r = t}; n is a cutoff function such that n = 0
for ¢ < 2R, which is used to remove the singularity at |x| = 0 and ¢t = 0. We can check that
Uqpp 1S & good approximate solution to ([L.1)) in the sense that

9°? (Uapp) OaOptiapy = O(et™3TCF), t>a 1

Next we seek to construct an exact solution matching u,,, at infinite time. Fixing a large
time T, we consider the following equation

9 (Uapp + 1)00050 = —X(t/T) g (Uapp + 1) OuOstlapp, t > 0; v=0,t>2T. (3.5)

Here y € C*°(R) satisfies x(¢/7) = 1 for t < T and x(¢/7T) = 0 for ¢t > 2T. Note that u,p,+v
is now an exact solution to (ﬁ) for t < T. In Section @ we prove that, if € is sufficiently
small, then (B.5) has a solution v = vT for all £ > 0 which satisfies some decay in energy
as t — oo. To prove this, we use a continuity argument. The proof relies on the energy
estimates and Poincaré’s lemma, which are established in Section B.3. Note that the small
constant d > 0 is not chosen until the proof of the Poincaré’s lemma, and we remark that ¢§
depends only on the scattering data A(q,w). We also remark that the energy estimates and
Poincaré’s lemma in this dissertation are closely related to those in [21], 1.

Finally we prove in Section that v? does converge to some v in suitable function
spaces, as T' — o0o. Thus we obtain a global solution u,, + v>® to ([L.1}) for ¢ > 0, such
that it “agrees with” u,,, at infinite time, in the sense that the energy of v tends to 0 as
t — oo. By the Klainerman-Sobolev inequality, we can derive the pointwise bounds in the
main theorem from the estimates for the energy of v*°.

Note that to obtain a candidate for v, we have a more natural choice of PDE than (@)
We may consider the Cauchy problem (@) for ¢ < T with initial data (uapp(T"), Opttapp(T)).
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The problem with such a choice is that for u,, constructed above, Z’(u — uy,)(T) does not
seem to have a good decay in T if Z! only contains the scaling S = t0, + 0, and Lorentz
boosts y; = t0; + x;0;. For example, we can consider the linear wave equation Clu = 0. We
set U = U — Ugpp, then v =v; = 0 at t =T. Then, at t = T we have S?v = t?vy; = —t*Ougyy.
However, in the linear case, uqy, = er ' Fy(r — t,w) for t ~ r and thus Ou,,, = O(er™?).
The power —3 cannot be improved, so we can only get S?v = O(er™?) for t & r, while we
expect S%v = O(er™3/2+C¢) for t ~ r from Theorem B.1|. Similarly, the same applies for S*v
if £ > 3. In the linear case, one possible way to deal with this difficulty is to consider more
terms in the asymptotic expansion of the solutions, say take

N
Ugpp = Z %Fn(r —t,w)

n=0
where Fj is the usual Friedlander radiation field, and F}, satisfies some PDE based on F,,_;.
This method was used by Lindblad and Schlue in their construction. However, it does not
seem to work in the quasilinear case, since we do not have such a good asymptotic expansion
for a solution to () In this dissertation, we avoid such a difficulty by considering a variant
(@) of (Ell) Such a difficulty does not appear in (@), since v = 0 for all ¢t > 27T

3.2 The Asymptotic Profile and the Approximate
Solution

Our main goal in this section is to construct an approximate solution gy, to () Fix a
scattering data A = A(q,w) € C*(R x S?) such that

A(q,w) = 0, whenever ¢ < —R; (3.6)
OMNA=0Opun((q)™'77™) in R x §?, for all m,n > 0. (3.7)

Here R > 1 and v > 0 are two fixed constants, and 0] denotes any angular derivatives
of order n. Fix a sufficiently large Ty > 0 and a sufficiently small £ > 0, both depend-
ing on A(q,w). Let (u,U)(s,q,w) be the solution to (@) with (u, Uy)|s=0 = (—2,A) and
lim, o U(s,q,w) = 0. Let ¢(t,,w) be the solution to the PDE

(0 — 0y )q(t,r,w) = p(eln(t) — 6, q(t, r,w),w), q(t,0,w) = —t

and set
U(t,r,w) =U(eln(t) — 6,q(t,r,w),w).

Here 0 > 0 is a sufficiently small constant depending only on the scattering data. In this
section, we will show that near the light cone {t = r + R}, er~'U(t,r,w) and ¢(t,r,w) are
the approximate solution to () and the approximate optical function, respectively, in the
sense that for all (t,7,w) with ¢t > Ty and —R <1 —t < t“, we have

P (er™tU)0,05(er™'U) = O(et™19%),
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9" (er™'U)gags = O(t ).
For all t > 0 and = € R3, we set

Uapp(t, ) = er () (r/t)U (e In(t) — &, q(t, 7, w), w).

Here ¢» = 1 when |r —t| < t/4 and ¢» = 0 when |r — t| > ¢/2, which is used to localize
er~'U near the light cone {r = t}; n is a cutoff function such that n = 0 when ¢ < 2R. The
definitions of ¥ and n will be given later.

Our main proposition in this section is the following:

Proposition 3.2. Fiz a scattering data A € C*°(R x S?) satisfying the support assumption
(B.6) and the decay assumption (@) Fix a sufficiently small € > 0 depending on A. Let
Uqapp e the function defined as above. Then, for all (t,z) with t > T4, we have

|Otapp(t, )] S e(L+1) 7"
Moreover, for all multiindices I and for all (t,z) with t > 0, we have
| Z" g (t, 2)| Sre(1+1) 710,

|Zj(gaﬁ(u“Pp)8aaﬁuapp) (t,z)] Sre(1+ t)_3+015,

Remark 3.2.1. If we have 0 < § < 1, then all the constants involved in this section are
uniform in ¢. Thus, it would not impact any result in this section if we do not choose the
value of § until the proof of the Poincaré’s lemma in the next section.

This proposition is proved in three steps. First, in Section B.2.1|, we construct ¢(t,r,w)
and U(t,r,w) for all (¢,z) with t > 0, by solving the reduced system (2.4) and ¢: — ¢, =
explicitly. Next, in Section B.2.9, we prove that er~'U(t,r,w) is an approximate solution to
(ﬂ) near the light cone {t = r + R} when ¢ is sufficiently large. To achieve this goal we
prove several estimates for ¢ and U in the region ¢ ~ r. Finally, in Section w, we define
Uqpp and prove the pointwise bounds for large ¢. To define u,,,, we use cutoff functions to
restrict er~!'U in a conical neighborhood of {¢ = r} and remove the singularities at |x| = 0
ort=0.

3.2.1 Construction of ¢ and U

Fix ¢ < 1. Fix a scattering data A as in the statement of Proposition B.2. Also fix 0 < § < 1

depending on A(q,w) but not on . Its value will be chosen in Section B.3. We define ¢(¢, 7, w)
by solving

(O — 0r)q(t,r,w) = p(eln(t) — 6, q(t, r,w),w), q(t,0,w) = —t, (3.8)
where

w(s,q,w) = —2 exp(—%G(w)A(q, w)s). (3.9)
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Here we set
s,
dv

By the chain rule and the estimates for A, we have

GWw) = ¢5°Gas, 95 B(W)ymo,  ©:=(-1,w) eR xS

| Sexp(Clsl);  10:0;05u] < (@)™ " exp(Cls]),  Va+b+e>0. (3.10)

Note that (@) has a solution ¢(t,r,w) for all ¢ > 0. In fact, if we apply method of
characteristics, for z(7) = ¢(7,7 +t — 7,w) and s(7) = In(7) we have an autonomous system

of ODE’s
{ (1) = ples(r) =0, 2(7),w)
$(1) = exp(—s(7))
with initial data (z,s)(r +t) = (—r — t,In(r +t)). Whenever 0 < 7 < r + ¢, we have

[2(7)] S exp(C(z(m)) ™ (leIn(7)| + 1)) < max{r, 77},

and then

r+t
lz(T)| Sr+t+ / max{(7)°, (7') "} dr’
<r4t+ (T/)lJrCe g+t + (7_/>1sz g"'t < (T’—i—t—i— 1)1+Cs.
Here we choose ¢ < 1 so that Ce < 1. Thus, |z(7)| cannot blow up when 7 > 0. Neither
can |s(7)| since s(7) = In(7). We are thus able to solve this system of ODE’s for all 7 > 0

by Picard’s theorem.
We have

q(t,r,w) = —(r+t) — /tT+ pleln(r) —d,q(r,r +t — 1,w),w) dr. (3.11)

Note that if G(w) = 0, we have p = —2 and thus ¢ = r — ¢, which coincides with the choice
of ¢ in Hérmander’s setting.
We also define U (s, q,w) by solving the following equation

(0,U)(s,q,w) = A(q,w) exp(lG(w)A(q,w)s), lim U(s,q,w) = 0. (3.12)

2 q——00

The equation () has a solution U(s, ¢, w) for all s, which comes from taking the following
integral:

U(s,q,w) = /_q A(p,w) exp(%G(w)A(p,w)s) dp. (3.13)

Since A = 0 for ¢ < —R, we have U(s,q,w) = 0 unless ¢ > —R. In addition, by the decay
assumption (B.7), we have

Ul < / (1)~ exp(Cls]) dp < exp(Cls)).
R
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In general, it is easy to check that for all s > —1 and all (¢q,w) € R x S,

10°0°U | < exp(Cs|) Vb, ¢ > 0;

’ 3.14
\838285(]\ < exp(Cls))(g) 77, Va >0, b,c>0. (3:14)

Here the constants depend on a, b, ¢, but they are uniform for all (s,q,w) € R x R x S%.
From now on, we use U to denote the function on (¢, r,w):
U=U(t,r,w)=U(en(t) = 9,q(t,r,w),w). (3.15)
Such a U is called the asymptotic profile in this chapter. Note that
0y — 0.)U = pU, + et U, = —2A 4 O(st~19%).

This explains the meaning of the scattering data A in our construction.

3.2.2 Estimates for ¢ and U
Fix Ty > 1. We then choose ¢ < 1, so € can depend on T4y but not vice versa. We set
D:={(t,x): t >Ta, t/2<r <2t} (3.16)

and recall Definition @ in Section . Our main goal now is to prove that er~'U(¢,r,w) €
eS™1 and ¢g*(er=1U)0,05(er~1U) € eS73. In other words, er~1U has some good pointwise
bounds and is an approximate solution whenever t > Ty and t ~ r.

We start with a lemma for ¢(¢, 7, w).

Lemma 3.3. Fiz (t,r,w) witht > Ta > 1 and we set t; = (t +r+ R)/2. Then we have
q(r,r+t—T,w) =1r+1t—27, VT >t (3.17)

Thus, when t1 <t, i.e. r <t — R, we have ¢ =r —t.
If1 < Ty <t<ty, we have

(t+r)yC(q+R) S (r—t+R) < (t+1r)(¢+R), (3.18)
lq(t,rw) = (r = )| S (t+7)(g). (3.19)
As a result, whenever r —t > —R and t > T4 > 1, we have
(t+7)"C S r—/{g) S (E+r).

Moreover, if |q(t,r,w)| S t* for some 0 < k < 1, then (t,z) € D as long as Ta >, 1 and
e K, L.
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Proof. Note that p = —2 for ¢ < —R. Then the first part of this lemma follows directly
from () Now we assume 1 <« Ty <t < ty,ie. r—t > —R. Since —2e°sl <y < —2¢=Clsl
and since

F>Ty>1, 0<6<1=|eln(t) — 6| < |eln(t)| + 1 =cln(t) + 1,

we have
t1 t1
—R—q(t,r,w) = / p(r,r+t—71,w) dr < —260/ 77 dr < —C(t; — )7,
¢ ¢
t1 t1
—R—q(t,r,w) = / p(r,r+t—71,w) dr > —260/ 79 dr > —C7(t, — t)td".
¢ t

It follows that
th —t <t7(R+q(t,r,w) S (g+ R)(t+ 1),
ti—t >t (R+q(t,r,w)) 2 (¢ + R)(t+7)" =

~

Since t; —t = (r —t+ R)/2, we have r —t = 2(t; — t) — R and thus

(¢ + R)(
(¢ + R)(

e + R(t + 7’)05 <{g)(t+ T)CE,

TEHR(E )T 2 ()

(r—t)~({t,—t+R)

t+7)
(r—t)y~(t1—t+R) t+r)

S
2
Moreover, we have
la(tr,w) = (r = O] < lq(t,r,w) + Rl + 20t = ] < {g) + (@)t + 1) S {a)(t + 1)
Finally, if t > T4 > 1, r —t > —R and |q| < t*, we obtain an inequality
=t S (t+1)%(g) S (t+ 7).
If (t,x) ¢ D, then we must have r > 2t > 1, so
r/2=1r—1/2<r—t<(r/2+7r)5t" < rCen
However, if we choose € <,; 1, we have 1 — Ce > (k + 1)/2. We thus obtain
> p1oCe > 1=Ce > yrt)/2 oy y(x-1)/2 >

This estimate clearly fails for ¢ >, 1 as kK < 1. Thus, by choosing Ty >, 1, we conclude
that (¢t,z) € D. O

We now move on to estimates for dq. In Lemma @, we give the pointwise bounds for
v=q+q, 0vand \; = ¢; — w;q,. In Lemma B.5, we find the first terms in the asymptotic
expansion of v and v, when t ~ 7 and ¢t > 1.
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Lemma 3.4. Fort > Ty,
v(t,x) == (0, + 0,)q = O(et~+7°), (3.20)
Ni(t, 7)== (0; — wid,)q = O((t + )17, (3.21)
Note that we do not need to assume that (t,x) € D in this lemma.

Proof. Fix (t,r,w). Since v = v, = \; = 0 when r — ¢t < —R, we now assume r —t > —R.
Then .
(O — 0 )v = (O + Op)pp = (Oyuu)v — gG(w)AM. (3.22)

By Lemma @, for all t > T4, we have

T+t r+t 1
[ ol dr= [ 5 1G@0,Al [enr) 8] - dr
t t

Seln(t+r) + 1.

Here the integral is taken along the characteristic (7,7 +t — 7,w) for 7 > T4, as in ()
Also recall that z(7) = ¢(7,7 + t — 7,w). From now on, [(...) dr would always denote an
integral along a characteristic. Similarly, we have

r+t c c t1 c t1
[ 1G@angtar s [T ar s [ am)em)y i st
¢ 27 tJ tJ

Now, we integrate () along the characteristic and then apply the Gronwall’s inequality.
Note that the initial value of (0, + 0,)q is 0 as ¢ = r —t for r < ¢t — R by Lemma @ Then
we have v = O(et™!(t + r)©¢)._This finishes the proof of () when r < ¢. If r > 2¢, for
t <71 <(r+t)/3, by Lemma B.3 we have

(2T 2 (r+t)7((r+t—1)=7) > (r+1t)"%(r 4+ 1),

ol + = )| S My lnr = )l S (o(r) 270 7% S (o )T

We integrate () along the characteristic for ¢ < 7 < (r +t)/3. It follows that for each
t <t <(t+r)/3 we have

(r+t)/3 .
Vet | € [thomoral + [ lir) dr o =te)”
t/

< (r+2)/3 -2 Nn—1 —14+Ce
(r+t)2vl(r) dr +e(t’) +e(r+1) .
t/

~
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Note that at 7 = (r +¢)/3 we have (r +t —7) ~ 7, 80 V|;—(r+1)3 = O(e(t + r)71%). By
the Gronwall’s inequality we conclude that v(t,r,w) = O(et=1+%) for r > 2t. This finishes
the proof of ( .

To prove (), we note that

(0 — 0 )N = (05 — wiOp ) + 171\
= (g + 17 YN — %(dn(t) —9) Zl: O (GA) -
= (g + 77X + O(rHeIn(t) = 8] - [ul{g)™77).

Note that A; = 0 when r» <t — R and that for 0 <t — R < r, we have

dil — wiwy
I (3.23)

r

t1
OS/ (r+t—7)tdr=I <In2,
¢

-
[ (r+t— 1) eIn(r) — dllul{g) T dr < / (et =) N In(r) + 1) - Jul{g) " dr

eln(t+7r)+1 (& L
< T 7 d
<= i L /t |1l{g) T

S (t_'_r)flJrCs.
Apply the Gronwall’s inequality again and we obtain () ]

Remark 3.4.1. Since |p| = —p > 207'¢79¢, we conclude that ¢, q, # 0 for all t > T if €
is small enough. In particular, for e < 1 and ¢ > 1,

qr = _lu2+ v Z C—lt—CE _ Cgt—l-‘rca Z (20)—1t—087

_ ptv

& S _C«—lt—Ca + CEt_1+CE S _(20)—1t—05.

So for each fixed t > T4 and w € S?%, the map r — ¢(t,7,w) is strictly increasing and
continuous for each fixed t. Moreover, lim, ., q(t,7,w) = oo. This implies that for each
t > Tx and ¢° > —t, there exists a unique 7 such that g(t,r,w) = ¢° So {t > T4, r <t} >
(t,r,w) = (eIn(t) — 6, q(t,r,w),w) has an inverse map (s, q,w) — (e®+9/¢ r(s,q,w),w). By
the inverse function theorem, the map (¢,r,w) — (s, q,w) is a diffecomorphism.

From now on, any function V' can be written as both V (¢, r,w) and V (s, ¢,w) at the same
time. Thus, for any function V on (¢,7,w), we can define 8578335‘/ using the chain rule and
Leibniz’s rule. Note that in this paper, 0, will only be used under the coordinate (s, q,w)
and will never be used under the coordinate (¢, 7,w).

Lemma 3.5. Fort > Ty andr <t

L eG(w)

L MU = Ot (q)), (3.24)
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eG(w eG(w onCe
v, — %MQU - %qu = O(et™210%), (3.25)

Proof. Again, we may assume r >t — R. We have

@0~ =) = @+ 0~ L 0, - 0y () + 8w
= HeV Ms% - Eiiw) (0 (uU) e + 8s(uU)§) + dji;d)w
= piq(v — 5(1(;‘))”[]) 42 Z(;u) (—Us + %G(w)AU)u + 62’;?)/¢U.
(3.26)

In particular, note that u, = G (w)u?U, /4.
Fix (t,r,w). Integrate this equation along the characteristic (7,7 + ¢t — 7,w). Note that
U vanishes if 7 > t; and U, U, = O(t“%). We have

" e|G(w) Ce(t+r)% " O
/ oz Ul dr < — / | dr S et™*%(q)
t t

and

(t+1)°e

2 1 t1
SICV . EG@)AUm' dr < O / | dr < 27240 (g).
t

472

/r+t
t

Finally, since f:“ gl dr Seln(t+r)+1 Seln(t) +1 and since v =U =0 at 7 > t;, by
Gronwall’s inequality we conclude (B.24).
To prove (B.25), we first prove it with 0, replaced by 0,. By (), we have

@00~ Sy = o0, - 0y~ “C0)
= g0 (v — gG(w>PJU) + Grfige(v — 6G(w>NU) (3.27)
4t 4t
+ 2 )+ T g+ L@ AV

Note that p, = —%GAqsu and figy = —%GAqqsu + (%GAqs)2u. Integrate along the charac-
teristic and we have

T+t SG w t1 o B .
[ ity = S0 dar £ [ vl + bl ) ar
t t

t1
< cp 2o / l{g) > dr < et 2,
t
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r4+t EGCL) t1 B
/ EC) 0] dr < / er (1A + U ) (el + [#]) dr
t t

472
t1 t1
5/ 87—2+Cs<q>—1—7|u| dT—l—/ 527_—3—&-()5 dr
t t
< 875—24-06

and

/r+t ‘52G<W) aq((_Us + %G(W)AU)M)QT| dr S /tl 827_—2+Ca<q>—2—'y‘lu’ dr 5 €2t_2+08_
t t

472

In the last estimate, we note that
1 1 1 o
Ou((~Us + SG@) AVt = SG(@) AU + (=T + 5G(w) AUy = O(1% () 277).

Recall that fr+t ol dr Seln(t+r)+ 1, v=U=0at 7 =r+t, 0, = ¢.0, and ¢, > ¢t~ °°.

t ~
Apply the Gronwall’s inequality and we conclude ( [

~—

Remark 3.5.1. We now prove some estimates for v, which will be used in the proof of the
Poincaré’s lemma (i.e. Lemma B.13).
It follows from (@) that

|Vq| 5 8t_1+06<q>_1_7 + 615—2—&—6’6

whenever t > T4 > 1 and r <t
Now fix (t,z) such that ¢ > T4 and r > 2¢t. We seek to prove an estimate for v,. By
differentiating (B.22), we have

(0 — 0,)0vv = pigir + O, (j1g)v — %Garum)

= gty — %VGS@T(Aq,u) - %G&r(Au)
= ftqVy + Ot ()7 ]
Besides, whenever r > 2t, we have r ~ (r + t) and thus
(@) S+ —1) S (t+7)7,
(@) 2 (t+r)r —1) 2 (t+r)' 7

Here we apply Lemma . It follows that
g SAq) 2V sp| S (r+ 1) 2O < (r 1)
By setting ¢(7) := v, (1,7 +t — 7,w), we have for t <7 < (r +1¢)/3,
()| S (r+ )72 (7)| + er 08 (2(7)) 727 . £ CF
< (r+)720(1)] + er IO (r 4 1) TEHOE

~
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Moreover, we have

10((r +1)/3)] S elr+ 1) G((r +1)/3)) 27 4 e(r + )73 S e(r 4 1),

(r+t)/3
/ e MO (r 4 1) T2 G Se(r )OO L ((r 1) /3 — 1)
t
< Et—l-&—Ca(r_‘_t)—l—v-&-Ca’
(r+t)/3
/ (r )2 dr Sty 2 (83—t < (i) S L.

t

It follows from the Gronwall’s inequality that
10(t)] < e(r + ) 72108 4 et 71O (p 4o ) 71 HCE,

Then, for r > 2t, we have

el S a7t ve| S (e(t +7) 72 et (1) )

5 €(t + T,)—2+Ca + Et_1+06(’l“ + t)—l—v—&-Ca.

Most of the estimates in the previous three lemmas will still hold, if Z7 is applied to the
left hand sides for each multiindex I. We recall (B.16)) and Definition .

Lemma 3.6. (a) We have ¢ € S®! and Qupg € S*° for each 1 < k < k' < 3. That is, for
all (t,x) € D and for all I, we have

\Zq(t, r,w)| <p (r — )07, (3.28)
|ZIQkk/q<t,’f‘, w)| S] tCIE. (329)
(b) We have 9505A € S*~'=%77; e S and dLDOL € S for a4+ b+ ¢ > 0;

LU € SO0 for allb,c > 0, and 920°05U € S*~*~7 for alla > 0 and b,c > 0. Here all the
functions are of (s,q,w) = (elnt — §,q(t,z),w) defined in D.
(c) We havev € eS™0, v, € eS™H71 N\, € S710, and

v— %G(w),uU € eSS, Vg — %G(w)ﬁq(,uU) ceS™0

Here all the functions are of (s,q,w) = (elnt — 6,q(t, x),w) defined in D.

Proof. (a) We first prove () by induction on |I|. The case |I| = 0 has been proved in
Lemma B.3. In general, we fix an integer £ > 0 and suppose (B.28) holds for all |I| < k. Now
fix a multiindex I with |/| = k + 1. By the chain rule and Leibniz’s rule, we express Z'u as
a linear combination of terms of the form

(020805 p) - ZNq -+ ZMq- Z7 (elnt = &) -+ Z(elnt — §) - ZMw- - ZFow (3.30)
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where a + b+ ¢ > 0, ||, |J.|, | K«.| are nonzero, and the sum of all these multiindices is
k + 1. The only term with some |L.| > k is u,Z’q. By () and our induction hypotheses,
the remaining terms of the form (B.3() are controlled by

(q) " Texp(Clent — §]) - (q)*“° - e < ()"t~

Here we recall that t=¢¢ < (r — t)/(¢q) < t°¢ by Lemma @ In summary, we have
Z' = peZ'q+ O({q) ™ 7t%).
Following the same proof, we can also show that

D127 S (@) D 1Z27ul S lul+ (@)% S
0<|J|<k [JI<k

By (), we have

0 —0)Z'q=Z"u+ Y [foZ7 1+ fol0: +widh)Zq]

[J]<|1| i

where fy denotes an arbitrary polynomial of {Zfw}. Thus, we have

(0 = 02"l S |ugZ'al + 19+ Y Y 10+ wid) 274l

[J|<k

SlpgZ'ql +t + (t+r)7" > |Z27q]
[J]<k+1

SlueZ'a +t+r)"" > 1Z7ql +1°
\J|=k+1

In the second inequality, we apply Lemma @; in the last one, we apply the induction
hypotheses to control |Z7¢| for |J| < k.

Now we fix (¢,z) € D. Since (@) clearly holds for ¢ = r —t, we can assume r —¢ > —R.
By integrating along the characteristic (7,7 +¢ — 7,w) for ¢ < 7 < t; and taking sum over
all multiindices I with |I| = k 4+ 1, we have

Z |Zhq(ty,r+t —t,w) — Zq(t,r,w)]
I|=k+1

t1
S [l 40 3 120+ dr
t \T|=k+1

t1
< / (gl + (t+1)1) S 20| dr+ 451t — 1]
t

[T|=k+1

t1
< / (gl + (t+7)7Y) S |2q) dr +%(r — 1),
¢ I|=k+1
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In the last inequality, we recall that ¢t ~ r in D, so t; = (r +t+ R)/2 ~ t; we also recall
that t; —t = (r —t + R)/2 ~ (r —t). Also note that Zlq(t;,t +r — t;,w) = O(1), since
Z(r—t) =0(1) when r =t — R and ¢t > 1. Finally, recall that

t1
/ (M) + (r+ )~ dr < en(t+1) +1 < eln(t) + 1
t

as proved in Lemma @ By applying the Gronwall’s inequality, we conclude that
S 170l S0 — )
\T|=k+1
As a result, by (), we also have for each I with |I] > 0,
12l S lgllZa] + ()77 S T — 1) + ()T T S (g TR (3.31)
Next we prove () by induction on |I|. By Lemma @ we have
Qg = TR — Ty, = O(r - (t+7)7198) = O(1).

So the base case |I| = 0 is proved. In general we fix I with |/| > 0. By the induction
hypotheses > ;|27 Quwal S %, ( and (B.31), we have

10 = 0.) 2" Q| = | Z" Qo+ D [foZ" Qo+ fo 0 + wih) 27 Qg

[J1<|1| i
SO 12+ Dt +r) M2 Q]
0<|J|<[1]+1 71<|1]
ST ()T Y |2 Qg+
|J|=I1]

Fix (t,z) € D. Since Qe (r —t) = 0, we can assume r — ¢t > —R. Then,
t1
/ T L g(rr +t—Tw)) T dr
¢
t1
SR — |+ tCE/ (2(T)) 717 (=4(1)) dr <t
t

In the first inequality, we note that |u[t“® > 1 and —u = |p|. Similar to the previous proof,
we conclude by the Gronwall’s inequality that Z/Q..q = O(t9).

(b) Let @ = Q(s,q,w) be a function of (s,q,w). By the chain rule and Leibniz’s rule,
we can again write Z/(Q as a sum of terms of the form (B.30) with x replaced by Q. In
conclusion, we have

Z'QIS Y 1000505Q) - e — 1)t .

a+b+c<|I|
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Combine this estimate with (@), (M) and (M) and recall that t=°¢ < (r —t)/{q) < t°¢

in D. We thus conclude that 9395A € SO 177 p e S0 and 029205 € S¥~'1777 for

a+b+c>0; 995U € SO0 for all b, ¢ > 0, and 920%05U € S~ 7 for all a > 0 and b, ¢ > 0.
(¢) In (a) we have proved that Qg € S®° for each 1 < k < k' < 3. Thus,

A\ = Pl ijjSq e S—l,O . S0,0 . S0,0 C 5—1,0.

J

Here we recall from Example that r—t € S71% and w € S°0.
Next we set Q = v — eG(w)uU/(4t). By Lemma @ we have Q = O(et=2t%(r — t)).

Moreover, as computed in the proof of Lemma B.5, we have
e2G(w 1 eG(w
Qt - Qr = ,qu + %(—Us + éG(w)AU)u + 4t<2 ),MU = [LqQ + 85’_2’0.

Fix a multiindex I with |I| > 0, and suppose |Z7Q| < et=27%(r — t) for all |J| < |I|. By
(@), we have

(0= 0,)Z'Q1 S Y |ngZ’Ql +et™“ +(t+r)"" Y [27Q)
<] il

Slpgl + @+ D 127Q + et
|J|=11]

Note that () = 0 in the region r — t < —R, and note that when r —t > — R we have
t1
/ er O dr et (ty — ) S etTHO (r — 1),
t

By the Gronwall’s inequality, we conclude that } ,_ |Z1Q| < et=2tC{r —t). Thus, we
have Q € eS~2!. By Lemma , we have 0Q € €S20 and thus Q, € €S20, This implies
that

%G(w)qraq(uU) €S20,

Since ¢, > C~1 % and ¢, = ¢ € S°°, we can show that ¢. ' € S%°. This easily follows
from the fact that Z7(g, ') can be written as a linear combination of terms of the form

QTVq -

qT’l*mthr"'ZImQr‘v Z‘]*l = |I‘

We thus conclude that -
Vg — ZtG(w)ﬁq(uU) €S20,

Finally, note that

3 ~1,0 € 5 1
— U ) — U) = — U—-2A ) v
tG(W)ILL €es , tG(w)(?q(,u ) tG(CL))(/Lq ) €eS
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And since (r —t) <t in D, we conclude that

V= Q + iG(W)ILLU € 8571’0 -+ 6572’1 C 551’07

Vg = Vg — Z%CJ(W)&](/LU) + Z%G(w)aq(uU) €eS 20 p S c gL

The following proposition states that ¢ is an approximate optical function.
Proposition 3.7. We have g®%(er~'U)qaqs € S™%1.

Proof. Since v € eS74% and \; € S0, we have

96" Gads
N N N N
= 90" (——)" + 295’ JAi+ ———)+ g’ N+ —5——)N + )
2 2 2 2 2

1 1 y L 1 1.

— ZG(cu),u2 + 5(980 — gdwiw;) v + (98" — g¢ wi)pNi + ZQOOVZ + 598%(2)\1» + w;v)
1,

+ Zgo] (2)\1 + in)(2)\j + Ct)jV)

1 1 ij i i -
= G + 590" — go'wiws)pv + (99 — g5'wy)pAi mod 727

1
= ZG(w),ﬁ mod S0,

If we replace (o) with (m®?) in the computations above, we have

m* qoqs = —pv — mYw;uX; mod S™* = — v mod S~

Here note that mYw;\; = >, w;(¢; — wigr) = 0. Moreover, since er U € ¢S, by Lemma
1.11] we have

P (er™U) = m®® — g0Per U € 26720,
Moreover, by Lemma and g € S%!, we have g € S%°. We thus conclude that
Y q

g% (er™U)qaqs = m*?qaqs + gﬁﬁer_quaqg + (g% (er™U) — m®® — g8%erU)quqs
= —uv + gG(w),uQU mod §~*°
T

e(t—r)

2 ~2,0
ywor G(w)uU mod S

g
= —uly = S Gw)pl) +
c 85_2’1 + 5_2’0 C 5—2,1'

In the last line we apply Lemma @ O
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In order to prove that er~1U is an approximate solution to (), we need the following
lemma.

Lemma 3.8. We have g*(er='U)q.p = 5GAp — r~u mod S%0,
Proof. We first note that
et vy =1 — vy = (Vi + 1) — vy,
Zaiwluwl =v; — qivy = (Vi — wity) — iy
1
By Lemma @ and since v € €S, we conclude that v, + v,, v; — w;v, € €S72°. By Lemma

, we have vy, € €257~ and Ny, € eS™27!. Thus, we have et 'vg, Y, diw,, € eS™20.
Moreover, we have O\; € S~'~! by Lemma [1.9 and Lemma @ It follows that

W+ v 1 € 1 €
=0 = 7 o Hs n o s
Gt = O 5 ) 4Mq(M+V)+2tM +4Vq(M+V)+2tV
1 1 5 1 B 1 1
= Hakt + THaV + ot + 7 Vak! mod £S5~ = 7Halt mod S~
w+v 1 wilv—p), 1
qri = Oi( 5 ) = §(Mq + vg) (N + T) T3 Z(sz + Vi) Oy
l
- ds—ht
= —Willgit MO ,
wi(v—p
i = 0i(N; + %)
1 1 wilv—p), 1
=0 + 50w (v — p) + gwj(vg — o)A+ ———7) + Jwj D (e + Vi) O
!
1 1 1
= Zwiwju,uq + 81)\J — 5/,68in — Z—le,uq(Q)\i + wiy)
1 1
— Wiawilt + Wi Z,uwl@iwl mod 5>
!
1
= Wiwilit mod S~
Thus, we have 0%¢ € S®~! and
o 1 _
96 qop = ZG(W)MqM mod S~
and
0 (1 n 1 n € . 1 )+ 1 1 1
=—(= — gV + — s + =V, - — — Wy — =gV
q 4,Uqlu 4,Uq Qt'u 1 ql 4:uluq 4lu q 4/Lq
1 1 1 _
+ ;[@1/\1 - 5/,661(,«)1 - éwiMin + 50&)2‘ ; ,uwlaiwl] mod ¢S 2,0
1 1

€ _ _
= EGAM — gHVg = GHeV =T Y+ zi:ai/\i mod £S5~ 27,
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Here we note that ) . Ow; = 2/r, > ,wi0w, = 0 and >, w;A; = 0. Moreover, we have
> Wik Ai = 0,32 wiki) = 0 and (9; — w;d,)A; € S72, s0

Zm_zwzax +Z )\ € 87,

By Lemma @, we conclude that

1 1
= —GA,u — Eu —G@ ,(nU) — JHa” tGuU — 7' mod §7%Y

= 2—tGA,u - 4—tGM,qu — 7'y mod S7%°,
In conclusion, we have

9" (er™U)gap = Og + gé“ﬁsr‘qu 6+ (gaﬁ(sT‘lU) —m® — g57er ™ U)gag
= —GA,u — —G,u,qu —r —i— G,uq,uU mod S

_ 5(75 r) -1 -2,0
= 2tGA'u + T Gup,U —r~p mod S
= iGA,u — 7'y mod S0,
2t
O

Finally we prove that er~1U has good pointwise bounds and is an approximate solution
to () in D.

Proposition 3.9. We have
er U € eS™Y, P (er™'U)0,05(er™'U) € eS73.
In other word, for (t,r,w) € D,
71 (erU)| < et 10,
|Z1 (g™ (er ™ U) 000 (er ™ U)) | Sy et =310,
Note that we have a better bound for d(er=*U): for all (t,7,w) € D,
|0(er™tU)| S et

Proof. We have proved U € S°° in Lemma @, so it is clear that er 'U € S~ In
addition,

1
O(er™'U) = er N (Uyqs + Uset ™) = 57"_1(5(,u +v)U, + Uget™)

= —er'A mod S0,
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Oi(er™'U) = er 2w;U + er ' (U,q; + Z Us,,0iw;)
J
R
=er Uq(é(y — pw; + i)
Since |A] < 1, we conclude that [9(er~'U)| < et™!in D.
We have
(er™'U)y = er ™ (=Uset ™ + 2Uygqet ™ + Ugeet 2 + quUy + ¢ U4,
= er 12U qiet ™ + ¢ U, + q?U,,) mod 5720
=er HquU, + ¢?U,) mod S~

(erU)i = er M (Ugg@ui + Y Uung@uOwr + Ugtlis + Usqgiet ™+ Us Ot ™)
l l

mod £S72% = ertAw;, mod SV,

— 57”2wi(qut + Usetfl)
= er Y (Up@:qi + Uygiz) mod eS™371

(sr—lU)ij =er” (quqzq] + Z Ug, (qi0jw; + q0iwy) + Ugqij + Z Uwrwoy Qs 05wy

L

—er 2w (Uyq; + Z U, 0jw1) — er2w;(Uyq; + Z U, 0iwr) + €0;(r2w;)
1 I
= er N Uyqiq; + Z U, (i05001 + q;0i01) + Uyqij) — er2Uy(wiq; + w;q;) mod eS™*?
1

= er Y (Uyqiq; + Uyqij) mod eS—>71
Here we note that eS=27 177425730 € ¢§~2~1, Besides, we have g’ (er1U)—m®? € eS~10,
In summary, we have

9P (er™'U)0,05(er™'U)
= ¢ (er™'U)qaqaer Uy + g°° (7™ U) qaper U, + g% (er ™ U)er 12U, qet ™)
+ g7 (er™'U)[er™* Z Uy, (i0;001 + q;0iw1) — er2U,(wiqj + wjg;)] mod S
1

= go‘ﬁ(er_lU)qQQgsr_quq + go‘ﬁ(sr_lU)qager_qu — sr_l(QUSqqtet_l)

+ Z[Qar‘l Z U, 4i0iw; — QET_QUqwiqi] mod 5730,
' !

Here we have
Z qiOiw; = Z AiOiw; + Zw,qr L = Z NiOiw; + 0 € §720,
By Proposition @ and Lemma @ we have

2
P (er'U)0,05(er™'U) = (ﬂGAu —rt)er U, — E—tGAqut —2er?U,q, mod eS*°
r

2
= —;TGAqu —er?vU, mod S € S0
”
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This finishes the proof. O

3.2.3 Approximate solution u,,,

Let T4 > 1 be a large constant such that all the estimates in Section hold for t > T4.
Choose € C*(R) such that n = 1 on [2T4,00) and 7 = 0 on (—o0, T4]. In addition, choose
1 € CP(R) such that ¥y =1 on [3/4,5/4] and 1 = 0 outsides [1/2,3/2].

We now define the approximate solution g, by

Uapp(t, ) 1= er ™ In(t)Y(r/H)U (e In(t) — 6, q(t, 7, w),w), r=|z|, wi=z;/r. (3.32)

Note that wa,(t, z) is defined for all (t,x) € [0,00) x R?. If t < Ty, then we have u,y,, = 0. If
t > T4 > 2R, since U =0 for r <t — R, gy, has no singularity at |z| = 0. Moreover, since
¥ = 0 when |t —r| > t/2, we have uq,, = 0 unless (¢, x) € D; since ¢ = 1 when |t —r| < t/4,
we have Uy, = er~'U whenever |t —r| < t/4 and ¢ > 2T 4.

We now prove the estimates for wu,p, in Proposition B.3. The estimates are in fact the
same as those in Proposition . However, note that in Proposition we assume that
(t,x) € D while here we only assume ¢ > 0.

Proof of Proposition @ When t < Ty, we have u,y, = 0. When Ty <t < 274, we have
ZMU gy, = Og(g). This is because the support of wg,, lies in |z| ~4 1, and because U, 1,1 and
all their derivatives are O(1). Also note that ¢ < (274)Met™ for each M and all ¢ < 2T.

Suppose t > 2T4. Now 7 plays no role since n(t) = 1 for all t > 2Ty > 1. For |r—t| < t/4,
all the estimates follow directly from Proposition )@ If g(t,r,w) < —Rie.r—t < —R, or
if 7 > 3t/2, then u,,, = 0 so there is nothing to prove. So now we can assume t > 27T,
5t/4 < r < 3t/2. Note that now we have |r —t| ~ ¢ and (¢,z) € D, so

K2 (er ' U) | St =)™ D |2 (er U St ROR,
|JI<H|+k

Since OFZ1(r/t) = O(t*) for t ~ r, we have O*Z1(¢(r/t)) = O(tF) for all t > Ty. In
particular, we have d(¢(r/t)) = ¢/'0(r/t) = O(t™!). Tt follows that for each I,

[Ottapp| 1O (r/O)| - ler U+ [(r/1)] - [0(erTU)| S et Set™, (3.33)
Zuapl S Y 127 @0/ 0) |25 (e U)| S et (3.34)
[+ K|=|1]
VALGETIMES Z |02 Z7 | S (r = )72 Z |2 g | S £t (3.35)
[J1<I1] [JI<II]+2

And since Z1(g*% (tapp)) = O(1) for each I, we conclude that

127 (0°° (ttapp) O Dptiapp) (£, )| < (1 + £)73FC%.
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3.3 Energy estimates and Poincare’s lemma

We now derive the energy estimates and Poincaré’s lemma, which are the main tools in the
proof of our main theorem. The results in this section are similar to those in 21, [L].

3.3.1 Setup

Suppose t > T4y > 1 and € < 1. Assume that u is a solution of () vanishing for r <t — R
and satisfying the pointwise estimates: for all t > T4 > 1 we have

Jul S et™HeF, Ou(t, )| S et™; (3.36)
if g(t,7,w) < tY* and t > Ty, we have
lu — er tU| < et=5/4+C, (3.37)

Recall that U = U(t,r,w) is the asymptotic profile defined in () In Section @ we will

check these estimates when we apply the energy estimates.

3.3.2 Energy estimates

Fix a smooth function ¢(t,x) with ¢(t) € C(R?) for each ¢ > T4 and ¢ is supported in
r >t — R. We define the energy

Eu(¢)(t) = /Rg w(t, £)(=29" (u)drba + 9°7 (w)datp)(t, ) dx

= /Rg w(t, 2) (106 — 2(g° (u) = m**)dida — (97 (u) — m*)dads)(t, z) de.

(3.38)
The weight function w is defined by

w(t, z) = exp(coeln(t) - o(q(t,r,w))) (3.39)

with
olg) = (R+q+1)"

Here q(t,r,w) is defined in Section @; co >4 1 is a large constant to be chosen; 0 < A < 7y
where v comes from the decay assumption (@) of A. Note that ¢ = 0 unless r > t — R,
and ¢(t,r,w) > —R when r >t — R. So w(t, x) is well-defined in the support of ¢.

We remark that this type of the weight w was already used in the previous work on small
data global existence by Lindblad [21] and Alinhac [l]. It can be viewed as an extended
version of the method of ghost weight introduced by Alinhac; see [2].

Our goal is to prove the following energy estimates.
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Proposition 3.10. For 1 < Ty <t <T, we have

T
Eu(¢)(t) < Eu(o)(T) +/t 2 (|9 (1)0a0sA(T) || o) 106(T) | 12y + Cem™H 109172,y dr-

(3.40)
Here ||f||iQ(w) = [os | fIPw dz and C' > 0 is a constant (which could depend on u,du and the
weight w).

The proof starts with a computation of £ E,(¢)(¢t). For simplicity, we write g°° = ¢*%(u).
Then, by applying integration by parts, we have

== / wt(_290a¢t¢a + gaﬁ¢a¢ﬁ)
R3
+ w(—2¢"* 1B — 20° Pt — 201" Brda + 29°° Pars + 019 Pus) da

= / wt(—290a¢t¢a + 9a6¢a¢ﬁ) + w(—290a¢at¢t + 29i6¢it¢6 — 28t90a¢t¢a + at9a6¢a¢ﬁ> dx
Rs

= / wi(=29" Gr1da + 97 ats) — 2wig" 6165
R3
+ w(—2¢"Gardr — 29" dpbip — 20,9 P10 — 20,9 195 + 019"’ paths) dx

B /3 Wi g™ Padp + W(—29" Papdr — 209" Prdos + 019 bats) — 2Wa g™’ drdp du.
R

By setting T, := ¢:0a — qu0;, we have ¢ = q; (Ta¢d + qa¢:). Note that
w; = colet o(q) +eln(t)o’(¢)q)w, w; = coe In(t)o’(q)qsw.
Thus,
9 batsqe — 29°° 00500 = 9°°0 (Tad + @ade) (Tsd + qsdr) — 29 qadbea;  (Tsd + qsdr)
= 9%, " TudTs0 — 970, ' 4ats0;
and
wig* Pats — 2wag™ i = coc n(t)o’ (Q)w (9™ 4 Tt T — 6°7a; ' G0 })
+ coet "o (Qu(—g"¢; + g ¢i;).

Note that Ty = 0, (¢¥) = (8;;+O(t~1+9%)) is positive definite for e < 1and t > Ty > 1;
0'(q) = =MR+q+1)"17* < 0; by Lemma B.4 we have

G =(u+v)/2< —ct™ %+ Ce(t+ )11 < 0.

We conclude that
coeln(t)a’(q)wgaﬁqt’lTa¢T5¢ > 0.

In addition, we have the following lemma.
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Lemma 3.11. For allt > Ty, we have

|cos ()’ (9)wg**q; ' qaqsdi] < Ceoeto(q)wey.
Note that we do not need to assume that (t,z) € D in this lemma.

Proof. First, we suppose ¢(t,r,w) < t'/4. By Proposition @ and (), we have

9% (W) gagsl < (g% (u) — g**(er™"U))qags| + 9% (er™"U)qags]
< fu—er™MU| - 9 + 72705 (r — ) < 7O/AFCe,

Here we note that 9g = O(t“%) since |u| < ¢ and |v|+ >, |\i| S ¢717C° by Lemma @ We
also note that (r —t) < (g)t“® < t1/47¢¢ by Lemma B.3. Thus,
|coe In(t) o' () wg™ q; *qaqsd?| < coeIn(t) - Mg + R+ 1) Lo(q)w - tOF - t75/470= . 42
S Co€t_5/4+1/8+0€0(q>w¢t2

< coet o (el

Here we note that In(¢) < /% and that |¢,| > t~“¢ by Remark .

Next we suppose q(t,7,w) > t'/4. Since p = O(t?) and v, \; = O(t~1+C%) for all t > T4
(we do not need to assume (¢, ) € D; see Lemma B.4), we have dg = O(t°?) and |q;| = t~°.
Thus,

19°°qags| S 1m*Pqags| + [ullOg® S [pv] + ) [Nl + et 7O L e

It follows that

coe n(t)o’ (Q)wg™ q; ' qaqsdi| S coelnt - Mg+ R+ 1)"o(q)|a:] 9* qugs| - we?
< coe(Int)tYio(q) - et 15 L wep?

< coet TG (Quwe? < coet Lo (q)we?.

We now finish the proof of Proposition . Since
—9" 0 + 97005 = 061" + O(|ul|9d]*) ~ |0¢],

we have
9P dadpw; — 29" 1w > —Cloet ™ o(q)w|0|*.
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In conclusion,

d

GEAO®) 2 [ 0(-20" 001~ 20,5705 + 819" 0002) ~ Caust olayulod] do

R3
> / 20]g* upll o] — Ct~ |0 du
RS
o _ 2
> =2 ||g 6¢aﬁ”L2(w) H¢tHL2(w) — Cet™! H8¢HL2(w)

Here we note that dg** = O(st™!) because of () We also note that our constant C'
depends on ¢y from (B.39). Integrate this inequality with respect to t on [t,T] and we
conclude (B.40).

3.3.3 Poincare’s lemma

Fix a smooth function ¢(t,x) with ¢(t) € C>(R?) for each ¢t > T4 and ¢ is supported in
r >t — R. As in the previous sections, we shall assume that ¢ > T4 > 1 and ¢ < 1.

Lemma 3.12. For ¢ as above, we have

/ (t— )2l dng 062 da. (3.41)
R3 R3

Proof. Note that (r —t) ~ (r —t+ R+ 1) if r —t > —R. Then we have
/(t — )2 dr <g / / (r—t+ R+ 1)"2¢|> rdrdS.,
S2

// || r20.(—(r —t + R+ 1)"Y) drdS,
sz Jo

// L(|622)(r —t + R+ 1)"" drdS,

S2

:// (2l¢|*r + 26¢,72)(r —t + R+ 1)"" drdS,,
sz Jo

<x / / 21 + 6| - |6|(t —r) r2drdS,
S2 Jo

. </<t — )% dm) 2 (/ 6r1 + o |? dx) 1/2.
Since
/ 20¢,r " dv = /S /ooo 0,(¢*)r drdS,, = /S 2 /O T2 drds, = — / 2 da
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/yml + ¢ > dr = /¢3 da.
We then conclude () O

We can also prove a weighted version of Poincaré’s lemma. Note that the value of § in
s = eln(t) — J is chosen in the proof of the next lemma.

we have

Lemma 3.13. For ¢ as above, we have

/¢2q3(q>_2w dr < / 002w du. (3.42)

Proof. Note that (q) ~ (¢ + R+ 1) since ¢ is supported in ¢ > —R. We first claim that
whenever r —t > —R and t > T4, we have

(g )w + gwy < C’é(q>_1wqr. (3.43)

Since g, ~ |u| whenever ¢t > Ty, it suffices to prove () with ¢, replaced by |u| on the
right hand side.

Note that
Og(qr)w + grwg = w(Dy(gr) — greoeIn(t) - Mg+ R+ 1)7177)
1
= 5wy = g = cosn(t) - Mg+ R+ 1) (v — p))
1 1

= Ew(iGAq(gln(t) — &) +coeln(t) - Mg+ R+1)""Mu
+O(w(lvg| + coreIn(t) - (g + R+ 1)77Aw)).
First we suppose r < t. In this case, recall from Remark and Lemma @ that
vyl + coreIn(t) - (¢ + R+ 1)y

S Z_:t—l—f—Cs<q>—1—7 + 6t—2+Ce + Co)\é-f ln(t)(q + R+ 1)—1—>\ . et—l-i—Ca
S (et™O) T F et Lo e In(t) (g + R4 1)1 et 7O ).

In the last estimate, we note that |u| > ¢~°¢. It follows that

1 1 1
(@) + grwg < Gweln(t) - (5GA; = o~ Mg+ B+ 1)77)|pl = JwGAdp
+ Cw(gt—1+05<q>—1—y +Et—2+Ce + CO)\€ 1n(t)(q+ R+ 1)—1—)\ . Et_1+C€)|,u|
1
<weln(t) - (C(q+ R+ 1)7277 4 (=5 + Cet™ )M (g + R+ 1))l

+ C8{q) > || + Cet 7O ()T || + Cet 2O ).
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We choose ¢ < 1 and Ty > 1 so that C’»STZHCE < 1/6. We also choose ¢y >, 1 so that
coX > 6C. It follows that

1
C + (—5 + Cet™ %) o\ < 0.
Also note that (¢) < (t+ )9 (r —t) < t'7 whenever t ~ r. Thus, for € < § we have
0y (ar)w + grwy < 0+ C8(q) 77 |ul + Celg) 7 ul + Celq) || < C3{a)~" |-

Next we suppose r > 2t. As proved in Remark , we have (r + )17 < (¢) <
(r+ )" and |v,| Se(t +r) 270 + et 71O (r 4+ 1) 7177TCE Tt follows that

1
a‘](qr)w + Qrwq S we ln(t) ( < > 277 _'_ (_5 _|_ C€t71+CE)CO)\<q _|_ R + 1)717)\)’/1/’
+ Cow(q)~ 2— | + Cwlp (e (t+r)72+cs+€t71+cs(7,+t),1,v+cg>
1
)+ (Cla) 7+ (=5 + Cet )M g + R+ 1))l
(

+ Cowla) 7|l + Ceulpl(g) 2% + 17 0%(g) 17+,

< weln(t

Again, by choosing ¢ <5 1 and ¢y >, 1, we have
0y(g-)w + grwy < 0+ Cow(g) > |p| + Cewlul(q) ™" < Cow(g)™"|ul.

This finishes the proof of ()

Now we have

/ 6122 () 2w de

< C/ / 6(t, rw)|*r?q(q + R+ 1) *w drdS,,
sz Jo

= C’/ / (¢ + R+ 1)7'0,(¢*r*qw) drdS,,
s2 Jo

C/ / (q+ R+ 1)"[20¢,7°w + 2¢*rw + ¢*r20,(q.)w + ¢*r*qw,]q, drdS,
sz Jo
<C / / (¢ + R+1)"(20¢, + 2¢*r " )r’qw drdS,

s2 Jo

+ C'/ / (g+ R+ 1)*1¢27’2 . Cé(q)flqrw - gy, drdS,
s2 Jo

sc(/<|¢r|2+r21¢\wdx) (/¢ wdx)/2

+ b [ @) 6w d,
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Here the constant C'4 in the second term only depends on the scattering data, and in par-

ticular it does not depend on ¢, t or Ty. Thus, by choosing ¢ := ﬁ, we conclude that

/|¢\2q3<¢1>2w dr < /(!@!2 + 2w da.

Now recall that 7 > ¢t — R when ¢ # 0. If ¢ < t'/2 we have {¢)? < Ct and ¢, > C~'t7¢¢,
as proved before. Thus, if t > Ty > 1,

/ r2¢*w dr < (t— R)™2- Ot°° Ct/gb2q3<q>_2w dx
g<tl/2
St / ¢*q(q)w du.

If ¢ > t'/2, we have w(q) < exp(Cepeln(t) - t™*?) < C for t >4 1 and ¢ < 1. Besides,
we also have w > 1. Thus, by Hardy’s inequality,

/ r2¢*w dr < /r2¢2 dr S / 106|* dz < / 106> w d.
thI/Q

By choosing Ty > 1 and € < 1, we have

/|¢IQQ3<Q>‘2w dx < C/ o, 2w da + (J/

q>tl/2

r2|p)w dx + C/ r2|p*w dx

q<t1/2

< C/ 106w dx + C’t_HCE/ngqf(q)_Qw dx
1
<c [loofw do+ 5 [ aitayw de

This finishes the proof. O

We end this section with the following key lemma. It is crucial that we get a factor et !
instead of e¢71+“¢ in the estimate below.

Lemma 3.14. Suppose ¢ is supported in |x| —t > —R and ¢(t) € C°(R3) for each t. Let
F = g0 0,05tapy where gy, is defined in (8.3%). Then for t > Ty > 1, we have

1OF | 2ty S €t 1100 12w -

Proof. Write F' = £G(w)q,Ag + F5. By the weighted Poincaré’s lemma, i.e. Lemma ,
we have

ler™' G () Ao 1y S 2t R)_Z/qf<Q>_2¢2w do < &7 |00] 2, -
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We next estimate Fy. If —R < r —t < t/4, we _have u,,, = er U and (¢t,z) € D. As
computed in the proofs of Proposition B.7, Lemma and Proposition B.9, we have
F=er (95 qusUy + 95" 4aqsU,) mod eS™271
1 1
= e (7G(W)pgnUy + 7G(W)p*Ugg)  mod e577

4
£ o
= —gG(w)/VLAq mod S~ >7*
£ o
= EG(w)qTAq mod S~ > 1.

Here we also apply Lemma @ to control the remainder terms. Thus, Fy = O(et=2+C%(r —
t)~1) whenever —R <r—R < t/4. If r—t < —R, we have A = 0 and u,,, = 0. Thus [, = 0.
Ifr—t>t/4, we have Uy, = 0 if r —t > /2, or gy, = O(et3tCe) if t/4 <r—t <t/2 by
). In both cases, we have F' = O(er=3t¢). Moreover, whenever r —t > t/4, by Lemma
we have (q) > (r —t)(t+7)~%¢ > r17¢¢; by Lemma B.4 we have ¢, = (v — u)/2 = O(t°®).
Thus,
CGWG A S e 1 (q) T S e

It follows that Fy = O(er=3t¢¢) whenever r —t > t/4.
Since 1 < w < Ct°®, we have

I6F2l72) = [6Fxr—ecellyay + 10Fxr—iiall o

S/ €2t_4+05<7’—t>_2|¢|2 dZE+/ €2r—6+C’a|¢|2 dr
r—t<t/4

r—t>t/4

< /5215_2(15 —r)?¢* do St ||8¢H%2(]R3) <t ”angiQ(w) :

Here we use the Poincaré’s lemma, i.e. Lemma . We are done. Il

3.4 Continuity Argument

3.4.1 Setup

Fix x(s) € C°(R) such that x € [0,1] for all s, x =1 for |s| < 1 and x = 0 for |s| > 2. Also
fix a large time T > 0. Consider the equation of v = vT (¢, )

9°? (Uapp + 1)00050 = —X(t/T) g (Uapp + 1) 0aOstlapp, t > 0; v=0,t>2T. (3.44)
We have the following results.

(a) By the local existence theory of quasilinear wave equations, we can find a local smooth
solution to (E44) near t = 27.
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(b) The solution on [T7,00) can be extended to [T} — €, 00) for some small € > 0 if

||akUHL°°([T1,oo)><]R3) < o0, for all k£ < 4.

(c) The solution to () has a finite speed of propagation: v’ (¢t,z) = 0 if r +¢ > 6T or
r<t—R,so Z'(t/T)=0(1) when T/2 < t < 2T.

(d) If the solution exists for t < T, we have g*%(u)0,03u = 0 for t < T where u = gy, + v.

The proofs of these statements are standard. We refer to [30] for the proofs of (a) and
(b). In this section, our goal is to prove the following proposition.

Proposition 3.15. Fix an integer N > 6. Then there exist constants enx > 0 which depend
on N and R, such that for any 0 < € < ey, () has a solution v = vT (t,z) for allt > 0.
In addition, v=10 if r <t — R; for all |I| < N, we have

1027 0(t) || oggsy Sre(L+8)72C v >0 (3.45)

Recall that we choose R based on the support assumption (@) of our scattering data A.
It should be pointed out that the /N in this proposition is different from the /N in Theorem

We use a continuity argument to prove this proposition. From now on we assume ¢ < 1,
which means ¢ is arbitrary in (0,ey) for some fixed small constant ¢y depending on N.
First we prove the result for ¢ > Ty 4, where Ty 4 >n .4 1 is a sufficiently large constant
depending on N. We start with a solution v(¢,z) for t > T} such that for all ¢t > T} > Ty 4
and k+17 < N,

Bri(t) ==Y E.(0'Z")(t) < Byt o, (3.46)
I<k,|I|<i
lu| < Byet 110252 |19u| < Byet™!. (3.47)

Here u := v + uqyp and E), is defined in ) We remark that Cj;, By ; depend on k,7 but
not on N. Our goal is to prove that () and (@) hold with By ;, By, By replaced by
smaller constants By ;, By, By, and with Cy; unchanged, assuming that ¢ < 1 and Ty 4 > 1.
To achieve this goal, we first induct on ¢, and then we induct on k for each fixed i. For each
(k,1), we want to prove the following inequality

Z Hgaﬁ(u)aaaﬂalZIUHLz(w) < CNgt_lEk,i<t)1/2
1<k,|I|<i

3.48
+ CNgtflJrCs(Ek_u(t)l/Q + Ek—i—l,i—l(t)l/z) ( )
4 Cgt—3/2+C’€.

Here E_;. = E__; =0, and C, C are constants whose meanings will be explained later. We
then combine () with the energy estimates () to derive an inequality on Ey ;(t).
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We remark that the proof in this section is closely related to that of the energy estimates
in Section 9 of Lindblad [21].

In the following computation, let C' denote a universal constant or a constant from the
previous estimates for ¢ and ug,, (e.g. from Proposition B.2). Here C' is allowed to depend
on (k,i) or N, but we will never write it as Cy; or Cy. We will choose the constants in the
following order:

C— Co,o, Byo — CI,O> Big—-— CN,O, By
— Co,1,Bog — -+ — Cn_1,1, Bn_11
— Co2,Bo2 — -+ = Cn_22,BN_22

— Co,n, Bon
— By, By = Cn = Tna — €.
We emphasize that if a constant B appears before a constant B’, then B cannot depend
on B’.
In addition, since Ty 4 > 1 and € < 1 are chosen at the end, we can control terms like
Cye and C’NT]Qlch © for v > 0 for any (k,7) by a universal constant, 1.
o

To end the setup, we derive a differential equation for Zv from ). If we commute

() with Z7, we have
9°? (u)0,05Z" v
=[O, Zv + [¢* (u) — m™?, Z'0,05v + (9% (u) — m**)[0,03, Z'v

- ZI(X(t/T) (gaﬁ(u) - gaﬁ(uapp))aaaﬁuapp) - ZI(X(t/T)gaB(“app)aaaﬁuapp)
= R1+R2+R3+R4+R5

(3.49)

with ZTv =0 for t > 27T.

3.4.2 Pointwise bounds (B.47)

In the next few subsections, we always assume ¢ > Ty 4 > 1. Since 1 < w < Ct°e, by ()
and (B.38) we have

C7H00 2wy S 109 12y ~ Bul(@)/? < Ct 06| 1 gs) - (3.50)

Here we can choose ¢ < 1 and T 4 > 1 so that all constants in this inequality are universal.
If we combine this inequality with (B.46), we have

102" 0(t)|[} 2 gy < CEL(ZM0)(t) < CBoget™ 1+, II| =i < N,
so by the Klainerman-Sobolev inequality, we have

027 0(t)] < CBYZ et 120222 (1t 4 )1t — )12, I|=i<N—-2 (3.51)
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Note that
2t
/ (I+t+p) Wt —p) 2 dp < (1+1t) / p) V% dp
0 0

2(1+ 1)~ /1+p )"Y2 dp
0
S+

[ aseen e n P aps [ s e
2

t 2t

Thus, by integrating 9, Zv(t, pw) from p =t — R to p = r, we conclude that

|1 Z10(t)] < OBy/f et~ Coiee/?, I|=i< N -2 (3.52)
If we let I =0 in () and (), we have
|0v] < 033/225t*3/2+00,25/2’ v| < 031/2 4~ 1+Co,2¢/2

Note that |ua,] < Cet 17 and |Qu,,,| < Cet~!. This allows us to replace By, B; with
By/2,B;/2 in (@) as long as we choose Ty 4, By, By sufficiently large and ¢ sufficiently
small (e.g. C’Bé/; < By/4, C < By/4; same for By; Ty 4 > 10; Chae < 1/4).

In the follovx;ing computation, we will use (E) and () directly instead of () for
the pointwise bounds, so the choice of C} ;, B, will be independent of By, B;.

We remark that if N > 6, () and (E) allow us to extend the solution v(t,z) of
() below t = T}, by the local existence theory of quasilinear wave equations. Moreover,
these two pointwise bounds, together with Z%u,,, = O(e(1+¢)71+9¢) allow us to use Lemma

freely, as long as ¢ < 1 and Ty 4 > 1.

3.4.3 Energy estimate (B.46) with £k =:=10

Let k =i=0and fix T, <t < 2T. Now Ry = Ry = Ry = 0 in (B.49).
For Ry, since |x(t/T")| < 1, we have

||R4||L2(w)— aﬁvaaaﬁuapp
< Cet™! [00]] 2y + Cnet 27N | Jo|(t — r)~

< Cet ™ E,(v)(t)Y2

L2(w) +C H|U|(|uapp| + |U|)|82uapp|HL2(w)

1HLQ(w)

Here we apply Lemma @ in the first inequality, Lemma in the second inequality, Lemma
3.12 and (35;]) in the third inequality.

For Rs, since ug, is supported in the ball centered at origin with radius 2¢, by Proposition
we have

R5 5 S C€t73/2+0z-:.
L2 (w)
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Thus, by (), we conclude that
2T
Bo))< [ Cyer Bulo)(r) + Cer /1B, (0) (1) dr
¢

o1
_ 1/2 9 _
S/ CnBo et 2+CO’°€+C'BO,/O g2~ 2H(C+Co0/2)e g
t

< CCNBO,O€3t71+Co,06 + CB(%’/O2€2F1+(C+CO,O/2)5'

61

In particular, the constants C' do not depend on Cy or Cy;, By in (@)._If e < 1 (say
CCne <1/4) and Cyp, By are large enough (say Cp /2 + C < Cy, C’\/PQO < Boo/4), we
(i 6

obtain ) with By replaced by By /2.

3.4.4 Energy estimate (B.46) with i =0 and k£ > 0

Leti=0and k> 0and fix T} <t <2T. Now R; = R; = 0.
For R,, we have

1Bl < [l05%0. 900050, + [19°70) = m™ = g7, 010,50

=C Z H‘ah“H&kQHUle(m

k1+ko<k,k1>0

+C > 105 ul|o*ul|0%+ 20| o, -

k1+ko+ks<kk3<k

L2(w)

The second sum comes from Lemma @ By writing © = v + gy, we have the following

terms in the sums:

[10uapp 0™ 20| ¢y < Cet™" Bro(t)'/?, ky <k

H|8’“uapp||ak2+2v|||L2(w) < Cet ™R o()Y2, kp+ky <k k> 1;
H|8klv||8k2+21)|HL2(w) < CNEt_3/2+CN€Ek7Q(t)1/2, ky + ke <k, Kk >0;

110 tapp 10" uapp 107720 | 1o,y < Ce2t 202 B, o(1)V/?, k4 ko + ks < k ks < k;
H|8k1uapp||8k2v||8k3+2v|HLQ(w) < Onett™24One g o (0)Y2, ki + ko + ks < k, ks < k;
H|8klv\|8k21)||ak3+2v|HLQ(w) < OneXt™2tOne g o(1)Y2, ki + ko + ks <k ks <k,

Here we use Proposition @, (E5 I) and (553) We take L?(w) norm on the derivative of v
with the highest order, and apply pointwise bounds on the derivatives of u,,, or derivatives
of v with lower orders. Here we need N/2+1 < N — 2, ie. N > 6, to apply the pointwise

bounds. Thus, we have

| Roll 20y < Cet™ Bro(8)"? 4+ Cet™ = By o(t)"2.
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The constants here are universal, as long as we choose ¢ < 1 (say Cne < 1) and Ty
sufficiently large (say Cn/+v/In.a < 1).
For Ry, since d'(x(t/T)) = O(1) for all [, by Lemma [L.7 we have

1Rill oy < C Y |[06°0" 00uDstany A DI o Canse] PP

k1<k k1+ko<k, k2>0

+C Y (100 g+ 1000 Pt o

ki+ko+ks<k

By Lemma , the first sum has an upper bound

Cet™ Y 00" ]| ) < Cet™ Bro(t)/*.
k1<k

By Lemma , the second sum has an upper bound

Cet™ 4y 0% 0t =) 72| ogyy < Cet™HC Y (0050

ki1<k ki<k

R3)

The third sum is controlled by the second one, because [0*2u,,,| < Cet =17 < 1, and at least
one of [0¥1v| and |9*2v| are controlled by Cyet~1+EVe < 1 (since min{ky, ko } < k/2 < N—2).
In conclusion,

”R4HL2(w) S Cgt_lEkp(t)l/z + O€t_1+CEEk_170(t)l/2.

The constants here are again universal.
For Rs5, we have

Thus, by (), we have

2T
Ek70(t) S / ON€(1 + T)_IE]C’()(T) + CN&?T_H_C‘EE]C_LO(7’)1/2Ek70(7')1/2
t

||R5|| ) < Cét_3/2+ce.
L2 (w)

+ CET_?’/QJ“CEEk,O(T)I/QdT
2T
< / ONB]C70537—_2+CI€706 + CNBk7053T_2+(C+Ck’0/2+0k_170/2)6
t

n CB;/02627_—2+(C+CI¢,0/2)5 dr
< OOy Byt 4080 4 OCy By pett™HO+Cro/ 2 Civ/ e

+ CB;/2e% 1 +(C+Cho/2)e.

Similarly we can prove () with By replaced by By /2, if we assume that By, Cko are
large enough and ¢ < 1 (say CCne < 1/8, Cyo > Ci_10, C\/Bro < Bio/8).
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3.4.5 Energy estimate (B.46) with £k =0 and i > 0

Let k=0and i > 0 and fix Ty <t < 27T. Also fix Z! with |I| = i.
For Ry, we have

I Ball gy < ||l95”. 2110000

oy 107 = = g5 2110,050
L?(w

L2 (w)
<c Y iZuliez

|J1]+|J2|<i, |J1]>0

+C Z HZJluZ‘]2u82ZJ3U||L2(w) :

[J1|+]J2|+] 5| <i, | Js5]<i

The second sum comes from Lemma . Note that the second sum is controlled by the first
sum. In fact, since |Ji|,|Jo| cannot be greater than i/2 at the same time, without loss of
generality we assume |J;] < i/2 < N — 2. Thus |Z71u] < Cyet= 179 < 1 by () if we
choose ¢ < 1. For the first sum, by writing u = v 4 u4py, we have the following terms in the

sum: J 2 )
HlZ luappHa Z 2U|HL2(w)’ ’Jl‘ + ‘JQ’ S 1, ‘J1| > O,

H'ZJIUHaZZJzUHle(w) ) |‘]1| + |J2| < i? |J1| > 0.

The first term has an upper bound
Cet™ 2By, (1),
By Lemma , we can see that the second term is controlled by
CH\(t—r)’lelvHaZvamLQ(w), | o] < i.
If |J;] < N — 2, then by () we have
(=120l < (=) [ 10,27l do < C 02" (0)| gy < Civet 921,
which implies that
Ot —r)tz"ll022%0|| s, < CONt3/PTONE R (1),
If |J;| > N — 1, then |.J5] < 1. In this case, by (), () and Lemma , we have
0ZZ"20| < Cyet=3/+0n¢,

[t =)= 27 0] oy < CEE [t = 1) 2700 e
< Ct% Ey,(t)Y2.

< Ct oz

R3) UHL2(R3)
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Thus, the term above is controlled by
OCNEt_3/2+(CN+C)aE[)7i (t)1/2.

For Rj3, following the same discussion as above, we have

1Rs | 1200 < C Z H|“H(922J“H‘L2(w)
|J|<i

S Cgt_1+ca Z HGQZJUHLQ(w) + C Z H|UH82ZJU|HL2(1U)

|J|<3 |J|<3
< Cet MR (H)Y? + CCOyet 3P ONTOE Ry (112,

For Ry, since Z7(x(t/T)) = O(1) for all J by finite speed of propagation, we have

IRl o) < C D 08727000051t SR DR [Fal A
|J]<i [J1]+]J2] <[ J2|>0
0 12200270 1200 2 |

|1 |+]J2[+] 5] <i
S C&“tilEo’i(t)l/Z -+ C€t71+C€EO7Z’,1(t)1/2.

The proof is very similar to the proof on estiamte of R4 in the case ¢ = 0 and k > 0.
For Rj;, again we have
~3/2+4C
15l oy < Cet™/27C%.

For Ry, we have

0,270 $ > 1270770 <) 12700

[J1]+|J2]<d |J|<i

<Y 1Z27(9° (w)0a0sv)| + 127 ((9°° (u) — m®?)Dadsv)]
|J]|<%

S 127t/ T) g™ (w)DaOsttapy)| + 127 (977 (u) — m*)Dadpv)).
|J]|<i

Here all the constants are universal which depend only on ¢, N. The first term is simply
R, + Rs with a lower order I. The second term can be controlled in the same way as we
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control Ry, R3. In conclusion,

2T
EOJ‘ (t) S / CCN5T_1E07Z' (7') + OCNﬁT_l—FCEELZ‘_l(T)l/QEoyi(T)l/Q
t
+ 057_3/2+08E0’i (T)1/2 dr
2T
< / CCy By i837'_2+00’i6 + CCxn By i€37__2+(C+Cl,i—1/2+00,i/2)5
t

" 03017/7;2627_—24-(0-"-00,1'/2)5 dr
< CCONBoet™ 70 4 CCy Byt~ O a2 i 2)e
n CBé{i2gzt—1+(C+Co,i/2)€_

Again, we can choose By, Cy; sufficiently large such that () holds with By ; replaced by
By /2. Note that By ;_1,C1,_1 are already chosen when we consider the case k = 0,7 > 0.

3.4.6 Energy estimate (B.46) with k,i > 0

Let k,i > 0 and fix T} <t < 2T. Also fix Z! with |I| = i. This case can be viewed as a
combination of the case k = 0,7 > 0 and the case : = 0,k > 0.
For Ry, we have

af k71 af o af _ aB k71
1R2ll 2y < H[go w0z waaff“Hp(w) + H[g (w) =m™ = go"u.0°2 ]ao‘aﬁvHLQ(w

<C > [10% 27l |72 2720 ||
k1+ko<k,|J1|+]|J2|<i,k1+]|J1|>0
+C Z Hakl ZJ1 U8k2 ZJ2u82+k3 ZJSUHLZ(w) )

ki+ke+ks <k
[J1| + |J2| + |J3]| <4
ks +|J3| < k+i

The second sum is again easy to handle. For the first sum, we consider the following three
cases: k; = 0 and |J1| > 0; ky = 1 and |J;| = 0; all the remaining choices of (k,J;). For
the first case, we apply Proposition @ and Lemma to obtain a factor (¢t — r)~! with
one O replaced by Z; for the second case, we use |Ju| < Cyet™'; for the third, we use (@)
directly. The proof here is very similar to the proof in the previous cases. We thus have

[R2ll 20y < Cwet™ By i(8)? + Cnet 7 (Br14(0)'? + Epria(t)'?).
For R3, we have

| Rsll 2y < C Z H‘“HakﬁQZJ“’Hp(w)'

ki <k,|J|<i
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We can use Proposition @ and Lemma [1.4 to obtain
R3]l 20y < Cwvet™ By i(8)? + Cyet ™ (Bro13(0)'? + Eppaia (8)?).

For R4, we have

IRall oy <C D
k1 <k,|J|<i
+C Z |||ak12leHak2+2ZJ2uapp|HL2(w)
k1+ko<k,|J1|+]J2|<i,ka+]|J2|>0
+C > 10" 27 0[ (10" Z720] + (0" 2ty )| 0" 2"t | 2

ki+ko+k3s <k
[Ji| + |J2| +|J3] <4
ks + |J3| < k+1i

< Onet ' By ()% + Cyet O (B ()Y + Epyr1(0)Y?).

’ 98‘58]“ Zjvﬁaﬁﬂuapp

L2 (w)

This can be handled in the same way as we handle Ry in the case k = 0,2 > 0or+ =0,k > 0.

For Rj;, again we have
1Rs |l 2y < Cet™/2+€=,

For Ry, since [,0%Z!] = 0*[0, Z!], we can conclude that the L?(w) norm of R; can be
controlled by the bounds of the L?*(w) norms of all other R;.
In conclusion, we have

2T
Ekyz(t) S CCNéTTilEkﬂ'(T) —+ CCN&“TilJrCE(Ek,Li(T)l/Q + Ek+17¢71(T)1/2)Ek7¢(7')1/2
t
+ 06773/2+C€Ek,1-(7')1/2 dr
2T
< C’CNBk i€37-*2+0k,¢€ + CC’NBk i€37—*2+(c+ck+1,i71/2+Ck71,i/2+ck,i/2)€
t

+ C’B,i/,2e’527'*2+(c+c’“vi/2)6 dr
K
< CCy B, i€3t—1+ck,i5 + CCy B i€3t—1+(C+Ck+l,i—1/2+ck—1,i/2+ck,i/2)5

+ CB;/‘2€2t—1+(C+Ck,i/2) )

Again, we can choose By, ;, Cy; sufficiently large such that () holds with By ; replaced by
Byi/2. Note that Byi1,-1,Cry1i-1, Bi—14, Ck—1, are already chosen when we consider the
case k,1 > 0.

3.4.7 Existence for 0 <t <Ty 4

In the previous subsections, we prove that there exists a solution v to () for all ¢ >
with () hold for all [/| < N and t > Ty 4. Now we finish the proof of Proposition

Eﬁﬂ
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by extending the solution to all ¢ > 0. At a small time, u,,, does not approximate u well,
but w,,, and all its derivatives stay bounded for all (¢, z) with 0 <t < Ty 4. See Proposition
. So, it is better to use () to control u directly instead of using (@)
Fix N > 6. By using the pointwise bounds in Proposition and the support of gy,
we have

HZIUapp(t)”LZ(R:s) S_,I,N,R g, 0 S t S TN,A~
Thus, it suffices to prove that the solution u to (@) with © = v 4 ugpp for t > Ty 4 exists
for 0 <t < Ty 4, with
H8Z1u<t>HL2(]R3) 5[7]\[,3 g, OStSTN,A, |]| SN
If we apply Z! to (@), we have

9P (u)0,0sZ u = [0, Z u + [g*% (v) — m*?, Z"0a0pu + (9°° (1) — m*?)[0,05, Z']u.
(3.53
We can now set up the continuity argument. Suppose that we have a solution u to (
for 71 <t < T 4 for some 0 < T} < Ty 4, such that

)
)

10Z"u(t)| 1o sy < Be, [I| <N, Ty <t <Tya. (3.54)

Here B = By depends on N. We remark that () implies () for t < Ty 4, where the
power is the same but the constant in <; now depends on N. This is because 1 <y t~/2+¢re
for t < T 4, assuming € < 1.

By the Klainerman-Sobolev inequality, we conclude that for ¢ > T}

0Z1u(t,z)| < CBe(1+t+7)"Yt —r)~V2 [I|] <N -2

and
| Zu(t, )| < CBe(14t)72 |[I| <N —2.

The proof of the second estimate is similar to that of () Thus, assuming ¢ < 1, from
(353) we have for [I| < N

9% (1) 0032 u| < C > | Z7u||0*Z% |
||+ K< K<
<C > (t — YV 2 u||0Z 2% u)
||+ K< K<
< Cve Y (10Z7u] + (t — )7 Z27u)).

RASH

Here we apply Lemma in the first inequality and the pointwise bounds in the third one.
Note that if |J| + |K| < |I] and | K| < ||, then min{|J|, |K|+ 1} < N/2+1 < N —2 when
N > 6.
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Now we can use the standard energy estimates, say Proposition 2.1 in Chapter I in Sogge
[B0] or Proposition 6.3.2 in Hormander [[7]. We apply the Poincaré’s lemma, i.e. Lemma @
to (t — r)~YZ7ul, so its L2(R?) norm is controlled by the that of |0Z7u|. By setting

= > 19200 |

[I|<N

for small ¢ < 1, we have

Tn,A Tn,A
EN<t)1/2 S Z(EN<TN7A)1/2+CN6/ EN(T)1/2 dT) exp(/ CN6 dT)
t t
< CNE + CNBI/2E2.

Then by choosing € small enough and B large enough, both depending on N, we can replace
B with B/2 in (@) We are done.

Finally, we remark that for each |[I| < N and e < 1, we can apply Proposition M with
N replaced by N = max{6, ||} < N. Note that when ¢ <ey <eyand T > Ty a4 > T g,
the solution for N and the solution for N’ are exactly the same. But the constants in (B.45)
now depend on max{6, |/|} instead of N. This allows us to remove the dependence of N in
the coefficients of (@)

3.5 Limit as T — o0

Our goal for this section is to prove the following proposition.

Proposition 3.16. Fix N > 6. Then for the same ey in Proposition and for 0 < e <
en, there is a solution u to @) in CN=4 for all t >0, such that for all |I| < N —5

102" (1 = wapp) ()] o sy Sr (L +6)24C%, ¢ >0, (3.55)
Besides, for all |[I| < N =5 andt >4 1,
1071 (w0 — wapp) (t, 1) <t et V2O (p )T — )TV, (3.56)

| Z7 (1 — tapy) (t, )| S min{et 17O gt =3/24Cre (1)1, (3.57)

It should be pointed out that the value of “N” in Theorem @ is equal to N — 4 for the
N in this proposition.

From now on, the constant C' is allowed to depend on all the constants in the previous
sections (say Cy, By, N), but it must be independent of € and 7.
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3.5.1 Existence of the limit

Fix N > 6 and T, > T} > 1. By Proposition , for each 0 < € < ey, we get two
corresponding solutions v; = v’ and vy = v*2 which exist for all + > 0. Our goal now is to
prove that v; — vy tends to 0 in some Banach space as T, > T} — oc.

Recall that en. Ty 4 are independent of the choice of T', as long as T > Ty 4. In addition,
v and v, satisfy (b.45), (B.46), %), (@) and (), as shown in the continuity argument,
for t > T 4, and they satisfy (B.54) along with the pointwise bounds for 0 < ¢ < Ty 4. All
the constants involved in these estimates are independent of 7. We define u; = v™* + u,y,,
Uy = 072 + Uy, and 0 = v’2 — ™1, Then, for t > T} and |I| < N, by (), we have

||azla(t)“L2(]R3) S ||8ZIU1(t)||L2(]R3) + HaZIU2(t>HL2(R3) S C€2T1_1+C€.
In addition, for t < T} (now x(t/T1) = x(t/T») = 1) and for each |I| < N, we have

9% (u1)0,03 20 = [0, Z" o + [°° (u1) — m™®, 2100050 + [9%° (1) — g% (w1), Z']0n0pvo
+ (97 (ur) = m*?)[0a03, Z']0 + (9°° (u2) — g°" (u1))[0a0p, Z"J02
= Z"((9°" (uz) — g°" (u1))BaOpttapy) — (9°7 (uz) — g°" (1)) 00052 " v>.
(3.58)
Define a new energy
Epi(t):= > E,(0'Z'0)(t).
I<k,|I|<i

Here FE,, is defined in () with u replaced by w;. For k +i < N — 3 with |I| = 4, and for
t > T a we have

19°% (u1) 00 050" 2% < Ot Eyi(t) 2+ Cet ™ (B () + Epyrir (8)2) (3.59)

lisc
with E,L_ = E_,,l = 0. This is a simple application of Lemma @, Lemma and the
estimates for uy, vy, ug, vo. We skip the detail of the proof here, since it is very similar to the
proof of () on Ej ;. However, we should always put L?(w) norm on the terms involving
v and put L* norm on terms involving uq, us, v1,vs. The pointwise bounds only holds for
|I| < N — 2, as seen in (@) and (@), so we need to assume k +¢ < N — 3 instead of
k41 < N above. Besides, there is no term like R5 in the previous section, so we expect E;“
to have a better decay than L ;.

Since (ﬂ) and (B.52) hold for vy, we can apply energy estimate () for E,,. Thus,
for all Ty 4 <t <7Tj and for k +7 < N — 3,

T _
Epi(t) < CT7° + B / et By i(T) dr
t

T _ ~ -
+ C’e/ 7‘_1+C‘3(Ek_1,i(7')1/2 + Ek+1,i_1(7')1/2)E;m(7')1/2 dr.
t
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Using this estimate, we claim that E’k,(t) < Ce2TH for all k+i < N — 3. Here C
may depend on k,i. To prove this claim, we first induct on ¢ = 0,1,..., N and then on
k=0,...,N—3—ifor each fixed i. If we fix (k,7) and let V' (¢) = V},;(¢) be the right hand
side, then we have
dV/dt = —Bet ™ Ej,(t) — Cet O (Ey_1(t)"/? + Ejpri1 (8)'/?) By (1)
> —Bet 'V (t) — Cet O (Ep_1; ()% + B ()V2)V ()2
Thus,

d 1 dv/dt
tB€/2 V)= B t—1+BE/2 V tBE/Q
V) = Be VV 1512

= BBtV 4 aV/dt
N f)

_C€t71+(C+B/2)E(Ek7Li(t)l/Z + Ekﬂ,iq(t)lﬁ)
_O€2t71+CET171+CE'

(AVARIY,

The last line holds by induction hypothesis. We then have

T
1512, ) < TP V0T + / Cle2q—IHCepL/2HCe g
t
and thus for all ¢ > Ty 4, we have
Eri(t) < V() < 55V (t) < C2THHCe,

Here C in different places may denote different values.
For 0 <t < Ty 4, we can also prove that

—1/2+C
102" (v2 = v1)(8)| o gy < COneTy/*FN.
The proof is very similar to the proof in Section @ We can use the equation

9% (11) 0605 (uz — u1) = — (g™ (uz) — g (1)) 0aOpus

and apply the standard energy estimates to establish the continuity argument. Again, we
can remove the dependence of N in the constants, using the same argument in Section @
By (), for each |I| < N — 3 and ¢ < 1, we have

Stgg HaZI(U? - U1)<t)HL2(R3) < C"€T1_1/2+a€ =0

as Ty > T7 — oco. By the Klainerman-Sobolev inequality and

/ (Lttp) Mt p)y 2 dp < (1+1)7,
0
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for all |I| < N — 5, we have

sup |02 (vy — v1)(t, x)| < CeTT 279 5 0
t>0, z€R3

sup |ZI(1)2 —u)(t,z)] < C’&?Tl_l/erCE — 0,
t>0, r€R3

as Ty > Ty — oo. Then, there is v>° € CV4({(¢,z) : t > 0}), such that 0Z1vT — 9Z1v>
and Z'vT — ZTv*> pointwisely for £ > 0 as T — oo, for each |[I| < N — 5. It is clear that
the pointwise bounds (@) and (@ also hold for v*> for [I| < N —5. By Fatou’s lemma,
for each |I| < N — 5 we have

10210 ()] 2 gay < liminf 02707 (#)]| o(ga) < Cra(1+)7HO=(3.60)
Meanwhile, if N > 6, then by taking 7" — oo in
g’ (Uapp + UT)aaa,BUT = _X(t/T)gaﬁ(uapp + UT)aaaﬂuapm

we conclude that u™ := v 4 u,,, is a solution to (@) for t > 0.

3.5.2 End of the proof of Theorem 3.1

For t > T4 > 1 and t < 3t/2, we have u,,, = er U if r < 5t/4, and O*Z" (ugpp,er~U) =
O(et=F=14C=) if t /4 <r —t < t/2. See the proof of Proposition B.2. Thus,

02" (Uagy — er ' U)(t, ) [ Xjaj<stye Sr et 2T
and . .
102" (uapp — er U)<t>HL2({mER3: |z|<3t/2})
_ I -1
= [0Z"((1 = v(r/t))er U)<t>HL2({zeR3: 5t/4<|x|<3t/2})
<pet 2t |{z e R3: 5t/4 < x| < 3t/2}Y?
<I gt71/2+01€.

These two bounds allows us to get the estimates in Theorem @ from (), (B.56) and
(@), since

U — Ugpp = (U - 67/’_1[])X|Jc\§3t/2 - (uapp - 5T_1U)X\x|§3t/2 + UX|z|>3t/2-

z

Iso remark that starting from the estimates in Theorem @, we can also derive (),
) and ( 3.5%), using the essentially same derivation here.
y (B.60), for ¢t >4 1, we have

=2

(0 = ) (1™ — ) (t,2)] S et /2O (Lt ),
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Since 1 (r/t) = 0 unless t ~ r, for t >, 1 we have

(0 = O )ttapp = (O — O ) (er 0 (r/)U)
= —er YU + er_lgb,qu + el ity U,
+er M2t —r)Q'U
= —2er A + O(et29%),

When r < 5t/4, we have » = 1 or A =0, so here we have VA = A. When r > 5t/4, we have
(1= (/1) Alg(t, 7, w), )| S {alt,rw) 7 S (E+r) =)™ S (E+r) T

Here we apply Lemma @ and we note that (r —t) ~r ~ (t+r) if r > 5t/4. In summary,
for all £ >4 1, we have

2
(0= 0 )u + —Alglt, r,w), w)| S et~ (3.61)

This finishes the proof of part (iii) in Theorem @

3.5.3 Uniqueness

Now we give a brief proof of the uniqueness statement given in the remark of Theorem @
It suffices to prove the uniqueness of Proposition @, assuming N > 11 and € < 1. This is
because (B.SS), (B.56) and (B.57) are equivalent to the estimates in the main theorem, even
if we replace 5/4 with a fixed constant x > 1. We refer to Section E for the proof.

Now, suppose we have two CV~* solutions w;, us constructed in Proposition E Fix
T > 1. We can prove that H@Zl(ul - u2)(t)H S eT~ Y2+ forall t > 0 and |I| < N — 10.
Here the constants are independent of T'. The proof is essentially the same as that in Section
B.5.1. Let T'— oo and we get u; = us.
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Chapter 4

Asymptotic Completeness

4.1 Introduction

In this chapter, our main goal is to prove the asymptotic completeness for our model equation.
For a fixed global solution u constructed in Lindblad [21], we seek to find the corresponding
asymptotic profile and scattering data.

We start the proof with construction of a global optical function ¢ = ¢(¢,z). In other
words, we solve the eikonal equation ¢*’(u)g.gs = 0 in a spacetime region  contained
in {2r > t > exp(d/e)}. Here 6 > 0 is a fixed parameter. We apply the method of
characteristics and then follow the idea in Christodoulou-Klainerman [4]. By viewing (gas),
the inverse of the coefficient matrix (¢®’(u)), as a Lorentzian metric in [0,00) x R3, we
construct a null frame {e;};_, in Q. Then, most importantly, we define y,, for a,b = 1,2
which are related to the Levi-Civita connection and the null frame under the metric (gag).
By studying the Raychaudhuri equation and using a continuity argument, we can show that
the try > 0 everywhere. This is the key stIn addition, we can prove that ¢ = ¢(t,x)

1.2.

is smooth in some weak sense (see Section ). We refer our readers to Section and
Section for more details in the proof.
Next, we define (u, U)(t,x) := (q¢; — ¢r, & *ru)(t, z). The map
Q —[0,00) x R x §*: (t,x) — (elnt — 6,q(t,x), z/|x|) := (s, q,w)

is an invertible smooth function with a smooth inverse, so a function (i, U)(s, ¢, w) is ob-
tained. It can be proved that (u, U)(s, ¢, w) is an approximate solution to the reduced system
(@), and that there is an exact solution (11, U)(s, ¢, w) to(@) which matches (u, U)(s, q,w)
as s — 0o0. A key step is to prove that A(q,w) := —% im0 (U, (s, g, w) is well-defined
for each (¢,w). The function A is called the scattering data in this chapter. We also show a
gauge independence result, which states that the scattering data is independent of the choice
of the optical function ¢ in a suitable sense. We refer our readers to Section @ and Section

Finally, we construct an approximate solution u to (El!) in 2. The construction here is
similar to that in Section 4 of [34], or in Section B.2 in this dissertation. That is, we construct
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a function ¢ by solving
&t - ar - :U’(‘Slnt - 57 §<t7x)7w)
by the method of characteristics, and then define

u(t,z) == er 'Ulclnt — 6,4(t, z),w).

Then, in €2, ¢ is an approximate optical function, and % is an approximate solution to (EI)
In addition, near the light cone ¢t = r, the difference u — u, along with its derivatives, decays
much faster than et~ 17¢¢. Since u and its derivatives is of size O(et=11¢¢), we conclude that
u offers a good approximation of u.

A more detailed discussion is given below.

4.1.1 Construction of an optical function

Let u = u(t, z) be a global solution to (@) and (@) constructed in Lindblad [21]. Here we
fix a constant R > 0 such that supp (ug,u1) C {|z| < R}, so we have u = 0 for |z| > t+ R by
the finite speed of propagation. Our goal in this section is to construct an optical function,
i.e. a solution to the eikonal equation

gaﬁ(u)qacw = 0. (4.1)

Here we do not expect to solve (@) for all (¢t,z) € Rtl;?’. Instead, we solve it in a region
QcC Rt{jg?’ which is defined by

Q:={(t,x): t>To, |z| > {t+Ty)/2+2R}.

Here Ty = exp(d/e) and § > 0 is a fixed constant independent of . We also assign the initial
data by setting ¢ = r — ¢t on 9. It is then clear that ¢ =r —t in QN {r — ¢ > R}, so from
now on we focus on the region QN {r —t < 2R}.

To construct an optical function, we apply the method of characteristics. In fact, the
characteristics for (@; are the geodesics with respect to the Lorentzian metric (gns) which
is the inverse of the matrix (¢*°(u)). Moreover, we only need to study those geodesics
emanating from the cone

H:=00n{t>Ty} ={(t,x): t>Tp, |z| =(t+To)/2+2R}.

Now we follow the idea in Christodoulou-Klainerman [4]. Fix T' > Tj and suppose that
the optical function exists in Qp := QN {t < T,r —t < 2R}. Then, every point in Qr can be
reached by a unique characteristic emanating from H. We first define a null frame {ej}}_,
in Q7, such that e, is tangent to the unique characteristic passing through that point. We
then define the second fundamental form of the time slices of the null cones:

Xab = (De, €4, €), a,b e {1,2}.
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Here D is the Levi-Civita connection associated to the Lorentzian metric (gas), and (-, ) is
the bilinear form associated to the metric (g,3). We now use a continuity argument. Suppose

that in Q27 we have

_ —1 < —2+B€‘
Inax [Xap — 0| < At (4.2)

The positive constants A and B are both independent of € and T'. Our goal is to prove that
() holds with A replaced by A/2. It follows that trx := x11 + 22, sometimes called the
null mean curvature of the level sets of ¢, is positive everywhere, and that the characteristics
emanating from H will not intersect with each other. This allows us to extend the optical
function to Q. for a small € > 0, such that (1.9) holds everywhere in Qr,.. We conclude
from this continuity argument that the optical function exists everywhere in €.

In order to prove that (@) holds with A replaced by A/2, we make use of the Raychaud-
huri equation

64(Xab) = - Z XacXch + FgﬁezezfXab + <R(€4, ea)€47 €b>7
c=1,2

which describes the evolution of x along the null geodesics foliating the light cones. In this
equation, I'f,’s are the Christoffel symbols, and (R(X,Y)Z, W) is the curvature tensor, both
with respect to the Lorentzian metric (gn5). Note that we have a decomposition

(R(es, ea)ea, ep) = es(f1) + fa

where f; = O(st727%¢) and f, = O(et=3+9¢); see Lemma for a more accurate statement.
We also refer our readers to Corollary 5.9 in [29] for a similar decomposition of curvature
tensors. Moreover, it follows from () that

leales(u)) +r 7 es(u)| S eATTEE ea(es(w))] S et

Combining all these estimates and the Gronwall’s inequality, we are able to prove (@) with
A replaced by A/2.

So far, we have constructed a global optical function ¢ = ¢(¢,x) in © which is C? by
the method of characteristics. In fact, the optical function ¢ = ¢(¢,x) is smooth® in € in
the followings sense: for each integer N > 2, there exists ey > 0 such that ¢ is a CV
function in €2 for each 0 < ¢ < ey. Moreover, if Z is one of the commuting vector fields:
translations 0,, scaling t0;, + r0,, rotations x;0; — x;0; and Lorentz boosts z;0; + t0;, then
in Q we have Z1q = O({¢)t°?) and ZQ;;q = O(t°?) for each multiindex I and ¢ <; 1. To
prove these estimates, we introduce the commutator coefficients {f,lﬁ k2}1§k17k271§4 for which
we have [ey, , e,] = &, ;e We also introduce a weighted null frame

(‘/17 ‘/27 ‘/37 ‘/4) = <T617 reg, (3R —r+ t)@g, t€4)

ISee Section |4.2. l|. In particular, a smooth function may not be C*°.
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which combines the advantages of a usual null frame {e;} and the commuting vector fields
Z’s. By computing e, (V! 5,@1 x,) for each multiindex I and applying the Gronwall’s inequality,
we are able to obtain several estimates for V! (5,21 k,); see Proposition . These estiamtes
for £ then imply the estimates for ¢, so we finish the proof.

We finally remark that the map

Q —[0,00) xR x §?: (t,x) — (elnt — §,q(t,x),z/|z|) := (s,q,w)

is an invertible smooth function with a smooth inverse. This is because ¢, > 0 everywhere
in Q. Thus, a smooth function F' = F(t,z) induces a smooth function F' = F(s,q,w) and
vice versa.

4.1.2 The asymptotic equations and the scattering data
For each (t,z) € €2, we define

wu(t,x) == (q — q-)(t, ), Ult,z) == e 'ru(t, ).

We then obtain two smooth functions p(s,q,w) and U(s,q,w) as discussed at the end of
Section {.1.1].

To state the results in this subsection, we introduce a new notation R; , for each s,p € R.
For a function F' = F(t,z) defined in QN {r —¢ < 2R}, we write F' = R, if for each integer
N > 1 and for each ¢ < 1, we have

ST VHE) St g, W(ta) € QN {r —t < 2R}

<N

Here recall that {V,} is the weighted null frame.
By the chain rule, we have

Oy = (0 — g, D),  Og=q,'0r,  Ou, =70 — qiq, 'O,).

Then we can express (05, d,, J,,) in terms of the weighted null frame {V,}. In fact, we have

0,=> e'RooVa+ (" +Ra0)Va, 9= RV,
k

0o = RogogVi+ > eiVa=> Rooli.

k£3 a k£3
Meanwhile, from () and e4(e3(q)) = —I‘gﬂei‘efeg(q), we can show that

ea(es(u)) +rtes(u) = eR_s, es(es(q)) = —ieg(U)G(W)€3<Q) +eR_qp.
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Combine these estimates, and we obtain that

1
Ospt = ZG(w)u2Uq +e "R 10,
: (4.3)
o,U, = _ZG(W)’“U‘JQ +e MR .

That is, (u, U)(s, ¢, w) is an approximate solution to the geometric reduced system (@)
Next, we note from ({.3) that ds(uU,) = O(e71¢71%¢¢). By integrating the remainder
term e~ 147 1C¢ (viewed as a function of s) with respect to s, we can show that {(uU,)(s, ¢,w) }es1

is uniformly Cauchy for each (¢,w) € R x S%. Thus, the limit

1
Algw) = =5 lim (uUg)(s, ¢, w)

exists and the convergence is uniform in (¢, w). This function A is then the scattering data
in the asymptotic completeness problem.
Similarly, we can show that for each m and n, the limit

1 3 m an
Amn(g,w) = =5 Tim ((q)8y)" I (uUy) (s, ¢, w)
exists and the convergence is uniform in (¢,w). The uniform convergences of these limits
imply that
((9)09)" 05 A(g, w) = Amn(q,w).

Following the same method, we can define

Ar(g.w) = im exp(36(w) Alg,w)s)ils,4,),

§—00

1

As(q,w) := lim eXp(—ﬁG(w)A(q,w)s)Uq(s,q,w).
S$—00

Both of these limits exist and have derivatives of any order with respect to ¢ and w, as long

as ¢ is sufficiently small. It is clear that A;A; = —2A, so we obtain an exact solution to the

reduced system (2.4):

(s, 0,6) = Ar(0,0) exp(~ 5G(@) Alg,)s),
(4.4)

yfs,,) = Aa(0,) expl5Gl) Alg, )9),

By assuming lim, ﬁ(s,q, w) = 0, we obtain a unique function U = fj(s,q,w). By the
definition of (A, Ay, As), we expect the (u — g, U — U), along with their derivatives with

respect to (s, q,w) of any order, decays faster than p and U.
We refer our readers to Proposition ¢.49 for a complete list of estimates.
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4.1.3 Approximation

We now show that the exact solution (@) gives a good approximation of the exact solution
u to (L1).
We first solve

G — G- = pleln(t) = 9,q(t,z),w) in QN{r—1t<2R}; g=r—t whenr—t>2R

and set N
u(t,r) = er'U(eln(t) — 6,q(t,v),w) in QN {r—t<2R}.

Then, we can prove that w is an approximate solution to (@) in the following sense: for
each integer N > 1 and ¢ < 1, we have

S 12 (g7 (@)0a0510)| S et in QN {r—t < 2R}.

<N

(4.5)
To make our proof simpler, we introduce a new function F' = F(¢,w) such that F, = —2/A,.
It can be shown that ¢ — F(g,w) has an inverse ¢ — F(q,w). Now we define A(q,w) :=
A(F(q,w),w) and define (f1,U,)(s,q,w) by replacing (A;, Az, A) in (@) with (=2, A, A).
Then, ¢(t,x) := F(q(t,z),w) is a solution to

G — Gr = p(elnt — §,q(t,z),w) in QN{r—t<2R}; Gg=r—t whenr—t>2R.

In addition, we have

~ ~

U(eln(t) — 6,q(t,x),w) = U(eln(t) — 6, q4(t, x),w).

We can now follow the proof in Section 4 of [34] to prove (@)

In order to estimate u — u, we set p(t,z) := F(q(t,x),w) — ¢(t,z) in 2. We claim that,
for each fixed v € (0,1/2), an integer N > 1, and for each ¢ <, y 1, whenever (t,z) € Q
such that |r —t| < 7, we have |Z1p(t,z)| < 714 (r —t) for each |I| < N. To show this
claim, we compute p; — p, and apply a continuity argument. This claim then implies that,
under the same assumptions on v, N and ¢, whenever (¢,z) € Q such that |r —¢| < t7, we
have |Z1(u — @)(t, z)| < et=2+C(r —t) for each |I| < N. Recall from Lindblad [21] that we
only have ZTu = O(et~17%¢), so u provides a good approximation of u.

4.1.4 The main theorem

We now state the main theorem which is a summary of the previous subsections. In this
theorem, we say that a function f = f(¢,x) is smooth if for each large integer N, f is CV
whenever ¢ <y 1. See Section §.2.1 for details.

Theorem 4.1. Let u be a smooth solution to the Cauchy problem (EI) and (@) Fiz a
constant R > 0 such that supp (ug,uy) C {|z|] < R}, sou =0 for |x| >t + R by the finite
speed of propagation. Set Ty := exp(d/e) for a fized constant 6 > 0. Then we have
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a)

There exists a smooth solution to the eikonal equation
9°?(u)0aq0sq = 0 in Q; q= x| —t on 0.
Here the region 2 C ]R%;?’ is defined by
Q:={(t,z): t>Ty, |z| > (t+Ty)/2+ 2R}.

In Q, for each I we have

1Z"q] S ()t > 127 St
1<i,j<3
Moreover, the map
Q —[0,00) x R x §*: (t,x) — (elnt — §,q(t,z), z/|x|)

is an invertible smooth function with a smooth inverse. Thus, a smooth function F =
F(t,x) induces a smooth function F' = F(s,q,w) and vice versa.

InQ, we set (u,U)(t,x) := (¢—qr, e ru)(t, ) which induces a smooth function (u, U)(s, q,w).
Then, (p,U)(s,q,w) is an approzimate solution to the geometric reduced system (R.4) in
the sense that

1
Osjt = ZG(w)LLQUq +e "R 1,

1
oU, = _ZG<M)“U‘IQ +e 1R 1.

Here the notation R, . has been defined in Section . In addition, the following three
limits exist for all (¢,w) € R x S%:

1.
A(Qv CU) = _5 SlLI&(MUq)(S, q, UJ),
] 1
Av(g,0) 2= lim exp(3G(@)Alg,))u(s, 0,1),
. 1
As(q,w) := lim eXp(—éG(w)A(q,w)s)Uq(s,q,w).

§—00

All of them are smooth functions of (q,w) for e < 1, and we have A1As = —2A. By
setting

~ 1
(s, q,w) = A exp(—iGAs),

1
U,(s,q,w) := Ay exp(éGAs).

we obtain an exact solution to our reduced system (@)
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c) We define u_ = u(t,z) as in Section . The function u = u(t,x) is an approzimate
solution to ([L.1l) in the following sense:

\Zl(go‘ﬁ(ﬁ)ﬁaaﬁﬂ)(t, z)| < et 30, V(t,x) € Q, VI.

Moreover, if we fix a constant 0 <y < 1 and a large integer N. Then, for e <,y 1, at
each (t,x) € Q such that |r —t| <17, we have

1Z (u— )| S, et 25 (r — 1), V|I| < N.

Remark 4.1.1. We choose the region €2 in a way that ¢ ~ r in QN {r —t < 2R}, that
t > Ty = exp(d/e) in Q, and that u = 0 in QN {t = Ty}. The proof in this chapter is
expected to work if we start with a different region €2 with these three properties hold. For
example, we can replace the definition of €2 with

Q=Q.s:={(tz): t>exp(d/e), |x| —exp(d/e) —2R > k(t —exp(d/c))}

for some fixed constants 6 > 0 and 0 < x < 1. For different pairs of (k,¢), we do not expect
to get the same scattering data. However, Proposition States that the scattering data
associated to different regions €2, s are in fact related to each other in some sense. This is a
result on gauge independence.

Remark 4.1.2. In our construction, we fix a parameter § > 0 and solve the eikonal equation
in a region contained in {t > exp(d/e)}. In fact, the proof in this chapter is expected to
work for each fixed § > 0. However, we do not simply set 6 = 1 here. Instead, we choose a
sufficiently small § > 0 which depends on the pair (ug,u1), such that the nonlinear effects
of () are negligible until we reach the time exp(d/¢). For example, we can set ¢ to be the
small constant ¢ in the almost global existence result.

Remark 4.1.3. We compare the results in this work with those in Deng-Pusateri [G]. First,
the approximation result (i.e. part ¢) in Theorem @) is better_than that in [G] (i.e. The-
orem 2.3). This suggests that the geometric reduced system (R.4) gives a more accurate
descriptions of the global solutions to () than the Hormander’s asymptotic PDE (@)
does. Further, the proof in this chapter relies on the null geometry while the authors in [f]
made use of the spacetime resonance method.

4.2 Preliminaries for this chapter

In addition to Section , we need to introduce some notations and lemmas which are only
used in this chapter.
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4.2.1 A key theorem and a convention
This chapter is based on the following global existence result.

Theorem 4.2 (Lindblad [21]). Fiz a large integer N > 1. Then, for ¢ <y 1, the Cauchy
problem (@) with the initial data ([L.2) has a global CN solution u = u(t,z) for all t > 0.

Moreover, we have pointwise decays: Z'u = Or(e(t)~1+%) for each multiindex I such that
|I| < N. Moreover, we have du = O(e(t)™1).

Most of the functions in this chapter have similar properties. That is, they depend on
a small parameter ¢, and they are CV for any large integer N as long as ¢ <y 1. For
convenience, we make the following definition.

Definition 4.3. Fix a function f = f.(¢,2z) which depends on a small parameter . In this
chapter, we say that f is smooth, if for each large integer N, f is CV whenever ¢ < 1.

Following the same spirits, we say that all derivatives of a function satisfy some properties,
if for each large integer N, all its derivatives of order < N exist and satisfy such properties
whenever ¢ <y 1.

We remark that under this definition, a smooth function does not need to be a C*
function. It would be more convenient to work with this seemingly strange definition.

Under such a convention, we can state Theorem as follows: For ¢ < 1, the Cauchy
problem () with the initial data (@) has a global smooth solution v = u(t,z) for all
t > 0. Moreover, we have pointwise decays: ZTu = O;(e(t)~1t¢1¢) for each multiindex I and

Ou = O(e(t)™h).

4.2.2 The null condition of a matrix

The definition and lemmas in this subsection will be used in Section . In this subsection,
we assume that every matrix is in R*** and is a symmetric constant matrix.

Definition 4.4. A matrix g = (¢*%), 0,123 satisfies the null condition if
9°P¢,65 =0, whenever £ € R'? and |&|* = |67 + &) + &%

We remark that a real symmetric constant matrix ¢ satisfies the null condition if and

only if g*?¢,np is a linear combination of —&yng + Z?:1 &n; and Eang — EpMa-
We start with the following useful lemma.

Lemma 4.5. Suppose g is a constant matrix satisfying the null condition. Then, for any
two functions ¢ = ¢(t,x) and ¥ = (t, ), we have

Z(9°P patrs) = 9% (0aZd) s + 9°P 00 (05 20) + 977 batls.

Here g1 is another symmetric constant matriz satisfying the null condition. Moreover, if
Z =Qyj for 1 <i,j <3 and if (¢°°) = (m*P) is the usual Minkowski metric, then g, = 0.
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We refer our readers to Lemma 6.6.5 in [[7] for the proof.
In addition, we have the following pointwise estimates related to the null condition.

Lemma 4.6. Suppose g is a matriz satisfying the null condition. Then, for any two functions
¢ =o¢(t,x) and Y = Y(t,x), if t ~r > 1, we have

197 Gathsl S ()71 (1Z0|0V] + 122 ]106]).

Here |Zf| =322, |27 f| for a function f = f(t,z).

We refer our readers to Lemma 1.5.4 in [30] for the proof.

4.3 Construction of the optical function

Let u = u(t, x) be a global solution to () and (@) constructed in Theorem @ If we fix
a constant R > 0 such that supp (ug,u1) C {|z| < R}, then u = 0 for |z| > t + R by the
finite speed of propagation. Our goal in this section is to construct an optical function, i.e.
a solution to the eikonal equation

9°?(u)0aq0sq = 0 in Q; q = |z| —t on 09. (4.6)
The region 2 C Rtl:,;‘g is defined by
Q:={(t,x): t>To, |z| > {t+Ty)/2+2R}. (4.7)

Here Tj := exp(d/¢) for a fixed constant 6 > 0.
Our main result of this section is the following proposition.

Proposition 4.7. The eikonal equation (@) has a global C* solution in the region €.

In Section .4, we will show that this C? solution is in fact smooth (in the sense defined
in Section §.2.1)).

Here we briefly explain how the optical function is constructed. In Section , we apply
the method of characteristics and solve the characteristic ODE’s. Here the characteristics
are in fact the geodesics with respect to the Lorentzian metric (g,3) which is the inverse of
the coefficients (¢*?(u)) in (@) In Section |4.3.9, assuming that the optical function ¢ exists
in some region, we prove several preliminary estimates for ¢ by studying the characteristic
ODE’s.

To finish the proof, we need to show that the characteristics, i.e. the geodesics, do not
intersect with each other. This is related to the null geometry of the level sets of the optical
function. In Section {t.3.3 and §.3.4, we construct a null frame {e;, };_, and then define several
connection coefficients under the Lorentzian metric (g,5). Most importantly, we define

Xab = <Dea€47€b>7 aab = 172
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Here D is the Levi-Civita connection and (-,-) is the bilinear form, both with respect to
(gap)- It suffices to prove that the trace of y, sometimes called the null mean curvature, is
positive everywhere.

We now follow the idea in Christodoulou-Klainerman [4]. In Section , we derive
an equation for y, called the Raychaudhuri equation. In Section m, we use a continuity
argument and the Raychaudhuri equation to prove that in the region where the optical
function exists, we have

-1 —2+Ce
maXx |Xab - 5ab’r | 5 13 :
a,b=1,2

We conclude that try > 0 everywhere, and thus end the proof.

4.3.1 The method of characteristics

Now we use the method of characteristics to solve (@) We have the characteristic ODE’s

() = 29°7(2(s))ps(s),
(s) =297 (x (S))p (s)pa(s) =0, (4.8)
Pa(s) = —(0ag™)(x(5))pu(5)pu(8)-

Here we write ¢g*?(t,z) = ¢**(u(t,z)) with an abuse of notation. We expect that z(s) =
q(z(s)) and p(s) = (9q)(x(s)) for some optical function ¢(¢,x). By differentiating the first
equation, we obtain the geodesic equation

i%(s) + I, 2" (s)i"(s) = 0. (4.9)

Here I' is the Christoffel symbol of the Levi-Civita connection D of the Lorentzian metric
(gap)- Thus, in this chapter, the curve z(s) is either called a characteristic curve, or a
geodesic.

To solve the eikonal equation (@), we only need to consider the geodesics emanating
from the surface

H:={(t,z): t > Ty, r=(t+To)/2+ 2R} C 09. (4.10)

From these geodesics, later we will construct a solution ¢(¢, x) in the region QN {r—t < 2R}
such that g =r —tin QN{R <r —t < 2R}. Since u = 0 in the region r — ¢t > R, we can
then extend our solution to the whole region €2 by defining ¢ = r —t when r >t + R.

To solve the characteristic ODE’s (@) and the geodesic equation ({1.9), we need to first
determine (0q)|y. Fix (t,z) € H and recall that ¢ = r —t on H. Since X; := 0; + 2w;0;
is tangent to H, we have X;qg = X;(r —t) = —w; on H. Thus, for (t,z) € H we have
¢ = Xiq — 2w;qy = —w; — 2w;q; and

0=—q + 29" q(—wi — 2wiqr) + g” (—wi — 2wiqe) (—w; — 2w; )
= (=1 — 4¢%w; + 49" wiw;)qF + (49" wiw; — 29%w;)q; + g7 wiw;.
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Since g*?(u) = m®® + O(|u|), we have

0= (=1 +4m7ww; + O(lul))gf + (4mYwiw; + O(Ju))g: + (m”wiw; + O(Jul))
= 3+ 0(ul))g + (4 + O(JuD)g: + (1 + O([u])).

Since |u| < 1, by the root formula we can uniquely determine ¢ = —1 + O(Ju|) at (¢, )
(the other root ¢; = —1/3 + O(Ju|) is discarded since we expect ¢ to behave like r — ). We
also have ¢; = —w; — 2w;q; = w; + O(Ju|) and ¢, = w;q,. If moreover t < Ty + 2R, then
r=(t+Ty)/2+2R >t + R and thus ¢ = m®®. Thus, we have ¢, = —1 and ¢ = w; for
(t,z) € H such that t < Ty + 2R.

Now fix z(0) € H. We set

where we set

=1

We have the following lemma.

Lemma 4.8. Fiz 2(0) € H and construct z(0),p(0) as above. Then the system ( along
with the initial data (x(0),z(0),p(0)) has a unique solution (x(s),z(s),p(s)) on [0,00). In
addition, we have £°(s) > 0 for all s > 0, and 2°(s) — oo as s — oo.

If moreover we have x(0) € HN{t < Ty + 2R}, then x(s) = (2s,2sw) + x(0). In other
words, the geodesics emanating from H N {t < Ty + 2R} are straight lines. Thus ¢ =r —t
whenever r >t + R.

Proof. We apply the Picard existence and uniqueness theorem, e.g. Theorem 1.17 in [31], to
(1.8). From the theorem, we obtain a unique solution (z(s), z(s),p(s)) for all 0 < s < Spax-
By the blowup criterion in the theorem, either we have s, < oo and |z(s)|+]z(s)|+|p(s)| —
00 a8 § — Smax, OF We have Sy, = oo. Here |x(s)| + |2(s)| + |p(s)] — oo is equivalent to
|z(s)| + |2(s)| — oo due to z(s) = 2(0) and the first equation in (@)

We claim that, along each geodesic, for all s > 0 we have

497 (2(3))pa(s)ps(s) = 22%(s)pa(s) = gas(a(s))i®(s)2%(s) = 0. (4.11)

In other words, the geodesics x(s) are null curves. The first two equations follow from the
first equation in (@, so here we only prove the last one. Note that the equality holds for
s = 0 by the construction of (0q)|g. In addition,

i(gaﬁ (2(5))pa(8)ps(s)) = 297 (2(5))Pa(8)ps(s) + (0ug™”) (2 (s))a" (8)pa(s)ps(5)

ds
— §9(8)pa(s) — pu(s)i"(s) = O,

In the last line we use the third equation in (@) This ends the proof of ()
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Next we claim that i°(s) > 0 for all s. Since g**(u) = m® + O(Ju|) for |u| < 1, its
inverse (g,g(w)) is also a small pertubation of the Minkowski metric, i.e. gog = mas+O(Ju|).
Thus, () implies

0 = goo(i°)? + 2g0,4%" + gijitd! = —(d +Z )> + O(Ju(x(s))[| %)

We first show that %(s) # 0 for all s. If i%(sy) = 0 for some so > 0, then we have g;;3'27 = 0
at s = so. Since g;; = d;; + O(Ju|), the symmetric matrix (g;;) is positive definite. Then
#(s9) = 0. However, recall that x(s) is a geodesic, and the only geodesic passing through
x(sp) with @(sp) = 0 is the constant curve z(s) = x(sg). This leads to a contradiction. In
addition, since ¢, = —1 + O(Ju|) on H and 3°(0) = 2¢°°pg(0), we have i°(0) = 2 + O([ul).
Thus 2%(s) > 0 for all s.

Moreover, since u = O(g(t)~17¢¢) we have

"+ Z )’ < Ce(a®(s)) " (ja%(s)” + Z(iﬂ'(S))z)

By choosing ¢ < 1, we can make Ce < 1/2. Thus, for ¢ < 1, we have
> (@())° < (#%(s)* + ()" + D @ ()7 = D _(#(5)” < (@)
Thus, for each 7 we have

S

12" (s)| = |2°(0) + /03 7'(1) dr| < |2*(0)] + C/o (1) dr = |2"(0)| + Cz°(s).

In conclusion, if |z(s)| + |#(s)| — oo, then we must have x°(s) + 2%(s) — oo.
If we differentiate the first equation in (4.8) and use the third one, we obtain

|2°(s)] < 129" Ps| + |2(8,9"") 3" ps| < |0u(z(s))|2(s)]* < e(a(s)) ™ (@°(s))*.
The last inequality follows since |#%(s)| < 2%(s) and since du = O(g(t)™!). Since 2% > 0, we

then have
| ..0 .O

d
]—ln 0 = Pleooel =0 In2?,
T
which implies that
|In2°(s) — In2°(0)| < e(Inz’(s) — Inz°(0)).

The last inequality is equivalent to
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It follows that

%((mO(S))loE) = (1= Ce)(a(s))~“i"(s) < a"(0)(2"(0))~,
%((%0(8))1”5) = (14 Ce)(2°(s))i"(s) > °(0)(2°(0))“" > 0,
and thus
(2°(5))' " < (2%(0))' 7 + 2°(0)s(2°(0)) ", (4.12)
(2°(5))"° > (2°(0))+ + 2°(0)s(2"(0))“". (4.13)

If Spax < 00, then 2°(s) — 00 as s — Suax fails because of () On the other hand, if
Smax < 00, then 19(s)+i%(s) — oo as discussed above. But since #°(s) < 2°(0)(2°(s)/2°(0))°,
we must have 2°(s) — 00 as s — Spax. A contradiction. Thus, sy, = co. We thus conclude
2%(s) — 0o as s — oo by (§.13).

The proof of the second half of this lemma is easy. We simply use the fact that ¢**(u) =
m®® when r >t + R. O

Remark 4.8.1. We let A denote the set of all the geodesics constructed in this lemma.

4.3.2 Estimates for the optical function

Fix a time 7' > T = exp(d/e) and we set Qr = QN {t < T, r —t < 2R}. Note that r ~ ¢
in Qr. From now on, we assume that the optical function ¢ = ¢(¢, z) exists in Qp, that ¢ is
C? and that ¢, < 0 everywhere. We remark that the assumptions are true for T = Ty + 2R
since ¢ = m®® in Qg 25 Our goal is to derive some estimates which allow us to extend
the optical function to Q. for some € > 0.

First of all, we claim that each point in Qr lies on exactly one geodesic in A (which is
defined in Remark ¥.8.1). A direct corollary is that to define a function F(¢,x) in Qr, we
can define F'(z(s)) along each geodesic in A. To prove this claim, we define a vector field
L = L*d, by L* := 2¢*%qs. Note that L° > 0 everywhere. In fact, we have

gaﬁLaLﬁ = 4gaﬂgaa’gﬁﬂlqa’(h3’ = 4galﬂlqo¢’Qﬂ’ =0.

If LY = 0, then g;;L'L? = 0. But g;; = d;; + O(Jul), so (gi;) is positive definite for ¢ < 1.
Thus, L* =0 and ¢, = %goﬁLB = 0. This contradicts with the assumption that ¢; < 0. And
since L° = —2¢; + O(|udq]) = 2 + O(Ju|) > 0 on 99, we have L® > 0 in Qy. Moreover,
because of the characteristic ODE’s (@), a curve in p is a geodesic in A if and only if it
is an integral curve of L emanating from H. By the existence and uniqueness of integral
curves, we finish the proof of the claim.

We also claim that each geodesic emanating from H N 07 must stay in Qp until it
intersects with {¢t = 7'}. This claim simply follows from the fact that the optical function
remains constant along each geodesic and that the optical function is injective when restricted

to (097 \ {t = T
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Here a useful lemma which follows directly from the chain rule and the pointwise estimates
in Theorem @ (also see Proposition 6.1 in Lindblad [21]).

Lemma 4.9. For each k > 0 and ¢ < 1, we have
D> 1Z(g™ = m) 4+ | Z" (gap — map)l) Sk D> 12" u] Sk e(t) O
1<k 1<k

Moreover,

109°7] + 10gas| + Th,| < [0ul S ()"

Now we can prove several useful estimates for ¢ in Q.

Lemma 4.10. In Qr, we have |Sq| + >, |Q0iq| < lg] + €, |0q| + > i 14l < t and
Zi |QZ - WiQT| 5 t71+Cs'

Proof. If we apply a vector field Z defined by () to the eikonal equation, we obtain
0= (Z29"")4ats + 29*°4aZas = (29°)4ats + 29" 020524 + 29*° 44| Z, s)q.

It is easy to check that 2m®%q,[Z,05]q = 0 if Z # S and [S, 5] = —03. Thus, for some
geodesic z(s), we have

%(ZCJ(w(S)))I S (12g%°) + 197 = m*|)p(s)* < e(2® ()T i(s)]* S e(a”(s)) 70 s).

Recall that p(s) = (9¢)(z(s)) and that we have |i(s)| < i%(s) < (29(s))°F from the proof
of Lemma {.§. Since dg = (—1,w) + O(|u|) on H, we have |Sq| + |Q0;q] = O(|g| + t°¢) and
Q9] = O(et“?) on H. By integrating the inequality, we have

1Zq(x(s)) — Zq(z(0))] S /0 e(2()) "0 (r) dr < (a°(s)) 7,
so we have
1 Zq(x(s))] S 12q(x(0))] + (2°(s))7 S 1+ q(@(0))] + (2°(5))7" = 1+ |q(x(s))] + («°(5))"

In conclusion, we have |Zq| = O(|q| 4+ t°¢) in Qr. For Z = 9,, or Q;; we have better bounds
1Q4;q] + 10g] = O(t°%), since the estimates for dq|g and €;;q|x are better. In addition, we
have |¢; — wiq,| = 71| > wilial S tHCe, O

Lemma 4.11. For each (t,r) € Qp, we have ¢, > C™4% —q, > C~%% and |q; + q¢.| <
gt—1+Cs.
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Proof. Recall that from the proof of Lemma (@), we have |7°(s)| < 2%(s) and

(2°() " < 80 (0 ) < ((s)°"

~—
|
8
(=}
—~
(=)
~—

along each geodesic x(s) in A. At (to,zo) = x(so) for some geodesic z(s) in A, we have

1 ca 1 . . 1 —(Ce — g 1 —Ce
1 = 00 (50) = —~5°(50) + Olfula(so)[(s0)]) < —5tg% + ety *O° < 14

2
(4.14)
Here we take ¢ < 1 as usual.
To prove the estimate for g,., we first prove that ¢, > 0 in Q7. Assume ¢, = 0 at some
(to, zo) € Q. By the eikonal equation (@) and the previous lemma, at (to, z¢) we have

0= g% + 29" qu(qi — qwi) + 97 (4 — wigr) (45 — wiar)
= —q; + O(Jul|g] Z i — qril) + O lai — wige])?) (4.15)

_Qt + O(t, 2+C€)

~—

Plug (4.14) into (@ , and we conclude that 52 < ¢? < 5279 and #273¢¢ < 1. This is
impossible, since t273 > t, > Ty = exp(d/e) > 1 for ¢ < 1. So we have ¢, # 0 everywhere
in Qp. Since ¢, = 1+ O(|u|) > 0 on H, we have ¢. > 0 everywhere in Qr. By (), we
have —q; + ¢, > —q; > lt C¢. Then since

0=—¢+> ¢ +O0(ulldgf) = (g + ¢)(—aq + a) +Z — quw;)? + O(et14%|9g|?)

= (¢ + @) (—q + @) + Ot 2120 g7 17C%)
and since 7! < Ty ' < ¢, we have
@ + 4| = (=a0 + )T O(et ™) S5 et SO,

Then we have ¢, = —q; + (¢ + q,) > C~179% — Cet=14C > C—14=C=, ]

4.3.3 A null frame

We construct a null frame {ey, ey, €3,e4} in Q7 as follows. Define two vector fields e, e4 by
= (LHY7'L, e3 = e4 + 29" 0.

Since ¢ = —1, we have e} = 1 and e = —1. Moreover, we have

(e, e4) = (L) (L, L) = (L°) ?gasL*L’ =0,
(eq,e3) = (€3, €4) = (29°%0s, €4) = 2gapg’e = 2¢5 = 2, (4.16)
(e3,e3) = (e, e3) + (29", €3) = 2 4 2g459"%€ = 2+ 2¢J = 0.
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Here (-, -) is the bilinear form defined by the Lorentzian metric (g.g) = (g*%)!.

Next we define {e, }4—12. When restricted to the 2-sphere HN{t = 7"} for some 17" > Tj,
the metric (gnp) is positive definite. Thus, we can choose a smooth orthonormal basis
{E4}a=12 locally on this 2-sphere. Here we make our choice such that E,|y depends only
on w and not on ¢t. Note that F, is tangent to H N {¢t = T'}, that EY = 0 and that
(E,, Ep) = 04p. Then we take the parallel transport of E, along the geodesics. That is, we
consider the equations D,FE, = 0 for a = 1,2. Here D is the Levi-Civita connection of the

Lorentzian metric, and D4 := D,,. Since e, is tangent to the geodesic, equivalently we need
to solve the ODE’s

d%Eé“(I(S)) + @ (s) g (x(s)17, (2(s)) = 0. (4.17)

By the existence and uniqueness for linear ODE’s (e.g. Theorem 4.12 in [19]), these ODE’s
admit a unique solution for all 0 < s < s4. Finally, we define

e, = F, — E’ge4, a=1,2.

Thus 62 = 0. Unlike eg, e4, the vector fields eq, e5 cannot be defined globally in 2. This is

because there is no global orthonormal basis on a 2-sphere. In the rest of this chapter, when

we state a property of e, on 07, we mean that any locally defined e, satisfies this property.
We conclude that {ey}r=1234 is a null frame by (@3, and the following lemma.

Lemma 4.12. In Qr we have (e, ep) = 0qp and (€4, €q) = (€3,€4,) = 0 for each a,b=1,2.

Proof. We first prove that (F,, Ey) = 64 and (ey, E,) = 0 on H. The first equality follows
directly from the construction of {E,}. To prove the second one, we recall that ¢; = ¢,w; on
H; see the computations right above Lemma §.8. Moreover, note that ., 2*(0)E = 0 since
E, is tangent to the sphere on H. Thus, on H, we have

(L, Ba) = gapL*E} = 2q5E] = 24,E, = 2q,w;E, = 0.

And since ey = (L)L, we have (e, E,) = 0 at z(0).
Along each geodesic z(s) in A, we have

ea(Eq, By) = (DiEq, Ey) + (Eq, DaEy) = 0,
es(L, E,) = (DyL, E,) + (L, D4E,) = 0.
Because of the equalities at s = 0, we conclude that (E,, Ey) = 04 and (L, E,) = 0 (and

thus (e4, E,) = 0) along each geodesic.
Finally, note that

<€aa €b> = <Eaa Eb> - E2<647 Eb> - El(7)<Eaa 64> + E2E1?<64a 64) = 6ab7
<€47 ea> == <€47 Ea) - E2<€47 64) == O?
(e3,€4) = (2g0a8a, eq) + (e4,€q4) = 29aﬂgoaef = 262 =0.

This finishes the proof. Il
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Before we move on to the next lemma, we summarize some important properties of a
null frame. First, any vector field X can be uniquely expressed as a linear combination of
the null frame:

1 1
X = Z X ea €q T <X 64>€3+ 2<X7 63>64. (418)

a=1,2
In addition, for each k = 1,2, 3,4 we have

«

(9705, ex) = g gapuel, = €
so we obtain
aB 1 1 a/@’ o :8 1 a f 1 a B
g 0p = Z egeq + 26463—|— 26364 =g = Z €q€a 26463 + 56364 (4.19)
a=1,2 a=1,2

Finally, we have e;(q) = ea(q) = es(q) = 0 and e3(q) = L° in Qp. In fact, since
Go = %gagLﬂ, we have Xq = %(X, L)= %Lo(e4, X) for each vector field X. Then we use the
properties of a null frame. The equality e;(q) = e2(q) = e4(q) = 0 implies that ey, eo, 4 are
tangent to the level set of ¢, so eq, €3, €4 are sometimes called the tangential derivatives.
The next lemma shows several better estimates for the tangential derivatives.

Lemma 4.13. In Qp, we have ey = 0; + 0, + Ot~ 179)0, e3 = e4 + 2¢°*0, = —0; + 0, +
Ot~ and e, = O(1)d. Then, for all I,s,l, we have

> (e(@Z"u)| + [ex(0° 2" g*)| + |ex(0° 2" gag)|) S et (r — 1) ™.
k=1,2,4

Here we use the convention given in Section . Moreover, we have

|€1< ag,uy>€2| + |e2((9agw,) | + |€1< ag,uy> 62(aag,uz/>€g| SJ 6t—3+0€'

Proof. By the lemmas in Section , we have
L' — Lo, _ 2q; + 2quw; + O(|ul|0ql) _ 2(¢; — qrwi) + 2(qr + q)wi + O(|ul|0q])
Lo —2q; + O(|ul|9q]) —2q; + O(|ul|9q])

By Lemma and Lemma , the denominator has a lower bound C~1¢~¢ — Cet =1+ >
(2C) 717 and the numerator is O(t~**%¢). In conclusion, e; = 0; + 9, + O(t717)d. Tt
follows that for each I,

len(0°Z"u)| < (0, + 0,)0° Z u| 4+ t717¢|00° Z" |
S+ DY |20z =y Y (2720

( —

|J|=1 |J|<s+1
5 <t + 7“>_1 Z |8SZJZIU| + t_H_CE(T . t)—s—l . 5t‘1+05
|J]<1

S{t+r) et O e — ) p et 2O (p — )t
et 20 (p — )7,
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Here we apply Lemma @, the pointwise decays in Theorem @, and () By the chain
rule and Leibniz’s rule, we can express e4(0°Z1 (g, gos)) as a linear combination of terms
of the form
dm
(5 o)) - (07 20) - (01 21 - s (97 2
um
where Y s, =5, > ][*] = |I] and m > 0. These terms have an upper bound

1+C€< t t—1+c€<,’,, _ t>—5m71 . 6t—2+c€<,r, _ t>—8m S 6t—2+c€<,r, _ t)—S.

et™

)
We thus have e4(9*Z1(g*, gug)) = O(ct 2T (r — t)7).
Next we fix (to,z9) € Q. Without loss of generality, we assume |g3| = max{|g;| : j =
2,3} at (tg, o). For i = 1,2, we define

Vi = qi0s — 30; = 7 Qs + (¢ — wigy) 03 — (g3 — w3q,)0; = 71 q, Qs + O(t11%)0.

Here {Y1, Y32} is a basis of the tangent space of the 2- sphere Yitowo) = 1t = to,q = q(to, 0)}
t (tg,z0). Since e, lies in the tangent space (as €0 = 0 and e,(q) = 0), we can write
€a = D i1 Cai¥; I & unique way. Since

(Y, Y}) = ¢iq;933 + 43955 — 493937 — 459393 = €iq; + 436:; + O(|u|g3), 1,7 =1,2,

€a,€a anzca] i j anqu 1+O(|U|))Q3Z 2.

A

we have

Then, for ¢ < 1 we have
1> 0+ (14 O(et™ 1)) Zcm_—qg,Zcm

Thus, we have |gsc,;| S 1 for each a,i and thus € = Y. ¢, Y;* = O(Jcaigs|) = O(1). And
since C~17% <q,| = | >, wigi] <3, lai| < 3|gsl, for each multundex I, we have

leq(9° Z1u)| < Z|ca, Yi(0°Z')| < Z|ca, ¢, ]190° Z u| + 149|009 Z )
SJ gt 2+CE<T, _ t>7s'

By the chain rule and Leibniz’s rule, we finish the proof of the first estimate.
In addition,

0 = (e1, 1) — (€2, €2) Z c1ig:)? (Z c2ii)” + G5 Z(Ci — c31) + O(Julgs Z Cai)
= (Z c1i¢;)” — (Z Coii)” + Z(Ci — ¢3;) + O(Jul)
= Z C1iC1j — C2iC2;) 43 — ZCQZ% +Q32,Z cii — &3;) + O(Ju)),

1,J

(4.20)
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(e1,e€2) Z 152 (Y, Y;) Z C1iC254iq5 + Z cricaiqs + O(lulgs Z |c1ica;])

i " (4.21)
- Z ClzCQJQzQJ + Z Clzc2zq5 + O(’u‘)

irj
Then, we have
Yi(Zg) = r ¢, Qizg + Ot |0g|) = O(et=279%),
Yi(0ug)Y}" (7" 4rQ23(0ag) + (¢ — wigr) 03009 — (g3 — w3G,)0:0a9)Y}"
= r (Y [Qus, 0alg + ViQisg) + (¢ — wiqr)Y;(039) — (g3 — wsqr)Y;(8;9)
= 7’71%(—3/1-@639 +Y70i9) + 17 .Y Qisg + Ot~ F4|Y;(9g)|)
=r'q, (093059 + Cljaig) + O(et™3+%%),

ag eb B ZCM i ag Cb] Zcmcbj T qr((szJQ3839+q]8@g) + O(St 3+CE))

4.

= Z r CazcszTQSaS:g + Z o Cazcbj%"%a g + O Z ’Cazcb] ’ IQS’{':t 3+C€)
1,J i,J

== Z T CazcszTQSaE:g + Zr Cazcbj%"%a g + O( t 3+C€)
i,J

When a # b, by () we have

ea(ag)es = 17,05 (= D caicriiqs + O(|ul)dsg + Y 1™ caichjrgs0ig + O(et™*+)
ij Y
= 7y Y caenty(~ .09 + as0i9) + O a5 [ul|dgl) + Oet~+%)
1,J
= Tflqrqgfl Z Caicqu]'(_Y;g> + 0(6t73+05) — 0(6t73+05).
1]

By () we have

(aag) ¥ — (aag) @
- Z (¢ — 3)arasdag + D 1 (enierj = caica;)arqiOig + O(et™*+)

i.J
=L qrqs <_ Z(CnClj - C2i02j)Qin>a3g + Z T_1<Cliclj — C2ic2j)qrqjaig + O(gt_3+c‘€)
ij i
- Z r a5 gj(crcyy — caica;)(—Yig) + O(et™>7C%) = O(et 7).

]

It is clear that our proof would still work if we assume |¢;| = max{|¢;| : j = 1,2,3} or

|q2| = max{|q;| : 7 =1,2,3}. This ends the proof.
O
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Lemma 4.14. In Qp, we have |q — (r —t)| < 5.

Proof. By the previous lemma and Lemma , we have

2(¢i — qrw;) + 2(qr + q)wi + O(|u||0q|)

Jit = Q(LO)_I(qz - QTWi> + O(gt_1+ce)'

ey —w; =
Thus,

eslg—r+1) = (0 +0,)(—r+1) = 2(L) Y (g — qrw;)w; + O(et™79%) = O(et+7%).
Suppose (t,z) € Qr lies on a geodesic x(s) in Qp. Since ¢ —r +t =0 on H, by integrating

es(q — r +t) along this geodesic, we have

t
lg—7r—+1t < / er 1H0e qr < tCF
z9(0)

4.3.4 Connection coefficients
From now on, we write Dy, = D,, for k = 1,2, 3,4 for simplicity.
Lemma 4.15. In Qp, we have

Dyey, = (Fgﬁejfef)e4, k=1,24.

As a result, we have es(ef) = O(st=27%€) for each k = 1,2,3,4.

Proof. Since a geodesic in A is an integral curve of L, we have L® = ©%(s) at z(s). Then,
the geodesic equation (4.9) implies

d
L(L%) = i%(8)(0,L°) = d—LO(:U(s)) =i%s) = —F?WL“L”, at x(s).
s
Divide both sides by L°, and we conclude e4(L°) = =T, €efL” in Qp and thus es(In L?) =
—I', eiey. Similarly, from ({.17) we obtain e4(Ey) = —I"), ey EY. Thus, we have

D4€4 = D4((L0)71L> = —(L0)72€4<L0)L + (L0)71D4L = —(L0>71€4(L0)€4 = <F2U€Z€Z>€4.
For a = 1,2, since D,E, = 0, we have

D46a = D4(Ea — E2€4) = —D4(E264) = —64(E2)64 — E2D464
= (T, eiEY)es — (ET) el )es =T, el (B — Egel)es

a™ pv
= (Teieq)ea.
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In addition, Dyep = e4(ef)0a + |y Leherd,. If we consider the coefficients of 0, in Dyey for
k=1,2,4, we have ey(eg) =T, eﬁfe’gef I, efer. By Lemma .13, we have

« 1 (e}
T = 59" (Ougus + O - aBQW)

1 1
= 59 (8uguﬂ + augu,b’ Z eq a€a g;u/ (63 64(g/w) +ey 63(9;W))) (4.22)

1 _
cefes(gu) + O(et™27).

1
= _gaﬁ<auguﬂ + auguﬂ) - 4

2

Then, since €} = 1, for k = 1,2,4 we have

1 — VvV _ o
—eSes(gu) + O(et279%) el eles

o 1
eaey) = (5905(@91/5 + 0uGup) — 1

1 - v
ceies(gu) +O(et > ))elfey

1
— (59" (0,9v8 + Ougup) — 1

2

1 Vv _ o [0 1 (0% 1%
= =g (es(gup)eres + er(gus)eled) + 59 lea(gup)er + er(gus)el)

1 - €
L eagu e — cheges) + 06t
_ O(€t72+06)'
It follows that es(e$) = es(e$) + €4(2g°%) = O(et=2+¢¢). This finishes the proof. O

Remark 4.15.1. Since e3(q) = L°, we have

ea(es(q)) = 64(L0) P0ﬂ€4LB = F05646463(Q)

This equality is useful in the rest of this chapter.
Next, we set Xap := (Dgeq, ) for a,b=1,2.

Lemma 4.16. In Qp, we have
(a) X12 = Xo1-
(b) trx := x11 + X22 is independent of the choice of e; and es.

(c)

e, eq] = Zxabeb, Dges = ZXabeb + (eferT), ea, ea(es) ZXabeb +O(et 77,

Proof. (a) Since e,(q) = 0, we have

(ea, [er, ea]) = (L) TH(L, [er, ea]) = 2(L7) " [er, ealg = 2(L%) " (ex(e2(q) — ea(ex(q))) = 0.
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And since
(Drer,em) = ex({er, em)) — (e, Dxen) = — (e, Dien), k,l,m=1,2,3,4,
we have
X12 — X21 = (D1e4, €2) — (Doey, e1) = (eq, —D1es + Doeq) = —(ey, le1, €2]) = 0.

(b) Suppose that {e}} is another null frame with e3 = €4 and e, = €. Then we have
el = (el ep)ep, eq =Y, (€q, €,)e, and thus

€q = Z(ea, ey) ey = Z(ea, ey) (e, ec)e. = Z<6“’ ep) (e, €c) = Oae.
b

b,c b,c

Then,

X/H + X/22 - Z e/, €4, € a Z Z ea? eb eaa €c <Db€47 €c>
- Z Z eaa eb 6(17 ec Xbe = Zachbc = X11 + X22-

(c) Since Dyey = (Faﬁe4ek)e4 for k = 1,2,4, we have (Dgey,e,) = 0 for k = 1,2,4 and
thus

1
<€4> [647 ea]> = <€4, D4€a - Da€4> = _<D4€47 ea) - §€a<€47 €4> = 07
<eb7 [647 ea]> = <eb7 D4€a > <eb> D4ea> — Xab = —Xab-

Since e} = 1 and €2 = 0, we have [ey, €,]° = 0 (where [e4, e,] = [e4, €,]*0,) and thus

(€3, [eq, eq]) = (ea, [e4, €a]) + 2goo‘ga5[e4, ea]ﬁ = 0+ 2[ey, ea]o = 0.

By () we conclude that [es,e] = —37,_;,Xaes. The second equality follows from
Dyey = [eq,es] + Dye,. The third one follows from e,(ef) — es(€?) = [eq, e4]® and the
previous lemma. O

4.3.5 The Raychaudhuri equation

It turns out the estimates for y, are crucial in the proof of the global existence of the optical
function. To obtain such estimates, we need the Raychaudhuri equation

(Xab Z XacXeh Faﬂeél 64 Xab + <R(647 Ba)€4, €b>' (423)

C
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Here (R(X,Y)Z, W) :=(DxDyZ — DyDxZ — Dx,y)Z, W) is the curvature tensor. In fact,
since 2(D,e4, e4) = e4(eq, e4) = 0, we have

ea(Xap) = ea(Dgeq, ep) = (DyDgey, ep) + (Dyes, Dyey)

€4
<D Dyey, €b> + <D[64 eq] €45 6b> + <R(€4, Ga)€4, 6b> + FgﬁeZC@g(Daeéh 64>
= (Da(T ﬁ€4€4€4 ZXac (Deea, ep) + (R(es, €a)eu, ep)

= 6a(1“3g6264)<647 ev) + Paﬂe4 €4Xab - Z XacXeb + (F(€4; €a)eq, €p)

= Fgﬂegefxab - Z XacXcb + <R(64; ea)64; €b>~

[

From (), we can compute eg(x11 — X22), €4(x12) and e4(try). Note that

Z X1eXel — Z X2eXe2 = X11 — X32 = trx(Xa1 — x22),
Z X1cXe2 = Z X2eXel = X11X12 T X12X22 = X12tTX,

1 1
Z XteXet + Z XacXe2 = X11 + Xao + 2XT2 = 5(“)()2 + §(X11 — x22)? + 2x1,-

As for the curvature tensor, we have the following lemma.

Lemma 4.17. In Qr, we have

1
<R(647 ea)647 eb> (fab) + 2601 Bezebaﬂauga‘u, + O(€2t—3+05)

where

1
—ejeq(gow)ey = O(st‘”ce) )

Jab = (6 eres(gp,) — elelen(gsu)) — 5

Moreover,
(R(ey, e1)eq, e1) — (R(ey, ex)eq, e2) = eq(fi1 — far) + O(et 376,
(R(e4, €1)eq, €2) = eq(f12) + O(et 77,

1
(R(e4,e1)eq, e1) + (R(eq, e2)eq, €2) = eq(trf — 5636563(9%)) + O(°7°79%).
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Proof. We have (R(e4, e,)eq, €) = eSeleliel Ropu, where Rap,, is given by

Ropu = (R(Oa, aﬁ)a/u d,) = gm/(aargu - aﬁrgu + Fguria - Fiurgé)
= aaru,b’u - aﬁruau - Fguaagm/ + Fguaﬂgau + Fg’uruazi - Fiﬂruﬁé
= aaru/ju - aﬁruau - Fgur&za + F(;HF(;I/B

1
= §<aaa,ugﬁz/ - 8aaygﬁu - aﬁa,ugcw + 86(91/9%) - Fguréua + Fiur&/ﬁ-

Here for simplicity we set 'y, = gaBFﬁy = %(@gw + Oy9ap — Oafyuw). Then

1 «
564 eﬁezeb (&laugﬁu - aaaz/gﬂu - 35@9% + aﬁaugay)
1

1% 1 [0 1% 1

= Sea(0ug5, — g )elehel — Seieles(Dsgan)el + seteleeldad, g,
14 1 (e} 1

= 64(5(8u9,8v - aszBu) ffeb - 564 e'g(aggm,)eb) + 2646 e4eb858,,gau

+0(19g] Y leale)])

k=1,2,4

1
—efel e4eb8ﬂ8,,ga#+0( 2p=3H0e,

= eq(far) + 5

To finish the proof of the first part, we note that

1
Fglj,l—‘&/a = gaaraﬂur5ua = Z‘:gaé(aﬁgau + 8#950 - aoQﬂu)(aa.gdu + al/ga5 - 859&1/)-
By (), we have

1
efeﬁegegfgufgya = Zg”‘s@ggagg + Z O(1)ex(9)9g
k=1,2,4

1 1
:_Zec ce(g) + ges(g)ealg) + gealges(g) + O( (Y lex(9)l0g])

c=1,2 k=1,24

Similarly, we have €4 6664 ezraur&/ﬁ - O( Qt_3+ce)
To prove the second half, we only need to consider the term 5646 e 46baﬁaugau By
Lemma §.13, we have

1 _
64 6461 62(aﬁgo¢u) O<5t 3+CE)>

1
€y 61 eyes a@’al/gau 5

2

1 1 1
264616461858u9au 2646264628,88u9au 26464(6161(aﬂgau)_6262(aﬁgau)) O(et=3+%).
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Finally, note that

v 1 v 1 v 1 14
S cqelehel0udgu = 5eehlo™ — Sehet — Selen) 0Dl

a

1 o v 1 o
= 564 e/igﬁ aﬁaugau - 564 656564(%9%)
1
= ey eehchOsga) + O()

We briefly explain how_we obtain the third estimate here. If F' = F(u) is a function of u
which is a solution to (@), then by (4.19)

97050, (F(u)) = F'(u)g™ug, + F"(u)g™ ugu, = 0+ F"(u)(Y_ ec(w)ec(u) + es(u)ea(u))
— 0(8t73+05)'

We thus have e 9% 050, ga, = O(et=37¢¢). To handle the other term, we note that

1, 1, 1 . B
e4(§e4eﬁe’§8ﬁgau) - §e4eﬁfe§e4(8,3gw) = 564(64(32@?)@3%# — O(273+C9),
O
Thus, it follows from ({4.23) that
([ ea(Xx11 — Xx22) = —trx(Xx11 — Xxe2) + Fgﬁegef(Xn — X22) + ea(fi1 — far) + O(et31¢°),
ea(x12) = —xaotrx + Togefelxiz + ea(frz) + O(et™*),
1 9 1 ) ) 0 o3
ea(try) = —5(‘01‘)() - 5()(11 — X22)° — 2x1y + Lo gefeytry
1
\ ‘|‘€4(t1"f - éegegGS(gau)) + O(€2t73+08),
(4.24)

It turns out to be more convenient to work with ({.24)) instead of ()

4.3.6 Continuity argument
Fix a geodesic z(s) in A with 2°(0) € H N {t < T}. Since #°(s) > 0 for all s > 0 and

lim, ., 2°(s) = oo, there exists a unique 0 < sy < oo such that z%(sq) = T. Also fix some
s1 € [0, so]. Our assumption is that for all s € [0, 1], at (t,x) = x(s) € Qr we have

_ —1 < —2+B£‘
ax |y — dapr | < Al (4.25)
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Here A and B are large constants which are independent of T, ¢, 51, sg and the geodesic x(s).
In the derivation below, we always assume that the constants C' in the inequalities are given
before we choose A, B, and that the constants C' are also independent of T', ¢, s1, 5o and z(s).
Note that for A, B > 1, we have () for s; = 0 by the next lemma.

Lemma 4.18. On H, we have |0%q| <t71 and max, p—12 | Xap — dapr ™t S 72105,
Proof. Recall from Section that on H we have
(=1 — 4¢%w; + 49" wiw;) g} + (497 wiw; — 29%w;)q; + 9" wiw; = 0.

To compute X;q; where X; = 0; + 2w;0;, we apply X; to the equation and then solve for
X;q;. Then,

_qthi(—l — 4¢%w; + 4gwiw;) + ¢ Xi (g wiw; — 2¢9%w;) + X, (g7 wiw;)

! 2q1(—1 — 4g%w; + 4gYwiw;) + dgiwiw; — 29%w;

Note that every term on the right hand side is known. The denominator is equal to —2 +
O(Ju]) on H, so it is nonzero for ¢ < 1. In addition, we have X;w; = O(r~') = O(t™!) and
X = O(|0u|) = O(et™), so X;q; = O(t™!). Next, we have

Xigjy = Xi(~wj — 2wjqr) = —(0iw;)(1 + 2¢:) — wiXigr = O(t™").
By applying 0; to the eikonal equation, we have
0= 29*"qag10 + (819°") 4045 = 29" qs01 + 29" 45(Xsqr — 2wigu) + (019°7)qags-
And since (¢4, ¢;) = (—1,w) + O(|u]) on H, we have

2945 Xiqr + (019*")daqs _ O(|0q|t™! + ct}0q/?)

: =0@™).
29%qp — 49" wiqp —2q; — 4g, + O(Jul|0q]) )

it =

Finally we note that ¢; = X;q; — 2w;qu = O(t™1) and ¢;; = Xiq; — 2wiq;e = O(t™1).
We move on to the estimates for x. By definition, we have

Xab = <Da647 6b> = (6,1(62‘) + egezriu)efgaﬁ'

As computed in Lemma , we have

178 BIe} 1 (0% 1 (3 — 14
il ey gas = (597 (Oudy + 0ugy) — J€5es(gm) + Ot ))elieler gas
| ) 1 ) .
= 5(%(9115)64659045 + e4(9/¢f3>€geggaﬁ) - 163(9;“/)65@4 (1, e5) + O(et™2+)
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In addition, recall from Section that ¢; = w;q, on H. Since ¢, is tangent to H, on H
we have

1

ea<Qi) = ea(wiQT) = eir_l(éij - wiwj)QT + wiea(Q’/‘) = 627"_ - wiQTT_lea(T) + wiea(QT)'

Since e, is tangent to the 2-sphere {t = to, ¢ = q(to, o)} = {t = to, |x| = |z0|} at (to, x0) € H,
we have e,(r) = ¢/w; = 0 on H. Thus, on H we have

ezea(%) = 62&1(%) = Z @z(efﬂ“_l -0 + wiea(qr))

= r_lgijeZei —r gy — 5ij)626i +0 =715 + Ot 7270%).

It follows that

L Loea(QQOWQWJ - Laea(ng’qu) Q(QOW - eilgo’y)ea(qv) 4 O(gt72+Cs>,

ea(e]) = ea(ﬁ) = (L0)2 - IO
2(ey — (e, e0)9")ealdy) _ 2e)ea(qy) _
ay B b 4, &b a\'1y 24-Ce b~a\dy 24+-Ce
ea(€S)er gag = + Of(et = ———"— 4+ 0et
e = =0 o) T ) T avoquy T
= L6+ O(Et‘“cs).
This finishes the proof. O

To complete the continuity argument, we need to prove (4.25) with A replaced by A/2.
We start with xi2 and x11 — x22. By (), we have

ea(r’(xa2 — f12)) = 2rea(r)(xaz — fi2) + r’ea(x12 — f12)
= 2req(r)(x12 — fi2) + r?((—try + Fgﬁej‘ef)){w + O(et=30¢))
= r(2e4(r) — rtry + rl“gﬁej‘ef)xlg — 2re4(r) fra + O(et~19%).

Recall that es(r) = 1 + O(t7179), fi = O(et7279) and ngﬁei‘ef = O(r|dg|) = O(¢). By
(@), we have |2 — rtry| < 2Art=25¢. In conclusion,

‘64(1”2()(12 . f12>>’ < T(2Art72+B€ 4 Ce + thlﬁ’CE) .At72+Bs + Cgt71+Cs
< CAX2V2Be L CAet™'1FPe 1 0 AL~ 2H(BHC)e | O~ 1408
< CA2t72+2BE + CA8t71+le

By choosing A, B > C, we obtain the last inequality. On H, we have |r?(x12 — f12)| < Ct°°
by the previous lemma. Thus, by integrating e4(r?(x12 — fi2)) along the geodesic, we have
ITQ(XH . le)’ < C(x()(()))C’a + OAQ(.TO(O))_H_QBE + C«AB—ltBa

S CtCa + CAQTO—H—QBa + CAB_ltBa.
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Since Ty > ¢!, we have A?T; 1728 < 1 for ¢ < 1. In addition, by choosing B > A, we
0
have
IX12| < 772(| fre] + Ot + C + OtF) < Ot 25,

Here C'is independent of A and B, so if we choose A > 4C', we obtain with |x12| < %lAt_QJFBE.
The proof for [x11 — xa2| < $At7275¢ is essentially the same.

To finish the continuity argument, we need to prove that |try — 2r~!| < TAt2*5. For
h = try — trf = try + O(et=2+9%), by (4.25) we have h = 2r~! + O(At~2t5¢) ~ 2r=1. Then,
for ¢ < 1, by the last equation in (#.24) we have

64(h ) = —h 64(h)
1 1 e
= —h7?(— E(UX) + F05€4€ft1">< - 564(64‘16263(%6)) + O 4 (i — x22)? + X))
=—h" (——h2 +T9e5elh — (ei‘efeg(gag)) + O(et™3108 4 27310 A% 1125e)
1

=3 Foﬁe4e4h +2h 646464(63(%5))+O(€t’1+05).

In the last line we use the product rule and the estimate e4(e§) = O(et=27%). In addition,
we have

2—r(try —t
2] = 221 Zi I < 2 = rey] + et f]) < A
by (), we have
0 1 0y /(B @ 1 0 a B —2+Ce
r 564 64 29 (64@4<967) + ey 64(9&7)) - 16463(%5)6464 + O(et )
1 — 5
= —Z—leg(gaﬁ)ejfef + O(et™217%),

Thus, we have

1 1 1,1 a
es(h™h) = = + —efelles(gas)h ™ + U tegeles(es(gap))

2 4

+ O(6t*1+c€ RO - AR ey (es(9))])

1 - £
- 5 + 4h 6464 (63(9046) + T64(63(ga6))) + O(At1+Ba|e4<e3(gaﬁ))| + et 14+-C )

(4.26)
The next three lemmas are necessary for us to control es(gag) +rea(es(gas)) and es(e3(gas))-

Lemma 4.19. Under the assumption (), in Qr we have |e.(e3(q))] + |ea(Oq)| < t711C=,
lea(Qijq)| S At es(q)| +171CF and [0%q| < 7.
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Proof. We have (assuming {a,a’} = {1,2})
ea(ea(es(q))) = [ea, eales(q) + ealea(es(q Zxabeb e3(q)) — ea(T, el eles(q))

=- ZXabeb es(q)) — 2%, ( Z Xavey + O(et™27C%))eles(q)
b

- F2V€4€46a(63(Q)) — ea(T, )eheles(q)
= —(Xaa + Teiel)ea(es(q) — xazew(es(q))
— (21}, Z Xaveh el + ea(I), )elel + O(et 294 |1)))es(q).

Since Xap = 7100y + O(At™215¢) ~ =1 for € <4 p 1, the last term is O(et=27%|e3(q)|) =
O(et=2%¢). Then,

lea(rea(es(q)))] = lea(r)ea(es(q)) + realeales(q)))]
< (14 O %)) euleala)) — r(xan + Ty eteea(en(a)) — rymea(es(@)] + Ozt~
< (Ir7" = Xaal + [Ty ehel] + O(E27)) reales(q))] + |rxizea(es(q))] + Cet ™+
< (A28 L Cet™ + Ct279%) rea(es(q))| + C At 275 |rey (es(q))| + Cet110¢
Cet™! Z Ires(es(q))| + Cet ™+ C=.

IN

In the last line, we choose ¢ < 1 so that Cet™t > At=2+85 4 172%C¢ for t > Ty = exp(d/e).
Since e, is tangent to H, on H we have e,(e3(q)) = €4(2¢°%q.) = O(|0%q|+|ea(9)dq|) = O(t™1)
by Lemma {.18. In conclusion, if (¢,x) € Qr lies on a geodesic x(s) in A, at (¢,x) we have

t

Z Ireq(e3(q))] < Z Ireq(es(q))|(x(0)) + Cer™! Z Ireq(es(q)| (1, Z()) dr + Ct°°

a z0(0) a

< C 40t + / Cer Z\reae3 )|(r. 5 (7)) dr.

Here (7, z(7)) is a reparametrization of the geodesic z(s). We conclude that ) _ |req(es(q))] S
Ct°¢ by the Gronwall’s inequality. In addition, in 7 we have

1

a(da) = €al (O ea)es(0)) = eals

1 1 1 e
= §€a(€4ﬁ)9a5€3(f1) + §€fea(ga/3)€3(q) + §efga5€a(€3(q)) = 0@t ).

Next we compute e,(£2;;q). Note that

1 1 1
Qujq = 5 (Qjs ea)ea(q) = 5 (wigis — 2i90)¢feale) = r(wigiaed — wigipedes(q).
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We have

wigipes — w;igiges = wiey — wjel + O(Jul) = Z el — wj|) + O(|u]) = Ot +7),

50 7(wigj5€s — wigiges)ea(es(q)) = O(t~1+C¢). In addition,

ea((2i9j5 — T;9i)€})
= (elgjs — elgip)el + (2:g;5 — Tigis)ealel) + O(lea(g)])

= ehel — eheh + (igip — 25i8) Y (Xa€y + O(et>7)) + O(lea(g)] + |ul)
b

=clel —elel + Z Xab(:€) — x5¢8 + O(r|u])) + O(et %)

b
IS RTINS DO i -1 —14Ce
= ey — epey + 1 (zieg — xjeq) + O(r([Xaa — 1| + [Xa2])) + O(et™77)
= el (e] —w;) —el(el —w;) + O(ALT5%) 4 O(et71C%) = O(At~1H59).

By the product rule we obtain the second estimate.
Finally, we consider 9?q. Recall that e = L*/L° and that |9q| ~ |q.| ~ || ~ e3(q). By
the characteristic ODE’s, we have

ea(qa) = —(00g")4uav = O(ct es(q)

es(q)
and thus
a(ea(gs)) = _a“((aﬁgw)%qu)es(eé)e ;Eq()(‘)?gg“”)quqy +200(9"7q5)
_ —2(369“”)qqueg((qe)3z; )(gﬁg“”)quqy 20" | o p1e0e)

= O(|0g||0%q|) + O(et 7179 = O(t7|0%q|) + O(et %),

In the second line, we take out those terms without 9%q and control them using the estimates
for g and Jq. In the last line, we use the estimate |dg| ~ e3(q). Besides, we have

Do (Lﬁ) Lﬁ@ (L ) _ Zaa(gﬁuqu) - 264a (gquu)
(LO) e3(q)

Br _ 66 ov
_ 26" = 9o | o(1agl10g(es(q)) )

Dol =

es(q)
(Z 2eBer 4+ elel + eler)ga, O
e3(q)
22 € ea( o) T (eg +€f)e4(%¢) —1 22 € ea( (o) —1
a0 o) =" e
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Thus, we have

€4(qap) = le4, 0alqs + Oalea(qs)) = —0a(€})u(qs) + Oales(gs))
= O(e3(a) ™" Y lea(as)ealaa)]) + Ot 110%g]) + Ot ™+

= O(et™10%q|) + O(et ™1+ 4 727C%),

In the last line we use the estimate e3(q) > C~1¢~%. Since §?q = O(t~!) on H, we conclude
9%q = O(t°¢) by the Gronwall’s inequality.
0

Lemma 4.20. Set h; := r(0;(ru) — ¢:¢;'0,(ru)). Under the assumption (), in Qp we
have |h;| < et leg(hi)| S Aet™14B¢ and e (ru) =, eq(wi)hi.

Proof. We have
hi = r(win 4+ ru; — gigy 'u — qigy 'ruy) = rug, (gwi — ¢) + 1w — gy uy)
= (ru+r’u,)g; (gwi — ¢) + r°(w — wiy) = (u+ru)g " Y wiiyg + > Q.

Since |u|+|u,| < et g —wiqe] S t71HC° and |u;—wu,| S et72tC% ) we obtain |hy| < et©".
Moreover, ‘
ea(ijiju) = ezQiju + Z'jea(QijU) = O(Etiprcg),
ea((u+1u,)q ' wiQiq) = ea(u + ru,) g twiQiiq — (u+ 1u,) g %ea(qr)w; Qg
+ (u+ ru,)g, ea(wj) a4+ (u+ru) g wiea(Qi5q)
et™ %) + O(elg,| " ea(Qq)))
)

+
+ O(A t—1+Ba€3<q>> O(A€t_1+BE).

r

O et—l“rCE

= O(
= 0(
(wi) = O(r™), Qq = O(t), g, >

Here we apply many estimates such as e,(r) = O(1), e,
= O(At=1Pee3(q) + t7179¢) from the

C~1t79 and etc. In particular, we apply e,(£2q)
previous lemma. Thus, we have e,(h;) = O(Aet=115¢).
Finally, we have

Zea(wi)h- = Z@jTil(éij — wiwj)h;

= Z — qig; 0, (ru)) - Zefwma-( w) = g, 0, (ru)
= eq(ru) — eq(q)q Ze]wj Z widi(ru) — wigiq; 'O, (ru))

= eq(ru).
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Lemma 4.21. Under the assumption (), in Qr we have |1~ tesz(u)+eq(es(u))| < eAt=3+5¢
and |eg(es(u))| < et=2.

Proof. The second inequality follows directly from the first one. To prove the first one, we
note that for each function F' = F(¢,z), we have

9P 0,05F = (Ze el + §e4e§ + iegef)aaagF

a

= (ealea(F)) — ealeq)Fu) + ea(es(F)) — es(eg) Fa

= ) (€a(€a(F)) = (Daea) F' + eher T Fo) + ea(es(F)) — (Daes)F + efjesT F,.

a,a;w
a

By (), we have
1

1
ehea L, Fo = 59"‘5 Fo(eqea(gup) + ehea(gus)) — ;les(gw)eé‘eéezl(F ) + O(et>T“¢|0F|)
= O(et2TC¢|OF | 4 et |es(F))),

«a 1 «a v 1 v — e
eresl, Fo = 59 Fy (6364(9u5) + efes(gus)) — Jeieses(gu)ea(F) + Ot % |0F))

1
Ze eq(F) + 6364(F) + 56563(F))eﬁfeg(gu5) + O(et 2T 4|OF | + et ey (F)))

1
— Zeg(F)eereg(gw) +O(et > EOF | +et™ > en(F))).
k=1,2,4

Moreover, since
1 1
Daea — <Daea7 ea’>ea’ + §<Daeaa 64>€3 + §<Daea7 €3>64
1 1
= <Daea7 ea/>€a’ + 2( Xaa)e3 + <_§Xaa + €M€ZF2V)€47 a 7é (1/
1 1
Dyes = Z<D4€3, ep)ep + §<D4€3, eq)es + §<D463, e3)ey

:—25 ) eheye, — I efelfes,
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we have

Z(Daea)F = (D1ey, ea)ea(F) + (Daeg, er)er (F) — %(U"X)( 3(F) + es(F)) + Z€”€ZF2V€4

a

= (D1e1, e2)ex(F) + (Daeg, er)er (F) — %(UX)%(F) + O(t_1‘64(F)|>
= (D1er, ea)ea(F) + <D262, eryer(F) —rtes(F) + Ot Hea(F)| + At > es(F))),
(Dye3)F = —2ZF Jeierey(F) — ) efeles(F)

1
:Ze3<gaﬁ)e4e4eg )+ O(et™ 1Z|e,, )| + et 2 s (F)|).

Here we use the assumption () and |es(u)| < [0u| < ettt In conclusion, we have
970,05 F =Y ea(ea(F)) — (Diey, e2)ea(F) — (Daeg, er)er(F) + ex(es(F)) + 1" es(F)

+ Ot ea(F)| + At ey (F)]) + O(et > F[OF | +et™ Y |ex(F)]).

k=1,2,4

By taking F' = u, we obtain

0= ¢*?9,05u = ealea(u)) — (Dre1, ex)es(u) — (Daeg, e1)er(u
g 5 ;(())( yea(u) — ( yei(u) o

+rtes(u) + eqes(u)) + O(Ast=3159),
In addition, note that

ea(es(F)) +rtes(F) = eq(26° + e§) Fo + (29° + €5)es(F,) + 1 tes(F)
= O((lea(g")| + lea(e)DIOF| + lea(Fa)| + 1 |es(F)])
= O(et>Y=|OF | + |ea(OF)| + 1 es(F))).

Thus, we have
|Z€a ea(F)) — (D1er, ez)e2(F) — (Daeg, er)er (F))|

5|82F|+gt—2+06|aF|+r—1|63(F)|+t—1|e4( |+ A2 feg(F)) +et™ > fer(F
k=124

When F = r~!, the right hand side has an upper bound Ct=37¢*. When F = w;, the right
hand side has an upper bound Ct~27¢¢. Here we choose € < 4 5 1 so that At=275¢|ez(r=1)| <
At=4Pe < 7% and At Peleg(w;)| S AtT3TPE SR
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We set U(t,z) = ru(t,x). Then, by the previous lemma,
ea(t) = ea(r7U) = eo(r" U + 17 e (U) = eq(r U + 171 Zea(wi)hi,

calealt)) = ealealr™NU + 2ear™) 2 ealidti 4771 D calealwhict 17D calun)ealh)
= €a(€a(T_1))U 4+t Z eq(eq(wi))h; + O(Agt—S-&-Ba i 6t‘3+0€),

Thus, we have

D ealea(w)) = (Drey, e2)ea(u) — (Daey, e1)er (u)
= (D ealea(r™)) = (Drer, ea)en(r™) — (Daes, er)er (r))U

+17Y (D ealealws)) — (Dien, eadea(w;) — (Daes, ex)er(wi)) by + O(Aet =P 4 o =3HC%)
_ O(t‘3+05|7’u| + t_2+ca7’_1|hi| + AEt_3+BE + 6t—3+C’a) — O(AEt_3+B8).
We finish the proof by this estimate and () O

We now finish the continuity argument. By writing g;,5 := d%|uzog°‘5(u), we have

e3(gas) = 9&;3(“)63(@7
es(e3(gap)) = gag(u)ea(es(u)) + ghs(u)ea(u)es(u)
= O(et™2 + et™27% .ot = O(et™?),
and thus
e3(gap) + rea(es(gas)) = gas(uw)(es(u) +res(es(u))) + gog(u)es(u)es(u)
= O(rAet ™75 £ pet 72705 L ot71) = O(Aet—215¢).
Thus, by (),

1
lea(h™h) — 5\ <t Aet 2B p ApIHBe 472 g 1HOE < gy i Be

By the initial condition, on H we have
|2 — r(try — trf)]
2h
where the constants are known before we choose A, B. Now, suppose that (¢,x) € Qg lies
on a geodesic x(s) in A. At z(0), we have h ™|,y = r(2(0))/2 + O((«°(0))“%). Thus,
1 1

_ _ B 1 .
By = 57(@(0)) = 5t = 2 OD] < 1 e = b o) = (¢ = 2°(O))] + CHC

¢
< / Aer 1B qdr 4 ¢¢¢ < B LABe 4 ¢C=,
z0(0)

|ht —r/2| = S (|2 = rtry| + |rtrf]) < o
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Also note that r(z(0)) — 2°(0) +t = q(t,z) +t = r + O(t“*) by Lemma . In conclusion,
|h=t — /2| <t + B71At5¢ at (t,x). This implies that h~! ~ 7 and

2 2 —op!
ltry — 2| < |h— 2|+ Cet™20s < |20 |y oep2eCe
r r rh—1

< Cr72(Ct% 4 OB7YAt5e)  Cet ™27 < Ct727C° - OB 1At 27P¢,

By choosing B > A >>¢ 1, we conclude that |try — 2/r| < $A¢t*5<. This finishes the
continuity argument as we have proved that (4.25) holds with A replaced by A/4.

4.4 Derivatives of the optical function

In this section, we aim to prove that ¢ is smooth in 2, where smoothness is defined in Section
4.2.1. Our main result is the following proposition.

Proposition 4.22. The optical function q = q(t,z) constructed in Proposition @ s a
smooth function in Q. Moreover, in Q, we have Z'q = O((q)t“?) and Z1Q;;q = O(t°*) for
each multitndex I and 1 <1i < j < 3.

In Section , we define the commutator coefficients &, with respect to the null frame
{ex}, and derive several differential equations for £ and their derivatives. Note that the
estimates for these £ would imply the estimates for ¢ in Proposition ¢.22. We also define a
weighted null frame {V}} which will be used in the rest of this chapter. In Section @, we
focus on_the estimates for ¢ on the surface H where the initial data of ¢ are assigned. In
Section §.4.3, we prove Proposition which gives several important estimates for £. Here
we make use of the differential equations and the estimates on H proved_in the first two
subsections. Finally, in Section @, we conclude the proof of Proposition by applying
Proposition .

To end this section, in Section we derive two equations () and () for ez(u)
and e3(q), respectively. In these two equations, we have estimates for all derivatives of the
remainder terms. While they are not related to the proof of Proposition @I, they will be
very useful in the next section.

4.4.1 Setup

As a convention, we use k,[ to denote a number in {1,2,3,4}, and we use a, b, ¢ to denote
a number in {1,2}. For a finite sequence of indices K = (ki,...,kn), we set |K| = m,
nigr={j: kj =k} and ex = ey, ep, - - - €y

m*

4.4.1.1 Commutator coefficients

We define

= (ewelleals 0= 1,2 & = Sllenerl ex), & = 5enel.es).
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By () we have [ey, , ex,] = & 1, €. Thus these £, ’s are also called commutator coefficients
in this chapter.

We now derive several equations for {. Note that 5,21 ky = —ﬁml (so &, = 0) and that

&Y = & since [ey, e;] never contains 9. Thus, we only need to study those & , ’s with
ki < kg and [ < 3.

We start with [es, e4]. By Lemma }1.15 - we have
([es, ea), ea) = (Dses — Daes,ea) = —(Diyes, es) = (e3, Daes) = 20 geel
s0 &3, = Faﬁe4 64 For &5,, we have the following equation

€4(€51) = ea({Dses — Daes, eq)) = es({Dses, eq)) + €a((es, Daea))
= (DyDjsey, €q) + (Dseq, Dyeq) + 2e4(Togeiel)
= (D3Dyéey, €q) + (Dieyej€a, €a) + (R(eq, €3)e, €q) + (Dsea, (... Jeq) + 2e4(T0 gedel)
= (Ds((T0gefes)ea), ea) — Ea(Dies, €q) + (Rlea, e3)en, eq) + 2ea(T0gefel)
= —Xa&ly + (R(e4, €3)eq, €4) + 264(F0564 5.

Next we consider [e,,e4]. From Lemma , we have €2, = xq and &3, = 0. Thus we
have the Raychaudhuri equation

64(Xab) = FgﬂegefXab - Z XacXch + <R(€47 ea)€47 €b>-

Next we consider [e1,es]. Note that &, = 0 as ([e1,ez],e4) = 0. For &%, we have
5112 = <D1€2 - D2€1,€1> = <D1€2, 61) and f%g = <D1€2 - D2€17€2> = —<D2€1,€2> = <D2€2,€1>-
So, &y = (D,eq, 1) and

es(€la) = ea((Daea, €1)) = (DaDyez, 1) + (Dye2, Daer)
- <D D4€27 61) + <D[e4 ea]€2a 61) + <R(€47 ea)627 €1> + FO@€4 €1 <D €2, €4>
= FO,8€4 €9 Xal — F0364 €1 Xa2 — Xac€f2 + < (647 ea)GQa 61)«
We end with [e,, e3]. Note that

1 1 1
23 = §<Da63 — Dse,, 64) = —§<€37 Da€4> + §<€a, D3€4>

1 1 1. 1 1.,
= —5534 — §<€37 Dye,) + 5534 + §<6a7 Dyes) = —(e3, Dyeq) + 5534
2F0,3€4e + 5347

a3 = = (Doe3 — D3eq, €q) = (Da€3, €q) = Xaa + <Da(2goaaa)a €a)
= Xaa + 2€a(9")gagel + 29 eTh gl
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For €2, where a # b, we have

( 3) = es((Dges — Dseq, ) = ea(Xap + (Da(29"0,), €) — (Dseq, es))

(

64(Xab + 2€a( )ga,ﬁef + 290°“65F“agweb”) - <D4D36a7 €b> - <D3€a> D4€b>
(
— (R

Xab 1 2€a( )gaﬁeb + 2gOa€ﬁFILaglweg) - <D3D46a7 €b> - <D[e4,63]6a7 €b>
(€4, €3)€as €0) — IO gefe; (Dseq, e4)

= (ea + F2u€4 ef) (Xab + 2¢4 (9" )gaﬁeb + QQOQBBFMQ{QMVQZ) 64 A Z §a48ap

€4

— (R(e4, e3)€q, ) — F0564 B§34+F05646b§34

Given §, we can express ey, (ef,) in terms of e} and &f,. In fact, the formulas for e4(ef)
follow from Lemma E 19. Besides,

= [ex, ea]® + ealef) = e + ealel),

)
5)
er) = les, ex]” + en(e3) = Exel’ + ex(es),
b) = (Daey)” — efey T,

1 1
= E (Dqes, ecyes + §<Daeb, ez)ey + §<Daeb, es)es —ehey T,
1 03 m «a
= = D60t~ pale + D) - (o0 Dug00) ] ~ Ty

1 oV « |72 pte
- Zgbc €. — 2Xllb 64 + 63) (6gg#ﬂea<905) + ell:gl“’g(m ardﬁ) - eljebrﬂu'

4.4.1.2 A weighted null frame

A new frame {V} defined below turns out to be very useful in this section.

Definition 4.23. We define a new frame {V,}i_, by V, = re, for a = 1,2 and V3 =
(BR—1+t)esg and V; = tey. We call {V,.}i_, a weighted null frame, since V; is a multiple of
ey, for each k.

As usual, for each multiindex K = (ky, ..., k,) with k, € {1,2,3,4}, we define V! =
Vi, +++ Vi, as the product of |I] vector fields.

It is easy to see that

Vi=t{t+7r)"1S + (t + r) HHw;Qo; + (el — w;)0;,
Vi=BR—r+t)r 'Vi+2¢"(3R — 1+ t)0a, (4.28)
‘/a = Va(r)wl-(?i + 620&)ij2‘;
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1 1
Z=r" 2@32, ea)Vat 5t Z es)Vat S(BR =1 +)7(Z, ea)Vs. (4.29)
These formulas illustrate the connection between the weighted null frame and the commuting
vector fields.
Here we briefly explain why we work with {V}}. First, we note that

ZNZO (t)ex + O((r —t))es ~ ZO

k+#3

If we work with a usual null frame, then in order to prove Z/q = O({q)t“¢), we might need
to prove

erl@) § (r = 1)1 (4.30)
where ey and ny, are defined at the beginning of Section . In contrast, if we work with
a weighted null frame, then we can prove

Vi < (r — )t (4.31)

Since () is much more complicated than (), we expect the proof to be much simpler
if we choose to work with the new weighted null frame.
Next, to prove an estimate for V/q, we need to compute

=t > Vvl
I=(J,5,J")
Since V} is a multiple of e for each k, we expect [V}, Vﬁo be relatively simple. If we choose
13

to work with the commuting vector fields defined in ([l.13), then we need to compute either
leq, Z] or [Vy, Z]. Neither of these two terms has a simple form.

4.4.2 Estimates on H

We start with the estimates on the surface H. Recall that the vector fields X; = 9; + 2w;0;
are tangent to H for i = 1,2,3. For a multiindex I = (iy,...,%,) where i; € {1,2,3}, we
write X! = X, --- X;, and |I|

In this subsection, we keep using the convention stated in Sectlon -

We have the following pointwise estimate. We ask our readers to compare this lemma
with Lemma

Lemma 4.24. Suppose that F' = F(t,z) is a smooth function whose domain is contained in
{(t,z) e RM™3: r ~t > 1}. Then, for nonnegative integers m,n, we have

> ZXIFIS -0 Y |1Z'F

[I|=m, |J|=n [I|[<m+n
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Proof. We induct first on m + n and then on n. There is nothing to prove when n = 0. If
m = 0 and n = 1, we simply apply Lemma [1.4. In general, we fix multiindicies I, J such
that |I| = m and |J| = n, such that m +n > 1 and n > 0. We can write X’ = X’/ X.
Then, by our induction hypotheses, we have
\Z'X'F| < |Z' X7 0,F| + | Z' X7 (w;0,F)|
Sr=0' Y (1Z80F| + |25 (w0 ).
|K|<n4+m—1

Since Z%w = O(1) for each |K| > 0, by the Leibniz’s rule we have

Z'XFIS =ty > |ZROF| S (r—t)' Y 02" F)

|K|<n+m—1 |K|<n+m—1
Sr=t Y |28
|K|<n+m
In the second inequality here we use the commutation property [Z,d] = CO. Il

The next lemma is a variant of Lemma @ with Z replaced by X. Note that we do not
need to assume that (mg‘ﬁ ) satisfies the null condition defined in Section {.2.

Lemma 4.25. Fiz two functions ¢(t,x) and 1(t,z). Let (m3”) be a constant matriz. Then,

Xi(m§”gatis) = my” (0aXid)s + MG 0a(0pXith) + 171 Y fodatls.
a,

Here fy denotes a polynomial of w; we allow fo to vary from line to line.

Proof. We have [X;, 0y] = —2(0aw;)0;. By the Leibniz’s rule, we have

Xi(m§Pdatrs) = mg” (0aXi0)0s + mg’ 6o (05Xi00) — 2m” (Oawi)dribs — 2m” (Dpw;)hida
= mgﬂ(aaXigb)l/}B + mgﬁgba(aﬂXi@Z))
- 2T_1[mgﬁ(5ji — wjw;) o + mf}j(éj- — Wjw; ) Vrda]
= my (0aXi0) s + My ba(0sXi0) + 771 fobaths.
a,B

O

Using the previous two lemmas, we can now prove the estimates for Z/q on H. In the
next two lemmas, ! denotes the product of |I| vector fields in {12, Qs3,Q13}. In the rest
of Section §.4.2, we would use  to denote any vector field in {€q2, 93, 13} instead of the
region. There should be no confusion as we focus on estimates on H.

Lemma 4.26. On H, for all multiindices I, we have Z'q = O((q)t°?) and Z'Qq = O(t°*).
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Proof. For convenience, we set

Omnp = Omnyp(t, ) = > 121 X7 0K q.

[I|=m, |J|=n, |K|=p
On H, we claim that
Omno S <q>1_”tcg, Vm,n > 0; Omnp S <q>_"t0€, VYm,n >0, p> 0.

We first assume m = 0. Since 2 and X are tangent to H and since ¢|y = r — t, we have
X70Kq = X7QX(r — t) for all multiindices J, K. If |[K| > 0, we have X/Q¥(r — t) = 0;
if |J] > 0, we have X7 (r —t) = O(r'=VVl) = O((g)*~V!). Then, on H we have Oy = |q|,
Opnyp =0 for p >0, and Og o = O({g)' ™) for n > 0. So the claim is true for m = 0.

In general, we fix (m,n,p) with m > 0. Suppose we have proved

O o SO, ¥m/ 0/ > 0 such that m' +n' <m+n+p
orm'+n'=m+n+p, m <m;

Oty SAQT%, ¥m/ 0/ >0, p' > 0 such that m' +n' +p' <m+n+p
orm' +n' +p =m+n+p m <m.

(4.32)

From now on, we fix three multiindices I, J, K such that |I| = m, |J| =n, and |K| = p.
We write Z! = ZZ" and apply Z" X7QX to the eikonal equation. We have

0=29"q3(0, 2" X' q) + Ry + Ra + Ry
where the remainders are given by
Ry = ZI,XJQK(mO‘Bqaqﬁ) — 2ma5(8aZ],XJQKq)q5,
Ry = Z" X5 (%7 — m*")qags) — 2(9°7 — m™)qs(Z" X7 0" 40),
Rs = 2(g"" = m*?)qe( 2" X7 g0 — 0,27 X705 q)

We start with R3. Recall that g — m = O(et717) and ¢z = O(1) on H. Besides,
ZUXTO0% g, — 0,27 X7Q%q is a linear combination of terms of the following forms

ZNZ,0,)22 X0 g = czhozXI0Rq,  zhzz = Z1,
ZVXN X, 0, X208 g = CZV X ((0,w)0,X 20K q), XXX = X7,
Z'XTQMQ,0,)0%q = CZ"X7QM 00 g, QF 00 = 0F.

The first row has an upper bound

Yoo 10z XN S r=0t Y 128X = (@) Y Omny

[K/ <[]+ T2 |K/|[<m—1 m'<m—1
<) (@) S ()

~Y
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We can use the induction hypotheses () to control the sum »_ . Oy, since m’ +
n+p<m-—14+n+p<m-+n+p. The second row has an upper bound

! !
§ |Zh X 0w - |22 X 20X Q5 |
[T1[+[I2|=m—1
|1 1+195 =171

< Z 1= (r— t>—\Jé|—1—|J2\ Z |ZK'QKq|

[J1 ]+ J5]=]J1] | K| <[ L2 |+]J5 | +14] 2|
_1-n —nyCe
< {9) Y Owrop S (@) "

m/'<m—1+4n

In the first inequality we apply Lemma and Lemma . In the second line, we apply
(1.32). The third row has an upper bound
ron S ZRemeaRkg - Y zR Ry
|K'|[<m—14n |K'|<m—1+n+|K1|+1

S@O ). Owoo S (@)

m'<m—1+n+p

In conclusion, Rz = O(et 1 {q)~™).
We move on to R,. By the Leibniz’s rule, we can express R, as a linear combination of
terms of the form

ZIlX‘hQKl (gaﬂ _ maﬁ) . Z12XJ2QK2qa . ZISXJSQKSCM,

where Y || =m—=1.>" \J*E OO K| = p, maxj—os{|L| + || + | K|} <m+n+p—1.
32

On H, by Lemma and (4.32) we have
122X 720" q,| S (g) 7 > A A ) e S VAN () R
| K |<|Ta|+|J2 |+ K2| |K’|<mA+n+p

We can estimate Z73X73Q%3g; in the same way. And since Z11 X/1QF1 (g% — maP) =
O(e(q)~V1t=1%C¢) by Lemma §.24, we conclude that Ry = O(e(q)"t"'+¢) on H.

We move on to R;. By Lemma [.5, we can write QX (m®q,qs) as a linear combination
(with real constant coefficients) of terms of the form

Mo (0,051q)(9,0%%q),  min{l,p} < |K1| + |Ka| < p. (4.33)

Here (m®?) is the usual Minkowski metric. In fact, if p = 0, then (4.33) is m*’q,qs so there
is nothing to prove; if p > 0, then we guarantee that | K|+ |K5| > 0 in (4.33) since

QX (m*qaqs) = O (M (9.Qq)q5 + m*Pq.(05Qq)),  QF = Qf'Q.
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Next we consider XJQK(maﬁqaqﬁ), so we apply X7 to () By Lemma , we can write
XTOK(m*¥q,qs) as a linear combination (with real constant coefficients) of terms of the
form

maﬂ(aanlQKlq)(agXJ?QIQq), ’Jl‘ + ‘JQ’ =n,
min{1,p} < |Ki| + [Ko| < p;

XN (r ' fo) - (X 20X 20K1q) (X B0X3500K2q), S| |+ | T =n—1,
min{1, p} < |Kq|+ |K3| < p.

Again (m®%) is the Minkowski metric. We finally apply Z” to each of these terms. By
Lemma and the Leibniz’s rule, we can write Ry as a linear combination (with real
constant coefficients) of terms of the form

[ mg? (0,21 X1QK1q) (95272 X 202 ),
\Li| 4 o] <m =1, [Ji| + |Jo] = n, min{l,p} < |Ki|+ |Ks <p

ZB X3 (r=1 fo) - (Zh XM OX 10K q) (21 X 20X 202,
Sl =m—=1, Y ||+ ]|J| =n—1, min{l,p} <|Ki|+ | K| <p.

\

Here (mgﬁ ) is some constant matrix satisfying the null condition defined in Section @ It
follows from Lemma that on H the terms of the first type in (E.34) has an upper bound

07 Y (1282 X% gl|0z2 X0 q| + (021 X1 || 27 27 X 20 2]
L|=1
St ) 2R 2R XM g||2 2R X205 ] S e T Ovn i Ot bl Kol
|L1|=|L2|=1

Since min;_y of|[}| + |J)| + |Ki| + 1} < m + n + p and since |J;| + |J2| = n, we can apply
(@) to conclude that on H

[me” (0,20 X QM) (9527 X 20 q)| STHE (), ifp=0;
my” (0,21 X1 QK1q) (952 X202 q)| SETFg)™ i p >0,

Meanwhile, by Lemma and (), on H we have

|ZBXR (0 o)l S (g

|28 X1 0X7IO | < ()~ > O 1)
m!<| |+ 1+ J1 |+ 7
|ZIQXJ23XJQQK2Q| < <q>—1—|Jz\—\J£| Z Ot 0]

m! <|Iz|+1+|J2|+|J5)
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Here we can apply (4.39) as max;—i o{ || + || + |J]| + |Ki| + 1} < m + n + p. Thus, the
product of these terms is O(t 1+ (g)1™") if p = 0, or O(t~1+°%(g)~™) if p > 0. Thus, on H
we have Ry = O(t~1F¢(g)1™) if p = 0, and R; = O(t~ 17 (¢g)™™) if p > 0. In conclusion,

we have /
20*q5(0. 2" X7 q) = Ot (¢)' ™),  ifp=0;

20°%q5(0, 2" X705 q) = Ot (¢)™),  ifp > 0.

Next, we note that

X Z' X0 q= 2" X; X0 g+ Y~ Z"MX;, 22 X70%,

I’:(Il,i,IQ)
Q2" X7 q = 2" X0 g+ Y 2N, 227 X705
I’:(Il,i,lg)
-+ Z ZII)(J1 [Qkk/,XJ]XJ2QKq

J=(J1,j,J2)
Recall that [Q,Z] = " foZ and [X, Z] = > fo0 where f, denotes any function such that
75 fy = O(1) for all K. By Lemma [1.4 we have
X2V X70Nq) S Opcimrp + Y 120 (/o022 X70% )]
I'=(I1,i,I2)
5 Om_17n+17p + <q>_1 Z Om/ﬂ,pa

m/'<m—1

Qe 2" X0 g
SOncimpa+ Y 1ZM(f2Z2X705g) |+ > |2V X (fr0X 70 )]

I'=(I1,i,I2) J=(J1,5,J2)

S, Omfl,n,p+l + Z Om’,n,p + Z <q>*|J1|‘ZI/ZJ1 (foﬁXﬁQKq)’
m/<m—1 |J1]+|J2|=n—1

5 Om—l,n,p-‘rl + Z Om’,n,p =+ <q> -n Z Omlyoyp.
m/<m-—1 m/'<m+n—1

In conclusion, on H we have
IXZV'X7Q%q] < (¢)tC%,  if p=0; IXZV X% < (g) 7t meCe, if p> 0;
Q27 XTQKq| < (g) e, it p=0; Q27 XTQKq| < (g) 7", it p> 0.
We now end the proof. By setting L% = 2¢g*?q5 and L = L®3,,, we have
L—L'X; 1
9, = ol = —5L+ ;wiXi + O(|u|)L + Z O(|u)) X,

0; = X; — 2w;0 = wiL+ X; — 2w; Y wiX; + O(Jul)L+ Y _ O(|ul) X:.
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Note that L° = 2 + O(|u|) and L' = 2w; + O(|u|) on H. Then, we have

S— (—%t FDL+ (=) Y wiXe+ O+ OluDL + 32 O((r + 0lul)X;

= O(t +et“)L + Z O({q) + £t“) X.
And since Q= 2, Xp — 2 Xy, we have >, wpQ = X — Y, wpwiXy. Thus,
Qo = (—%xj +twj) L+ tX; + (z; — 2tw;) Z%Xi +O((r +t)[ul) L + Z O((r + t)[u]) X;
=t(X; —wjwX;) + Ot + et“)L + ZZO(@) + et9%) X, |

=tr7 ") Wiy + Ot +et)L+ Y O((g) + t¥) X,

In conclusion, for each Z € {0,, 5, ;}, we have

1Z2Z"X70%q S Y 19527 X7 |+ t|LZ" XN q| + ((g) +19) D |X: 2" X0 ).

1<i<j<3

If p = 0, the right hand side has an upper bound (g)!="t%%; if p > 0, the right hand side has
an upper bound (q)~"t“¢. We finish the proof by induction. ]

Lemma 4.27. On H, we have Z!(g; — wiq,) = Ot~ and Z! (¢, + q,) = O(st~+C%) for
each I. As a result, Z'(q; + wiq,) = O(t~110%),

Proof. Recall that ¢; — w;q, = > i r'w;Qq. By Lemma and the Leibniz’s rule, for
each I we have

1Z"(r'w;Qji9)| S Z 25 (r ;)| - |27 Qq] < ¢
[T1|+|12|=]1]

So Z1(q; — wiq,) = O(t711C%). Moreover, by the eikonal equation we have
(@ +a)a— @) + D (g — wig:)* + (9% (1) —m*)gags =0,

SO

Zz(% - wiQr)2 + <ga<u) - maﬁ)QaQB
4 — qr

Thus, Z(¢; + ¢.) is a linear combination of terms of the form

q+ g =

(@—a)" " 2o —a) 2% — ) - Z°0 (6 — wige)* + (9% (1) — m*?)qaqs)

)
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where Y |I,| = |I]. It is clear that Z% (¢, —q,) = O(t°?) and that ¢, —¢q, = —2+O(et~17¢%) <
—1 on H. Moreover, since Z(r=1Qq) = O(t~1*¢) for each I, we have Z((¢; — wiq,)?) =
O(t=2%¢¢). Finally, for each I we have

26" = mNaag)| S D 12" (g —m)l|Z"0ql|Z"0q) < <t
[T1|+[12|+]Is]|=|1]

In conclusion, Z%(q; + q,) = O(t72+C% 4 et714C%) = O(et~11¢¢) as t > Ty = exp(d/e). Since
¢+ wiq = ¢ — wiqr + wi(q + q-), we can easily show Z1(q; + w;q;) = O(t~1t¢¢) by the
Leibniz’s rule. O]

We move on to estimates for e} and &, on H.

Lemma 4.28. On H, we have Z'e¢ = O(t°) and Z' (e} — wi, el — w;) = O(t~11°) for
each I.

Proof. Since e} = 1, €] = —1 and €Y = 0, we can ignore the case a = 0. We write

ey —wi = (¢"q.) (9" q5 — wig®’qp)
= (¢"q,) (g + wigr + (9" — m")qs — w;(g"" — m")qp)
= (gO“qu)flg.

By Lemma , Lemma and the Leibniz’s rule, we have
Z'Q=0("""),  Z'(¢"q) =0(t),  ¢%qu=1+0(ct"F) > 1/2.

Besides, Z (e, — w;) is a linear combination of terms of the form
(9%q) 2" (g% qu) - - 2" (g™ qu) ZQ, D ILI= |, [I;]| > 0 for j #0.

We conclude that Z1(e} — w;) = O(t~11¢¢). Since Z'w = O(1) on H, we conclude that
Zlet = O(t°?). And since Z1(ef—e}) = 221g% = O(et~119¢), we conclude that Z1 (e} —w;) =
O(t=17) and Z%el = O(t°%) on H for each I. The proofs of these estimates do not rely on
the estimates for ZZe, so we can use them freely in the following proof.

Next, we claim that Z/ X7Q¥el = O((q)71V1t“®) on H for all I,J, K and a = 1,2. Recall
that QF is the product of | K| vector fields in {12, Qa3, 13}, We induct first on |I]|+|J|+|K]|
and then on [I|. When |I]| + |J| + |K| = 0, there is nothing to prove. When |I| = 0 and
|J| + |K| > 0, we have X/QFel = O(r~Kl) on H, since €' |y is a locally defined function of
w and it is independent of t.

In general, we fix I, J, K such that |I| > 0. Suppose we have proved the claim for all
(I',J', K') such that |I'| +|J'| + |K'| < |I| + |J| + | K|, or |I'| + |J'| + |K'| = [I| + |J| + | K|
and |I'| < |I|. We write Z! = ZZ!". For a = 1,2 we have

ZI/XJQK64(ei) = ZI,XJQK(ej‘eflﬂoﬂef1 — ei‘eﬁl“i ).

a « a™ af
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Since we can write I' = g - dg. for each K’, we have ZX'T' = O(et'*%(¢)~") on H. By
induction hypotheses, Lemma @ and the Leibniz’s rule, we conclude that

ZI/XJQK&L(Gi) _ O(st_1+05<q>_1_|‘]l).

a

Moreover, ZI' X7Q e, (e!) is equal to the sum of e4(Z” X7Q%e!) and a linear combination
of terms of the form

Zh ey, 212 2B X7 QK el (I, b, I5) =TI', |I] = 1;
ZV X7 ey, X2 X0 el (J1, Jo, J5) = J, |Jo| = 1; (4.35)
Z' X705 ey, I8l (K, Ky, K3) = K, | K| = 1.
Note that
le4, Z) = ea(2")D, — Z(€5)0, = es(2")0, — Z(w;)0; — Z(e} — w;)0;,
leq, Xi] = es(2w1)0r — Xi(e})0; = 27"1(ef1 —wy — (w; — ey)wjw) 0y — (Ow;)0; — X (e} — w;)0;

where we write Z = 2¥(t,z)0,. We have

—8(wj)8j Z
(r+6)71S + (r+¢) twiQo + (] — w;)0;, Z =S5
T‘ilQi]‘ + (62 — wi)(‘?j — (631 — (Uj)ai — T’ilQi]‘, J = QZ],
r 10 7t —1)0; + (€ — wi)Oy — tr2wi Sy, Z =9

ea(2)0, — Z(w;)0; =

In conclusion,

e, Z) = f1-Z,  [es, X]=f1-0

where f; denotes any function satisfying Z7' f, = O(t~'*¢¢) for each J’ on H. Thus, the
first row in (4.35) has an upper bound

‘Zh (f1ZZ13XJQK€3)’ 5 Z t_l+CE‘ZJ/Z213XJQK€2| S t—l+Ca<q>—|J|‘
[J'|<[ ]

We can use the induction hypotheses here as
[+ 14 I + [J] + K] < [L]+ L+ L] + [T+ K] =[] + [T+ K] < [T+ | J]+ K]
The second row in () has an upper bound

1Z" X (LoX BN S > (o 27 (hox kel
[J| <[+ 1]
S (Ml z ox k)
[J| <[+ 1]
5 Z <q>—|J1|—1t—1+Cs|ZJ’XJ3§2K€Z| 5 <q>—|J\t—1+Ce'
[ [T+
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We can use the induction hypotheses here as
S|+ | + K] < [+ [ L]+ L+ | + [ K] = [T+ [J] + K] <[]+ [J] + | K].
The third row in () has an upper bound

12" X7 (fiz0e) S Y (o) 27 (f25e)]
[J|<T|+|J)

< Z <q>f\J|t71+Cs’ZJ’ZQK362| < (g)MIg1HCe,
|| <1 |+ [T+ K
We can use the induction hypotheses here as
\J' |+ | Ks| + 1 < |I'| + |J| + |Kq| + 1+ | K| = |I'| + || + | K| < || + | ]|+ |K].
In conclusion, on H we have
64(ZI/XJQK€Z) = ZIIXJQK@(ez) + O(flJrCE(q)"‘”) = O(t’HCE(qY'J').

We recall from the proof of Lemma that [Z,Q] = C - Z and [Z, X] = fo - O where
fo denotes any function such that Z% fy = O(t“®) on H for each K’. If we keep commuting
Q with each vector field in Z” X7 and applying the Leibniz’s rule, we get Q77 X/Qf¢el =
O(t%{(q)~1). If we keep commuting X; with each vector field in Z” and applying the
Leibniz’s rule, we get X;Z!' X/QKel = O(t°(g)~'~VI). Finally, we recall from the proof of
Lemma {.24 that we can write

(0,5,9,) = O(t) L+ O(1) - Q + O({q) + t“®) - X
where L = 290‘5%8& = O(1)eq on H. In conclusion, when Z = 0, S, Qy;, we have
1227 X7QK e | S tles(Z8 XTQKE)| + Q21 XTQK e | + ()t 5| X 28 XTQKel | < 195 (g) 7M.
We finish the proof by induction. [

We now prove the following lemma which illustrates the connection between the weighted
null frame and the commuting vector fields.

Lemma 4.29. Let F' = F(t,x) be a smooth function defined near H. Then, on H we have

VIFIS Y 12 F).

[J1<[1]
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Proof. We induct on |I|. When |I| = 0, there is nothing to prove. Suppose we have proved
the estimate for each function F' and for each multiindex I’ such that |I’| < |I|. Then, by
writing V! = V'V, and applying the induction hypotheses, we have

VIFIS ) 9127 (F)).

[JI<IT]—-1

We then apply () When k = 4, we have V,F' = f, - ZF. Here f; denotes any function
such that Z7' fo = O(t%) on H for each J'. In particular, since Z”7 (e} — w;) = O(t~1+%)
for each J' by Lemma @, we have Z7 (t(e}, — w;)) = O(t~'+%) and thus t(e} — w;) = fo.
By the Leibniz’s rule, we have

VIFIS > %120 (fo- ZF) S Y t127ZF| < ) 15|27 F).

|J|<[1]—-1 |JI<[T]—-1 |JI<|1]

The proof for k = 3 follows from the case k = 4 and the estimate Z7' (r —t) = O((r —t)) for
all J'. Finally, when k = a € {1,2}, we note that

Vi(r) = relw; = reS(—g™ + m)el + relm(—el +w).

By Lemma , we have Z7' (w,, ef) = O(t°?) and thus Z7' (V,(r)) = O(t°®) on H for each
|.J'|. Thus, for all |J| < |I| — 1, we have

|27 (VaF)| S 127 (Va(r)wndi )| + |27 (eq; i)
VA RS VA A B S A

|KI<]J] [KI<]J] K<
This finishes the proof. [
Remark 4.29.1. With the help of this lemma, we conclude immediately that
Vi(g—m) = O(et™4%), VI(BR—r+8)7) = 0(() %), V(1Y) = 0 +),
Vi(g) = (a)t®, Vg =0("),  V'(es—wel—w)=0("")
on H for each I.

Lemma 4.30. For cach I, on H we have V! (€2, £L,) = O({q)~1tC%), VI(£2,) = O(t+C%(g) 1)
and VI(S;?I,Q) = O(t~1%9) for all other ky < ky and a € {1,2}; Vf(gglb) — Ot 140 () 1)
for all ky < ko; V(xap — 171 0ap) = O(t~27C%),

Proof. First, for any function F' = F(¢,x) and for each 1 < k <4, on H we have

VI (er(F))| S {a) 't J|Z VI (F)]. (4.36)
<|I]+1
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This inequality easily follows from the Leibniz’s rule, Remark and the estimate (r—t) <
ton H.
Since €;({ex,, ex,)) = 0 for each ki, ks, [, we have

2521@ - <[6k17 6k2]’ 64> = €k (egz)gaﬁef — Cky (egl)gaﬁef
= —€f ek, (9ap) ] — €5, Gapery (€]) + €5 €ry (9ap)el + €f, Gaper, (€]).

We assume ky # ky as &, = 0. By (4.36) and the Leibniz’s rule, on H for each I we have

VI (=€, en (gap)el + € era(gag)ed)| S et 7 ()7
Moreover, since €] = 1, we have
e 9aser (¢4) = € 9azen (€f — w)) + € gagen (w;)
= €f,gajer (€ — wy) + 17 e}, gaj (el — ef, ;).
Again, by (4.36) and the Leibniz’s rule, on H for each I we have
VI (€f gajen (€) — w))] SEH(g) "
If k; = 3 or 4, then since

J l _J ) l o J ) )
€y, — Cpwiw; = e, — w; + (1 — ey w)w; = ep, —wj + E (W — eg,)wiw;,
1

by the Leibniz’s rule and the estimate V(e —w;, €} —w;) = O(t~1¢) for each I, we conclude
that '
VI(r—tep gajlen, —w;+ (1 — el w)w;))| S e ki > 3.

If &y =1 or 2, then 621 = 0.

-1 a J l _ -1 -1 a Ll o -1« Ll )
r ekzgaj(ekl - eklwle) =T <6k276k1> =T €pYGajCp,WiWj = =T €L, JajCl, WiW;.

Note that
eﬁﬁwl = eiﬁ Surel, + eiﬁ ow(wy — €)= €, s — € (G — My ey + 6215”/ (wy — €)
= —¢}t, (Guw — My )€ + e, O (wr — €f).
Thus, by the Leibniz’s rule, we have V7 (e}, w;) = O(¢t'¢%) and thus
VI et 9a5(eh, — epwiwy))| ST k<2

In conclusion, for each I, on H we have

|VI(§I§1k2)| 5 t—1+Cs<q>—1 + t—2+Cs SJ t—l+Cs<q>—1‘
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Next, we have

gglkg = <[6k17 6k52]7 €C> = ek?l (egQ)Qaﬁef - €k2 (6%1 )gaﬁef

We first prove some estimates for ey, (€f))gase? with ki # k. If by = a € {1,2} and
ky = b€ {1,2}, we have e, = r~'V, and thus V'(e,(eg)gape’) = Ot 1) on H. If ko = 3
and k; = a € {1,2}, then

€a(€5)gaper = ealwi)gisel + ea(ey — wi)giped =17 (€, — eqwiw;)gisel + ealel — wi)gise!

=17 60 — 1 (b)) wigizel + TV, (eh — wi)gige?.

77 10,.) = O(t727%) on H. Next, for k # 3 we have

64(%)9%65 =€y €k<FO Fo‘y)ga[gef —€y ekraugaﬁef
1
= _564 CkCL (augﬁv + 095 — OpGuw)
1 1
= 2 (t ekeﬁ‘/él(gﬁu) + 6 (t 17 r 1)‘/16(9[3/) 64 ekv (g;w))

es(€5)gase; = €4(29°")gagel + ea(ef)gaper =17 Vi(29™)gapec + ea(ef)gaper-
Then, on H we have VI(e4(ef)gase?) = O(et=2+9). Next, we have

63(62)%&66/8 e3(°~’])9]ﬂ6 (BR—1r+1)" 1V3(64 - wj)gjﬁe
=M (ef —wj+ (1= ) hwnw;)gjpel + (BR —r+ 1) Vi(e] — w;)gspel.
]

Then, on H we have VI(e3(e$)gase?) = Ot (g)~1). Besides, we have

1 -1 «
es(ed)gasec = €2 gapes(el) — eles(gople] = es(€d)gasel = =5 (3R =1+ 1) egVa(gan)er
so we have VI(e3(e¥)gase?) = O(et7119(q)~1) on H. If ¢ # ¢, then

e3(€d)gasee = (3R — 1 +1)7'Vs(ed)gager

so we have VI (e3(e%)gase’) = O({q)71t°?) on H if ¢ # /. All these estimates imply that on
H, we have

V€ €anr &6s) = O(TF); - VIED,) = O(()T't%%), e £ s V(&) = 0t (g)™).

Moreover,

VI Otas = 77 0u)| < IV (ea(e§)g™ey — 174 0u) | + [V (ealed) g™ e))| S 727
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4.4.3 Estimates in (2

Recall that we defined a weighted null frame {V;}{_, in Section . Our goal in this
section is to prove the following proposition. Note that the estimates here are the same as
those in Lemma #.30.

Proposition 4.31. In QN {r —t < 2R}, for each I we have the following estimates:
VIED] + VT (E23)] S (a) 1 (4.37)

H 1(63?4)‘ ,S <Q> 1t ! CES (4.38)
for all other (ki, ka,a) such that ky < ky and a = 1,2, we have
Y Y Y )

V(&) S5 (4.39)
for all ky < ks, we have
VI ) S %) (4.40)
for &4 = Xab, we have
V! (Xab — 77 0ap)| S E727C° (4.41)

In this proposition we use the convention given in Section . That s, for each fized
integer N > 0, we can choose € K 1, such that the estimates in this proposition hold for
all multiindices I with |I| < N.

Since it is known that ¢ = r —t for » —t > R, we only care about the region where
r —t < 2R in this subsection. Recall that every point in Q N {r —t < 2R} lies on exactly
one geodesic in A emanating from H. The following lemma would be the key lemma in the
proof of Proposition §.31l.

Lemma 4.32. Fiz 0 <e < 1. Let Q1,...,Qu be m functions defined in QN {r —t < 2R}.
For each i =1,...,m, suppose in QN {r —t < 2R} we have

es(Qi) = (—nor ' + nies(In(BR —r +1)))Q; + O(et ™ Z Q1) + O(f (1)) (4.42)

J

Here ng,ny > 0 are two fized real numbers which do not depend on i. Moreover, for some
fized s > 1, we suppose that Q;|g = O(h(t)) for each i. Then, in QN {r —t < 2R} we have

t

SISO RO+ [ )

Here we suppose that (t, ) lies on the geodesic x(s) in A and that the integral is taken along
the geodeisc x(s).



CHAPTER 4. ASYMPTOTIC COMPLETENESS 125

Proof. Recall that es(r) = 1+ O(t711%). If we define Q' = (3R — r + t) ™7™ Q;, then by
(), we have
es(Q)) = —nmi(BR—71+1) " tey(BR — r + 1) r"Q; +no(BR — v + 1) "0 ey (1) Q;
+ (BR—r+1t) "r"es(Q;)
= nor~'(ea(r) = 1)@} + Ot Y Q| + (BR — 1+ 1) ™1™ f(t))
J

= O0(ct™ ) |Qj| + BR —r+1) ™™ f(1)).

To get the last equality, we note that 7~1(ey(r) — 1) = O(t~27%%) = O(et 1) as t > exp(d/e).
In addition, we have (q)/(r—t) = t°©). In fact, by Lemma , we have |[g— (r—t)| < t¢¢

and thus
L+]gl S1+|r—t|+t St (r—t) = (r— )7 S (g) 1"

Lt fr =t S 1+ g+ St (q) = (@) 7" S (r =)'t
Thus, in QN {r —t < 2R} we have

(BR —r+ )™ f(t) S ()Tt (1),

Fix a point (o, zo) in QN {r —t < 2R}, and let z(s) be the unique geodesic in A passing
through (to, zo). Note that to > 2°(0) > T}, and that ¢ remains constant along each geodesic
in A. Then by integrating e4(Q)}), we have

S @it a0 £ IO+ [ <t SRy + (@) )
@O HEO) + [ e S I@ ) o)) d

Here (7,y(7)) is a reparameterization of z(s) such that y(tg) = zo. By the Gronwall’s
inequality, we conclude that

to

Z |Qi(to, z0)| < 16 (a) ™™ ((2°(0))™h(2"(0)) + / T f(7) dr).

°(0)

To end the proof, we multiply both sides by r~"°(3R — r 4 ¢)™, and recall that ¢t ~ r in
Qn{r—t<2R}. O

To prove Proposition , we induct on |I].
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4.4.3.1 The base case I = 0.

From Section , in QN{r—t < 2R} We already have the following estimates: &3, =
o(|I') = O(Hlin{€t_17€f1+c‘€< =)', o = Xab = dapr ™t + O(E2F) = O(t™), &45 =
Xaa + O(et™) = O(t™), €, = &, = 0. To control the rest &, we recall that

a B p v
Y S
(R(ek, e)er, es) = €e) elel Rogu

1 (4.44)
= e%efe“e?(é(ﬁaauggy — 000,98, — 980, 9ar + 080, Gap) — F%MF(;W + Fiuf‘(g,,ﬁ).

If at most one of k, 1,7, s is equal to 3, then we have (R(ex, e;)e,, es) = O(et =2+ (r — )~ 1)
by Lemma @ From the equations in Section { ! we have

lea(€5y) + 1&g SETTOEY gL+ et (g) 7,
b

lea(€ly) + 1710 ST el + et (g) !
b

By Lemma with ng = 1, ny = 0 and f(t) = et=2+%(g) "1, we have

60l S ¢ (g) @(0) + £95(g) ) S ¢,
€0 SO ((20(0))CF + 195 (g) ) SEHTOR

Here we get_different estimates for £, and £, because their estimates on H are different;
see Lemma {.30.

It follows from Section f1.4.1 that &y = 365, + O(et™) = O™ '7%¢). It remains to
estimate fa where a # a'. Note that

64(63;‘3) = (e + Ffwezezxxaa’ + 2€a(90a)gaﬁe§’ + QQOQEgFgaguveZ’> - ngeieifffé - Z NI

_ <R(€4, 63)6(1, 6(1/> — Fgﬁegeggzﬂ + F0564 5’61314
= ea(Xaar) — TS, ehefel — 3 €565, + O(et™7%) = O(et1e%|) + O(t2+7%).

By Lemma with ng = n; = 0 and f(t) = 72+ we have [£%]| < (2°(0))1+C5t“. Here
note that if (¢, z) lies on a geodesic x(s) in A, then

Ty — 2°(0)

5 + 2R = 2°(0) = Ty — 2(q — 2R).

q(t,z) = q(x(0)) = r(x(0)) — 2"(0) =

And since we only care about the region where ¢ < 2R, we have t > 2°(0) ~ (Ty+{q)) > (¢).
In conclusion, we prove Proposition @.3]] in the case I = 0.
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4.4.3.2 The general case.

Fix m > 0. Suppose we have proved Proposition for all |I| < m. Our goal is to prove
Proposition for |I| = m.

Under the induction hypotheses, we can prove a key lemma which is Lemma below.
For convenience, we introduce the following notation.

Definition 4.33. Let F' = F(t,z) be a function with domain QN {r —t < 2R}. For any
integer m > 0 and any real numbers s, p, we write F' = R, if for € <, 1 we have

Y OIVIE) ST (g inQn{r—t<2R}.

|11<m

By the Leibniz’s rule, we can easily prove that R7", -R72, = %Z;liiﬁglnj;i In addition,
under the induction hypotheses, we have

(€35,833) = RO 1; & =R7 Ly &, = R7, for all other ky < ks and a = 1,2;

) X (4.45)
Enky = AT forall ky < ka; xap — 77 00 = R4,

Lemma 4.34. For e <,, 1, we have
ey = 9%6'?0; (4.46)
(63 — W, eg — wi) = mTLO; (447>
(9° = m™, gag — mag) = eRTG, TG, = eR; (4.48)

for each fized s € R, we have

w; =R, (%) =R, BR—r+1t)° =Ry (4.49)

Proof. We prove by induction. First, since e} = O(1), we have e} = P00 by Lemma ,
we have (e} — w;, ek —w;) = R2, . Besides, (gus — My, g — m*™) = O(et %) and

T < lgl|0g] S et (r — )" Set 9% (g) "

Here we use the estimate (r —t)/{q) = t°©). Besides,

D Vi@l Y+ r)lenlg) + (r = 1)|0g] S et

k k43
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Since I' is a linear combination of terms of the form ¢ - dg with constant real coefficients, by
Lemma {.13 we have

LA \<Z|Vk )|ag| + gl - [Vi(0g)])

S 675‘”05 ce(r — )T 1Y (E+ 1) |en(g)] + (r — )]l
k#£3

Seg) e

We thus obtain () with m = 0. Since 3R —r+t~ (r—t)in QN{r —t < 2R}, ()
with m 4 1 replaced by 0 is obvious. In addition, by writing V f := (Vi.f, Vof, V5 f, Vi f), we

have

V(t)=(0,0,—(3R —r +1t),t);
V(r) = (rey(r),rea(r), BR —1r + t)(eng) telw;);
V(w;) = (e} —wier(r), eh — wiea(r), (3R — r + t) (e} — wichw;), r~ (e} — wielw;));
V(BR—1r+1t) = (—rey(r), —rea(r), BR —r +t)(—1 — eiw;), t(1 — ejw;))
(4.50)
Since e3, e4 = +0; + 0, + O(t~17)d, we have

ea(r):eflwi:Ze 64+Z w; — €4)

= (ea, €1) = (g7 = m*¥)efel +Z€ wi —¢y) = O(t™1%), (4.51)

Also note that for each fixed s € R and for each funtion ¢(t, ), V(¢*) = s¢* 'V (4). Then,
we have V(w) = O(t%°), V(t*,r%) = O(t*T°%), V(3R — r + 1)) = O({r — t)5t°%). We thus
obtain (4.49) with m = 0. This finishes the proof in the base case.

In general, we assume that_we have proved (4.46)-(4.49) with m replaced by n where
0 < n < m. We first prove (4.46) with m replaced by n + 1. Fix a multiindex I such
that |I| = n+ 1. If I = (I',4), note that tes(ef) is a linear combination (with constant
real coefficients) of terms of the form ¢I'%, (ef)(eX)(er), —tT%,(eX)(ef) and Vi(g°*). By the
induction hypotheses, we notice that

tr';, (eX)(eX)(er) = %%1 : 59%75{,171 : %8,0 ‘ mg,o : iRg,o = 5%8,71
and similarly
T2 (e3) (€2) = ey _y.

Besides,
g —m = R = Vi(g™) = R
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So in conclusion,
Vi(eR) = ey _y = V'(ef) = O(e{q)~'t).
If I = (I',k") where k' # 4, then by the formulas at the end of Section , we have
Vi () = régef + rt™'Vi(eg)
=R R Rio + RID- R - eRG - = R, K =a=12;
Va(el) = (BR—r+ t)€346z +1 B3R -7+ t)Va(es)
= RG1-RILL G, + R -G eRG =R
In addition, note that e§ = ef + 2¢°, so
Vie(eg, €5) = Ry g = V'(ef, ) = O(t).
If I =(I',3), we have
Va(e?) = (3R —r 4+ )€ e +r7 1 (B3R — r + )V, (e5)
=Rl NG NG + R - N1 Ao = R
Here we recall that t 2 2°(0) ~ (g) + Tp, so R", , = Rf, for each s > 0. Thus,
Vie®) = O(te°).
If I =(I';a), then

1 oTwvw a (0%
Va(ey) = ngbc €c — TXab<€4 +e5) = (¢4 9usVa(9™) +7¢ 99" e ealggles —regeyly,

Again, by our induction hypotheses, we conclude that
Valey) = 95 = V(ef) = O(t%).

Summarize all the results above and we conclude that e} = U{SEI. Note that the computa-
tions above work as long as n < m — 1.

Next we prove ({.47) with m replaced by n+ 1. It suffices to consider ¢} — w; as e} — e} =
2¢" = eR"™1}. Fix a multiindex I with [I| = n+ 1. Note that

Va(ely —wi) = req(ey — wi) = (&) + ealey) — 17 (e — wiea(r)))
= 7(Xab — 07 )ep + req(el) +rtw Vo (r)
= m%l : mTz_,é R+ res(el) + Ry, = req(e)) + R o,
Vi(el — wi) = tea(e — w;) = tlealey) — (€] — wy)djwi)
= teg(e}) —tr (e} — w; — wiwj(ei —wj))
= te4(ef1) + %831 ’ (%21,0 + 9%&461 ) fWil,o) = te4(ef1) + mﬁl,m
Vs(eh — wi) = BR — 1+ t)eg(ely — wi) = (B3R —r + 1) (Eye] + ealel) — (¢ — w))dwi)
= (3R —r +1) (€] + ea(el) + 267 Valg™) — r7 (e — wi — (€ — w))wiw;))
=@BR—-1r+ t)64(€4) + %nﬂ (milf,L ) %g,o + 89%712,0 + fﬁiﬁ) ) SRzl,o)
=@BR—r+ t)64(64) + R,
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Here we use () To finish the proof, we note that for k # 3,

2e4(c},) = 2¢§e} (Togeh — Thg) = eief(9¢} — 9°)(agsp + 3950 — D5gap)
(3 7 o « 1
= (9" — g 6)(64(965)% + ex(gsa)ey) + €] 65(‘564(9045 ¢y +¢e3) Z epen(Jas))
= No5 't Valg) + R r™ Valg) = eR5y.

Also note that es(g) = t7'Vi(g) = eR™%; and that ¢} is a constant, so we have eq(eft) =
59‘{713% for each k, . Thus,

7 . n+1 7 o n+1

Finally, we prove (4.48) and () with m + 1 replaced by n + 2. Fix a multiindex /
such that |I| = n + 2. Note that

tS — miQOi

(BR+t—1)0; = 3RO, + v Roo' - Z,
(BR+t—1)0, = 3RO, + 012 _ qqnit . g7
r+t 0,0

(BR e 7')(91 = 3R81 + (t — r)wﬁr + (t - T)TilejS = 9%8,31 - 7.

Thus, & = B3R+t —r) "Ry - Z = MG - Z. Since we have just proved e} = Rif' and
ey —w; = NG, by (1.51)) we have e,(r) = ERT{}O. In conclusion, by (@) we have

Vi=t(t+ 1) 708 + (¢ + 1) M Qo; + e — wi)d; = Ref - Z,
Vs = (3R — 1+ 1)r Vi +2¢°(3R — r + )9, = Ryp' - Z,
Vo = req(r)widi + eqw; Qi = R5 - NG - Z+ RGEH - Z = /gE - Z.

Now, given a function F' = F(t,z), if |I| = n + 2, we can write VIF as a linear combination
of terms of the form

Vi@ VRGN ZE, Y L+ s=n+2, s>0. (4.52)

Since |I;| < n+2 for each j, we have VI (R{§') = O(t“¢). Note that for each J with |J| > 0,
we have Z7g = O(et™140%), Z7w = O(1), Z/ (t*,1%) = O(t*), Z/(BR—r+1)*) = O({r — t)?)
and Z7(T') = O(et™17%(g)~!). The last one is true because Z’T is a linear combination
(with constant real coefficients) of terms of the form (Z71q) - (Z720q) = O(et='*(r —t)71).
By plugging these estimates into (@), we conclude ( 4.424) and ( 4Q) with m + 1 replaced
by n + 2. [

Remark 4.34.1. We have Z/0%g = 59%’ffik for each I and k, as long as ¢ < 1. This
follows directly from (), Lemma [l.4 and [Z,0] = C - 0.
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From the proof, we note that ey(ef) = e, 4 and e,(r) = R, ;. These estimates are
better than what we can get from |4 4d and |44q

By Lemma - we have ejw; — 1 = (e} — w;)w; = R™ o- This result can be improved as
shown in the next lemma.

Lemma 4.35. For ¢ <, 1, we have €jw; — 1 = eR™ .

Proof. By Lemma , we have
ew; = — (g — o+ Z —ep) = R

Recall that
g = Z e”‘eﬁ 6463 + egef)

Then,
9% (Oar = 1)(@5(r — 1)) = Y _(ewi)(ehw;) + (ehwi — 1)(ehw; + 1)

= f)%’fm + (eiwi -1)(2+ (@é - wj)wj)-
Meanwhile, we have
9% (alr = ))(9p(r — 1) = g% — 2" wi + g wiw;
= —2¢"%w; + (9”7 — m" )wiw; = eR™Y.
Thus,
chwi — 1= (2+ (€ — wy)w)) HERT o + Ry 0) = 2+ (¢ —wy)wy) ~H - eRT .

Here we note that R, ; = eR™, ; as t > exp(d/e).
Fix a multiindx I with |/| < m. Then, V!(eiw; — 1) is a linear combination of terms of
the form

(2 + (e} — wy)w;) *TIVR(eR™ IV (24 (e — wj)wy) - V(2 + (€] — wj)wy)

where ) |I.| = |I| < m such that || > 0 for each k& > 0. Thus, we can replace VI (24 (e —
wj)w;) with VI ((e} — w;)w;) in the product. By Lemma @ we have (e3 — wj)w; = R™ 4.

Since e} — w; = O(t~17°%), we have 2 + (¢} — w;)w; > 1 for e < 1. In conclusion, we have

’VI(€4O% . 1)’ < et~ 14+Ce | 0I<na<X {(t 1+Cs) } < et~ 1+Cs

Thus, ejw; — 1 = eR™ . [

We can now control the curvature tensor terms.
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Lemma 4.36. We have (R(ey, ex)er, ep)) = eR™y _ if l,p # 3.
Proof. By (), we can express effef ej'el Rapuy as a linear combination of terms of the form
e1(Ougsw — Dugsu)erel'ey, eidsgor)eierey, ep(Opgap)eierel, elepefey - T+ (g-T).
By Lemma and Remark , we have
e4(0,95, — &,ggu)efef‘e; =t"'V,(dg) - R = R7 o Z(0g) = eR™y .

Since [ # 3, we either have ¢, = t~'V} or ¢; = r~'V]. In both cases, we can follow the same
proof as above to conclude that

e ((%gay)ei‘efez =Ry .

Similarly, we also have
ep@ﬁgau)egeg@? =eR0, .

Finally, note that
eie’gefeg T-(¢g-T)= (gﬂ%’ffil)z BUTE 529‘{71‘2772.

Thus, (R(es, ex)er, €p) = eR™y 5. [

Lemma can be improved in a special case.

Lemma 4.37. (a) We have

1
(R(e4, €a)es, ey) = es(fap) + Zefeﬁrfl%be?,(gau) +eR75 .

Here we set

1 v 1 o v m
Jab = 5(6561764(951,) - eaﬂegeb(gﬁu)) - 564 €a(gor )€ = eRTp-

(b) Assume that xa = R™ o. Then we have

o 1 e m
Fgﬁ% efxab + 164 6563(9a6)xab = eRly,.

Proof. (a) Recall that (R(ey, e,)es, €5) = efelelel Rog where Rap,, is given by

1
RO‘BILV = 5(8(18”951, - 8aayggu - 858ugw + 868ng) - F%HF(;W + Ffwrgyﬂ.
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Note that (for simplicity we take the sum over all the indices without writing the summation)

1 (3
5 564€ f@ffeb 50y Jo

1 [ i 1 [ A
= 3¢ eqeey(widr)(Dpgap) + ¢ eqehen(0; — wi0,)(DpGap)
1, 1 )

— Seaehen(r)eiOn(Oagun) + Seercher i 0sgun)

1 o 1 (A 1 (07 (A
= 564 eﬁfeb(?“)wjea(a;gau) + 264 Beffeb?“ Wi [QJ“ aﬁ](Qd#) + 264 65%7” leea(jSgau)

1 1 -
= gefelen(r)wiea(9igus) + 5egeir (=ea(r)es(gan) + €uetOr(gan))

1
+ Qeffeffezr 1w]ea(jSga“)

1 (03 — 12
Seieir™ (—ea(r)es(gap) + (Jab — €2(g50 — m50)€})0r (ga))

1 [0
= seqehen(r)wiea(9igau) + 5

2

1 (e} T
+ 5 564 effezﬂ“ 1WJ €a($2jigopn)

| 1, .- _ y

= Loy () Va0y00) + B3l (e (1)Valog) + (8o — (g5 — 3 )€)01(00,)
1

+262‘65le w]V (QiGap)-

Recall that in Lemma [1.34, we have proved that ea(r) = R o Thus, we have

1 o i

Seie eleler 050, Gan = 264657’ Y0ab(0rGap) + eR™5 0

1, .- 1. 1, ., -
= eielr ™ 0w(w; — 565 — 5€1)0igan + 7147 dan(€s(gon) + €a(gan)) + Ry

1

164 el Sapes(Gap) + ER™,

Next, we note that

| =

ege 5 hey (Oa 0,980 — 0aOugpu — aﬁaugcw)

DO o

1% 1 « 1%
ehelieyes(0,95 — Ougsu) — 5 eleyes(0sgan)
1 1% 1 [0 1%
= es(far) — 564(6665%)(5#9& — Ou9pu) — 564(64 eler)(0pgan).

In Lemma , we have proved that es(ef) = eR™, 5. By Lemma , we can easily prove
that fo = eR™, . This implies that

1
5646 achen(Oa M9y — 9a0y95 — 950uGar) = ea(fap) + E%T—n&o-
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Finally, we note that
62‘6564 eb( F5 wLova + FiﬂF(;Vﬁ)

1

= __egeﬁe4ezg6a(aﬁgu0 + 8#950 - argﬁu)(aagws + augaé - 8590111)

6 v do

+ 6 €. ebg (aagua + 8ugao - 8Jgau)(aﬁgué + augﬁzi - aégﬁu)~

[\3|)—ll\3 =N =

Note that in the expansion of the right hand side, each term contains a product ex(g) - ¢;(g)
where [ # 3, except

1 1
I = _§egeﬁe4ebgégaagﬁuaégau+ 64€ﬁ€4€bg aagaua5gﬁu-

2
Now we apply ¢°7 = > ele? + 1 (egei +ege}). Then, we can also write I as a sum of several
terms containing ex(g) - ¢;(g) Where [ # 3. Since el( ) = Vi(g) - R™3, the whole sum is

£?R™, ;. Combine all the disccussion above and we finish the proof.
(b) We have

Op

1 o
F0ﬁ€4 €4Xab = 79 (€§€4<gﬁu) + 6264(904;1) — €4 efaugoﬁ))(ab
2

1 « 1 o
= _590M64 efauga,BXab +R = _164 62(63(9045) - 64(gaﬁ))Xab +R

1 [0
= — e e7es(gap)Xab + R

Here the remainder R is a linear combination of ¢ - (ef) - es(g) - x or (ef) - () - es(g) - x-

Since e4(g) = t7'Vi(g) = eM™y and (g, €f) = Rf, under our assumption on x;, it follows
from the Leibniz’s rule that R = eR™; . [

Remark 4.37.1. Note we only have x = R™| o from our induction hypotheses, so we cannot
apply (b) directly assuming (4.45) only.

We now prove Proposition for |I| = m. Fix a multiindex [ such that [I| = m. We
have

Vi, Vi =0,
[V;b V] (64 - wz)wzea - t(TXab - 5ab>eb7
Vi, V5] = —t(e4 —wj)wies + (BR—r+t)eg —t(3R—r + t)€§4el.
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We write [V4, Vi] :=nLVi. Then by Lemma Y , Lemma and the inudction hypotheses
() we have

(15 = (651 - Wi)witr_l — t(Xaa — T_l) = %Tiév

773/ :_tXl2:£RT1_737 &#a/
ns = —t(e, —w)wi(BR—r+ 1)t — &3, = SUNISE

(4.53)
ns=BR—r+t)t7' — (BR—r+1)&, =R",
ng = —(3R — r 4+ t)&tr—t = R ;
L 7; = 0 in all other cases.
In summary we have n; = R"| L. Here we briefly explain why n = eRy'_, since all

other estimates are clear. Note that (e} — w;)w; = eR™, ; by Lemma . Also note that
&l =& = e§efT%, = eR™ _,. Thus,

ns = —t(e} —w)wi(BR —r +1)1 — &3, = 9‘{’17?0“ CeRT - E)f{gffll + %TJl CeRT | =Ry
In addition, since I' = O(et™!), we have
=BR—7r+t)tesBR —r+1t) —t&, = Va(m(BR —r + 1)) + O(e).

Next, we note that

V;l(vl<€k1k‘2))
Z V7V, Vk]V‘]I( ko) T VI(V4<§1¢11<;2>>
(Jk,JN)=T
J/o1 J (¢l I L

) kzm_lv ViV (&) + VI (Vi) (4.54)
= Z Jl 7 (€k1k2) + Z CJl,JQV ( )VJ2($I€ kg) + Vl(w(gklka))

(T ) =T Ff A
= Q1+ Qr+ Q3.

In @)1, we note that if 7],lf # 0, then we must have n(s; 3 < nk,,3. Recall that n;3
denotes the number of V3 in the product V7. This is because 7} = 0 for k # 3. In addition,
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we note that n¢ s 3 < kg3 if k=3 and [ # 3. Then,

Q1 = (nrani — Y nran)VI(EL) +O(m +1ml) D V7LD

nrsny s
+O00 Insl Y (VIR
1#3 (J1,3,J2)=I
I/l —1+Ce J el (455)
=nr3Va(mBR —r + V(&) +O0((e + 77 Y V(LD
nst s
+O(gt T > VLD
nrans
In Q,, we have |J1], |Jo] < m. Since n; = R™[{, we have
@IS > VAEREDVRELI ST Y IV E)! (456)
‘J()1<'|+}J\2<‘Tnm 0<|J|<m )

Now we _combine (.54) with Section . First, note that &5, = I')gefe, = eR™
by Lemma E.34, so |[VI(&3,)] < et™11C%(q)~! whenever |I| < m. There is no need to apply
h .54

(1.54).

Next, we consider Yq = &,.
Proposition 4.38. Under our induction hypotheses (), for |I| = m we have
V7 (xa)| S £71C°, V7 (o — 10| < £724C°
S0 Xab = R o and Xap — 177 0ap = R .
Proof. We first prove that V! (y) = O(t~17) whenever |I| = m. Fix I such that |I| = m
and nr3 = n < m. Recall from ) that yu = mTi& and Yap — 7 100 = %T{}S. Suppose

that we have proved V7 (yq) = O(t17%) for all J such that |J| = m and ns3 < n. Note
that

XacXch = 5abr_2 + 2(Xab - 5ab7ﬂ_1)r_1 + (Xac - 5acr_1)(ch - 5ch_1)-
By Lemma {1.34, we have r— = M7 and ¢ = R Also note that V(tr™) = V((t —
r)r~t) = R™ ;. Thus,

DV (Xaexes) = 267V (X = ar ™) = V! (1))

S Y VIRV (= 0]+ e — St IV (i — G )]

[J1]|+|J2|=m
|J1 >0

Y VOV = Sar TV (e = 8|

[J1]+]J2|+]T3|=m
[Jo|<m, [J3]<m

< <q>t73+05 + t71+Cs‘VI<X** _ 5**7,71)’.

~Y
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By the Raychaudhuri equation, we have
VI(Va(xar)) = VI (I ge5eixm) = Y V! (txacker) + VI (H{R(es, a)es, e1)

= tT04e5eV (Xar) +O( D [VHERT_ )V (xa)])

[J1[+]J2|=m
|Jo|<m

—2tr 7V (Xap — O ™Y) = V(S ™2t) + O(()t 3T 7OV (o — 0™ Y)))
+ VI(etR?, )
= —2tr 'V (xa) + O((e + t )V () |) + O(E1FC5).

Besides, by () and our induction hypotheses, we have

Q1 — nVamBR =1+ )V (xa) S 30 IV ()| + @t ST [V ()

|J|=m, [J[=m,
njy3=n ngy3<n

Se D> IV (xa)| + ()t
i

By () and our induction hypotheses, we have

Q2] ST D IV ()| S 7 a).

|J]<m
In conclusion, by (4.54) we have

lea(V! (xa)) + (—nea(In(3R — 7 +1)) + 2r )V (xa)|
S Q1 — nVi(nBR — r+ )V (xas)| + [Qaf + [V (Valxa)) + 27V (xas)])

Sty Y V) H T gty Y IV ()| 7

c, e/ |Jl=m ¢, |J|=m
77.{],3:71 ’n,J73=TL

The last inequality holds as (¢) < t. By Lemma with ng = 2, n; = n and Lemma ,

we conclude that

t

Z Z ’VI(Xab)‘ g t—2+C’a(x0(0)2 . .CEO(O)_H_CE _|_/ F2+Ce | —24Ce d’/‘)

ab |Il=m z0(0)

nr3=n

S t—Q—i—Cs . tl-‘rCa 5 t—l—l—Cs.

By induction we obtain x., = R™ ;.
Next we prove VI (xap — 7 104) = O(t~27) whenever |I| = m. Again fix I such that
|I] = m and nr3 = n < m. Suppose we have proved that V7 (xa — 7 104) = O(t~2+¢%) for
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|J| =m and n;3 < n. Now we can apply Lemma . We have

VI<V4(Xab>> = Vl(trgﬁegefxab) - Z VI(tXaCch) + Vl(t<R<e47 ea)€47 €b>)

= V(= efeles(gus)as + 16 0) + VI (V(fun) + eeir Suses(gus) + 175 )
—2tr 7V (xap — O™ ) = VE(Sapr™2t) + O(t 37 () + t 7V (xow — 7716.0)|)
= V(= etebes(gas)t Ot — 7 0w)) + V! (Vi) + O(er277)
— 200V (Xap — Gapr ™) — VE(Sapr™2t) + O35 () + 75|V (e — 77160

Also note that
VIVA(r™h)) = Vitea(r™)) = VI (=tr~2eq(r))

and that es(r) — 1 = eR™ ; by Lemma . In conclusion,
VI(VZl(Xab - r_l(;ab - fab))
1
= VI(——€4a€§€3(gaﬁ)t(Xab — r’léab)) — 2t7"’1VI(Xab — 5abr’1) + VI(5abr’2t(e4(r) - 1))

4
+ O(t73+05<q> + 5t72+05 + t71+Ca’VI(X** _ T‘ilé**)D

1
= VI(—Z€3€4ﬁ€3(gaﬁ)t(Xab — 7 6w)) = 261V (xap — Sapr )
+ O(t—3+C€<q> + €t_2+0€ + t—1+Cs|VI(X** _ 7”_15**)|).

Besides, we note that

VI(—iei"efes(gaﬁ)t(xab — 77 0a)) + 3636563(%6)75‘/[()(@ — " ap)
is a linear combination of terms of the form
VI (e§eft(3R =+ 1) V3(gap)) V" (Xab — 7' 6)
where |I;]| + |I2| = |I| = m and |I5] < m. By the induction hypotheses and since
eSeqt(BR — r + )7 Va(gag) = MY, - eR™y = eRY
by Lemma , we conclude that

1 1
VI(_Zegefefi(gaﬁ)t(Xab - r_léab» + 1626563(9a5)tvj()6ab - T_léab) = O(et_2+ce<q>_1)‘

Thus, by setting Fop = Xap — 7 10ap — fap = 9‘%7_"2’701 and noting that f,, = eR"y , we have
VIV(Fw)) = =2tr ' VI(Ey + fu) + OV (Ew + fu)])

+ 0(6t72+05 + t73+Cs<q> + t71+Cs|VI<F** + f**)‘)
— —2tr’1VI(Fab) + O(&“VI(FCL(,H + 8t72+05 + t73+Cs<q> + t71+CE|VI(F**)|).



CHAPTER 4. ASYMPTOTIC COMPLETENESS 139

In (), () and (), we can replace §]l€11k2 with F,,. Thus, we have Vy(VI(Fy)) =
Q1 + Qo + VI(Vy(F,)), where by the induction hypotheses we have

Q1 =nVi(mBR —r + 1))V (F) + O Y [V/(Fu)) + OUg)t™ " > [V (Fu)))
|J|=m |J|=m
=nVi(In(3R — 7 + t))VL(E,) + O(e Z \VY(F, O((g)t=3+¢%),
B
|Qal S (@)t Y VI (Fu)| S ()t
0<|J|<m
Thus,

lea(VI(Fy)) — nes(In(3R — v + ) )V (Fy) + 2r ' VI(Fy)|
5 Et_l Z ’VJ(Fab>’ + t_2+CE’VI(F**)’ + t—4+C€<q> + 815_3+CE.

[J|=m
nj3=n

By Lemma with ng = 2, ny = n and Lemma , we have

t

Z Z |VI |<t 2+Ca( (O)C‘S—{—/ <q>7_—2+05_|_57_—1+05 dT)

ab |Il=m x0(0)
7LI,3:TL
5 t_2+C€(ZEO(O)Ce + <q> (x0<0))—1+05 + tCe) 5 t—2+Ca‘
Here we recall that ¢ > 2°(0) ~ Ty + (g). We then finish the proof by induction. ]

Next, we consider £{,.

Proposition 4.39. Under our induction hypotheses (), for |I| = m, we have
V(g St

Proof. Fix I such that |I| = m and n;3 = n < m. Recall from () that &, = R,
Suppose that V7(£§,) = O(t~1+9) for |J| = m and ns3 < n. By the equation in Section
1.4.1] we have

VI(Vi(€R)) = VI(IT05e5enxar — thogeielXaz) = V! (txackia) + V! (H{R(es, ea)ez, e1)). )

4.57

By Lemma , the last term is O(g{q)~1¢~11¢¢). By Lemma and Proposition @, we
note that

0 0 m+1 m+1 m m m o m
tF 564 62 Xal tP 664 61 Xa2 9{170 ° 89{_1’_1 * m070 ° ERO,O * 9{_170 — 59{_17_1.
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Thus, the first term in () is also O(g{q)~1~1%9). Next, by the Leibniz’s rule we have

VI (tXaelss) = eV (EN S DY IV (e V2 (E5)]

[J1+|J2|=m
|J1 >0

S Y (VHEXae = Gaer ™)V (ER) + [V (V2 (ER))).

[J1]+]J2|=m
|J1‘>0

By Proposition we have t(Xac — dac?™") = R™ . Also recall that V(tr—') = V((t —
r)r~') = R™ ;. Thus,

[V (txackTz) — tr7 V(€] S IV (EXackTa) — tXacV ! (652)] + 1t (Xae — 77 0ae) V! (&12)]
S ) H V().

In conclusion, we have
VI(Va(EY)) = —tr VI(EY) + Ot OV (€1,)| + t72C5(g) + e(g) 147 1+C%),

Moreover, by (4.53), we have

Q1 —nVi(m@BR —r + )VI(EL) Se D VI (ER) + (@t Y V(D)

|J]=m |J|=m
nj3=n nj3<n

Se Y IVIER)|+ (e

|J|=m
nj3=n

By (), we have

Qul 17 3L VIR ST ).

0<|J|<m

Thus,
lea(VI(Ef2)) + (—nea(n(BR — 7+ 1)) +r~ )V (&)

Set™ Y IVIER) HEVI(ER)| T g) +elg) TR

|J|=m
nj3=n

We now apply Lemma with ng = 1, n; = n and Lemma . Then,

t

S Y WV SO+ [ ) el )

z0(0)

a | I|=m
ny,3=n

§ t—l-i—C’a(xO(O)Ce + 1‘0(0)_1+05<q> + <q>—1t05) 5 t—H—Ca‘

Again recall that ¢ > 2°(0) ~ (q) + Ty. We finish the proof by induction. O
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Next we study &£5,. The proof of the following proposition is very similar to that of the
previous one.

Proposition 4.40. Under our induction hypotheses (), for |I| = m, we have

VIgg) St (g
So 5??4 = %T—nl,—l'

Proof. Fix I such that |I| = m and n;3 = n < m. Recall from () that &5, = K7L,
Suppose_that V7(£4,) = Ot~ (q)~1) for |J| = m and n;3 < n. By the equation in
Section Y ! we have

VI(Va(&5)) = =V (txea€sa) + VI (H{R(ea, e3)eq, €a)) + 2V (Va(Togeiey)).
By Lemma [1.36 - the second term is O(et =17 (g)~1). In the third term, we note that
\Q(Foﬁe4e ) = V4(Faﬁ)€4 + Fog‘/;l(ez;) + F05€4 Vi(el)
=eR” | +eRT R0+ eRT - eR 0 =R .
We recall from Remark that ey(e}) = eR™y . Thus, VI(V4(I5,)) = O(e(q)~1t719).
Following the computation in Proposition ¢.39, we can prove that
[V (txva8aa) — tr V(€G] S IV (Exabésa) — tXanV! (E0)] + 1 (xab — 77 0) V7 (54)]
S Y (Ve — ™ )V(ED ]+ [V (VRG] + 1 VI(EG))

[J1[+]J2|=m
|J1 >0

S, t—2+Cs + t—1+Ce|vl(€§4>|.
Moreover, by () we have
Q1 —nVi(lnBR —r + )V (&5) S e Z V(&) + (ayt~H e Z V(&)

[J]= [J]=
n‘]’3:n ’H.J’3<TL

Se > Vg + e

[J|[=m
nj3=n

By (), we have
Qo S %a) Y VI S

0<|J|<m

Thus,
lea(VI(€51)) + (—nea(n(3R —r + 1)) + V(&)

Set™h Y V(g TOEVI(G )] + IO e (g) TR

[J|=m
nj3=n
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We now apply Lemma with ng = 1, ny = n and Lemma . Then,

t

S Y VI SO [ el e )

a  |l=m °(0)
ny3=n
S t—1+05(x0(0)6’a<q>—1 + x()(o)—l—i—(]a + <q>—1t05) 5 t—1+Ca<q>—1
Again recall that ¢ > 2°(0) ~ (q) + T,. We finish the proof by induction. O

Finally, we consider £/5. The case when [ € {a, 3} is easy.
Proposition 4.41. Under our induction hypotheses (), for |I| = m, we have
(@) [VI(EGs)| + V(€)1
So &3 = Ry and &Gz = R .
Proof. Recall from Section that

a3 = 2F0B€4 e, + é34a 03 = Xaa T 26a(90a)ga + QQOQQEF#agMVeZ-

Now we apply Lemma [1.34 . Since I' = eR™!, and (g,€}) = Ny, we have I eqel =
eR™ | and go"‘effgagweg = eR™ _,. Since e4(¢*) = t7'Vi(g) = eR™y, and e,(¢g**) =
r'Wa(g) = eR™,, we have e,(g")gagel = eR™, . We thus conclude that
3 a 1 a m
( a3» a3) = (56347Xaa) + 55}{_17_1-

We finally apply Proposition 7 Proposition and Proposition to conclude that
a3_%1 y and &gy = N7 . 0

The case [ = a’ where {a,a’} = {1,2} is harder.
Proposition 4.42. Under our induction hypotheses (), for |I| = m, we have
VI S {a) e
So g; = 9%67_1.

Proof. Fix I such that |I| = m and n;3 = n < m. Recall from () that £% = Ro'y-
Suppose that V7 (£%) = O({q)~'t%?) for |J| = m and n;3 < n. By the equation in Section
1.4.1] we have

VI(VA(E%)) = VI((Va + 115, e (Xaar + 2€4(9)gagels + 29" i1 guels)) — VI (HT0, elef &)
- Z V1<tf§4§2a’) - Vl(t(R(e4, €3)€a, €ar)) — Vl(troﬁ% e’3534 + tfoﬁe4e §34)-
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By the Leibniz’s rule and all the previous results, we conclude that the second line has an

upper bound
t71+05<q>71 + 8<q>71t71+05 § t71+05<q>71'

In the first line, we note that
tfﬁyeﬁei(%a(goo‘)gaﬂ@ff + QQOO‘GngagW@ZI) = 59%67,1—1 : (59%7?2,0 + 59{2”1,—1) = 529%311,_2.
Besides, since g = R™ 0 and since ), XacXea = X12tTX, We have
|V](V21(Xaa’) + trzueﬁfezxaa’)l
S VAT e el Xaar) | + [V (txaa(x11 + X22))| + [V (H{R(es, €a)ea, €a))]
S ‘Vl(gminzfl” + ‘Vl(mﬁ;rl : ERTQ,O : %Tl,())’ + ’VI(S%TLA)’ S Ao 4 EtiHCE(qyl S t71+CE<Q>71-

Moreover, recall that Vj(el) = eR™ ;. We also have dg = 59%’1‘{ !, by Remark . Thus,

we have
Vi(2€a(9") gasel + 29"l guvels) = 2Vilea(9"))gasel + R,
= 262‘/4(8090&)%565/ + 2‘/4(62)(809%)%665' + 5%1)11,71 = 6%7111,71'
In conclusion,
VI(Va(€s)] S IV, eheiéan)| + 1 (g) ™!
ST eiefVIER) + Y VR V(D) + ()

[J1]+]J2|=m
|Ja|<m

S elVIED) +elg) 2 + 77 (g) 7
Next, by (), we have

Q1 = nVa(BR —r+ V(€L S D VIR + (@t Y (Ve

|J|l=m |J|=m

ngj3=n nJy3<n
Se Y V(€ e,

|J|=m

nj3=n

By (), we have

Qs STy D V€ S

o<|J|<m
Thus,
lea(V!(€85)) — nes(In(BR —r + V(&) Set™ Y [V (Eoa)| +e(g) 2710 47270,

[J]=m
nj3=n
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By Lemma with ng = 0, n; = n and Lemma , we have
t

> Y VIEDI S a0 + [ el g s

z0(0)

a,a’  |Il=m
npg=n

1% ((g) MO+ () O+ (2%(0)) ) S ()

We finish the proof by induction. O

Combining Proposition —, we finish the proof of Proposition by induction.

4.4.4 Estimates for higher derivatives of ¢

Now we can prove the estimates for higher derivatives of g. We first note that () holds
for each m > 1, as long as € <, 1. This is because (@) is a result of (@) which then
results from Proposition @.31l.

Lemma 4.43. In QN {r —t < 2R}, we have Vg = O({q)t°®) for each multiindex I.

Proof. We induct on |I|. If [I| = 0, there is nothing to prove. If |I| = 1, the estimates are
clear since Vi(q) = Va(q) = Vi(q) = 0 and V3(q) = O((3R — r + t)|0q|) = O({q)t°*).
In general, we fix an integer m > 1. By choosing ¢ <,,, 1, we can assume that Proposition
@ holds for all || < m. Suppose we have proved the estiamtes for |I| < m, so ¢ = R’} L
Fix a multiindex [ such that |I| = m. If n;4 > 0, we can write [ = (J'.4,J). Here we can
assume |J| > 0 since otherwise we have V(q) = V;/(V4(q)) = 0. By (E), we have

Vi =v"(u(V/(g) = > VYW, V]V

J=(J1,k,J2)
_ Z V(J’,J1)<nll€v(l,J2)(q)): Z V(J’,Jl)(mizill‘mg?l—l—(l-&-ljg\))
J=(J1,k,J2) J=(J1,k,J2)

= Y VU@L = 0((g)* 1) = 0((g) ).

J=(J1,k,J2)

Here we note that |Jo| +1 = |J| — |Ji] = m — 1 — |J'| — |J1], so we are able to apply the
definition of R}, here.

Next suppose ny3 < m and ny4 = 0. Thus we can write [ = (J',a,J) where n;3 = |J|.
Here we can assume |J| > 0 since V,(¢) = 0. Then

Vi) =V''Vu(V(g) = > VYN, V().
J=(J1,3,J2)
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Note that
Vo, V3| F = V(B3R — r + t)es(F)) — Va(re,(F))
=V.(BR —r +t)es(F) — V3(r)e (F) + (3R — r + t)r[eq, e3](F)
= —(BR =7 +t) Vo (r)Va(F) — r~ ' Va(r)Vo(F)
+ (3R — 1 + 1) Vo(F) + 1&g Va(F) + (3R — r + )rt €53 Va(F).

By Lemma and Remark [1.34.1, we have Va(r) = RGY, Va(r) = (3R — r + t)ebw; = RYY.
By Proposition IKT31, we have

4
Vi Vil =D Ry - Vi = Ry, - V.
k=1

Thus,
Vilg= Y VU5, v(Vi(g)
J=(J1,3,J2)
— Z V(J’,Jl)(gn{g?o . %gjl—l—(lﬂhl)) _ O(tce<q>).
J:(J1,3,J2)
Again, we have m — 1 =1+ | Jo| + | 1] + |.J'].
Finally, suppose ny3 = |I|. We have

Vi(Vi(q) = >, VAV, VeIV (q) = >, VI (V) (q)).
I1=(J1,3,J5) 1=(J1,3,J3)
ngy,3=11l ng, 3=1J2] ngy,3=1l, ny, 3=1J2l

By the Leibniz’s rule, we can express V71 (n,V:/2)(g)) as a linear combination of terms of the
form VE1 (k) VE2(q), where | K1|+|Ks| = m, K, contains [, and (K7, K») is an rearrangement
of (J1,1, J2). Now recall from (@) that n} = R™ | + Ry, Since V7/(q) = O({q)t%) for
|J| =m and n;3 < |J|, we have

V7 (5V ) (q))
=3V (g) + O( > [V (n5) V2 (q)])

[K1|+|Kg|=m, 0<|K1|<m
7K |,3=1KLL n Ky 3=1K2l

+00) > VE ) V2 (q)])

1#3 | K1|+|Kgl=m, [K2|>0
ngy,3=1K1l ng, 3=1Ka|-1

= (tes(IBR—7+1) + 0V (@) +0( > [VF(eRy , + R" )| - t(q))
0<|K1|<m

+O( Y [VEERY, + R - (@)t

|K1\<m

= tes(In(3R — r +1))VI(q) + O(|VI(q)]) + O(et®® + 71T (g)?).



CHAPTER 4. ASYMPTOTIC COMPLETENESS 146

Thus,
lea(VI(q)) = mea(In(3R —r + 1))V (q)] S et VI (g)| + et 147277 (g)*.

Recall from Remark that V1(q) = O(t°*{(q)) on H. Then, by Lemma with ng =0
and ny = |I|, we have
t

V@) SO+ [ er O g )
z9(0

S 1O () + 157 + (20(0)) ) S (gt

Y

We have the following important corollary.

Corollary 4.43.1. The function q(t, ) is a smooth function (in the sense defined in Section
B.Q.Z) in Q. Moreover, we have Z'q = O({q)t°?) and Z'Qi;q = O(t°¢) for each multiindex
Tand1 <i<j<3.

Proof. Fix an integer m > 1. We seek to prove that for ¢ <, 1, ¢ is a C™ function and
Z1q = O({q)t%®) for |I| < m. By writing Z = 2"(t,x)d,, we have

r N2, e.) =1 2% gas = Re'o; t™UZ, e3) = 7 2% gos = Ro'o-

Moreover,
(Z, 1) = 2°€} gap = 2°€] (gop — Mag) + 2 € mag
=Ry — 20+ 2 (e —wi) + Zw = REL + Z(r — t).
We can easily check that Z(r —t) = 8§, so B3R —r + 1) (Z, e4) = Rfy. Then, by (),
Z =Ry, V,s0Z T4 is a linear combination of terms of the form

le(%S:Lo) T le(mg?O)Vs(Q)a Z ’[*’ +s= u|7 s> 0.

Each of such terms is O(t“¢(q)) if |I| < m, so we have Zlq = O(t“(q)) for |I| < m.
Moreover, for each m > 1, as long as ¢ <,,, 1, we have ¢ = E)f{(’)”f ! by Lemma, . Then

we have
1 1

Qijq = §<Qij; €4>€3(Q) = 5( i9j8 — Ijgiﬁ)efe?,(Q)
1 1
= §(ximjk — zimi)wres(q) + §(xi<gjk —myx) — x;(gix — M) )wres(q)

1
+ 5(%‘9;% - xjgik)(eli — wg)es(q)
— 04 eR7, + R = R,

Again, for each multiindex I with |I| < m, we can write Z’{;;q as a linear combination of
terms of the form

ZNRT) - ZE ROV Q). Y L+ s=m, s>0.
Each of such terms is O(t°¢), so we have Z/Q;;q = O(t°®) for |I| < m. O
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4.4.5 More estimates

We end this section with some estimates derived from our original wave equation () We
first introduce a new definition.

Definition 4.44. Let F' = F(t,x) be a function with domain Q N {r — ¢ < 2R}. For any
integer m > 0 and any real numbers s, p, we have defined F' = R’ in Section @ prior to
Lemma {.34. We now define I' = R, if F' =R, for each m > 0

Again, by the Leibniz’s rule. we have VI(D%S,},) = R, and R, p, - Ry po = Ry 500142+
In addition, by Proposition ¢.31l, we have

(&75:E23) = Ro—15 &5 = Ro1—1; &p, = A1 for all other ky < ky and a = 1,2;
521’% = 9‘{_17_1 for all k‘l < k’g, Xab — Tﬁl(sab = 9{_2’0.
There are many other estimates in Section invovling R} .. Theﬁould still hold if all
31

the superscripts are removed, because they all rely on Proposition . For example, by
Lemma §.34 we have

er =Rop, (€4 —w;, el —w;) =R_10; *Z(g—m) =eR_1_,
W = %0’0, (tS,TS) = 9:{3,0, (3R —r+ t)s = SRO,S‘

FI* = 8%71771;

We remark that this definition follows the spirits of the convention in Section . In
the defintion of R, we require some estimates to hold for all € <., 1. The dependence
on m here should be emphasized.

Our goal in this subsection is to prove that

64(€3<U)) + 7’_163 (U) = 5%_3’0, 64(63 (U)) = 6%_2’0; (458)

1

ea(es(q)) = = es(w)G(w)es(q) + Rz (4.59)

We start our proof with the following lemma.

Lemma 4.45. We have the following estimates.

do = Ro0, ¢ =Roos en(qr) =R -1, ex(g ) =Roq1 for k # 3.

(d) In (b) and (c) we can replace q; + w;q; with ¢; + g, or ¢ — w;iq,, and replace u; + w;uy
with w, + u, or u; — w;u,. The results are the same.
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Proof. (a) By Lemma , we have V3(q) = Ro1 and e3(q) = Va(q) = Roo. Then,

1

Ga = §gaﬁ€f€3(Q) = 9%0,0 : iHo,o : S)6{0,0 = S)({0,0-

Since w; = Moo, we have ¢, = Rop. Since ¢ > C1~ and since VI(g 1) is a linear
combination of terms of the form

¢ 'Vh(g)---V=(q,), where Z |L;| = ||, |1;] >0, (4.60)
we conclude that V(g 1) = O(t°) for each I and thus ¢, ! = R . Besides, we have

ek(e?)(q)) = [ek7€3]q = 52363<Q>7 k= 17 273747

i j—

2&)@‘9@‘665 = (e3 + €4, €4) + (2w; — € 6%)%‘665 =2+R 1,
Thus, for k # 3,

1 1 1
er(qr) = €k(§wigz’ﬁef€3(9)) = €k(§wigwef)€3(9) + 5%'%565%(63(61))
1 1
= 6k(§ +R_10)es(q) + (5 + 9‘*71,0)52363@)

=R_10- Vi(R_10) - Roo + R -1 =R .

Now if we expand VZ(ex(q 1)), each term is still of the form () with s > 0 and V% (q,)
replaced by V% (ex(q,)). We thus conclude that ey (g ') = R_;_ for k # 3.
(b) We have

1
q; +wiqr = 5(9@3 + wi906)6§€3(Q)

and

1
ui + wity = 5(gis + wigos)eles(u) + 5(%‘6 + wigos)ehea(u) + Z(Qzﬂ + wigos)enea(u)

a

N~ N

(9i + wigos) el (BR — 1 + ) ' Va(u) + eR_ap.
Here we have

(gip + WiQOﬁ)ef = ‘33 —w; + ((9ig — mug) + wi(gos — mog))ef =R_10.

We thus conclude that ¢; +w;q =R 10 and u; + wiuy = eR_op.

(c) Recall that ) =NR_10, e4tw|<| =r el —wi + (1 — ejwj)w;) = R_ap and e4(ef) =
4.3

eM_20 by Lemma §.34 and Lemma . Besides, note that

eq(w;) = r’l(ez —eq(r)w;) = rilei + R 50,
. -

ea(wi) = (&) — w;)dw; = 17 (el — w; — (€] — wj)wjw;) = R_a0.
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Thus we have

ea((gis + wigos)el) = ea(gip + wigos)el + (gi5 + wigos)ea(el)

= (eal9i8) + wi€a(g0s) + €alwi)gos)e] + (9is + wigos) (Ehae + ea(el)
(ER a0+ (r el + R_20)gos)el + (gis + widos) (Eaey + R _20)
= r~elgogel + 17 (gis + wigos)el + (gip + wigos) (Xab — Sabt™ el + R0
= ! (—€l, + €l (gos — mos)el + €l + (918 — mig) + wilgos — mop))el)) + R a0 = Ry,

ea((gip + wigop)el) = ea(gis + wigop)es + (gip + wigos)ea(el)
= (ea(gip) + wiea(gop) + 64(%)905)62 +eR g
=R o9 +eR 90 =R 2.

Since (gis + wigog)es = R 10 and ex(es(q)) = Eles(q) = R_1_1, we conclude from the
Leibniz’s rule that for k # 3,

1 1
ex(qi + wiq) = 5%((9@3 + WiQOﬁ)ef)ei%(q) + 5(91'5 + wz-gog)efek(e?,(q))

=R 90 Roo+R_10- R 1 =R 9.
Besides,

U+ wiuy =71 " Z w; Qi+ wSu 4 rw(t 4+ 1) (#Su — Z i Qoju) =R_10 - Zu.

J J
Note that Zu = eR_; ¢ and e, = R_1 -V for k # 3. We conclude that

ek(ui + wiut) = €k<%—1,0> . ZU + %_170 . ek(Zu)
= Z)%71,0 : Vk(mq,o) : 69%71,0 + S)Ltl,o : Dﬁt1,0 : Vk(f':%fl,o) = 82)%73,0-

(d) This part follows directly from

O+ 0= wi@+wdy),  0—wd=0+wd—Y wwid;+wd).

Proposition 4.46. We have eq(e3(u)) + 17 tes(u) = eR_30 and ey(es(ru)) = eR_ap.

Proof. Note that
a B 1 a B 1 a B
)0, 05U = E eg e, 0a0pu + 564638a8ﬂu—|— §e3e4aa65u

- Z ea(€a(u)) — ea(e])0au) + esles(u)) — ea(es)dau.
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Here we have
«
eq(€5)0qu

1
= =& e (u) — =Xaa(es(u) + eq(u)) — (e, ea(goﬁ)ag + goﬂegfgﬁa,)@(u) —eherl o

2
1
= €8 (1) = 5 Xaalea(u) + €4(0) = (€5gnpea(9") + eligyugesThsJea () — ehells, ua
1
= _§Xaae3(u) —ehe I ua +eR 39

and
« 2
64(63)8au = 8%72’0 : 5%71771 = £ %,3’,1.

In addition, for k,[ # 3, we have

LT 0 = 50 (Ous + Dot — D) el
= %gaﬂ en(gvs)el ta + %gaﬁ €1(Gua) €y Ua — %gaﬁ 3G eh €] o
= PRy 1 3 g ecu)ehel — ges(gu)ea(ulelel — Tealgues(u)che
= 529%_3,_1. )

Since Xap — 07! = R_9p and ez(u) = (BR —r + ) 'V3(u) = eR_; 4, their product is
eR_3_1. Thus we have

0= 3 alealw)) + ealesu)) + Ftrxesu) + =R g

=" ealea(w)) + eales(w) + 7 es(u) + eR 5.

Next, as in Lemma , we set
hi :=r(0i(ru) — qiqr_l&n(ru)) = —r(u+ Tu,,)qr_l(q,- —wiqr) + rz(ui — willy.).

Recall from Lemma that
eq(ru) = Z eq(wi)h;.

We claim that h; = QR and e,(h;) = eR_1 . In fact, note that u + ru, = eR_19+ Rip -
eR_1 1 =eRp_1. We also recall that e,(r) = R_1 0, 50 e,(r™) = —r~2e,(r) = R_39. Thus
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by Lemma , we have h; = eRgo and e, (h;) = eR_1 . We thus have

-1

=t Z CalCa(w;))hi + 771 Z eq(wi)ea(hi) +eR_yp
=t Z ea(r~M (el —wiwjel )Y hi + K101 Va(Roo) - eR_10 + R4
=2 Z ea(€l, — wiw;el Yh; + 171 Z ea(r71) (€] — wiw;el Vh; + eR 3
= 7"_26(1(9{070) : 69{070 + 7’_19{,370 . 89%070 + Em,‘g’o = 59‘{,370.
Thus,
0= 64(€3<U)) + 7’7163(711) + 6%_3’0.

Finally, we have

eq(es(ru)) = eq(res(u)) + es(es(r)u) = req(es(u)) + eq(r)es(u) + es(r)es(u) + es(es(r))u
= —e3(u) + eq(r)es(u) + eq(ehwi)u +erR_30 + R a9
= (eq(r) — Des(u) + Vi1 + (e — wi)w;)u + eR_9 0
=R_10- R 1 +R10- ViRo1p) - eR10 + R = R _gp.

Next we prove an estimate for e3(q). We start with the following lemma.

Lemma 4.47. Fiz a function f € C®(R). Then, fore < 1, f(u)— f(0) — f'(0)u = e*R_q9
where u s a solution to ([L.1)).

Proof. For ¢ < 1, we have f(u) — f(0) — f'(0)u = O(Jul?) = O(e*~2+%). Now, for each I
with |I] > 0, we can write VI(f(u)) — f'(u)(VIu) as a linear combination of terms of the
form

Vi Vi, S ILI =], s> 2, |L|>0.

Since u = eR_1, we can prove that each of these terms are O((gt~11%)%) = O(e22+¢%).
Finally, note that f'(u)Vu — f'(0)VIu = O(|u| - [VIu]) = O(e%~1+9). This finishes the
proof. O

Our main result is as follows.
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Proposition 4.48. In QN {r —t < 2R}, we have

1

es(es(q)) = —Zeg(u)G(w)eg(q) +eR_gp.

Proof. We recall that

1 14 o
§g0 0y 9apy 6563 (Q) .

Here e3(q) = (B3R —r +t)"'V3(q) = Roo and ey(g) = t7'Vi(g) = eR_50. Thus,

1

1
ea(es(q)) = 590”(9Vga564 ehes(q) +eR g0 = 4(63 — e4)(gap)eseies(q) + R_ag

1

= 163(9a5)62‘€f€3(® + 59%—2,0-

Recall that the coefficients (¢*?(v)) in () are known smooth functions, and that for all
lv] < 1 the matrix (g*?(v)) has a smooth inverse (g,s(v)). We differentiate g7 (v)gys(v) =
dap With respect to v and then set v = 0. Thus,

d

d
s aav: My, cw._cr . —0.
759 lv=0 - Mg +m 709 8lv=0

ealesla)) = ~T0peieies(a) = — 50" (¢healgus) + efea(gun))esla) +

By setting g0 = = gaplv—o and fr— 4 48] ,—o, we conclude that

0
Gap = _maamﬂﬂggﬂ‘
Here we do not take sum over «, 5. Thus we have

gagei‘@f = _9006262 + 290 6464 9(2)]6264
= —G(w) + 290" (¢h — w;) — g5 ¢i(eh —w;) — g5 (€} — wi)w; = —G(w) + R10.
By the previous lemma we have

1 1
es(es(q)) = Zeg(ggﬁu)ezefeg(q) +eR o0 = —Zeg(u)G(w)eg(q) +eR_9p.

]

4.5 The asymptotic equations and the scattering data

In Section @, we have constructed a global optical function ¢(t,z) in Q such that —gq;, ¢, >
C~'t=% > (. By setting

Q= {(s,q,w): s>0, ¢> (exp(d/e) — exp((s + ) /€))/2 + 2R, w € S*},
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we have an invertible map from Q to €', defined by
Ot r,w) = (s,q,w) := (eIn(t) — 6, q(t,1w), w).

In fact, we have t = exp((s + §)/e) and the map r — ¢(t,rw) is strictly increasing for each
fixed (t,w). Thus, ® is injective. Since ¢ = r —t when r > t+ 2R, we have lim, ., ¢(t,rw) =
00. Thus, ® is surjective. This gives us a new coordinate (s, q,w) on €.

In addition, ® is smooth since ¢ is a smooth function. Its inverse ®~! is also smooth,
since we have g, > 0. So, any smooth function F(t,z) induces a smooth function F' o ®~1.
With an abuse of notation, we still write F' o ®~1(s, q,w) as F(s,q,w).

We define

(1, U)(t,7) = (¢ — qr, e ru)(t, ), () € Q.

Since ¢ and u are both smooth, pu(t, z) and U(t,x) are smooth. As discussed above, we also
obtain two smooth functions p(s,q,w) and U(s,q,w) in §'. Our goal in this section is to
derive a system of asymptotic equations for (u, U) in the coordinate set (s, ¢, w). Our main
result is the following proposition.

Proposition 4.49. Let (u,U)(s, q,w) be defined as above. Then, by writing t = exp(e~!(s+
J)) we have

1
Ot = ZG(w)MQUq + e 'R 1,

1
aqu = —ZG(CL)),U/U(IQ + €71%,1’0.

In addition, the following three limits exist for all (q,w) € R x $?:

1
A(Q7 W) = _5 SILI&(MUQ)(S’ g, w)7
) 1
Ai(0.) = I exp(S0(@)A(g.0)9)u(s.0.0)
) 1
Ax(g.0) = lim exp(— 3 G() Alg.0)s)Uy (5,4.).

All of them are smooth functions of (q,w) for e < 1. By setting

- 1
a(s,q,w) = Ay exp(—éGAs),
~ 1
U,(s,q,w) := Ay eXp(QGAs).
we obtain an exact solution to our reduced system

- 1 e
Hs = ZG(W)MQU%

1 o~
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We also have the following estimates:

({@)0)" 5 (uly + 24) = O(t™1+%), ({2)0))" 05 A = O({g)~1*);
({2)0g)" 0 (exp(3GAs) — Ay) = O(tH°), ((2)0,)" 03 AL = O((9)7),
({2)0)" 3 (exp(—5G As)Uy — Ag) = O(t™17%), ({2)0,)" 5 As = O((q) ™1+ );

U D) (71— p, Uy — Uy) = O(e Pt~ 14C%), oo (U — U) = O(eP(g)t—1+0%).

S S

Remark 4.49.1. Here A is called the scattering data.

After some preliminary computations in the new coordinate set (s, ¢,w) in Section m,
we derive the asymptotic_equations for p and U in Section {.5.2 and Section {.5.3, respec-
tively. Next, in Section , we make use of the asymptotic equations to construct our
scattering data. The main propositions in this subsection are Proposition and Proposi-
tion (.55. Finally, in Section , we define an exact solution (g, U)(s, ¢, w) to our reduced
system and we show that it provides a good approximation of (u, U)(s, q,w).

4.5.1 Derivatives under the new coordinate

For convenience, from now on we make the following convention. For a function F' =
F(s,q,w) where w € §?, we extend it to all w # 0 by setting F(s,q, \w) = F(s,q,w) for each
A > 0. Under such a setting, it is easy to compute the angular derivatives of F' since we can
now define 9,,. To avoid ambiguity, we will only use 0,, in the coordinate (s, ¢, w) and will
never use it in the coordinate (¢, 7,w).

First we explain how to compute the derivatives of U in (s, q,w). Note by the chain rule,
for any function F' = F(s,q,w) = F(t,r,w) we have

Ft = €t_1FS + Qth FS = 5_1t(Ft — qtqr_lFr)
— 1
FTZQTFq Fq:qr F,
In addition, by the homogeneity, we have F(s,q,w) = F\(s,q, \w) and 0, F(s,q,w) =
A0, F(s,q, \w) for each A > 0. At (t,z), we set A = |x| which gives
E IQin_Frilei - Fwi :T(Fz _%q;lFr)

Now we can explain the meaning of the function h; defined in Lemma ; it is the derivative
of ru with respect to w; under the coordinate (s, q,w).
To simplify our future computations, we note that J,, d; and 0,, commute with each
other. In fact,
04, 0] = [a; 00, 70; — 1¢:¢;, 'Oy

=4, 0; — ¢, 0r(raiq; )0, — ri(a; ' w;)0; + raiq; 0, (a; *)0;

= ¢, "0 — 4,20, (rqi)0, — 70:(¢; )0y — 4, (i — widy)

= —¢; (¢ +10,4:)0; +1¢;(0,(¢:) + r~ (¢ — wig,))0r + g 'wi;

=0,



CHAPTER 4. ASYMPTOTIC COMPLETENESS 155

0, 0y) = [et0, — e 'tquq, 0, g, "0,
q T T

e 't0,(q,)0r — e g, 0, (q, )0y + € Mg O (qug, ) O,
= e 40,(¢ 10, + e g %qu0, = 0,

[e1t0, — e Y quq, 'Oy, r0; — rqiq; O]

—e "troy(qiq, )0y — € tag, (0; — 0:(raig; ) O,)

+ e troi(qg, 'w;)0; — e raiq; M0 (g )0,

[88 9 80.}2] -

e trgug, '0p — e g, 10+ € g, g0 + & trgg, 20, (g;)0
+ e Mtrqug, 0y — e traug; *0i(q0) 0 4 £ M tqugy (0 — widy)
= ¢ Yquq, 20, — e Mt (4 — wigr)Op — £ Mg, w0 = 0.
Moreover, we can express (Js, 0y, 0,,) in terms of the weighted null frame {V}}.
Lemma 4.50. We have

(95 = Z g’l%,l,OVa -+ (€71 + %71,0)‘/217

O =Y RoaoVi+ > elVa=> Rk,

k#3 a k#3
&1 - Z 9%,_1%.
k

Proof. We can express 0, 0, in terms of the null frame:

1 1 _ - 1 1
Oy = e "t(gopeles + 590;%6563 + 590;36564) — e tqq, H(wigipeleq + 5%‘%56263 +
_ _ 1 _
€ 175((90,8 — 4iq, 100191‘5)65% + 5(905 — 44, 1%91’&)6564),
1

1 _ 1 1
O = 1(gipeqea + §giﬂ€f €3+ 591‘66564) —14iq; " (wjgjpehea + 5%'9]‘66563 + 5%‘9]‘6@564)

5%‘%66564)

_ 1 _
=7((9s8 — @i, 'w;jgjs)elea + 5(%5 — 4iq, 'w;jgjs)eses).

We note that there is no term with es in d; and 9d,,, since
— — 1 — 14 v
(905 — @y 'wigis)es = a; ' (argos — Qwigis)el = 4r Ye3(q) (wigiel gope] — goveiwigipel) = 0,
_ _ 1 _ v v
(98 — i, 'wigs)es = a4 (argip — qiwiga)es = 54 Yes(q)(wjgivelgisel — givehw;gises) = 0.
In these computations we use the equality ¢, = % gagef e3(q). In addition, we have
e " t(gos — g, 'wigis)el = e t((g0; — moj) — @eqy ' wilgi; — mag))el — e tqug; ea(r)
= Roo +e 'Rop = Roy,

r(gis — G, "wigis)el = r((gij — mip) — Gy "w;i (g5 — myg))el + (el — qiq; 'ea(r))

= 9%0,0 + 7’62.
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Besides, since efw; = 2¢%w; + e\w; = 1+ eR_10, we have
e t(gos — @a; "wigig)es = e t((gos — mog) — @, ‘wilgis — mup))es + (1 — qug; ebw)
=Roo +& "tg, ' (20 — (@ + @) — q(ebw; — 1)) = R + 267 '¢,
r(gis — Gy " w;gis)es = r((gis — mip) — @iy "w; (g5 — mys))es + (e — qigy 'wjed)
= eRoo +7q, (e — wi)gr — (@ — wigr) — gi(ehw; — 1)) = Rop.
Thus,
88 = 25*19{070% + (Eilt + %0,0)64 = 28719{,1,0‘/(1 + (871 + %,1,0)‘/4,

O, = Z Rooer + Z rele, = Z R_10Vi + Z eV, = Z Ro,0Vk-

k£3 a k£3 a E£3

(9q = ngyoek = 2%07,1%.
k k

It is also clear that

We end this subsection with the following estimates for U.
Lemma 4.51. We have
(U, Uy, U, Us,) = (Ro0, Ro,—1,£ R, Ro)-
In conclusion, we have pU, = Ro 1.

Proof. We have

U=c¢clru,

Uy =g, '0:(c 'ru) = e g (u+ ruy),
Us = e %tr(u +u, — g g + ¢r)ur) — e 2tqiq, ',

Uy, = —& (g — wigr) g, H(u + ru,) + e (u; — winy).

It follows directly from Lemma , Lemma and the proof of Proposition that
(U, U,, U, Uy,) = (Ro0, Ro,—1, Ro,0, Roo). Since p = Ro o, we have plU, = Ry _1. O
4.5.2 The asymptotic equation for p

We start with several estimates for = ¢; — ¢.. By Proposition , we have
1

64(63((1)) = —Zeg(u)G(u))eg(q) + 59{_2,0
= —%1(57”163([]) - 87‘72€3<7’)U>G(w)e3(q) + 5%,2’0
9

— _Eeg(U)G(w)eg(q) +eR_gyp.
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Since e} — w; = R_1, we have
es(q) = —p+Ro19-9g=—p+R_1p.

Moreover,
i

ea(es(q) +p) = 64(<€é —wi)gi) = 64(‘% —w;)q; + (€5 — w;)ea(q;)

= —(eh — wy)r (8 — wiwy)gi + (e — Wi)€4(§9iﬁ€f€3(9)) +eR 20

1.
= =17 (=q — g — qr(ea(r) = 1)) + 5 %is(e3 — wi)efea(es(q)) +eR o0 = R 0.

To get the last equality, we use the following estimates: e4(r) — 1 = eR_; ¢ by Lemma ,
es(es(q)) = Elzes(q) = eRy 1, and

1

1 )
G+ qr = 5(905 + wigiﬁ)efeg(Q) = 5(—1 + eqwi)es(q) + (Ger — Ma) - Roo = eR_1p.

Besides, by the chain rule, we have

es(U) = e3(q)U, — et U, + Z es(wi)Uy, = —plU, +R_1p0.

Here we apply Lemma and we note that es(w;) = (e — w;)r~'(6;; — wiw;) = R_ap.
Thus, we have

9
es(—p) + R0 = ——G(w)(—pUs + Ro10)(—p + Ro10) +eRap
4r
g
= _EG((’U)/’RUQ + 5%,270.

Then,

3
64(#) = ZTG(W)MQU(Z + 5%_270. (461)

By Lemma we have

g
Hs = 5_1te4(u) + 25_19%_1,0%(#) = e_lt(4—rG(w)u2Uq + 89%_270) + Z 8_1%_170Vk(%070)
k+#3 k#3

t 1 t—
= LG tU, + R g = 26, + Gt e
4r 4 4r
1 1
= ZG(W>M2UQ + 8%7171 : 9%0,0 . 9%0,71 + 871%7170 = ZG(M),U,QU,] + 671%,1’0.
We thus obtain the first asymptotic equation

1
Hs = ZG(W)/qu + e '"R_10. (4.62)
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4.5.3 The asymptotic equation for U
By Proposition , we have
es(es(U)) = e tey(es(ru)) = R_gp.
Meanwhile, by Lemma we have
es(e3(U)) = eq(ez(q)U, + et U, + ez(w;)Us,)
= —es(uU,) + es((eh — wi) Uy 4 et U + (e — wy)r™ 1 (6i; — wiw;) U,

= —64(MUq) + 9%_170 . ‘/4(9%_17_1 + Et_l . 6_19[{0,() + 9%_1,0 . 7’_1 . 9%0,0)
= —ea(nl,)

+ R 9.
Thus, eq(nU,) = R_ap.
Now, we compute 0s(uU,). By Lemma we have
Os(nly) = nglﬂ%il’OVa(qu) + (e R 0)Va(uly)

= 25’19%,1,0‘/&(9%07,1) + (571 + 9%71’0)%7170 = 8719{71,0.

Thus, we have
Uy = 05(uU,) — Uy, = e "R 19 — (iG(w),uQUq +e MR+ R0,
— —iG(w),uquQ + 6_19‘%_170.
Since |p| > C~1~, we have =1 = Ry . Thus we obtain the second asymptotic equation
Ugg = —iG(w)/LUf +e MR 1. (4.63)

In summary, by (m) and (m% we have proved the following proposition.

Proposition 4.52. We have

1
Ot = ZIG(W)MQUQ +e 1R 1,
(4.64)

1
o,U, = _ZG(W)’MUQQ +e MR 1.
In other words, (u,U,)(s,q,w) is an apporzimate solution to the reduced system of ODE’s

1 ~
0.7 = {G ()T,
: (4.65)
(9qu = _ZG(M)'EUQQ

We remark that this proposition verifies the nonrigorous derivation in Section 3 of the
author’s previous paper [34].
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4.5.4 The scattering data

From the previous subsections, we have proved that (4, U,)(s, ¢, w) is an approximate solution
to the reduced system () In this subsection, we seek to construct an exact solution (j, ﬁq)
to (1.65) which is a good approximation of (u, U,).

We start with the following key proposition. In this proposition, we define the scattering
data A = A(q,w) for each (g.w) € R x S? and we show that it is a smooth function (in the
sense defined in Section ﬁ

f—

Proposition 4.53. In €Y, we have
(@)09)™ 05 (1) = O(<‘]>_1t05)v 92({q)0y)" 05 (nU,) = O(g_pt_1+ca)> p=> L

Moreover, for each m,n, the limit

1 : m an
Am,n(Q, w) =3 }g&((cﬁaq) aw (lqu)(Sa q, w)
exists for all (q,w) € RXS?, and the convergence is uniform in (q,w). So A(q,w) := Ago(q,w)
is a smooth function of (q,w) in R x S? such that ((q)0,)"O"A = Ap.n. We call this function
A the scattering data. It is clear that A =0 for ¢ > R.
Finally, we have

(0)0)" 0 (uUq + 2A4) = O(7F), ()9 I3 A = O((g) ™).

Proof. First we note that in the region r —¢ > R, we have ¢ = r — ¢ and v = 0. In this
case, every estimate in the statement of this proposition is equal to 0, so there is nothing to
prove. Thus, we can assume that ¢ < 2R and r — ¢t < 2R in the rest of this proof.

We need to derive an estimate for 9,0;"0(1uU,). Here we apply Lemma §.50. Recall that
pUy = Ro 1 and Vi (uU,) = R_1. By the Leibniz’s rule, we have

((2)0y)™ 0 (1ulUy) = (Z RooVi)" " (Ro,—1) = O({(g) " +t“) = O({g)"t“°).

In addition, for p > 1 we have

2 ((9)0y)™ 0 (nUy) = 95 ({q) 0y) ™ 0505l

= P ((@)0)"00(> e Rov0 - Vilply) + e Va(uly))
k#3

(4.66)
= (95’1(<q>8q)m8£(z e R10-Ro1+¢ "Ro1p)

= 61_p(z %070Vk)p+m+n—1(8—1%_170) = O(€_pt_1+ca>.
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In both these estimates, we view ¢ as a function of s.
For fixed ¢ < 2R and w € S?, by the definition of €, we have (s, q,w) € € if and only if
s > 0 and
exp((s +6)/e) > exp(d/e) — 2q + 4R. (4.67)

We can write this condition as s > s,5. where s;5. > 0 is a constant depending on its
subscripts, such that (s,s.,¢,w) € 0 corresponds with a point on H. Thus, for each fixed
(q,w) and s9 > s1 > S5 = exp(d/e) — 2¢ + 4R, by () with p = 1, we have

[({2)0y)™ 05 (11U ) (82, ¢, w) — ({q)0g) ™ O (uUy ) (51, ¢, w))|
< / "l exp((—1 4+ Ce)eM (s + ) ds < exp((—1 + Ce)e= (51 + 5)).

S1

In conclusion, {({(g)0,)™%(1uU,)(s,q,w)}s>s, 5. is uniformly Cauchy for each (g, w). Thus,
the limit

Ann(g,0) = — T (@), (U,)(5,,)
exists, and the convergence is uniform in (¢,w). Besides, for each s > s,., we have
1((@)0)™ 0" (uUy) + 2A, | S 719 = exp((—1 + Ce)e™ (s + 6)). (4.68)
By evaluating () at (Sq0., ¢, w), we have

| A (g, w)| S 1((@)0))™ 0% (1lUyg) + 2Am 0] + [({(q)0y) "L (1Uy)|
S (exp(d/e) — 2¢ +4R) ™ + (g) M (exp(6/e) — 2¢ + 4R)“" < (g) '+,

In the last inequality, we note that (a +b)¢¢ < 2¢¢ max{a, b}“® < 2(a®® + %) for each pairs
a,b > 0. Since the convergence is uniform in (¢, w), if we define A := Ay, then we have

(0)0)" 0 A = Ay = O(g) ™).
O

Note that each function of (s, ¢, w) can be viewed as a function of (¢,x). We then have
the following lemma.

Lemma 4.54. By viewing each function of (s, q,w) as a function of (t,x) € QN{r—t < 2R},
we have (A, 0,A) = Ro_1, pUy +2A =R_1 and exp(j:%G(w)As) —1=%R_1.

Proof. Note that V! A is a linear combination of terms of the form
oA - Vig.. . Vimg. V.. Vg, Z‘[*‘ +Z‘J*’ = |I|.

Each of these terms is O((g)~17"¢¢ . (¢)™t°?) = O({(q)'t“), so A = Rp_1. The proof of
O0,A = Ry 1 is essentially the same.
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Moreover, V1 (uU, 4+ 2A) is a linear combination of terms of the form
o (uUy + A)- Vg Vimg - Viw. Vo, LI+ Y L] = 1];

oo (uly) - VEg. Vg Vg Ving VI VI,

DL+ LI+ D K = 1] p>0.

By applying () to the first row and () to the second row, we conclude that V' (uU, +
2A) = O(t717%) and thus pU, + 24 = R_, 0.

Finally, by the chain rule, for each |I| > 0 we can write V/(exp(+1G(w)As) — 1) as a
linear combination of terms of the form

exp(i%G(w)As)-Vh(i%G(w)As)~~~V1m(i%G(w)As), SO = 1], L] > 0.

The first term in this product is O(t“%), and each of the rest terms are O(V*(Ry_,)) =
O({g)~'t“®), so we conclude that V' (exp(£3G(w)As) — 1) = O({g)~'t“*) for |I| > 0. When
[I| = 0, since |e” — 1| < |plel!, we have

Jexp(5Clw)As) 1] S 0) s exp(Cla)5) £ {a) 1"

Here we note that s = eIn(t) — § = O(t“?). In conclusion, exp(+1GAs) — 1 =Ry _;. O

By () and Lemma , we have
1
Oupp = =5G(W)A(g,w)p+e "R,
1
aqu = EG((A})A((], W)Uq + 5_1%_1,0.

With the remainder terms omitted, we obtain two linear ODE’s for ;x and U,. They motivate
us to define

T = exp(5G)AlG,0)s)
) ) (4.69)
Vo = exp(—§G(w)A(q, w)s)U,.

Now we can prove the following proposition.

Proposition 4.55. We have
(@)0)" 05V = O(t),  &((@)0) "0V = O™t 1%), p> 13

((@)0)™anVe = O((g) %), P((q)0)™OVa = O(ePt1+C%), p > 1.
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Moreover, for each m,n, the limit
Ajn(g,w) == lim Vj(s,q,w), j=12
S5—00
exists for all (¢g,w) € R x S%, and the convergence is uniform in (q,w). So, for j = 1,2,
Aj = Ajoo is smooth functions of (q,w) in R x S* such that ({(q)0,)"O"A; = Ajmn. It is

clear that Ay = —2 and A3 =0 for ¢ > R. Besides, we have Aj Ay = —2A everywhere.
Finally, we have

()0 (Vi — A) = O(t7F%),  ((9)0)" Ay = O((g) ™),
(0)0)" (Vo — Ag) = O(tF%), (()0)" A2 = O((g) 7).
Proof. By () and since t/r =1+ 9 _1 ;, we have
et 9 € 9
‘/4(/JJ) = EG(C‘))M Uq + 8%71’0 = ZG(M),U, Uq + 59%,170.
Moreover, by viewing (s, q,w) as functions of (¢,z), we have
es(G(w)A(q,w)s) = eG(w)At™" + e4(w;)0.,, (GA)s = eG(w) At + R_5 1.
Here we note that d,.(GA) = Ro,1 by Lemma and ey(w;) = (€} — w;)0jw; = R_gp.
Then, by Lemma , we have V) = Ro o - Roo = Rop and
_ 1 . 1
Vi) = SVA(GAS)TE + exp(3GAVi(1)
1 ~ 1
= Z(Q&GA + €GMUq + %_17_1)‘/1 + 69%_170 . exp(§GAs)

1
= 1(8%71,0 +R_1 1) - Roo+eR10-Roo=eR10+ R 1 =R_1p0.

Next, we have ViVy = pU, and pU, = Ro_1, Va(pU,) = R_1o from Proposition .
Since p = ¢ — ¢ < =201 and exp(3GAs) > exp(—Cs) = exp(CH)t~“¢, we have
Vi| = =Vi > €719, We can express V' (V,) = VI((uU,)/V1) as a linear combination of
terms of the form

‘mefl .Vll(vl)'-'vlm("?ﬁ ~VIO(/LUq), Z|[*| = [I].

It is easy to conclude that 172 =Ny _1 and V4(\7 =NR_10.
Now we can follow the proof in Proposition to prove every estimate involving A, in
the statement. As for A;, we note that

(@)0)"05(V2) = (D RooVi) ™" (Ro0) = O).
k
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In addition, for p > 1 we have

2 ((a)0,) "0 (V2) = O ({@)Dy) " 00, (V2)

= ((@)0) "> e Ry o Vi(VA) + 271 Va(Wh))
k#£3

- 85_1(<Q>8q)m63(z 5_19%—170 “Roo + 5_19{_1,0)
_ glfp(z mo,o%)p+m+nil(€71%—1,0) _ O(gfptflJrCs)'

It is then clear that the estimates for ‘71 — A; are the same as those for U, + 2A. Finally,
at (s,q,w) = (S445¢, ¢, w) we have

1((0)0,) 07 Ay (q,w)| S |((@)0)" (Vi — Av)(s, q,w)| + |({0)D) 8 (VA) (s, ¢, w)]
< (exp(d/e) — 2q + 4R) ™% + (exp(d/e) — 2¢ + 4R)* < (q)°".

In the last inequality, we note that (a+ b)°® < 29 max{a, b}“¢ < 2(a“® +b%) for each pairs
a,b>0. 0

Remark 4.55.1. Following the proof of Lemma , we can show that (A,0,A41) = Ro,
Vi— A1 =%R_10, (A2,0,42) =Ro_1 and Vo — Ay = R_4.

Moreover, we note that A; &~ —2 in the following sense.

Lemma 4.56. Fiz 0 < k < 1. Fore < 1 and for all (q,w) € RxS?, we have |A;(q,w)+2| <

k{q) 1Y The constant in the power may depend on k. As a result, we have Ai(q,w) <
—1 < 0.
Proof. Since A; = —2 for ¢ > R, we can assume ¢ < 2R in the proof. Recall from the proof

of Proposition that
es(Vi) = eR_gg + Mgy = O(ct 210 4 172405 (g) 7).

Next we consider Vi|g. On H we have = —24+0(|u|) = —2+0(et770%). As computed
in Lemma $.54, on H we have

(@) sexp(Clg) ™ %s) - (2+ O(et™'%))

(q) " sexp(C{g) " %s).

1
(exp(5GAs) — 1l £
<

Thus, Vi|g = —2 + O(et =149 + (g) " s exp(C(g)~1+9%s)).
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We integrate e4(V;) along the geodesic in A passing through (¢,z) € QN {r —t < 2R}.
Then,

\‘71(25, z) + 2| < e(2°(0)) 7Y 4 (g) T (eIn2°(0) — ) exp(C{g) T T (e In2°(0) — §))

Herlg™ [ rHear

°(0)
< e(@(0) 7 + () T (e Ina®(0) — 6) exp(Clg) T (e Ina®(0) - 4))
+ (e + (@) ") (0) T

If elnz°(0) — § < ¢ for some small constant ¢ > 0, we have

Vi(t, o) + 2| < Celq) "9 + Ce(q) % exp(Celq) +9%) + Cle + (0) ) ({g) + exp(d/e)) 1+*
S C€<q>71+05 + Oc<q>71+05.

By choosing ¢,e <, 1, we can make Cc + Ce < k. Thus, |Vi(t,z) + 2| < k{q) "0, If
eln(2°(0)) — 0 > ¢, we have 2°(0) > exp((c+4)/e) and thus ¢ = (exp(d/e) —2°(0))/2+2R <
—C~exp((c+6)/¢) for e < 1. Then we have {¢)¢"® > C~"* exp(C’(c + 6)) and thus
Vit @) +2] S (e + )7 )(@(0) 7 + ()~ (2°(0)
S (e+ ()7 {a) " (exp(8/2) + {a) ™" + (@)~ (exp(0/e) + {q)
< ()7 S (g)T RO exp(—Ce).

The second last inequality holds since a®® + b < (2max{a,b})? < 2°9¢(a®® 4 b°°) for

a,b > 0. By choosing C' >, 1 and ¢ <, 1, again we have |X71(t’ r)+2| < ,{<q>—1+ce.
We finish the proof by sending s — oc. [

4.5.5 An exact solution to the reduced system

For each (s,q,w) € R x R x S?, we define

(s ,) = Ay (g, ) exp(~ 5G() Alg, 0)s),

1 (4.70)
0 (5..69) = Aola.) exp(1 Gl) Alg, )s).
Since ﬁﬁq = AjAy = —2A, it is easy to show that (p, ﬁq) is indeed a solution to the

reduced system () To solve for U uniquely, we assume that limg oo U(s,q,w) = 0 (since
lim, o U(s,q,w) = 0). This also implies that U = 0 for ¢ > 2R. At (s,q,w) € Q'N{¢ < 2R}
we have

i=Ro0 - (1+NRo_1)=NRop, ijq =NRo_1(1 +Roo) = Ro -1,
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i~ 1 = exp(— 5 G()Alg,0)8) (A1 — Vi) =Ry,

- 1 -
Uq - Uq = eXp<§G<w)A(Q7w)S)(A2 - VQ) = 9%—1,0-

Thus, for each p, m,n, we have

9 ((q)0)" o = 571)(2 RooVi )P (Ro0) = O(e7PF),
k
D ((@)0g)" 05U, = €77 (D RogVi) ™" (Ro,1) = O(e P (q) 1), (4.71)
k

02((9)04)™ 0 (1 — n [7‘1 - U,) = 8"’(2 SRO,OV/Ic)ermM(9%_1,0) = O(é_pt_Hcg).
k

Moreover, since U = ¢~ 'ru = Rg 9, we can also show that 97({q)9,)™0"U = O(sPt¢). Now,
by integrating 020" (U, — U,) with respect to ¢, we have

PONU —U) = O(e (gt 149, 9P9"U = O(e P (g)t 0% + £7719%) = O(e771*).
(4.72)
Here we note that (¢) < ¢in Q' N{g < 2R}. The estimates () and (4.72) will be used in
Section @.7.

4.6 Gauge independence

At the beginning of Section we define a region 2 by (@) and then construct an optical
function in Q. If we replace (4.1) with

Qs ={(t,x): t>exp(d/e), |x] —exp(d/e) — 2R > k(t —exp(d/e))}

for some fixed constants 6 > 0 and 0 < k < 1, we are still able to construct an optical
function in (2, 5 by following the proofs in Section @ and Section @ We are also able to
construct a scattering data by following the proofs in Section B.5. We do not expect that
the scattering data to be independent of (k,d), but we have the next proposition.

Proposition 4.57. Suppose q(t,x) and (t,x) are two solutions to the same eikonal equation

9°°(1)qaqs =0

in different regions §2 s and € 5, respectively, as constructed in Section @ and Sectiog.
Let A(q,w) and A(q,w) be the corresponding scattering data constructed in Section |4.5.
Under the change of coordinates (s,q,w) = (eln(t) — 6,q(t, x),w), we can view ¢(t,z) as a
function of (s,q,w) in Qs N Qang. Then, the limit G (q,w) = limg_,o0 G(S, q,w) exists for
which we have

Alg,w) = A(Go (g, w), w).-
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Proof. We first recall several notations and estimates in Section @ For example, we have
p=q—q =0(%), v=q+q = Ot '), and we have similar definitions and estimates
for i and v. By viewing (¢, x) as a function of (s,q,w) = (eln(t) — 6, ¢(t, x),w), we have

00 =& U@ — @g, ' @) = te G (PG, —vg; ).
By the eikonal equation, we have
0=—(¢ — @)@+ ¢) + Ot *") + (¢*° (u) — m**)qaqs = —vi + Z%UG(CU)LR + O+,
Since p < —C~17% we have
v= }luG(w)u + O(t727%%)

and thus

v 1 M —o40ey _ L v _o40ey _ 1 —24Ce
o 4uG(w)qr +O(t ) = 4uG(w)(qT 2)+O0(t )= 2UG(M) +O(t ).

We conclude that
1 1
054 = te_qul(—iuG(W) + O(t‘erCE) — (—iuG(w) + O(t‘2+05)))
= O(e7 719 = O(e L exp((—e ™' + O)(s + 9))).

As computed in Section , we can show that G (g, w) := lims ., (s, q,w) exists for all
(q,w). Moreover, we can show that

10(s, ¢, w) — Goo (g, w)| S 1HC5

Since lim, o (1) (5, ¢, w) = —2A(g,w) and lims_oo (2U,)(5, ¢, w) = —2A(q,w) (recall
that 40 = s+ 6), we have

1 _ 1 -
o,(e7 ru) = q,U, = —§qu + Ot 179, or(e7tru) = q,U; = _éﬂUq +O(t711%9).

Then, ) )
(H’UQ)(Sa g, W) = ([LUQ)(S +0— 5, Q(S7 q, w)’ CU) + O(Zf_H_C‘E)_

By sending s (and thus t) to infinity, we conclude that A(q,w) = A(goo(q,w),w). ]

4.7 Approximation

Recall that we have constructed an exact solution to our reduced system in () In this
section, we seek to prove that this exact solution gives a good approximation of the exact
solution to (D)
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To state the result, we first recall the solution (i, U)(s, ¢, w) to the reduced system defined
in Proposition , or in (1.70). We now solve

G — G- = pleln(t) — 9,q(t,z),w) in QN{r—1t<2R}; g=r—t whenr—t>2R
and set B
u(t,x) =er'U(eln(t) — 4,q(t, z),w) in QN{r—t<2R}.

We remark that the construction here is very similar to that in Section 4 of the author’s
prevoius paper [34]. We then have the following approximation result.

Proposition 4.58. The function u = u(t,z) is an approzimate solution to (@) in the
following sense:

|21 (g (@) 0n0ptt) (t, )| S et 3O, V(t,z) € Q, VI.

Moreover, if we fix a constant 0 < v < 1 and a large integer N, then for ¢ <, n 1, at each
(t,x) € Q such that |r — t| 17, we have |Z'(u — 0)| S, et (r — t) for each |I| < N.

The estimates for © — u in this proposition is better than the estimates for u itself.

After making several definitions in Section , we introduce a simplification in Section
@ Instead of (jz, U,), the simplification in Section allows us work with (g, U,) which
is an exact solution to the reduced system () with initial data (—2, A) We thus get a
new function ¢ which is a solution to ¢; — ¢, = 1. In Section §.7.3, we follow Section 4 of
34] to prove several estimates for ¢ and U. The most important result here is Proposition
m which states that u = @ is indeed an approximate solution to () In Section §.7.4. we
show that ¢ approximates the optical function ¢ in a certain sense. Finally, in Section §.7.5,
we make use of the estimates in Section {.7.4 to prove Proposition §.58.

4.7.1 Definitions

We first define a function ¢(¢, z) in 2 by solving the following equation

G — Gr = pleln(t) = 4,q(t,z),w) in QN{r—1t<2R}; g=r—t whenr—t>2R.
(4.73)
Recall that g is defined by

1
(s, g,w) = Ai(g,w) exp(=5G(W)Algw)s),  V(s,q,w) ERXR XS

In this section, when we write ¢, we usually mean a variable instead of the optical function
q(t, ).

As in [34], we can use the method of characteristics to solve () We fix (t,z) €
Qn{r—t < 2R} and set z(7) := q(7,7 +t — 7,w). Then, the function z(7) is a solution to
the autonomous system of ODE’s

2(1) = ples(t) — 0, 2(1),w), s(r)=er™
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The initial data is given by (z, s)((r+t)/2—R) = (2R, eIn((r+t)/2— R)—0). By Proposition
1.53, Proposition {.55 and Lemma {.56, we have |A; + 2| = O((q)~1+9%), (4s, A)(q,w) =
O({g)~'"¢) and A; < —1 for all (q,w). Thus,

0> p(es(r) =0, 2(),w) = Ai(2(1),w) exp(—%G(w)A(Z(T),w)(&S(T) —9))

_CTCE<Z(T)>_1+CE > —CTCE.

v

Then, —C7°¢ < (1) <0, so |z(7)| cannot blow up in finite time. By the Picard’s theorem,
the system of ODE’s above has a solution for all (r+t)/2—R < 7 < 5(2(r+t)—4R—exp(d/e)).
The upper bound here guarantees that (7,7 +t — 7,w) € Q. Thus, () has a solution
q(t,x) in Q.

Next, we define ﬁ(s,q,w) by

U(s,qw) =— /OO As(p,w) exp(%G(w)A(p,w)s) dp. (4.74)

Note that As(q,w) = 0 whenever ¢ > R, so when ¢ < R, we can replace oo with R in ()
In 2 we set N
u(t,x) = er'U(eln(t) — 4, q(t, z),w).

We seek to prove that u(t, z) provides a good approximation of u(¢, x).

4.7.2 Simplification

We aim to introduce some simplification in this subsection. Define a new function F'(g,w)
on R x S% by

q

F(q,w) := 2R—/2RA1<p )

Then, we have

a) F' is defined everywhere, and 2(¢ = R) < F(q,w) < 2(q+ R)/3 for all ¢ < 2R. This is
because A; € [—3,—1] by Lemma :

b) F' is a smooth function of (¢,w), in the sense that for each large integer N and ¢ <y 1,
F is in CV. This is because A; € [—3,—1] and by Proposition {.55.

¢) F(q,w)=qfor ¢ > R, and (F(q,w)) ~ (¢q). This is because A; = —2 for ¢ > R.

d) For each fixed w, the map ¢ — F(q,w) has an inverse denoted by F (q,w) which is also
smooth (in the same sense as in a) above) in RxS?. This is because F, = —2/A; € [2/3,2].

e) 0205F = O({(g)'~**%%). Recall that A; < —1 and 97054, = O({g)~**“%). If a = 0, then
05F| S Jgor(P)°F dp < (@) T a > 1, then 0§05 F| = [0;7105(2/A1)| S (g)'7oF¢<.
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For each (s, q,w), we set

~

A(q,w) == A(F(q,w),w)

and

A . L (4.75)
U(s,q,w) := —/ A(p,w) exp(iG(w)A(p, w)s) dp.

It is clear that (i, U) is a solution to the reduced system ()
For each (t,z) € €, we set

4(t,x) = F(q(t,z),w),  alt,z):=erU(elnt — 6,{(t, z),w).
We then have the next key lemma.
Lemma 4.59. In Q, we have
G — Gr = plelnt — 6, 4(t, z),w)
and ¢ = r —t whenever r —t > R. Moreover, we have u(t,x) = u(t,z) everywhere.
Proof. At (t,x) € €, we first have
q(t,x) = F(F(q(t,2),w),w) = F((t,z),w).
Thus,
G = Gr = (00 = 0:)F(q(t, x),w) = Fy(q(t, x),w) - plent = 6, q(¢, z), w)
= (~2/A1 - Ay exp(—5GAS)) (e Int — 6,(t, ), )
= —2exp(—5G)A(1,2), )t - )
_ —Qexp(—%G(w)A(F((j(t, ), w),w) (et — 8))
= -2 exp(—%G(w)A(d(t, z),w)(elnt —0)) = a(elnt —6,4(t, z),w).

Since F'(q,w) = g for all ¢ > R, we have ¢(t,x) = q(t,z) = r —t whenever r —¢ > R.
Moreover, if p = F'(p,w), then we have p = F/(p,w) and thus
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Then by the change of variables (p = F(p,w) and thus p = F(p,w)), we have
(s.00) == [ Alp.)exr(GGAlp.)s)
= - [ A0 expl 56 A )0 Fy o)
= | Al esp(50() A 0)8) do = D 7 ).

Here we note that AF, = —2A/A; = Ay. That is, for each (s, q,w) (not viewed as functions
of (t,x)),

Us, q,w) = Uls, Fg,w),w). (4.76)
We thus have u(t, z) = u(t, z). O

Because of Lemma , we can work with (4, ) instead of (u M)

~

We end this subsection with several useful estimates for (A, i, U).

Proposition 4.60. For each (q,w), we have
(0)8,) 05 F (g,w) = OUa)'™ ), ((a)0,)"05A (. w) = O({g) 7).
Besides, for each (s,q,w) € ' N{q < 2R}, we have
9((0)0,)" 050 = O(™t),  8(a)9,)" 19U = O(t“);

p=00%),  9((0)9,) 050 = O({a) " tFIal), a+b+]c > 0.

Proof. First, it is clear that (F(q,w)) ~ (¢) and that F,(q,w) = 1/(F,(F(q,w),w)) =
—A(F(q,w),w)/2 ~ (¢)¢¢. In general we induct on m + |n|. By differentiating ¢ =
F(F(gq,w),w), for (a,¢) ¢ {(0,0), (1,0)}, we have

0= F,(F(q,w),w) - 0005F (q,w) + > _ C[(9d5 F w) - [[(002 F)(q,w)).

J=1

Here the sum on the right hand side is taken over all (m,c,a,,c.) such that > a; = a,
d+> ¢ =c a;+|c;j| <a+|c|. We can now apply the induction hypotheses to conclude
that

0= Fy(Plg.0).) - G05F(q.) + 30 O((B(g.a)) 7% - (g5 +)

= Fq(F<Q7w)7w) : 8:;(95 (q,w) + O<<q>1 a+C’s).
And since F, ~ 1, we conclude that 0205 F(q,w) = O({g)'~+%).
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Next, recall that

N ~ ~

A(qw) = A(F(qw),w),  Uls,qw) =U(s,F(q,w),w).

Then, 828;85(7 (s,q,w) is a linear combination of terms of the form

m

828;”85/[7(5,F(q,w),w) : H@gﬂ'@ijﬁ’(q,w), Zaj =a, d + ch =c.

j=1
By (4.71)) and (4.72), we conclude that each of these terms are controlled by
S (g,10)) O - )T S )

Thus, d°({¢)0,)*d5U(s,q,w) = O(¢7"t). Following the same proof, we can show that

(<Q>aq)aafufl(q,w = O((q)~1+%). A
|l by ()’ we can write 8;’8:; 05U, (s, q,w) as a linear combination of terms of the
form

fod A 1~ ™ 1 .
05 05 Alg, w) - exp(5GAs) [ ooz 0z (5GAs)
j=1

where @’ + ) a; =a, Y bj =0, ¢ + ) ¢; = c. Each of these terms are controlled by

<q>—1—a’+05 . tCe . <q>—m—2atha 5 <q>_1_at05.

In conclusion, we have 9°((q)d,)*t'05U (s, q,w) = O(t°). Here we do not have the factor
e which is better. Moreover, we have fi = O(t°¢) and

. A 1 .
(Nm <q>:U’QJ ,uw) = _i(GAv <Q>GAQS7 aw(GA)S):u

Following the same proof, we can show that 9°((¢)d,)*0%/i(s,q,w) = O({g)~1tC=t%|a|) if
a+b+|c[>0. O

4.7.3 Estimates for ¢ and U

We now follow Section 4 in [34] to prove several useful estimates. In this subsection, all
functions of (s,q,w) € [0,00) x R x S* are viewed as functions of (t,x) € Q by setting
(s,q,w) = (elnt — §,q(t,x),w). This setting is different from that in the previous sections
of this chapter, where we take ¢ = ¢(¢, x).

Lemma 4.61. In QN {r —t < 2R}, we have (§)/{r —t) = t°C) and §(t,x) —r +t =
O(min{=1, (4) ).
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Proof. Fix (t,z) € QN {r —t < 2R}. Then, we have

t
() — 2R _/ (—(elnT —6,4(r 7+t — 7 w),w)) dr
(r+t)/2—R
t
S enlC@ St - ) dr
(r+t)/2—R
S((r—=1)/2+ Rt < (r — )t
t
|G(t, z) — 2R)| :/ (—p(elnT =90,4(r,r+t—7,w),w)) dr
(r+t)/2—R
t
> / exp(—C{@) 1 %%8) (r, 7+t — 7,w) dr
(r+t)/2—R

Z((r=t)/24 Rt Z (r— )t~
Thus, we have t~95(q) < (r —t) < t94(g). It follows that
[t @) = (r = )] < | = 2R| + [r — t = 2R| St°°(q) + {r — 1) S (@)t

To improve the estimate above, we note that

t
(j(t,x):2R—|—/ plelnt —6,q¢(r,r +t —1,w),w) dr
(r+t)/2—R
t
:r—t—l—/ (plelnT —6,4(1,r +t — T,w),w) + 2) dr.
(r+t)/2—R

For each (s,q,w) € [0,00) x R x S%, by Proposition and Lemma we have

R 1 e e
(s, 4, w) + 2] S |1 = exp(=5GAs)] S {g) " [s| exp(Clg) ).

By setting (s,q,w) = (¢lnT —0,4(7,r +t — 7,w),w), we have
i+ 2|(7) < (r 4t — 27)"1HCErCE < (3R —  — ¢ 4 27) " 1HCECe

and then
t
G —r+t| St / (BR—7r —t+27)7 79 dr < e M5 (3R —r +1)°".
(r+t)/2—R
And since 0 < 3R —r+t <1+t <t, we have |g— 7+ t] S e 1=, O

Lemma 4.62. In Q) we have
Di=q + G = O™, Ai o= Gi — wiGy = O((1 + In(r — t))t717C%).

It follows that ¢, = (0 — 1)/2 > C~4 % and G, = (0 + j1)/2 < —C~"¢. Thus, for each
fized (t,w) the function r — ¢(t,rw) is continuous and strictly increasing.
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Proof. There is nothing to prove when r — ¢ > R. Fix (t,x) € QN {r —t < 2R}. Then,
N A A 1A PN € A N
(0 — 0,)0 = (8y + 0, )t = gl + et i = fig0 — gG(w)A(q,w)u
1 .+ . e 4.
= —iGAqs,uy — 2—tGAu.
By setting 2(7) := ¢(7,7 +t — 7,w), we have Z = 1 < 0 and thus

t

t
[ sl rt-rw drs [ elr @) () dr
(r+t)/2—R (r+t)/2—R

¢
S(slnt—I—l)/ (2)72C(=2) dr Selnt + 1,
(r+t)/2—R

t t
[ EriGdilr i rw) dr S 02-RT [ @)y dr
(r+t)/2—R (r+t)/2—R
t
5 €t_1/ <Z>—1+Cs(_2-,) dr 5 t—1<d>05 5 t—l-i—Ca.
(r+t)/2—R

Here we note that (¢) < (r — )t < #1179 Since o = 0 at 7 = (r +t)/2 — R, by the
Gronwall’s inequality we conclude that 7 = O(t~17¢¢).
Next, we have

(8, — 8N = (0 — wid, )i+ 17"\ = (fig +771) Ai + Z ) (Owy)
l
N ; -
= (fig + 7 l)Ai—5;(awl(GA))(51nt—5)m Y0y — wiwr)

= (jig + ™A+ O((@) " ).

We have proved that f (r18)/2R \pg| dm S elnt + 1. Integrate along the characteristic (7,7 +
t — 7,w) and we have

/(t (r+t—7)"" dT:ln—(r—l—t)/QJrR:O(l),

r+t)/2—R r

t t
/( <g>71+05(_ﬂ>7_71+05 dr 5/ <qA>71(_ﬂ>T71+Cs dr

r+t)/2—R (r+t)/2—R

< gihes /(t ()7H(=2) dr

r+t)/2—R
< (1 4+ (@)% < (1 +1In(r — £)¢ ¢,

Here note that (¢) < ¢'*° and In(g) < In(r—t)+Celnt in QN{r—t < 2R}. Since Ai =0 at
7 = (r+t)/2— R, by Gronwall’s inequality we conclude that \; = O((1+In{r—t))t=1*). O
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Lemma 4.63. In (), we have

b= 56’;&“) AU + O(et™C (r — 1)), i, = 52&“’) (AU, + j1,U) + O(e(1 + In(r — t))¢2+C=),
Proof. We have
(@~ 0~ S50
= gy — G A+ I S0 )i~ S D )
= figh — Z%GAA ﬁgﬁ ifz (iU — 24)j1 — %(-%GA@U + AUt
= ol — iy + GG Lo+ 0.

Since U = O(t°¢) and U, = O(s~'t“¢) by Proposition , we have

eGuU  2G

| (-1
4¢2 4t2 2

Besides, we have
t
[ e S (/2 - RO (- )2 - B S et M )
(r+t)/2—R

And since 7 — %,&U =0at 7= (r+1t)/2 — R, by Gronwall’s inequality we conclude that

v — ﬁﬂff = O(et 2% (r — 1)).
4t
Next, we have
(@ - a0~ “E ity = o0, - o) - “E 0
&G o eGRU  2G, 1 . o
= 0nftg(0 = o BU) + — o= = 5 (5 GAU + Ug))
. G o eG £G4, 0,(i0)
= fiqOr (¥ ENU) + Grflgq (P At U) 112
G, 1, 50 o0 G, 1 Ao o
- F(—ﬁGAU + Us)figGr — @(—5(;&1(14(]) + Usq) G-
By Proposition , we have
eG

|Figq (¥ = EﬂU )| S 10,(GAGsp)| - et 7% — 1) S et ™2+ (g) 7"
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10,(AU)] S 10U + 2A] S #9%(@) 779 + (@) S 475 (g) e,
1
|(_§GAU + Us)ﬂq| 5 (<q>_1+C€tC6 + g_ltca) . <q>—2+CStCa 5 6—1<qA>_2+C€tCE’
1 10 ) L ! AU = AU ji 1 A Ui A\~ e4Ce
(=5GO,(AD) + Usg) il £ |(=5G0,(A0) + 5GAU Al < |(-5GAD)Al < (@) 24CeyCe

In conclusion,

o eGw) -~

(@~ 00,0 <2t
s A_£AU o(lé N\ —14+Cey—2+4+Ce
= 10, (7 = - U) + O(|4r[e{q) t )

A ~ eG - ~ A\ — e— e Ao AN e4— e
= f1g0n(# = - U) + O((=fr)e(@) ™21 4 e ()Mo 72T)
~ ~ eG - ~ A\ — e1— e A\ — eq— e

= 10, (7 = - U) + O((=f1)e(q) PHORm2HEE g () 1O eE),

Take integral of the remainder terms along a charactersitic (7,7 +t—7,w) for (r+t)/2— R <
7 < t. We have

t
/ T () TIOR (L 2) d e dr < e(1 + In(r — t))t 2O,
(r+t)/2—R

The proof of this estimate can be found in the proof of Lemma . Since U — EGAt(t‘”) AU =0

whenever » —t > R, we have 0,(0 — %(t‘”)/lf]) =0at 7= (r+t)/2— R By Gronwall’s
inequality, we conclude that 0, (v — %(tw)ﬂf]) = O(e(1 +1In(r —t))t=2t¢¢). To end the proof,
we recall that 9, = §,0, where ¢, > C~~in QN {r —t < 2R}. O

Before we state the next lemma, we recall the definition in Section . We set D =
QN {r—t < 2R} and define €"S*? = "S7" as in Definition .

Following the proof of Corollary , we can show that R, , € S*P. Here we prefer the
notation S** since it does not rely on the optical function ¢(¢, x) and the corresponding null
frames.

Lemma 4.64. We have ¢ € S%'. We also have Qg € S® for each 1 < k < k' < 3 and
0 <~ < 1. In other words, in QN {r —t < 2R}, for each I we have

|Z1G| <p (r — )t (4.77)
| Z Qo] Syt (r — t)7. (4.78)

As a result, we have 85”83121 e SVt e SO LI O € SO==m form +n+p >0,
POU € ePS% and 858;”83(7,1 e SO=1=m_ All functions here are of (s,q,w) = (elnt —
3, q(t,z),w).
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Proof. We prove () by induction on |/|. The case |I| = 0 has been proved in Lemma
1.61]. In general, suppose (@) holds for all |I| < k, and fix a multiindex I with |/| = k+ 1.
By the chain rule and Leibniz’s rule, we express Z/fi as a linear combination of terms of the
form

S

(323335,1) ZhG. . Zg- Z7 (elnt —6) - Z%(elnt — 6) - H ZEug, . ZEvay, (4.79)
!

where a + b + |¢| > 0, |L], ||, | Ksx| are nonzero, and the sum of all these multiindices is
k+1. The only term with some |I,| > k is 1,Z7¢. All the other terms have an upper bound

(@) ] (= 19%)7 - 1 S g Tl

Here we apply Proposition and the induction hypotheses to control Z%§. In summary,
we have Z1ji = i,Z7G + O((q)~1T¢4t%¢|i1|). Following the same proof, we also have

> 1Z7a = O((g) e ).

0<|J|<k

In addition, by the induction hypotheses and Lemma , we have
Y@ +wo)Z’il S Y A+t Z27)
1<I1] |J|<k+1
SQ4t+r)t Y |24+ — ).

|J|=k+1

In summary, by () in Lemma @ we have

0 = 0274 S g Z"ql + (L4t +r)70 Y 1274 +49 (=) + 7 — 1),
|J|=k~+1

Here we note that
S 127 S 1l + (@) |l S (=)
|JI<k

Now, we fix (t,7) € QN {r —t < 2R}, integrate (0, — 9,)Z!§ along the characteristic
(r,r+t—7,w) for (t+7)/2— R <7 <t, and sum over all |I| =k + 1. We then have

> 12%(t2) = Z"4le—rra)j2-rl

|I|=k+1
t
<[ e Y 1200 + oy o ar
(r+t)/2—R T
t
S/ (llaq|+(1+t+7‘)_1) Z |ZIqA|<7—> dT+tC€<qA>+<T_t>tCE‘
(r+t)/2—R Fraew®)
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Moreover, we have § =r —t forr —t > Rand §=2R at 7 = (r +1¢)/2 — R, so

2" 4lr=(rs0) -1l = 127 (r = O)lr=(rs0)2-r] S

By Gronwall’s inequality, we conclude that >, _; |Z7q(t, z)| < (r — t)t°".

Fix v > 0. Now we prove () by induction on |/|. First, in Lemma we have proved
5\2' = O((l + ln(r - t>)t_1+cg) = 07<<T - t>7t_1+08>. So we have Qkk/(j = xk)\k’ — xk/)\k =
O((r — t)7rt=1492) = O({r — t)7t%¢), so the case |I| = 0 is proved. In general, we fix I with
|I| > 0. As computed above, we have

Z]Qkk//l = ﬂqZIQkk/qA —+ O<<q>—1+CstCE|ﬂ|)7 Z |ZJ,&‘ > 1+C’€tCE| |)
|J|<I1]|

> 0+ wid) Z Qg S A+ t+1)7" > |27 Qe

[J]<|1| [JI<|1|
SA+t+r)" Y 127 el + 7 (= )7

|JI=I1]

Thus, by (), we have

| J|=1]
+ <qA>71+CstCs(_ﬂ) + t71+Cs<T, o t>'y.

Fix (t,z) € QN {r —t < 2R} and take integrals along a geodesic (7,7 +t — 7,w). We note
that

/(+t)/23<d(7_>> 14+Ce ( ﬂ( )) + T—1+Cg<r i 27_>A/ 0
S tce/ (2(T)) (= 2(7)) dr + 71O (r — 1)1
(r+t)/2—R

< (A4 1In(r — )9 195 (r — )7 <% (r — )7,

In addition, recall that Z7q|.—( 44 /2-r = O(t“?). We finish the proof by applying Gronwall.

Finally, if Q@ = Q(s, ¢, w) is a given function of (s, ¢,w) and if we take (s,q,w) = (eInt —
5,G(t, x),w), then Z1Q is a linear combination of terms of the form (4.79) with fi replaced
by @. Thus,

Q1S Y, r =)t t|oko Q.
a+b+|[c|<|]]
We combine this inequality with Proposition - As a result, we have 8’“6”/21 e §O-t=m
e SO0 ororonp € ST for m+n +p > 0, U e 1800 and 8”8’”8"[] €
SO 1 m. ]
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Lemma 4.65. Fiz v € (0,1). We have v € eS™°, i, € S~ 571, Ay € S and
b A%G(w)w ceS2, g, - %G(w)(ﬂqf] —24) € 5720
All functions here are of (s,q,w) = (¢lnt — 6,q4(t, x),w).

Proof. First, we have

~

A=) rlwiQuge 870 8% C 8
J
Next, we set Q := 0 —eG(w)al /(4t). We have proved Q = O(et =2+ (r —¢)) in Lemma
@. In general, we fix [ with |I] > 0 and suppose Z7/Q = O(st=27(r — t)) whenever
|J| < |I|. As computed in Lemma {.63, we have

R eGuU  &2G . 1 . o 90
Q= Qr = 1gQ + — 5~ = 5 (-5GAU + Us)ii = 4gQ + 577
By ([L.1§) in Lemma , we have

(0 = 0)2"Q S 12" (1,Q + 25720 + 3 127 (0,Q + 5720 + (L+ t +1) | 227Q)]

[J]<|1|
< |lu’qZIQ| + 1 +t+ T Z |ZJQ| + Z (|ZK1ﬂq| + t_1)|ZK2Q| + 6t_2+ce
[J]1=]1] |Kq |+ Ko <1
[Ka|<IT]
5 |:&qZIQ| + (1 + 1+ 7’)_1 Z |ZJQ| + 5t—2+05<r . t>_1 + Et_2+ce,

|J1=I1]

The last estimate follows from /i, € S®~2 and the induction hypotheses. Since @ = 0 near
7= (r+t)/2— R, and since

t
/ er 2O dr < et72HO(r — 1),
(r+4)/2—R

we conclude by Gronwall that Z/Q = O(et **“(r — t)). So Q € eS~%1.
Since 1,U € S*° and since (r —t) < tin QN {r —t < 2R}, we have 7 = Q +
eG(w)pU/(4t) € eS™! + 5710 C S0, Moreover, for each I we have

1Z'Qql S 12" (6w - 0Q)| < ) t91270Q)

<[]

< D tFRZIQIS -7 Y |Z7QI S et

|J1<|1| [JI<IT]+1
Here we use the estimate .1 € S%° which follows from ¢, € S°° and ¢, > C~'t~“¢. Thus,

Qy = g — Zte(w)(,zqﬁ —24) € 5720,

Since i,U € S®~2 and A € S®~!, we conclude that 7, € eS~171 +£5720 = 511, O
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Now we prove that ¢ is an approximate optical function.

Proposition 4.66. We have
9°%(0)Gags € ST

2) and suppose we have obtained A\i € 571 from the pervious lemma.

Proof. Fix ~ € (0,
La+v)e S and ¢ = L(—f+ D)w; + A; € S0, Thus,

We note that ¢;

||C’
—_
\

90’ (A + ) + 5" (4 2) (= + D)wi + 2X)
96 (= + D)wi + 20) (= + D)wj + 2))
lggOgy + iggozﬁ + ;go (20 + DPw; + 20N;)
— U(20wjw; + 2N Wi + 20iw;) + (Dw; + 20) (Pw; + 25)).

I
o
o
/_\
12>

Since 7 € eS70 and \; € S717, we have %, 7\, \iA; € S~227 and thus
afnr ~ 1 o1 ij - PSR 7 POE, 3 _
goﬁqaqﬂ = ZG(M)’MQ + §(g80 — gl wiw;) v + g3 LN — égoju()\jwi + Aw;)  mod ST

1
= ZG(w)ﬂQ mod S~

If we replace (o) with (m®?) in the computations, we have

)
1 .. . ~
—q; + Z —fi — B} m* fi(\jw; + A\w;)  mod S22 = —fp mod ST,

Here we note that mijjxjw, m'jjxlw] = >, wi(g — wjgr) = 0.

Moreover, note that @& = er—*0 € eS~10. Following the proof of Lemma {.47 - with V
replaced by Z, we can prove that f(a) — £(0) — f(0)a € e25720 for each smooth function
f. Thus,

9°2(0)dals = —G; + Y @ + 66 Udads + (9°° (1) — g5t — m"?)Gads
J

=—n(v— %G(w}ﬂU) mod S~

N t — A
= —a(0 — %G(w)ﬂU) + e 4Ttr)G(w)ﬂ2U mod S22
=eS™%! mod S7%?7,

Since v € (0,1/2), we have eS~2! € §~%! and S22 c §—21. O
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In order to prove that 4 is an approximate solution to (@), we need the following lemma.

Lemma 4.67. For each v € (0,1/2), we have

4°%(2)0a054 = —r~fu + Q%GA,:L mod 527,

Proof. Fix v € (0,1/2) and suppose we have obtained \i € S~17. First we note that
et 0y = Uy — Dy = Uy + Dy — DI,
Z(@iwj)ﬁwj = 191 - Aqin = I)L — wiﬁr — )\zﬁq
J
Note that
Zj ij()j + S

O+ 0, =
et r+t

-1
) O —wi0p =1 E w;§ i,
J

and that 7 € eS~1°. Thus, we conclude that 7, + 0, 0, — w;, € eS72Y. Besides, we have
v, € e2S7% 1 and \ip, € S We conclude that et !0y, >, (Ow;) i, € £5—20,
Now, we have

) | R
Qu = (5 (1 +0)) = 5 (g + ) - 5+ D) + 6t s 27 0)
1. 1. 1. e oo 1 e
=1 qu+zl qu+zluqu+§us mod &5 Q’OZZ—l,uq/L mod £S5~ 171
) 111 ' ) )
@i = 05+ 7)) = 5 (g + 7) - (500 = s+ X0) + Y (0o, + D (Or) %)
J J
L. -1,-1
=~ ltqwi mod ST,
. . .
Gij = Oi(5 (0 — f)w; + X))
1.1, . I, . 1 A
= 0 = A (7 — s+ Aok + 5 D (i — ) Drnes + 55 — )0 + 06y
k
1 1. 1 . 1 . oo
= ity = fag? = Dy — Sfighio; = 5 D i, (Oon)wj — Sjidhw; + 0:A; mod e85
k

= Zﬂﬂqwiwj mod S~

In the last estimate, we note that 8Z~:\j € S~19 since for each I,
1Z' 00| S Y 102N S (r=07" Y 1Z7)]
|JI<|1] |JI<IT]+1
,S <7, . t>71 . t71+Ce<r o t>7 5 t71+Cs<T . t>17'y.
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Thus, we have 902G € S%=2 4 §~b~1 = §%=2 and
af 5 1 fop ~1,0
9o ap = ZG(w)uqu mod S—°.

In addition,

. 1. . 1. 1. . € . 1 . A L - _

Og = _(Zﬂqﬂ‘FzﬂqV"‘Z qﬂ+2—t/ls)+[Z(Mﬂq—ﬂqv—uqu)—r 1,u+28i)\i] mod 5720
Loyl en -1 \ -2,0
:_(ﬁﬂqy+§yqﬂ+2_t,us)—7' M‘FZ@Z)V mod €5 .

Since ), Wik; = 0, we have 0 = 0,(>_, wzsz) =>. w0, ;. And since \; € S~ we have
2815\1 = Z(@Z — wi&n)j\i = ZT_lwiniS\i € 8_277
; i i
Finally, we have

9" (@)8a054 = 04 + g5 10054 + (97 () — g5" — m*?) a0

1. . 1. . € . L € SRS _
= —(Ghg? + Pl + 5 fts) = i+ - G(w)ikigU mod 77
1 € ~o 1 € A A € 4
= iy —GaU — ~ji - —G(,U — 24) + —GAj — '
sha 7 GAU = 5i- GV )+ GAR =TT
N t— N
+ iG/}/)qU 4 & TT) Gij, U mod S~27

= —r a4+ Q%GA/) mod S™27.
O

Now we claim that @ = er~'U(elnt — 6, §(t, z),w) is an approximate solution to (EI)

Proposition 4.68. We have
9°?(1)0,0p1 € £S730.

Proof. We have

ﬂt = &TT_l(éTt_lUs + thUq), ﬁz = —87’_2002'0 + ETT_l(quAZ' + Z kaﬁiwk).
f
By Lemma , we have 895U € 5%, Thus we have
ﬂtt = 57'_1<—€t_2U5 + €2t_2055 + 2575_1(?,505(1 + Cjtth + qAEqu)
= er Y26t Uy + 41U, + ¢2U,,) mod £S73°
= er Y (GuU, + ?U,,) mod eS~>71,
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Uy = —ET_Qwi(st_lffs + cthq)
ter (et Ui + et U Oir + Guly + GUggi + G Y Uy, )
k k

= 67“_1(@,;(7(] + C]thq@-) mod £S5~ %71,
Uij = —681-(7”2%)[7 — 87”2%(0}1@- + Z ﬁwkaiwk) — 57”2%(0(1@ + Z (“kaajwk)
k k

+ e [Uggbids + Z U (0i01) 35 + Uy

+ Z UsrqGiOiwi + U, 8:0,01) + Z wreos (Oir) (D))

.k
— —er20. U6 — er2w.U.d.
= —er “w;Uyq; — er “w;Uyq;

+er  UggGiGy + Y Ugeo (Ow0r)Gy + (9jwr) i) + Ugdys]  mod 579
k

= 87"1(qu(in]- + Uq(jij) mod £S~%71.
Since g*# (i) — m®® = ¢2%4 mod €2520 € £S710, we have
9°° (0)9a0ptt = Oi + (g% (4) — m*) D 0pt
= —er‘1(25t_1cjtf]5q + (jttﬁ + dff]qq) — 257“_2Uchr
+ert Y Ut + Z 20 ()i + Usi]
+ (g* () = m®P) - er™ (quﬁUq + qaq/quq) mod eS™3°
= —2(tr) ' GGAU, — 2er UG, + er™ Z Z 20 s, (Biw) (Ni + widiy)

ik
+ er (g% (1) GupU, + 9% (1) GadpU,,) mod £S730
= —2(rt)1q,GAU, — 267720 G, — er 2 U, + 2 (2tr) 'GApU, mod S~°

1 . .
= —5527”’21/GAU(1 —er?pU, mod eS™*° € S,
In the third equality, we note that
e ~ A
er g™ (4) G + 17 it — —GA[L]U ceS 0. 8727, 01 C 5730

er 1go‘ﬁ( )Ga(sUyg € €510 . §721. 5072 ¢ £5=80

and that
er™ Z Z 20 o (Os0) (Ni + widy) = er™! Z Z 20, (Bywi)Ai +er Z 20 o, (0ri ) i
ik ik k

€es 0. 8071 gm0 g7 L 0 C eSO
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4.7.4 Approximation of the optical function

We set p(t, z) := F(q(t,z),w) — §(t, z) in , where ¢(t, z) is the optical function constructed
in Section #.3.

Proposition 4.69. Fiz a constant v € (0,1). Then, for e <, 1, at each (t,x) € Q2 such
that |r —t| <17, we have |p(t,z)| <, t717FC(r — t).

Proof. 1t is clear that p = 0 in the region {r —¢ > R}. In QN {r —t < 2R}, by setting
s =¢elnt — ) we have

Pt — Pr = Fqu(& Q(t’ x)?“”) - ﬂ<37 Q(t> $)a w)
= [qu“(& q(t> ZE), w) - ﬂ(s, F(Q<t7 :L‘), w)v w)] + [ﬂ(‘S? F(q(t7 :L“), w)v w) - :&(Sa (j(tv x)>w)]
= Rl + RQ.
) (4.80)
Since A(F(q,w),w) = A(q,w), we have
2
Al(Q(t> x),w)
49 exp(—%G(w)A(F(q(t, 7),w),w)s)
) - ) (4.81)
= <_m‘/1(87 q(t, ), w) +2) exp(—5G(w) Alq(t, 2), w)s)
2

~ 1
= 370y Tt 2).2) — As(a(t. ), ) exp(— 3G At ), 2)3).

By Proposition , we have
[Ral S [Vals,a(t, 2),w) = Au(g(t, 2),0)| exp(Cla) 7 s) S 171

Ry = Ti(s,a(t, ), ) expl(— 5 G() Alg(t, 2),)9)

Moreover,

F(q,w)A F(q,w) iCe 1
Ral = | / 1,(s, ps) dp| < / (P) 2+ s|ii(s, p, w)| dp
q q

1 A
< (elnt —0)|p| - m[%>1<] [(G + rp) 2= exp(—§G(w)A(cj + kp,w)s)].
ke|0,

We now use a continuity argument to end the proof. Fix (¢t,z) € QN{r—t < 2R, |r—t| <
t7}. Suppose that for some ¢y € [(r +t)/2 — R,t), we have

4
10eln7’

Note that () holds for ty = (r +1t)/2 — R, since p((r +t)/2 — R, (r +1)/2 + R,w) = 0.
At (1,r+t—T1,w) for (r+1t)/2 — R <71 <ty and for each k € [0, 1], we have

Ip(r,r +t—T1,w)| < V1 € [(r+1)/2 — R, ). (4.82)

. . . . 1 .
<Q+f€p>~1+|q+f€p\21+|q\—lﬁplzl+\q\—1—02<q>-
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In the second last inequality we note that 7 > exp(d/e), so elnT > § and thus |p| < 1/10.
Moreover,

1 N .
exp(—5G(W)(A(G + rp,w) — A(G w))s) S exp(Cklpls) S exp(6/10) S 1
In conclusion, at (7,7 +t — 7,w) for (r +¢)/2 — R < 71 < ty, we have
1 N
[Ral S (eI = 8)[|pl(g) " exp(=5G(w) A, w)s)](m,r + t = 7, w)

< (eln7 = 8)[Ipl @) > (=) (rr +t = 7).

If we fix any ¢, € [(r +1)/2 — R, to], then

t1 t1
/ (elnT — S) @) 2O () (r, 7+t — 7,w) dr S elnty / ()20 (3 dr
(r+t)/2—R (r+t)/2—R
5 gln tl
and
t1
/ |R1|(Tyr +t —Tyw) dT S / 40 4r
(r+t)/2—R (r+t)/2—R
5((T+t/2 Rty — (r+1)/2+ R)

Here we recall that [(r +¢)/2 — R] ~t ~ t;. And since p =0at 7 = (r+1t)/2— R, by
applying the Gronwall’s inequality to p; — p, = R1 + R2, we conclude that
Ip(ty,r +t —t,w)| ST —t) - exp(Celn(Cty)) S 7775 (r — 1),

Vi, € [(r+1t)/2 — R, to). (483)

For ¢ <, 1 (where £ does not depend on (¢,z)) and t; € [(r + t)/2 — R, 1], we have
|r —t| <7 ~ t] and thus

RO () < 4THOE <02 <5902 T ty).

And since 7 +— e(In7)p(1, 7+t — 7,w) is a continuous function, () holds with tq replaced
by some t, > t,. By the continuity argument we conclude that [p(t,z)| < 71T (r —t). The
constants here do not depend on (¢, z). O

Next we consider Z/p. We need the following lemma.

Lemma 4.70. Let R, and Ry be defined as in () Then, we have Ri € S~ and for
|| > 0 we have

1Z"Ra| S (r = 1)72t%° > | Z7p| + |1y Z"p).
<
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Proof. By (), Remark and Lemma , and since A; < —1 everywhere, we have
Ri=Rop R0 -NRop=NR_1p € S0,

To estimate Ry, we fix an arbitrary multiindex [ with |I| > 0. By the chain rule
and Leibniz’s rule, we can express Z!ji(s, F(q(t,z),w),w) — Z'ji(s,4(t,x),w) as a linear
combination of terms of the form

[(020505) (s, F(g,w), w HZI — (0507051) (5, 4, w HZI
(4.84)
-HZJJ' (elnt — HZK“w . ZKvey,

where |L|, | Ji|, | K« «| are nonzero, and the sum of all these multiindices is |I|. The only term
with |I;| = |I] for some j is 1,Z'p, so from now on we assume |I;| < |I| for each j in (E.84
Here the second row in ( is O(g). The first row is equal to the sum of

~—

(0205 (5, F(q,w),w) — (POLO50) HZf (4.85)
and for each j =1,2,...,a
(b0 ) (s, G, w Hzl w)-Zp- I 2"4 (4.86)

i=j+1

Since |I| > 0, we_ must have a > 0 if (ﬂ) does appear.
To control () and (4.8G), we first recall from Lemma }1.64 - and Proposition 4.60 - 0 that

Z"(q(t,2), F(q(t,x),w)) = O((r — )t);

(@08350)(5,4,10) = O((d) 1) = O((r — 1)), whema+b+ ] > 0.
It follows immediately that (4.86) is O oy t°5(r = )721Z7p). In addition, we have
(F(q,w))/{r —t) ~{(q)/{r —t) =t°© and (G)/(r —t) = t9©). Thus, for each 7 € [0, 1],

(rq + (1= 7)F(g,w)) ~7(q) + (1 = 7)(F(q,w)) 2 (r = )t~ (4.87)

Then, we have
(q,w)
(O0401) (s Fla ), ) — (02040:1) (5. d:)] = | / (01051055, p.0) d
F(qw)
UL 0 en(C) dol £ ot )t 1)

Thus, (L.85) is O(|p|t=(r — t)72).
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In conclusion, for [I| > 0 we have
1Z"Ra| S (r = 1)72t% > | Z7p| + |1y Z"p).
EASH
O

Proposition 4.71. Fiz a constant v € (0,1/2) and a large integer N. Then, for ¢ <, n 1,
at each (t,x) € Q such that |r—t| <7, we have | Zp(t, x)| S, 71 (r—t) for each |I| < N.

Proof. We prove by induction on |I|. The case |I| = 0 has been proved in Proposition .
Fix a multiindex I with |I| > 0, and suppose that we have proved the proposition for all
|J| < |I|. By Lemma , we have

O =02 =Z"pi—p) + Y 102 (0 =) + D fo(0h +with) Z7p].

| JI< |

By Lemma and our induction hypotheses, in QN {r —t < 2R, |r —t| <7} we have

(2= 02"l S1Z'(Ra+ Ra)| + Y 127 (Ri + Ro) | + 1712 27p]]

|JI<[1]
S =) Y 2l |2l + Y 2]
|7|<|1] 1<
5 $1+Ce + <7“ _ t>72 . t71+Cs<T _ t> + |ﬂqZIp\ + Z Z571|ZJp’ + t72+05<r _ t>

IJ1=I1]

S @ 2l + ) 27|
=

The integral of |i,| and ¢t~ along a characteristic (7,7 +t — 7,w), 7 € [(r +1)/2 — R, 1], is
O(elnt + 1). Moreover,

t
/ T dr S ((r+1)/2 - R)TO((t— 1) /2 + R) SO (r — 1),
(r+t)/2-R

Since Zp = 0 in the region QN {r —t > R}, by Gronwall’s inequality we conclude that
| ZTp| S 710 (r — ). O

4.7.5 Approximation of the solution to ()

We can now discuss the difference v — 4 where v is a solution to (EI) and u is defined in
Section . Again, we fix a point in region QN {|r —t| < ¢7} for some 0 < v < 1. Note
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that -
u—’LAL:é‘T_lU(S,q< ,w) —&"r’_lU(S,(j(t,(L’),w)

=er ' U(s,q(t, 2),w) — e U (s, F(q(t, 2), w),w)
+er U (s, Flq(t, x),w),w) = er™U(s, 4t 0),w)
=: Rs + Ry.

Now we estimate R3 and R, separately.

t,x
t,x

Lemma 4.72. Fiz a constant 0 <y < 1 and a large integer N. Then, for e <, n 1, at each
(t,x) € Q such that |r — t| 17, we have |Z'"R3| <, et > (r —t) for each |I| < N.
Proof. As computed in Lemma , by change of variables we can prove that

U(s, Fq(t,z),w),w) =U(s,q(t,z),w).

Thus, -
Ry =er Y(U(s,q(t,x),w) — U(s, q(t,z),w)).

By (), we have |U — U| < (g)t179 at (s,q,w) = (eInt — 8, q(t, z),w), so
[Ra| S et™(q) S et (r —1).

Next we fix a multiindex I with |I| > 0. Then, Z/R3 can be expressed as a linear
combination of terms of the form

a b c
Z"(er™") - (080505 (U = U)(s,q.w) - [[ 2%a - [[ 275 - [[ 2" w. (4.88)
=1 i=1 =1

The sum of all the |I'|, |L|, | J«|, | Ks| is [I]. If a > 1, by (), we have
0505 15U, = Ug)| S e gy o1,
Thus, the terms () with a > 0 have an upper bound
et~ et g)lmap O L ((ghC) L b < o (ghtHHOE < o — gy 2HCE,
Moreover, by (4.72), we have
005U = U)| S e gt~
Thus, the terms () with a = 0 have an upper bound
et et ghtIHCE L b < ()t HHCE < o — ) 2HCE,

In conclusion, |ZIRs| < et=2+%(r —t) for |I| > 0. O
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Lemma 4.73. Fiz a constant 0 <y < 1 and a large integer N. Then, for e <, n 1, at each
(t,x) € Q such that |r —t| 17, we have |Z "Ry| <., et =2+ (r —t) for each |I| < N.

Proof. First we consider the case |I| = 0. We have
Ryl S er MU (s, Flq(t,x),w),w) — erU(s,4(t,7), w)|
. Flqw) ) F(qw) c
St [ O pl dol S= [ (0,00 + 14210, A0
q q
Selr—t) 2 Tt x)| et (r — 1)L

In the second last inequality, we apply ( to see that the integrand is O({r — t)=2t%*).
In the last inequality we apply Proposition Y

In general, fix a multiindex I with |I| > 0. Then, we can express Z'R, as a linear
combination of terms of the form

(8207050 (s, (g, w),w HZI — (20050 ) (s, G, w Hzf

Z(er Yy HZJj(slnt —9)- HZK’w
1=1

(4.89)

S

where the sum of all these multiindices is |I|. The estimates for such terms are similar to
those for (E.84). The second row is O(e?T1¢71+¢2) while the first row is equal to the sum of

(820,050 (s, Fg,w),w) — (8007050 HZI (4.90)

sYq-w

and for each j =1,2,...,a
(0h0205U) H Z"(F(q,w)) - Z'p- T] 2"4 (4.91)
i=j+1

Since |I| > 0, we must have a + b + |¢| > 0 if () appears.
Note that

71 ((j’ F(q7w)) = O((?‘ _ t>tCa)7 Zl*p _ O(t—l—i-v—&-Ca);
(08055 (5,4,0) = OE™(@) 1= C44%5) = O™y — ™4%),  whem a-+b+]c] > .

sUqrw

So () has an upper bound

€_b<7’ . t)l—atC’a . (<T . t>t05)a—1 . t—l—}—C’a(r . t) 5 E—bt—1+05<r . t>.
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Besides, by applying Proposition and (), we have
b A b 2 . Flae) flact
(0,0505U) (s, F(q,w),w) — (8,0;05U) (s, q4,w)| < I/d 10,07 0,U (s, p,w) dp)

F(q,w)
SU[ o) dpl S )] () OO S
q

In conclusion, () has an upper bound
t71+05<r _ t)ia k ((7“ _ t>tCs)a 5 t71+05.

Combine all the estimates above and we conclude that |ZIRy| < et=2tC(r — ). O

We thus conclude the following approximation result.

Proposition 4.74. Fiz a constant 0 < v < 1 and a large integer N. Then, for e <, n 1, at
each (t,x) € Q such that |r —t| <7, we have | Z1(u—1u)| <., et =2 (r —t) for each |I| < N.
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