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Abstract

Optimization Algorithms in Variational Monte Carlo for Molecular Excited States

by

Leon Otis

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Eric Neuscamman, Co-chair

Professor Jeffrey Neaton, Co-chair

The accurate description of molecular excited states is an active frontier in the develop-
ment of electronic structure theory. Compared to their ground state counterparts, electronic
structure methods for excited states remain less well developed and many of the most widely
used options struggle to provide accurate and predictive results across all varieties of excited
states. This thesis presents a series of contributions to the development of variational Monte
Carlo (VMC) as a broadly reliable tool for excited states, with a particular emphasis on
wave function optimization algorithms.

We first present an analysis of current first and second order optimization techniques in
VMC, demonstrating that each class of algorithm has strengths and weaknesses in terms of
convergence and computational efficiency. The complementary nature of these traits mo-
tivates the design of a hybrid optimization algorithm, which can overcome the individual
disadvantages of its constituent methods. After first developing this approach for ground
state energy minimization, we extend it to the minimization of a variance-based objective
function for the state-specific targeting of excited states. We demonstrate that employing
VMC with the hybrid optimization algorithm can obtain highly accurate excitation energies
across multiple classes of excited states, including single valence excitations, double exci-
tations, and charge transfer. This level of reliability currently eludes all other electronic
structure methods that can be applied beyond small molecules and enables VMC to serve as
a widely applicable benchmark method for assessing which computationally cheaper meth-
ods are most trustworthy in various chemical contexts. We also continue our methodological
work by presenting a systematic study of the issue of optimization stability in VMC and
identify best practices for successful variance minimization that may aid the work of other
researchers.
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4.13 Structure of benzene. Coordinates in Å. . . . . . . . . . . . . . . . . . . . . . . 108
4.14 Structure of ammonia-fluorine. Coordinates in Å. . . . . . . . . . . . . . . . . . 108
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Chapter 1

Introduction

1.1 The Schrodinger Equation and the

Born-Oppenheimer Approximation

Quantum mechanics provides a fundamental description of matter neatly encapsulated in
the Schrodinger equation.

iℏ
∂ |Ψ(t)⟩
∂t

= H |Ψ(t)⟩ (1.1)

At the most general level, the Schrodinger equation relates the action of an operator called
the Hamiltonian H upon a state |Ψ⟩ to the evolution of that state |Ψ⟩ in time. However,
in the description of the atoms and molecules within all everyday matter, the Hamiltonian
takes a particular form.

H = −
∑
i

1

2
∇2

i −
∑
I

1

2MI

∇2
I −

∑
i

∑
I

ZI

|ri −RI |
+
∑
i>j

1

|ri − rj|
+
∑
I>J

ZIZJ

|RI −RJ |
(1.2)

The five terms of H describe the kinetic energies of the electrons and nuclei and the po-
tential energies resulting from the electron-nuclear, electron-electron and nuclear-nuclear
interactions. In equation 1.2 and throughout this thesis, we adopt atomic units where the
electron charge and mass as well as ℏ are set to 1. We index the electron and nuclear positions
with i and I respectively, and MI and ZI are the nuclear masses and atomic numbers.

For solving the Schrodinger equation in this case, multiple simplifications are made in this
thesis. First, we confine ourselves to finding solutions of the time-independent version of the
Schrodinger equation H |Ψ⟩ = E |Ψ⟩, seeking stationary states |Ψ⟩ with energy eigenvalues
E. Second, we employ the Born-Oppenheimer (BO) approximation,[1] which exploits the fact
that nuclei have masses thousands of times greater than the electron mass and therefore,
their positions can be regarded as essentially fixed compared to the motion of electrons.
Within the BO approximation, we neglect the nuclear kinetic energy term and leave off
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the now-constant nuclear-nuclear potential energy to arrive at the following form for the
Hamiltonian.

He = −
∑
i

1

2
∇2

i −
∑
i

∑
I

ZI

|ri −RI |
+
∑
i>j

1

|ri − rj|
(1.3)

The remaining three terms define the electronic Hamiltonian He and obtaining its eigen-
states is still a formidable task due to the electron-electron repulsion term. In general, exact
solutions cannot be obtained for non-trivial systems and the task of electronic structure
theory is the development of efficient computational techniques for achieving approximate
solutions.

1.2 Overview of Electronic Structure Theory

Methods

Since the origins of electronic structure theory, a sprawling landscape of different methods
has been created and this thesis will give only broad outlines of major approaches to contex-
tualize the later chapters. Electronic structure theory can be divided at a high level between
density functional based methods[2] and wave function based approaches.[1, 3] Density func-
tional theory (DFT) relies on the formulation of the energy as a functional of the electron
density and is the more widely used of the two paradigms due to its computational afford-
ability. However, all functionals used within DFT are only approximate and the difficulty of
improving the quality of the wide array of possible functionals[4, 5] serves as motivation for
developing more predictive methods, particularly for cases where DFT has lower accuracy.

We focus more heavily on wave function methods, which generally possess the capacity
for systematic improvability in their accuracy. The hierarchy of wave function techniques
begins with Hartree-Fock theory. Hartree-Fock restricts the wave function ansatz to a single
Slater determinant of one-electron orbitals and optimizes the orbital shapes to minimize the
energy. Within this approximation of Hartree-Fock theory, each electron experiences only an
averaged mean-field potential due to the other electrons, without dependence on their exact
positions. This limitation leads to the definition of the difference between the true electronic
energy and the Hartree-Fock energy as the correlation energy.

Electron correlation is frequently discussed in terms of strong and weak correlation.
Strong correlation occurs in physical situations where the Hartree-Fock determinant is quali-
tatively inaccurate and other sets of multiple Slater determinants provide the dominant part
of the wave function. Weak correlation can be viewed as smaller corrections to the qualitative
picture provided by the major electron configurations such as the Hartree-Fock determinant.
More sophisticated wave function methods aim to retrieve enough of the missing correlation
energy to achieve quantitative accuracy, but maintaining accurate descriptions of both types
of correlation remains a major challenge.
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One intuitive approach to improving upon Hartree-Fock is to simply include more Slater
determinants in what are known as Configuration Interaction (CI) methods. Additional
Slater determinants can be obtained by considering configurations of electrons with excita-
tions relative to the Hartree-Fock configuration.

|Ψ⟩ = |ΨHF ⟩ +
∑
i,a

Ca
i |Ψa

i ⟩ +
∑
i,j,a,b

Cab
ij |Ψab

ij ⟩ + ... (1.4)

In equation 1.4, we denote orbitals that are occupied in |ΨHF ⟩ with i and j and unoccu-
pied orbitals with a and b. The additional determinants |Ψa

i ⟩ and |Ψab
ij ⟩ are then respectively

singly and doubly excited determinants relative to the Hartree-Fock determinant. The sums
ensure all possible single and double excitations are included in the wave function, and in
principle higher excitations can also be added. In full configuration interaction (FCI),[6–
8] all possible levels of excitations in a given orbital set are included and the exact wave
function in that finite orbital basis can be achieved. Unfortunately, FCI is prohibitively
expensive beyond the smallest molecules and basis sets and more approximate forms of CI
theory have been developed. A simple method of approximation is to truncate the addition
of determinants at a particular level of excitation such as CI singles and doubles (CISD). An
alternative is to develop criteria for identifying and including the most important determi-
nants, which is the basis for a family of selected CI (sCI) methods.[9–13] An example of an
sCI method is the heatbath CI algorithm,[10] which uses the selection criterion:

f(Di) = max
j

(|Hijcj|) (1.5)

where cj is the coefficient of a determinant Dj already in the sCI wave function and Hij is
the Hamiltonian matrix element between the prospective determinant Di and Dj. Di will
be added to the sCI wave function only if the largest |Hijcj| after running over j is above
some chosen threshold. The various sCI algorithms differ in the design of their criterion and
other algorithmic details, but all fundamentally rely on this type of comparison for building
up their wave function. Using a threshold of zero would lead to constructing the FCI wave
function and while sCI algorithms are similarly exponentially scaling, their greater efficiency
enables them to obtain essentially FCI quality results in somewhat larger systems.
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Figure 1.1: Orbital spaces typically defined in CASSCF. The core, active, and virtual spaces
are boxed in red, green, and blue respectively.

A related idea is to perform FCI or a near-FCI quality level of sCI with a subset of
orbitals and electrons called an active space. This is the basis of the complete active space
self-consistent field (CASSCF) method. The low energy, doubly occupied core orbitals and
the high energy, unoccupied virtual orbitals, depicted alongside the active space in Figure
1.1, are left out of the FCI calculation. Due to the cost of FCI, the active space is chosen to
include only the most chemically important orbitals, which makes CASSCF non-black box
and its results potentially sensitive to different active space choices by users of varying levels
of chemical intuition and experience. When using FCI as the active space solver, the upper
limit of CASSCF calculations is roughly 20 electrons in 20 orbitals.[14] Spaces of this size
may be too small to hold all the important orbitals in some chemical systems. For example,
molecules with transition metals, such as porphyrins, require two sets of d orbitals for an
effective description,[15–18] which quickly grows the minimum size of a responsible active
space choice. A major use of sCI in these types of larger molecules is to act as a solver
for active spaces that are too expensive for a FCI solution.[12, 19] Another weakness of
CASSCF is that while it succeeds at capturing all the electronic correlation associated with
the active space, it lacks the ability to describe weak correlation effects involving orbitals
outside the space. One approach for addressing this is to perform perturbation theory using
the CASSCF wave function as a reference, which leads to the CASPT2 method.[20, 21]

Another prominent approach in electronic structure is coupled cluster (CC) theory.

|ΨCC⟩ = eT̂ |ΨHF ⟩ (1.6)

The CC wave function is constructed from the Hartree-Fock determinant by applying an
exponential of the cluster operator T̂
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T̂ = T̂1 + T̂2 + ... =
∑
ia

tai ĉ
†
aĉi +

∑
ijab

tabij ĉ
†
aĉ

†
bĉiĉj + ... (1.7)

The cluster operator can be broken up into terms that describe single, double, and higher
levels of excitations from the occupied Hartree-Fock orbitals to the virtual orbitals. Including
all levels of excitations will produce the full coupled cluster (FCC) wave function, which is
equivalent to FCI. In practice, the cluster operator is truncated at some order such as
T̂ = T̂1 + T̂2, which defines the CCSD method. While both CI and CC theory describe
correlation through the inclusion of excited determinants, CC methods enjoy the advantage
of being size consistent due to the wave function’s exponential form. Satisfying this appealing
property and CC’s effective treatment of weak correlation have made its more accurate
incarnations, particularly CCSD(T), popular benchmark methods for ground state quantum
chemistry.[22]

1.3 Electronic Excitations and Current Excited State

Methods

The theoretical machinery surveyed in the previous section was historically first developed
for studying the ground states of physical systems, which correspond mathematically to the
eigenstate of the electronic Hamiltonian with the lowest eigenvalue. However, the higher
eigenstates, or electronically excited states, play a key role in a variety of biologically and
technologically important phenomena. Two major examples are water splitting in photo-
synthesis[23] and the development of new solar cell materials.[24] The importance of excited
states to these topics and these fields’ role in developing renewable energy motivate the
development of effective theoretical models to aid experimental work.

Molecular excited states appear in a variety of types including single valence excitations,
double excitations, charge transfer (CT), Rydberg excitations and core excitations. Ac-
curately describing all these classes of excited states is challenging task for any theoretical
approach. Many of the methods introduced for the ground state have also been reformulated
and applied to excited states. Excited state electronic structure methods are less fully devel-
oped compared to ground state theories, but an extensive array of approaches has already
been produced and we discuss the most commonly utilized ones in this section.

On the density functional side of electronic structure, time-dependent density functional
theory (TDDFT) builds upon ground state DFT and has been widely employed for excited
state and absorption spectra studies.[25] However, its most common forms are known to been
inaccurate for double excitations and charge transfer states,[26–29] and the large number of
functional choices produces the same challenges for predictive power as in the ground state.
TDDFT’s difficulties for double excitations can be traced to the fact it is usually formulated
as a linear response approach. The formalism of TDDFT requires computing the density-
density response function χ(r, r′, ω), which is dependent on the frequency for a general
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interacting system, but is taken to be frequency-independent in the widely used adiabatic
approximation. Within the adiabatic approximation, only single excitations appear in the
TDDFT spectrum, while double and higher excitations are completely absent.[26, 30, 31] For
CT excitations, the simplest forms of TDDFT will severely underestimate excitation energies
and fail to produce the asymptotic 1

R
behavior as the distance between charge donor and

acceptor molecules is increased. For larger donor-acceptor distances, the TDDFT excitation
energy reduces to the difference of the Kohn-Sham donor and acceptor orbital energies, which
do not include relaxation effects from the movement of charge.[28–30] While employing range-
separated hybrid functionals with optimal tuning of the range parameter[32] improves the
performance of TDDFT, CT excitations, particularly over intermediate distances, remain
challenging. Taken together, the difficulties faced by TDDFT motivate the exploration of
alternative methods that can both go beyond linear response and incorporate the effects of
orbital relaxation.

As for wave function methods, FCI can of course provide exact answers for excited states,
but the exponentially scaling cost again restricts its use to small molecules. In contrast, con-
figuration interaction singles (CIS) is one of the computationally cheapest wave function
techniques that can describe excited states, but it greatly overestimates CT excitation en-
ergies. While CIS correctly obtains the 1

R
behavior that eludes standard TDDFT, it shares

the same failure to account for orbital relaxations and predicts vertical excitation energies
that are too high by an eV or more.[33] Seeking to improve upon CIS leads to methods
with higher levels of correlation treatment, either other CI methods such as CIS(D),[34] or
equation of motion coupled cluster (EOM-CC).[35]

EOM-CC theory is a popular wave function approach due to its effective treatment of
weak correlation, which enables EOM-CCSD to provide a good combination of accuracy
and affordablity in many cases.[36] Higher levels of cluster truncation can obtain very high
accuracy on single valence excitations in small molecules.[37] As for more challenging classes
of excited states, EOM-CCSD’s inclusion of doubly excited configurations provides some
ability to relax orbitals in the presence of a single charge transfer excitation though higher
levels of EOM-CC may still further correct the excitation energy by several tenths of an
eV.[38, 39] However, the problem of missing orbital relaxation will then recur for EOM-
CCSD with double excitations and it may overestimate excitation energies by an eV or
worse.[40] Including partial or even full triples can improve EOM-CC’s accuracy for double
excitations, but errors of half an eV may still occur for pure double excitations.[41]

The main alternative of active space approaches such as CASPT2 can obtain accurate
excitation energies,[41, 42] most notably for the double excitations where coupled cluster
struggles, but the same challenges related to active space choice and the limitations of per-
turbation theory seen in the ground state still apply. A new complication for excited states
is the need to perform state-averaging where a common set of orbitals is used for multiple
states. The resulting orbital shapes may be inaccurate in cases where the ground and excited
state should have rather different relaxed orbitals such as in CT and core excitations.[43–45]
After surveying the diversity of excited states and the individual limitations of the main cur-
rent theoretical approaches, the need for more broadly reliable techniques becomes apparent.
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Developing a more consistently accurate method across the different types of excited states
would also aid in making comparisons between wave function methods to better understand
the effects of each one’s set of particular approximations.

One emerging approach for meeting this challenge is the development of state-specific
electronic structure methods. The overarching philosophy is to craft techniques that are
capable of providing a treatment of the correlation tailored to any particular state of in-
terest and obtaining the orbital relaxation effects whose absence has hindered many past
approaches. State-specific methods can still be organized in a hierarchical manner similar
to ground state theories, beginning with an excited state mean field (ESMF) theory.[46]

|ΨESMF ⟩ = eX̂
∑
ia

Ca
i |Ψa

i ⟩ (1.8)

The ESMF ansatz can be viewed as a CIS wave function that can acquire state-specific
orbital relaxations through the minimization of a Lagrangian. The initial, albeit inefficient,
implementation of ESMF used a Lagrangian of the form

L =
⟨Ψ | (ω −H)2 |Ψ⟩

⟨Ψ |Ψ⟩
+ µ⃗ · ∇pE (1.9)

where ω is an input energy for targeting a particular state, ∇pE is the parameter gradient of
the energy, and µ⃗ is a Lagrange multiplier. ESMF plays a role roughly analogous to Hartree-
Fock’s in the ground state and its effectiveness has more recently been enhanced through a
self-consistent field formulation[47] and a generalization of the Lagrangian to include terms
with the square of the energy gradient and other molecular properties.[48] More broadly,
ESMF can serve as a platform for building state-specific versions of theories with more
sophisticated treatments of correlation such as Møller-Plesset perturbation theory[49] and
potentially in future coupled cluster theory.

Another notable state-specific method is a recent formulation of CASSCF.[45] This ap-
proach employs a root tracking procedure based on a combination of the variational principle
(ω−E)2 and one-body reduced density matrices. The ability to optimize the CASSCF wave
function for a particular excited state, which has very recently been improved to fully couple
CI and orbital parameters,[50] sidesteps the limitations of state-averaging and provides an
improved state-specific starting point for post-CASSCF methods that capture missing weak
correlation. Part of this thesis investigates how to combine state-specific CASSCF with a
more extensive correlation treatment to obtain a methodology that can fulfill our larger goal
of consistently reliable descriptions of excited states.

1.4 Variational Monte Carlo

Quantum Monte Carlo (QMC) methods are a class of algorithms that can potentially ful-
fill this role. Many reasons for optimism can be found by surveying QMC’s accomplish-
ments in both ground and excited states. Historically, QMC approaches have earned a
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reputation for obtaining highly accurate energies, beginning with early work on the electron
gas[51] and continuing through numerous ground state applications to both molecules[52] and
solids.[53] While the study of excited states remains less fully developed, several different
QMC techniques have been applied in this setting, including Full Configuration Interaction
QMC (FCIQMC),[54–56] Diffusion Monte Carlo (DMC),[57–63] and Auxiliary Field QMC
(AFQMC).[64, 65] These approaches have obtained accurate excitation energies in many
cases, but may face challenges due to high computational cost even by the standards of
QMC or from situations where the excited state is not a symmetry ground state. Another
difficulty for these projector QMC approaches is need to introduce approximations, such
as the fixed node approximation in DMC,[53] to avoid the fermion sign problem where the
projection obtains a lower energy bosonic solution. While the effects of these approximations
can be reduced, for instance by obtaining more accurate trial wave functions for fixing the
nodes in DMC, the remaining error can be difficult to characterize.

The work discussed in this thesis focuses instead on variational Monte Carlo (VMC),
both in terms of its application to molecular excited states and necessary methodological
improvements to enhance its success. VMC is based on a combination of the variational
principle of quantum mechanics with Monte Carlo integration.[66] Working in position space,
the energy for some wave function ansatz Ψ can be expressed as

E(Ψ) =
⟨Ψ |H |Ψ⟩
⟨Ψ |Ψ⟩

=

∫
dRΨ(R)HΨ(R)∫

dRΨ(R)2
=

∫
dRΨ(R)2EL(R)∫

dRΨ(R)2
=

∫
dRρ(R)EL(R) (1.10)

The energy can then be estimated as a Monte Carlo average of the local energy values

EL(R) = HΨ(R)
Ψ(R)

determined from samples drawn from the distribution ρ(R) = Ψ(R)2∫
dRΨ(R)2

.

The variational principle guarantees that for any approximate wave function, E(Ψ) will be
larger than the true ground state energy. In general, the functional form of Ψ will contain
adjustable parameters such as the coefficients on Slater determinants that can be optimized
to achieve a more accurate wave function and a lower energy.

The samples for Monte Carlo average can be obtained through the Metropolis algorithm,
which generates a series of positions Ri where samples are taken. The steps of the algorithm
are listed below:

1. Begin with a walker at a random position R.

2. Generate a proposed position R′ from a proposal distribution T (R → R′).

3. Accept the proposed move with probability A(R → R′) = min(1, T (R′→R)ρ(R′)
T (R→R′)ρ(R)

)

4. Repeat from step 2 until all samples have been taken.

While we have described the Monte Carlo estimation of the energy and the Metropolis
algorithm using the square of the wave function for the distribution ρ(R), there are other
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options. Generically, other probability distributions can be introduced by rewriting integrals
as

I =

∫
f(R)ρ(R) =

∫ (
f(R)ρ(R)

ρ̃(R)

)
ρ̃(R) (1.11)

Samples can be drawn from the distribution ρ̃(R) and use to evaluate the quantity of
interest f and the ratio ρ

ρ̃
. This may be advantageous for estimation of quantities such as the

energy variance, which itself has a diverging variance when ρ(R) is used.[67, 68] A variety
of modified guiding or importance sampling functions[69–71] that define a new distribution

˜ρ(R)can be employed for more effective estimation, as will be seen later in this thesis.
Another nuance to stochastic estimation is the possibility of correlated sampling, which

enables unbiased estimation of observables for a wave function Ψ′ while using weighted
samples from the distribution defined by a related reference wave function Ψ.[72] Corre-
lated sampling can achieve smaller statistical errors on energy differences and other relative
quantities than using independent sets of samples. This approach has been used for the
calculation of forces and potential energy surfaces where Ψ and Ψ′ are at different molecu-
lar geometries.[72, 73] For a fixed molecular geometry, correlated sampling may be used to
compare values of the energy or other quantities for slightly different sets of wave function
parameters.

VMC enjoys considerable flexibility in the forms of ansatzes that may be used,[53, 74–84]
but in this thesis we shall mostly focus on the Multi-Slater Jastrow wave functions.

Ψ = ψJ

ND∑
i=0

ciDi (1.12)

The sum of Slater determinants provide the essential antisymmetry of the electronic wave
function and can be obtained from truncated CI calculations or active space methods such
as CASSCF. The Jastrow factor ψJ is an explicit function of electron positions and can
capture correlation that would otherwise require the inclusion of a much larger number of
Slater determinants. Jastrow factors are also able to enforce the correct cusp conditions in
the wave function as electron-nuclei and electron-electron separations go to zero.[53] This
particular wave function characteristic is challenging for CI and CC methods to achieve
without the expense of using large basis sets and higher orders of truncation. Part of the
motivation for the development of explicitly correlated R12/F12 methods[85] has been to
better describe wave function cusps and obtain benefits analogous to the Jastrow’s for CI
and CC theory.

The ideas of VMC have been extended to excited states in both state-averaged[86–92]
and state-specific[93–95] formulations, the latter of which will be a major focus of this thesis.
A particular electronic state can be targeted through the use of the following functional.

Ω(Ψ) =
⟨Ψ | (ω −H) |Ψ⟩
⟨Ψ | (ω −H)2 |Ψ⟩

(1.13)



CHAPTER 1. INTRODUCTION 10

For a chosen energy ω, minimization of Ω will target the state directly above ω allowing
a wave function specifically tailored for that state to be obtained. The state-specificity
enabled by this excited state variational principle allows VMC to avoid the pitfalls of state-
averaging that can hamper CASSCF and CASPT2. In addition, multiconfigurational wave
functions can be naturally employed in VMC, allowing for successful descriptions of doubly
excited states. These wave functions can be systematically improved through the addition of
more determinants and potentially higher body Jastrow factors[74, 77, 93, 96–103] or orbital
optimization, which provides control over the quality of description for any state of interest.
This control is essential for obtaining a balanced treatment of ground and excited state in
order to achieve accurate excitation energies after cancellation of errors. These qualities of
excited state-specific VMC position it to serve as a consistently reliable approach for studying
different types of excited states and we explore this potential in this thesis.

At first glance, the VMC evaluation of the energy may seem relatively affordable with
a formal scaling of O(N4) with system size. This scaling is quite favorable compared to
methods such as coupled cluster where EOM-CCSD’s cost goes as O(N6) and higher orders
are even more expensive. VMC’s scaling relies on efficient updates to the wave function as
electrons are moved in the Metropolis algorithm. The Sherman-Morrison formula enables
these updates in the case of a single Slater determinant[53, 104] and work with the table
method[105, 106] has extended this efficiency to multi-determinant ansatzes. Unfortunately,
the formal scaling neglects a substantial prefactor that leaves VMC in reality far slower than
traditional quantum chemistry methods for small molecules. The natural parallelism of VMC
with the division of sampling among compute nodes enables it to exploit the growth of highly
parallel supercomputing resources, but its cost remains a challenge and motivates focusing
VMC’s applications on the cases that are most difficult for cheaper quantum chemistry
techniques.

More broadly, method development in VMC remains an active endeavor that is crucial
for realizing the full potential of this approach. Areas of work include improvements in wave
function quality,[74–84, 107, 108] new sampling[67–71, 109] and regularization schemes[110,
111] to improve stochastic estimation of derivatives and other quantities, and designing new
parameter optimization algorithms.[84, 112–119] This last topic of optimization is a common
thread throughout all the work presented in this thesis.

1.5 Stochastic Optimization Algorithms

One particularly enduring challenge in VMC is performing the optimization of wave function
parameters. The VMC literature contains a long trail of papers tracing the development of
optimization methods, primarily for the ground state.[84, 112–123] The stochastic nature of
VMC increases the difficulty of optimization compared to the analogous problem in deter-
ministic quantum chemistry methods. As a result, VMC optimization algorithms are still
the focus of highly active method development research, including the contributions in this
thesis.
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Optimization methods within VMC can be broadly divided between first-order and
second-order approaches based on the level of derivative information they compute. Steepest
descent and the Newton-Raphson method exemplify these two categories with the former us-
ing only a product of the current parameter gradient and a step size while the latter requires
constructing and inverting the full Hessian. Equations 1.14 and 1.15 below define steepest
descent and Newton-Raphson respectively for energy minimization.

pk+1
i = pki − ηi

∂E

∂pi
(1.14)

pk+1
i = pki − τih

−1g (1.15)

Above, h is the full Hessian of partial derivatives ∂2E
∂pi∂pj

and g is the full parameter gradient.

For the expense of their computation, Newton-Raphson is able to account for coupling
between variational parameters, which is absent from steepest descent. One commonality
between steepest descent and Newton-Raphson is the need for some step control in parameter
updates, through ηi and τi respectively. The appropriate step size will vary with both the
choice of algorithm and the type of parameter, but implementing some scheme for step
control is generally essential for performing stable optimizations.

In between the extremes of steepest descent and Newton-Raphson are multiple algo-
rithms that seek to either more effectively use first-order derivatives or more efficiently obtain
second-order information to strike the right balance of optimization quality and computa-
tional affordability. Two prominent classes of methods within this spectrum are acceler-
ated gradient descent techniques and the linear method. Accelerated descent encompasses
a family of related algorithms[124] that have risen to prominence in the machine learning
community and are based on retaining some memory of the objective function gradient on
previous iterations in order to achieve faster convergence than steepest descent. The inclu-
sion of gradients from earlier optimization iterations can be viewed as a way of accessing
second-order curvature information at first-order cost. The linear method[113] is a more
established optimization technique within VMC and has been regarded as the state-of-the-
art in performance for at least a decade. It relies on a linear Taylor expansion of the wave
function with respect to parameter changes and solving the generalized eigenvalue problem
that results from minimizing the energy of the linear expansion. The matrices constructed
by the linear method will be discussed in detail later, but can be viewed at a high level as
containing some but not all of the second derivative information used in Newton-Raphson.

There are multiple considerations when selecting an optimization algorithm for use in
VMC. The first is the ability to efficiently move toward the minimum of the objective func-
tion in parameter space within the available computational resources. While some algorithms
such as gradient descent may have formal guarantees on convergence in the limit of infinite
iterations, the minimum is generally not reached in practice for nontrivial ansatzes. An algo-
rithm’s ability to reach the minimum is also influenced by its degree of nonlinear bias due to
stochastic estimation of derivatives or matrix elements. Methods with more nonlinear combi-
nations of these stochastic estimates such as the linear method can be expected to converge



CHAPTER 1. INTRODUCTION 12

to a parameter space point offset from the true minimum.[125] We note that despite the
misleading name, the linear method has significant nonlinearities, which can be recognized
by observing that the high order characteristic polynomial corresponding to its eigenvalue
problem grows only more nonlinear with more variational parameters. Stochastic estimation
also has significant consequences for the stability of optimization algorithms. As the number
of ansatz parameters increases, a fixed level of sampling effort will become insufficient to
properly estimate wave function derivatives and poor parameter updates may occur, poten-
tially leading to a complete failure of optimization. This issue can be addressed through
careful algorithm design to prevent or at least reduce the incidence of poor optimization
steps.

1.6 Outline

This dissertation makes several novel contributions to the use of VMC in electronic struc-
ture theory. We develop a new wave function optimization algorithm that overcomes the
limitations of past first and second order approaches in VMC. We demonstrate that this new
optimization method achieves superior minimization, stability, and computational efficiency
compared to alternative algorithms. This optimizer is applied to both ground and excited
states in a range of molecules and enables VMC to provide highly accurate excitation energy
predictions across different types of excited states. The outline below details the work that
will be presented in each chapter.

Chapter 2

Publication: Leon Otis and Eric Neuscamman. ”Complementary First and Second Deriva-
tive Methods for Ansatz Optimization in Variational Monte Carlo.” Phys. Chem. Chem.
Phys. 21 14491–14510 (2019).

Wave function optimization algorithms for ground-state VMC are surveyed. The perfor-
mance of different flavors of accelerated descent is compared against the linear method for
energy minimization in small molecule test cases. We introduce a new hybrid combination
of accelerated descent and the blocked variant of the linear method. The hybrid method’s
superior statistical efficiency and ability to scale to larger numbers of parameters compared
to the linear method are demonstrated.

Chapter 3

Publication: Leon Otis, Isaac M. Craig, and Eric Neuscamman. ”A hybrid approach to
excited-state-specific variational Monte Carlo and doubly excited states.” J. Chem. Phys.
153 234105 (2020).

The hybrid method is extended from energy-minimization to the minimization of an
objective function for targeting excited states. We then apply this extension to the study
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of doubly excited states and achieve good accuracy compared to benchmark results in small
molecules. An application to a larger molecule, 4-aminobenzonitrile, which is too large for
benchmark treatment by selected CI, and a separate discussion of optimization stability are
included.

Chapter 4

Adapted from arXiv preprint: Leon Otis and Eric Neuscamman. ”Combining State-Specific
Quantum Chemistry and Quantum Monte Carlo for Molecular Excited States” arXiv:2111.07221

We conduct a wider benchmark survey of molecular excited states using VMC, demon-
strating that VMC obtains consistently accurate excitation energies regardless of whether
the excited state is single valence, doubly excited, or charge-transfer. On the methodological
side, we use state-specific orbitals from a recent CASSCF approach and demonstrate we can
avoid the expense of VMC orbital optimization while achieving high accuracy. The hybrid
method is further refined with a scheme to reduce the number of parameters treated by the
blocked linear method sections of the algorithm.

Chapter 5

We perform a systematic analysis of the optimization stability for variance-based minimiza-
tion. With the test case of a cyanine dye molecule, we demonstrate that adaptive step
control is crucial for stabilizing the linear method in challenging minimizations such as those
requiring orbital optimization. We verify that the hybrid method remains stable in cases
where the linear method fails and show that state-specific VMC obtains an excitation energy
in the cyanine dye consistent with benchmark quantum chemistry and state-averaged VMC.

Chapter 6

We provide a summary of the work presented in earlier chapters, highlighting the method-
ological advances and application achievements of excited state-specific VMC. We close with
some comments on future directions for excited-state VMC and the underlying optimization
algorithms.
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Chapter 2

Complementary First and Second
Derivative Methods for Ansatz
Optimization in Variational Monte
Carlo

2.1 Abstract

We present a comparison between a number of recently introduced low-memory wave func-
tion optimization methods for variational Monte Carlo in which we find that first and second
derivative methods possess strongly complementary relative advantages. While we find that
low-memory variants of the linear method are vastly more efficient at bringing wave functions
with disparate types of nonlinear parameters to the vicinity of the energy minimum, accel-
erated descent approaches are then able to locate the precise minimum with less bias and
lower statistical uncertainty. By constructing a simple hybrid approach that combines these
methodologies, we show that all of these advantages can be had at once when simultane-
ously optimizing large determinant expansions, molecular orbital shapes, traditional Jastrow
correlation factors, and more nonlinear many-electron Jastrow factors.

2.2 Introduction

The practical utility of widely used methods in electronic structure theory is in large part
determined by the optimization algorithms they rely on. This basic theme has been repeated
throughout the history of quantum chemistry, with methods as fundamental as Hartree-
Fock theory becoming dramatically more useful with the development of superior solution
methods such as the direct inversion of the iterative subspace. [126] Similar transformations
have been seen in configuration interaction (CI) theory thanks to Davidson’s method, [127]
in the density matrix renormalization group (DMRG) approach thanks to (among other
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innovations) the noise algorithm, [128] and in many other methods besides. As in the case
of DMRG, it is usually not so simple as a single innovation in the numerical methods that
transforms a theory from a promising proof of concept into a robust computational tool.
Instead, such tools often arise as the result of a series of innovations, that, once combined,
fit together in a way that makes them more than the sum of their parts.

In the context of quantum Monte Carlo (QMC), and more specifically in its variational
(VMC) formulation, the introductions of stochastic reconfiguration [123] (SR) and the linear
method [113] (LM) for trial function optimization marked large steps forward along the path
to practical utility and reliability. However, recent research has revealed multiple options
for bypassing these methods’ memory bottlenecks, making clear that there is still a great
deal of distance to cover in the maturation of VMC numerical methods. Some of these
approaches [76, 79, 129] depend, like the original SR and LM formulations, on knowing at
least some information about second derivatives, but by avoiding the construction of full
Hessian-sized matrices they achieve dramatically lower memory footprints. Other even more
recent approaches, most of which can be classified as accelerated descent (AD) methods, [116–
118] avoid second derivative information entirely and are thus even more memory efficient,
relying instead on a limited knowledge of the optimization’s history of energy first derivatives
or in one case just the signs of these derivatives. [84] In the present study, we explore the
relative advantages of the (first derivative) AD and (second derivative) LM approaches and
find that, when combined, they offer a highly complementary optimization strategy that
appears to be both more robust and more efficient than either approach on its own.

The ability to optimize larger and more complicated wave function forms is becoming
increasingly relevant due to rapid progress in other areas of VMC methodology. The in-
troduction of the table method [105, 106] has increased the size of CI expansions that can
be handled by more than an order of magnitude, and expansion lengths beyond 10,000
determinants are no longer unusual. A recent improvement to the table method [75, 76]
now allows the molecular orbital basis to be optimized efficiently in the presence of these
large expansions, while the resurgence of interest in selected CI methods [9–11, 130–132] has
provided a convenient route to their construction. In addition to these CI-based advances,
other wave function innovations have also led to growing demands on VMC optimization
methods. Increasingly sophisticated correlation factors, such as those used in Hilbert space
approaches [79, 80, 116–118, 133, 134] as well as a steady stream of developments in real
space [96, 97, 99, 107, 108, 123] have also raised the demand for optimization approaches
that can deal with large numbers of highly nonlinear parameters. Although less thoroughly
explored, the treatment of correlation effects via back flow transformations also continues
to receive attention and create new optimization challenges. [83, 84] Finally, in addition to
these increases in ansatz sophistication, renewed interest in using excited state variational
principles [93, 135] to expand QMC’s excited state capabilities has led to its own collection
of optimization difficulties. [63, 69, 70, 94, 95, 136, 137]

By supporting these various advances in QMC methodology, improved VMC optimiza-
tion methods have the potential for large impacts in diverse areas of chemistry and solid
state physics. Work on lattice models, for example, continues to push the boundaries on
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how approximate wave functions are defined. [138, 139] In the area of molecular excited
states, QMC methods offer promising new routes to high-accuracy treatments of both dou-
ble excitations [94, 140] and charge transfer excitations, [70, 137] both of which continue to
challenge conventional quantum chemistry methods. In QMC’s traditional area of simulating
real solids, applications of both VMC and projector Monte Carlo would benefit immediately
from the ability to prepare more sophisticated trial wave functions. [53, 141, 142] Diffu-
sion Monte Carlo (DMC) in particular would achieve higher accuracy using the better nodal
surfaces determined by well-optimized ansatzes from VMC. Solid state simulations have pro-
vided demonstrations of QMC’s ability to treat up to 1000 electrons[143, 144] and improved
optimization of more variational parameters will support the continued study of larger sys-
tems. More generally, the ability of QMC to combine treatments of weak and strong electron
correlation effects within a robust variational framework that operates near the basis set limit
makes it a powerful general-purpose approach for difficult molecular and materials problems
where high accuracy is necessary. By increasing the size and complexity of systems that fall
into its purview, improvements in QMC wave function optimization methods therefore have
the potential to move electronic structure simulation forward on a number of fronts.

The present study seeks to aid in this endeavor by focusing on the relative advantages of
recently developed low-memory first and second derivative methods in VMC and in particu-
lar on how they can be used to complement each other. Unlike deterministic optimizations,
in which second derivative methods are typically preferred so long as they are affordable,
the situation is less straightforward when the objective function and its derivatives are sta-
tistically uncertain. One major concern is that, in practice, it can be more difficult to
achieve low-uncertainty estimates of the second derivative terms that appear in the LM and
its descendants. While this issue can be mitigated by the use of alternative approaches
to importance sampling, these can increase uncertainty in the energy due to the loss of the
zero-variance principle. Thus, as we will demonstrate, statistical precision tends to be higher
when using AD methods, which is an advantage on top of their ability to converge to the
minimum without the bias that arises from the LM’s highly nonlinear matrix diagonaliza-
tion. However, we will also see that in order to enjoy the advantages of a tighter and less
biased final convergence, AD methods must first reach the vicinity of the minimum. For this
task, we find that the LM and its low-memory variants outperform all of the first derivative
methods that we tested, especially for optimizations in which the wave function contains
different classes of parameters that vary greatly in their nonlinear character and how they
couple to each other. Happily, we will see that a hybrid approach — in which AD and
low-memory LM optimization steps are interwoven — excels both at reaching the vicinity
of the minimum and producing unbiased final energies while simultaneously maintaining a
high degree of statistical efficiency.
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2.3 Theory

Variational Monte Carlo

VMC combines the variational principle of quantum mechanics with Monte Carlo evaluation
of high dimensional integrals.[66] To study the ground state of a system, we pick a trial wave
function Ψ of some particular form and seek to minimize its energy expectation value.

E(Ψ) =
⟨Ψ |H |Ψ⟩
⟨Ψ |Ψ⟩

(2.1)

In the language of mathematical optimization, E(Ψ) is an example of an objective func-
tion or cost function. For a typical system with N electrons, this expression contains integrals
over 3N position space coordinates which for some wave functions can only be evaluated ef-
ficiently through Monte Carlo sampling rather than quadrature methods. We rewrite the
energy as

E =

∫
dRΨ(R)HΨ(R)∫

dRΨ(R)2
=

∫
dRΨ(R)2EL(R)∫

dRΨ(R)2
=

∫
dRρ(R)EL(R) (2.2)

where EL(R) = HΨ(R)
Ψ(R)

is the local energy and ρ(R) = Ψ(R)2∫
dRΨ(R)2

is the probability density.

The zero-variance principle[145] makes ρ(R) the most common choice of probability dis-
tribution for obtaining samples, but it is not the only option. For effective estimation of
quantities beside the energy, such as the LM matrix elements, other importance sampling
functions are often preferred. [67–69]

In our LM and blocked LM calculations in this study, we employ the importance sampling
function (and the appropriately modified statistical estimate formulas [70])

|Φ|2 ≡ |Ψ|2 +
ϵ

M

∑
I

|DI |2 (2.3)

in which the DI are the M different Sz-conserving single excitations relative to the closed
shell reference determinant. The logic behind this choice is that it puts some weight on
configurations that are highly relevant for the orbital rotation parameters’ wave function
derivatives, as small orbital rotations can be approximated via the addition of singles. We
find that this importance sampling function substantially reduces the uncertainty of the LM
matrix elements corresponding to orbital rotations, which in turn helps reduce the update
step uncertainty. For AD, we simply use traditional |Ψ|2 importance sampling as in equation
2.2.

By the variational principle, we are guaranteed that E is an upper bound on the true
ground state energy. Given some set of adjustable parameters in the functional form of Ψ,
we expect that values of those parameters that yield a lower value of E to correspond to a
wave function that is closer to the ground state. One could then imagine the abstract space
produced by the possible values of all variational parameters. The set of optimal parameter
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values that specify the wave function expression which minimizes E can be taken as a point
in this space labeled by the vector p∗. In general, the initial choice for parameters will not
be at this energy minimum point, but at some other point p0. The problem of determining
the best wave function in VMC calculations then relies on an optimization algorithm for
finding p∗ after starting from p0.

Within this framework, one of the most important considerations is that the optimization
is inherently stochastic due to the introduction of noise through the Monte Carlo evaluation
of the integral in equation 2.2. This forms a contrast with many other methods in electronic
structure theory including Hartree-Fock, CI, and coupled cluster where various deterministic
optimization schemes predominate.[1] Many of the algorithms commonly encountered in a
deterministic quantum chemistry context such as steepest descent and the Newton-Raphson
method, have been adapted for use in VMC.[121, 122, 146–148] However, there is now a
need to be robust to the presence of noise. Historically, errors due to finite sampling led
to numerical instabilities that prompted interest in minimizing variance[93, 149] instead of
energy, but later optimization developments have sought to mitigate this issue and in this
paper we only consider energy minimization. As we will now discuss in their respective
sections, both the LM and gradient descent approaches possess features that enable them to
operate stably in a stochastic setting.

The Linear Method

The LM[112, 113] begins with a first order Taylor expansion of the wave function. For a set
of variational parameters given by vector p, we have

Ψ(p) = Ψ0 +
∑
i

∆piΨi (2.4)

where Ψi = ∂Ψ(p)
∂pi

and Ψ0 is the wave function at the current parameter values. Note that

Ψ(p) = Ψ(R,p) depends on both the parameters p and electron positions R, but we have
suppressed the latter for convenience.

Finding the optimal changes to the parameters amounts to solving the generalized eigen-
value problem

Hc = E Sc (2.5)

in the basis of the initial wave function Ψ0 and its first order parameter derivatives {Ψ1,Ψ2, ...}.
H and S are the Hamiltonian and overlap matrices in this basis with elements

Hij = ⟨Ψi |H |Ψj⟩ (2.6)

Sij = ⟨Ψi |Ψj⟩ (2.7)

The matrix diagonalization to solve this eigenproblem for eigenvector c = (1,∆p) then yields
the updated parameter values p1 = p0+∆p. As the matrices H and S both contain a subset
of the second derivative terms that would be present in a Newton-Raphson approach, [114]
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the LM is most naturally categorized as a second-derivative method, and it certainly shares
Newton-Raphson’s difficulties with regards to dealing with matrices whose dimension grows
as the number of variables.

For practical use with finite sampling, the LM must be stabilized to prevent unwisely
large steps in parameter space. This is accomplished by adding shift values[113] to the matrix
diagonal that effectively act as a trust radius scheme similar to those used with Newton-
Raphson. In our implementation, the Hamiltonian is modified with two shift values meant
to address distinct potential problems in the optimization.[150]

H −→ H + cIA + cSB (2.8)

The matrix elements of A are given by Aij = δij(1 − δi0) so that the shift cI effectively
gives an energy penalty to directions of change from the current wave function.[113] The
second shift is intended to address problems that may arise if some wave function derivatives
have norms that differ by orders of magnitude. In this situation, the single shift value cI
is insufficient to preserve a quick yet stable optimization. For a parameter with a large
derivative norm, a sufficiently high value of cI might prevent an excessively large change in
its value. However, all other parameter directions with smaller derivative norms will be so
heavily penalized by the large value of cI that those parameters become effectively fixed.
The purpose of the second cSB term is to retain important flexibility in other parameter
directions. We can write the matrix B as

B = (QT)−1TQ−1 (2.9)

where
Qij = δij − δi0(1 − δj0)S0j (2.10)

and
Tij = (1 − δi0δj0)[Q

TSQ]ij (2.11)

The matrix Q provides a transformation to a basis where all update directions are orthogonal
to the current wave function and the matrix T is the overlap matrix in this basis. The optimal
choice of shift parameters cI and cS may depend on the particular optimization problem. In
our implementation, an adaptive scheme adjusts the shifts on each iteration by comparing
the energies calculated through correlated sampling on three different sets of shift values and
choosing whichever shifts produced the lowest energy.

The LM has been successfully applied to a variety of systems to prepare good trial wave
functions for DMC. [107, 108, 113–115, 151, 152] It has also been used in the variational
optimization of a recent functional for targeting excited states.[70, 94, 95] However, it pos-
sesses a number of limitations, most notably a memory cost that scales with the square of
the number of optimizable parameters due to the matrices it builds. Once these matrices
are too large for storage in cache, the fact that each sample contributes to every matrix
element dramatically slows the process of matrix construction. At present, routine use of
the LM is limited to roughly 10,000 parameters, although exceptional calculations with up
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to about 16,000 have been made.[105] Another shortcoming is the nonlinear bias of the LM.
We are evaluating the elements of the Hamiltonian and overlap matrices stochastically and
have a nonlinear relationship between them and our energy through the generally high or-
der characteristic polynomial of the eigenvalue problem of equation 2.5. As a result, we in
general expect the LM to converge to a point in parameter space slightly offset from the
true minimum. This nonlinear bias has been studied for the LM in Hilbert space[125] and
a similar issue arises in the context of Full Configuration Interaction QMC.[153] Both the
memory constraint and the nonlinear bias of the LM become more severe for ansatzes with
larger numbers of variational parameters, which spurs the search for potential alternatives.
One approach suggested for memory reduction is to employ Krylov subspace methods for
Eq. 2.5 to avoid building matrices, but it requires a drastically higher sampling effort due
to the need for many matrix-vector multiplications and so we do not pursue the approach
here.[79]

Blocked Linear Method

One recent approach to bypassing the memory bottleneck is known as the blocked linear
method (BLM).[129] The first step of the algorithm is to divide the full set of parameters
into Nb blocks. Next, a LM-style matrix diagonalization is carried out within each block and
some number Nk of the resulting eigenvectors from the blocks are retained as good directions
for constructing an approximation for the overall best update direction in the full parameter
space. For a particular block of variables, the wave function expansion in the LM is given
by

|Ψb⟩ = |Ψ0⟩ +

Mb∑
i=1

ci |Ψi⟩ (2.12)

where |Ψi⟩ is the wave function derivative with respect to the ith variable in the block, Mb

is the number of variables in the block, and |Ψ0⟩ the current wave function as in the normal
LM. We can perform the same matrix diagonalization done in the LM, only with parameters
outside the block fixed. This yields a set of eigenvectors that we can use to construct another
approximate expansion of the original wave function. We can construct a matrix B using
the Nk eigenvectors with the lowest eigenvalues from each block and write a new expansion

|Ψ̃⟩ = α |Ψ0⟩ +

Nb∑
k=1

Nk∑
j=1

Akj

Mb∑
i=1

B
(b)
ji |Ψi,b⟩ (2.13)

Having now pre-identified important directions within each block, the idea is that a sub-
sequent LM-style diagonalization in the basis of these good directions (which yields the
coefficients Akj) should still provide a good update direction when re-expressed in the full
parameter space.

In order to help retain most of the accuracy of the traditional LM, the first stage of the
BLM computation includes No other good directions that are used to supply the current
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Figure 2.1: Flowchart depicting steps in the BLM algorithm to arrive at a parameter update.

block’s diagonalization with information about how its variables are likely to couple to those
in other blocks. In practice, important out-of-block directions are obtained by keeping a
history of previous iterations’ updates as the optimization progresses. We can rewrite the
one block expansion introduced in equation 2.12 as

|Ψb⟩ = |Ψ0⟩ +

Mb∑
i=1

ci |Ψi⟩ +
No∑
j=1

Nb∑
k=1,k ̸=b

djk |Θjk⟩ (2.14)

where we take the

|Θjk⟩ =

Mk∑
l=1

Cjkl |Ψl,k⟩ (2.15)

as the linear combinations of wave function derivatives from other blocks that were identified
as important based on previous iterations’ updates. The additional term in the expansion
allows us to account for couplings between variables in different blocks and enable the con-
struction of a better space for the second diagonalization. We assemble the matrix B and

|Ψ̃⟩ and then seek to minimize
⟨Ψ̃ |H | Ψ̃⟩
⟨Ψ̃ | Ψ̃⟩ with respect to variational parameters α and Akj

in our BLM wave function expansion in equation 2.13.
Figure 2.1 portrays the algorithmic steps described above. Some number of parame-

ters too large to be handled by the standard LM is divided among different blocks whose
diagonalizations produce the vectors b⃗i for the construction of the space of the final diago-
nalization that produces the parameter update. The BLM can be thought of as achieving



CHAPTER 2. COMPLEMENTARY FIRST AND SECOND DERIVATIVE METHODS
FOR ANSATZ OPTIMIZATION IN VARIATIONAL MONTE CARLO 22

memory savings in the use of smaller matrices at the cost of having to run over the sample
twice when the traditional LM must run over it just once. A more extensive description of
the BLM and its precise memory usage can be found in its original paper.[129]

We divide parameters evenly among blocks, but one could implement the use of tailored
blocks of varying sizes. It is advisable to choose the block size to be large enough to keep
important parameters of the same type, such as all of those for a Jastrow factor, within
the same block. This enables the expected strong coupling between them to be handled
more accurately by the LM-style diagonalization within that block. While the BLM has
been successfully applied up to about 25,000 parameters and found to closely reproduce the
results of the standard LM, [129] it remains a relatively new method, and the present study
will provide additional data on its efficacy.

Gradient Descent Methods

In the last few years, increasing attention[84, 116–118, 154] has been paid to optimization
methods that use only first derivatives to optimize trial wave functions in VMC. One formu-
lation for discussing these methods is to consider minimizing a Lagrangian of the form

L(Ψ(p)) = ⟨Ψ |H |Ψ⟩ − µ(⟨Ψ |Ψ⟩ − 1) (2.16)

where µ is a Lagrange multiplier and, in practice, a moving average of the local energy.
There is no need to solve an eigenvalue problem as in the LM and the memory cost of these
approaches scales linearly with the number of parameters. We also note that the stochastic
evaluation of derivatives of this Lagrangian will lead to a smaller nonlinear bias compared
to what is encountered in the LM. While there is some nonlinearity present in the product
µ ⟨Ψ |Ψ⟩, it is mild compared to the high order polynomials encountered in the solution of
the LM eigenvalue problem and can be avoided entirely if desired through modest amounts of
extra sampling. Minimization of this Lagrangian targets the ground state, but excited states
can similarly be targeted with these optimization algorithms merely by using derivatives of
one of the excited state functionals that have been developed.[93, 94, 135, 155]

The simplest method in this category is the steepest descent algorithm.

pk+1
i = pki − ηk

∂L(p)

∂pi
(2.17)

In this case, the value of each parameter on the k+ 1’th step is found simply by subtracting
the statistically uncertain parameter derivative times a step size ηk. The step size can be
taken as constant over all steps in the simplest case, but rigorous proofs on the convergence
of stochastic gradient descent (SGD) rely on decaying step sizes satisfying

∑
k ηk = ∞ and∑

k η
2
k <∞.[156]

It may be worth briefly commenting that the typical formulation of stochastic gradient
descent as seen in the machine learning and mathematical optimization literature is slightly
different from what we use here within VMC. In a common machine learning scenario,[156]
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one has a training set of input data {x1, x2, ..., xn} and corresponding outputs {y1, y2, ..., yn}
and wishes to minimize a loss function Q(x, y;w) that measures the error produced by a
model fw(x), which predicts ỹi given xi and is parameterized by variables w. For this
setting, the SGD algorithm refers to evaluating the gradient of Q with a randomly chosen
pair (xj, yj) from the given data set and then computing the parameter update according
to wk+1 = wk − ηk∇wQ(xj, yj). For our VMC optimization, we are dealing with a noisy
gradient similar to what occurs in this machine learning problem, but the source of our noise
is somewhat different and lies in our means of evaluating the underlying 3N dimensional
integrals within our Lagrangian derivatives. Another important distinction is that in machine
learning applications, complete convergence to the minimum is in fact undesirable because
it will overfit the model to the training data and degrade its performance on new sets of test
inputs. Much as SGD provides a computational speed up for machine learning problems, we
are also able to operate gradient descent methods at a cheap per-iteration cost because we
need only a modest number of samples to evaluate sufficiently precise Lagrangian derivatives
compared to the Hamiltonian and overlap matrices in the LM. However, unlike the machine
learning case, we do want to come as close as possible to the true minimum, and we will see
that even reaching the vicinity of the minimum can be difficult for descent methods when
typical VMC initial guesses are employed.

While steepest descent can be guaranteed to eventually reach the minimum of the La-
grangian even in a stochastic setting, its asymptotic convergence is very slow. For some
intuition, one could imagine the landscape of the Lagrangian’s values forming a very narrow
valley near the true minimum. In this situation, steepest descent would produce parame-
ter updates mostly back and forth along the sides of the valley with little improvement of
parameter values in the direction directly toward the minimum. Due to the limitations of
steepest descent, a number of other flavors of accelerated gradient descent (AD) have been
developed that include a momentum term with information on previous values of the gradi-
ent. As illustrated in Figure 2.2, the general intuition is that this additional term provides
some memory of the progression along narrow valleys that steepest descent lacks and thereby
achieves swifter convergence. In addition, there are multiple schemes for adaptively varying
the step sizes used in a manner that draws on the particular derivative values for each indi-
vidual parameter as the optimization progresses. These methods have recently been applied
successfully to Hilbert space QMC. In this study, we work in real space and investigate a
combination of Nesterov momentum with RMSprop as presented by the Booth group [116,
154], a method using random step sizes from the Clark group[84], AMSGrad, recently used
by the Sharma group[117, 118], as well as the ADAM optimizer[157].

We now lay out the precise expressions for each of these methods in turn. The RMSprop
algorithm used by Booth and co-workers is given by the following recurrence relations.[116]

pk+1
i = (1 − γk)qk+1

i − γkq
k
i (2.18)

qk+1
i = pki − τk

∂L(p)

∂pi
(2.19)
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Figure 2.2: Illustration of the difficulty faced by steepest descent in red on the lower left
with its slow approach to the minimum. Accelerated descent in green on the upper right is
able to progress more rapidly to the minimum with its memory of previous gradients.

λ0 = 0 λk =
1

2
+

1

2

√
1 + 4λ2k−1 γk =

1 − λk
λk+1

(2.20)

τk =
η√

E[( ∂L
∂pi

)2](k) + ϵ
(2.21)

E[(∂L)2](k) = ρE

[(
∂L
∂pi

)2
](k−1)

+ (1 − ρ)

(
∂L
∂pi

)2

(2.22)

Above, pki denotes the value of the ith parameter on the kth step of the optimization, τk is a
step size that is adaptively adjusted according to the RMSprop algorithm in equations 2.21
and 2.22. The running average of the square of parameter derivatives in the denominator of
τk allows for the step size to decrease when the derivative is large, which should hedge against
the possibility of taking excessively large steps. Conversely, a smaller denominator when the
derivative is small allows for larger steps to be taken. The weighting in the running average
is controlled by a factor ρ that can be thought of as the amount of memory retained of past
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gradients for adjusting τk, and η again denotes the chosen initial step size. In order to avoid
possible singularities when the gradient is very close to zero, a small positive number ϵ is
included in the denominator of τk. Equation 2.18 shows the momentum effect in which the
update for the parameter on the k+ 1 step depends on the update from the previous step as
well as the current gradient. We also follow the Booth group in applying a damping factor
to the momentum by replacing γk with γke

−( 1
d
)(k−1). The quantity d effectively controls how

quickly the momentum is turned off, which eventually turns the algorithm into SGD. The
values of d,η, ρ, and ϵ may all be chosen by the user of the algorithm and are known as
hyperparameters in the machine learning literature. In the results we present using this
method, we have used d = 100, ρ = .9 and ϵ = 10−8. We have found adjusting these
hyperparameters has relatively little influence on optimization performance compared to
choices for step size η, but their influence could be explored more systematically.

The Clark group’s algorithm takes a far simpler form

pk+1
i = pki − αη

∣∣∣ ∂L
∂pki

∣∣∣
∂L
∂pki

(2.23)

and has been recently used with neural network wave functions in the context of the Hubbard
model.[84] Here α is a random number in the interval (0, 1) and η sets the overall scale of
the random step size. The motivation for allowing the step size to be random is that it may
help the optimization escape local minima that it encounters. Within VMC, this algorithm
can be run with fewer samples per iteration even compared to other gradient descent based
algorithms as only the sign of the derivative needs to be known, but it typically requires
many more iterations to converge.

ADAM and AMSGrad are popular methods within the machine learning community[124,
157, 158] and have similar forms. ADAM is given by:

pk+1
i = pki − η

mk
i√
nk
i

(2.24)

mk
i = (1 − β1)m

k−1
i + β1

∂L
∂pki

(2.25)

nk
i = β2n

k−1
i + (1 − β2)

(
∂L
∂pki

)2

(2.26)

AMSGrad is a recent adaptive step size scheme developed in response to the limitations of
ADAM [158] and has almost the same form except for a slightly different denominator.

nk
i = max

(
nk−1
i , (1 − β2)n

k−1
i + β2

(
∂L
∂pki

)2
)

(2.27)

In our calculations, we have used β1 = 0.1 and β2 = 0.01 for both AMSGrad and ADAM
in line with the choice made by the Sharma group.[117, 118] It may be worth noting that a
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different convention appears in machine learning literature using 1− β1 and 1− β2 for what
we and the Sharma group call β1 and β2. [124, 158]

Compared to the LM, these first derivative descent methods have some significant ad-
vantages. Their low memory usage and reduced nonlinear bias make them a natural fit for
the large parameter sets that the LM struggles to handle. They are remarkably robust in
the presence of noise and do not need special safeguards against statistical instabilities such
as the LM’s shifts. At a basic practical level, the descent methods are also far simpler to
implement than the LM and especially its blocked variant. However, as we will see in our re-
sults, they often struggle to reach the vicinity of the minimum using a comparable sampling
effort.

A Hybrid Optimization Method

In an attempt to retain the benefits of both the LM and the AD techniques, we have devel-
oped a hybrid optimization scheme that can be applied to large numbers of parameters. Our
approach alternates between periods of optimization using AD and sections using the BLM.
Among other advantages, this allows us to use gradient descent to identify the No previous
important directions in parameter space that are used in the BLM via equation 2.14. The
precise mixture of both methods can be flexibly altered, but a concrete example would be
to first optimize for 100 iterations using RMSprop. By storing a vector of parameter value
differences every 20 iterations, we would produce 5 vectors that can be used for equation 2.14
in some number (say three) steps of the BLM. After the execution of these BLM steps, the
algorithm would return to another 100 iterations of descent and the process repeats until the
minimum is reached. Figure 2.3 shows a generic depiction of how the ground state energy
optimization may behave over the course of the hybrid method. There are extended sections
of computationally cheap optimization using gradient descent interwoven with substantial
energy improvement over a few BLM steps.

The use of AD and the BLM should naturally allow parameter sets beyond the traditional
LM limit of about 10,000 variables to be addressed, a limit we will surpass in the present
study in the diflurodiazene system. For now, Table 2.1 lays out how the memory cost of the
methods we are considering scales with number of parameters N . Both the hybrid method
and the BLM steps it contains have a memory scaling that is intermediate between that of
the standard LM and the descent methods. The cost is given only approximately because
while it is normally dominated by the cost of the Nb blocks in the BLM, there are additional
contributions related to how many directions are retained from the first BLM diagonalization
and how many old directions are used.[129]

One key motivation for including sections of AD, especially when the method is near
convergence, is to counteract the noise we observe in LM updates. While the LM tends to
converge in a relatively small number of steps, we find the individual energies still fluctuate
from iteration to iteration by multiple mEh, particularly when we are working with wave
functions that possess many highly nonlinear parameters. Figure 2.4 shows a cartoon of
this behavior near the minimum that prevents tight convergence. Unless the shifts are large
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Iteration

Energy

Figure 2.3: Schematic depiction of a typical energy optimization using the hybrid method.
The dashed box around a section of descent in green and BLM in red defines a macro-
iteration of the method.

Figure 2.4: Schematic representation of gradient descent corrections in green to red BLM
steps, which we have observed to reduce the uncertainty about the location of the final
minimum.
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Table 2.1: Rough memory cost scaling for the optimization methods we examine, with N
the number of optimized parameters and Nb the number of blocks.

Method Type Memory Cost

Standard Linear Method O(N2)

Blocked Linear Method ∼ O
(
N2

Nb

)
Hybrid Method ∼ O

(
N2

Nb

)
Descent Methods O(N)

enough to constrain it to very small steps, the LM will tend to bounce around near the
true minimum due to substantial (and biased) statistical uncertainties in its step direction.
The resulting energy fluctuations lead to ambiguity in what to report as the definitive LM
energy. One could take the absolute lowest energy reached on any iteration, but this is fairly
unsatisfactory as it feels too dependent on a ”lucky” step landing right on the minimum.
Our practice has been to take an average over multiple steps at the end of the optimization
when parameter values should be converged. However, this will generally include iterations
with upward energy deviations due to the step uncertainties. The use of AD offers a way
out of this dilemma because it can correct the errors in the LM steps by moving towards
the minimum more smoothly and with less bias. As we shall demonstrate in our results,
these considerations seem to give the hybrid method a statistical advantage over the LM by
achieving lower error bars for the same computational cost. They are also the basis of our
recommendation for finishing optimizations with a long section of pure AD, which we shall
show tends to improve the energy and greatly diminish the final statistical uncertainty.

Wave Functions

An assessment of optimization methods’ effectiveness requires consideration of the form of
the wave function that they are applied to. Multi-Slater determinant wave functions have
been a common choice of ansatz in QMC and are typically combined with Jastrow factors
that help recover some electron correlation and describe particle cusps.[53] We specify our
Multi-Slater Jastrow (MSJ) wave function with the following set of equations.

Ψ = ψMSψJψC (2.28)

ψMS =

ND∑
i=0

ciDi (2.29)
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ψJ = exp

{∑
i

∑
j

χk(|ri −Rj|) +
∑
k

∑
l>k

ukl(|rk − rl|)

}
(2.30)

ψC = exp

(∑
IJ

FIJNINJ +
∑
K

GKNK

)
(2.31)

In equation 29 above, ψMS consists of ND Slater determinants Di with coefficients ci. It
can be generated by some other quantum chemistry calculation such as complete active space
self-consistent field (CASSCF) or a selective CI method prior to the VMC optimization. In
the one- and two-body Jastrow factor ψJ , we have functions χk and ukl, which are constructed
from optimizable splines whose form is constrained so as to enforce any relevant electron-
electron and electron-nuclear cusp conditions. [150]

While MSJ wave functions with these types of traditional Jastrow factors (TJFs) have
been successfully used in many contexts, [53, 70, 76, 105, 113] more involved correlation
factors can be considered. Typically, this involves the construction of many-body Jastrows
factors, [74, 93, 98] which may involve various polynomials of interparticle distances [96–
98] or an expansion in an atomic orbital basis [74, 99–103, 159] or a set of local counting
functions. [107, 108] The latter case of many-body Jastrows, known as real space number-
counting Jastrow factors (NCJF), is employed here as an example many-body Jastrow factor.
In real space, Jastrow factors have historically been effective at encoding small changes to
the wave function associated with weak correlation effects, [53] but work in Hilbert space and
lattice model VMC reminds us that they can also be used to aid in the recovery of strong
correlations. [140, 160, 161] One way to view NCJFs is as an attempt to develop a real
space many-body Jastrow factor that can aid in recovering both strong and weak electron
correlations. [108]

The form of our NCJFs in equation 2.31 has the same structure as previously proposed
four-body Jastrow factors,[102] where NI denotes the population of a region and the FIJ and
GK are linear coefficients. The region populations are computed by summing the values of
counting functions at each electron coordinate.

NI =
∑
i

CI(ri) (2.32)

In this work, we use a recently introduced [108] form for the counting functions consisting
of normalized Gaussians.

CI =
gI(r)∑
j gj(r)

(2.33)

where
gj(r) = exp

(
(r− µ)TA(r− µ) +K

)
(2.34)

describes a Gaussian about a center µ. By placing these normalized Gaussians at various
centers, we can divide up space with a Voronoi tessellation. Schemes have been developed
to generate partitions that either consist of regions centered on atoms or of finer grained
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divisions of space that can capture correlation within an atomic shell. We make use of
both types of partitioning methods for different wave functions in our study. For simplicity,
we only consider optimization of the parameters FIJ in the F -matrix of our NCJFs (the
coefficients GK can be eliminated with a basis transformation of the region populations NI),
[108] but in principle the parameters defining the Gaussians gj could also be optimized. We
provide details of the Gaussians used in our ansatzes in Appendix D.

We also consider the problem of optimizing the molecular orbital shapes alongside the
other variational parameters. The ability to relax orbitals is important for successful study
of many systems, particularly those involving excited state phenomena.[70] We make use of
considerable theoretical and computational machinery based on the table method enhance-
ments developed by Filippi and coworkers [75, 76] that enables efficient evaluation of orbital
rotation derivatives in large MSJ wave functions. A rotation of molecular orbitals can be
described with a unitary transformation with matrix U parameterized as the exponential of
an antisymmetric matrix X = −XT

U = exp(X) (2.35)

Impressively, one can obtain all wave function derivatives with respect to the elements of
X for a large multi-Slater determinant ansatz for a cost that is only slightly higher than
that of the local energy evaluation. For the details of how this is accomplished, we refer the
reader to the original publications. [75, 76] From the standpoint of parameter optimization,
the main significance of the orbitals (and the NCJFs) lies in both their nonlinearity and
their strong coupling to other optimizable parameters. In practice, we find that turning on
the optimization of orbitals and NCJFs greatly enhances the difficulty of the optimization
problem compared to MSJ optimizations in which only the CI coefficients and one- and
two-body Jastrow parameters are varied.

2.4 Results

Multi-Slater Jastrow N2

For a small initial test system, we consider the nitrogen dimer N2 at the near-equilibrium and
stretched bond lengths of 1.1 and 1.8 Å. The nitrogen dimer is a known example of a strongly
correlated system and a common testing ground for quantum chemistry methods.[140, 161–
166] The initial wave function ansatz consists of a modest number of Slater determinants
(67 for the equilibrium geometry and 169 for the stretched, the result of a 0.01 cutoff limit
on determinant coefficients) with traditional one-body and two-body Jastrow factors. The
Jastrow splines provide 30 additional optimizable parameters via 10 point cubic b-splines
with cutoff distances of 10 bohr for the electron-nuclear and same-spin and opposite-spin
electron-electron components. The Slater determinant expansion is the result of a (10e,12o)
CASSCF calculation in GAMESS[167] using BFD pseudopotentials and the corresponding
VTZ basis set.[168] Due to the simplicity of the variable space in this case, we have employed
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the |Ψ|2 guiding function for all optimization methods, including the LM and BLM. See
Appendix B for further computational details.

The first and simplest study we can make is to optimize our ansatzes with our multiple
optimization techniques until convergence and compare final energies. In our results for
N2 and other systems, we focus on the absolute energies achieved by different optimization
algorithms. Studies intending to provide chemical insight would of course require differences
of computed energies and additional techniques may be needed to obtain balanced energies
for accurate differences.[69, 70, 169] Better optimization algorithms are able to support such
work by reducing other errors due to incomplete improvement of the wave function. Note
that all of our VMC optimizations with different methods in this study were performed using
our implementations within a development version of the QMCPACK software package.[150]
As N2 is a small enough system that the traditional LM can be easily employed, we take
the approach of first obtaining a traditional LM optimization result and then using it as
a reference against which to compare the performance of other methods. For the gradient
descent methods, multiple optimizations were attempted with the initial step sizes tweaked
from run to run based on a rough examination of how parameter values compared to the
LM’s results. We find that the chosen values for the step sizes and other hyperparameters
in the gradient descent algorithms often leads to apparent convergence at different energies.
It is therefore essential to make effective choices for these parameters, which in part seems
to rely on one’s experience with a given system.

Figures 2.5 and 2.6 show energy differences relative to the LM result when optimizing
the equilibrium and stretched nitrogen dimer wave functions respectively. Tables providing
the precise energies and statistical uncertainties as well as the step sizes used are shown
in the appendices. First, we see the choice of step sizes can have a substantial influence
on the quality of gradient descent results. In some cases, the same method can appear to
converge to energies more than 20 mEh apart when run with different initial step sizes.
While many of the gradient descent optimizations clearly did not reach the minimum, the
energy differences from the LM are only about 5 mEh or less when looking at the runs that
used what turned out to be the best choices for the hyperparameters. With further tweaking
of the hyperparameters, we would guess that at least some of these descent methods could
match the performance of the LM in this simple test case. Finally, we observe that the
hybrid method performs about as well as the best descent optimizations, typically reaching
energies that agree with the LM within error bars.

All parameter N2

We now add a NCJF and enable orbital optimization in order to extend the comparison
in a setting with a larger number and variety of nonlinear parameters. We will consider
the relative merits of the optimization methods in much greater detail in this setting as
it offers a clearer view of their differences. For the number-counting Jastrow factor, we
generated a set of 16 counting regions with 8 octants per atom after dividing space in half
with a plane bisecting the bond axis. The details are given in Appendix D, but we will
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Figure 2.5: Different methods’ optimized energies relative to that of the LM for equilibrium
N2 when optimizing CI coefficients and the TJF.

note here that this adds 135 F -matrix parameters to the optimization. Allowing for orbital
optimization adds another 663 and 618 parameters for the equilibrium and stretched cases,
respectively. Note that our implementation of orbital optimization in QMCPACK removes
rotation parameters for orbitals that are not occupied in any determinant and also between
orbitals occupied in all determinants, and so the precise number of rotation parameters is
a function of the determinant expansion. With orbital optimization enabled, the choice of
importance sampling function becomes an issue, and we now employ |Φ|2 for all LM and
BLM steps with the ϵ weight set to 0.001.

Figures 2.7 and 2.8 show converged ground state energies relative to that of the LM. For
this more difficult version of the nitrogen dimer, we find that the gradient descent methods
are less effective. They now often yield energies that can be 10 mEh or more above the
LM’s answer though we again find that choice of step size plays a significant role. The worst
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Figure 2.6: Different methods’ optimized energies relative to that of the LM for stretched
N2 when optimizing CI coefficients and the TJF.

results for AMSGrad and ADAM were the result of choosing inappropriately large step sizes
and simple reductions in the initial step size produced improvements in energy of tens of
mEh though the final result still remained well above the LM’s. When we examined the
optimizations over the course of their iterations, the gradient methods typically displayed
some ability to quickly improve the wave function and energy initially, but they would then
plateau and only very slowly improve the energy thereafter. Extrapolating from our results
indicates that even if these gradient descent methods eventually converge to the minimum,
they will only do so after thousands more iterations and at a computational cost well beyond
that of the LM.

A more careful comparison of the different methods can be made by referring to Tables
2.2 and 2.3, which list the precise converged energies and their error bars. We also report the
total number of samples used in each optimization as a proxy for computational effort, noting
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Figure 2.7: Different methods’ optimized energies relative to that of the traditional LM for
equilibrium N2 when all parameters are optimized simultaneously. See also Table 2.2.

that for the BLM and the BLM portion of the hybrid method we double counted samples
out of fairness as the BLM steps require running over their samples twice. In assessing
cost, one must also consider the statistical uncertainty achieved, where we see that the LM
and BLM are at a disadvantage. To help illustrate the update uncertainty contribution to
this error, which we first discussed in the theoretical section above, we show the energy
versus LM iteration for equilibrium N2 in Figure 2.9. The fluctuations in energy from step
to step, sometimes by as much as 2 mEh, demonstrate the difficulty the LM faces from
the uncertainty in its steps near the minimum. In this case, we see that the LM’s final
energy uncertainty is driven by the update step uncertainty rather than the uncertainty in
evaluating the energy for a given set of parameter values at a particular iteration. We have
observed similar behavior in the BLM and include the result of a BLM calculation in the
tables. Note that the tabulated energies come from an average over the last ten optimization
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Figure 2.8: Different methods’ optimized energies relative to that of the traditional LM for
stretched N2 when all parameters are optimized simultaneously. See also Table 2.3.

steps in the case of the standard LM and BLM and from an average over the last 50 descent
steps in the case of the hybrid and pure descent methods.

From the tabulated data, we see that the hybrid optimization can achieve lower energies
than the gradient descent methods using fewer samples, and that its results are typically
within a few mEh of the traditional LM. While the accelerated descent sections of the hybrid
method provide some swift energy reductions early on when the wave function is still far
from the minimum in parameter space, the BLM steps in the algorithm greatly accelerate
the process of bringing the parameters near to the minimum, as can be seen in Figure 2.10.
Looking at the electron-nuclear spline parameter and the orbital rotation parameter, we
see typical cases in which rapid initial parameter movement during the early part of the
first RMSprop stage transitions to much slower movement later in that stage, followed by
very little movement at all in later RMSprop stages. Note that the latter can be explained
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Table 2.2: Energies,uncertainties, and sample numbers for optimization of all parameters in
equilibrium N2.

Method Energy (a.u.) Uncertainty (a.u.) Samples

Hybrid 1 -19.9263 0.0004 5,400,000
Hybrid 2 -19.9266 0.0004 10,000,000
Hybrid 3 -19.9272 0.0004 42,000,000

RMSprop 1 -19.8974 0.0005 20,000,000
RMSprop 2 -19.9242 0.0004 20,000,000

AMSGrad 1 -19.9115 0.0006 20,000,000
AMSGrad 2 -19.9221 0.0004 20,000,000

ADAM 1 -19.8973 0.0009 20,000,000
ADAM 2 -19.9165 0.0005 20,000,000

Random 1 -19.9019 0.0006 20,000,000
Random 2 -19.9157 0.0005 20,000,000

Linear Method -19.9280 0.0008 40,000,000

Blocked Linear Method -19.9297 0.0008 80,000,000

DF-BLM -19.9293 0.0001 90,000,000
DF-Hybrid 1 -19.9290 0.0001 15,400,000
DF-Hybrid 2 -19.9290 0.0001 20,000,000
DF-Hybrid 3 -19.9293 0.0001 52,000,000

largely by the need to keep initial step sizes small in later stages to avoid significant upward
deviations in the energy as the RMSprop method rebuilds its momentum history. In between
these AD stages, the BLM updates move the parameter values in much larger steps, greatly
accelerating convergence. This behavior makes the hybrid approach somewhat more black
box as compared to the pure descent approaches, as the ability to get near the minimum with
a modest sampling effort is much less dependent on the choice of the initial step sizes than
for the AD methods. This conclusion is supported by the fact that the hybrid optimizations
in Tables 2.2 and 2.3 used various initial step size settings (as discussed in Appendix B) and
nonetheless produced lower energies than the pure descent methods in every case.

As discussed in our introduction of the hybrid method, another advantage is its ability
to obtain a lower error bar at convergence than the LM for the same overall computational
cost. This is a natural consequence of spending part of its sampling effort on gradient
descent steps that correct for the BLM steps’ uncertainty and bias (as illustrated earlier
in Figure 2.4) and that hew closer to the zero-variance principle by importance sampling
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Table 2.3: Energies,uncertainties, and sample numbers for optimization of all parameters in
stretched N2.

Method Energy (a.u.) Uncertainty (a.u.) Samples

Hybrid 1 -19.6316 0.0004 5,400,000
Hybrid 2 -19.6321 0.0004 8,400,000
Hybrid 3 -19.6340 0.0004 49,200,000

RMSprop 1 -19.6277 0.0005 20,000,000
RMSprop 2 -19.6313 0.0005 20,000,000

AMSGrad 1 -19.5571 0.0010 20,000,000
AMSGrad 2 -19.6064 0.0008 20,000,000
AMSGrad 3 -19.6268 0.0008 20,000,000

ADAM 1 -19.5889 0.0009 20,000,000
ADAM 2 -19.6179 0.0006 20,000,000
ADAM 3 -19.6192 0.0005 20,000,000

Random 1 -19.6112 0.0006 20,000,000
Random 2 -19.6196 0.0006 20,000,000

Linear Method -19.6356 0.0009 40,000,000

Blocked Linear Method -19.6354 0.0008 80,000,000

DF-BLM -19.6356 0.0001 90,000,000
DF-Hybrid 1 -19.6352 0.0001 15,400,000
DF-Hybrid 2 -19.6354 0.0001 18,400,000
DF-Hybrid 3 -19.6346 0.0001 59,200,000

with |Ψ|2. To demonstrate this advantage explicitly, we ran additional sets of LM and
hybrid optimizations adjusted to have essentially the same total number of samples. We
then compare the standard error for the last ten LM steps and the last ten hybrid macro
iterations in Figures 2.11 and 2.12, where we find that the hybrid has a substantially lower
statistical uncertainty in every case. Assuming the usual N−1/2 decay of uncertainty with
sample size, the LM would require a factor of roughly four times more samples to reach the
hybrid’s uncertainty,

These statistical advantages in the final energy can be improved even further if we finish
an optimization with a long section of pure descent. To demonstrate this, we have taken the
final wave functions produced by the hybrid and BLM optimizations in Tables 2.2 and 2.3
and applied a further period of optimization using RMSprop with initial step sizes of 0.001 for
all parameters. This “descent finishing” (DF) adds only a modest additional cost compared
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Figure 2.9: The standard LM optimization for all parameter equilibrium N2.

to the preceding optimization and yields a large improvement in statistical uncertainty and,
in many cases, an improvement in the final energy value as well. These advantages can be
seen clearly in Figures 2.13 and 2.14, as well as in Tables 2.2 and 2.3, where we observe
final error bars that are a factor of eight smaller than those of the LM. In terms of cost,
this implies that the traditional LM would have required 64 times the original number of
samples to achieve the DF-BLM or DF-hybrid precision. Put another way, we find that
the DF-hybrid approach gives an equivalent or lower energy, with a much smaller error bar,
at a substantially lower cost. Note that, in contrast, we find that this DF approach is not
very effective when used in conjunction with the pure descent methods, where it essentially
amounts to restarting the methods at the parameter values found after the first run of their
optimization. While we do find that this restarting of the accumulation of momentum can
improve the energy, the wave function parameters still do not reach their optimal values and
the energy lowering vs total sampling cost is not competitive with the DF-hybrid.

Our study of the nitrogen dimer provides some clarity on the relative strengths of the
LM and gradient descent, while also pointing the way to a more effective synthesis of the
two. Gradient descent methods struggle in the presence of a variety of different highly
nonlinear parameters, although they did perform better when we were only optimizing TJFs
and CI coefficients. Among the descent methods, we found that the RMSprop approach
came the closest to achieving the LM minimum energy. It is of course difficult to rule out
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Figure 2.10: Values for the first off-diagonal F -matrix element (F01), the first electron-
nuclear TJF spline parameter (u0), and the second orbital rotation variable (X02) at each
micro iteration of the “Hybrid 1” optimization for all parameter equilibrium N2.

the possibility that this and other AD methods could reach the LM energy with additional
sampling and more experimentation with the hyperparameters. However, it is far from
obvious that this would be be cost-competitive, and the need to make careful and possibly
system-specific choices for hyperparameters is somewhat antithetical to the general aspiration
that an optimizer be as black-box as possible. For its part, the LM is more effective at moving
parameters into the vicinity of the minimum, but tight convergence is then stymied by an
unsatisfactory level of biased statistical uncertainty. As a side note, this behavior — in
which the first derivative methods give better convergence once near the minimum but are
at a relative disadvantage far from the minimum — is somewhat the reverse of what one
would expect in deterministic optimization, where second derivative methods are at their
strongest relative to first derivative methods during the final tight convergence in the vicinity
of the minimum. Although things are reversed in the stochastic VMC case, we stress that
the two classes of methodology are strongly complementary, as they compensate for each
other’s weaknesses. By using a low-memory version (BLM or hybrid) of the LM to get
near to the minimum and then handing off to an accelerated descent method to achieve
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Figure 2.11: Standard Errors for the hybrid method and LM on all parameter equilibrium
N2 vs different optimizations’ total sampling costs.

tight convergence, we find better overall performance than when working with either class
of method on its own. These insights in hand, we will now apply this combined approach in
a pair of larger and more challenging VMC optimization examples.

Styrene

We first turn to styrene at its equilibrium geometry (Figure 2.15) which offers an optimization
with both more electrons and more variables, but in which the traditional LM is still quite
achievable for comparison. As in N2, we construct a multi-Slater wave function modified by
both TJFs and a NCJF. To generate our Slater determinants, we have employed the heatbath
selective CI (HCI) method as implemented in the Dice code by Sharma and coworkers.
[10, 131] The orbital basis for the HCI calculation was produced via a (14e,14o) CASSCF
calculation in Molpro [170] using a recently developed set of pseudopotentials and their
corresponding double zeta basis.[171] In this CASSCF basis, HCI then correlated 32 electrons
(out of a total of 40 electrons left over after applying pseudopotentials) in 64 orbitals. For
our NCJF, we defined one counting region per atom, giving our F -matrix 135 optimizable
parameters (see Appendix D for further NCJF details).

We optimized our wave function in a staged fashion using the standard LM, the BLM,
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Figure 2.12: Standard Errors for the hybrid method and LM on all parameter stretched N2

plotted against different optimizations’ total sampling costs.

and the hybrid method. First, we conducted a partial optimization of the TJFs and the 100
most important CI coefficients. We then turned on the optimization of the orbitals and the
NCJF’s F -matrix, reaching a total of 4,570 parameters, most of them highly nonlinear. In
the hybrid and BLM optimizations, the parameters were divided into 5 blocks and we used
Nk = 50 and No = 5 for our numbers of kept directions and previous important directions,
respectively. We used a value of 0.001 for ϵ in the |Φ|2 distribution for the LM and BLM
sampling. These optimizations were then followed by 1,000 steps of RMSprop. As shown in
Figure 2.16, we find that our hybrid method reaches a converged energy as low or better than
that of the standard and blocked LM, and finishing our optimizations with descent provides
a substantial improvement in the statistical uncertainty even in this more challenging case.

FNNF

We now turn our attention to a strongly correlated transition state of the the diflurodiazene
(FNNF) cis-trans isomerization, where we test the hybrid optimization approach on a much
larger determinant expansion. The FNNF isomerization can be thought of as a toy model
molecule for larger systems such as photoswitches, which have potential uses in molecular
machines [172, 173] and high-density memory storage. [174] In addition, FNNF itself is
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Figure 2.13: Converged energies in equilibrium N2 before and after a final descent optimiza-
tion.

Table 2.4: A summary of the VMC optimization stages in FNNF showing the number of
determinants Nd included from HCI, which parameters are optimized, and the total number
Np of optimized parameters. Note that CI coefficients are optimized at every stage. Stages
2, 3, and 4 start from the parameter values from the previous stage, with newly added deter-
minants’ coefficients initialized to zero. We also report the number of iterations performed in
each stage, which for stage 4 is simply the number of RMSprop steps. A hybrid iteration, on
the other hand, consists of 100 RMSprop steps followed by three BLM steps. All RMSprop
steps use 20,000 samples drawn from |Ψ|2, while the BLM steps each use 1 million samples
drawn from the |Φ|2 guiding function with ϵ set to 0.01.

Stage Method Nd TJF F -matrix Orbitals Np Iterations

1 Hybrid 102 ✓ 139 9

2 Hybrid 103 ✓ ✓ 1048 4

3 Hybrid 104 ✓ ✓ ✓ 15,573 6

4 AD 104 ✓ ✓ ✓ 15,573 1,000
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Figure 2.14: Converged energies in stretched N2 before and after a final descent optimization.

Figure 2.15: Equilibrium geometry of styrene. See Appendix C for structure coordinates.
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Figure 2.16: Converged energies in equilibrium styrene before and after a final descent
optimization.

Table 2.5: Energies of the transition state of FNNF.

Method Energy (a.u.) Uncertainty (a.u.)

Hartree-Fock -67.112730

CASSCF -67.359100

VMC Stage 1 -68.1017 0.0011

VMC Stage 2 -68.1213 0.0009

VMC Stage 3 -68.1698 0.0006

VMC Stage 4 -68.1750 0.0002
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Figure 2.17: Left panel: energies during stages 3 and 4 of the FNNF optimization. The
descent energies are reported as the average over the last 50 RMSprop steps within each
block of 100 RMSprop steps, whereas the BLM energies are the energy estimates on the
random samples used for the BLM update steps. Right panel: change in the value of the
F -matrix parameter that couples the two nitrogen atoms’ counting regions over the first
three macro iterations of stage 3, with each micro iteration corresponding to one RMSprop
or BLM step. The nine BLM points on the right panel correspond to the first nine BLM
points on the left panel.

of interest as part of the synthesis of high energy polynitrogen compounds and has been
the subject of multiple electronic structure studies.[175–177] Here we focus on its strongly
correlated transition state, which is the direct analogue of the out-of-plane TS1 transition
state in diazene. [178]

Our treatment of this transition state began by locating its geometry via an (8e,8o)
CASSCF optimization in the cc-pVTZ basis using Molpro.[170] At this geometry (given in
Appendix C) we then switch over to using BFD pseudopotentials and their corresponding
triple zeta basis, [168] in which we use the Dice code [10, 131] to iterate an HCI calculation
with 24 electrons distributed in the lowest 50 (8e,8o) CASSCF orbitals until its variational
wave function has reached almost 2 million determinants. We then import the first 10,000 of
these determinants into our VMC optimization and combine them with TJFs, atom-centered
NCJFs, and orbital optimization, which produces an ansatz with over 15,000 variational
parameters.

Our VMC optimization proceeds in stages as summarized in Table 2.4. This begins with
TJFs and a 100-determinant ansatz from HCI, with later optimization stages adding more
determinants and turning on the optimization of the NCJF and orbital rotation variables.
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As in styrene, the strategy is to bring the parameters near to their optimal values with the
help of the LM and then to perform a final unbiased relaxation via a long run of RMSprop
AD. Due to the large number of variational parameters, we incorporate the LM via the
hybrid scheme, with the BLM steps employing 2, 2, and 10 blocks during stages 1, 2, and
3, respectively. In stages 1 and 2, we used an initial RMSprop step size of 0.01 for TJFs
and CI coefficients before setting it to 0.005 at the beginning of stage 3. For the F -matrix
parameters, we began by setting the initial step size to 0.001, but after observing a significant
rise and fall of the energy during the RMSprop section of the first hybrid macro iteration in
stage 3, we reduced this to 0.0001 and also lowered the TJF and CI step size to 0.0005 for the
last 4 macro iterations in that stage. For all steps in stage 4, we maintained the 0.0001 step
size for the F -matrix parameters and lowered the initial step size for TJFs and CI coefficients
to 0.0002. An initial step size of 0.0001 was used for orbital parameters throughout both
stages 3 and 4. The BLM steps used the |Φ|2 guiding function with a value of 0.01 for ϵ.

The energies resulting from this staged optimization are shown in Table 2.5 and Figure
2.17. Unsurprisingly, stage 3 proved to be the most challenging and expensive stage, as it
is where we hope to move all parameters near to their final values in a setting where the
traditional LM would face severe memory bottlenecks. As seen in Figure 2.17, both the AD
and BLM steps clearly work to lower the energy during the first two macro iterations of
stage 3. In the last four macro iterations of stage 3, however, the energy decreases more
slowly and it is less clear, at least when looking at the energetics, whether the BLM steps
are still necessary. Instead, their importance is revealed by inspecting the movement of the
F -matrix values within the NCJF, an example of which is shown in the right-hand panel
of Figure 2.17. As in N2, these parameters prove to be the most resistant to optimization
via AD, and we clearly see that although AD does gradually move their values in the same
direction as the BLM, the BLM steps dramatically accelerate their optimization. This effect
is seen throughout all six macro iterations of stage 3, and so although the BLM energies are
not obviously improving at the end of this stage, the inclusion of these steps is clearly still
beneficial. Note that relaxing the NCJF after moving from a 1,000-determinant to a 10,000-
determinant expansion is important, because the larger determinant expansion is better able
to capture some of the correlation effects that the NCJF is encoding, and so we expect (and
indeed see) that this diminishing of its role leads to smaller F -matrix values being optimal.

Although we have again found that it would be difficult for AD alone to provide a
successful optimization of our ansatz, the statistical advantages of its incorporation are still
quite clear. A close inspection of the sample sizes used in the optimization reveals that
each of the AD and BLM points in the left panel of Figure 2.17 corresponds to averaging
over 1 million random samples. Despite this equal sampling effort, the uncertainties for the
AD energy estimates are about one third the size of those for the BLM, implying that a
pure BLM approach would require an order of magnitude more sampling effort to produce
similar results. To understand this statistical advantage, we need to remember two important
differences between the AD and BLM steps. First, the nonlinearity of the LM and BLM
eigenvalue problem leads to biases in the update steps that can both increase the step-to-
step energy uncertainty and cause the method to optimize off-center from the true minimum.
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Second, the use of an alternative guiding function for the BLM samples in order to mitigate
this step uncertainty moves us away from the zero-variance regime enjoyed by traditional
|Ψ|2 sampling. If we were to instead employ traditional sampling, our energy estimates for a
specific wave function would improve, but the BLM step uncertainty would increase sharply.
As the AD methods do not suffer from these issues, they help us to further mitigate the BLM
step uncertainty and to perform a final, high-precision relaxation during stage 4. In total,
incorporating the AD steps in this case roughly doubles the number of samples required,
but is well worthwhile given that it improves statistical efficiency by almost an order of
magnitude.

While it is possible that the NCJF parameters are not quite converged in this partic-
ular optimization and that increasing iteration counts in stages 1 through 3 could further
improve the energy, the lessons learned from investigating a large MSJ optimization for the
FNNF transition state are already clear. While both the BLM and the AD methods can
be used in this 10,000+ parameter regime, they bring highly complementary advantages to
the optimization and so would appear to work better together than apart. In particular, the
BLM helps optimize the parameters that change only very slowly during AD, whereas the
statistical advantages of AD greatly increase precision at a given sample size and work to
eliminate the statistical biases suffered by the BLM.

2.5 Conclusions and Outlook

We have found that a combination of first and second derivative optimization methods
appears to work better than using either class of method on its own when minimizing the
energies of wave functions in variational Monte Carlo. This is particularly true for wave
functions with a wide variety of different types of nonlinear parameters, as for example
when dealing simultaneously with traditional one- and two-body Jastrow factors, many-
body Jastrow factors, and orbital relaxations. While the linear method and its low-memory
variants show a superior ability to move these nonlinear parameters into the vicinity of their
optimal values, accelerated descent methods prove much more capable of converging them
tightly around the minimum. This situation stands as an interesting reverse of what is
typically encountered in deterministic optimization, where second derivative methods are
usually superior for tight final convergence and first derivative methods perform relatively
better in the early stages of an optimization. The realities of working with statistically
uncertain energies and energy derivatives turns this expectation on its head, both because of
the need to stabilize the statistics of the linear method’s second derivative elements through
zero-variance-violating importance sampling schemes and due to the nonlinear biases that are
induced when solving the linear method’s eigenvalue problem. The linear method’s ability to
quickly move the parameters near the minimum, however, makes it appear that employing
it as part of a hybrid approach is well worthwhile. Indeed, in our testing, hybridizing low-
memory linear method variants with accelerated descent methods provides better energies
with smaller statistical uncertainties at a lower computational cost when compared to the
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stand-alone use of either the linear method or accelerated descent methods.
Looking forward, there are many questions still to be answered about the interplay be-

tween first and second derivative methods. For example, although the blocked linear method
greatly reduces memory cost vs the traditional linear method, it is not clear that it can be
applied effectively beyond 100,000 parameters in its current form. One thus wonders whether
it is necessary to optimize all of the parameters during the linear method steps of the hybrid
approach, or whether it may be possible to identify (perhaps during an ongoing optimiza-
tion?) which parameters would benefit from linear method treatment and which would not.
Were such a sorting possible, accelerated descent methods with their even lower memory
footprint could be left to deal with most of the parameters, with only a relatively small
subset treated by the linear method steps. Another important issue is making the hybrid
approach as black box and user friendly as possible. Although we have tested it here with
many different descent step size settings for the different parameter types, this has not been
a systematic survey. More extensive testing may allow clear defaults to be settled upon so
that users can reasonably expect a successful optimization without resorting to careful step
size control. We look forward to investigating these exciting possibilities in future.
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2.7 Appendix A: Additional Energies

Table 2.6: Precise Values for optimizing CI coefficients and traditional Jastrow factors in
equilibrium N2.

Method Energy (a.u.) Uncertainty (a.u.) Samples

Hybrid 1 -19.9083 0.0005 3,900,000
Hybrid 2 -19.9095 0.0006 5,400,000
Hybrid 3 -19.9101 0.0005 29,000,000

RMSprop 1 -19.8936 0.0006 20,000,000
RMSprop 2 -19.9091 0.0005 20,000,000

AMSGrad 1 -19.8998 0.0007 20,000,000
AMSGrad 2 -19.8926 0.0008 20,000,000
AMSGrad 3 -19.9048 0.0006 20,000,000
AMSGrad 4 -19.9071 0.0005 20,000,000

ADAM 1 -19.9009 0.0005 20,000,000
ADAM 2 -19.9056 0.0006 20,000,000
ADAM 3 -19.9078 0.0005 20,000,000

Random 1 -19.8926 0.0006 20,000,000
Random 2 -19.9041 0.0005 20,000,000

Linear Method -19.9105 0.0010 40,000,000
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Table 2.7: Precise Values for optimizing CI coefficients and traditional Jastrow factors in
stretched N2.

Method Energy (a.u.) Uncertainty (a.u.) Samples

Hybrid 1 -19.6141 0.0005 27,000,000

RMSprop 1 -19.6010 0.0007 20,000,000
RMSprop 2 -19.6137 0.0005 20,000,000

AMSGrad 1 -19.6044 0.0006 20,000,000
AMSGrad 2 -19.5858 0.0007 20,000,000
AMSGrad 3 -19.6096 0.0006 20,000,000

ADAM 1 -19.6028 0.0006 20,000,000
ADAM 2 -19.6105 0.0005 20,000,000

Random 1 -19.5937 0.0006 20,000,000
Random 2 -19.6147 0.0006 20,000,000

Linear Method -19.6155 0.0010 40,000,000

2.8 Appendix B: Details for N2 Optimizations

The details for the optimizations behind the final energies in the main paper are presented
below. In every case of N2, all flavors of pure gradient descent based optimization were run
for 2000 iterations at 10,000 samples per iteration except for the random step size method,
which was run for 10,000 iterations at 2000 samples per iteration. The total sampling cost
was then 20 million samples, half of the standard linear method’s cost of 40 million over 40
steps. Given the descent methods’ tendency to plateau after a few hundred iterations and
then lower the energy by only a few mEh afterward, we expect that running them longer
to fully match or exceed the linear method’s sampling effort would not yield a much better
result in most cases. We found that it was often advantageous to allow for different types of
parameters to be given different initial step sizes. Tables 2.8 through 2.11 list the step sizes
for different descent optimizations in all cases of N2. The values can be cross-referenced with
the energy results in earlier tables to see which choices were most effective. Some amount
of experimentation was necessary to build up intuition for what choices are effective, but we
generally expect more nonlinear parameters such as those in the F -matrix and the orbitals
to require smaller step sizes. We also found that RMSprop benefited from using larger step
sizes compared to other descent algorithms. The energy may be significantly raised on early
iterations, but tends to be quickly lowered and eventually brought to an improved result
once enough gradient history has built up over more steps.

The details of the different hybrid method optimizations are slightly more involved and
are discussed separately here. In all cases, the blocked linear method steps of the hybrid
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optimization used 5 blocks with 5 directions from sections of RMSprop to provide coupling
to variables outside a block and retained 30 directions from each block to construct the
final space for determining the parameter update. These were also the settings given to
the blocked linear method optimizations of N2 that appear in the main text. All hybrid
optimizations used the RMSprop method for their AD sections with the hyperparameters
d = 100, ρ = .9 and ϵ = 10−8. The step sizes used in the AD sections varied over the course
of the hybrid optimizations. We typically chose larger step sizes for the AD portion of the
first macro-iteration in order to obtain more energy and parameter improvement at a low
sampling cost before any use of the BLM and these are tabulated separately as ”Hybrid-
Initial”. The smaller step sizes reported for the rest of hybrid optimization were used in the
later macro-iterations to avoid rises in the energy that might occur before a sufficient gradient
history was accumulated. We also list the step sizes in the long RMSprop optimization used
to achieve the descent finalized energies. These were sometimes larger than those for the AD
sections of the initial hybrid optimizations because the descent finalization was long enough
for any early transient rises in the energy to recover.

We now specify how the hybrid method sampling costs reported in Tables 2.2 and 2.3 of
the main paper were divided between AD and the BLM. In all parameter equilibrium N2,
Hybrid 1 consisted of 500 AD steps costing 3 million samples interwoven with 12 BLM steps
that cost 2.4 million samples. Hybrid 2 consisted of the same sequence of steps, but had an
increased sampling effort of 6 million samples on descent and 2.4 million on BLM. Hybrid
3 had a greatly increased sampling cost and consisted of 1400 AD steps for 11.2 million
samples interwoven with 19 BLM steps costing 38 million. For all parameter stretched N2,
Hybrid 1 used the same sequence of steps and sampling cost breakdown as Hybrid 1 for
the equilibrium case. Hybrid 2 consisted of 600 AD steps that cost 7 million samples and
15 BLM steps that cost 3 million. Hybrid 3 also had 600 AD steps, now using 12 million
samples, and 15 BLM steps, now using 30 million samples. For all descent finalizations in
N2, we used 1000 steps of RMSprop at an additional cost of 10 million samples and took an
average over the last 500 steps to obtain our reported energies and error bars.

Finally, we give the breakdown of the hybrid sampling costs in Tables 2.6 and 2.7 of
Appendix A. For the equilibrium case, Hybrid 1 had 500 AD steps costing 1.5 million samples
and 12 BLM steps costing 2.4 million samples. Hybrid 2 had the same combination of steps
and BLM cost as Hybrid 1 while the AD steps used 3 million samples. Hybrid 3 used the
same sequence of steps, but increased the AD and BLM sampling costs to 5 million and 24
million, respectively. In the stretched case, the hybrid optimization used 500 AD steps with
3 million samples and 12 BLM steps costing 24 million samples.



CHAPTER 2. COMPLEMENTARY FIRST AND SECOND DERIVATIVE METHODS
FOR ANSATZ OPTIMIZATION IN VARIATIONAL MONTE CARLO 52

Table 2.8: Step sizes for TJFCI equilibrium N2 optimizations.

Method 2 Body Jastrow 1 Body Jastrow CI

RMSprop/Booth 1 0.01 0.01 0.005
RMSprop/Booth 2 0.05 0.05 0.01

AMSGrad 1 0.05 0.05 0.01
AMSGrad 2 0.05 0.05 0.05
AMSGrad 3 0.01 0.01 0.01
AMSGrad 4 0.001 0.001 0.001

ADAM 1 0.01 0.01 0.01
ADAM 2 0.005 0.005 0.005
ADAM 3 0.001 0.001 0.001

Random 1 0.01 0.01 0.01
Random 2 0.0005 0.0005 0.0005

Hybrid-Initial 1 0.1 0.1 0.01
Hybrid-Initial 2 0.1 0.1 0.01
Hybrid-Initial 3 0.1 0.1 0.01

Hybrid 1 0.001 0.001 0.001
Hybrid 2 0.005 0.005 0.005
Hybrid 3 0.005 0.005 0.005

Table 2.9: Step sizes for TJFCI stretched N2 optimizations.

Method 2 Body Jastrow 1 Body Jastrow CI

RMSprop/Booth 1 0.01 0.01 0.005
RMSprop/Booth 2 0.05 0.05 0.01

AMSGrad 1 0.05 0.05 0.01
AMSGrad 2 0.05 0.05 0.05
AMSGrad 3 0.01 0.01 0.01

ADAM 1 0.01 0.01 0.01
ADAM 2 0.005 0.005 0.005

Random 1 0.01 0.01 0.01
Random 2 0.001 0.001 0.001

Hybrid-Initial 1 0.1 0.1 0.1
Hybrid 1 0.005 0.005 0.005
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Table 2.10: Step sizes for all parameter equilibrium N2 optimizations.

Method 2 Body Jastrow 1 Body Jastrow F -Matrix CI Orbitals

RMSprop/Booth 1 0.005 0.005 0.001 0.001 0.001
RMSprop/Booth 2 0.05 0.05 0.01 0.01 0.01

AMSGrad 1 0.05 0.05 0.005 0.01 0.001
AMSGrad 2 0.005 0.005 0.001 0.001 0.001

ADAM 1 0.05 0.05 0.005 0.01 0.001
ADAM 2 0.005 0.005 0.001 0.001 0.001

Random 1 0.001 0.001 0.001 0.001 0.001
Random 2 0.001 0.001 0.0005 0.001 0.0005

Hybrid-Initial 1 0.1 0.1 0.0001 0.01 0.01
Hybrid-Initial 2 0.1 0.1 0.0005 0.01 0.01
Hybrid-Initial 3 0.01 0.01 0.001 0.01 0.001

Hybrid 1 0.0001 0.0001 0.0001 0.0001 0.0001
Hybrid 2 0.001 0.001 0.0005 0.0005 0.0005
Hybrid 3 0.001 0.001 0.001 0.001 0.001

DF-Hybrid 1 0.001 0.001 0.001 0.001 0.001
DF-Hybrid 2 0.001 0.001 0.001 0.001 0.001
DF-Hybrid 3 0.001 0.001 0.001 0.001 0.001
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Table 2.11: Step sizes for all parameter stretched N2 optimizations.

Method 2 Body Jastrow 1 Body Jastrow F -Matrix CI Orbitals

RMSprop/Booth 1 0.05 0.05 0.05 0.01 0.01
RMSprop/Booth 2 0.1 0.1 0.01 0.01 0.005

AMSGrad 1 0.05 0.05 0.05 0.01 0.01
AMSGrad 2 0.05 0.05 0.01 0.02 0.001
AMSGrad 3 0.005 0.005 0.001 0.002 0.001

ADAM 1 0.05 0.05 0.05 0.01 0.01
ADAM 2 0.05 0.05 0.01 0.02 0.001
ADAM 3 0.005 0.005 0.001 0.002 0.001

Random 1 0.001 0.001 0.001 0.001 0.001
Random 2 0.001 0.001 0.0005 0.001 0.0005

Hybrid-Initial 1 0.1 0.1 0.01 0.01 0.001
Hybrid-Initial 2 0.1 0.1 0.01 0.01 0.001
Hybrid-Initial 3 0.1 0.1 0.01 0.01 0.001

Hybrid 1 0.0001 0.0001 0.0001 0.0001 0.0001
Hybrid 2 0.001 0.001 0.0005 0.0005 0.0005
Hybrid 3 0.001 0.001 0.0005 0.0005 0.0005

DF-Hybrid 1 0.001 0.001 0.001 0.001 0.001
DF-Hybrid 2 0.001 0.001 0.001 0.001 0.001
DF-Hybrid 3 0.001 0.001 0.001 0.001 0.001
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2.9 Appendix C: Molecular Geometries

Table 2.12: Structure of equilibrium styrene. Coordinates in Å.

C 1.392 95 0.000 00 0.000 00
C 2.160 42 −1.192 58 0.018 01
C 2.094 21 1.231 78 −0.019 14
C 3.565 85 −1.159 69 0.052 86
C 3.501 42 1.272 11 0.017 95
C 4.236 86 0.075 03 0.060 81
C 0.000 00 0.000 00 0.000 00
C −0.795 15 −0.930 87 0.544 06
H 1.712 22 −2.111 61 −0.002 39
H 1.592 37 2.124 71 −0.047 53
H 4.098 18 −2.032 73 0.071 53
H 3.990 86 2.169 87 0.016 92
H 5.257 94 0.100 43 0.095 03
H −0.463 24 0.771 12 −0.427 75
H −0.434 31 −1.721 47 1.022 78
H −1.782 40 −0.845 77 0.492 96

Table 2.13: Structure of FNNF transition state. Coordinates in Å.

N 0.499 39 −0.446 56 −0.593 77
N 0.570 66 0.412 24 0.5639
F −0.390 84 0.145 63 −1.369 59
F −0.398 07 −0.120 32 1.391 57

2.10 Appendix D: NCJF Gaussian Basis

The form for the three dimensional Gaussian basis functions of NCJFs in the main text can
equivalently be written as gj(r) = exp

(
rTAr− 2BT r + C

)
where A is a symmetric matrix

defined by 6 parameters, B is a three-component vector, and C is a single dimensionless
number. We used 16 basis functions for the all parameter cases of N2, 16 in styrene, and 4
in FNNF. Their complete specifications are presented in Tables 2.14-2.18. The components
Axx, Axy, Axz, Ayy, Ayz, Azz with units of inverse square bohr are the same for each basis
function within a particular system and are therefore listed separately in Table 2.14. Tables
2.15-2.18 contain components Bx, By, Bz, with units of inverse bohr and C for each system’s
basis functions.
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Table 2.14: Components of the matrix A for our systems.

System Axx Axy Axz Ayy Ayz Azz

Equilibrium N2 -6.9282 0.0 0.0 -6.9282 0.0 -6.9282
Stretched N2 -6.9282 0.0 0.0 -6.9282 0.0 -6.9282
Styrene -0.1 0.0 0.0 -0.1 0.0 -0.1
FNNF -0.1 0.0 0.0 -0.1 0.0 -0.1

Table 2.15: Gaussian components for all parameter equilibrium N2.

Basis Function Bx By Bz C

g0 -0.8 -0.8 -0.8 -0.2771
g1 0.8 -0.8 -0.8 -0.2771
g2 -0.8 0.8 -0.8 -0.2771
g3 0.8 0.8 -0.8 -0.2771
g4 -0.8 -0.8 0.8 -0.2771
g5 0.8 -0.8 0.8 -0.2771
g6 -0.8 0.8 0.8 -0.2771
g7 0.8 0.8 0.8 -0.2771
g8 -4.4787 -0.8 -0.8 -11.2500
g9 -2.8787 -0.8 -0.8 -4.5981
g10 -4.4787 0.8 -0.8 -11.2500
g11 -2.8787 0.8 -0.8 -4.5981
g12 -4.4787 -0.8 0.8 -11.2500
g13 -2.8787 -0.8 0.8 -4.5981
g14 -4.4787 0.8 0.8 -11.2500
g15 -2.8787 0.8 0.8 -4.5981
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Table 2.16: Gaussian basis functions for all parameter stretched N2.

Basis Function Bx By Bz C

g0 -0.8 -0.8 -0.8 -0.2771
g1 0.8 -0.8 -0.8 -0.2771
g2 0.8 0.8 -0.8 -0.2771
g3 0.8 0.8 -0.8 -0.2771
g4 -0.8 -0.8 0.8 -0.2771
g5 0.8 -0.8 0.8 -0.2771
g6 -0.8 0.8 0.8 -0.2771
g7 0.8 0.8 0.8 -0.2771
g8 -5.8015 -0.8 -0.8 -22.7322
g9 -4.2015 -0.8 -0.8 -11.8474
g10 -5.8015 0.8 -0.8 -22.7322
g11 -4.2015 0.8 -0.8 -11.8474
g12 -5.8015 -0.8 0.8 -22.7322
g13 -4.2015 -0.8 0.8 -11.8474
g14 -5.8015 0.8 0.8 -22.7322
g15 -4.2015 0.8 0.8 -11.8474

Table 2.17: Gaussian basis functions for equilibrium styrene.

Basis Function Bx By Bz C

g0 -0.2632 0.0 0.0 -0.6929
g1 -0.4083 0.2254 -0.003403 -2.1748
g2 -0.3957 -0.2328 0.003617 -2.1081
g3 -0.6738 0.2191 -0.009989 -5.0220
g4 -0.6617 -0.2404 -0.003392 -4.9561
g5 -0.8007 -0.01418 -0.01149 -6.4137
g6 0.0 0.0 0.0 0.0
g7 0.1503 0.1759 -0.1028 -0.6409
g8 -0.3236 0.3990 0.0004516 -2.6392
g9 -0.3009 -0.4015 0.008982 -2.5184
g10 -0.7744 0.3841 -0.01352 -7.4750
g11 -0.7542 -0.41005 -0.003197 -7.3691
g12 -0.9936 -0.01898 -0.01796 -9.8794
g13 0.08754 -0.1457 0.08083 -0.3543
g14 0.08207 0.3253 -0.19328 -1.4992
g15 0.3368 0.1598 -0.09316 -1.4767
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Table 2.18: Gaussian basis functions for FNNF.

Basis Function Bx By Bz C

g0 -0.09437 0.08439 0.1122 -0.2862
g1 -0.1078 -0.07790 -0.1066 -0.2905
g2 0.07386 -0.02752 0.2588 -0.7320
g3 0.07522 0.02274 -0.2630 -0.7533
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Chapter 3

A hybrid approach to
excited-state-specific variational
Monte Carlo and doubly excited
states

3.1 Abstract

We extend our hybrid linear-method/accelerated-descent variational Monte Carlo optimiza-
tion approach to excited states and investigate its efficacy in double excitations. In addition
to showing a superior statistical efficiency when compared to the linear method, our tests on
small molecules show good energetic agreement with benchmark methods. We also demon-
strate the ability to treat double excitations in systems that are too large for a full treatment
by selected configuration interaction methods via an application to 4-aminobenzonitrile. Fi-
nally, we investigate the stability of state-specific variance optimization against collapse to
other states’ variance minima and find that symmetry, ansatz quality, and sample size all
have roles to play in achieving stability.

3.2 Introduction

Accurate predictions about doubly excited states remain a significant challenge for elec-
tronic structure methods. Although they are rare in the low-lying spectra of simple organic
molecules, states with significant or near-total doubly excited character are not uncommon
in aromatic systems, other π-conjugated settings, and transition metal compounds. Their
difficulty can be understood by considering three factors. First, they tend to be strongly
multi-reference in character, which frustrates traditional weakly-correlated quantum chem-
istry approaches. Second, predicting accurate excitation energies requires a method to also
capture weak correlation effects, and capturing both strong and weak correlation in medium
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to large systems remains an open challenge in electronic structure, despite the recent progress
in smaller systems.[10, 11, 37, 41, 55, 131, 179–183] Third, they are excited states, which
remain harder to treat than ground states. When faced with a doubly excited state, many
excited state approaches are either not appropriate or difficult to afford. Time-dependent
density functional theory (TDDFT), at least within the adiabatic approximation, is famously
incapable of predicting double excitations,[27] while equation of motion coupled cluster with
singles and doubles (EOM-CCSD) is much less accurate in these states than in single exci-
tations. [40] Higher-level coupled cluster is more effective, [184] but the O(N8) and O(N10)
cost scalings of EOM-CCSDT and EOM-CCSDTQ make them difficult to use outside of
small molecules. Similarly, selected configuration interaction (sCI) methods can establish
benchmark results for double excitations in small molecules, [41] but their exponential scal-
ing makes them difficult to extend to larger systems. For these reasons, more traditional
multi-reference methods like CASPT2[20, 21] have long been favored when dealing with dou-
ble excitations.[41, 185–196] These methods have their limitations as well — intruder states,
smaller active space sizes than sCI, sometimes-sensitive state-averaging choices — and so
the development of alternative high-accuracy approaches to double excitations, especially
ones that rely on very different approximations that could cross-validate current methods’
predictions, remains an important priority.

Quantum Monte Carlo (QMC) methods are, in principle, a promising alternative for
doubly excited states and for difficult excited states more generally. Thanks to an ability to
employ correlation factors and projector Monte Carlo methods to impart weak correlation
effects on top of modest determinant expansions that capture the primary strong correla-
tions, QMC approaches offer one route towards an integrated treatment of weak and strong
correlation. Moreover, the ability of variational Monte Carlo (VMC) to work with excited
states, either in a state-averaged [86, 87, 90, 91, 197] or a state-specific [93–95] manner, offers
a clear route to extending these advantages to studies of doubly excited states. However,
these advantages are only useful in practice if these sophisticated wave function forms can
be optimized successfully for excited states. In ground states, recent years have seen sig-
nificant improvements in the size and complexity of wave functions that can be treated by
VMC wave function optimization, [79, 113, 116, 117, 119, 123, 129] from the development of
the linear method (LM) to the adoption of accelerated descent (AD) methods and even the
combination of the two. Excited state wave function optimization is less well developed, and
variance-based state-specific approaches — which are useful when dealing with high-lying
states [198] or in cases where large dipole changes raise concerns for state-averaging [70] —
have been shown to face stability issues in some surprisingly simple settings. [91]

To help improve excited-state-specific wave function optimization in VMC, this study
extends our hybrid LM/AD optimization approach [119] to a variance-based excited state
objective function and tests both its stability and its efficacy for double excitations. As in
the ground state, we find that AD provides useful support to the Blocked LM, and that
their combination is more statistically efficient than the LM alone. In terms of stability
against collapse to other states’ variance minima, we find that the difficulty that AD faces in
making large changes to the wave function [119] actually prevents it from causing stability
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issues, but that the LM part of the algorithm faces the same challenges as have been seen
[91] in Newton optimizations of the variance. We therefore focus our stability testing on the
LM, and find that achieving stable optimizations is greatly aided by enforcing symmetries,
improving the sophistication of the Jastrow factor, and using a sufficiently large sample size
to avoid stochastically jumping out of a shallow minimum. In terms of efficacy for double
excitations, we find the hybrid approach to be superior to the LM in all cases, usually
in terms of statistical efficiency, but in one case also in terms of successfully finding the
minimum at all. Comparisons against benchmark methods confirm VMC’s accuracy, while
a demonstration in a doubly excited state of 4-aminobenzonitrile shows that the approach
can be expanded well beyond the reach of sCI methods.

3.3 Theory

Excited-State-Specific Variational Monte Carlo

While VMC has historically been used for the study of ground states, multiple functionals
have been developed for the targeting and variational optimization of excited states. We
focus on the recently developed functional[94],

Ω(Ψ) =
⟨Ψ | (ω −H) |Ψ⟩
⟨Ψ | (ω −H)2 |Ψ⟩

(3.1)

which is minimized when Ψ is the eigenstate of lowest energy greater than ω. The formulation
of VMC for this excited state functional proceeds analogously to the ground state case. Just
as ground state VMC seeks to minimize the expectation value of the energy, written as

E(Ψ) =
⟨Ψ |H |Ψ⟩
⟨Ψ |Ψ⟩

=

∫
dRΨ(R)HΨ(R)∫

dRΨ(R)2
=

∫
dRΨ(R)2EL(R)∫

dRΨ(R)2
=

∫
dRρ(R)EL(R) (3.2)

using the local energy EL(R) = HΨ(R)
Ψ(R)

and probability density ρ(R) = Ψ(R)2∫
dRΨ(R)2

, we can

write Ω as

Ω(Ψ) =

∫
dRΨ(R)(ω −H)Ψ(R)∫
dRΨ(R)(ω −H)2Ψ(R)

=

∫
dRρ(R)(ω − EL(R))∫
dRρ(R)(ω − EL(R))2

. (3.3)

However, while the probability distribution ρ has a useful zero-variance property[145], it may
be less useful than other importance sampling functions when estimating quantities such as
the energy variance and matrix elements used in the optimization algorithms for minimizing
Ω. [67–70] Within this work, we use the importance sampling function

|Φ|2 = |Ψ|2 + c1
∑
i

|Ψi|2 + c2
∑
j

|Ψj|2 + c3
∑
k

|Ψk|2 (3.4)
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where c1,c2,c3 are weights on sums of squares of wave function derivatives Ψi,Ψj,Ψk for
Jastrow, CI, and orbital parameters, respectively. Effective choices for (c1, c2, c3) may be
system-dependent and require some experimentation in practice. In our results, we use
(0.0, 0.0001, 0.0) for our stability tests on a model cyanine dye, (0.0004, 0.0002, 0.0) for the
carbon dimer, (0.0001, 0.0001, 0.0) for nitroxyl, glyoxal, and acrolein, and (0.0001, 0.0, 0.0) for
cyclopentadiene and 4-aminobenzonitrile. We have found these values enabled optimization
to lower target function values than we could achieve using |Ψ|2 and that using nonzero c3
for the orbital parameter derivatives also resulted in poorer target function values. However,
our exploration of these importance function parameters was not exhaustive and different
values may also result in equally good target function values. The general intuition is to
include wave function derivative terms, as importance sampling a linear combination of the
current wave function probability density and that of its parameter derivatives allows us to
obtain a better statistical estimate of the LM Hamiltonian. Whenever the parameters have
large effects on the nodal surface, importance sampling |Ψ|2 will lead to a large statistical
uncertainty in this Hamiltonian. Importance sampling |Φ|2 allows us to better sample areas of
parameter space where the current Ψ has negligible probability density, but linear updates
to Ψ may not, obtaining a better Hamiltonian estimate and therefore better parameter
updates in the process. Because this guiding function also has considerably fewer nodes,
it can further help avoid the divergence in the variance of the variance[67, 68] encountered
with |Ψ|2 while also keeping the distribution close to |Ψ|2.[69] We also employ clipping of
the samples based on the value of the local energy[199, 200]. We compute a deviation of the
form 1

N

∑
|EL(R) − Ē| where Ē is the mean local energy of all initial N samples. Samples

with local energies more than 5 times the deviation from Ē are discarded and only the
remainder are used in computations for the VMC optimization. We find that clipping can
improve optimization performance, especially as more flexible ansatzes with larger numbers
of parameters are considered, by reducing the statistical uncertainty in the matrix elements
and derivatives used by the algorithms. Essentially, this guards against large parameter
updates.

The use of Ω for excited states also requires careful handling of the input ω. For a generic
fixed choice of ω, Ω will not be size-consistent and so ω must be updated to transform
Ω into state-specific variance minimization, which is size-consistent.[95] There are multiple
strategies for achieving this transformation to have both state-specificity and size-consistency,
such as a linear interpolation between the initial fixed value of ω and the floating value of
E − σ,[91, 95] or, as in this work, a series of fixed-ω optimizations with ω updated between
each one until self-consistency between it and E − σ is reached. The details of how ω is
varied in a calculation is one potential source of instability in the optimization as the target
function being minimized with respect to wave function parameters is now changing and
there is the possibility of slipping outside the basin of convergence, particularly if ω is varied
rapidly.
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Linear Method

The LM[112–115] is based on a first order Taylor expansion of the wave function

Ψ(p) = Ψ0 +
∑
i

∆piΨi (3.5)

using Ψi = ∂Ψ(p)
∂pi

for first order parameter derivatives of the wave function and Ψ0 for the
wave function at the current parameter values p. Seeking to minimize the target function Ω
with respect to p leads to the generalized eigenvalue problem

(ω −H)c = λ (ω −H)2 c (3.6)

which can be solved to produce an update vector c = (1,∆p). The matrices are constructed
in the basis of the initial wave function and its first order parameter derivatives, so we have
matrix elements of the form

⟨Ψi |ω −H |Ψj⟩ (3.7)

and 〈
Ψi

∣∣ (ω −H)2
∣∣Ψj

〉
. (3.8)

These matrix elements are evaluated within VMC using parameter derivatives of the wave
function and the local energy, and we have found that employing the modified guiding func-
tion |Φ|2 can be crucial for obtaining accurate estimates and effective LM optimizations. In
practice, the Hamiltonian matrix of the LM is modified with the addition of shift matri-
ces[119, 150] which help prevent incautiously large parameter changes in the optimization
and can noticeably influence the LM’s stability and performance. Our implementation of the
LM uses by default an adaptive scheme where three sets of shift values are used to produce
candidate parameter updates and a correlated sampling procedure is used to determine which
one, if any, should be taken to improve the target function value. This approach allows the
value of the shifts to vary over the course of the optimization, with the aim of allowing the
LM to safely take large steps in parameter space early on while automatically becoming more
cautious when close to the minimum, where statistical uncertainty will eventually prevent
steps from being able to resolve downhill.

Much recent work on VMC for excited states[69, 70, 87, 88, 94, 142, 198, 201] has
relied on the LM for the task of wave function optimization. However, the LM has multiple
limitations, particularly a memory cost that increases with the square of the number of
optimizable parameters, and applications with more than 10,000 parameters are rare. The
quadratic growth in the number of LM matrix elements exacerbates the nonlinear bias of the
LM and eventually leads to the underdetermined regime where there are too few samples to
effectively estimate the LM matrices and the step uncertainty is large. To help address these
issues, a variant of the LM known as Blocked LM has been developed[129] that divides the
parameter set into Nb blocks and performs a LM-style matrix diagonalization for each block.
Some number Nk of the eigenvectors from each block are retained and combined together
along with No other directions in parameter space for a second LM diagonalization to obtain
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an update in the full parameter space. The lower dimension of the matrices constructed
by the Blocked LM alleviates the issues faced by the standard LM at the cost of having to
run over the samples twice instead of only once. Further details on the Blocked LM can be
found in the original publication[129] and we describe our choices on the number of blocks
and retained directions in the supplementary material. A recent study[119] of optimization
methods for ground state optimization indicates that tighter and more statistically efficient
convergence can be obtained through a hybrid combination of the Blocked LM and AD than
when using the LM alone.

Hybrid Optimization

There are multiple flavors of AD optimization methods that require only first order param-
eter derivatives. These methods are widespread in the machine learning community and
have been increasingly used in the context of VMC.[84, 116–119] They offer some appealing
advantages compared to the LM, including a memory cost linear in parameter number, a
lower per-iteration sampling cost to estimate derivatives, and a reduced nonlinear bias from
the stochastic evaluation of those derivatives. However, comparisons[119] between AD meth-
ods and the LM indicate that the former may struggle to reach the minimum in parameter
space at comparable computational effort, especially when the wave function contains many
challenging nonlinear parameters.

An alternative approach that shows the potential to benefit from the strengths of both
classes of methods is to take a hybrid combination that alternates between them.[119] Sec-
tions of gradient descent optimization can be used to identify important directions in pa-
rameter space, which can be provided as input to the Blocked LM to help it account for
coupling between blocks of parameters. The inclusion of Blocked LM steps allows the hy-
brid method to more efficiently reach the vicinity of the minimum, while the sections of AD
enable tighter convergence by correcting poor parameter updates by the Blocked LM due to
step uncertainty. In addition, the use of AD and Blocked LM enables the optimization of
larger parameter sets that are beyond the reach of the standard LM. In energy minimiza-
tion we found it especially useful to follow the hybrid optimization with a final section of
optimization using only descent, which has been found to more efficiently achieve lower final
statistical uncertainties than optimization based solely on the LM.[119]

The hybrid scheme can be used with any of the variety of AD methods, but in this
work, we use a combination of Nesterov momentum with the RMSprop algorithm[116] that
was found to work well for energy minimization. It is specified by the following recurrence
relations.

pk+1
i = (1 − γke

−( 1
d
)(k−1))qk+1

i − γke
−( 1

d
)(k−1)qki (3.9)

qk+1
i = pki − τk

∂Ω(p)

∂pi
(3.10)
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λ0 = 0 λk =
1

2
+

1

2

√
1 + 4λ2k−1 γk =

1 − λk
λk+1

(3.11)

τk =
η√

E[( ∂Ω
∂pi

)2](k) + ϵ
(3.12)

E[(∂Ω)2](k) = ρE

[(
∂Ω

∂pi

)2
](k−1)

+ (1 − ρ)

(
∂Ω

∂pi

)2

(3.13)

Equations 3.9 through 3.11 describe how a parameter pki of the wave function on step k of
the optimization is updated using knowledge of both the current and previous values of the
target function derivatives. The step size τk is adaptively adjusted using a running average
of the square of parameter derivatives according to equations 3.12 and 3.13, where ρ sets the

relative weighting between the past average E

[(
∂Ω
∂pi

)2](k−1)

and the current value
(

∂Ω
∂pi

)2
.

The quantities d,η, ρ, and ϵ are hyperparameters whose values are chosen by the algorithm’s
user. For all our results, we have used d = 100, ρ = 0.9 and ϵ = 10−8. The value of η sets an
overall scale for step size and can have a significant influence on optimization performance
depending on the choices made for different types of parameters. Our choices for η are
discussed in the supplementary material.

Optimization Stability

When working with an exact ansatz and an infinite sample size, any non-degenerate Hamil-
tonian eigenstate possesses its own variance minimum, [93] and an optimization with a guess
sufficiently close to that minimum will be stable. In practice, sample sizes are finite, and
the use of an approximate ansatz may lead some states’ variance minima to be artificially
shallow or to disappear entirely, and so there is a real possibility that state-specific variance
minimization will be unstable. [91] If the minimum has indeed disappeared, then the only
remedy is to improve the ansatz quality, as no amount of statistical precision will allow an
optimization to find a minima that is not present. On the bright side, advances in VMC
trial functions[74–77, 99, 102, 107, 108, 202] offer a strong toolkit for improving ansatz qual-
ity, albeit one whose use can increase optimization difficulty by increasing the number of
variational parameters. If anything, this reality further motivates the development of opti-
mizers, like the hybrid approach tested here, that are designed to handle large, challenging
trial functions. In Section 3.4, we will explore the issue of optimization stability by starting
with a very simple ansatz for which some states lack variance minima and then making
improvements, either by enforcing symmetries or by enhancing the ansatz in order to make
the variance minima re-emerge.

If the variance minimum is present but shallow, either due to an approximate ansatz or
simply to a near-degeneracy in the spectrum, then the nature of the optimization update
steps, and especially their statistical uncertainty, will determine whether an optimization is
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stable. Strictly speaking, finite-sample-size VMC optimizations always contain at least some
risk of selecting a step in the tail of the distribution of steps that, if taken, will move the
optimization out of the basin of convergence for one variance minimum and into the basin
for another. To help guard against this issue, a common practice in VMC, and one that we
do use for our LM steps, is to verify on a new independent sample (usually using correlated
sampling) that the step about to be taken does indeed lower the objective function. Even
without statistical uncertainty, step size control is important in nonlinear optimization, an
issue that is typically addressed by trust radius methods that guard against single steps
making overly large parameter changes. [203] In the LM, one approach to this issue is
a diagonal shift, [113] and our LM implementation employs both this shift and an overlap-
based shift [150] for these purposes. In Section 3.4, we will see an example of an optimization
that only becomes stable with a large enough sample size due to a shallow minimum created
by a near-degeneracy.

Wave Functions

For demonstrating the hybrid method’s effectiveness within our overall QMC methodology
for excited states, we consider multiple types of parameters in our trial wave functions. Our
ansatz is the Multi-Slater Jastrow wave function, which has the form

Ψ = ψMSψJ (3.14)

ψMS =

ND∑
i=0

ciDi (3.15)

ψJ = exp

{∑
i

∑
j

χk(|ri −Rj|) +
∑
k

∑
l>k

ukl(|rk − rl|)

}
(3.16)

where Di are Slater determinants with coefficients ci and the Jastrow factor ψJ is constructed
from splines that make up the functions χk and ukl for the respective one- and two-body
terms.[150] The MSJ ansatz is a common choice in QMC, but it can be augmented further
to describe more correlation at the price of a more challenging optimization. Two means for
doing so are to add a more complicated Jastrow factor and to optimize molecular orbital
shapes.

A variety[74, 77, 93, 96–103] of many-body Jastrow factors have been considered for
improving QMC ansatzes, but in this work we will limit ourselves to adding a three-body
term and a number-counting factor. The three-body term is constructed from polynomials
of interparticle distances and can be written in the following form.[77]

u(rσI , rσ′I , rσσ′) =

MeI∑
l=0

MeI∑
m=0

Mee∑
n=0

γlmn r
l
σIr

m
σ′Ir

n
σσ′ (rσI −

rc
2

)3(rσ′I −
rc
2

)3 Θ(rσI −
rc
2

)Θ(rσ′I −
rc
2

)

(3.17)
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The maximum polynomial orders are set by MeI and Mee for the electron-ion and electron-
electron distances respectively. The γlmn are the set of optimizable parameters in this poly-
nomial and are subject to constraints for ensuring the Jastrow satisfies symmetry under
exchange and cusp conditions, which can be found in the original publication.[77] Finally,
the Theta functions require the three-body term become zero for electron-ion distances more
than half a chosen cutoff distance rc (10 bohr in our case).

Number-counting Jastrow factors are a recently developed[107, 108] ansatz component
and can be thought of as a many-body Jastrow factor in real space that aims to recover both
strong and weak correlation. They are based on a Voronoi partitioning of space, where the
population of electrons in each region, NI , is given by a sum of local counting functions CI

at each electron coordinate.

NI =
∑
i

CI(ri) =
∑
i

gI(r)∑
j gj(r)

(3.18)

where
gj(r) = exp

(
(r− µ)TA(r− µ) +K

)
(3.19)

are Gaussian basis functions about a center µ. With these populations NI , we can construct
the Jastrow factor

ψC = exp

(∑
IJ

FIJNINJ +
∑
K

GKNK

)
(3.20)

which can be tacked on to our overall expression for Ψ. The FIJ and GK are variational
parameters though the latter is in practice eliminated with a basis transformation of the
region populations and so we only optimize FIJ .[108]

State-specific orbital optimization is useful for obtaining accurate VMC results on par-
ticular excited state phenomena including charge transfer[70] and core excitations[198] and
can avoid some of the pitfalls of state-averaged approaches.[45] Recent work[75, 76] with the
table method has enabled the efficient calculation of orbital parameter derivatives in MSJ
wave functions even for large expansions and we refer the reader to the original publications
for details. However, we do note that, despite these advances, orbital optimization remains
the most challenging part of the optimization, likely due to its inherently high degree of
nonlinearity and the fact that it alters the nodal surface. One potential alternative would
be to obtain state-specific orbitals from another method[45] while optimizing only Slater
coefficients and Jastrow factors, and we make a preliminary exploration of this idea in our
results.

Variance Matching

While optimization of the parameters improves the absolute quality of the wave functions,
the results are still approximate due to the limited ansatz and accurate determination of
excitation energy differences requires cancellation of errors. This relies on a balanced treat-
ment of both the ground and the excited state, which we attempt to obtain using variance
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matching. As shown in previous work,[69, 70] this approach improves predicted excitation
energies by optimizing ansatzes of different CI expansion lengths for the two states so that
their variances are approximately equal. To facilitate interpolation, the variances for a series
of excited state calculations at different expansion lengths can be fit to an analytic form such
as the power law decay

σ2(N) = c+
d

Nα
(3.21)

to determine parameters, c, d, and α. For a given expansion length for the ground state
and a resulting variance σ2

g , we can estimate the expansion length N∗ that will yield a
matching variance for the excited state and take the corresponding energy when computing
our prediction for the excitation energy.[69] In practice, some additional varying of N by hand
can be performed to find an explicit variance match. All our reported excitation energies
were obtained using this explicit variance matching procedure.

3.4 Results

Computational Details

All our VMC calculations used an implementation of the described optimization algorithms
within a development version of QMCPACK.[150, 204] A recently developed set of pseu-
dopotentials[171] and associated basis sets were used for all molecules. For constructing our
ansatzes, we have employed Molpro[170] and PySCF[205] for CASSCF calculations to gener-
ate Slater determinant expansions. In one case, we instead use CASSCF to provide orbitals
for a selected CI calculation in Dice.[10, 131] CASPT2 calculations in Molpro[170] were used
alongside other methods’ literature values in benchmarking our VMC results. Specific active
space and basis set choices are given in each system’s section. Molecular geometries, absolute
energies for our doubly excited state calculations, and additional optimization details can be
found in the supplementary material.
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Figure 3.1: Examples of unstable and stable LM optimizations of Ω for CN5. We consider
the singlet near -40.5 Eh, which is dominated by a HOMO to LUMO excitation, as well as the
next triplet and singlet above it, which are dominated by a HOMO-2 to LUMO excitation.
Initial wave function guesses were obtained from a diagonalization of the Hamiltonian in a
26 determinant space with pre-optimized one- and two-body Jastrow factors present. These
Jastrows were optimized further along with the 26 determinant coefficients. For each state,
the value of ω was set to the E-σ value from a one million sample evaluation using the initial
wave function and held fixed throughout the optimization. The LM shifts were kept constant
at 0.1 for the diagonal shift and 1 for the overlap-based shift throughout the optimizations
with 50,000 samples per iteration in all cases. For the unstable cases, we found that using
increased sampling effort alone did not ensure stability. A proposed parameter update was
rejected if our correlated sampling assessment predicted it would raise the target function
value, but all optimizations contain hundreds of accepted steps. Horizontal lines show the
lowest 7 eigenenergies from our diagonalization, with solid lines for singlet states and dashed
for triplets.

Stability in a Model Cyanine Dye

To explore the stability of Ω-based variance minimization, we have performed a series of
LM tests on the model cyanine dye C3H3(NH2)2

+ (denoted hereafter as CN5) in which
Filippi and coworkers discovered variance optimization instabilities for some choices of the
trial function. [91] In particular, they showed that while a CAS(6e,5o) wave function was
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stable, other ansatze from CAS(6e,10o) and CIPSI were not. They also showed that a small
CSF expansion, constructed of HOMO-to-virtual excitations of B1 symmetry, was especially
prone to optimize to a different state than the one targeted by the initial guess due to the
absence of variance minima in this simpler case. Here we perform similar tests to study
the absence of variance minima, confirming that instabilities are present when the sample
size is small and the trial function is simple, but also demonstrating that improvements
in the trial function and sampling effort can overcome these instabilities. To start, we
note that virtual orbitals outside the CASSCF active space are often not physical in their
shapes, and so for the states we target, we make sure that the primary orbitals involved are
within the (6e,5o) CASSCF active space. In this active space, we performed an equal-weight
state-averaged CASSCF optimization of the lowest four B1 singlet states using an aug-
cc-pVDZ basis set in Molpro[170], after which we imported all determinants with weights
above 0.05 in any state into our VMC ansatz. This resulted in a 26-determinant ansatz,
or, in the cases where we enforced singlet spin symmetry in VMC, a 13-CSF ansatz. Note
that this trial function differs from the one used previously, [91] which is intentional, as
the previous approach examined some states whose dominant orbitals were virtual in the
quantum chemistry calculations and so may not have been as well optimized as orbitals
containing electrons. Here, we try to ensure that orbital quality is balanced between states by
ensuring that the dominant orbitals of the states we test are within our CASSCF active space.
Nonetheless, we can still find optimization instabilities when using this simple ansatz, which
confirms that ansatz components beyond a small determinant expansion can be necessary
to achieve stable variance optimization.

As seen in Figure 3.1, the stability of an optimization using our 26-determinant ansatz
depends on which state is being targeted and in some cases on whether or not spin symmetry
is enforced. First, consider the optimization that guesses the singlet near -40.5 Eh and then
collapses to the triplet below it. This failure shows that, at least at this level of statistical
resolution, the singlet in question lacks a local variance minimum in the variable space of
the 26 different determinant coefficients. However, after enforcing spin symmetry by instead
optimizing the 13 coefficients for the singlet CSFs, the variance minimum for this state
reappears. Next, we note that when we optimize the 26 determinant coefficients starting
with a guess for the triplet just below -40.4 Eh, the optimization is stable. Thus, in these
cases, moving to a more sophisticated ansatz is not necessary so long as symmetries are
enforced. The same cannot be said for the most difficult case we consider, in which a guess
for the singlet just above -40.35 Eh is unstable and optimizes to a higher singlet even when
spin symmetry is enforced. With no more symmetries to make use of, we must conclude that
variance minimization is not stable for this state when using this simple ansatz.

In principle, variance minimization should become stable as the ansatz is improved and
the sample size increased. The question, of course, is whether stability can be achieved
in practice, especially given that overly aggressive embellishments of the ansatz may lead
to an impossibly difficult optimization. First, let us improve the ansatz by adding the 3-
body Jastrow factor introduced by Needs and coworkers[77], which we first optimize for
the guessed CSF expansion with the CSF coefficients held fixed before finally optimizing
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Figure 3.2: Fractions of the CI expansion corresponding to the third singlet’s dominant
CSF over the course of LM optimizations. When starting from the energy eigenstate with
only 1- and 2-body Jastrows are present, the weight of this CSF quickly collapses as the
optimization drifts to a higher singlet. This optimization used 50,000 samples per iteration
and starting from solely the dominant CSF with an additional 3-body Jastrow delayed,
but did not prevent, the drift at this sampling effort. Upon increasing the sample size to
500,000 samples per iteration, the 3-body Jastrow wave function optimization became stable,
as shown by the solid line. Note that the CI expansion fraction is simply the sum of the
squares of the determinant coefficients within the given CSF divided by the sum of all the
squared determinant coefficients.

all variables together. As seen in Figure 3.2, which shows the key CSF weights during the
final optimization in which all parameters are free to vary, this ansatz improvement does
lead to a stable optimization, but only when a larger sample size is used, suggesting that
the variance minimum is now present but shallow. Given how close in energy this state is
to the singlet state above it (about 15 mEh), a shallow minimum makes sense, which is a
good reminder that optimization objective functions based on the energy and variance are
at a disadvantage when states are nearly degenerate. For low-lying states, state-averaged
energy minimization can often deal with this type of situation, [91] but near-degeneracies
remain a challenge for higher-lying states or in situations where state-averaging introduces
its own challenges. In future, it may therefore be worth considering ways to involve other
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properties in the objective function, possibly via a VMC analogue of a generalized variational
principle. [48] Even with this near-degeneracy, which we stress involves states significantly
closer together in energy than any of those tested in the small-determinant-expansion case
in the previous study, [91] we do see that a modest improvement in ansatz quality produces
a stable Ω-based LM optimization.

While this finding is reassuring, we must stress that difficult optimization cases remain
a serious challenge. For example, Filippi and coworkers found [91] that highly sophisticated
wave functions derived from a (6,10) active space faced optimization instabilities even though
wave functions derived from a smaller (6,5) active space did not, showing that in practice
it is not always easy to predict when these instabilities will arise. This in mind, we have
checked carefully for signs of optimization instability in the double excitations we now turn
to, and while we did not observe any such issues in these states, finding a more complete
resolution to this problem is clearly an important direction for future research.

Carbon Dimer

For our doubly excited state applications, we first consider the carbon dimer, a very heavily
studied system for the testing and development of theoretical methods[41, 55, 206, 207]. We
use the 2 1Σg state, which is characterized by a HOMO to LUMO squared double excitation,
as a simple starting test case for validating the hybrid method’s results against the LM’s
and assessing the accuracy of VMC. In this case, selected CI methods are able to achieve
millions of determinants and provide high quality benchmark data[41, 208] on the vertical
excitation energy that we can use to assess our results with more compact wave functions.
We consider only an equilibrium bond length of 1.248 Å.

To construct our ansatzes, we use a (8e,8o) CASSCF calculation in Molpro[170] with a
carbon pseudopotential and the corresponding cc-pVTZ basis.[171] The resulting CI expan-
sions are used in our variance matching procedure and we consider cases both for standard
MSJ ansatzes using only one- and two-body Jastrows, and with an additional NCJF and
orbital optimization. The NCJF was produced using a set of 16 counting regions composed
of 8 octants for each carbon atom.[108]
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Figure 3.3: Excitation energy of the 2 1Σg state in C2 for LM and hybrid method on both
MSJ and all parameter ansatzes. See also Table 3.1. 20 determinants were used for all
ground state optimizations. The excited state optimizations used 23 determinants for both
the LM and Hybrid MSJ cases, 71 for the LM All case, and 50 for Hybrid All case. The
benchmark value is taken from a selected CI calculation using the CIPSI algorithm.[41]

Table 3.1: Excitation energies and uncertainties for the 2 1Σg state in C2. Literature values
for selected CI, CCSDT, CC3, and CASPT2 using an aug-cc-pVQZ basis set are included
for comparison.[41]

Method Excitation Energy (eV) Uncertainty (eV) Total Samples
LM MSJ VMC 2.34 0.04 100,000,000
LM All VMC 2.36 0.03 100,000,000

Hybrid MSJ VMC 2.32 0.02 138,000,000
Hybrid All VMC 2.34 0.01 138,000,000

Selected CI 2.40
CCSDT 2.87

CC3 3.24
CASPT2 2.50

Figure 3.3 shows the predicted excitation energy achieved by the LM and the hybrid
method on both the simpler MSJ ansatzes and on all parameter wave functions that include
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the NCJF and orbital rotations. It is reassuring to find that the hybrid method’s results
agree with the LM’s to within statistical uncertainty. In terms of accuracy, the VMC results
are within about 0.05 eV of the selected CI value with the all parameter optimizations
offering some improvement over the MSJ results. This has been achieved with very modest
CI expansions, using less than 100 determinants in all cases, compared to the 5 million used
to produce the benchmark energy.[41]
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Figure 3.4: Example optimization of target function Ω for all parameters using the hybrid
method. Points for AD correspond to an average over 50 iterations while those for the
Blocked LM are individual iterations.

We also explore the potential benefits of the hybrid approach over a pure LM optimiza-
tion. Figure 3.4 shows an example optimization by the hybrid method of all parameters
including NCJF and orbitals. With these more challenging parameters, the Blocked LM is
more prone to step uncertainty and upward fluctuations of the target function, which in this
case we see the AD sections correct. The hybrid method also exhibits a statistical advantage
over the LM based on the uncertainty and sampling data in Table 3.1. For slightly greater
sampling effort, the hybrid method provides about a factor of 3 improvement in the uncer-
tainty on the excitation energy, which would require a factor of 9 more samples to obtain
solely with the LM. This advantage in computational efficiency persists in our results for
more difficult systems.
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Nitroxyl, Glyoxal, and Acrolein

One nuance to the study of doubly excited states is distinguishing between different types
of such states. For instance, the state we have considered in the carbon dimer is multi-
determinantal while some other molecules’ states can be viewed as single reference, enabling
higher order coupled cluster[41] or orbital optimized DFT[209] to obtain accurate excitation
energies. The work of Loos and coworkers has categorized a set of doubly excited states
using the percentage of singles amplitudes in CC3[41] and we briefly consider several of the
same systems to compare our methodology against their benchmark results. Specifically, we
consider the 2 1A′ state in nitroxyl, the 2 1Ag state in glyoxal, and the 3 1A′ state of acrolein.
These systems exhibit some of the diversity of doubly excited states, with acrolein’s state
containing a high percentage of single excitations, while nitroxyl and glyoxal have almost
none. For all systems, we use cc-pVTZ basis sets with pseudopotentials[171] and generate
determinants for MSJ ansatzes from CASSCF calculations in Molpro.[170] Our active spaces
are (12e,9o) for nitroxyl, (8e,6o) for glyoxal, and (10e,10o) for acrolein. Each CASSCF
calculation was state-averaged over four singlet states.

The excitation energy predictions from the LM and the hybrid method are shown in
Figures 3.5 through 3.7 with precise values given in Tables 3.2 through 3.4. We compare
our results to the theoretical best estimates (TBE) from Loos and coworkers as well as
their coupled cluster and CASPT2 values.[41] For this trio of systems, we find that we
can obtain good accuracy with very modest wave functions and consistent results between
the LM and hybrid method. For nitroxyl, we come within 0.03 eV of the TBE, while our
excitation energies in glyoxal and acrolein are within about 0.2 eV. This level of accuracy
outperforms the coupled cluster approaches as well as some versions of CASPT2 in the case
of acrolein. As in the carbon dimer, these calculations use less than 100 determinants in
all cases compared to the millions used in the benchmark selected CI calculations, which
are restricted to smaller basis sets in glyoxal and acrolein. We note that our methodology
allows for further systematic improvement through more sophisticated ansatzes and in order
to consider its performance on larger systems beyond the reach of selected CI, we now turn
to some molecules outside the benchmark set of Loos and coworkers.
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Figure 3.5: Excitation energy of the 2 1A′ state in nitroxyl for LM and hybrid method on
MSJ ansatzes. See also Table 3.2. Both methods used 20 determinants the ground state
and 40 for the excited state. Reference values for coupled cluster, CASPT2, and selected CI
are taken from the work of Loos and coworkers.[41] They take the selected CI value as the
theoretical best estimate.

Table 3.2: Excitation energies and uncertainties for the 2 1A′ state in nitroxyl. The included
literature values for CCSDT, CC3, CASPT2, and selected CI all use an aug-cc-pVQZ basis
set.[41]

Method Excitation Energy (eV) Uncertainty (eV) Total Samples
LM MSJ VMC 4.30 0.06 100,000,000

Hybrid MSJ VMC 4.29 0.01 138,000,000
TBE/Selected CI 4.32

CCSDT 4.8
CC3 5.23

CASPT2 4.34
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Figure 3.6: Excitation energy of the 2 1Ag state in glyoxal for LM and hybrid method on
MSJ ansatzes. See also Table 3.3. Both methods used 50 determinants the ground state and
20 for the excited state. Reference values for coupled cluster, CASPT2, and selected CI are
taken from the work of Loos and coworkers.[41] Their theoretical best estimate is obtained
by adding a 0.06 eV basis set correction to the selected CI result.

Table 3.3: Excitation energies and uncertainties for the 2 1Ag state in glyoxal. The included
literature values use an aug-cc-pVDZ basis set for selected CI and aug-cc-pVQZ for CCSDT,
CC3, and CASPT2.[41]

Method Excitation Energy (eV) Uncertainty (eV) Total Samples
LM MSJ VMC 5.90 0.09 140,000,000

Hybrid MSJ VMC 5.75 0.03 138,000,000
TBE 5.54

Selected CI 5.48
CCSDT 6.35

CC3 6.76
CASPT2 5.43
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Figure 3.7: Excitation energy of the 3 1A′ state in acrolein for LM and hybrid method on
MSJ ansatzes. See also Table 3.4. Both methods used 20 determinants the ground state and
70 for the excited state. Reference values for coupled cluster, CASPT2, and selected CI are
taken from the work of Loos and coworkers.[41] Their theoretical best estimate is obtained
by adding a -.13 eV basis set correction to the selected CI result.

Table 3.4: Excitation energies and uncertainties for the 3 1A′ state in acrolein. The included
literature values use a 6-31+G(d) basis set for selected CI, an aug-cc-pVTZ basis CC3, and
an aug-cc-pVQZ basis for the three versions of CASPT2.[41]

Method Excitation Energy (eV) Uncertainty (eV) Total Samples
LM MSJ VMC 7.74 0.08 140,000,000

Hybrid MSJ VMC 7.66 0.03 138,000,000
TBE 7.87

Selected CI 8.00
CC3 8.08

CASPT2 7.84
MS-CASPT2 8.3

XMS-CASPT2 7.84
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Cyclopentadiene

For a more challenging test of our methodology, we consider the doubly excited 3 1A1 state
of cyclopentadiene (CPD). This state has been repeatedly studied in theoretical benchmark
investigations[190, 191, 210–213] and in some experimental investigations[214, 215]. As
before, we construct multi-Slater wave functions and add traditional 1 and 2-body Jastrow
factors. For this larger molecule, we use the heatbath selected CI (HCI) method[10, 131]
in the Dice code to produce our CI expansions by correlating 26 electrons in the lowest
46 orbitals from a (6e,5o) CASSCF in Molpro with pseudopotentials and cc-pVTZ basis
sets.[171]

In this system, we find that the LM fails to optimize the Ω functional as well as the
hybrid method and leads to an inferior energy prediction. However, for relatively simple
variance-matched multi-Slater Jastrow ansatzes of 20 and 500 determinants for the ground
and excited states respectively, the hybrid method is able to achieve an excitation energy
within about 0.1 to 0.2 eV of CASPT2 as seen in Figure 3.8 and Table 3.5.
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Figure 3.8: Excitation energy of 3 1A1 state in CPD for LM and hybrid method. See
also Table 3.5. Both the LM and hybrid optimizations used 20 and 500 determinants for
the ground and excited states, respectively. Literature values are taken from Schreiber et
al.[190] for CASPT2 and CCSD LR and from Shen and Li[212] for MR-CISD+Q.
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Table 3.5: Excitation Energies and uncertainties for 3 1A1 state in CPD.

Method Excitation Energy (eV) Uncertainty (eV) Total Samples
LM MSJ VMC 7.59 0.06 140,000,000

Hybrid MSJ VMC 8.27 0.03 210,000,000
CASSCF 10.29
CASPT2 8.39

Lit. CASPT2[190] 8.52
Lit. CCSD LR[190] 8.95

Lit. MR-CISD+Q[212] 9.02

To elaborate on the failure of the LM in this case, we present data in Table 3.6 on a
head to head comparison of the LM and the hybrid method on the same excited state wave
function with a determinant expansion length of 50 and using the same fixed value of ω in the
target function. We find that the hybrid method achieves a lower value of the target function,
which corresponds to a significantly higher energy for the excited state. This results in its
substantially better prediction for the excitation energy as both optimization methods give
comparable results for the ground state calculation. We note that extensive experimentation
with the technical details of the LM, including choices for the shifts, sampling effort, and
guiding function failed to bring it into agreement with the hybrid method. When we started
the LM with the hybrid method’s optimized wave function, it remained at roughly those
parameter values with the same target function value and energy as found by the hybrid
method. This test indicates that the LM agrees that the hybrid method has found an optimal
location in parameter space if it starts close enough, but is apparently unable to find it itself
when starting from the unoptimized wave function.

Table 3.6: Head to head comparison of LM and hybrid for CPD on the same excited state
wave function at fixed ω.

Method Energy (a.u.) Energy
Uncertainty
(a.u.)

Target
Function
Ω(Ψ) (a.u.)

Target
Uncertainty
(a.u.)

LM MSJ VMC -31.541 0.0013 -0.747 0.0023
Hybrid MSJ VMC -31.517 0.0007 -0.752 0.0004

4-Aminobenzonitrile

Our final system, 4-aminobenzonitrile (ABN), has been heavily studied as an example of
intramolecular charge transfer(ICT) with many attempts to determine the geometry of the
ICT state[216–219]. Here we test our ability to treat a doubly excited state at the ICT
geometry. We selected this system for an initial exploration of possible benefits of using
state-specific orbitals within VMC while forgoing orbital optimization. These orbitals were
obtained from a recent state-specific CASSCF approach[45, 219] that employs a root tracker
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based on combination of an excited state variational principle and density matrices. For a
twisted geometry of ABN[219] (coordinates in supplementary material), we construct Multi-
Slater wave functions from both state-averaged (over four states) and state-specific CASSCF
calculations that use a (12e,11o) active space along with pseudpotentials and cc-pVDZ basis
sets.[171] Both types of CASSCF calculations were performed in a development version of
PySCF.[205] The excited state with double excitation character that we consider appears as
the fourth CASSCF state in energy, directly above the ICT state.

Figure 3.9 shows the excitation energies obtained by the LM and hybrid method for the
cases where we use state-averaged and state-specific CASSCF orbitals. In this instance, we
find that the optimization methods agree with each other and that there is no clear difference
between using state-averaged and state-specific orbitals within our VMC ansatzes. There
is about a 0.4 eV difference between our VMC results and CASPT2, but in the absence of
an experimental result or higher level benchmark, it is not obvious which is more accurate.
The agreement between the state-averaged and state-specific VMC excitation energies may
not be too surprising given that we also find little difference at the CASSCF level. While
this is a null result for the usefulness of state-specific orbitals for this state in ABN, other
cases may perform differently, including the ICT state. In terms of optimization, the across
the board agreement in ABN offers further evidence that the hybrid method is at least as
accurate as the LM, while continuing to provide better statistical efficiency.
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Figure 3.9: Excitation energy of the doubly excited state in ABN for LM and hybrid method.
See also Table 3.7. Excitation energies for all other methods were obtained in Molpro. 20
determinants were used in all ground state optimizations. The excited state optimizations
used 70, 100, 500, and 300 determinants for the LM SA, Hybrid SA, LM SS, and Hybrid
SS cases respectively. These numbers of determinants were chosen to achieve an explicit
variance match between the ground and excited states for each method.

Table 3.7: Excitation Energies and uncertainties for ABN.

Method Excitation Energy (eV) Uncertainty (eV) Total Samples
LM SA MSJ VMC 6.73 0.10 140,000,000

Hybrid SA MSJ VMC 6.58 0.04 174,000,000
LM SS MSJ VMC 6.78 0.08 140,000,000

Hybrid SS MSJ VMC 6.61 0.04 192,000,000
SA CASSCF 6.10
SS CASSCF 6.15
SA CASPT2 6.23
EOM-CCSD 7.16
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3.5 Conclusion

We have presented an extension of a hybrid LM/AD optimization approach to the case of
excited-state-specific variance optimization and tested its efficacy for doubly excited states.
As in energy minimization, we find the hybrid method to be more statistically efficient than
the linear method, and, in one case, we were surprised to find it to be more effective at
finding the variance minimum. Thanks to VMC’s ability to combine a linear combination
of determinants (for capturing strong correlation) with sophisticated correlation factors (for
weak correlation) and its ability to explicitly balance wave function quality between different
states, we find it to be highly accurate compared to theoretical benchmarks in our tests on
doubly excited states. As it relies on far more modest determinant expansions than sCI
methods, it can also be used to treat both strong and weak correlation in system sizes where
capturing both through sCI is not currently possible. We have also performed some simple
tests on the stability of state-specific variance minimization and found that using symmetry,
increasing sample sizes, and improving the quality of the wave function approximation all
play important roles in preventing collapse to other states.

Looking forward, there are multiple avenues for further improvement. Our optimiza-
tion stability testing was limited to a relatively simple example, and while it does suggest
steps that can be taken to alleviate stability concerns, it remains to be seen how effective
these steps will be in general. The demonstration by Filippi and coworkers [91] that op-
timization instabilities can persist even when highly sophisticated CIPSI-based VMC trial
functions are employed makes clear that there is more work to be done to resolve this issue.
As variance-based approaches are particularly ill-suited to degenerate or near-degenerate
states, it would be quite interesting to explore whether generalized variational principles
that incorporate properties beyond the energy can be usefully adapted for VMC optimiza-
tion. Another priority is improving user-accessibility, as the recent improvements in VMC
optimization methodology have in many cases brought with them a significant increase in the
methodological complexity. Finding ways to robustly automate choices for stability shifts,
what balance to strike between linear method and accelerated descent steps, what hyper-
parameters to choose for the descent, and how to arrange variables into blocks within the
blocked linear method would significantly simplify the practical application of these tools.
The systematic study of effective importance sampling functions is another supporting step
for excited state optimizations, where their use is more crucial than in the ground state. A
third improvement would be to automatically stage the optimization of different parameters
according to the statistical significance of their gradients, which would allow the noisiest
and most difficult parameters to be handled at the end of the optimization without any di-
rect human decision-making. Finally, although VMC optimization is becoming increasingly
capable, it will likely be profitable to map out areas where difficult parameters like orbital
shapes can be safely kept at their quantum chemistry values, whether from state-averaged
or state-specific CASSCF. Given the high accuracy that VMC can offer for very challenging
excited states, providing easy-to-use incarnations of the best available VMC optimization
methods is a high priority.
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Chapter 4

Combining State-Specific Quantum
Chemistry and Quantum Monte Carlo
for Molecular Excited States

4.1 Abstract

Through a combination of excited-state-specific quantum chemistry, selected configuration
interaction, and variational Monte Carlo, we investigate an approach to predicting vertical
excitation energies that achieves high accuracy across a broader range of states than either
coupled cluster theory or multi-reference perturbation theory. The approach can be employed
in settings beyond the current reach of selected configuration interaction or density matrix
renormalization group and retains its high accuracy whether it is treating single excitations,
double excitations, or charge transfer excitations. To address the different challenges that
arise in these types of states, the method combines excited-state-specific orbital relaxations
from complete active space self consistent field theory, an extended active space configuration
selection, and improved approaches to optimization and variance-balancing within variational
Monte Carlo. In addition to testing in smaller molecules where clear theoretical benchmarks
exist, we use the method to offer new benchmark values in triple-zeta-or-better basis sets
for a doubly excited state of benzene and two states, one of them partially-doubly-excited,
in uracil.

4.2 Introduction

The wide variety of different excited states in molecules poses an ongoing challenge for tradi-
tional electronic structure methods. Many of the most widely applied and scalable methods
may provide satisfyingly accurate predictions for one class of excited states, only to fail
on others. When surveying the landscape of electronic structure techniques, this problem
of inconsistent performance can be traced to the difficulty of simultaneously satisfying the
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multiple requirements for accurate treatment of all classes of excited states. First, a method
should have the means of correctly describing multiconfigurational character, which is more
common among excited states compared to ground states. At the same time, for quanti-
tatively accurate energies, the method must possess an ability to capture weak correlation
effects. This effective treatment of strong and weak correlation should be maintained in a
balanced fashion for both ground and excited state in order to obtain correct energy differ-
ences, and accounting for orbital relaxations may be necessary for cases where orbital shapes
differ significantly between the two states. Any potential method with general-purpose ap-
plicability to excited states must also satisfy the above considerations in larger molecules and
basis sets. After discussing the individual strengths of major quantum chemistry approaches,
we present a methodology that satisfies these criteria and exploits wave function sparsity
and state-specificity to deliver consistently accurate excitation energies across a wide range
of molecules and types of excited states.

Time-dependent density functional theory (TDDFT) is by far the most commonly used
approach for excited states and has played a leading role in the modeling of absorption spec-
tra.[25] However, TDDFT has historically struggled, at least for its most common functional
choices within the adiabatic approximation, to describe some classes of excited states accu-
rately, with double excitations and charge transfer (CT) as two notorious examples.[26–29]
While excited state DFT methods continue to benefit from extensive research[30, 209, 220–
222] analyzing and improving approximate functionals, these categories of excited states re-
main challenging. One alternative approach is to employ Green’s function techniques such as
GW-BSE, which can obtain improved excitation energies over TDDFT,[223–225] but these
methods in practice rely on an initial set of DFT eigenvalues and eigenstates and are sen-
sitive to this choice of starting point. These challenges and the ever-growing array[4, 5]
of possible functional choices motivate the development and use of methods with greater
predictive power for difficult categories of excited states.

Among wave function approaches to excited states, coupled cluster theory is a natu-
ral initial option to consider, given its prowess for ground state properties and its effective
treatment of weak correlation.[22, 226, 227] Excited state extensions of coupled cluster, par-
ticularly the equation-of-motion formulation,[35] have become widely used at different levels
of cluster truncation. For single valence excitations, limiting the excitation level to singles
and doubles with EOM-CCSD obtains balanced results with a systematic error of only a
few tenths of an eV. [36] Higher orders can achieve even better accuracy. [37] However,
for double excitations, EOM-CCSD produces substantially larger errors than for single ex-
citations[40] and while higher orders of coupled cluster can obtain accurate results in some
cases,[184] their errors can still be as large as half an eV or worse for pure double excita-
tions.[41] Besides these inaccuracies, the high scalings of coupled cluster methods, O(N8)
and O(N10) for EOM-CCSDT and EOM-CCSDTQ respectively, hinders their application to
larger molecules, even for favorable categories of excited states.

Coupled cluster’s difficulties have helped motivate widespread use of multireference ap-
proaches such as CASPT2 to address doubly excited states.[41, 185–196] While CASPT2
faces its own limitations due to intruder states, sensitivity to active space and state-averaging
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choices, and the limiting of dynamic correlation treatment to the PT2 level, it is still capable
of obtaining accurate excitation energies, most notably for the pure double excitations where
coupled cluster struggles the most.[41] However, for CT states, the situation is reversed, with
the use of state-averaging[228] biasing the CASPT2 orbitals to the ground state and pro-
ducing significant errors.[43–45] In contrast, recent efforts to build accurate benchmark sets
for CT states, which are currently less common than for other classes of excited states, have
relied upon coupled cluster.[38, 39, 229] This problem of inconsistent performance across the
diverse array of possible excited states makes the development of more broadly reliable tools
a key priority in electronic structure.

While a number of methods,[8, 230] including selected CI (sCI),[37, 41, 130, 132, 208]
density matrix renormalization group (DMRG),[231, 232] and full configuration interaction
quantum Monte Carlo (FCIQMC),[55, 56, 233–235] can achieve this reliability with system-
atic exploitation of wave function sparsity and/or compressibility, their high scaling limits
their prospects for extensions beyond small systems. A recent study[230] of benzene is
a useful demonstration of the state-of-art capabilities of this collection of high accuracy
techniques. The determination of benzene’s ground state energy in a double-ζ basis set is
both an important example of the molecular sizes that these high-level approaches can now
treat and a reminder of the challenges they face in larger systems and the larger basis sets
needed for excited state accuracy. So far, the role of sCI, DMRG, and FCIQMC in larger
molecules beyond benzene has been limited to mostly serving as (impressively large) active
space solvers.[12, 19, 236–238] Thus, whether one looks to coupled cluster, multi-reference
perturbation theory, or the modern array of sparsity and compressibility approaches, it re-
mains challenging to deliver consistently accurate excitation energies in larger molecules,
larger basis sets, and across widely differing classes of excitations.

In pursuit of this challenge, we adopt an approach that combines the advantages of
excited-state-specific quantum chemistry, sCI, and variational Monte Carlo (VMC). The
combination [62, 92, 169, 239–242] of sCI and QMC can be especially effective thanks to
the determinant expansions’ leveraging of wave function sparsity and the efficacy of Jastrow
factors [74, 77, 93, 96–103, 107, 108] for addressing weak correlation effects that sCI is less
efficient for. While excited state VMC approaches in this area that use state-averaging are
highly effective in many systems, [86–92] we choose to employ state-specific formulations
of VMC [93–95] in order to avoid the same challenges that state-averaged CASPT2 faces
in charge transfer states. Further, although recent advances in VMC orbital optimization
[75, 76] can be employed for state-specific optimization, [70, 198] our experience has been
that orbital optimization significantly increases the difficulty and cost of the overall VMC
ansatz optimization when compared to optimizing CI coefficients and Jastrow parameters
alone. In the present study, we therefore hypothesize that orbitals taken from excited-state-
specific complete active space self consistent field theory (SS-CASSCF) [45, 50, 219] will be
sufficiently close to optimal that accurate excitation energy predictions can be made with-
out further optimization within VMC. With these quantum-chemistry-derived excited state
orbitals, we employ sCI in an extended active space to identify the electron configurations
that are most helpful in treating the strong and the leading weak correlation effects. This
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qualitatively correct but not quantitatively accurate wave function is then fed into excited-
state-specific VMC, where the configuration interaction expansion is re-optimized alongside
explicit (Jastrow) correlation factors. Finally, as these wave functions are still not exhaus-
tively accurate in larger molecules and basis sets, we use VMC to balance the accuracy of
the ground and excited state approximations through variance matching [69–71, 198] in an
attempt to explicitly enforce error cancellation in the energy differences between ground and
excited states.

This combination of quantum chemistry with VMC offers a number of key advantages.
The explicitly multi-reference character is essential when treating difficult double excitations
and in states with significant mixtures of singly and doubly excited character. By avoiding
state averaging, charge transfer states are provided with fully appropriate post-excitation
orbital relaxations and, in the results below, we find that stopping the orbital optimization
after the SS-CASSCF stage is sufficient for high accuracy. For weak correlation effects, the
use of Jastrow factors and a modest but sCI-chosen configuration interaction expansion ap-
pears to be sufficient for the error cancellation balance of variance matching to do its job
and deliver 0.1 eV accuracies in all systems tested in which a reliable theoretical bench-
mark exists. This interplay between variance matching, Jastrow factors, and the limited CI
expansion is crucial, as it allows us to push into larger molecules and basis sets than can
be reached by approaches that rely on sCI alone and thus require much more exhaustive
CI expansions. Finally, it is important to point out that the approximations employed in
this approach are quite different than those used in EOM-CC, which allows us to validate
coupled cluster results in some circumstances where it is not otherwise obvious (e.g. due to
partial doubly excited character) how accurate coupled cluster should be. When these meth-
ods agree about a challenging excitation energy, such as in the 31A′ state of uracil, the fact
that they rely on very different assumptions and approximations increases our confidence in
the accuracy of the prediction. We therefore hope that, in addition to its longstanding role
in providing ground state reference data in both molecular[52] and solid-state[53] settings,
quantum Monte Carlo can, in tandem with excited-state-specific quantum chemistry and
coupled cluster theory, be increasingly helpful in this regard in challenging molecular excited
states.

To make this combined approach as practical as possible, we have also explored technical
improvements to the VMC optimization and variance matching algorithms. Methods for
optimizing wave functions in VMC have improved steadily in recent years, [79, 113, 116, 117,
123, 129] with variants of the linear method (LM) and accelerated descent (AD) showing
particular progress. Building on our recent work on a hybrid optimization approach that
combines a blocked variant [129] of the LM with AD, [71, 119] we adopt a simple scheme
for deciding which parameters are most likely to benefit from the LM optimization step
and which can be left for AD to optimized. We also deploy a more practical variance
matching approach that in most cases allows us to avoid building multiple CI expansions for
interpolation purposes and thus simplifies calculations in most cases.

We investigate the effectiveness of the overall approach and these technical improvements
by surveying a range of different types of excited states. By drawing upon recent benchmark
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sets [37, 41] and our own quantum chemistry calculations, we are able to demonstrate the
efficacy of our SS-CASSCF/sCI/VMC approach in single, double, and charge transfer excited
states, reaching 0.1 eV accuracy in all cases where rigorous benchmarks are available. In
some larger systems, where such benchmarks are not available, we are still able to establish
close agreement between our approach and the highest-affordable levels of coupled cluster
theory. In a challenging doubly-excited state of benzene where coupled cluster is simply
not appropriate, we are able to offer some clarity amidst the range of predictions made by
different variants of CASPT2. Taken together, the results indicate that the combination of
state-specific quantum chemistry, sCI, and VMC can offer new clarity for excited states in
a wide range of molecules that are either too difficult or too large for other high-accuracy
electronic structure methods.

4.3 Theory

Excited State-Specific Variational Monte Carlo

The application of VMC to excited states is an active area of method development with
multiple possible approaches, including the examples of both state-averaged energy mini-
mization[86–92] and state-specific variance-based minimization shown below.[70, 71, 93–95,
198]

Ω(Ψ) =
⟨Ψ | (ω −H) |Ψ⟩
⟨Ψ | (ω −H)2 |Ψ⟩

(4.1)

W (Ψ) =
〈
Ψ
∣∣ (ω −H)2

∣∣Ψ〉 (4.2)

ESA =
∑
I

wI

〈
ΨI
∣∣H ∣∣ΨI

〉
⟨ΨI |ΨI⟩

(4.3)

We employ the state-specific objective function [94] Ω, which targets the lowest state
above ω in energy when minimized. To achieve size-consistent results, the input ω must
be updated to E − σ, the difference between the energy and the standard deviation, which
transforms the optimization of Ω into state-specific variance minimization.[95] There are
multiple approaches to varying ω, but in this work we simply conduct multiple fixed-ω
calculations and change the value of ω between each one until self-consistency between it
and E − σ is reached. In practice, only a few such fixed-ω optimizations are needed for any
one state.

In contrast to the deterministic methods that are predominantly used in electronic struc-
ture, QMC must obtain stochastic estimates of the energy and all related quantities, and
practitioners have flexibility in choosing probability distributions for performing efficient

Monte Carlo integration. While the distribution ρ(R) = Ψ(R)2∫
dRΨ(R)2

is a common choice and
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has a zero variance property[145] when Ψ is an exact eigenstate, it suffers from an infinite vari-
ance problem with approximate Ψ in the estimation of other key quantities, particularly the
variance and wave function derivatives. To address this issue, regularization schemes,[110,
111] estimator modifications,[145, 243, 244] and other importance sampling functions[67–71,
109] have all been variously employed by the QMC community. We use the same importance
sampling function

|Φ|2 = |Ψ|2 + c1
∑
i

|Ψi|2 + c2
∑
j

|Ψj|2 + c3
∑
k

|Ψk|2 (4.4)

that was previously used and more fully discussed in recent work.[71] The coefficients c1,c2,c3
weight the sums of squares of wave function parameter derivatives, divided between Jas-
trow, CI, and orbital parameters respectively. We have found that setting (c1, c2, c3) =
(0.0, 0.0001, 0.0) is a reasonably effective choice for the molecules we consider.

Hybrid Optimization

The stochastic nature of QMC increases the difficulty of its wave function ansatz optimization
compared to the analogous problem encountered in deterministic methods. Optimization has
been a long-running challenge in QMC method development for many years with a variety
of algorithms being introduced. These include the linear method[112–115] and accelerated
descent[84, 116–119] approaches. Neither of these classes of methods is fully satisfactory, with
the LM possessing a tendency for poor parameter updates due to stochastic step uncertainty
with large numbers of variables and AD suffering from slow convergence to optimal parameter
values.

We have recently developed a hybrid combination of the blocked version of the LM[129]
with AD, first for ground state energy minimization[119] and then for variance-based excited
state optimization.[71] In this approach, alternating between sections of descent optimiza-
tion and the blocked LM enables more efficient convergence to the minimum than using
either method on its own. The blocked LM is able to move parameters to the vicinity of the
minimum more swiftly than descent, but descent is able to correct for any poor parameter
updates made by the blocked LM due to step uncertainty, which makes it useful for converg-
ing more tightly. Throughout all our optimizations, we alternate between 100 iterations of
AD and 3 steps of blocked LM and refer to one set of both as a macro-iteration. A typical
optimization consists of a small number of macro-iterations followed by 1100 iterations of
AD with final energy, target function, and variance averages taken over the final 500 itera-
tions. Details on the numbers of macro-iterations and sampling effort used can be found in
Appendix B. These averages and the excited state optimizations are then used in our vari-
ance matching procedure, discussed below, to obtain a final excitation energy result. More
extensive discussions of our hybrid method can be found in earlier papers[71, 119] and in this
benchmarking study, we use the same combination of Nesterov momentum with RMSprop
and the same hyperparameter choices as before.[71]
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One new element of our optimization approach is to filter the parameters updated by
the blocked LM according to the statistical significance of the target function’s parameter
derivatives, an approach has been successfully used in the past by the QMC community.[245]
We use the criterion: ∣∣∣∣∣<

∂Ω
∂p
>

σ ∂Ω
∂p

∣∣∣∣∣ > 1 (4.5)

The mean value of the parameter derivative must be at least as large as the standard deviation
of that derivative estimate in order for the parameter to be included for the blocked LM
update on that iteration. The number and identity of the parameters that are turned off by
this filtration stage will vary from LM step to LM step in practice, but we have found that
filtering out roughly a third of the parameter set on each blocked LM iteration is a typical
occurrence in our optimizations.

We also note that the filtered parameter space is further reduced by the blocked LM
algorithm,[129] which divides the parameter set into blocks for LM-style diagonalizations.
A limited number of eigenvectors are retained from each block to form the space for a
second diagonalization that determines the final parameter update. In our optimizations,
we have found dividing the remaining parameters into 5 blocks and retaining 30 parameter
directions per block for the second stage of the blocked LM to be an effective choice. The
use of the initial filtration stage allows for an automated identification of a smaller variable
space that the blocked LM can treat with reduced step uncertainty. The AD sections of the
hybrid method continue to optimize all the variational parameters. This refinement of the
hybrid method enhances the effectiveness of the blocked LM on moving the most important
parameters while allowing AD to handle the remaining parameter adjustments.

Wave Functions

The wave function ansatzes we use in our VMC optimizations are constructed from a preced-
ing set of quantum chemistry calculations. In particular, we obtain molecular orbitals from
a recently developed SS-CASSCF, [45, 219] which uses a density matrix-based variational
principle to track individual states during CASSCF’s CI and orbital relaxation optimization
steps. When successfully converged, SS-CASSCF can avoid root-flipping and obtain orbitals
tailored specifically for the targeted state. We then employ sCI, specifically heatbath CI, [10,
131] to generate a set of the most important determinants for a state from a larger active
space of our state-specific orbitals. We emphasize that converging the sCI is unnecessary and
that in practice we often need only the first few hundred to few thousand most important
determinants for effective initial wave functions within VMC. With the addition of one- and
two-body Jastrow factors, we arrive at the form of the multi-Slater Jastrow (MSJ) ansatz
that we use for all the molecules we consider in this work.

Ψ = ψMSψJ (4.6)
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ψMS =

ND∑
i=0

ciDi (4.7)

ψJ = exp

{∑
i

∑
j

χk(|ri −Rj|) +
∑
k

∑
l>k

ukl(|rk − rl|)

}
(4.8)

We construct the Jastrow factor ψJ with splines for the functions χk and ukl.[150] As we
will show in our results, only limited numbers of the determinants Di are needed to obtain
highly accurate excitation energies in many molecules.

In all our VMC results, only the Jastrow factors and the determinant coefficients ci are op-
timized by our hybrid method, while the orbitals are left at their SS-CASSCF shapes. While
recent developments[75, 76] with the table method have made orbital optimization at the
VMC level more efficient, it remains more computationally demanding than the Jastrow and
CI optimization, and significantly increases the difficulty of our optimization problem. Our
decision to use SS-CASSCF orbital shapes and avoid any VMC orbital optimization enables
us to obtain significant computational savings while retaining the benefits of state-specificity,
particularly in cases with important orbital relaxation effects such as charge transfer. As
our results show, leaving the orbitals at their SS-CASSCF shapes does not prevent us from
obtaining accurate results, suggesting that the lion’s share of orbital relaxation is present
already in the active space picture.

Variance Matching

Another key part of obtaining a high level of accuracy with compact wave functions is
ensuring a balanced treatment of both ground end excited state in order to benefit from
cancellation of errors. Past work has shown that matching the variance between ground
and excited state improves excitation energy predictions, but these studies[69–71, 198] em-
ployed various different protocols for obtaining a match and often required additional VMC
optimizations at a variety of Slater determinant expansion lengths.

In this work, we introduce a simplified variance matching procedure that reduces the
need for considering different numbers of determinants. Once we have a given ground state
optimization with some number of determinants and a final variance, we perform an excited
state optimization for some chosen CI expansion length. We plot the energies and variances
obtained on the blocked LM iterations of this optimization, leaving aside those from the
first macro-iteration when the wave function is still mostly unoptimized. A linear fit to
these points provides us with a correction to the excited state energy once its variance has
been extrapolated to match the ground state variance, and all the excitation energies we
report were obtained from this protocol. Figure 4.1 and Table 4.1 provide an example of the
procedure in the case of ketene.

The uncertainty in the excitation energy due to the extrapolation can be estimated from
the effect of the stochastic uncertainties in the positions of the energy-variance points on the
regression slope. The individual uncertainties in the points can define normal distributions
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for generating sets of slightly shifted points with their own regression slopes and correspond-
ing excitation energy results. We can then determine an uncertainty in our excitation energy
prediction from the uncertainty in the slope used in the extrapolation. In the limits of either
an explicit variance match between ground and excited state or a deterministic optimization
from infinite sampling, this extrapolation uncertainty will go to zero. Table 4.17 in Appendix
B provides values for this extrapolation uncertainty for all the systems we consider. All ex-
citation energy uncertainties we report in the main text are the sum of the uncertainty from
stochastic averaging and the extrapolation uncertainty.
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Figure 4.1: Example of the linear regression used in variance matching. The points are
energies and variances from individual blocked LM iterations in the optimization of the
excited state of ketene. See Table 4.1 for how the variance matching affects the excitation
energy prediction.

Table 4.1: Energy and variance values in ketene before and after the variance matching
procedure. As shown later in Table 4.2, the final excitation energy prediction is very accurate
compared to the literature theoretical best estimate of 3.86 eV.[37]

Energy (a.u.) Variance (a.u.) Excitation Energy (eV)
GS −28.4813 0.456
ES Before Match −28.3226 0.494 4.32
ES After Match −28.3375 0.456 3.91
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This approach reduces the need to perform further optimizations with other numbers
of determinants, a requirement when searching for an explicit variance match[71] or for
performing an interpolation,[198] making the present methodology easier to apply. The
respective numbers of determinants used for the ground and excited state optimizations are
chosen based on experience, but can be systematically increased if necessary. In general,
longer expansions will be needed to maintain the same level of accuracy in larger systems,
and the results we have obtained after systematically increasing from smaller expansions
may provide some guidance when considering other molecules of similar sizes.

4.4 Results

Computational Protocol and Technical Details

All our VMC calculations used a development version of QMCPACK.[150, 204] In all cases,
we used the pseudopotentials and associated basis sets developed by Mitas and cowork-
ers.[171] Molecular geometries were taken from literature benchmark sets[37, 38, 41, 190, 246]
and coordinates are also listed in Appendix A. State-specific molecular orbitals were gener-
ated by an implementation of SS-CASSCF[45, 219] in a development version of PySCF.[205]
We generated sCI expansions in expanded active spaces with Dice, [10, 131] iterating until
at least a million determinants had been selected and then taking those with the largest
coefficients into our VMC wave function. The particular active space and basis set choices
for different molecules are given in the following sections for each set of excited states. For
the charge transfer states we study, we have performed coupled cluster calculations in Mol-
pro[170] and GAMESS[247] for comparisons against our VMC results.

Once our ansatzes were generated, the CI coefficients were optimized within VMC simul-
taneously with one- and two-body Jastrow factors. The Jastrow factor splines each consisted
of 10 coefficients defining the function within a distance of 10 bohr. With two exceptions,
the initial value of the Jastrow coefficients was set to zero in all cases and CI coefficients
were begun at their values from sCI. In the case of nitrosomethane, the final 1000 deter-
minant excited state optimization began from the result of a previous optimization of the
Jastrow and 500 determinants, with the next 500 most important determinants from sCI
added with initial coefficients of zero. Further technical details on optimization procedure
and the uncertainties in our excitation energies can be found in Appendix B.

Valence Single Excitations: Thioformaldehyde, Methanimine, and
Ketene

In testing our methodology, we begin by considering valence single excitations, specifically
the 1A2(n→ π∗) excited state in thioformaldehyde, the 1A

′′
(n→ π∗) state in methanimine,

and the 1A2(π → π∗) state in ketene. For these three excited states, sCI and high level
coupled cluster results[37] from Loos and coworkers are reliable references for assessing the
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accuracy of our approach. We generated our SS-CASSCF orbitals using a (12e,10o) active
space for thioformaldehyde, a (12e,12o) space for methanimine and a (8e,8o) space for ketene,
with pseudopotentials and cc-pVTZ basis sets for all molecules.[171] The subsequent sCI
calculations in Dice[10, 131] correlated 12 electrons in 17 orbitals for thioformaldehyde, 12
electrons in 18 orbitals for methanimine, and 16 electrons in 22 orbitals for ketene.
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Figure 4.2: From left to right, excitation energies in thioformaldehyde, methanimine, and
ketene for VMC and quantum chemistry approaches. See also Table 4.2. Reference values
for coupled cluster, and selected CI are taken from the work of Loos and coworkers.[37]
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Table 4.2: Excitation energies for thioformaldehyde, methanimine, and ketene. The VMC
uncertainties on the final digits are given in parentheses. The included literature values use
an aug-cc-pVTZ basis set for sCI and coupled cluster, and the literature TBEs are obtained
from applying a basis set correction using CC3 to the sCI result.[37]

Method Thioformaldehyde Methanimine Ketene
VMC 2.28(2) 5.13(3) 3.91(6)
CC2 2.34 5.32 4.17
CCSD 2.29 5.28 3.97
CC3 2.23 5.20 3.88
CCSDT 2.21 5.19 3.87
sCI 2.22 5.23 3.86
Lit TBE 2.20 5.21 3.86

Our results for this trio of small molecules, depicted visually in Figure 4.2 with precise
values in Table 4.2, show that our VMC methodology is highly accurate. In all cases, our
final excitation energies are within 0.1 eV of the theoretical best estimates determined by
Loos and coworkers from basis set corrected sCI calculations. We also emphasize that our
results require only relatively simple wave function ansatzes. We used 700 determinants for
the ground state and 300 for the excited state in thioformaldehyde, 300 ground and 500
excited for methanimine, and 500 ground and 700 excited for ketene. Thioformaldehyde was
somewhat unusual with the ground state having the higher variance for fewer determinants
so a longer expansion was optimized for a better variance match with the excited state.
The VMC wave functions used in these systems are significantly less complex than those
obtainable by coupled cluster and the absolute energies from VMC are comparable to those
of CCSD. The excitation energy differences from VMC are also most comparable to CCSD
in terms of accuracy, as CC3 and CCSDT are within one or two hundredths of an eV of the
sCI-based TBEs. While VMC does not obtain the exquisite accuracy of higher level coupled
cluster in these cases, these results are a reassuring check that our approach agrees with
very well established quantum chemistry treatments of this generally easier class of excited
states, and we now turn our attention to more challenging categories.

Double Excitations: Carbon Trimer, Nitrosomethane, Hexatriene,
and Benzene

We next address double excitations, which are a far more challenging class of excited states
for coupled cluster. Past work[71] applying VMC to double excitations showed a high level
of accuracy and we again draw from the wealth of benchmarking data[41] from Loos and
coworkers, comparing our refined SS-CASSCF/VMC methodology to their quantum chem-
istry values in four molecules. We first consider two small systems, the carbon trimer and ni-
trosomethane, where highly reliable excitation energies can still be established by sCI, before
studying hexatriene and benzene, which are considerably larger cases where less definitive
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methods must be used. For our ansatz construction, SS-CASSCF orbitals were obtained
from a (12e,12o) space for the carbon trimer, a (12e,9o) space for nitrosomethane, and
(6e,6o) spaces for hexatriene and benzene. At the sCI stage, these spaces were expanded to
(12e,18o), (18e,22o), (32e,46o), and (30e,46o) respectively. For all four molecules, we have
used cc-pVTZ basis sets and pseudopotentials.[171]

Concentrating first on the two smaller systems, we see in Figure 4.3 and Table 4.3 that
our VMC approach is again highly accurate and within 0.1 eV of the TBEs obtained from
sCI. Both states can be classified as pure double excitations based on the low percentage of
T1 amplitudes in CC3[41] and we see that CC3 makes substantial errors of an eV or worse
for this type of doubly excited state. Shouldering the expense of full triples with CCSDT
only manages to eliminate about half of CC3’s errors. In contrast, CASPT2’s multireference
nature makes it far more successful in this situation and it achieves comparable accuracy to
our VMC results in both molecules.
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Figure 4.3: Excitation energies in the carbon trimer and nitrosomethane in the left and right
panels respectively. See also Table 4.3. For the carbon trimer, VMC used 100 determinants
in the ground state and 500 for the excited state, while 500 and 1000 respectively were used
for nitrosomethane. Reference values for coupled cluster, and selected CI are taken from the
work of Loos and coworkers.[41]
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Table 4.3: Excitation energies for the carbon trimer and nitrosomethane. The VMC uncer-
tainties on the final digits are given in parentheses. The included literature[41] values use
an aug-cc-pVQZ basis set for the carbon trimer and the CC3 and CASPT2 values for ni-
trosomethane. The literature nitrosomethane CCSDT and sCI results used an aug-cc-pvTZ
basis set.

Method Carbon Trimer Nitrosomethane
VMC 5.90(4) 4.79(7)
CC3 7.22 5.74
CCSDT 6.58 5.29
CASPT2 5.82 4.78
sCI 5.86 4.76
Lit TBE 5.86 4.74
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Figure 4.4: Excitation energies in hexatriene and benzene in the left and right panels respec-
tively. See also Table 4.4. In both molecules, the VMC used 500 determinants in ground
state and 1000 for the excited state. Reference values for coupled cluster, CASPT2 and
NEVPT2 are taken from the work of Loos and coworkers.[41]
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Table 4.4: Excitation energies for hexatriene and benzene. The VMC uncertainties on the
final digits are given in parentheses. The included literature[41] values use an aug-cc-pVDZ
basis set for CC3 and CCSDT in hexatriene and an aug-cc-pVQZ basis set for all varieties
of CASPT2 and NEVPT2, except for PC-NEVPT2 in benzene, which used aug-cc-pVTZ.

Method Hexatriene Benzene
VMC 5.65(4) 10.72(5)
CC3 5.77
BSC CC3 5.75
CCSDT 5.65
CASPT2 5.58 10.27
PC-NEVPT2 5.64 10.00
SC-NEVPT2 5.67 10.36
MS-CASPT2 10.97
XMS-CASPT2 10.54

For molecules at the scale of hexatriene and benzene, high accuracy excitation energies
from sCI are now unaffordable and various flavors of coupled cluster and multireference
perturbation theory are left as the main quantum chemistry tools. This leaves space for our
VMC approach to provide reliable excitation energies that can help determine whichever
other methods are most accurate in larger systems. For the hexatriene results shown in
the left panel of Figure 4.4 and Table 4.4, we see that VMC is in closer agreement with
coupled cluster, particularly CCSDT, instead of CASPT2. This aligns with the conclusions
of Loos and coworkers that the 2 1Ag state has a high level of singles character, making
coupled cluster with triples more reliable than it is for pure double excitations. In the case
of the 2 1A1g state in benzene, the literature[41] values consist only of different varieties
of CASPT2 and NEVPT2, which show a significant spread of almost an entire eV in their
excitation energy predictions without an obvious reason to favor any particular value. Our
VMC result lands closest to the XMS-CASPT2 value, but is higher by about 0.18 eV and
it may serve as a useful point of comparison for any other methods that are applied to this
state in the future.

Charge Transfer: Ammonia-difluorine

With the accuracy of our method well established for valence single excitations and double
excitations, we now show the same holds true for charge transfer states using the well-known
ammonia-difluorine test system[38, 229, 248, 249] at a separation of 6 Å. Our wave function
generation proceeds as before with a (2e,6o) active space for the SS-CASSCF and a (22e,40o)
space for the sCI using pseudopotentials and an aug-cc-pVTZ basis set.[171] For comparison
to our VMC, we performed δ-CR-EOMCC(2,3)D[250] calculations in GAMESS[247] and
EOM-CCSD and CASPT2 calculations in Molpro.[170]
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From Figure 4.5 and Table 4.5, we see that our VMC is in excellent agreement with
the aug-cc-pVTZ δ-CR-EOMCC(2,3)D result. With only a cc-pVTZ basis set, the δ-CR-
EOMCC(2,3)D excitation energy is 0.4 eV larger and EOM-CCSD has a substantial error of
about 0.8 eV even with augmentation, showing the importance of both including some triples
in the coupled cluster and using diffuse functions for quantitative accuracy. We also note
that CASPT2 with a (2e,6o) active space, a 6 state state-average (necessary to even see the
CT state), and IPEA shift of 0.25 has an error comparable to EOM-CCSD’s, while increasing
the active space to (6e,8o) with the same state averaging and shift improves the accuracy by
only 0.14 eV. CASPT2’s difficulties are likely due to the limitations of state-averaging for
CT states, which we can avoid through our state-specific methodology. The high accuracy
of our VMC in this CT example indicates that we can obtain reliable excitation energies
regardless of the type of excited state, a versatility that neither coupled cluster nor CASPT2
can achieve.
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Figure 4.5: Excitation energy of the lowest CT state in ammonia-difluorine for VMC and
quantum chemistry approaches. See also Table 4.5. The VMC used 300 determinants in the
ground state and 500 for the excited state.

Table 4.5: Excitation energies for the CT state in ammonia-difluorine.The VMC uncertainty
for the last digit is given in parentheses.

Method Excitation Energy (eV)

VMC 8.03(5)
(2e,6o) CASPT2 aug-cc-pVTZ 8.81
(6e,8o) CASPT2 aug-cc-pVTZ 8.67
CCSD cc-pVTZ 9.23
CCSD aug-cc-pVTZ 8.86
δ-CR-EOMCC(2,3)D cc-pVTZ 8.43
δ-CR-EOMCC(2,3)D aug-cc-pVTZ 8.03
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Larger System: Uracil

We have demonstrated our approach’s high level of accuracy across multiple types of excited
states and now apply it to a larger molecule. We first address the 2 1A

′
and 3 1A

′
states

in uracil, which appear as part of the Thiel set[190] and other benchmarking studies.[251,
252] To generate our ansatzes, we used a (10e,8o) active space for the SS-CASSCF and a
(42e,42o) space for the sCI with pseudopotentials and a cc-pVTZ basis set.[171]

These states have been previously studied with different levels of coupled cluster and
CASPT2, giving a significant range of answers that spans 0.7 eV for the 2 1A

′
state and

almost an entire eV for the 3 1A
′

state. The latter state is notable for having a significant,
though non-dominant, amount of double excitation character, in the range of 15 to 20 percent
based on CASSCF analysis, which might lead to hesitation over whether to trust coupled
cluster or CASPT2. VMC is in a position to provide the necessary guidance, with our
results ending up in good agreement with the CCSD(T) results of Szalay and coworkers[252]
for both states and more generally supporting the higher excitation energy predictions of
coupled cluster over the CASPT2 results of Roos[251] and Thiel.[190] We also note that
while the numbers of determinants needed in VMC after systematic expansion are larger
than those used for smaller molecules, they can remain modestly sized due to the error
cancellation benefits of our variance matching procedure.
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Figure 4.6: Excitation energies in uracil. The left panel depicts values for the 2 1A
′

state
and the right panel for the 3 1A
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Table 4.6: Excitation energies in eV for the 2 1A
′

and 3 1A
′

states in uracil. The VMC
uncertainty for the last digit is given in parentheses. The literature results from Thiel[190]
and Szalay[252] used a TZVP basis set, with the Thiel set using an aug-cc-pVQZ CC2 result
as its reference. Details on the ANO type basis set used by Roos can be found in the original
paper.[251]

Method 2 1A
′

3 1A
′

VMC 5.60(5) 6.45(5)
Roos CASPT2 5.00 5.82
Thiel Ref CC2 5.35 6.26
Thiel CCSD 5.70 6.76
Thiel CASPT2 5.23 6.15
Szalay CC3 5.44 6.29
Szalay CCSD(T) 5.52 6.43

4.5 Conclusions

By constructing a method that combines the advantages of SS-CASSCF, sCI, and VMC,
we find that it is possible to offer high accuracy excitation energy predictions across singly
excited, doubly excited, and charge transfer states. Unlike CASPT2, this combined method
avoids state averaging and is thus able to accommodate the post-excitation orbital relaxations
that are so crucial in charge transfer. Unlike EOM-CC, the method is explicitly multi-
configurational, making it much more reliable in doubly excited states. Unlike sCI on its own,
the method is able to arrive at accurate excitation energies with much shorter determinant
expansions thanks to the combined effect of Jastrow factors and variance matching. Together,
these advantages allow the method to make reliable excitation energy predictions in a wider
variety of excited states than either coupled cluster or multi-reference perturbation theory
while also reaching into system sizes beyond the current limits of sCI without sacrificing
basis set quality. In key systems like uracil, agreement between our method and the highest
level coupled cluster that can be afforded allows us to make excitation energy predictions
with a confidence that is bolstered by the significant differences in these methods’ underlying
approximations.

From a methodological perspective, our key finding is that SS-CASSCF orbitals are accu-
rate enough that further optimization within VMC is not necessary for producing accurate
excitation energies. The practical advantage of this finding is that, while more efficient than
it used to be, orbital optimization within VMC remains more difficult than CI coefficient and
Jastrow optimization, and by avoiding it we can therefore reduce computational cost. We
also find that, in most cases, effective variance matching can be performed without the need
for interpolations based on multiple wave function expansion lengths by instead using lin-
ear extrapolations based on optimization history. Finally, removing low-priority parameters
from the blocked linear method steps while still optimizing them with accelerated descent
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did not prevent high accuracies from being attained, which allows us to work with smaller
sample sizes than would otherwise be necessary when estimating the elements of the linear
method matrices.

Looking forward, we note that our VMC approach can be applied to additional excited
state situations beyond those considered in this work. Core excitations are one area where
VMC has already demonstrated high accuracy, [198] and work is currently underway on
exploring whether the approach presented here will offer similar benefits in that context.
Excited state absorption [253] is another setting that challenges both CASPT2 and coupled
cluster and where the present approach could be usefully applied without any obvious ad-
ditional difficulty. Finally, in solid-state systems, the discrete states of defects are another
potential opportunity for applying our state-specific machinery. Methodologically, further
improvements in user-accessibility remain an ongoing effort. Systematic determination and
automation of effective choices in optimization details such as the mixture between accel-
erated descent and the blocked linear method, descent hyperparameters, and the choice of
guiding function should streamline workflows in future. With such improvements, it should
be possible to apply our SS-CASSCF/sCI/VMC methodology to an even wider range of
challenging excited state questions.
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4.7 Appendix

Molecular Geometries

Table 4.7: Structure of thioformaldehyde. Coordinates in Å.

C 0.000 000 0.000 000 −1.104 273
S 0.000 000 0.000 000 0.514 631
H 0.000 000 0.918 957 −1.677 563
H 0.000 000 −0.918 957 −1.677 563
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Table 4.8: Structure of methanimine. Coordinates in Å.

C 0.056 604 0.000 000 0.587 869
N 0.056 961 0.000 000 −0.686 225
H −0.842 138 0.000 000 1.202 802
H 1.007 951 0.000 000 1.108 065
H −0.899 369 0.000 000 −1.038 338

Table 4.9: Structure of ketene. Coordinates in Å.

C 0.000 000 0.000 000 −1.295 479
C 0.000 000 0.000 000 0.018 514
O 0.000 000 0.000 000 1.183 578
H 0.000 000 0.938 930 −1.818 814
H 0.000 000 −0.938 930 −1.818 814

Table 4.10: Structure of carbon trimer. Coordinates in Å.

C 0.000 000 0.000 000 0.000 000
C 0.000 000 0.000 000 1.298 313
C 0.000 000 0.000 000 −1.298 313

Table 4.11: Structure of nitrosomethane. Coordinates in Å.

C −0.944 193 0.000 000 −0.567 405
N −0.002 867 0.000 000 0.571 831
O 1.157 919 0.000 000 0.229 939
H −0.409 287 0.000 000 −1.515 646
H −1.574 151 0.882 677 −0.457 339
H −1.574 151 −0.882 677 −0.457 339
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Table 4.12: Structure of hexatriene. Coordinates in Å.

C −0.000 131 0.672 998 0.000 000
C 0.000 131 −0.672 998 0.000 000
C 1.201 720 1.480 569 0.000 000
C −1.201 720 −1.480 569 0.000 000
C 1.201 720 2.821 239 0.000 000
C −1.201 720 −2.821 239 0.000 000
H −0.949 240 1.200 063 0.000 000
H 0.949 240 −1.200 063 0.000 000
H 2.145 737 0.948 370 0.000 000
H −2.145 737 −0.948 370 0.000 000
H 0.274 043 3.378 403 0.000 000
H −0.274 043 −3.378 403 0.000 000
H 2.122 561 3.385 081 0.000 000
H −2.122 561 −3.385 081 0.000 000

Table 4.13: Structure of benzene. Coordinates in Å.

C 0.000 000 1.392 503 0.000 000
C −1.205 943 0.696 252 0.000 000
C −1.205 943 −0.696 252 0.000 000
C 0.000 000 −1.392 503 0.000 000
C 1.205 943 −0.696 252 0.000 000
C 1.205 943 0.696 252 0.000 000
H −2.141 717 1.236 521 0.000 000
H −2.141 717 −1.236 521 0.000 000
H 0.000 000 −2.473 041 0.000 000
H 2.141 717 −1.236 521 0.000 000
H 2.141 717 1.236 521 0.000 000
H 0.000 000 2.473 041 0.000 000

Table 4.14: Structure of ammonia-fluorine. Coordinates in Å.

N 0.000 000 −0.234 913 −3.520 527
H 0.000 000 0.704 739 −3.904 943
H 0.813 763 −0.704 739 −3.904 943
H −0.813 763 −0.704 739 −3.904 943
F 0.000 000 −0.234 913 2.479 473
F 0.000 000 −0.234 913 3.904 943
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Table 4.15: Structure of uracil. Coordinates in Å.

H −2.025 413 −1.517 742 0.000 000
H −0.021 861 1.995 767 0.000 000
H 2.182 391 −1.602 586 0.000 000
H −0.026 659 −2.791 719 0.000 000
C −1.239 290 0.359 825 0.000 000
C 1.279 718 0.392 094 0.000 000
C 1.243 729 −1.064 577 0.000 000
C 0.055 755 −1.709 579 0.000 000
O −2.308 803 0.954 763 0.000 000
O 2.287 387 1.092 936 0.000 000
N −1.139 515 −1.026 364 0.000 000
N 0.000 000 0.978 951 0.000 000
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Optimization Details

As discussed in the main text, we perform all our VMC optimizations with the hybrid
method, alternating between sections of AD and blocked LM optimization. Each AD portion
of a hybrid macro-iteration produces 5 vectors of parameter differences as input to the
blocked LM algorithm as parameter coupling information.[119] As mentioned in section IIB,
all blocked LM iterations divided a filtered parameter set into 5 blocks and retained 30
parameter directions for the second stage of the algorithm. In practice, shift values[150]
ci and cs are added to blocked LM matrices to prevent unwisely large steps in parameter
space. Our implementation of the LM uses an adaptive scheme[119] that compares target
function values calculated through correlated sampling for three different sets of shift values
and selects whichever update step and corresponding shifts give the lowest target function.
For all optimizations, we set the initial values of ci and cs to 0.1 and 1.0 respectively.

The particular numbers of macro-iterations and samples for each molecule are listed in
Table 4.16 and Table 4.17 gives details on the uncertainties resulting from the variance
matching extrapolation procedure that we have used for all our excitation energy results. In
Table 4.17, the energy-variance slope used for nitrosomethane is significantly smaller than
the others due to the optimization starting from a preoptimzed wave function.

Table 4.16: Macro-iterations used for GS and ES optimizations. Samples per iteration used
for AD and blocked LM portions of the hybrid optimizations. Total samples for AD and
LM with the costs for GS and ES combined. The nominal samples per iteration for blocked
LM iterations is multiplied by 3 for computing the total sampling effort due to the need to
run over the samples additional times to perform the automated parameter selection and
the blocked LM algorithm.

Molecule Macro-iterations:
(GS, ES)

Samples per iteration:
(AD, LM)

Total Samples
(106): (AD, LM)

Thioformaldehyde (7,8) (3× 104, 1× 106) (111, 135)
Methanimine (5,6) (3× 104, 1× 106) (99, 99)
Ketene (6,8) (3× 104, 1× 106) (108, 126)
Carbon trimer (5,5) (3× 104, 1× 106) (96, 99)
Nitrosomethane (7,6) (3× 104, 1× 106) (105, 117)
Hexatriene (8,8) (3× 104, 1× 106) (114, 144)
Benzene (7,7) (3× 104, 1× 106) (108, 126)
Ammonia-difluorine (4,6) (3× 104, 1× 106) (96, 90)

Uracil 2 1A
′

(7,8) (5× 104, 1× 106) (104, 135)

Uracil 3 1A
′

(7,8) (5× 104, 1× 106) (104, 135)



CHAPTER 4. COMBINING STATE-SPECIFIC QUANTUM CHEMISTRY AND
QUANTUM MONTE CARLO FOR MOLECULAR EXCITED STATES 111

Table 4.17: Uncertainties in the excitation energies due to stochastic averaging and variance
matching extrapolation. Raw variance values for ground and excited states. Energy-variance
slopes used in the extrapolations and uncertainties in the slopes due the uncertainty in the
individual blocked LM optimization points.

Molecule Excitation
Energy (eV)

Averaging
Uncertainty
(eV)

Extrapolation
Uncertainty
(eV)

GS
Variance
(a.u.)

ES
Variance
(a.u.)

Slope
(a.u.)

Slope
Uncertainty
(a.u.)

Thioformaldehyde 2.28 0.02 0.001 0.178 0.177 0.4936 0.052
Methanimine 5.13 0.02 0.01 0.216 0.235 0.3727 0.026
Ketene 3.91 0.02 0.04 0.456 0.494 0.3924 0.039
Carbon trimer 5.90 0.02 0.02 0.209 0.195 0.5360 0.046
Nitrosomethane 4.79 0.03 0.04 0.527 0.563 0.0480 0.037
Hexatriene 5.65 0.03 0.01 0.605 0.591 0.5574 0.012
Benzene 10.72 0.03 0.02 0.570 0.600 0.4317 0.022
Ammonia-
difluorine

8.03 0.03 0.02 1.066 1.102 0.3977 0.024

Uracil 2 1A
′

5.60 0.04 0.01 1.393 1.406 0.5165 0.027

Uracil 3 1A
′

6.45 0.04 0.01 1.393 1.405 0.4622 0.015
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Chapter 5

Optimization Stability in Variational
Monte Carlo

5.1 Abstract

We investigate the issue of optimization stability in variance-based state-specific variational
Monte Carlo, discussing the roles of the objective function, the complexity of wave function
ansatz, the amount of sampling effort, and the choice of minimization algorithm. Using a
small cyanine dye molecule as a test case, we systematically perform minimizations using
variants of the linear method as both a standalone algorithm and in a hybrid combination
with accelerated descent. We demonstrate that adaptive step control is crucial for maintain-
ing the linear method’s stability when optimizing complicated wave functions and that the
hybrid method enjoys both greater stability and minimization performance. As a verification
of variance minimization’s practical utility, we report an excitation energy in the cyanine
dye that is in good agreement with both benchmark quantum chemistry values and results
obtained from state-averaged energy-based variational Monte Carlo.

5.2 Introduction

The challenges of wave function optimization have been a long-running thread in the de-
velopment of Quantum Monte Carlo (QMC) methods. Ground state variational Monte
Carlo (VMC) alone has seen significant evolution both in the optimization algorithms them-
selves[84, 112–114, 116–123, 254] and the objective functions they are applied to.[53, 93,
113, 147, 149] Early work on VMC optimization implemented steepest descent[255, 256] and
Newton-Raphson[147, 148] for relatively small numbers of parameters in atoms and small
molecules. As optimization algorithms, steepest descent and Newton-Raphson mark out
two extremes in terms of derivative information and computational cost as purely first-order
and fully second-order methods respectively. Subsequent methods, including approximate
Newton,[121, 122] the linear method (LM),[112–114] stochastic reconfiguration,[123, 254] and
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accelerated descent (AD),[84, 116–118] can be broadly viewed as pursuing a balance between
the advantages of second-order derivative information against the cost of obtaining it. This
profusion of different techniques, spread among many research groups, has motivated recent
efforts to systematically compare their performance and identify effective combinations of
them.[119]

The need to achieve robust VMC optimization has also surfaced more recently in the
context of excited state VMC. For this frontier in VMC, method development work has de-
veloped both energy-based state-averaged and variance-based state-specific objective func-
tions for describing excited states. State-averaged energy minimization has been successful
in many applications,[86–92] but a state-specific approach[70, 71, 94, 95, 198, 257] offers
advantages in cases where the appropriate orbital shapes for the relevant states differ sig-
nificantly. This limitation of state-averaging also appears in deterministic methods such as
CASPT2[43–45] and is a barrier to successfully studying charge transfer states[38, 39, 229,
257] and core excitations.[198]

Methodological advancements have steadily occurred in recent years for both state-
averaged and state-specific VMC. Many innovations can be readily adopted within both
frameworks such as improvements in ansatz design with selected CI (sCI) expansions[92,
169, 258] and new optimization algorithms.[71, 119, 129, 257] In addition, multiple proto-
cols[69, 92, 169, 198, 257] have been developed to ensure balanced treatments of different
states, a prerequisite for obtaining accurate excitation energies. The progress on all these
fronts has helped advance excited-state VMC from initial applications[60, 93, 94, 121] with
small molecules and simple wave functions to much wider use on larger systems with more
sophisticated ansatzes.[92, 257]

Given the hopes for developing VMC into a reliable tool for excited states, recent re-
search[91] raising concerns about the stability of variance minimization in VMC merits close
attention. In a small cyanine dye molecule, Filippi and coworkers found failures of variance
minimization to converge to the correct excited state even for high quality wave function
ansatzes. In some cases, a lowering of the variance was accompanied by a substantial rise
in the energy as the optimization moved to some undesired state. This behavior was at-
tributed to the shape of the variance’s parameter space landscape, with the optimization
finding ”little or no barrier to escape from a local minimum or local plateau, eventually
converging to a lower-variance state instead of the target state.”[91] This hypothesis would
imply that the same behavior might be observed in other excited state applications of vari-
ance minimization, posing a significant obstacle to successful excitation energy predictions.
In the present study, we investigate instabilities in variance optimization in order to better
understand where they come from and how they may be addressed.

The issue of stability in VMC optimization is multi-faceted, with technical considera-
tions about the choice of objective function, the particular optimization algorithm at hand,
the level of sampling effort, and the quality of wave function ansatz each playing a role.
Deficiencies in any of these areas could potentially lead to failures of optimization, and no
approach to optimization is likely to be successful in absolutely all circumstances. However,
the relevant question for VMC practitioners is whether these instances of optimization fail-
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ure pose an insurmountable barrier in practice or can be remedied with certain choices in
methodological protocol.

At a broad conceptual level, the objective function being minimized and the particular
wave function ansatz set the difficulty of a VMC optimization. Compared to the energy, the
variance landscape in parameter space is more difficult to resolve at a given level of sampling
effort and estimates of its derivatives may also be more uncertain. While increasing the
amount of sampling enables systematic improvement of these estimates, the availability of
computational resources inevitably places some practical upper limit. The shape of the
landscape will also vary with the particular wave function form that is chosen. A minimum
of zero variance is guaranteed for an exact eigenstate and some minimum can be expected to
form when a wave function is systematically built up to this limit, as in a Slater determinant
expansion. However, the depth and shape of the minimum are difficult to characterize and
the ansatz parameters are unlikely to be set to the optimal values initially in practice. As
a result, the particular optimization algorithms chosen to navigate the parameter landscape
must be highly robust to noisy gradients and capable of handling increasing numbers of
parameters. We shall see that different types of algorithms with varying levels of step
control may be more or less vulnerable to destabilization from poor steps as the number of
parameters and the noise of their updates grow.

To further elucidate the issue of optimization stability in VMC, we conduct systematic
investigations of the LM in the case of the excited state of the cyanine dye molecule CN5.
We focus on identifying circumstances where variance minimization with the LM fails and
what can be done to resolve these failures. Beyond technical choices in operating the LM, we
also consider the stability advantages offered by a hybrid combination of the LM’s blocked
variant and AD, particularly those rooted in adaptive step control. As we will see, multiple
optimization choices play a role in optimization effectiveness, but the key determiner of
stability appears to adaptive step control, analogous to using an adaptive trust radius. In
particular, variance optimization instabilities do not appear to arise from pathologies in the
objective function surface, since if this were the case, all optimization methods regardless
of adaptive step control would eventually show instabilities as well. As our data below
demonstrates, even cases previously reported as unstable become stable when using adaptive
step size control.

5.3 Theory

Objective Functions in VMC

Analysis of optimization stability within VMC begins with consideration of the objective
or target function being minimized. A variety of choices have been employed by VMC
practitioners, for both ground and excited state studies, with the most common choices
being the energy or the variance of energy for the system at hand.
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EV (p⃗) =

∫
Ψ2

T (p⃗)EL(p⃗)dR⃗∫
Ψ2

T (p⃗)dR⃗
(5.1)

σ2
E(p⃗) =

∫
Ψ2

T (p⃗)(EL(p⃗) − EV (p⃗))2dR⃗∫
Ψ2

T (p⃗)dR⃗
(5.2)

In the above definitions, EL = HΨ(R)
Ψ(R)

is the local energy. Historically, numerical instabili-

ties in early VMC energy minimizations motivated use of variance minimization,[53, 93, 149]
but later algorithmic improvements, particularly the development of the linear method[113],
have swung the pendulum back to energy minimization as the main approach for ground
state studies. The choice of objective function is less settled for the study of excited states
and both energy-based[86–92] and variance-based[70, 71, 93–95, 198] objective functions
have been employed in this context.

Ω(Ψ) =
⟨Ψ | (ω −H) |Ψ⟩
⟨Ψ | (ω −H)2 |Ψ⟩

(5.3)

W (Ψ) =
〈
Ψ
∣∣ (ω −H)2

∣∣Ψ〉 (5.4)

ESA =
∑
I

wI

〈
ΨI
∣∣H ∣∣ΨI

〉
⟨ΨI |ΨI⟩

(5.5)

The functions Ω and W both use an input energy parameter ω that must be adjusted
to transform them into the variance σ2 in order to obtain size-consistent results.[95] For Ω,
the value ω must eventually be set to the difference of the energy and standard deviation,
E − σ, while for W , ω is set to the energy E. There are multiple strategies for varying
omega, either allowing it to float based on the values of E and σ over the course of a single
VMC optimization, or performing multiple VMC optimizations at fixed ω and changing the
value after each one until self-consistency is achieved. From the standpoint of optimization
stability, allowing the value of ω to vary is one potential source of instability as stochastic
uncertainties in the value assigned to ω could possibly lead to the targeting of a different
state and we investigate this possibility below. We also note that there are various options
in the details of varying ω, such as allowing it to float only after a period of interpolation
from its initial value[95] or controlling its value through a running average.

The effectiveness of stochastic estimation of different quantities is another factor in the
stability implications of the choice of objective function. Sampling from the commonly

chosen distribution ρ(R) = Ψ(R)2∫
dRΨ(R)2

has a zero variance property[145] when Ψ is an exact

eigenstate, but the use of approximate Ψ in practice leads to an infinite variance problem for
the estimation of the variance itself as well as target function derivatives. While the infinite
variance of the variance makes optimization of variance-based target functions more difficult,
multiples approaches for mitigating the issue have been developed, including the use of other
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importance sampling functions,[67–71, 109] modifications to estimators,[145, 243, 244], and
regularization schemes.[110, 111] We employ an importance sampling function that we have
successfully used in the minimization of the Ω objective function in other work.[71, 257]

|Φ|2 = |Ψ|2 + c1
∑
i

|Ψi|2 + c2
∑
j

|Ψj|2 + c3
∑
k

|Ψk|2 (5.6)

In |Φ|2, the coefficients c1,c2,c3 weight the sums of squares of wave function parameter
derivatives, for Jastrow, CI, and orbital parameters respectively and we set (c1, c2, c3) =
(0.0, 0.0001, 0.0) throughout our results.

Parameter Optimization Algorithms

A variety of algorithms have been developed for performing parameter optimization in the
context of VMC. Some of the most notable ones include the Newton method,[91, 115, 120–
122] linear method,[112–115] stochastic reconfiguration,[123] and accelerated descent ap-
proaches.[84, 116–119] We focus our discussion on only the aspects of the LM and AD that
are most relevant for optimization stability and further details on these methods can be
found in the literature.[84, 112–119, 129]

The LM relies on a first order Taylor expansion of the trial wave function and in the case
of minimizing Ω leads to a generalized eigenvalue problem

(ω −H)c = λ (ω −H)2 c (5.7)

with matrix elements of the form

⟨Ψi |ω −H |Ψj⟩ (5.8)

and 〈
Ψi

∣∣ (ω −H)2
∣∣Ψj

〉
. (5.9)

where Ψi and Ψj are wave function derivatives with respect to variational parameters. The
LM requires stochastic estimates of these matrix elements to compute an update c to the
wave function parameters. The size of the LM matrices will grow as the square of the
number of parameters and for a fixed number of samples, the quality of the estimates of
the growing number of matrix elements will decrease. This decline can potentially make the
parameter updates from the LM diagonalization less reliable, risking failures of optimization.
An example illustrating this issue is shown in Figure 5.1, which shows the spreads of proposed
LM updates on the same Jastrow parameter for increasing total numbers of parameters. As
more CI parameters are added, the spread of possible updates to this Jastrow parameter
increases by orders of magnitude. The LM’s eigenproblem effectively amplifies and couples
the noise in the updates for individual parameters. Otherwise, the spread in the Jastrow
update would remain constant regardless of how many updates are being sought for other
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parameters. For larger numbers of parameters, naive acceptance of the poorer LM updates
could lead to instabilities.
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Figure 5.1: Proposed LM updates to Jastrow parameter for varying total numbers of param-
eters. Each panel was produced with 200 proposed updates from independent LM runs on
an excited state wave function in CN5. The same scale has been used in each panel, which
leaves off some larger outliers in the 200 and 500 CI cases. From left to right, the total
numbers of wave function parameters for the different cases are 150, 340, and 640. 100,000
samples were used to generate the LM matrices for each update.

A number of technical modifications to the basic LM algorithm can reduce, though not
eliminate, this problem. Shift values can be added to the LM Hamiltonian matrix to pre-
vent overly large parameter changes, similar to the use of trust radius schemes in Newton-
Raphson.[119, 150] Two different types of shifts, defined in equations 5.10 through 5.14, can
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help address distinct problems in the LM optimization. The diagonal shift cI helps stabilize
the LM by effectively adding an energy penalty to parameter changes to the current wave
function.[113] While this shift reduces the effective step size of the LM, it also changes the
direction of the LM updates by rotating them to the steepest descent direction in the limit
of an infinite shift that makes H diagonal. Figure 5.2 demonstrates the effect of a large di-
agonal shift in controlling the noise in parameter updates. The spread of proposed updates
for the Jastrow parameter is very small and also remains constant across the different total
numbers of parameters, which is the behavior expected in steepest descent.
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Figure 5.2: Proposed LM updates to Jastrow parameter with diagonal shift of 100 for varying
total numbers of parameters. Each panel shows 200 proposed updates from independent LM
runs with an excited state wave function in CN5. From left to right, the total numbers of
wave function parameters for the different cases are 150, 340, and 640. 100,000 samples were
used to generate the LM matrices for each update.
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While the diagonal shift prevents excessive changes in parameters with large derivatives,
assigning it a large enough value for this task may turn off the optimization of parameters
with smaller, but still significant gradients. To avoid this scenario, the cSB term helps
retain flexibility in other parameter directions with smaller derivatives. The overlap shift
cS imposes an energy penalty based on the norm of parameter directions orthogonal to the
current wave function so that steps in the directions of small derivatives are penalized less
heavily and meaningful changes can still occur. In practice, the matrix B does not need to
be constructed explicitly, as the LM generalized eigenvalue problem can be solved by Krylov
iteration.[150]

H −→ H + cIA + cSB (5.10)

Aij = δij(1 − δi0) (5.11)

B = (QT)−1TQ−1 (5.12)

Qij = δij − δi0(1 − δj0)S0j (5.13)

Tij = (1 − δi0δj0)[Q
TSQ]ij (5.14)

In our own implementation of the linear method, the use of shifts is enhanced in combina-
tion with an adaptive scheme[113–115] where three sets of shift values are used to determine
parameter updates, and a correlated sampling procedure either selects the candidate update
expected to reduce the objective function the most, or rejects all the possible updates and
raises the shifts on the next LM iteration for more cautious steps. Despite the ability to
reject poor steps, we will show in our results that the LM can still fail to lower the objective
function in some circumstances.

A more substantial modification to the LM is to divide the parameters into blocks and
solve a set of smaller eigenvalue problems to produce the parameter update.[129] The blocked
LM algorithm consists of two phases. First, an LM-style diagonalization is performed for each
of the Nb blocks of parameters and the Nk lowest eigenvectors are retained from each block.
In the second phase, the full set of NbNk eigenvectors plus No other parameter directions
(either from previous blocked LM iterations or descent, in the case of the hybrid method)
form the space for a final LM diagonalization that gives the overall update. This approach
provides the blocked LM with a lower memory footprint compared to the standard LM, but
reduces the flexibility of the directions it can explore in parameter space. By working with
smaller matrices, the blocked LM may obtain more reliable estimates of its matrix elements
for a fixed number of samples than the standard LM would and potentially achieve more
reliable update steps. However, in the limit of more variational parameters with insufficient
sampling effort, the blocked LM will share the same vulnerabilities as the standard LM.
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AD methods are a class of first-order optimization algorithms that use only the gradient
of the target function, retaining memory of gradients from previous iterations in order to
converge more quickly than steepest descent. Many different flavors of AD have been widely
used in the machine learning community and a number of them have been applied in the
context of VMC.[84, 116–119] Below, we give the defining equations for a combination of
RMSprop and Nesterov momentum as used in a number of VMC studies.[71, 116, 119, 257]

pk+1
i = (1 − γke

−( 1
d
)(k−1))qk+1

i − γke
−( 1

d
)(k−1)qki (5.15)

qk+1
i = pki − τk

∂Ω(p)

∂pi
(5.16)

λ0 = 0 λk =
1

2
+

1

2

√
1 + 4λ2k−1 γk =

1 − λk
λk+1

(5.17)

τk =
η√

E[( ∂Ω
∂pi

)2](k) + ϵ
(5.18)

E[(∂Ω)2](k) = ρE

[(
∂Ω

∂pi

)2
](k−1)

+ (1 − ρ)

(
∂Ω

∂pi

)2

(5.19)

The recurrence relations defined in equations 5.15 through 5.17 define the momentum in
this algorithm. Obtaining the updated parameter pk+1

i depends on the values of the target

function gradient ∂Ω(p)
∂pi

on previous iterations as well as current step, which accelerates the
convergence compared to steepest descent. Equations 5.18 and 5.19 define the RMSprop
adaptive modification of the step size τk, which is parameter-specific.

From a stability perspective, AD approaches offer a number of advantages compared
to the LM. The relevant equations are far more linear than the LM’s generalized eigenvalue
problem, which reduces the dangers of step bias and uncertainty from nonlinear combinations
of stochastic quantities. In practice, VMC optimization with AD can be conducted with a
significantly lower per-iteration sampling effort than the LM without creating instabilities.
While an individual AD step may be poor and raise the objective function, modest step
sizes ensure that the change to the wave function is small, and typical AD optimizations use
many hundreds or thousands of iterations to successfully minimize the objective function
on average. However, these stabilizing features of AD also leave it slower to converge to
the minimum than the LM.[119] This weakness has motivated the development of a hybrid
approach that alternates between sections of AD and blocked LM optimization, in order to
allow the blocked LM to more swiftly move parameters to their optimal values.[71, 119, 257]

Wave Functions

Another key aspect of VMC stability is the choice of wave function, which shapes the target
function landscape and the difficulty of the optimization problem the various optimizer
algorithms face. With the exact wave function and infinite sample size, variance minima will
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exist for all the Hamiltonian eigenstates.[93] For approximate ansatzes and finite sampling
effort, the minima may become shallow enough that some optimizers fail to target and
converge to them or they may not exist at all. Therefore, as a practical matter, being able
to systematically improve the wave function and the amount of sampling may make the
difference between success and failure for a given optimization algorithm. We have provided
a recent example of this applying the LM to simple wave functions in CN5, where adding a
3-body Jastrow factor and increasing sampling eliminated instabilities.[71]

In this work, we consider more complex wave functions in CN5, all of the Multi-Slater
Jastrow form shown below. The Slater determinant expansion ψMS can be obtained from
various active space calculations of different sizes, with larger spaces, potentially solved by
sCI, producing longer and more accurate expansions.

Ψ = ψMSψJ (5.20)

ψMS =

ND∑
i=0

ciDi (5.21)

ψJ = exp

{∑
i

∑
j

χk(|ri −Rj|) +
∑
k

∑
l>k

ukl(|rk − rl|)

}
(5.22)

Throughout our results, we employ and optimize one- and two-body Jastrow factors,
which are constructed with splines for the functions χk and ukl.[150] For our stability analysis,
we also optimize the orbitals of our Slater expansions, benefiting from recent methodological
improvements with the table method.[75, 76] However, as we show in our results, orbital
optimization can still be challenging for the LM, and we also consider VMC optimization
with the orbitals left at shapes obtained from a recent state-specific CASSCF approach.[45,
50, 219] This approach of combining state-specific quantum chemistry with VMC has recently
been shown to provide accurate excitation energies across a range of different types of excited
states[257] and we provide another example of this for the excited state in CN5.

5.4 Results

Computational Details

We perform all VMC optimizations in a development version of QMCPACK.[150, 204] Our
molecular geometry is identical to one recently used by Filippi and coworkers[91, 259] and we
repeat the coordinates in the appendix for convenience. Basis set and pseudopotential choices
are specified below for the particular wave function cases we consider. For generating our
wave functions, we have performed CASSCF calculations in Molpro[170] and PySCF,[205]
as well as sCI calculations in Dice.[10, 131] Our one- and two-body Jastrow factor splines
each consist of 10 coefficients defining the function within a cutoff distance of 10 bohr.
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Excitation Energies from Variance Minimization

We begin by simply checking the ability of variance-based excited state VMC to obtain
accurate excitation energies with the hybrid method. We follow the same methodology that
has recently been applied on a broader set of excited states.[257] We use a cc-pVTZ basis set
with pseudopotentials[171] and obtained state-specific CASSCF orbitals in a (6e,5o) space.
We then generate Slater determinants from heatbath CI in a (28e,40o) space of these orbitals.
The orbitals are left at their SS-CASSCF shapes and we optimized only Jastrow parameters
and CI coefficients in VMC with the hybrid method, using a recent parameter selection
scheme[257] to optimize only parameters with significant derivatives within the blocked LM.
For the blocked LM portions, we divided those parameters into 5 blocks and retained 30
parameter directions per block along with 5 directions from AD for the second phase of the
blocked LM algorithm. No stability issues were observed in these optimizations. Our VMC
wave functions use 500 determinants for the ground state and 1000 for the excited state.
A recently introduced variance matching extrapolation procedure[257] is used to ensure a
balanced treatment of the ground and excited states.
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Figure 5.3: Excitation energy in CN5 using the hybrid method to minimize the Ω target
function. Reference values for SA-VMC,[91] CC3,[91] CASPT2,[88, 259] GW/BSE,[259] and
sCI[11] are taken from the literature. For comparison, the basis sets used in the literature
results were aug-cc-pVTZ for CC3 and GW/BSE, aug-cc-pVDZ for sCI, ANO-L-VTZP for
CASPT2, and a double-ζ basis set minimally augmented with s and p diffuse functions on
heavy atoms for SA-VMC.

Table 5.1: Excitation energies for CN5 for state-specific VMC and literature results.[11, 88,
91, 259] Stochastic uncertainties on the last digit are given in parentheses.

Method Excitation Energy (eV)
Hybrid Method VMC 4.90(3)
SA-VMC 4.91(1)
CASPT2 4.69
GW/BSE 4.80
CC3 4.84
sCI 4.89

As shown in Figure 5.3 and Table 5.1, we obtain a highly accurate excitation energy
for this state in CN5 for our variance-based methodology. Our result is with 0.1 eV of
literature results from sCI[11] and CC3[91] and statistically indistinguishable from a VMC
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result from Filippi and coworkers based on minimizing the state-averaged energy.[91] Thus,
as a practical matter, we have some reassurance that variance based minimizations with the
hybrid method can achieve accurate excitation energies without stability concerns.

Stability Tests

To gain some more insight into cases where stability issues might arise, we consider a series
of excited state optimizations with the LM and the hybrid method. Our focus is now mainly
on whether these optimizations progress stably rather than whether they fully reach the
minimum or the precise accuracy of the excitation energies that might be obtained from
them. The differences in technical optimization choices between the stable and unstable
outcomes we observe may assist the work of other VMC practitioners.

To construct an ansatz for this analysis, we consider a (6e,10o) active space in a cc-pVDZ
basis set with BFD pseudopotentials.[168] This is the same basis, pseudopotential and active
space for which stability issues were recently observed.[91] We use a 0.001 coefficient cutoff
for a 4-state-average CASSCF to obtain a CI expansion of 1892 determinants for lowest
excited state of CN5 and add one- and two-body Jastrow factors. The lowest excited state
is a ground state within its symmetry and could have been described with a single state
CASSCF, but here we allow determinants of other symmetries (which had coefficient above
0.001 for other states in the state-average but have zero coefficients for the lowest excited
state) within our ansatz. The presence of these unnecessary determinants increases the
difficulty of the optimization and the use of state-averaging may enhance the amount of
orbital optimization being asked of VMC. While this ansatz is not as closely tailored for the
excited state as quantum chemistry might allow, it remains a reasonable initial guess that
still requires nontrivial optimization at the VMC level.

In order to assess stability issues that may appear gradually, we run our optimizations
for a considerably larger number of iterations than we otherwise would for typical excitation
energy predictions, aiming for many hundreds of LM iterations. We also provide the LM
(and its blocked variant within hybrid method) with only 100,000 samples per iteration in
order to make long optimizations more practical and somewhat favor the potential emergence
of stability issues due to poorer stochastic estimates. For comparison, we note that for a
molecule as large as CN5, our typical practices would provide a million samples per LM
iteration, potentially more in cases with many ansatz parameters, and only optimize for
somewhere in the range of 50 to 100 iterations. For the hybrid method, we use 30,000
samples per AD iteration, which is a typical amount otherwise, and use 17 macro-iterations,
which is significantly longer than our usual range of 5 to 10.

We begin with a fixed value of ω = −41.475 and minimize the objective function Ω in
a staged approach, first optimizing the less difficult Jastrow and CI parameters and only
turning on orbital optimization at the next stage. We choose to optimize all determinants
from CASSCF alongside the initially unoptimized Jastrow for a total of 2030 variational
parameters in our first stage of optimizations. We mention that in practical calculations,
this stage could be performed even more cautiously, such as by optimizing the Jastrow with
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only the 100 most important determinants and then adding the remainder in sets of a few
hundred with zero initial coefficients, but optimizing them all at once from the start provides
us with a more stringent stability test.

Three optimizer choices are considered: LM with fixed shifts, LM with adaptive shifts,
and the hybrid method. These various options’ approach to the issue of step size control is
a key way of distinguishing them. In both varieties of the LM as well as the blocked LM
steps within the hybrid method, a correlated sampling procedure is performed to allow the
possibility of rejecting a proposed parameter update. However, the fixed shift version of the
LM has no means of constraining its step size beyond what the chosen shift values(cI = 0.1
and cS = 1) provide while the adaptive version can move from those initial values and alter
both the size and direction of the LM updates. The hybrid method incorporates the benefits
of the adaptive shift scheme in its use of the blocked LM and the step sizes employed during its
AD sections dynamically adjust with the objective function gradients according to RMSprop.
Throughout the hybrid method optimizations in this section, we divide parameters into 5
blocks and employ 30 parameter directions per block along with 5 directions from AD in the
second phase of all blocked LM iterations.
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Figure 5.4: Excited state energy for fixed shift LM, adaptive shift LM, and hybrid method.
Starting point was unoptimized Jastrow and CI coefficients from SA-CASSCF. Green dashed
line marks the end of the first stage where only Jastrow and CI parameters are optimized.
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Figure 5.5: Objective function Ω for fixed shift LM, adaptive shift LM, and hybrid method.
Starting point was unoptimized Jastrow and CI coefficients from SA-CASSCF.Green dashed
line marks the end of the first stage where only Jastrow and CI parameters are optimized.
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Figure 5.6: Excited state variance for fixed shift LM, adaptive shift LM, and hybrid method.
Starting point was unoptimized Jastrow and CI coefficients from SA-CASSCF. Green dashed
line marks the end of the first stage where only Jastrow and CI parameters are optimized.
The separation between AD and blocked LM points is an artifact of autocorrelation.

Turning to the results, we consider the optimizations shown in Figures 5.4 through 5.6.
Points on the LM plots represent the average of 25 LM iterations. On the hybrid method
plots, dots are averages of 50 AD iterations and crosses are individual blocked LM iterations.
The vertical scales have been chosen to make the varying stability behavior of the optimiza-
tion algorithms more visible, which leaves off some points corresponding to early iterations.
The vertical dashed line marks the end of the first stage of optimizing only Jastrow and CI
parameters and the start of including orbital optimization. We note that while both stages of
optimization are plotted together, the second phase was run as separate calculations. Initial
values of the shifts were restored to cI = 0.1 and cS = 1 for the adaptive shift LM and the
hybrid method, and the initial step sizes used in AD are changed. The initial hybrid method
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optimization of CI and Jastrow parameters used step sizes of 0.01 and 0.1 respectively. Once
orbitals were turned on, these were reduced to 0.005 and orbital parameters were given a
step size of 0.0001.

Focusing on the left-hand Jastrow and CI side of the three figures, we see that all ap-
proaches successfully lower the target function with the energy and variance also decreasing
in tandem. The fixed shift LM case in the upper panel of the three figures provides some
reason for concern with a sustained rise in the target function and energy within the first
100 iterations, but the optimization later recovers. The adaptive shift LM and the hybrid
method provide smoother optimization, but for this case with only the easier Jastrow and
CI parameters, their refinements for step size control may be less necessary.

We then turn on orbital optimization and continue to optimize the other parameters
starting from each method’s Jastrow and CI result. We continue to keep ω fixed. With
orbital optimization, our ansatz now has a total of 6163 variational parameters. We now
see in the second half of Figures 5.4 through 5.6 that the behavior of the three methods
more dramatically differs. The fixed shift LM shows a substantial rise in energy of roughly
80 milliHartree over the course of hundreds of iterations. This failure of optimization is
clearly signaled by a rise in the objective function in the first hundred iterations of orbital
optimization. Both the energy and objective function remain elevated during hundreds of the
later iterations, indicating that the LM is unable to recover in this case. While the fixed shift
LM in principle possesses the ability in the correlated sampling phase to detect and reject any
step that would raise the objective function, this safeguard is clearly inadequate in this case.
With poor estimates of the objective function at the current and proposed sets of ansatz
parameters, the LM may mistakenly estimate that a step will lower the objective function
only to discover otherwise once it is at the new point in parameter space and takes new
samples. This danger is exacerbated if proposed parameter steps can remain incautiously
large, which fixing the LM shifts permits. Our finding of optimization failure with limited
step control aligns with other observations of variance minimization instabilities when using
a modified Newton method with a fixed, non-adaptive step size parameter.[91]
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Figure 5.7: Zoomed in view of excited state energy for adaptive shift LM, and hybrid method.
Green dashed line marks the end of the first stage where only Jastrow and CI parameters
are optimized.

The change from fixed to adaptive shifts yields far better performance for the LM, with
steady decreases in objective function, energy, and variance. We provide a zoomed in plot of
the energy for the adaptive shift LM and hybrid method in Figure 5.7 to make clear that both
approaches continue to lower the energy after enabling orbital optimization. The adaptive
shift LM optimization makes only rather slow progress over many hundreds of iterations and
after roughly 300 iterations with orbital optimization, the shifts are so large that only very
minor changes are being made to the parameters in the remainder of the calculation. While
this sluggish optimization would be undesirable in normal VMC applications, it clearly does
not show any pathological behavior in terms of instability even though the adaptive shift
LM is operating with only 100,000 samples per iteration. Although this low number of
samples may hamper the LM’s ability to determine effective parameter updates that would
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minimize more quickly, any stability challenges it might pose have been overcome with
enhanced step control in the algorithm’s design. Essentially, the adaptive shifts prevent
the optimizer from pushing past the point where statistical uncertainty precludes effective
update steps. The hybrid method is similarly stable and able to achieve significantly lower
values of Ω, energy, and variance. The blocked LM iterations show some scatter in the
objective function and the variance, but do not derail the stability of the optimization. The
separation between the blocked LM and AD variance points in Figure 5.6, also seen in Figure
5.10, is an autocorrelation artifact from the low number of samples used to evaluate the AD
variances being averaged together in each point and diminishes if AD iterations are given
more samples.
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Figure 5.8: Optimization of all parameters including orbitals using the hybrid method start-
ing from the end of the LM fixed shift optimization of only the Jastrow and CI parameters.
Green line is shown to the left to make clear these plots show only the stage with orbital
optimization.
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We also consider the potential effects of the optimized MSJ starting point on the second
stage of optimization. As depicted earlier in Figure 5.5, the hybrid method achieves a lower
value of Ω than the two types of the LM during the first Jastrow and CI phase of optimization
and therefore has a better initial wave function when orbital optimization is turned on. To
check whether this difference has any stability consequences, we also performed a hybrid
method optimization of all parameters beginning from the optimized MSJ ansatz obtained
by the fixed shift LM. As shown in Figure 5.8, the hybrid method is still able to stably
optimize from this inferior starting point. While the quality of the initial wave function may
still influence how fully the hybrid method is able to minimize Ω, a somewhat poorer starting
point is not sufficient to destabilize the hybrid algorithm.
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Figure 5.9: Optimization of all parameters including orbitals using the LM with fixed shifts
while varying omega. Starting point was the optimized MSJ wave function from the preced-
ing LM fixed shift optimization of only the Jastrow and CI parameters. Green line is shown
to the left to make clear these plots show only the stage with orbital optimization.
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Figure 5.10: Optimization of all parameters including orbitals using the hybrid method while
varying omega. Starting point was the optimized MSJ wave function from the preceding
hybrid method optimization of only the Jastrow and CI parameters. Green line is shown
to the left to make clear these plots show only the stage with orbital optimization. The
separation between AD and blocked LM variance points is an artifact of autocorrelation.
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Figure 5.11: Varying values of omega during fixed shift LM and hybrid method optimizations
of all parameters.

The optimizations shown so far have all used a fixed value of ω. While in practical
calculations, a series of fixed ω calculations is always an option for moving ω to transform
minimization of Ω into variance minimization, for completeness we also consider varying ω
over the course of a single optimization. For the fixed shift LM and the hybrid method,
we again turn on orbital optimization at their respective optimized Jastrow and CI starting
points, now with schemes for varying ω. For the LM, during the first 10 iterations, we
interpolate[95] ω between its initial value and E − σ, and afterward allow ω to float at the
value of E − σ set by the preceding iteration. For the hybrid method, we use the last 30
AD iterations in each macro-iteration to compute E − σ for setting a new value of ω for
the blocked LM steps and the AD section of the next macro-iteration. As seen in Figures
5.9 and 5.10, there is little difference in the methods’ stability behavior from the fixed ω
case. The fixed shift LM again shows a clear rise in the energy and variance while the hybrid
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method still performs a stable minimization. As Figure 5.11 shows, the value of ω is dragged
up significantly during the unstable LM optimization, while it only moves a little during the
hybrid method. The hybrid method’s stability suggests that varying ω and changing the
objective function landscape are not the key factors in determining stability. Instead, we see
again that adaptive step control makes the difference.

5.5 Conclusions

The sequences of optimizations we have performed point to several considerations when
seeking to ensure stable and successful applications of variance-based state-specific VMC.
Scenarios characterized by large numbers of difficult parameters, as in orbital optimization,
pose a significant risk of optimization instability from poor parameter updates. This diffi-
culty is exacerbated if the amount of sampling is insufficient for accurately determining the
parameter gradients for those updates or the objective function values needed to assess and
reject them. Our findings on stability failures of the LM add to other observations of chal-
lenges in variance minimization[91] and help clarify when such optimization difficulties are
most likely to be encountered. The nature of the optimization failures we identify point to
choices in optimizer design as a key factor in variance minimization instabilities rather than
the shape of the variance surface itself. While the problem of optimization instability will
remain a concern as researchers pursue studies of larger systems and more complex ansatzes,
multiple tools are available for curbing its impact.

First, the ability to adaptively control step size and direction is a key element of robust-
ness in challenging optimizations. Previously reported instabilities were seen in a setting
that lacked adaptive step control, as were all the unstable runs in the present study. In
contrast, optimizations in which we employ adaptive step control (either in the LM alone
or in the hybrid method) proved stable. Second, algorithms can be designed to reduce the
optimization burden on the portions most prone to instability. This idea is reflected in the
hybrid method’s structure, with a large portion of the optimization left to the more stable
AD and the reduction of the size of the LM matrices by first including only parameters
of significant gradients and then blocking. Finally, careful construction of wave functions
to effectively describe correlation while remaining readily optimizable at the VMC level is
advantageous. We have shown determining orbital shapes with state-specific quantum chem-
istry and optimizing only Jastrow and CI parameters is sufficient for an accurate excitation
energy in CN5 and demonstrated the same idea for a broader set of molecules in recent
work.[257] Circumventing VMC orbital optimization in this way avoids any stability chal-
lenges it might pose and greatly enhances computational efficiency. Taken together, these
approaches provide reassurance that state-specific variance-based VMC can be performed in
a robust and stable manner so long as adaptive step control is employed.
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5.7 Appendix

Table 5.2: Structure of CN5. Coordinates in Å.

C 0.000 000 0.000 000 0.340 620
C 0.000 000 1.188 120 −0.363 814
C 0.000 000 −1.188 120 −0.363 814
H 0.000 000 0.000 000 1.424 530
H 0.000 000 1.160 200 −1.449 150
H 0.000 000 −1.160 200 −1.449 150
N 0.000 000 2.389 120 0.164 413
N 0.000 000 −2.389 120 0.164 413
H 0.000 000 2.531 430 1.161 940
H 0.000 000 −2.531 430 1.161 940
H 0.000 000 3.211 380 −0.414 923
H 0.000 000 −3.211 380 −0.414 923
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Chapter 6

Conclusions

In this dissertation, we have presented a series of four studies centered around the common
theme of optimization algorithms in VMC, with an emphasis on applications to molecular
excited states. We began with VMC method development in the ground state by performing
a careful comparison of ansatz optimization algorithms. The two main classes of methods
we considered, the LM and AD, have complementary strengths and weaknesses. While the
LM is more effective than AD at swiftly moving challenging parameters to the vicinity of
their optimal values, its vulnerability to step uncertainty hampers its ability to converge
tightly. AD methods enjoy greater scalability to larger parameter numbers and robustness
to noise, but remain relatively slow to converge when deployed on their own. This situation
motivated the construction of the hybrid method, which was shown in its initial applications
to be as accurate as the standard LM and more computationally efficient.

The hybrid method served as the main tool in the subsequent work we have presented
here. We first extended the algorithm to optimization for excited states by minimizing an
objective function based on the variance. Applying the hybrid method to doubly excited
states in a set of small molecules allowed us to verify the accuracy of our approach against
benchmark sCI excitation energies for this challenging category of excited states. The sub-
sequent research in Chapter 4 applying state-specific VMC backed by the hybrid method
to a wider array of excited states demonstrated that this methodology can reliably obtain
accurate excitation energies for single valence, doubly excited, and charge transfer states.
This versatility across multiple classes of excited states is not available for other quantum
chemistry methods, particularly at the largest molecular sizes considered in this work. We
have also continued methodological work for VMC by analyzing the issue of optimization
stability in variance minimization and demonstrating the hybrid method’s design allows it
to remain stable in cases where the standard LM might fail.

Within the wider context of electronic structure, state-specific VMC can serve as a
broadly reliable and systematically improvable tool for studying challenging excited states.
Its ability to build upon a very different set of approximations compared to traditional
quantum chemistry methods such as coupled cluster and CASPT2 enables VMC to pro-
vide guidance in cases where the others disagree. The development of the hybrid method
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supports this role of VMC by ensuring robust optimizations in larger molecules where bench-
marks from sCI and similarly high quality methods are unavailable and the reliability of the
affordable quantum chemistry options may be unknown.

Looking to the future, there are multiple paths for both the application and development
of excited-state VMC. The study of molecular excited states could first be pushed to larger
systems of interest. One set of possibilities is charge transfer states in nucleobase dimers,[260–
262] which are useful model systems for studying the photophysics of DNA,[263] a crucially
important topic in the study of cancer. Further categories of excited states beyond those
considered in this research such as core states[198] and Rydberg states are areas where VMC
could provide similarly reliable results. There are also exciting possibilities in the solid-state,
where VMC may be able to bring greater predictive power to the study of band gaps[142]
and defect states. As VMC’s capabilities continue to mature, it could potentially be used as
a stage in high-throughput materials searches[264] after cheaper methods with less predictive
power have been used.

On the methodological side, the optimization methods studied in this work may be
combined with new objective functions such as a generalized variational principle[48] and
with other ansatz forms including neural nets.[200, 265] More broadly, developing state-
specific VMC to provide high quality results for observables besides excitation energies would
further expand its usefulness. The hybrid method itself may be refined further as more
applications clarify how to optimally set its many hyperparameters and design it to be run
in a more black-box manner. Given the long history of optimization method development
in QMC, the hybrid method may well be superseded one day by another approach, but
it then will still have served as a useful standard for assessing new algorithms. The many
opportunities for excited state VMC make the future of its role in electronic structure theory
difficult to predict, but we hope that our contributions to optimization algorithms will play
a useful part.
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[234] Alexander Humeniuk and Roland Mitrić. “Excited states from quantum Monte Carlo
in the basis of Slater determinants”. In: The Journal of Chemical Physics 141.19
(2014), p. 194104. doi: 10.1063/1.4901020. eprint: https://doi.org/10.1063/1.
4901020. url: https://doi.org/10.1063/1.4901020.

[235] N. S. Blunt, Ali Alavi, and George H. Booth. “Krylov-Projected Quantum Monte
Carlo Method”. In: Phys. Rev. Lett. 115 (5 July 2015), p. 050603. doi: 10.1103/
PhysRevLett.115.050603. url: https://link.aps.org/doi/10.1103/PhysRevLett.
115.050603.

[236] Yuki Kurashige, Garnet Kin-Lic Chan, and Takeshi Yanai. “Entangled quantum elec-
tronic wavefunctions of the Mn4CaO5 cluster in photosystem II”. In: Nature Chem-
istry 5.8 (Aug. 2013), pp. 660–666. issn: 1755-4349. doi: 10.1038/nchem.1677. url:
https://doi.org/10.1038/nchem.1677.

[237] Fengyi Liu et al. “Multireference Ab Initio Density Matrix Renormalization Group
(DMRG)-CASSCF and DMRG-CASPT2 Study on the Photochromic Ring Opening
of Spiropyran”. In: Journal of Chemical Theory and Computation 9.10 (2013). PMID:
26589164, pp. 4462–4469. doi: 10.1021/ct400707k. eprint: https://doi.org/10.
1021/ct400707k. url: https://doi.org/10.1021/ct400707k.

[238] Werner Dobrautz et al. “Spin-Pure Stochastic-CASSCF via GUGA-FCIQMC Ap-
plied to Iron–Sulfur Clusters”. In: Journal of Chemical Theory and Computation 17.9
(2021). PMID: 34469685, pp. 5684–5703. doi: 10.1021/acs.jctc.1c00589. eprint:
https://doi.org/10.1021/acs.jctc.1c00589. url: https://doi.org/10.1021/
acs.jctc.1c00589.

[239] Michel Caffarel et al. “Communication: Toward an improved control of the fixed-node
error in quantum Monte Carlo: The case of the water molecule”. In: The Journal of
Chemical Physics 144.15 (2016), p. 151103. doi: 10.1063/1.4947093. eprint: https:
//doi.org/10.1063/1.4947093. url: https://doi.org/10.1063/1.4947093.

[240] A. Scemama et al. “Accurate nonrelativistic ground-state energies of 3d transition
metal atoms”. In: The Journal of Chemical Physics 141.24 (2014), p. 244110. doi:
10.1063/1.4903985. eprint: https://doi.org/10.1063/1.4903985. url: https:
//doi.org/10.1063/1.4903985.

[241] Anthony Scemama et al. “Influence of pseudopotentials on excitation energies from
selected configuration interaction and diffusion Monte Carlo”. In: Results in Chem-
istry 1 (2019), p. 100002. issn: 2211-7156. doi: https://doi.org/10.1016/j.



BIBLIOGRAPHY 164

rechem.2019.100002. url: https://www.sciencedirect.com/science/article/
pii/S2211715619300025.

[242] Anouar Benali et al. “Toward a systematic improvement of the fixed-node approxima-
tion in diffusion Monte Carlo for solids—A case study in diamond”. In: The Journal of
Chemical Physics 153.18 (2020), p. 184111. doi: 10.1063/5.0021036. eprint: https:
//doi.org/10.1063/5.0021036. url: https://doi.org/10.1063/5.0021036.

[243] Roland Assaraf and Michel Caffarel. “Computing forces with quantum Monte Carlo”.
In: The Journal of Chemical Physics 113.10 (2000), pp. 4028–4034. doi: 10.1063/1.
1286598. eprint: https://doi.org/10.1063/1.1286598. url: https://doi.org/
10.1063/1.1286598.

[244] Roland Assaraf and Michel Caffarel. “Zero-variance zero-bias principle for observables
in quantum Monte Carlo: Application to forces”. In: The Journal of Chemical Physics
119.20 (2003), pp. 10536–10552. doi: 10.1063/1.1621615. eprint: https://doi.
org/10.1063/1.1621615. url: https://doi.org/10.1063/1.1621615.

[245] Kousuke Nakano et al. “TurboRVB: A many-body toolkit for ab initio electronic
simulations by quantum Monte Carlo”. In: The Journal of Chemical Physics 152.20
(2020), p. 204121. doi: 10.1063/5.0005037. eprint: https://doi.org/10.1063/5.
0005037. url: https://doi.org/10.1063/5.0005037.

[246] Mickaël Véril et al. “QUESTDB: A database of highly accurate excitation energies for
the electronic structure community”. In: WIREs Computational Molecular Science
11.5 (2021), e1517. doi: https://doi.org/10.1002/wcms.1517. eprint: https:
//wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1517. url: https:
//wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1517.

[247] Giuseppe M. J. Barca et al. “Recent developments in the general atomic and molecular
electronic structure system”. In: The Journal of Chemical Physics 152.15 (2020),
p. 154102. doi: 10.1063/5.0005188. eprint: https://doi.org/10.1063/5.0005188.
url: https://doi.org/10.1063/5.0005188.

[248] Robert R. Lucchese and Henry F. Schaefer. “Charge-transfer complexes. Ammonia-
molecular fluorine, ammonia-molecular chlorine, ammonia-chlorine fluoride, trimethylamine-
molecular fluorine, trimethylamine-molecular chlorine, and trimethylamine-chlorine
fluoride”. In: Journal of the American Chemical Society 97.25 (1975), pp. 7205–7210.
doi: 10.1021/ja00858a001. eprint: https://doi.org/10.1021/ja00858a001. url:
https://doi.org/10.1021/ja00858a001.

[249] Yan Zhao and Donald G. Truhlar. “Density Functional for Spectroscopy: No Long-
Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer
States, and Better Performance on Average than B3LYP for Ground States”. In: The
Journal of Physical Chemistry A 110.49 (2006). PMID: 17149824, pp. 13126–13130.
doi: 10.1021/jp066479k. eprint: https://doi.org/10.1021/jp066479k. url:
https://doi.org/10.1021/jp066479k.



BIBLIOGRAPHY 165

[250] Piotr Piecuch, Jared A. Hansen, and Adeayo O. Ajala. “Benchmarking the completely
renormalised equation-of-motion coupled-cluster approaches for vertical excitation
energies”. In: Molecular Physics 113.19-20 (2015), pp. 3085–3127. doi: 10.1080/

00268976.2015.1076901. eprint: https://doi.org/10.1080/00268976.2015.
1076901. url: https://doi.org/10.1080/00268976.2015.1076901.

[251] Johan Lorentzon, Markus P. Fuelscher, and Bjoern O. Roos. “Theoretical Study of
the Electronic Spectra of Uracil and Thymine”. In: Journal of the American Chemical
Society 117.36 (1995), pp. 9265–9273. doi: 10.1021/ja00141a019. eprint: https:
//doi.org/10.1021/ja00141a019. url: https://doi.org/10.1021/ja00141a019.
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