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Graphical Abstract  
 

 
 
Highlights:  

• time-dependent electrokinetic potential shows signatures of multistage nucleation process 
• changes in z-potential, solution pH, saturation indexes, and particle morphology are 

consistent with vaterite to calcite transformation via dissolution of the former and 
recrystallization of the latter starting a few minutes after reagents are mixed 

• z-potential measurements can be used to monitor polymorphic transformations of carbonate 
phases in-situ 
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Abstract  
Hypothesis Calcium carbonate nucleation is often a complex and multistep process that is difficult 
to follow in situ. The time-resolved electrochemical and electrophoretic methods can provide a new 
insight into the nucleation pathway.  
Experiments Here, we used a combination of speciation calculations with time-resolved 
electrophoretic and potentiometric methods to monitor calcium carbonate precipitation from a 
slightly supersaturated solution.  
Findings After an initial mixing period of three minutes in which metastable CaCO3 phases may 
have nucleated and subsequently dissolved due to locally-high supersaturations, bulk solution pH 
and Ca2+ concentrations stabilize before decreasing in tandem with the precipitation of a CaCO3 
phase. After an hour, the precipitate is dominated by calcite that grows at the expense of dissolving 
vaterite. The time-dependent electrokinetic potential shows analogous signatures of multistage 
nucleation process: initial rapid changes in z-potential are followed by much slower equilibration 
starting about one hour after reagents are mixed. The changes in z-potential, solution pH, saturation 
indexes, and particle morphology are consistent with vaterite to calcite transformation via 
dissolution of the former and recrystallization of the latter. These findings highlight the potential use 
of z-potential measurements for monitoring polymorphic transformations of carbonate phases in-
situ. 
 

                                                
*Corresponding author: e-mail: ppzarzycki@lbl.gov, Lawrence Berkeley National Laboratory M/S 74R316C, 1 
Cyclotron Road, Berkeley, CA, USA, Phone: 510-486-6272  
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1. Introduction 

Calcium carbonate (CaCO3) is one of the most common reactive minerals in the 

environment[1]; important in biomineralization[2-7], scale formation[8], and in the global carbon 

cycle [9, 10]. However, its crystallization is a complex process with many concurrent nucleation 

pathways[2, 11-36], and therefore it remains challenging to monitor in situ.  

Solution saturation is the thermodynamic driving force for precipitation, and the mineral 

phase with the highest saturation index is expected to appear at equilibrium. However, several 

possible intermediate and metastable phases can precipitate first as revealed by the 

potentiometric[16, 18], spectroscopic[37-39], and electron/force microscopy studies[36, 40-46]. In 

highly supersaturated solutions, precipitation often starts via formation of amorphous calcium 

carbonate (ACC), which transforms directly or in stages into the thermodynamically most stable 

polymorph (Ostwald-Lussac rule of stages, Fig. 1a)[47]. For instance, at room temperature and in a 

moderate to high supersaturated solutions, the ACC transforms to calcite via vaterite as an 

intermediate [29] in a process that involves: dehydration and local ordering of ACC (seconds), 

followed by formation of vaterite (minutes) and finally its transformation to calcite (hours). 

However, the actual nucleation pathway is controlled by the solution composition, and it can be 

easily modified by impurities [29-31, 41, 48-54]. For example, Mg2+ ions stabilize ACC and vaterite, 

and as a result, they inhibit a transformation to the more stable polymorphs  [29-31, 41, 50-54].  

The difficulty in understanding CaCO3 crystallization originates in part from the surface 

reactivity of growing and transforming particles – for instance, the presence of the dynamic electrical 

double layer (Fig. lb). For decades, sign and magnitude of surface and diffuse potential, and the 

identity of the potential determining ions (PDI) have been hotly debated.[34, 35, 55-64]. Now, it is 

broadly accepted that the constituent ions and their hydrolysis products are the primary sources of 

the surface charge (i.e., primary PDI) [34, 35, 65, 66].  However, the CO2 partial pressure and bulk 

pH have remained important variables – as they control carbonate speciation in solution and at the 

surface [34, 35]. For this reason, H+ and OH- ions are sometimes referred to as the secondary PDI 

[35, 55]. Experimental insight into the surface electrostatics is frequently gained by measuring 
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electrokinetic potential (z-potential) as a function of PDI or pH. The z-potential is usually negative 

at pH >7 and it varies in magnitude among CaCO3 polymorphs [34, 35, 62].  

Here, we report the time-resolved electrophoretic and potentiometric monitoring of CaCO3 

nucleation from supersaturated solution interpreted with speciation calculations. We used a Ca-ion 

sensitive electrode (Ca-ISE) and pH-electrode to monitor changes in the bulk Ca2+ concentration and 

pH over time and an electrophoretic cell to follow simultaneous changes in z-potential. We observed 

signatures of multistage nucleation dynamics in the time-evolution of the aqueous composition and 

z-potential consistent with the initial precipitation of metastable vaterite that subsequently 

transforms into calcite via dissolution of the former and recrystallization of the latter, consistently 

with the previously reported sequence [29]. 
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Figure 1. Schematic representation of the multistage nucleation pathway of CaCO3 (a): (i) formation of amorphous 
calcium carbonate (ACC) or polymeric liquid precursors[2, 11-17], (ii) dehydration and local ordering[21-26] (iii) 
precipitation-dissolution transformation or spherulitic growth[28-33], and finally (iv) formation of the most stable 
CaCO3 mineral. In Panel (b) we show a schematic diagram of the electrical double layer formed at the carbonate/NaCl-
electrolyte interface. The surface charge is defined by constituent ions at the surface and their hydrolysis products.[34, 
35] The electrokinetic potential (z) quantifies the electrostatic potential at the slip plane in the diffuse part of the electrical 
double layer.  
 
 

2. Methods 

2.1. Experimental Setup 

In order to precipitate calcium carbonate, we mixed 2 ml of 0.1 M CaCl2 (Sigma-Aldrich, pH=6) 

with 1 ml of 1 M NaCl, 95 ml of distilled, deionized water (Milli-Q-PLUS 185 System Polwater 
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CDX-100 system) and with 2 ml of 0.1 M Na2CO3 (Sigma-Aldrich, pH=11.4). The final volume of 

the solution was equal to 100 ml (2 mM effective concentration of CaCl2/Na2CO3). This solution 

was prepared in the potentiometric cell (150 ml, sealed and filled with argon, Fig. S1, Supporting 

Information). The CaCl2 solution and NaCl background electrolyte was added to the potentiometric 

cell first. After cell potential and pH stabilized (i.e., pH = 6), Na2CO3 was injected either as a single 

flow or as a series of two or three in the sealed cell configuration. The concentration of Ca2+ in the 

aqueous solution and bulk pH were monitored every two seconds using a calcium-selective polymer 

membrane electrode and a combined pH-glass/reference electrode, respectively (Metrohm, 

6.0508.110, reproducibility ±4%, pH range 2-12, detection limit 5 ´10-4 mM Ca2+) accompanied by 

reference electrode (Metrohm, 6.0750.100) and a combined pH-glass electrode with integrated 

Pt1000 temperature sensor, respectively (Metrohm, 6.0258.000). The Ca-ISE electrode was 

calibrated prior to the nucleation experiments using a 10 mM NaCl solution with varying CaCl2 

content. The measured concentrations of Ca2+ ions in the calibration step agree with the aqueous 

speciation calculations demonstrating that Na+ and Cl- ions do not interfere with the Ca-ISE (see 

Supporting Information). In a separate experiment, we monitor time-evolution of the z-potential for 

exactly the same experimental conditions. The z-potential was monitored every 50 seconds using 

Zetasizer Nano Z (Malvern), starting one minute after the reagents are mixed. SEM images of 

minerals precipitated were taken two hours after the reagents were mixed using FEI Nova NanoSEM 

450. The Ca-ISE and pH-electrode response time to a change in the bulk concentration of calcium 

ions is less than two seconds (Fig. S2, Supporting Information). 

 
 

2.2 Modeling Ions Speciation  

In the seminal paper, Gebauer et al. [18]  showed that Ca-ISE measurements could be 

instrumental in understanding the early stages of CaCO3 nucleation, but their interpretation remains 

difficult. For instance, one cannot assume that a difference in concentration between the initially 

added Ca2+ ions and those detected by Ca-ISE is only due to (pre)nucleation of CaCO3[18]; because 

any stable Ca2+ complex is also removed from the Ca-ISE-detectable pool of aqueous Ca2+. To 

accurately interpret the Ca-ISE signal, we combined the potentiometric monitoring with speciation 

calculations to quantify: i) the amount of the precipitated solid, ii) aqueous phase composition, iii) 

saturation indexes of possible carbonate phases and iv) electrokinetic potential of precipitating 

particles.  



 7 

We implemented a simple speciation solver to predict the distribution of aqueous species and 

saturation indices for possible carbonate phases considering the initial chemical composition with 

time-dependent pH as an input. We assume that the kinetics of ion speciation in solution is fast as 

compared with the nucleation process, and therefore the bulk composition equilibrates immediately 

with the precipitated solid. However, we do not assume that a thermodynamic equilibrium is 

established because the solid phase constantly evolves. Instead, we model a system far from 

equilibrium, assuming however, that ions complexation and speciation in the aqueous phase are 

rapid as compared with the rate-limiting solid-phase transformations. In our speciation calculations, 

we included various types of the ion pairs, because it has been suggested[67-69] that ion pairs and 

clusters rather than the constituent ions are the primary building blocks in carbonate crystal seeding 

and growth and also because Ca-ISE electrode measures only free Ca2+ ions in the solution – as 

mentioned above. 

The system of nonlinear mass balance equations is modified to incorporate the additional 

solubility constraint and solved iteratively until the difference between the experimentally measured 

aqueous Ca2+ concentration using Ca-ISE (𝑐"#$%&'()*+)) and those calculated (𝑐"#$%&'(-./-)) is less than 

0.001% for a given pH value – using the amount of carbonate precipitate (Ca23/4567 ) as an optimizing 

variable, that is:  

min
"#;<=>?

&'
@𝑐"#$%&'()*+) − 𝑐"#$%&'(-./-)B	        (1) 

where the amount of Ca2+ in solid is calculated as the difference between the total amount of Ca2+ 

(i.e., initial Ca2+ concentration,		𝑐"#(𝑡E)) and the amount of Ca2+ in the aqueous phase in all 

possible speciation states:  

Ca23/4567 = 	𝑐"#(𝑡E) −	∑ 𝑎"#>/𝛾"#>
.KL)3L2
4        (2) 

where 𝑎"#>, 𝛾"#> are the activity and activity coefficient of Ca2+ in the i-aqueous species, respectively 

(𝑐"#> = 𝑎"#>/𝛾"#>). All considered aqueous reactions and carbonate phases are listed in Tables 1,2.  

The activity coefficients were recalculated at each time-step by using the extended Debye-Hückel 

equation [70]: 

log 𝛾4 = − QR>
&√T

U7V.>√T
+ 𝑏4√𝐼         (3) 

where A, B are the temperature dependent Debye-Hückel parameters (A=0.51, B=0.33 at T=25° 

C), ai,bi are ion-specific parameters related to the ionic radius (taken from ref.[70, 71]), zi is the 
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valance of the i-species and I is the ionic strength (𝐼 = U
6
∑ 𝑧46𝑐44 , where ci is the concentration of 

the i-species). The extended Debye-Hückel equation is valid for the ionic strength lower than 1 

mol/dm3 (in our system I £ 0.018 mol/dm3). The saturation index is defined for each possible j-

carbonate phase as:  

SI] = 𝑙𝑜𝑔
.ab$%&'	

	.acd&e	
fg

          (4) 

where Kj is the solubility product of a given carbonate polymorph (see Table 2). 

Our speciation code was written in C++, and it uses the Newton-Raphson algorithm for the 

minimization procedure and iterative solver of the nonlinear equations with the compositional-

constraints.  
Table 1. Aqueous reactions considered in time-resolved aqueous speciation calculations. 

Reaction pK= -log10(K) 

Ca67 + Clh 	⇌ CaCl7 0.696[72] 

Ca67 + 2Clh 	⇌ CaCl6(.K) 0.644[72] 

Ca67 + COl6h 	⇌ CaCOl(.K)E  -3.224[8] 

Ca67 + COl6h + H7 ⇌ CaHCOl7 -11.435[73] 

Ca67 + H6O	 ⇌ CaOH7 +	H7 12.78[73] 

Na7 + HCOlh 	⇌ NaHCOl(.K)E  0.25[73] 

Na7 + COl6h 	⇌ NaCOlh -1.27[73] 

Na7 + OHh ⇌ NaOH(.K) 10[73] 

Na7 + Clh ⇌ NaCl(.K) 0.777[74] 

H7 + COl6h 	⇌ HCOlh -10.329[71] 

2H7 + COl6h 	⇌ H6COl(.K) -16.681[71] 

 
2.3. Modeling z-potential 

There is a lack of a kinetic model of surface electrostatics (EDL) of evolving mineral 

particles. However the existing equilibrium models [65, 75, 76] can still shed some light on the z-

potential behavior. Here, we use two approaches: thermodynamic Nernst-type model of surface and 

z-potential[65, 77-79] and a model based on the surface complexation approach developed by 

Heberling et al. [75, 76].  

The thermodynamic model assumes that ion concentration at a distance x from the charged 

surface is given by the Boltzmann distribution. In the case of Ca2+ ions one can write:  

[Ca67]* = [Ca67]qL/r exp @−
6)v(*)
rwx

B        (5) 
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where y(x) is the electrostatic potential at the distance x from the surface, kB is the Boltzmann 

constant and T is the temperature. By rewriting eq. (5) to express y as a function of ionic 

concentrations and by considering only a specific distance that corresponds to the shear plane, we 

obtain the following expression for the electrokinetic potential:  

𝜁(Ca67) = rwx
6)
ln

z"#&'{|}=~
["#&']���

= rwx
6)
(𝑝CaT�� − 𝑝CaqL/r)     (6) 

where 𝑝CaT�� corresponds to the particular concentration of Ca2+ at which 𝜁(Ca67) = 0 (i.e., 

isoelectric point, IEP). By analogy, a similar expression can be obtained for contribution due to the 

accumulation of COl6hions in the shear plane: 

𝜁(COl6h) =
rwx
6)
ln

z"�d&e{���
z"�d&e{|}=~

= rwx
6)
�𝑝COl,qL/r − 𝑝COl,T���     (7) 

Finally, if both Ca2+ and COl6h ions are considered as PDI, the effective electrokinetic potential can 

be assumed to be arithmetic or weighted average of eqs. (6,7). This derivation is inspired by Donnet 

et al.[65], who presented similar expressions for the surface potential of calcite and aragonite.  

Although, eqs. (6,7) are convenient as they link directly aqueous composition to a measurable 

quantity; they do not take into account the structure of the electrical double layer formed at the 

mineral/electrolyte interface. To take into account surface chemistry, we used the surface 

complexation model as developed for calcite (101�4) crystal face/electrolyte interface by Heberling 

et al.[75, 76, 80] and using as input: pH, CO32- and Ca2+ ions activities observed/calculated along 

the nucleation pathway. This approach provides the surface potential (𝜓E), which is converted to the 

z-potential by using two additional parameters a,b representing the difference in the position 

between the surface and slip plane and ion adsorption in Stern layer, that is [65, 67]: 

𝜁 = 𝑎	𝜓E + 𝑏           (8) 

The eqs. (6-8), serve only as an approximation, because they are not taking into account any 

time-dependence of model parameters, whereas our previous studies show that EDLs vary with the 

type and size of the mineral particle, exposed crystal faces and surface stoichiometry [81-84].  

 

 

 

 
Table 2. Solid phases considered in time-resolved aqueous speciation calculations and the initial values of 
the saturation index upon mixing reagents (i.e., at time t0; allowing pH to equilibrate, but before any solid 

phase precipitation). 
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Solid phase pKs= -log10(Ks) SI (t0) 

Calcite 8.48[73] 2.08 

Aragonite 8.34[73] 1.93 

Vaterite 7.91[85] 1.51 

Amorphous Calcium Carbonate (ACC) 6.39[86] -0.01 

Monohydrocalcite (MHC) CaCO3 × H2O 

7.60[87] 1.20 

7.05[88] 0.65 

7.14[89] 0.74 

 
3. Results and Discussion 

In Figure S3 (Supporting Information) we show an example of the initial time-evolution of 

aqueous Ca2+ concentration and pH after CaCl2 and Na2CO3 are mixed (time t0) under three different 

Na2CO3 addition schemes: a) as a single flow, b) as two additions at t0 and t2, or c) as three additions 

at t0, t1, and t2. All exhibit a decrease in Ca2+ concentration and an increase in pH with Na2CO3 

addition; as expected, the magnitude of change in solution chemistry is proportional to the amount 

of Na2CO3 added at each time point. In all cases, Ca2+ concentrations rebound to higher 

concentrations after tens of seconds. This behavior could be interpreted to represent the precipitation 

and subsequent dissolution of metastable CaCO3 phases or pre-nucleation clusters. However, this 

pattern is often observed while bulk solution chemistry is undersaturated with respect to all carbonate 

phases (Figure S4, Supporting Information). Thus, this behavior could either represent transient ion 

pairing or metastable CaCO3 precipitation at locally-high supersaturation conditions during the 

mixing process or is simply an artifact of solution heterogeneity during the mixing process. In all 

cases, the calculated amount of CaCO3 precipitate formed decreases to the same value as the Ca2+, 

and pH measurements stabilize after 200s (Figure S5b, Supporting Information). We, therefore, do 

not further interpret any potential transient behavior during this initial mixing period and instead 

focus on data collected after 200 seconds. For all three additional methods, the Ca2+ concentration 

and pH stabilize to similar values  (exhibiting the same Ca2+ drop (∆c�.$%&') and pH increase (DpH)), 

so we averaged the time-evolution profiles of Ca2+ and bulk pH at time from t2=70 sec to the end of 

experiments (9000 sec).  
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Figure 2. Comparison between experimental and calculated values of the averaged Ca2+ concentration and bulk pH time 
evolution between 70 and 9000 seconds after the reagents are mixed (a,b). In panels c,d we show the calculated evolution 
of aqueous speciation (c) and saturation indexes (d) obtained from the time-resolved speciation code. The electrokinetic 
potential (e) was obtained in a separate set of experiments using time-resolved electrophoretic cell (〈𝜁〉=-8.62 mV after 
24 hours). The green solid line illustrates the trend of the 𝜁-evolution and the error bars represent a standard error from 
three independent measurements.   

 
In Figure 2a,b we showed the experimental and computed time evolution of bulk Ca2+ 

concentration and pH for time > 70 seconds. In the first-hour, aqueous Ca2+ concentration and pH 

decrease simultaneously, consistent with the precipitation of a CaCO3 phase. After this continuous 

decrease, Ca2+ concentrations stabilize as the system approaches thermodynamic equilibrium, but 

interestingly the solution pH continues to decrease. SEM images taken two hours after the reagents 

were mixed show particles with rhombohedral morphologies – calcite, and a small number of 

spherulitic particles – vaterite (Fig. 3). For this reason, we propose that the nascent carbonate 

polymorph formed minutes after the reagents were mixed is vaterite which gradually transforms into 

calcite as the reaction progresses (Fig. 3a).  
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Figure 3. Scanning electron microscopy (SEM) micrographs taken two hours after the reagents were mixed and showing 
the presence of the calcite (rhombohedral morphology, a-c) and vaterite (spherulitic morphology, d-f) particles.  

 
This hypothesis is supported by our calculations of saturation indexes for possible carbonate 

phases (Fig. 2d), which show that the stabilization of bulk Ca2+ concentration after one hour 

correlates with the solution becoming undersaturated with respect to vaterite (SI(vaterite)<0, 

preferential vaterite dissolution). The SIcalcite and SIaragonite remain positive at t > 1 hour (Fig. 2d) – 

thermodynamically all vaterite particles should transform into calcite or aragonite. The latter is 

unlikely to precipitate in the absence of Mg2+ ions, consistent with the SEM images showing 

rhombohedral morphology typical for calcite and lack of particles with an acicular morphology 

characteristic of aragonite. Therefore, we conclude that the final carbonate polymorph present in the 

solution is calcite.  

The electrokinetic potential decreases as growth progresses (from -2 mV to -8.62 mV as 

measured after 24 hours, Fig. 2e). The negative value of z-potential suggests that the particle surface 

is negatively charged, and it is far from being electrostatically neutralized at the slip plane. Because 

calcite has a lower negative z-potential than vaterite[35], the observed decrease of z-potential is 

again consistent with the transformation of vaterite to calcite. Moreover, the observed continued 

decline in solution pH after Ca2+ concentrations stabilize is consistent with the recrystallization of 

vaterite (less-negative z-potential, relatively more positive surface charge) to calcite (lower z-
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potential, more negative surface charge). This transformation involves the release of H+ from the 

carbonate/electrolyte interface to the solution thereby lowering bulk pH. Surface protons can be 

released whenever H3O+ near surface carbonate site/or proton from bicarbonate site is replaced by 

the Ca2+ ion, or surface Ca2+ ions form ion pairs with OH- ions (see Fig. 1b): 

≡ COlh6H7 + Ca67 →≡ COlh6Ca67 + H7					or					 ≡ Ca67 +	H6O →≡ Ca67OHh+H7 (9) 

 

In Fig. 4 we show results of fitting theoretical models to observed z-potential profiles. The 

approximation offered by the Nernst-type expressions, eqs. (6,7) suggests that surface electrostatics 

is initially governed almost entirely by Ca2+ ions. The Nernst-type contribution from the carbonate 

ions, z(CO32-) becomes equal to that of Ca2+ ions after about one hour. This observation is consistent 

with changes in activities of potential determining ions in solution. Specifically, the time-evolution 

of Ca2+  resembles closely that of the z-potential. After one hour, the aqueous Ca2+ activity stabilizes, 

and the carbonate ions contribute equally to z-potential – consistently with previous studies of 

electrokinetic behavior of CaCO3 particles [65]. 

The fitting based on the surface complexation modeling shows that changes in the z-potential 

reflects variations in the surface potential – this is an indication that Ca2+ complexation at the mineral 

surface is responsible for the observed consumption of Ca2+ ions from the aqoues phase and 

consequently for time-dependent electrokinetic behavior of transforming and growing carbonate 

particles.  

However, the theoretical curves shown in Fig. 4 are only an approximation as they are 

developed for the thermodynamic equilibrium conditions. In principle, the parameters values in eqs. 

(6,7,8) and in the SCM model should vary in time as calcium carbonate particles evolve. At the 

moment, we are developing a kinetic model of EDL evolution that accompanies the particles 

transformation, which will be presented in the feature. 

 
 



 14 

 
Figure 4. Measured (black dots) and calculated (solid lines, eqs. (6-8)) time-evolution of the electrokinetic potential.  

5. Conclusions 

The nucleation pathway of calcium carbonate is often complex and difficult to follow in situ 

[2, 11-36], in part due to dynamics of electrical double layer forces that governs dissolution and 

precipitation of carbonates [34, 35, 55-63].  

By combining the speciation calculations with the time-resolved electrophoretic and 

potentiometric methods, we show for the first time that it is possible to monitor the evolution of the 

chemical composition in the aqueous phase and the electrokinetic potential developed at the 

precipitating/dissolving particles. Using these techniques, we monitored the precipitation of CaCO3 

from slightly supersaturated solution (calcium saturation index ~ 2). A metastable carbonate phase, 

vaterite forms within the first three minutes, and then transforms to calcite in agreement with 

previously reported studies [29]. After one hour, the precipitation slows as the solution approaches 

equilibrium with respect to calcite, but while the aqueous Ca2+ concentration stabilizes the solution 

pH continues to decline. At the same time, a dominant role of Ca2+ ions in determining z-potential 

decreases along with Ca2+ activity in the aqueous phase. We conclude that CaCO3 constituent ions 

are the most important in governing surface electrostatics, and pH-dependent carbonate and calcium 

speciation is of secondary importance – in agreement with previous reports [34, 35, 64-66]. 

Concluding, the time-evolution of z-potential, solution pH, saturation indexes and particle 
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morphology suggest that we observe vaterite to calcite transformation within the first three hours 

consistent with other studies of carbonate nucleation pathways [29].   

Here, we showed for the first time that a combination of the speciation calculations and time-

resolved potentiometric and electrophoretic methods could provide additional insight into carbonate 

nucleation and growth processes, and specifically be used to identify and monitor polymorphic 

transformations between different carbonate phases. If these methods are combined with in-situ 

spectroscopic and microscopic techniques, they could provide additional insight into mineral 

dissolution and re-precipitation processes. What more, if such experiments are accompanied by the 

kinetic model of the electrical double layer of evolving particles – they will transform our 

understanding of relationships between surface chemistry and mineral transformation pathways.   
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