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Abstract

Purpose of Review—Coronary artery disease is a complex disorder and the leading cause 

of mortality worldwide. As technologies for the generation of high-throughput multiomics data 

have advanced, gene regulatory network modeling has become an increasingly powerful tool in 

understanding coronary artery disease. This review summarizes recent and novel gene regulatory 

network tools for bulk tissue and single cell data, existing databases for network construction, and 

applications of gene regulatory networks in coronary artery disease.

Recent Findings—New gene regulatory network tools can integrate multiomics data to 

elucidate complex disease mechanisms at unprecedented cellular and spatial resolutions. At 

the same time, updates to coronary artery disease expression data in existing databases have 

enabled researchers to build gene regulatory networks to study novel disease mechanisms. Gene 

regulatory networks have proven extremely useful in understanding CAD heritability beyond what 

is explained by GWAS loci and in identifying mechanisms and key driver genes underlying 

disease onset and progression.
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Summary—Gene regulatory networks can holistically and comprehensively address the complex 

nature of coronary artery disease. In this review, we discuss key algorithmic approaches to 

construct gene regulatory networks and highlight state-of-the-art methods that model specific 

modes of gene regulation. We also explore recent applications of these tools in coronary artery 

disease patient data repositories to understand disease heritability and shared and distinct disease 

mechanisms and key driver genes across tissues, between sexes, and between species.

Keywords

Coronary artery disease; Atherosclerosis; Gene regulatory networks; Network modeling; RNA-
sequencing; Single-cell RNA-sequencing

Introduction

Coronary artery disease (CAD), characterized by arterial plaque buildup, is the leading 

cause of mortality worldwide [1]. It is a complex disorder, involving numerous genetic 

and environmental factors, including hyperlipidemia, lack of exercise, and smoking [2, 

3]. Lesion initiation and development are characterized by low-density lipoprotein (LDL) 

accumulation in the subendothelial space, leading to endothelial cell monolayer activation 

and monocyte infiltration, smooth muscle cell phenotypic switching, lipid-laden foam cell 

development, and ultimately the formation of necrotic debris in the intimal arterial layer [4]. 

Eventually, lesions can grow to hinder blood flow in the vessel lumen and become unstable, 

increasing the likelihood of plaque rupture and clinical complications, including myocardial 

infarction and stroke.

The complex nature of CAD onset and progression, involving numerous tissues, cell types, 

molecules, and pathways, is best addressed by a comprehensive and holistic approach 

[5, 6]. Network modeling represents such an approach to delineate the complexity, as 

networks capture relationships and interactions, depicted as network edges or connections, 

between large numbers of molecules represented as network nodes. Over the past 

decades, network approaches have been particularly empowered by the advances in 

technologies that have enabled the generation of high throughput biological data at varying 

molecular levels, termed multiomics data [7]. Multiomics data encompasses genomics, 

epigenomics, transcriptomics, proteomics, metabolomics, microbiome, and metagenomics, 

each representing a fragmented view of the whole system [6, 8, 9]. By modeling omics 

data at individual layers or by integrating multiple layers of omics data, various types of 

networks, such as gene regulatory networks (GRNs), coexpression networks, inter- and 

intracellular gene signaling networks, protein–protein interaction (PPI) networks, microbial 

community networks, and metabolic networks, can be derived [10]. Depending on the 

network type, edges may represent directed regulation such as those in GRNs, statistical 

correlation such as those in coexpression networks, physical binding such as those in PPIs, 

and metabolic reaction cascades such as those in metabolic networks, whereas network 

nodes may represent genes, proteins, metabolites, microbial species, or phenotypes [10].

Among the various types of networks, GRNs carry unique mechanistic information because 

they reflect causal and regulatory relationships between genes. Additionally, the genetic 
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architecture of CAD may be explained by the omnigenic disease model, which proposes that 

complex diseases can be explained by both core network genes that have large numbers of 

connections or edges and large effect sizes, and peripheral genes that have few connections 

and moderate to small effect sizes in interconnected disease networks [11]. Genome-wide 

association studies (GWAS) and meta-analyses of CAD have identified over 200 genetic 

loci contributing to disease, but together these loci account for less than half of CAD 

heritability, highlighting the urgent need to pinpoint additional genetic factors contributing 

to disease onset [12, 13]. Therefore, here we focus on GRNs as a powerful, graphical tool to 

uncover novel biological processes in atherosclerosis and CAD. GRNs provide an approach 

to understand the underlying interactions and to identify hub genes, termed key drivers, that 

contribute most importantly to the network.

In this review, we discuss current bulk tissue and single-cell GRN methodologies along with 

their corresponding tools, advantages, and limitations. We next describe available databases 

that may be used for network construction. Lastly, we discuss the application of GRNs in 

CAD studies.

GRN Methodologies and Tools

General GRN Modeling Algorithms

GRNs apply mostly to transcriptomics data with or without additional information (e.g., 

transcription factor-target relationships) or data (e.g., genetics) to detect regulatory patterns 

between genes. Varied gene expression and biological function by tissue or cell type warrant 

the use of corresponding transcriptomic data to construct networks that most accurately 

reflect context-specific gene-gene regulation. Common network construction methods utilize 

various modeling algorithms, such as Boolean, ordinary differential equations (ODE), 

machine learning (ML), and Bayesian inference, to infer gene-gene regulation. Numerous 

previous reviews have extensively discussed various types of GRN methods[10, 14-19]. 

Here, we only briefly outline a few key algorithms underlying the different methods, with 

more detailed descriptions of top-performing GRN methods based on benchmarking studies 

provided in Table 1 [20, 21, 22•].

Boolean methods discretize gene expression on a learned threshold into an active or inactive 

state and generate network regulations with logical or Boolean functions [18, 22•, 23]. 

Logical statements allow Boolean models to infer gene activity based on the combined 

states of multiple regulators. As a result, these networks can model a variety of regulatory 

dynamics like negative feedback loops and are helpful for simulating network structures 

for GRN benchmarking [18, 22•]. However, the thresholding of genes in Boolean networks 

ignores more complex relationships that rely on the dynamic fluctuations in gene abundance.

ODE-based GRNs use a system of differential equations to quantify gene expression on a 

continuous scale [18, 22•, 24]. When timepoint or cell pseudotime information is available, 

these networks can model time-dependent gene expression dynamics [14, 22•, 24]. However, 

many of these methods also impose simplifying assumptions about the ODEs (e.g., linear 

equations) since estimating very sophisticated equations can be computationally intractable 

[14].

Cheng et al. Page 3

Curr Atheroscler Rep. Author manuscript; available in PMC 2024 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ML-based methods implement regression models, often ensemble trees, to predict each 

given target gene expression from select feature genes and extract those with the strongest 

predictive power as its candidate regulators [14, 16, 22•]. Ensemble regression trees, such as 

random forest and gradient boosting, are a common choice for GRN algorithms because they 

can powerfully predict complex nonlinear relationships in the data [25-31]. However, ML 

methods are subject to false positive regulations given the high dimensional feature space in 

transcriptomics data, so these tools are accompanied by various feature selection strategies 

to mitigate spurious edges [25, 28].

Bayesian networks (BNs) are directed acyclic graphs that represent genes as random 

variables and edges as conditional probabilities of the state of a target gene given the 

states of the parent genes [18, 32, 33]. Applying Bayes’ theorem, these methods can 

initialize networks based on prior information such as known gene regulatory principles, 

and continually update the structure to find the one with the highest probability of modeling 

the observed expression data. However, this probabilistic framework is computationally 

intensive and heavily reliant on high quality prior information [10].

These various algorithms underlie most of the GRN methods and can be performed on 

bulk or single cell omics datasets to construct knowledge-based or global GRNs. However, 

it is important to note that existing GRN methods for bulk tissue transcriptomics data do 

not perform well for single cell omics datasets due to differences in data sparsity and 

distribution, and it is recommended to use methods appropriate for the given dataset [10, 20, 

22•].

Knowledge-Based vs Global/Unbiased GRNs

To avoid intractable computational run times and limit spurious interactions, many GRN 

methods select a subset of relevant genes to build the network. Such GRNs can explain 

different modes of gene regulation based on the function of the select genes of interest 

(Fig. 1). Below we introduce two common types of GRNs based on the types of candidate 

genes or knowledge graph of focus, namely transcription factor (TF)- and ligand-receptor 

(LR)-based GRNs, as well as unbiased global GRNs which do not rely on known regulatory 

relations or databases.

TF-Based Networks

TF-based gene regulation provides a strong biological basis for GRN inference since TFs 

create promoter complexes to initiate target gene transcription [16, 34]. Thus, they serve 

as candidate regulators for many GRN methods. Incorporating this information in GRNs 

requires restricting parents of a target gene to TFs. In addition to the transcriptomics input, 

TF databases, such as JASPAR, are needed to identify them in the data [16, 35]. GRN tools 

like GENIE3 that cater to bulk RNA sequencing (RNAseq) estimate TF activity at the tissue 

level [25]. The advent of single cell RNAseq (scR-NAseq) enabled new software to dissect 

cell type specific TF programs in the case of GRNBoost2 and SCENIC, as well as TF 

regulation that drives cell state progression along cell pseudotime in the case of SCODE and 

SINCERITIES [24, 27, 28, 36]. Multiomic profiling of single cell ATAC-seq (scATACseq) 

and scRNAseq recently introduced a new wave of GRNs that deduce gene regulation from 
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TF binding sites, accessible enhancer or promoter regions, and downstream gene expression 

[26, 30, 37]. CellOracle and SCENIC + are two emerging methods that incorporate enhancer 

information to bolster TF-gene relationships [26, 37].

GRNs that are subset to TF signaling are helpful in reducing spurious network edges 

and computational run times. Benchmarking methods report that they have great merit 

in capturing well documented TF signaling pathways [16, 22•]. However, there are some 

significant limitations to this approach. Firstly, TF regulation is complex and time dependent 

such that its expression can precede that of the target gene [38]. This presents a challenge 

as networks are built on static RNA-seq datasets where TF expression is likely to be much 

lower than the target gene’s and, therefore, subject to noisier or missing data collection on 

TFs [27, 39]. Secondly, these networks ignore non-TF forms of gene regulation, including 

long noncoding RNAs and chromatin modifier genes [40, 41]. Regardless, these networks 

are still important to discover novel functions of TFs in disease.

LR-Based Networks

Inter-cell type communication GRNs have risen in popularity with scRNAseq data to 

understand how cell signaling affects downstream gene activity [21]. Similar to TF-based 

GRNs, they rely on curated LR and target gene information to locate interacting cell pairs 

and inform network topology. CellChat, for example, calculates LR interaction probabilities 

for cell types based on their overall LR coexpression and generates a network from 

significant interactions through a permutation test framework [42]. NicheNet generates a 

prior knowledge communication network with its own LR databases, trains random forest 

models for each target gene based on expression of upstream network genes, and prioritizes 

LR and target gene paths that are most accurately modelled [31]. SpaTalk uses spatial 

transcriptomics (ST) data to locate adjacent pairs of cells on which it identifies co-expressed 

ligands and receptors and deduces downstream signaling genes based on a database-driven 

knowledge graph [43]. Recent multiomics approaches like SpaOTsc resolve cellular location 

for scRNAseq by aligning expression profiles with ST data, which enables GRN inference 

based on ligand-receptor expression and cell proximity [44]. LR-based networks carry 

similar advantages and disadvantages to TF-based. They can identify novel functions or 

disease contribution of known ligands and targets but will miss other important modes of 

cell communication, such as metabolite-mediated signaling [45].

Global Unsupervised Networks

Other GRN methods gather potential parent genes in an unsupervised manner, surveying 

all genes rather than a specific subset. Empirical feature selection methods use expression 

data alone to identify related genes. SCING, a gradient boosting machine learning based 

GRN approach designed for scRNAseq and spatial transcriptomics data, first implements 

gene-wise K-nearest neighbors to partition genes into distinct sets of similarly expressed 

genes, with genes in each set subject to modeling regulator-target relations using gradient 

boosting [29]. Coexpression networks that capture significant statistical gene correlations, 

like Weighted Gene Coexpression Network Analysis (WGCNA), can also provide potential 

associations as a basis for subsequent GRN inference [46, 47, 48••, 49]. Bayesian network 

methods like RIMBANET use multiple types of information to cover various types 
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of potential gene regulation, including TF-target databases, genetic priors derived from 

expression quantitative trait loci (eQTL), gene-gene correlation, and mutual information to 

assign prior parent and child node properties, followed by adding, flipping, or removing 

genes to derive GRNs that best explain the data [32, 33, 49]. Datadriven feature selection 

grant unsupervised GRNs the potential to model non-TF mediated gene regulation and 

incorporate other forms of regulatory genomic information, such as eQTLs. However, this 

implies they are prone to reporting spurious and confounding edges. Bootstrapping and 

posthoc network edge pruning strategies can help reduce the noise in these GRNs [29].

Databases for GRN Construction

Several existing databases and study cohorts offer human or mouse gene expression data 

relevant for atherosclerosis that may be employed for GRN construction. Depending on the 

resource, the data may be publicly available or obtained through application.

Plaqview

Plaqview is an interactive, user-friendly webserver that hosts various human and mouse 

cardiovascular single cell datasets that may be queried online for cell type gene expression, 

trajectory analysis, and drug/gene interactions [50•]. Additionally, Plaqview directs users to 

the original publications for each dataset where raw single cell data files may be accessed. 

The raw count matrix and cell type information from each dataset may be inputted to GRN 

methods designed for scRNAseq (Table 1), such as SCENIC for TF-based GRNs or SCING 

for global GRNs to generate cell type-specific GRNs [27, 29].

Hybrid Mouse Diversity Panel

The Hybrid Mouse Diversity Panel (HMDP) consists of a collection of over 100 inbred 

strains of mice that have been used to study various genetic and environmental contributions 

to disease [51]. Advantages of the HMDP include control over environmental factors 

and increased statistical power compared to most other strain panels. Thus far, HMDP 

has been leveraged to study a wide range of traits relevant in atherosclerosis, fatty liver 

disease, obesity, and heart failure [52-56]. With regards to the atherosclerosis HMDP, mice 

with a hyperlipidemic background were established via transgenic expression of human 

apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein 

(CETP) [53]. Various atherosclerotic characteristics were measured, including lesion size 

and morphology, plasma lipid, insulin, and glucose levels, plasma metabolite and cytokine 

levels, and uptake of acetylated LDL by macrophages. Global transcript levels in aorta 

and liver tissues were also measured which can be used for GRN construction using bulk 

RNAseq based methods such as RIMBANET.

STARNET

The Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) 

study has collected gene expression data via RNA-sequencing for patients with CAD 

matched to patients without CAD for seven tissues, including blood, mammary artery, 

atherosclerotic aortic root, subcutaneous fat, visceral abdominal fat, skeletal muscle, and 

liver [57]. The data provided by STARNET may be used to build bulk tissue GRNs, and 
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the STARNET webserver may also be queried to visualize coexpression modules built from 

WGCNA that contain genes of interest [48••]. The STARNET study was preceded by its 

pilot study, the Stockholm Atherosclerosis Gene Network (STAGE) study [58].

Framingham Heart Study

The Framingham Heart Study (FHS) is a large, longitudinal cohort study spanning over 

70 years with approximately 15,000 participants across three generations in Framingham, 

MA [59]. The Original cohort was examined for 32 cycles at approximately 2-year 

intervals; the Offspring cohort was examined for nine cycles, every 4—7 years; the Third-

Generation cohort has undergone 3 examination cycles thus far. Two minority cohorts 

from Framingham (Omni 1–1995 and Omni 2–2002) were later included in the study to 

reflect the changing demographics of the town. Blood samples, electrocardiograms, family 

history, echocardiograms, cognitive function, and circulating biomarkers have been collected 

for the earlier cohorts of the FHS. More recently, genome-wide DNA methylation and 

transcriptomic data have been generated in the Offspring and Third-Generation cohorts. If 

approved for data access by the FHS, the gene expression data from the Offspring and 

Third-Generation cohorts may be used for GRN construction.

TOPMed

The Trans-Omics for Precision Medicine (TOPMed) initiative aims to integrate whole-

genome sequencing (WGS) with other omics datasets, such as metabolomics, epigenomics, 

proteomics, and transcriptomics, using ~200,000 participants from over 85 cohorts to offer 

patient-specific disease treatments [60]. While various existing human databases consist 

primarily of participants with European ancestry, TOPMed has achieved ancestral and 

ethnic diversity, with ~60% of sequenced participants of non-European ancestry. Disease 

focuses of TOPMed primarily include those related to heart, lung, and blood, and the 

omics data processing is performed by several sequencing centers. TOPMed includes human 

RNA-sequencing datasets relevant for building CAD GRNs, including Multi-Ethnic Study of 

Atherosclerosis (MESA) and FHS.

GRN Application in Atherosclerosis and CAD

Tissue level and cell-cell interactions GRNs have been employed to understand genetic 

factors and to dissect mechanisms contributing to CAD. The use of GRNs not only has 

helped identify CAD-associated subnetworks and pathways, but ligand-receptor pairs that 

mediate cell-cell communications in CAD as well as predicted key driver genes, defined as 

network hubs or core genes with large numbers of network connections to genes associated 

with CAD. To better understand the topology of networks, Key Driver Analysis (KDA) has 

been a commonly used downstream method that can identify key regulatory genes, or key 

drivers, that lie central within a network [61, 62].

Bulk RNA-seq Studies

Several studies have demonstrated the utility of GRNs in understanding CAD heritability 

beyond what has been discovered by CAD GWAS studies. Specifically, transforming 

coexpression networks depicting gene-gene relationships into GRNs has thus far proven 
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to be particularly insightful. For example, Zeng et al. used STAGE and STARNET data to 

infer coexpression networks with gene-gene relationships within and across seven metabolic 

and vascular tissues, and a linear Gaussian Bayesian algorithm was subsequently used to 

infer GRNs for each coexpression network with eQTLs and TFs as priors [49]. Their GRNs 

contributed to 10% of CAD heritability beyond what had been previously attributed to 

GWAS risk loci, and the GRNs identified causal biological functions in CAD pathogenesis, 

including DNA binding, RNA metabolism, and blood coagulation. Their tissue-specific 

analyses further found that fat and arterial wall GRNs influenced CAD risk most robustly. 

Koplev et al. also inferred GRNs from gene-gene coexpression networks; they integrated 

STARNET DNA genotype and RNA-seq data from seven CAD-relevant tissues to infer 224 

WGCNA coexpression modules, which were then transformed into GRNs using random 

forest-based regression method GENIE3 [48••]. They further integrated eQTLs with the 224 

GRNs, calculating the total contribution of the GRNs to CAD heritability to be 59.8%. 

Mendelian randomization confirmed central key driver genes in 218 of the 224 GRNs to be 

causal for CAD. They also investigated both intra- and inter-organ interactions by applying 

Bayesian network modeling to the WGCNA eigengene values for each tissue-specific and 

cross-tissue coexpression module to create a representative supernetwork, finding cross-

tissue GRNs contribute to nearly threefold more CAD heritability than tissue-specific GRNs.

Transforming gene-gene coexpression networks into GRNs has been employed in further 

understanding sex differences in CAD mechanisms as well. Hartman et al. constructed 

sex-specific atherosclerotic arterial wall coexpression modules using STARNET data, and 

Bayesian network inference was performed with the Fast Greedy Equivalence Search 

for continuous data algorithm [63]. Comparing GRNs between sexes, they concluded 

that immune-related genes were more active in men, whereas genes associated with 

mesenchymal and endothelial cells were more active in women. Further, based on 

integration with both human and mouse scRNAseq data, they found female GRN key driver 

genes were expressed in phenotypically switched SMCs and modulated by the transcription 

factor Klf4.

RIMBANET, a Bayesian network method that can incorporate various prior information 

including TFs, eQTLs, correlation, mutual information etc., has been used by numerous 

cardiovascular researchers to construct GRNs. For example, Makinen et al. employed 

Bayesian GRNs constructed using RIMBANET from genetics and gene expression data 

from previously published human and mouse studies [46]. They integrated 16 GWAS studies 

from CARDIoGRAM and the Ottawa Heart Institute with (1) eQTLs from human CAD-

relevant tissues, (2) known metabolic and signaling pathways, and (3) their constructed 

tissue-specific GRNs. KDA revealed that a GRN implicated in antigen processing was 

strongly associated with CAD, with GLO1 and PPIL1 as key drivers central within this 

network. Similarly, Zhao et al. integrated top CAD candidate genes and the 1000 genomes-

based CAD GWAS from the CARDIoGRAMplusC4D (Coronary ARtery DIsease Genome 

wide Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease 

(C4D) Genetics) consortium with tissue-specific GRNs constructed with RIMBANET and 

protein-protein interaction networks to identify top key regulators of CAD subnetworks 

[64]. Their data-driven approach confirmed previously known CAD GWAS genes, such as 

COL4A2 and CXCL12, as key drivers and also pin-pointed novel key drivers, including 
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LUM and STAT3. Von Scheidt and Zhao et al. combined individual liver Bayesian GRNs 

constructed from various published mouse and human liver datasets using RIMBANET 

[65]. They mapped mouse atherosclerosis and human CAD GWAS genes to the GRN 

to predict key driver genes functioning within disease-relevant liver subnetworks. KDA 

revealed transcription factor Maff as a top mouse key driver that was also directly connected 

to known human CAD GWAS loci, including LDLR, MCL1, and TRIB1. They confirmed 

Maff coexpression with lipid metabolism and inflammatory processes in the atherosclerosis 

HMDP and MAFF coexpression with CAD in human liver data from STARNET. Finally, 

Kurt and Cheng et al. studied the shared and distinct pathways and networks between human 

and mouse in CAD, integrating human CAD GWAS from the CARDIoGRAMplusC4D 

consortium and mouse atherosclerosis GWAS from the HMDP with eQTLs from human 

(STARNET and Genotype-tissue Expression project (GTEx)) and mouse (HMDP) datasets 

[66]. They found that human and mouse shared >75% of tissue-specific CAD causal 

pathways. They constructed Bayesian GRNs with RIMBANET using mouse aorta and 

liver gene expression data from HMDP and human aorta, coronary artery, and liver gene 

expression data from GTEx. Using these GRNs for KDA, they identified various key drivers 

shared and distinct across species, further validating their network connections with single 

cell data. Overall, Bayesian GRN construction via RIMBANET and further identification 

of network key drivers have identified various key mechanisms and genes involved in 

CAD onset and progression in both human and mouse. As Bayesian networks are directed 

acyclic graphs, additional GRN construction methods described in our review may also be 

implemented to study CAD mechanisms and key regulatory genes to gain further insight into 

the disease.

scRNAseq Studies

With advances in single cell omics technologies to study cellular heterogeneity within 

a single tissue, use of cell-cell interaction networks has elucidated the key mechanisms 

in CAD microenvironments. Ma et al. employed a human coronary artery scRNAseq 

dataset to examine cell-cell interaction within the lesional microenvironment using CellChat 

[50•]. From CellChat, they found most cell types within arterial lesions contribute to 

macrophage activation via ligand-receptor interactions including HLA-DPA1:CD4, HLA-

DMB:CD4, and HLA-DRA:CD4. Additionally, the CellChat analysis revealed SMCs signal 

strongly in fibronectin and collagen pathways, fibroblasts strongly contribute to larninin and 

complement pathways, and almost all lesional cell types signal to NK and T cells, primarily 

through HLA-A. They also integrated their identified ligand-receptor interaction pairs with 

the Drug-Gene Interaction database (DGIdb 3.0) to determine candidate drugs that may 

target harmful cell-cell interactions and also queried various druggable genome databases. 

Application of additional GRN methods to this and future single cell datasets will help gain 

additional biological insight.

Future Directions

GRNs are proving extremely useful in understanding CAD, as they have elucidated the 

interactions among many physiological pathways related to its pathology and prognosis 

in cardiovascular tissues and cell types and further identified key driver genes that likely 
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regulate disease networks and tissue/cell crosstalk. They also provide functional genomic 

interpretation to genetic risk variants in CAD GWAS risk loci, and eQTLs prioritize disease 

subnetworks that correspond to immune and metabolic pathways.

It is important to note that these driver genes were discovered with tissue-level GRNs and 

cannot be attributed to any particular cell type. The rise of scRNAseq datasets and the 

corresponding GRN tools present exciting opportunities to resolve cell-level contributions 

to CAD by identifying shared and distinct disease mechanisms between cell types as 

well as novel key drivers in rare cell populations masked in bulk tissue GRNs. Cell-cell 

communication networks will expand on how cellular systems interact with each other 

within and between tissues. Additionally, the increasing prevalence of single cell and spatial 

multiomics technologies, such as scATACseq and spatial transcriptomics, and integrative 

GRN methods emphasizes a new frontier for CAD research to understand how epigenetic, 

transcriptomic, and spatially dependent signaling mechanisms interact with each other in 

this complex disease.

The variability in network approaches greatly influence the similarities and differences 

observed in these studies’ findings. Since network structures are heavily dependent on 

data artifacts, prior gene information, and the inference algorithm, there is a need to 

harmonize the architectures from multiple networks. Systematic benchmarking of all these 

methods on gold standard bulk and single cell multiomics and multi-tissue datasets are 

necessary to provide insight on the strengths and weaknesses of each method in different 

experimental contexts. The different modes of gene regulation highlighted by these methods 

also give merit to incorporating the complementary information across multiple GRN 

approaches to produce a holistic picture of all forms of gene regulation present in the data. 

Overall, unifying these different GRN approaches will give greater insight into the causal 

mechanisms in CAD. As GRN modeling and analysis continue to elucidate novel CAD 

mechanisms and regulatory genes and quantify disease heritability, experimental validation 

of GRN findings remains important and necessary. Once validated, GRNs can serve as an 

important discovery tool to facilitate precision medicine.
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Glossary

Boolean Network
Deterministic networks that state logical statements to describe network connectivity.

Ordinary Differential Equation
Mathematical equation that uses a derivative of a dependent variable as a function of a single 

independent variable.

Regression

Cheng et al. Page 10

Curr Atheroscler Rep. Author manuscript; available in PMC 2024 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supervised machine learning paradigm for predicting a continuous outcome variable from a 

set of observed feature variables.

Ensemble Trees
A type of regression model using an aggregate of decision tree regressors to predict a 

consensus outcome.

Random Forest
Ensemble method that trains small decision trees based on a subset of samples and feature 

and aggregates the predictions across the trees as the final prediction.

Gradient Boosting
Ensemble method that aggregates small decision trees sequentially, training each subsequent 

tree to predict the errors of the previous trees until the final ensemble yields the most 

accurate prediction.

Bayesian Inference
Statistical inference principle based on Bayes’ Theorem to update the probability for a 

hypothesis (posterior) based on the observed data (prior), and the likelihood of observing the 

hypothesis given the data (likelihood).

Directed Acyclic Graphs
Graphs with nodes and directional edges such that no cycles exist in the network.

Expression Quantitative Trait Loci (eQTL)
Genetic analysis that identifies genetic loci that affect the gene expression.

Mutual Information
Statistical measure of mutual dependence between two variables.

Partial Information Decomposition
A method to decompose the mutual information of random variables into unique, redundant, 

and synergistic information.

Key Drivers
Network hub or core genes with large numbers of connections to disease-associated genes.
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Fig. 1. 
Overview of GRNs. GRN methods describe various forms of gene regulation. Knowledge-

based methods supply known biological regulator and target information to orient the 

network interactions. TF-based GRNs focus on TF-target gene regulatory pathways while 

ligand-receptor based networks model ligand-receptor mediated cell-cell interaction. Global 

unsupervised networks calculate and refine data-driven gene expression patterns to capture 

broad regulatory landscapes. Bulk RNAseq GRNs explain tissue-level gene regulation, while 

scRNAseq GRNs can explain within and between cell-type regulation
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