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Abstract

Destructive gravitational encounters:

outcome and implications of catastrophic collisions and tidal

splitting in the post-formation outer solar system

by

Naor Movshovitz

I present results from three theoretical numerical studies relating to destructive events in

the lives of outer solar system satellites and smaller bodies. The first project is a study of

the implications that a Late Heavy Bombardment in the outer solar system, such as predicted

by the Nice model, might have had for the mid sized moons of Jupiter, Saturn, and Uranus.

A Monte Carlo calculation shows that Mimas, Enceladus, Tethys, and Miranda each would

almost certainly have experienced at least one catastrophic collision after formation. If true,

these bodies would have disrupted and then reaccreted as scrambled mixtures of rock and ice –

potentially preserving this signature in their present day structure. Conversely, if these satellites

are fully differentiated today then they would have required a heat source sufficient for melting

and differentiation in the absence of short half life radioactive elements. Tidal heating may have

been sufficient for Tethys, Enceladus, and Miranda, but a differentiated Mimas would present a

difficulty to either the Nice model or to the classical formation model of the Saturn system.

The second study is a numerical investigation of the expected outcome of destructive colli-

sions between gravity-dominated bodies; in particular of the conditions required for a collision to

be catastrophic, defined as one that leaves behind a surviving body with less than half the total

colliding mass. In this study I focus on bodies with radii between 100 and 1000 km, a previously

neglected size range, and derive a simple scaling law for the threshold impact energy required

for disruption in this size range. This scaling law is expected to hold for all projectile-to-target

size ratios and is independent of material, so long as elastic strength may be ignored. Compared

with scaling laws existing in the literature the newly derived scaling generally predicts lower

viii



threshold energy for disruption, except for highly oblique impacts by projectiles much smaller

than the target.

The third project is a study of the tidal breakup of rubble piles by modeling the breakup of

comet Shoemaker-Levy 9 in a rigid body code that, for the first time, treats non-spherical rubble

pile elements. This introduces dilatation and grain locking as the major forces acting against

gravity tides during the comet’s close approach to Jupiter and changes the outcome of tidal

encounters compared with that predicted by models using spherical elements. By comparing

simulation results to the well-studied post-breakup morphology of comet SL9 we were able to

constrain the progenitor’s bulk density at 300–400 kg/m3, half that of previous estimates.
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Chapter 1

Introduction

Collisions are a core component in any theory of solar system formation and evolution. In the

inner solar system planetary embryos grow from kilometer sized planetesimals via collisions.

Then the host of lunar- to Mars-size embryos becomes unstable and collisions continue until the

terrestrial planets are left in their orderly orbits (Chambers, 2013). In the outer solar system

planetesimals collide to grow the cores of the giant planets until they are capable of accreting

and retaining gas directly from the nebula (Pollack et al., 1996). Similar dynamics on a smaller

scale most likely then produce the outer planet satellites from the giant planets’ own miniature

disks.

By the end of the first 100 million years after the formation of the pre-solar nebula, collisions,

directed by gravity, had produced the terrestrial and giant planets along with most of their

moons, the asteroids, and the comets. But the story was far from over and neither was the role

of collisions. The asteroid belt lost most of its mass to a combination of collisional and dynamical

evolution (Morbidelli et al., 2009). Infrequent but giant collisions continued to shape the inner

solar system; probably giving Earth its large Moon (Canup and Asphaug , 2001), possibly taking

away Mercury’s mantle (Asphaug , 2010). Later on migration of Jupiter and Saturn towards a

mutual resonance (Tsiganis et al., 2005) may have caused a brief but intense period of renewed

chaos in both the inner (Gomes et al., 2005) and outer system (Barr and Canup, 2010), when

energetic collisions may have modified the surfaces of many satellites. Collisional grinding may

have continued for a long time in the Kuiper belt (Canup, 2005) and indeed collisions continue,

infrequently, to shape planetary evolution, including Earth’s in the present day.
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This simple story of solar system evolution, of course, contains many still-open questions

regarding the details in each of its chapters. How did the first kilometer sized planetesimals form?

Where precisely is the transition between accretion and erosion when planetesimals collide?

How did the asteroid belt lose so much of its mass? Was there a Late Heavy Bombardment

and if so, what caused it? These questions and others remain unsettled because the processes

that control them are a complex combination of physics. Advances towards resolving some of

these big questions happen incrementally, with answers usually leading to more questions. This

dissertation, like many of its kind at this stage of planetary sciences, does not attempt to answer

one big question but rather investigates several small and relatively simple ones, adding to the

body of knowledge and perhaps, indirectly, to better understanding of our solar system.

This dissertation comprises three reports of relatively distinct investigations sharing the

theme of destructive events in the solar system. The first is a report on a Monte-Carlo study of

the possible implications of a Late Heavy Bombardment (LHB) on the mid-sized satellites of the

outer solar system. We calculated the probability of the satellites of Jupiter, Saturn, and Uranus

experiencing at least one catastrophic impact during a hypothetical Late Heavy Bombardment,

such as predicted by the Nice model (Gomes et al., 2005; Tsiganis et al., 2005), and find it to be

high for many of the smaller or closer-in satellites. In particular Mimas, Enceladus, Tethys, and

Miranda would almost certainly have experienced several catastrophic impacts if they existed in

their present orbits during the LHB. The cometary mass delivered to the Saturn system would

have to be reduced by at least a factor of 30 compared with the value derived from the original

Nice Model (Barr and Canup, 2010) in order to give Enceladus a decent chance to survive intact,

and a factor of at least 100 to give Mimas any chance at all.

If true, this result has some interesting implications. First, these satellites are not large

enough to melt and differentiate from the heat of accretion alone, in the absence of short-lived

radioactive elements. If disrupted they would have reaccreted as scrambled mixture of rock and

ice. Subsequent partial differentiation may have occurred with the help of tidal heating (Chen

and Nimmo, 2008; Dermott et al., 1988; Meyer and Wisdom, 2007), although probably not in

the case of Mimas.

Second, some collisions would surely lead to mass loss, as reaccretion is not perfectly efficient,

and this mass loss will likely affect the ice-to-rock ratio. This effect would be observable today

and perhaps can help explain the diversity of composition among the Saturnian satellites. For

2



example, ice rich Tethys can be explained as a spall fragment from an impact into a differentiated

body (Asphaug and Reufer , 2013; Sekine and Genda, 2012).

Finally, the surfaces of the disrupted satellites cannot possibly retain an impact history from

before the LHB. Surface ages based on crater counts will have to be re-calibrated. In contrast the

anomalously cratered surface of Iapetus (Dones et al., 2009) is easily explained, as this satellite

is too big and orbits too far to have experienced any disruptive impacts. These implications are

discussed in more detail in chapter 2.

The second study, motivated by the first, is a re-examining of catastrophic disruption criteria

for gravity dominated bodies. Prompted by a question from a reviewer of the manuscript

submitted with the results of chapter 2 we compared the predictions of scaling laws for disruption

criteria from existing literature (Benz and Asphaug , 1999; Leinhardt and Stewart , 2012) as well as

our own simulations of impacts between 1000 km radius ice bodies. Finding enough disagreement

to cause concern we carried out a thorough study of catastrophic impacts between bodies with

radii from 100 to 1000 km, a previously neglected size range.

We derive from these simulation data a simple scaling law for the threshold impact energy

required to disperse half the total colliding mass – a common definition of a catastrophic collision.

This scaling law is expected to hold for all projectile-to-target size ratios and is independent of

material, so long as elastic strength may be ignored. Compared with existing scaling laws, the

predicted threshold for catastrophic disruption is significantly lower except for highly oblique

and very small impactors.

The threshold for disruption by impact is an important parameter in many models of solar

system evolution, particularly in post-formation evolution of asteroids (Morbidelli et al., 2009).

So called collisional grinding models are used to connect the primordial size distribution of the

asteroid belt with the present day one – a connection with possible implications for models

of planetesimal growth. Accretion efficiency during terrestrial planet formation also depends,

of course, on the conditions that differentiate accretion from erosion (Asphaug , 2010). This

transition is generally assumed to happen at some fraction of the threshold energy of catastrophic

disruption, so that modifying the latter may have interesting implications to terrestrial planet

formation as well.

The details of the newly derived scaling law and further discussion of its implications are

given in chapter 3.

3



The last study does not involve a collision but rather a different type of destructive event –

tidal splitting. Although less dramatic these events are frequent and interesting as they can be

used to constrain basic properties of otherwise inaccessible small bodies.

Tidal splitting occurs when a heliocentric asteroid or comet passes close to a massive body

and is sheared and disrupted. In this sense tidal splitting may be considered a type of collision

but of course the physics involved is quite different. Gravity is still the main force: differential

gravity from the planet driving the shear stresses in the interloper and self-gravity in the asteroid

or comet providing the resisting force. But a new force comes into play that is both important

and difficult to work with: friction. In so-called “strengthless” bodies, or rubble piles, friction

can provide significant resistance to shearing. This is how the details of tidal splitting can be

used to infer the properties of the disrupted rubble pile, in particular its bulk density or friction

angle.

But friction is difficult to model, analytically or numerically, because it is a complex effect

that combines microscopic surface friction and macroscopic grain interlocking and dilatation.

Previous numerical models of tidal splitting have simulated rubble piles with collections of

spherical elements and were therefore unable to capture these effects. In this work we advance

the modeling of rubble- pile bodies by simulating the breakup of comet Shoemaker-Levy 9 during

its close approach to Jupiter in July of 1992. We model the progenitor comet with a collection

of rigid polyhedra instead of spheres, thus accounting for dilatancy and grain locking as well as

elastic response. We obtain a pre-impact diameter of ∼1.5 km and a bulk density between 300

and 400 kg/m3, half that predicted by spheres-based models (Asphaug and Benz , 1994).

Tidal disruption by Jupiter is not unusual among the population of short-period comets, as

evidenced by numerous crater chains on Ganymede and Callisto (Schenk et al., 1996). Similarly,

comets coming too close to the Sun are tidally disrupted, the most famous being the Kreutz

family of Sun-grazers (Knight et al., 2010; Marsden, 1967). Asteroids, of higher density than

comets, can be tidally disrupted as well, but only in encounters with correspondingly denser

terrestrial planets. If we regard SL9 as a typical case, we may use the details of its final orbit to

infer something about the physical properties of comets in general, and more broadly, about the

physics of rubble piles. But perhaps more than a study of a particular event or even a class of

events, this work demonstrates the importance of the granular and angular nature of rubble-pile

surfaces and the importance of capturing the relevant physical effects in numerical models of

4



rubble piles.

The details of the model, results, and implications are given in chapter 4.
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Chapter 2

Disruption and reaccretion of

mid-sized moons during an outer

Solar System Late Heavy

Bombardment

This chapter is a slightly modified reprint of work previously published as Movshovitz, N.,

F. Nimmo, D. G. Korycansky, E. Asphaug, and J. M. Owen (2015), Disruption and reaccretion

of midsized moons during an outer solar system Late Heavy Bombardment, Geophysical Research

Letters, 42, 256–263.

Abstract

We investigate the problem of satellite survival during a hypothetical late heavy bombardment in

the outer solar system, as predicted by the Nice Model (Tsiganis, Gomes, Morbidelli, & Levison

2005, Nature 435). Using a Monte-Carlo approach we calculate, for satellites of Jupiter, Saturn,

and Uranus, the probability of experiencing a catastrophic collision during the LHB. We find

that Mimas, Enceladus, Tethys, and Miranda experience at least one catastrophic impact in

every simulation. Because reaccretion is expected to be rapid, these bodies will have emerged

as scrambled mixtures of rock and ice. Tidal heating may have subsequently modified the latter
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three, but in the nominal LHB model Mimas should be a largely undifferentiated, homogeneous

body. A differentiated Mimas would imply either that this body formed late, or that the Nice

model requires significant modification.
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2.1 Introduction

The lunar Late Heavy Bombardment (LHB; the apparent clustering of lunar basin ages around

3.9 Ga) can be explained by a model (Gomes et al., 2005; Tsiganis et al., 2005) that invokes

a period of dynamical instability occurring long after planet formation. In this model, often

called the Nice Model, the giant planets are formed in circular orbits, all inside of 20 AU, while

an exterior disk of unaccreted planetesimals remains beyond 30 AU. Scattering of planetesimals

due to chance encounters results in slow migration of the giant planets until Jupiter and Saturn

reach a 1:2 mean motion resonance. The resulting dynamical instability destabilizes both the

asteroid main belt and the exterior planetesimal disk. A careful choice of initial conditions

can delay the onset of instability to about 700 My after planet formation, delivering enough

planetesimal mass to the Earth- Moon system at 3.9 Ga to cause the lunar LHB (Gomes et al.,

2005).

The above scenario also predicts an LHB-like period in the outer Solar System. In fact,

the higher collision probabilities and impact energies due to gravitational focusing by the giant

planets suggest that the inner satellites of Jupiter, Saturn, and Uranus would have experienced

a bombardment much more severe than the one supposedly responsible for the lunar basins.

The concern is that this outer Solar System LHB should have resulted not just in cratering,

but in significant, even catastrophic modification of the smaller satellites (e.g. Barr and Canup,

2010; Nimmo and Korycansky , 2012). The general vulnerability of the smaller satellites to

catastrophic disruption and reaccretion has been noted by previous authors (e.g Smith et al.,

1982, 1986; Zahnle et al., 2003), and the probability of satellite survival in the context of the

proposed 3.9 Ga LHB was also calculated in (Charnoz et al., 2009). Our contribution is to

examine in detail the expected level of destruction experienced by each satellite.

In a previous study Nimmo and Korycansky (2012) have shown, using estimates of impactor

populations (Charnoz et al., 2009), collision probabilities (Zahnle et al., 2003), and a scaling

law for impact-induced vapor production (Kraus et al., 2011), that several satellites (Mimas,

Enceladus, Miranda) should have lost most of their ice content during the LHB, unless the total

mass delivered to the outer Solar System was a factor of 10 smaller than predicted by the original

Nice Model (Barr and Canup, 2010; Dones and Levison, 2013).

In this work we look again at the problem of satellite survival, this time focusing on disrup-
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tion rather than vaporization. We calculate the probability of a satellite experiencing one or

more impacts energetic enough to disperse more than 50% of the target’s mass (not necessarily

vaporized). We find that disruption is much more dangerous than vaporization, particularly for

the inner satellites of Saturn. In fact, it seems very unlikely that these satellites could have

survived the nominal LHB unmodified in their present orbits.

2.2 Method

For each satellite of interest we ask: What is the probability of it suffering at least one catas-

trophic collision, defined as a collision that disperses at least half the original target mass, during

a hypothetical LHB? To answer this question we need to know the total mass of impactors de-

livered to the target satellite, the statistics of the impactor population (in particular, the size

and velocity distribution of impacting bodies), and the effects of a given impact. We consider

each of these elements in turn in the following sections, and then describe how they are used in

a Monte-Carlo simulation of an outer Solar System LHB.

2.2.1 Total mass of impactors delivered to each target

The Nice model explanation for the lunar LHB requires a rather massive planetesimal disk

external to the orbits of the giant planets. Gomes et al. (2005) suggest 35 earth masses (ME)

in the initial disk. From the output of these simulations, several authors estimate the mass

expected to strike Saturn between 0.06 and 0.37 ME (Barr and Canup, 2010; Charnoz et al.,

2009; Dones and Levison, 2013). Later studies have suggested ways of reducing somewhat the

predicted disk mass (e.g. Nesvorný , 2011; Nesvorný et al., 2013). In this work we treat the total

delivered mass as a free parameter, spanning the range suggested by previous studies and down

to less than one percent of the canonical value.

The mass delivered to each satellite of interest is calculated based on the relative impact

probabilities given by Zahnle et al. (2003, their table 1). Zahnle et al. (2003) report impact

probabilities relative to Jupiter, P sat
EC . We denote by MLHB the total mass delivered to Jupiter,

and thus M sat
LHB = P sat

EC MLHB. A satellite’s relative probability of being hit scales with the

square of its radius and inversely with its orbital distance (assuming an approximately circular

orbit and strong gravitational focusing by the primary).

9



2.2.2 Mass dispersed by an impact1

An impact is characterized by the target’s mass M and radius R, the impactor’s mass mi

and radius ri, and the impact velocity vi (in the target’s rest frame) and angle θ. We are

interested in the gravity regime where material strength may be ignored. For a given target,

and for impacts in the near-catastrophic regime, it is customary to make the assumption that

the outcome is determined by the specific impact energy Q = (miv
2
i )/(2M). More precisely,

numerical simulations (Benz and Asphaug , 1999; Leinhardt and Stewart , 2012) show that, for a

given target, the fraction of target mass that remains bound in the largest post-collision fragment

is a linear function of Q:

Mlr

M
= max

(
0, 1− 0.5

Q

Q∗D

)
. (2.1)

The parameter Q∗D is the specific energy required to disperse half the target mass, and is a

function of the target radius.

In this work we are interested in targets in the 100 to 1000 km range. To extend previous

scaling laws for Q∗D(R) to this range we carried out a series of hydro-code simulations between

ice bodies in the gravity regime using the parallel, SPH-based code SPHERAL (Owen, 2010, 2014;

Owen et al., 1998). We simulated impacts into targets with R = 500 km and R = 1000 km.

Target and impactor materials were modeled with a Tillotson equation-of-state using parameters

suitable for H2O ice (Melosh, 1989). For each target we ran impacts with several specific energies,

and for each value of specific energy we used two impactors (ri = 250 km and ri = 200 km) with

different velocities, in order to verify velocity-independent scaling. Fitting a line to the remaining

bound mass fraction vs. the specific impact energy, we thus determine Q∗D
(
R = 500 km

)
and

Q∗D
(
R = 1000 km

)
. Figure 2.1 shows these values next to values obtained previously for smaller

targets by Benz and Asphaug (1999, their fig. 4), demonstrating a very good agreement between

the different codes. (For more detail about the SPH simulations see Appendix A.)

We find that, for ice targets in the gravity regime, Q∗D is well approximated by

Q∗D ≈ 0.05 J/kg ×
( R

1 m

)1.188

. (2.2)

The above scaling law is valid for head-on impacts. Oblique impacts can be handled by consid-

1The scaling law used in this section has now been superseded by the work discussed in Chapter 3. In
particular, eq. (2.2) should be replaced by the procedure described in sec. 3.5.
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Figure 2.1: Impact energy required to disperse half the mass (Q∗D) from an ice target in a
gravity-dominated collision as a function of target radius (R) obtained from SPH simulations.

ering only the fraction of impactor volume that intersects the target (Asphaug , 2010; Leinhardt

and Stewart , 2012).

Consider, for example, Mimas, the innermost satellite of Saturn. It has a radius of ∼200 km

and a mass of ∼ 3.8 × 1019 kg. By eq. (2.2), Q∗D ≈ 105 J/kg. In order of magnitude, the

impact velocity of a heliocentric impactor is the satellite’s orbital velocity, vorb ≈ 14 km/s.

A single 20 km radius ice impactor at this velocity carries enough energy to disperse half the

satellite’s mass. In the nominal Nice model Mimas is expected to encounter a total impactor

mass equivalent to hundreds of such bodies.

In the high-energy but relatively low-velocity impacts simulated here, the ejected mass is

not vaporized. This is not surprising, since significant shock-induced melting and vaporization

of ice requires impact velocities higher than ∼ 8 km/s (Kraus et al., 2011). In our numerical

simulations it was necessary to use lower (but still supersonic) impact velocities so that a higher

impactor-to-target size ratio can be used – a requirement of numerical resolution. In reality
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some vapor production is bound to occur, but most of the mass ejected by the impact will be

in the form of large, solid fragments. Unlike vaporized material, these fragments are expected

to subsequently reaccrete in relatively short time (see below).

2.2.3 Impactor size and velocity distribution

The simple calculation shown above neglects some important details that may mitigate the

destructive potential of a hypothetical LHB. First, eq. (2.1) assumes a gravity-dominated impact.

If much of the mass delivered by the LHB came in the form of very small (< 1 km) impactors,

we may expect heavy cratering but no significant mass loss from impacts. Second, eq. (2.1)

assumes a head-on impact. If much of the delivered mass came in the form of one or two large

(comparable to target size) impactors, the angle of impact would play an important role. A

chance glancing impact could spend much of the mass budget to minimal effect. We therefore

need to consider the statistics of the impactor population.

Third, and most important, eq. (2.1) predicts the mass of material initially escaping the

gravity of the target body, but this material is not necessarily gone for good. Heliocentric

impactors hit a satellite at roughly the orbital velocity, vimp ≈
√

3vorb. Material is ejected at a

range of velocities up to about vimp, while the escape velocity from the primary at the orbital

distance of the satellite is vPesc =
√

2vorb. Thus much of the material that initially escapes the

target goes into a similar orbit about the primary, and will eventually reaccrete. The timescale

for reaccretion depends on the initial spread in semi-major axis given to the ejected material,

which in turn depends on the velocity distribution of ejected material (e.g. Gladman and Coffey ,

2009). But even a conservative estimate puts the reaccretion time scale at no more than some

thousands of orbits. This is much shorter than the likely interval between impacts. As a

result, although some mass loss may well occur, the main effect of multiple catastrophic impacts

followed by prompt reaccretion will be to disrupt any pre-existing structure. We discuss this

possibility further in section 2.4.

Impactor size distribution

The Nice model’s trans-neptunian planetesimal disk is thought to be the progenitor of the

present-day Kuiper Belt. So the currently observed size distribution in the Kuiper Belt can

serve as a good starting point for a derived size distribution of LHB impactors. Here we adopt
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the size distribution suggested by Charnoz et al. (2009), a distribution scaled to match the

cratering record on Iapetus and designed to estimate the distribution in the primordial disk.

The cumulative fraction N of planetesimals with radius greater than r is assumed to be a power

law with two break points:

N(r) =



1, r < rmin,

r1.5
minr

−1.5, rmin < r < 7.5,

7.5 r1.5
minr

−2.5, 7.5 < r < 100,

750 r1.5
minr

−3.5, 100 < r.

(2.3)

where r is measured in km and rmin is an arbitrarily chosen smallest impactor. For a given total

mass in the population, the choice of rmin determines the total number of impactors.

With this size distribution, less than 0.2% of the mass is found in bodies smaller than 1 km

in radius, justifying our use of energy scaling in eq. (2.1). However, more than 65% of the mass

is found in bodies larger than 100 km, and so we must account for the collision angle.

The implementation of this size distribution is described in full detail in Appendix C.

Impact velocity distribution

The probability distribution of impact velocities is described in Zahnle et al. (1998) for hyperbolic

impactors with isotropic inclinations, and making some assumptions about the planetesimals’

velocities at infinity.

The collision angle θ can strongly influence the outcome of a collision. If we assume the

canonical sin 2θ distribution (Shoemaker and Wolfe, 1982), the median collision angle is 45

degrees. In oblique impacts between bodies of comparable size, a significant fraction of the

impactor volume is sheared off and leaves the scene largely intact. As a result, a significant

fraction of the impact kinetic energy is not coupled to the target, and should not be included

in Q when calculating the mass ejected by the impact. We deal with this by following the same

procedure as in Leinhardt and Stewart (2012), considering only the fraction of the impactor

mass in the volume intersected by the target at impact.

Consider again the case of Mimas, but now assume a 100 km radius impactor. This impactor

contains about half the mass the Nice model predicts was delivered to Mimas during an LHB.
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A head-on impact is easily enough to destroy Mimas many times over. But at an impact angle

of 60 degrees only 10% of the impactor volume intersects the target. This effect adds a strong

stochastic element to the outcome of an LHB period that we must consider.

2.2.4 A Monte-Carlo model

For each target of interest, we simulate a series of random LHB events and look at the outcome.

An LHB event is defined by the total mass delivered to the target, MLHB. This is our

main control parameter. We draw a random size, velocity, and angle, from the distributions

discussed above. We calculate Q, the effective specific energy of the impact intersecting the

target, and Q∗D for the target. If Q > Q∗D we increment a catastrophic impact counter. We

also keep track of super-catastrophic (Q > 2Q∗D) and ultra-catastrophic (Q > 3Q∗D) impacts,

to better quantify how much disruption takes place. The procedure is repeated until the total

mass delivered by impacts exceeds MLHB. The size of the last impactor may be reduced ad-hoc

to avoid overshooting the mass limit.

Note that we make the conservative assumption that any ejected mass is quickly reaccreted.

The target’s mass and radius thus remain constant throughout the simulation. This approach

is conservative since if the target were allowed to lose mass between impacts we would have to

adjust its Q∗D according to eq. (2.2), making it progressively easier to disrupt.

We begin by settingM sat
LHB for each target scaled to matchMCallisto

LHB = 3×1020 kg as suggested

by Barr and Canup (2010). Then we scale down the delivered mass until all saturnian satellites

survive their respective LHBs. For each value of MLHB we ran 200 simulations. The resulting

statistics are described below.

2.3 Results

Figure 2.2 shows the fraction of Monte-Carlo runs that included at least one collision with energy

greater than one, two, or three times Q∗D, for 11 outer solar system satellites. Mimas, Enceladus,

Tethys, and Miranda experienced a catastrophic impact in every simulation. In most runs, Mi-

mas, Enceladus, and Tethys experienced multiple catastrophic impacts, including impacts with

energy several times that required to completely disrupt the target. These satellites would be

heavily modified by an LHB no matter what assumptions we make about the impactor popula-
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Figure 2.2: Fraction P of Monte-Carlo runs that included at least one impact with effective
specific energy greater than one, two, or three times the catastrophic disruption threshold, Q∗D.
In these runs the mass delivered to each satellite was scaled to deliver ∼3× 1020 kg to Callisto
(Barr and Canup, 2010).

tion or reaccretion efficiency. By contrast, the larger satellites (Europa, Ganymede, Callisto and

Titan) are not expected to undergo disruption; nor are very distant objects such as Iapetus.

Figure 2.3 shows how the probability of catastrophic disruption drops when the total mass

delivered in the simulation is reduced. A reduction by a factor of 3 is not enough to save Mimas

or Enceladus, nor, probably, Tethys or Dione. Figure 2.3 shows that the mass delivered by a

hypothetical LHB must be at least 30 times less than the value predicted by the Nice model to

give Enceladus a decent chance of survival, and 100 times less to give Mimas any chance at all.

The expected number of destructive events and the overall destruction probabilities calcu-

lated in our Monte-Carlo simulations are much higher than those previously reported by Charnoz

et al. (2009, their Table 3). The discrepancy is mainly due to the different values we calculate

for the number of impactors larger than a given size expected to hit each satellite. For example,
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Figure 2.3: Fraction P of simulations that included at least one catastrophic impact, as a
function of total mass delivered. The upper limit value corresponds to 3× 1020 kg delivered to
Callisto.

Charnoz et al. (2009, their fig. (8)) calculate that a 200 km satellite at 100,000 km is expected

to see about one impact with a 20 km radius comet during the LHB, while a similar body in

Mimas orbit is expected to see about 0.57 such comets. In contrast our Monte-Carlo runs, which

are scaled from the 3 × 1020 kg striking Callisto, typically result in 30–50 such bodies striking

Mimas.

The discrepancy suggests that, for a given primordial disk mass, the total mass that we expect

to hit all outer planets and their satellites during the LHB is larger than the value calculated

by Charnoz et al. (2009). With a primordial disk of 20 Earth masses, the 0.17% probability of

impact on Saturn that Charnoz et al. calculate translates to about 2× 1023 kg striking Saturn,

and the relative collision probabilities calculated by Zahnle et al. (2003) result in 2.9× 1019 kg

striking Callisto, almost exactly an order of magnitude less than the value suggested by Barr and

Canup (2010) based on the original Nice Model. There may also be other factors contributing
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to the apparent discrepancy.

2.3.1 Caveats

The results given above were obtained using the specific scaling law for Q∗D, eq. (2.2). This

scaling law was derived with hydrocode simulations of impacts, where the equation-of-state

(EOS) plays an important role. We chose to use the Tillotson EOS (Melosh, 1989) because it

was the easiest to implement in our code, not because it is the best available EOS for ice in the

pressure and temperature regime of interest (Senft and Stewart , 2008). Our simulations were

also focused on ice targets: the parameters given to the Tillotson EOS were those appropriate

for ice (Melosh, 1989). Real targets are likely a mix of ice and silicates, but an appropriate EOS

for an unknown mixture of H2O/SiO2 is difficult to construct.

To verify the robustness of our results in light of the above caveats, we ran several Monte-

Carlo simulations using a different scaling law. From values given by Benz and Asphaug (1999,

their fig. 3) for basalt targets, we fit

Q∗D ≈ 1.48 J/kg ×
( R

1 m

)0.9893

. (2.4)

For the targets we are interested in, eq. (2.4) yields values that are about an order of magnitude

greater than eq. (2.2). Given the mixed composition of most satellites, we may assume that the

two end members, eq. (2.2) for pure ice and eq. (2.4) for pure basalt, bracket the real Q∗D value

for any target.

Running our simulated LHBs with this upper limit Q∗D, we find that the probability of many

satellites’ experiencing a catastrophic impact remains high. In particular, as shown in figure 2.4,

Mimas, Enceladus, Tethys, and Miranda still experience a catastrophic impact in almost every

run.

Different scaling laws for gravity regime impacts also exist. Leinhardt and Stewart (2012,

hereafterLS12) suggest a velocity-dependent scaling law that increases the disruption threshold

for high velocity impacts. The LS12 scaling, however, was based on simulated collisions with

targets up to 100 km in radius, and does not agree with our SPH simulations of impacts into

larger targets (see also Chapter 3). Nevertheless, we ran our Monte-Carlo simulation using the

LS12 scaling as well. As expected, the total number of catastrophic collisions experienced by
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Figure 2.4: Same as figure 2.2 but with from runs using a Q∗D scaling law derived for basalt
targets (see text for details).

each target was reduced. But the probability of experiencing at least one such collision remained

almost as high as in our baseline case, so our conclusions given in the following section hold

with either scaling law. A direct comparison is shown in Appendix B.

2.4 Implications

Figures 2.2 and 2.3 suggest that the inner Saturnian and Uranian satellites were disrupted (and

then re-accreted) several times during the putative LHB. Here we enumerate several conse-

quences of this scenario.

1. The impact history recorded by these satellites prior to the LHB was erased. This con-

clusion is not in conflict with existing constraints on surface ages based on cratering rate

calculations (Zahnle et al., 2003). In striking contrast, Iapetus – which is not predicted

to undergo disruption – has an anomalously large number of impact basins (Dones et al.,

18



2009), perhaps reflecting a contribution from the pre-LHB bombardment not recorded in

the inner saturnian satellites. The ancient surface ages inferred for Callisto, Umbriel, and

Oberon are also consistent with our results, since these bodies are not expected to have

undergone disruption. Pluto and Charon may likewise have old surface ages, their distant

orbit, large size, and low gravitational potential making them immune to any LHB.

2. Catastrophic disruption and prompt re-accretion is likely to lead to a “scrambled” body

in which ice and rock are randomly distributed, and to initially high levels of porosity.

For mid-sized satellites, neither the energy of reaccretion nor long-lived radioactive decay

are sufficient to cause melting and subsequent differentiation (Monteux et al., 2014; Nagel

et al., 2004). Later differentiation could have occurred due to tidal heating (e.g. Ence-

ladus (Meyer and Wisdom, 2007), Tethys (Chen and Nimmo, 2008), perhaps Miranda

(Dermott et al., 1988)), while later impacts would have added ice-rich material to the

surface. Nonetheless, the LHB implies that the interiors of Mimas and (perhaps) Miranda

are largely undifferentiated. This prediction is potentially testable, because shape or grav-

ity measurements can under certain circumstances be used to derive a body’s moment of

inertia (Dermott and Thomas, 1988). The shape of Mimas is non-hydrostatic (Tajeddine

et al., 2014; Thomas, 2010), which indicates a relatively cold, stiff body, but does not

permit the moment of inertia to be inferred. The shape of Miranda is too uncertain to

provide useful information (Thomas, 1988).

Deep initial porosity will be removed by compression over time. However, even on tidally

heated bodies like Enceladus, there will be a cold, near-surface layer, tens of km thick,

in which porosity can survive (e.g. Besserer et al., 2013). Inactive bodies such as Mimas

could potentially have a thicker porous layer, thereby reducing their bulk density.

3. Although our calculations assume complete reaccretion in order to be conservative, col-

lisions are stochastic and some will surely result in mass loss. In particular, for target

bodies that are differentiated, the catastrophic collisions which occurred during the LHB

are likely to have affected the ice-to-rock ratio. For instance, the apparently ice-rich nature

of Tethys can readily be explained if Tethys is a spall fragment produced during a giant

impact on a differentiated body (Asphaug and Reufer , 2013; Sekine and Genda, 2012).

The satellites that we see today may in some cases be fragments of their former selves.
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4. We have implicitly assumed that the satellites formed at the same time as the rest of the

Solar System i.e. prior to the LHB. One way of avoiding disruption is to posit that the inner

satellites formed during or after the LHB. Charnoz et al. (2011) and Crida and Charnoz

(2012) suggest that the mid-sized moons of Saturn could have been formed by accretion

from a massive, ice-rich ring (Canup, 2010) containing large silicate fragments. This

scenario is consistent with a late (post-LHB) formation of the inner saturnian satellites

and predicts a differentiated Mimas. Indeed, post-LHB satellite formation is a natural

outcome if the ring progenitor itself were delivered (or disrupted) by the LHB.

2.5 Conclusions

The canonical Nice model scenario for the LHB (Gomes et al., 2005) will have caused multiple

catastrophic disruption and prompt re-accretion of many outer solar system satellites, partic-

ularly Mimas, Enceladus, Tethys, and Miranda. None of these bodies (unlike, say, Iapetus or

Callisto) will have recorded any events on their surface prior to 3.9 Ga. The interior structures of

Enceladus, Tethys, and Miranda may have been affected by subsequent tidal heating events, but

the internal structure of Mimas is predicted to be a scrambled, largely undifferentiated jumble

of rock and ice. If Mimas turns out to possess these characteristics, then that will provide strong

evidence for the scenario outlined here. Conversely, if Mimas turns out to be a differentiated

body, then either a heat source post-dating 3.9 Ga capable of causing differentiation but not

surface tectonics has to be invoked; or Mimas is younger than 3.9 Ga; or the Nice model ex-

planation for the LHB – when applied to the outer solar system – requires further modification

(e.g. Walsh et al., 2012).
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Chapter 3

Impact disruption of gravity

dominated bodies: new data and

scaling

Abstract

We present data from a suite of 169 hydrocode simulations of collisions between planetary

bodies with radii from 100 to 1000 km. The data is used to derive a simple scaling law for the

threshold for catastrophic disruption, defined as a collision that leads to half the total colliding

mass escaping the system post impact. For a target radius 100 ≤ RT ≤ 1000 km and a mass

MT and a projectile radius rp ≤ RT and mass mp we find that a head-on impact with velocity

magnitude v is catastrophic if the kinetic energy of the system in the center of mass frame,

K = 0.5MTmpv
2/(MT + mp), exceeds K∗RD = (3.3 ± 0.6)UR where UR = (3/5)GM2

T /RT +

(3/5)Gm2
p/rp + GMTmp/(RT + rp) is the gravitational binding energy of the system at the

moment of impact; G is the gravitational constant. Oblique impacts are catastrophic when

the fraction of kinetic energy contained in the volume of the projectile intersecting the target

at impact exceeds ∼ 1.9K∗RD for 30◦ impacts and ∼ 3.5K∗RD for 45◦ impacts. We compare

predictions made with this scaling to those made with existing scaling laws in the literature

extrapolated from numerical studies on smaller targets. We find significant divergence between

21



predictions where in general our data suggest a lower threshold for disruption except for highly

oblique impacts with rp � RT . This result has implications for the efficiency of collisional

grinding in the asteroid belt (Morbidelli, A., Bottke, W. F., Nesvorny, D., & Levison, H. F.,

2009, Icarus, 204, 558573), Kuiper belt (Greenstreet, S., Gladman, B., & McKinnon, W. B.,

2015, Icarus, 258, 267288), and early solar system accretion (Chambers, J. E., 2013, Icarus, 224,

4356).
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3.1 Introduction

Collisions between planetary bodies have played a crucial role in the solar system’s formation

and subsequent evolution. The dynamical outcome of planetary scale collisions has, for this

reason, been the subject of much research including theoretical, experimental, and numerical

studies. Guided by scaling theory (see the review by Holsapple, 1993) many previous studies

have reported results from laboratory and computer experiments carried out on portions of

the parameter space (an incomplete list includes Benz and Asphaug (1999); Jutzi et al. (2010);

Leinhardt and Stewart (2012); Marcus et al. (2010); Stewart and Leinhardt (2009) as well as

reviews by Holsapple et al. (2002) and Asphaug et al. (2002)). But the huge range in sizes and

energies of interest makes a general description of collision outcomes difficult.

A complete characterization of the outcome of a collision is a complex task even with perfect

knowledge of the governing physics. The size and velocity distribution of fragments, the amount

of melt or vaporization, the pressure history of different parts of the colliding bodies are all

of interest in different applications. A more restricted problem that is of prime importance

in models of planetesimal growth is the distinction between broad classes of possible collision

outcomes: merging, accretion, erosion, or disruption; the definition of these categories being

based on the masses of the colliding bodies before and after collision. An even more modest

question that is nevertheless of great interest, both in its own right and as a basis for more

complete characterization of outcomes, is that of the criteria for catastrophic disruption (a

precise definition of which is given below). Describing these criteria for collisions involving

bodies between 100 and 1000 km in radius is the focus of the present study.

We focus on the 100 to 1000 km size range for two reasons. First, many satellites of the outer

planets have sizes in this range, and their origin and evolution were possibly heavily influenced

by big impacts during the Late Heavy Bombardment (e.g. Asphaug and Reufer , 2013; Movshovitz

et al., 2015; Nimmo and Korycansky , 2012). Second, this size range seems to have been neglected

by previous studies, which have simulated targets either smaller (e.g Benz and Asphaug , 1999;

Leinhardt and Stewart , 2012) or much larger (e.g. Marcus et al., 2010) than the icy satellites.

Therefore, applying previously obtained scaling laws (Benz and Asphaug , 1999; Leinhardt and

Stewart , 2012) to mid-sized satellites requires extrapolating beyond the size and velocity range

of the simulations used to derive them. The results of such extrapolation, we show below, can
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diverge from simulation data.

In the following we present in section 3.2 results from a new suite of hydrocode simulations of

collisions involving bodies in the 100 to 1000 km size range and with impact velocities between

1 and 50 km/s. In section 3.3 we suggest a new scaling law that predicts the conditions for

catastrophic disruption in this size range. We compare our results to previously obtained data

and scaling laws in section 3.4 and summarize our conclusions in section 3.5.

3.2 New simulation data

In this section we present data from a suite of hydrocode simulations aimed at finding the

conditions for critically catastrophic collisions (defined below) between planetary bodies in the

100 to 1000 km size range. We give our results first in table form followed by our reduction and

interpretation of the data in sec. 3.3.

3.2.1 Definitions

In the size and velocity range of interest collisions are gravity dominated. By this we mean

that shock-induced pressure at the impact site, and overburden pressure throughout most of the

interior of both the colliding bodies overwhelm elastic strength of the material the bodies are

made of. This simplifying assumption allows us to treat the colliding bodies as fluid spheres

in hydrostatic equilibrium (prior to impact of course) fully described by their mass, radius,

and an equation of state. The compositional difference between different planetary bodies (e.g.

mostly icy versus mostly rocky bodies) affects the outcome mostly though the different bulk

densities and the resulting gravitational fields. We also assume the colliding bodies are undiffer-

entiated and non-rotating, and that both bodies have a similar composition, although this last

assumption, made for convenience, is not critical and will not affect our results.

Note that the above simplifications, while surely unrealistic for many planetary bodies, are

perhaps least problematic for bodies that are some hundreds of kilometers in size. In this respect

the 100 to 1000 km size range is arguably the simplest to investigate numerically. A planetoid

much smaller than 100 km in radius is likely to be heterogeneous and may be dominated by

elastic stresses while a satellite or small planet much larger than 1000 km in radius is likely to

be differentiated and may include strong thermal gradients keeping it away from hydrostatic
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equilibrium.

With the above assumptions in mind consider a collision between a body of mass MT and

radius RT and a second body of mass mp ≤MT and radius rp ≤ RT . We refer to the larger body

as the target and to the smaller as the projectile. The relative velocity between the centers of

the spheres at the moment of impact has magnitude v. The angle between the relative velocity

vector and the line joining the target and projectile centers at the moment of impact is θ, and

b = sin θ. These six initial conditions plus a choice of equation of state (already implied by the

assumption of hydrostatic equilibrium) then fully define the collision.

We wish to find initial conditions that lead to critically catastrophic collisions, defined as

collisions where the largest remaining post-collision gravitationally bound mass, denoted MLB,

is exactly half the initial mass. Here we run into the first of several ambiguities found in the

literature as “initial mass” may refer to either the target mass or the combined target and

projectile mass. When mp � MT it is of no consequence but when mp ≈ MT either choice

can be defended. While considering only the target mass introduces an artificial asymmetry

and degeneracy to the definitions, taking initial mass to mean combined system mass leads to

the strange result that glancing or “near miss” collision (where both bodies separate mostly

intact) are considered catastrophic when mp ≈MT and therefore MLB ≈MT ≈ (MT +mp)/2.

Following Asphaug (2010) and Leinhardt and Stewart (2012) we define a critically catastrophic

collision as one that leaves the MLB equal to half the combined mass:

fLB =
MLB

MT +mp
=

1

2
, (3.1)

but restrict our discussion to non-grazing collisions, with

b ≤ RT
RT + rp

. (3.2)

The ad hoc criterion in (3.2) corresponds to the impact angle above which less than half the

projectile volume intersects the target if the velocity vector remains constant throughout the

collision. We discuss oblique and grazing impacts in more detail in sec. 3.3.
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3.2.2 The parameter space

As discussed above, six initial conditions plus an equation of state define a collision. But the

assumptions of homogeneity and hydrostatic equilibrium mean that the masses and sizes of the

colliding bodies are not independent. A convenient way to explore the parameter space then

is to first select the equation of state used to represent the colliding bodies’ composition, then

choose a target radius in the range of interest followed by a projectile radius some fraction of the

target’s, then a non-grazing impact angle. A series of hydrocode simulations is then run to find

the impact velocity v that leads to fLB = 0.5, starting with an initial guess and adjusting the

impact velocity up or down as needed. We use this approach to identify, from 169 simulations,

42 critical disruption conditions corresponding to two choices of composition (ice and rock) for

4 target radii, 3–4 projectiles per-target, and 2–3 impact angles per projectile.

Note that different choices are also possible; for example fixing the impact velocity and

varying mp (Benz and Asphaug , 1999) or fixing the ratio γ = mp/MT and varying target and

projectile size together (Leinhardt and Stewart , 2012). Each option offers some advantages but

ultimately the data should cover the same region of parameter space. The main disadvantage

of varying impact speed for a given projectile size is that for small targets and large projectiles

disruption may happen at subsonic speed. Different physics might govern the coupling of energy

to the target at supersonic and subsonic impacts and this may show as scatter in the critical

disruption data.

3.2.3 Hydrocode simulations

We use the hydrocode Spheral (Owen, 2010, 2014; Owen et al., 1998), a Lagrangian SPH based

shock physics code coupled with an oct-tree gravity algorithm. We run the code in fluid mode,

disabling elastic strength and damage calculations. For an equation of state we implemented the

Tillotson EOS (Melosh, 1989; Tillotson, 1962) with parameters for basalt and water ice taken

from Benz and Asphaug (1999, their Table 2).

We set the simulation to start at the moment of impact. This saves up considerable compu-

tation time but does not allow for tidal forces acting in the hours before impact. For targets in

the size range of interest this is not expected to be a significant effect. However, in the upper

end of our size range giving the target a constant density at the start of the simulation will result
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in local velocities that are due to the layers collapsing or expanding to hydrostatic equilibrium

and these particle velocities can be significant. To resolve this we start the simulation with the

target and projectile given the pressure profile

p(r) =
2π

3
Gρ2

0(a2 − r2), (3.3)

where p is the pressure at radial distance r, ρ0 is the reference density of the equation of state

(at zero internal energy), G is the gravitation constant, and a is RT or rp as appropriate. This

pressure profile is then inverted (numerically) to yield a density profile that can be used for

initial placement of the SPH nodes.

Most of our targets consist of ∼ 50,000 nodes and the number of nodes in the projectile is

chosen to match the mass-per-node with that of the target’s, typically resulting in a few thousand

nodes in the projectile. Higher resolution is possible but we chose to complete more runs in less

time and use higher resolution (∼200,000 nodes) periodically as validation. We place the nodes

initially in Hexagonal Close Packing arrangement trimmed to a sphere by removing nodes outside

a given radius. This arrangement guarantees equal distance between the 12 immediate neighbors

of each node and avoids possible artificial singularities that can result from a rectangular grid.

In Spheral the smoothing length h for each node is modified every time step by measuring

distortions in the local node spacing (Owen, 2010) and is not expected to contain a constant

number of nodes. We therefore limit the maximum smoothing length, hmax, to avoid situations

where escaping particles expands their smoothing length to encompass the entire simulation

space. Typically hmax is a few times the initial node separation. For consistency, we then need

to set a lower limit on node density: ρmin = mi/h
3
max where mi is the characteristic node mass.

We run a collision to a few gravity times, tgrav = 1/
√
Gρ0 , post impact. Immediately

following impact the time steps are limited by a sound speed criterion. In later stages it is the

acceleration due to gravity that limits the time step. We use a fraction of tacc =
√
L/amax

where L is a length scale of the system and amax is the largest instantaneous acceleration of an

SPH node.
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3.2.4 Largest gravitationally bound mass

We are interested in collisions that lead to fLB = 0.5 and so we need a way to estimate fLB.

Strictly speaking the definition of MLB requires that we integrate a collision to long times, first

with the hydrocode until pressure drops to zero in the ejected mass and then with an n-body

integrator until all mass has either collapsed into clumps or has escaped to infinity. This is

possible but very computationally expensive and the mapping from the continuous hydrocode

to the discrete n-body code is difficult. Instead, we run two predictive algorithms that estimate

MLB directly from the instantaneous velocity field established shortly after impact.

The first algorithm follows the procedure suggested in Jutzi et al. (2010) for the same purpose.

We compute the gravitational potential at the location of each node due to all other nodes

and identify the node with lowest (most negative) potential. This is the node that is, in a

sense, deepest “inside” the mass distribution. The velocity of this node is used to define a

moving reference frame and in this reference frame we locate all nodes with positive mechanical

energy. These nodes are discarded and the entire procedure is repeated. The iterative algorithm

terminates when a cycle completes with no nodes discarded. Convergence is usually achieved

in 5–10 cycles. What remains is a mass distribution that is expected to remain bound except

perhaps in some pathological cases. This is a top-down algorithm as it whittles down the list of

bound nodes from an initial list containing all nodes.

The second algorithm also starts by identifying the node with lowest potential energy and

using its velocity to define a moving reference frame. The position of the seed node is denoted

Rc, the velocity of the node is Vc, and the mass of the seed node is denoted Mc. In this reference

frame we look for all the nodes with

Ei =
1

2
|vi −Vc|2 +

GMc

|ri −Rc|
< 0, (3.4)

Where ri and vi are the position and velocity of the i-th node. Then Rc, Vc, and Mc are

redefined to be the center of mass position, velocity, and total mass of this list of nodes. The

previous step is repeated with the new values, and the algorithm terminates when a cycle

completes with no change to the value of these variables. What remains is a mass distribution

that is very likely bound except perhaps in pathological cases. This algorithm is bottom-up,

building a list of bound nodes starting from a single node.
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Predictions of fLB by the two above algorithms usually converge within two gravitation times

post impact and agree to about 5% or better after that. For consistency, reported fLB values in

the following always refer to the average of the values reported by the two above algorithms at

t = 2tgrav. (This is ∼8070 s post impact for ice targets and ∼4700 s for basalt targets.)

3.2.5 Results

In table 3.1 we give initial conditions for 42 collisions that result in critically catastrophic

disruption. For each set of target and projectile sizes, and for each of two choices of composition

(reflected in the bulk density and the parameters for the equations of state) and 2–3 choices of

impact angle, several runs were needed to identify an impact speed v that leads to fLB ≈ 0.5

(usually 0.49 ≤ fLB ≤ 0.51). The critical value v∗ is then obtained by solving

fLB = 1− 1

2

( v
v∗

)2

. (3.5)

The assumption implicit in (3.5), that near the disruption threshold fLB is linear with v2, is

justified after the fact. (See sec. 3.3.3.) A complete listing of all simulation results is given in

Appendix D.

Note that radii given for the target and projectile are the uncompressed values. The values

after adjustment to hydrostatic equilibrium will be slightly less. Note also that due to finite

resolution the masses of the colliding bodies are not exactly equal to the reference density

multiplied by the volume of a sphere.

The values in table 3.1 can be used to explore predictive scaling laws for catastrophic dis-

ruption. In the next section we suggest a reduction of the data to a relation between the total

system kinetic energy and gravitational binding energy, and use it to propose a best-fit relation

in the form of a linear function. We then compare the same data against different possible

reductions.
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Table 3.1: Summary of collisions found to result in critically catastrophic disruption

EOS RT (km) MT (kg) rp (km) mp (kg) θ (deg) v∗ (m/s) grazing

basalt 1000 1.128×1022 794 5.68×1021 0 3550 N
basalt 1000 1.128×1022 794 5.68×1021 45 7250 Y
basalt 1000 1.128×1022 500 1.37×1021 0 5230 N
basalt 1000 1.128×1022 500 1.37×1021 30 8010 N
basalt 1000 1.128×1022 500 1.37×1021 45 15600 N
basalt 1000 1.128×1022 300 2.89×1020 0 11600 N
basalt 1000 1.128×1022 300 2.89×1020 30 17400 N
basalt 1000 1.128×1022 300 2.89×1020 45 28100 N
basalt 1000 1.128×1022 200 7.93×1019 0 26800 N
basalt 1000 1.128×1022 200 7.93×1019 30 34100 N
basalt 1000 1.128×1022 200 7.93×1019 45 48300 N
basalt 500 1.395×1021 500 1.38×1021 0 1910 N
basalt 500 1.395×1021 250 1.71×1020 0 3070 N
basalt 500 1.395×1021 250 1.71×1020 30 4490 N
basalt 500 1.395×1021 250 1.71×1020 45 7970 N
basalt 500 1.395×1021 100 9.91×1018 0 14100 N
basalt 500 1.395×1021 100 9.91×1018 30 17900 N
basalt 500 1.395×1021 100 9.91×1018 45 25000 N
basalt 300 3.005×1020 150 3.69×1019 0 2020 N
basalt 300 3.005×1020 150 3.69×1019 30 3100 N
basalt 300 3.005×1020 150 3.69×1019 45 5140 N
basalt 300 3.005×1020 60 2.14×1018 0 8920 N
basalt 300 3.005×1020 60 2.14×1018 30 11600 N
basalt 300 3.005×1020 60 2.14×1018 45 16300 N
basalt 100 1.112×1019 50 1.37×1018 0 868 N
basalt 100 1.112×1019 50 1.37×1018 30 1360 N
basalt 100 1.112×1019 50 1.37×1018 45 2370 N
ice 1000 3.793×1021 794 1.92×1021 0 2200 N
ice 1000 3.793×1021 794 1.92×1021 45 4890 Y
ice 1000 3.793×1021 794 1.92×1021 55 7220 Y
ice 1000 3.793×1021 500 4.65×1020 0 3450 N
ice 1000 3.793×1021 500 4.65×1020 30 4960 N
ice 1000 3.793×1021 500 4.65×1020 45 9690 N
ice 1000 3.793×1021 300 9.81×1019 0 6820 N
ice 500 4.724×1020 500 4.68×1020 0 1190 N
ice 500 4.724×1020 250 5.81×1019 0 1980 N
ice 500 4.724×1020 250 5.81×1019 45 5120 N
ice 500 4.724×1020 250 5.81×1019 60 13000 Y
ice 500 4.724×1020 100 3.36×1018 0 8060 N
ice 300 1.020×1020 150 1.25×1019 0 1340 N
ice 300 1.020×1020 60 7.27×1017 0 5710 N
ice 100 3.775×1018 50 4.64×1017 0 591 N
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3.3 A scaling law for critically catastrophic disruption

The conditions identifying a critically catastrophic collision involve six variables1. To make sense

of the data and to enable predicting the outcome of collision with different initial conditions we

would like to reduce the available data to a relationship between fewer variables, derived from

the original six.

The choice of the derived variables is not obvious. Certainly the kinetic energy of the

projectile is an obvious guess and indeed was often implicitly assumed to be the sole measure

of the impact. The momentum of the projectile is another possible measure. Housen and

Holsapple (1990) examine these assumptions and argue that the correct measure of the projectile

is neither energy nor momentum, at least for impacts between strength-dominated bodies where

experimental data is available. For our data, experimenting with several options we find that

the best measure of the impact is the kinetic energy of system, in the center of mass frame,

and that this measure should be compared with the system’s gravitational binding energy to

determine the outcome of the collision. This is similar to the assumption made in Davis et al.

(1979, 1985) but we get a better fit to data from comparable size collisions when we consider

the kinetic and gravitational energy of the system rather than those of the projectile and target,

respectively.

3.3.1 Head-on impacts

Figure 3.1 is a plot of the subset of our simulation data consisting of critically catastrophic,

head-on (θ = 0) collisions. Plotted is the variable

K∗RD =
1

2

mpMT

mp +MT
v∗2, (3.6)

the kinetic energy of impact in the center of mass frame, against the variable

UR =
3GM2

T

5RT
+

3Gm2
p

5rp
+
GMTmp

RT + rp
, (3.7)

1Strictly speaking the masses and radii are not independent because of the assumption of hydrostatic equi-
librium and a certain equation of state. But we choose to keep both variables for each colliding body because
they are not easily reduced to each other and, more importantly, it is likely that the conditions for catastrophic
disruption, in this gravity regime, are not sensitive to the details of the bodies’ interiors but rather depend mostly
on the total mass and radius. But this conjecture is not yet tested by simulation.
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Figure 3.1: Kinetic energy of the system in the center-of-mass frame against the gravitational
binding energy of the system at the moment of impact. Filled symbols indicate basalt bodies
and empty symbols indicate ice bodies. Color indicates projectile-to-target mass ratio.

the system’s gravitational binding energy at the moment of impact. We indicate γ = mp/MT

with color; the values of γ correspond to a projectile-to-target size ratio of between 1 and 0.2.

Filled symbols indicate basalt bodies and empty symbols indicate ice bodies. All data seem to

fall near a straight line in log scale, suggesting a simple power law relation. In fact the slope of

the best-fit line is close to one, suggesting an even simpler, linear relation:

K∗RD = (3.3± 0.6)UR. (3.8)

Although the power law with a somewhat shallower slope fits this particular data set better the

linear relation is perhaps more physically justified.

3.3.2 Oblique impacts

For the same target and projectile an oblique impact (θ > 0) requires higher speed to reach

catastrophic disruption and in general higher θ requires higher v. Part of the reason, for collisions
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between similar sized bodies, is a geometric effect (Asphaug , 2010; Leinhardt and Stewart , 2012).

A fraction of the projectile “misses” the target and some fraction of momentum and kinetic

energy is not deposited in the target during the collision. Using a simple, idealized geometric

model that assumes the bodies are not deformed and the trajectory of the projectile does not

change during impact Leinhardt and Stewart (2012) give an estimate of the fraction of projectile

mass expected to be involved in the collision. If l = (RT + rp)(1− sin θ) then

α =


3rpl

2−l3
4r3
p

, l < 2rp,

1, l ≥ 2rp

(3.9)

is the fraction of mp that is in the volume of the impactor that will overlap with the target if

the impactor’s trajectory is unchanged. We therefore call αmp the interacting mass.

The interacting mass can be used to provide a zero-order correction when comparing K∗RD

for different impact geometries. If only a fraction α of the projectile mass is interacting in the

collision then the available kinetic energy is

Kα =
1

2

( mpMT

mp +MT

)(αMT +mp

mp +MT

)
v2. (3.10)

(Note that this factor is somewhat different from the one suggested in (Leinhardt and Stewart ,

2012); a derivation is given in Appendix E.)

The critical disruption value corrected for this geometric effect is denoted K∗αRD. Figure 3.2

plots critical disruption energies for impacts at θ = 30◦ and θ = 45◦ normalized by the value

for the corresponding head-on impact. As can be seen, the correction (3.10) accounts for much,

but not all of the extra energy required. There is no shortage of possible avenues for the kinetic

energy of impact to go into when the impact angle increases and we plan a thorough study of

the angle dependence of critical disruption energy in future work. From the data available so far

it looks as if, all else being equal, a catastrophic collision at θ = 30◦ requires a factor of ∼2 as

much energy as a head on collision, and a collision at θ = 45◦ requires a factor of ∼3− 4 more

energy. These estimates are for the corrected energy, based on the interacting mass fraction.

It is important to note that the data plotted in figure 3.2 are only those from non-grazing

impacts. Grazing impacts are common (Asphaug , 2010) and their outcomes are less simple,
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Figure 3.2: Increase in kinetic energy required for catastrophic disruption with increasing impact
angle θ; (a) before and (b) after applying the interacting mass correction, eq. (3.10). Data shown
are for non-grazing impacts: sin θ ≤ RT /(RT + rp). Dashed lines indicate mean values of the
post-correction angle dependent factor.

transitioning abruptly from merging to hit-and-run with increasing impact speed.

3.3.3 Near-catastrophic collisions

We have defined a collision as critically catastrophic when MLB = 0.5(MT +mp). This definition

is merely a convenient reference; no sharp transition between qualitatively different outcomes

is implied. Impact conditions that are close to the critical disruption threshold simply result in

more or less mass remaining bound. We can be a little more precise by looking at how MLB

changes with KR. A fortunate consequence of the procedure used to obtain our catastrophic

disruption data is that we have several values of MLB from near catastrophic impact simulations

for each row of table 3.1, differing only in impact speed.

Figure 3.3 plots MLB from all 144 non-grazing impact simulations as a function of impact

speed v normalized by the critical value v∗ for an impact with the same geometry and mass

that led to fLB = 0.5. It is not surprising that fLB is approximately linear with (v/v∗)2), when

v ≈ v∗. The usefulness of this relation should not be overstressed. The relation only holds for

v ≈ v∗ and as the exact value of v∗ is not known we cannot hope to predict MLB very precisely

for a given collision. The best we can say is that if KR � K∗RD we expect the outcome to

be supercatastrophic (MLB ≈ 0) while if KR � K∗RD we expect the outcome to be moderate

erosion or even accretion.
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Figure 3.3: Remaining bound mass after near catastrophic impacts as a function of impact speed
v. When v ≈ v∗ the fraction of bound mass post collision is approximately linear with (v/v∗)2.

3.4 Comparison with previous work

As mentioned in the introduction, numerical studies of collisions in the 100–1000 km range are

missing but theoretical and numerical studies of collisions between gravitationally dominated

bodies in general exist. In this section we compare our data to previously derived scaling laws.

3.4.1 Davis et al. (1985)

Davis et al. (1985) derive an algorithm for the outcome of collision between gravitationally dom-

inated bodies in order to study the collisional evolution of asteroid families. Their algorithm

consists of several assumptions. First, they assume that the target body has a material depen-

dent impact strength that is a function of size. The impact strength is defined as the energy

density required to shatter the target into fragments the largest of which contains half the initial

target mass. Davis et al. (1985) propose that this impact strength consists of two terms. The

first is the target material’s tensile strength and the second, which becomes dominant for bodies
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larger than 10–100 km in radius, is due to the overburden pressure averaged over the target’s

radius.

The second assumption is that the fragment velocity distribution is a power law and that

disruption occurs when fragments with velocities greater than the target’s escape velocity (pre-

sumably at the initial target radius) add up to greater than half the initial target mass. The

slope of the velocity distribution is estimated from experimental data and the distribution is

normalized with the assumption that some constant fraction of the impact kinetic energy is

transfered to kinetic energy of fragments.

The dominant term in the target’s impact strength, the term derived from the overburden

pressure, increases with the square of the target size, just as the gravitational binding energy.

Noting this Davis et al. (1985, their Fig. 7) compare, as we do, the collisional energy required

for disruption with the gravitational binding energy. But as their algorithm contains several

parameters that must be either guessed or extrapolated from experiment (over many orders of

magnitude) they cannot get tight constraints for the critical disruption energy; putting the value

between 8 and 80 times the gravitational binding energy. Compare this with the value of ∼3.3

found in sec. 3.3.1.

Note also that Davis et al. compare the kinetic energy of the projectile to the gravitational

binding energy of the target, while we compare the kinetic and gravitational energy of the

system (fig. 3.1). For mp �MT this is of little consequence but for mp ≈MT the distinction is

important.

3.4.2 Benz and Asphaug (1999)

Benz and Asphaug (1999, hereafter, BA99) describe a scaling law for the conditions for catas-

trophic disruption derived from a suite of simulations generally similar to the ones carried out

in this work but for targets with 1 cm ≤ RT ≤ 100 km. There are several differences in the

details however that should be noted. First, because of the size range of interest the code used in

BA99 included explicit treatment of elastic strength and fracture. Second, for practical reasons

the code used in BA99 did not include self gravity in the dynamical simulations, although a

strengthening due to gravity is accounted for in a way similar to that described in Davis et al.

(1985) (see also Asphaug and Melosh, 1993). Third, the impact velocity was kept constant at

two chosen values for each of the two material types (basalt and ice with Tillotson’s equation
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of state, same as here) and mp was varied instead. Last, simulations were not carried out at or

close to the exact conditions for catastrophic disruption. Instead three values of mp were used

for each target (and for each of several values of θ) producing three values of MLB. A parabolic

fit was then used to predict the projectile kinetic (in the target frame) energy that would lead

to MLB/MT = 0.5.

From the data BA99 derive a scaling law based on the variable

Q∗D =
mpv

2

2MT
, (3.11)

the kinetic energy of the projectile, in the target frame and normalized by the target mass.

Measuring collision outcomes in term of the specific energy, Q, is common in theories of collisional

fragmentation. The reason for this is that if γ � 1, and if all simulations or experiments are

carried out at the same velocity (varying mp to find the catastrophic threshold for each MT ),

and if the density of the colliding bodies was also kept constant, then Q∗D(RT ) is expected to

follow a power law (Housen and Holsapple, 1990).

Figure 3.4 shows the same data as figure 3.1 but plotting the variable Q∗D against RT . Also

shown for comparison are data from BA99. Figure 3.4 shows that Q∗D(RT ) indeed follows a

power law but only for γ � 1, as expected. Impact with γ > 0.5 begin to deviate significantly

from this power law.

A second weakness of this approach is that it leads to a different power law for each material.

While this seems natural and perhaps unavoidable for strength-dominated collisions, in gravity

dominated collisions the major property distinguishing one material from another is density,

indirectly, through gravity. This is why a scaling law based on gravitational binding energy can

be applied without reference to a specific material.

3.4.3 Leinhardt and Stewart (2012)

Leinhardt and Stewart (2012, hereafter LS12) derive a different scaling law based on a different

reduction of catastrophic collision data from a suite of particle code simulations of low velocity

impacts into targets with RT = 10 km. The main idea behind the LS12 formalism is that with

a different choice of variables all the data in figure 3.4 can be made to follow a single power law.

First, LS12 point out that the kinetic energy of interest is really that of the collision viewed
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Figure 3.4: Q∗D = 0.5mpv
2/MT plotted against RT for collisions at just the catastrophic thresh-

old. Data from this work (squares) and from BA99 (circles). Filled symbols indicate basalt
bodies and empty symbols indicate ice bodies. Color indicates projectile-to-target mass ratio,
where known. BA99 mass ratios are not known precisely but are all between 0.001 and 0.01.

in the center-of-mass frame, and further that it should be normalized by the total colliding mass.

They therefore suggest the variable

Q∗RD =
MTmpv

2

2(MT +mp)2
(3.12)

to replace Q∗D. (We make the same choice, up to normalization, in eq. (3.6).) In addition, they

suggest that scaling Q∗RD using a variable with units of length that measures the total colliding

mass, instead of RT , will remove the degeneracy evident in figure 3.4 (several values of Q∗D for

each value of RT ) by taking into account the the projectile size and the different bulk densities

of targets with different compositions. The variable they recommend is

RC1 =

(
(MT +mp)

4
3π(1000 kg/m3)

)1/3

. (3.13)
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Figure 3.5: (a) Same data as in fig. 3.1 but plotted using the variables suggested in LS12. (b)
Same data after also applying the γ correction, eq. (3.14), with µ̄ = 0.35.

When this is done the data indeed squeeze closer together and appear to follow a single power

law (figure 3.5a), but with a lot of scatter.

LS12 then derive a correction factor meant to account for different projectile-to-target mass

ratios by converting the value of Q∗RD found for a given value of γ to an equivalent value,

Q∗RD,γ=1, the critical disruption energy for a collision where the same total mass is distributed

equally between target and projectile. The correction factor is (LS12 eq. (23))

Q∗RD = Q∗RD,γ=1

(
1

4

(γ + 1)2

γ

) 2
3µ̄−1

(3.14)

where µ̄ is the exponent in the coupling parameter (Housen and Holsapple, 1990)

C = rpv
µ̄ρ

1/3
0 (3.15)

assumed to be the sole measure of the projectile.

Figure 3.5b shows our data plotted with the variables Q∗RD,γ=1 and RC1 and using the value

µ̄ = 0.35 recommended in LS12. For values of γ & 0.1 the equivalent equal mass correction

appears to work, in the sense that the data collapse to a power law as expected. But data for

lower values of γ fall well below the apparent line. (Note that LS12 were limited by the use of

a rigid body code to collisions with v . 100 m/s and thus indirectly to γ ≥ 0.025.)

39



γ

10
-3

10
-2

10
-1

10
0

µ̄

0.35

0.4

0.45

0.5

0.55

0.6

0.65

lo
g
∣ ∣ ∣

∂
(Q

∗ R
D
/Q

∗ R
D
,γ
=
1
)

∂
(µ̄
)

∣ ∣ ∣

-2

-1

0

1

2

3

Figure 3.6: Sensitivity of eq. (3.14) to the coupling exponent µ̄.

Eq. 3.14 follows from the assumption that

Q∗RD ∝ R
3µ̄
C1v

2−3µ̄ (3.16)

(Leinhardt and Stewart , 2012) which is an extension of a power law,

Q∗D ∝ R
3µ̄
T v

2−3µ̄, (3.17)

derived from dimensional analysis (Housen and Holsapple, 1990, see also a simplified derivation

in Appendix F) to the new variables RC1 and Q∗RD. However the use of these new variables

violates the assumption that the coupling parameter is the only measure of the impact and so

eq. (3.14) does not necessarily hold for all values of γ. Note that eq. (3.14) is quite sensitive to

the exact value of µ̄ (figure 3.6) and so a value that appears to closely match simulation data for

some projectile-to-target ratios can be a bad predictor of disruption conditions for other ratios.
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3.4.4 Example

We illustrate the differences between existing scaling laws with the following example. Consider

Mimas, the innermost of the major Saturnian moons. Let RT = 196 km and MT = 3.8×1019 kg.

If the outer solar system had experienced a late heavy bombardment as predicted by the Nice

model (Gomes et al., 2005; Tsiganis et al., 2005) then Mimas may have been struck by cometary

material after its formation. Heliocentric projectiles impact at close to orbital speeds (e.g. Zahnle

et al., 2003) so let v =
√

3vorb ≈ 24 km/s. How big a projectiles is required to disrupt Mimas?

Consider first the scaling law suggested in BA99 (their eq.(6) and table 3). BA99 deal with

oblique impacts by averaging the values of Q∗D obtained for different impact angles, weighted

by the probability distribution of θ for isotropic (at infinity) incoming projectiles, and so the

projectiles radius we will obtain should be interpreted as the expected size in a statistical sense.

But as the impact angle distribution peaks at θ = 45◦ the calculated disruption energy will be

close to that of an impact at that angle. The BA99 scaling is material dependent but fortunately

the low density of Mimas is probably comparable to that of a cometary impactor. We therefore

use the BA99 scaling law with parameters for ice targets and take ρ = 1.2 g/cm3. We find

Q∗D ≈ 2.2× 109 erg/g and a projectile radius rp ≈ 18 km.

Next consider the scaling law in LS12 2. Using the recommended values for the parameters

and taking ρ = 1200 kg/m3 we find that a projectile-to-target mass ratio γ = 0.0028 leads to

fLB = 0.5. The LS12 scaling law assumes a similar density of target and projectile and with this

density the projectile radius is rp ≈ 28 km. LS12 deal with oblique impacts using an interacting

mass correction (slightly different from eq. (3.10)) but for rp � RT the interacting mass fraction

α = 1 for almost any impact angle and the predicted rp for θ = 45◦ is the same as that for a

head on impact.

Finally, consider the scaling law proposed here. Expecting rp � RT we neglect the last two

terms in eq. (3.7) and obtain UR = 2.9 × 1023 J. We take θ = 45◦, the most likely value, and

calculate the kinetic energy for disruption from eq. (3.8) and fig. 3.2. We get 2.8 × 1024 J .

K∗RD . 4 × 1024 J. Our scaling makes no assumptions on projectile density and we are free to

choose it how we want. For comparison with the above calculations we use again ρ = 1200 kg/m3

to find 12 km . rp . 14 km.

2The authors provide an implementation at http://mygeologypage.ucdavis.edu/stewart/resources/

collision/
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The diverging predictions of existing scaling laws are significant. Although at first glance a

factor of two in size does not seem so bad note that this is almost an order of magnitude difference

in mass (and energy!). Moreover, size distributions of typical impactor populations (comets or

asteroids) are often steep-sloped power laws (e.g. Charnoz et al., 2009) and rp ≈ 10 km projectiles

may be much more abundant than rp ≈ 30 km ones. If the impact speed is allowed to change the

predictions diverge even more, and similarly when oblique impacts between comparable sized

bodies are considered.

We note that all three scaling laws used above were derived based on data from simulations

at relatively low velocities and the results are therefore extrapolated to higher velocity collisions.

However our simulation data is for targets in the 100 – 1000 km range so that we are interpolating

rather than extrapolating at least in target radius.

3.5 Summary and discussion

The data in table 3.1 and figures 3.1 and 3.2 suggest the following simple procedure for deter-

mining the outcome of a (non-grazing) collision between gravity dominated bodies:

1. Calculate

KR =
1

2

MTmp

MT +mp
v2. (3.18)

For mp �MT this is approximately 0.5mpv
2.

2. For oblique collisions calculate also l = (RT + rp)(1− sin θ) and

α =


3rpl

2−l3
4rp3 , l < 2rp,

1, l ≥ 2rp.

(3.19)

Then

Kα =
(αMT +mp

mp +MT

)
KR. (3.20)

Verify also that the collision is not grazing, i.e. that sin θ ≤ RT /(RT + rp).

3. Calculate

UR =
3GM2

T

5RT
+

3Gm2
p

5rp
+
GMTmp

RT + rp
. (3.21)
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For mp �MT this is approximately (3GM2
T )/(5RT ).

4. For head-on impacts, the collision is catastrophic if KR > K∗RD. A nominal value is

K∗RD = 3.3UR.

5. Oblique (but non-grazing) impacts require higher energy for the catastrophic threshold.

For θ = 30◦ the collision is catastrophic if Kα & 2K∗RD and for θ = 45◦ the collision is

catastrophic if Kα & 3.5K∗RD.

6. Grazing collisions are usually not catastrophic unless the speed of impact is very high. Note

however that this does not mean that the target and/or projectile are not significantly

affected by the impact. It simply means that MLB ≈MT .

We have shown in sec. 3.4.4 that the above procedure can predict outcomes significantly

different from those predicted using existing scaling laws (Benz and Asphaug , 1999; Leinhardt

and Stewart , 2012) when applied to collisions in the 100 – 1000 km size range. In particular,

our predictions diverge from those of Benz and Asphaug (1999) when γ & 0.1 and from those of

Leinhardt and Stewart (2012) when γ . 0.01. Additionally, our new scaling offers the advantage

of being material independent and allowing for different densities for target and projectile.

Predictions of the threshold for collisional disruption have applications in many areas of

planetary science but are especially important in post-formation evolution of asteroids and small

to mid sized satellites. For example, Morbidelli et al. (2009) investigate collisional grinding in

the asteroid belt in an attempt to connect the present day size frequency distribution with the

primordial one – a connection with important implications to models of planetesimal growth.

The authors use the scaling law of Benz and Asphaug (1999) for basalt targets and find that

reproducing the present day observed size distribution requires the primordial belt to be mostly

populated by big, > 100 km diameter bodies. They also test their results with a reduced

disruption threshold and find a worse fit to observational constraints, with the same initial

conditions. It is not easy to guess how using the new scaling presented here would change the

predicted primordial size distribution; we only note here that our scaling is consistent with a

reduced threshold for disruption compared with BA99 values, especially for 100 km and larger

targets.

A second area where a change in disruption threshold may have important implications is

the question of a Late Heavy Bombardment in the outer solar system. For example, Nimmo
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and Korycansky (2012) and Movshovitz et al. (2015) investigate the probability of catastrophic

disruption of the satellites of Jupiter, Saturn, and Uranus during the LHB, using a disruption

scaling similar to that of BA99 for ice targets. Using instead the scaling law suggested here

would make these satellites generally more susceptible to disruption. However Movshovitz et al.

(2015) account for oblique impacts using the interacting mass correction (as in eq. (3.10)) but

without the additional factor we find here (fig. 3.2). So Movshovitz et al. (2015) may have

overestimated the destructive power of impactors that are both very oblique and very small. We

have verified these assertions with preliminary Monte-Carlo runs using the newly derived scaling

law. The output of these is presented in appendix B and confirms the results of Chapter 2.

The Kuiper belt may have some collisional grinding as well, although typical impact speeds

are somewhat lower than in the main belt. Recently, Greenstreet et al. (2015) estimate impact

rates onto Pluto, Charon, and the system’s four smaller moons, Styx, Nyx, Kerberos, and Hydra.

They use these impact rates to estimate a disruption timescale for the four smaller moons and

find that there is only a small probability the these moons had experienced a catastrophic

disruption since formation. For threshold disruption energy they use the scaling law of LS12

which in this case is in general agreement with that of BA99. For example, for the satellites Nix

and Hydra, assuming a diameter of 45 km and v = 1.5 km/s, they use a disruption threshold of

Q∗RD = 7× 103 J/kg to derive a minimum projectile diameter of 8 km for collisional disruption.

Our scaling law predicts that a projectile half that size would suffice (1.3 ≤ rp ≤ 2.2 km). Note

however that these small targets are near the lower bound for gravity-dominated bodies and

their strength may play an important role.

3.5.1 Future work

Our treatment of oblique impacts was only preliminary. In future work we intend to investigate

the impact angle dependence of K∗αRD and provide special treatment of grazing impacts. It is also

important to emphasize again that the data and scaling presented here apply only to gravity-

dominated collisions. We have not attempted yet to detect the boundary between strength and

gravity regimes here. Previous research had put this boundary somewhere between 3 km and 30

km radius. We have therefore stayed on the safe side of the transition with RT ≥ 100 km. More

simulation data is needed to determine how far down the size range can gravity scaling be used.

In principle the same procedure used here can be continued with decreasing values of RT but
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SPH simulations of small, gravity-dominated bodies become increasingly difficult. The difficulty

begins with the fact that the SPH formalism works best when all SPH nodes (sometimes called

particles) have similar masses. To find the disruption threshold of small targets at high (ideally

supersonic) v we must use much smaller projectiles, such that γ � 1. Therefore we are forced

to use a very large number of nodes in the target in order to keep the mass-per-node roughly

equal between the target and projectile. To make matters worse, the high spatial resolution

in the target forces much smaller time steps (the CFL condition) to be taken, but the gravity

time scale and therefore simulation end time are unchanged. These effects conspire to make

simulations of disruption of RT = 100 km bodies particularly time consuming.
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Chapter 4

Numerical modeling of the

disruption of Comet D/1993 F2

Shoemaker-Levy 9 representing

the progenitor by a

gravitationally bound assemblage

of randomly shaped polyhedra

This chapter is a slightly edited reprint of work previously published as Movshovitz, N., E. As-

phaug, and D. G. Korycansky (2012), Numerical Modeling of the Disruption of Comet D/1993

F2 Shoemaker-Levy 9 Representing the Progenitor By a Gravitationally Bound Assemblage of

Randomly Shaped Polyhedra, The Astrophysical Journal, 759 (2), 93, doi: 10.1088/0004-637X/

759/2/93.

Abstract

We advance the modeling of rubble-pile solid bodies by re-examining the tidal breakup of comet
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Shoemaker-Levy 9, an event that occurred during a 1.33RX encounter with Jupiter in July 1992.

Tidal disruption of the comet nucleus led to a chain of sub-nuclei ∼100− 1000 m diameter; these

went on to collide with the planet two years later (Chodas and Yeomans, 1996). They were

intensively studied prior to and during the collisions, making SL9 the best natural benchmark

for physical models of small body disruption. For the first time in the study of this event, we

use numerical codes treating rubble piles as collections of polyhedra (Korycansky and Asphaug ,

2009). This introduces forces of dilatation and friction, and inelastic response. As in our

previous studies (Asphaug and Benz , 1994, 1996) we conclude that the progenitor must have

been a rubble pile, and we obtain approximately the same pre-breakup diameter (∼ 1.5 km)

in our best fits to the data. We find that the inclusion of realistic fragment shapes leads to

grain locking and dilatancy, so that even in the absence of friction or other dissipation we find

that disruption is overall more difficult than in our spheres-based simulations. We constrain the

comet’s bulk density at 300 ≤ ρbulk ≤ 400 kg m−3, half that of our spheres-based predictions

and consistent with recent estimates derived from spacecraft observations.
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Figure 4.1: Hubble Space Telescope image (Weaver et al., 1995) showing the ‘string of pearls’
comet Shoemaker-Levy 9 in March, 1994, four months before its collision with the planet Jupiter.

4.1 Introduction

Most kilometer-sized asteroids are likely rubble piles (Asphaug , 2009; Fujiwara et al., 2006;

Richardson et al., 2002). Many comets may also be strengthless or nearly strengthless bod-

ies, their fragility demonstrated when they break up far from perihelion for no obvious reason

(Weissman et al., 2004). One comet was observed shortly after it broke up for a very obvious

reason: Comet Shoemaker- Levy 9 (SL9) made a spectacular plunge into Jupiter following a

close approach two years previously, that tidally disrupted the original progenitor into at least

21 detectable pieces (Fig. 4.1), as summarized in Noll et al. (1996).

Tidal disruption by Jupiter is not unusual among the population of short-period comets.

Numerous crater chains on Ganymede and Callisto (Schenk et al., 1996) provide direct evidence

for∼10 events where comets disrupted by Jupiter slammed into one of the Galilean satellites. For

each such imprint, many thousands of disrupted comets went on to become families of bodies.

Similarly, comets coming too close to the Sun are tidally disrupted, the most famous being

the Kreutz family of Sun-grazers studied by Marsden (1967) and Knight et al. (2010). Other

planets also disrupt comets, although Saturn’s density may be too low to lead to tidal disruption

of bodies of cometary density without resulting in a collision. Asteroids, of higher density than

comets, can be tidally disrupted as well, but only in encounters with correspondingly denser

terrestrial planets. If we regard SL9 as a typical case, we may use the details of its final orbit

to infer something about the physical properties of comets in general, and more broadly, about

the physics of rubble piles.
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4.1.1 Models of Tidal Disruption

A number of studies, conducted before and after the discovery of SL9, looked at the details

of tidal distortion and disruption. Most directly applicable was the detailed analytical study

by Sridhar and Tremaine (1992) who analyzed the tidal stresses exerted on a homogeneous,

incompressible, viscous fluid as it passes by a planet on a parabolic trajectory. Assuming that

the body remained ellipsoidal during deformation, they concluded that an orbit that results in

mass shedding (that is, gravitational instability of the ellipsoid) must have pericenter distance

Q < 1.05(Mp/ρ0)1/3, where Mp is the mass of the planet and ρ0 is the fluid (planetesimal)

density.

Asphaug and Benz (1996) tested, extensively, the possible outcomes of a tidal encounter

with Jupiter, for a small body of varying strength and density. They started by showing, using

an SPH-based hydrocode with strength (Benz and Asphaug , 1994, 1995), that a solid body, no

matter how weak, can be ruled out as the progenitor SL9. A solid body was found to break in

half, as soon as the tidal stress was able to activate the weakest flaw and propagate a fracture

across the body. The stress is thus relieved, and must build up again to an even higher value

in the two resulting fragments, which have a higher failure threshold, and have a tidal stress

reduced owing to their smaller size. On a nearly parabolic orbit, such as was deduced for SL9,

this process is too slow to repeat more than once or twice, no matter how low the initial strength,

and so is inconsistent with the > 20 fragments observed for SL9.

Asphaug and Benz (1996) then proceeded to test, using a particle code with elastic collisions,

the possible outcomes when the progenitor is instead a rubble pile, with varying density. They

first tested their rubble pile (or ‘marble pile’) code against the analytical predictions of Sridhar

and Tremaine (1992) and found good agreement for the threshold of mass loss for incompress-

ible fluid bodies on parabolic encounters. With some confidence in the physics of their code

based on this good analytical match, they were then able to constrain a bulk density for the

progenitor (ρ ≈ 600 kg m−3) from the resulting chain morphology (number and distribution of

fragments). This was well within the allowable range predicted by Boss (1994), who predicted

ρ . 1100− 2400 kg m−3. They were then able to constrain a diameter (d ≈ 1.5 km) from the

chain length. They were able to test the effect of friction, in a very simple approach where they

froze all relative grain motions until the time of periapse, at which time if the comet was going
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to disrupt, this would be the moment of peak stress, after which the modeled comet nucleus was

again treated as a pile of frictionless spheres. The corresponding sizes and masses of fragments

resulted in good agreement with the best fits to impact plume thermal characteristics observed

by the Galileo spacecraft (which was at the time en route to Jupiter, as luck would have it) and

modeled using the CTH hydrocode (Crawford et al., 1995).

Earlier studies (Asphaug and Benz , 1994; Solem, 1994) applied similar models of cometary

rubble piles, assuming elastic spheres bound together by only gravity, to derive a density and a

diameter for SL9. Both groups obtained similar diameters and densities for the comet. Asphaug

and Benz (1996) and Schenk et al. (1996) furthermore showed that a rubble-pile structure is

the only possible explanation to SL9 that also fits the data of cometary disruption remnants

imprinted upon the surfaces of Ganymede and Callisto. (Io and Europa have surfaces that

are too young to record ‘tidal catenae’, the chains of craters formed by a tidally disrupted

progenitor.)

Similar studies to constrain size, density and internal structure have been conducted for Near-

Earth Asteroids (NEAs). Solem and Hills (1996) showed how a rubble pile of spherical “rocks”,

similar to the marble-piles just described, can deform to make an elongated post-encounter

shape. Bottke and Melosh (1996) approximated a rubble pile asteroid as a rotating contact-

binary (that is, two contacting spheres) and found that it takes one or more tidal encounters

before impact to sufficiently separate the fragments, if these are to be the source of doublet

craters on Earth or on Venus. This paper made the successful prediction that about one-sixth of

all near-Earth asteroids are well separated binaries (Merline et al., 2002; Weidenschilling et al.,

1989) in proportion to the fraction of primary impact craters that are doublets.

Richardson et al. (1998) used the pkdgrav N-body particle code to make a thorough in-

vestigation of the possible outcomes of a close tidal encounter of a rubble-pile asteroid with the

Earth. Their code, discussed further below, represented collisions somewhat more realistically,

by including a tangential coefficient of restitution approximating friction, in addition to the

normal coefficient of restitution. By considering elongated, rotating progenitors on a hyperbolic

trajectory, they were able to peek into three previously closed dimensions of the parameter space.

They showed how an elongated progenitor with prograde rotation is far easier to disrupt than a

spherical, non-rotating one. Indeed one of their classes of outcomes was designated S-class, for

“SL9-type” disruption.
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In more recent studies, Holsapple and Michel (2006, 2008) have extended the work of Roche

(1847) and Jeans (1917), removing the assumptions of a fluid body with a specific axes ratio

and considering instead solid, spinning, ellipsoidal bodies subjected to tidal forces. Using a

Drucker-Prager strength model with zero cohesion, parametrized by an angle of friction, they

find limit distances for total failure for a long list of special cases, including the case of a stray

asteroid passing by a primary. They find that bodies with even a moderate amount of strength

can venture much closer to a planet than the classical Roche limit predicts. For example, with

an angle of friction φ = 30◦ a passing prolate body with aspect ratio α = β = 0.6 and no spin

could approach as close as d = 1.53R(ρP/ρ)1/3 without disruption, R being the radius of the

primary and ρP, ρ the densities of the primary and passing body, respectively. Being a static

theory, however, the Holsapple and Michel theory does not include a possible spin-up of the

asteroid as it passes the primary, or the dynamics of disruption when it does occur.

4.1.2 Asteroids and Comets

Two possible tidal catenae are identified on the Moon (Melosh and Whitaker , 1994), which

would have been caused by the tidal breakup of NEOs (Near Earth Asteroids) around the Earth,

crashing into the Moon after a voyage through space of some 30–60 Earth radii depending on

whether the collisions happened early or late (Bottke et al., 1997). They occur, as they must, on

the Earth-facing hemisphere. In recent LROC images of the Moon there are additional possible

examples of smaller catenae that appear to have tidal disruption morphologies, that would be

caused by progenitors hundreds of meters across – the size of the rubble-pile, Earth- crossing

asteroid 25143 Itokawa (Fujiwara et al., 2006). It is, however, quite challenging to discern tidal

catenae from garden-variety catenae that result from the far-flung secondary cratering ejecta

common on the Moon; none of these smaller features have yet been validated or reported in the

literature, and we remain agnostic.

The possibility of NEO-derived catenae on the Moon is a vital consideration, for if the Moon

bears a record of kilometer-sized and smaller tidally disrupted NEOs, just as Ganymede and

Callisto bear a record of tidally disrupted Jupiter-family comets (Schenk et al., 1996), then

we have the opportunity to learn NEO structural and mechanical characteristics in a manner

that can allow for more informed planning of mitigation strategies for potentially hazardous

NEOs (Committee to Review Near-Earth Object Surveys and Hazard Mitigation Strategies Space
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Studies Board , 2010). Until then SL9 is arguably a reasonable proxy for studying rubble-pile

asteroids, and perhaps the only available proxy. Asteroids are denser than comets, and Earth

is denser than Jupiter by about the same fraction. So the key parameter being the Roche

limit, these situations are not dissimilar, to the extent that either body can be represented

as aggregates of polyhedra with specified coefficients of friction and restitution (as described

below).

So long as the periapse distance is normalized to the Roche limit,

Rroche = 2.44 Rplanet(ρinterloper/ρplanet)
1/3, (4.1)

and the encounter velocity normalized to the escape velocity from the planet at the Roche

distance, model outcomes such as those reported by Asphaug and Benz (1996) are scale in-

variant. That is, asteroids passing near the Earth are similar to comets passing near Jupiter

(e.g. ρinterloper/ρplanet ≈ 0.3 for each), and a 1 km rubble pile passing near Jupiter looks the same

as a 100 km rubble pile on the same orbit, if the yardstick is 100 times as big. Scale invariance

begins to break down when stress dependent parameters such as friction are introduced.

In that sense, the study of SL9 is a rather general study. Of key importance to making further

scientific progress in the area of understanding the geophysics of small bodies, the techniques

used for studying rubble-pile comets and rubble-pile asteroids are identical. What we learn from

NEA simulations is useful when we turn to look at Jupiter crossing comets, and we expect that

what we learn in this study of a Jupiter family comet to be applicable to any catenae that may

be found on the Moon.

Concerning mitigation of hazardous comets and asteroids (Belton et al., 2004) a typical

technique is to use an impact or explosion to divert or destroy a body perhaps ∼100− 1000 m

diameter. This involves accelerating material to at least a substantial fraction of the escape

velocity of the target body. On Earth, this is 11.2 kilometers per second, much faster than

any of the ejecta, so events unfold to completion quickly at the scales of cratering that can be

observed in the laboratory or in the field. But on an SL9-sized body, escape velocity is about one

meter per second, and the dynamical (self-gravitational) timescale is hours. The opening time

of a disruptive collision is also measured in hours, and the speed is comparable to a low-velocity

landslide – analogous in many respects to tidal disruption. Thus what we learn about tidal
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disruption, is expected to be applicable generally to crater formation and disruption of comets

and asteroid and NEOs.

4.1.3 From Marble Piles to Rubble Piles

One common feature of previous dynamical studies of SL9, and of Earth tidal encounters by

rubble-pile NEOs, is the use of hard spheres as the building blocks of the simulated rubble pile.

Considering the computational capabilities of the time of the Shoemaker-Levy 9 impacts, this

was a necessity of being able to model the event at all in a 3D numerical framework: treating

the components as radially symmetric and with a simple restitutive potential that balanced

self-gravity at resting contact. But this approach does not fully capture the ability of a rubble

pile to withstand shear stresses.

When a granular material is under shear stress, the maximum allowable stress before some

failure occurs is a consequence of the interlocking of granular particles. This “strength” of the

granular material is often assumed to be proportional to the confining pressure, since it results

from the interlocking particles having to move each other out of the way, working against the

confining pressure. The linear relationship between maximum shear stress and confining pressure

is often characterized using a friction angle parameter, and it is known, for example, that

closely packed, uniform, rigid, frictionless spheres support a friction angle (note the somewhat

inappropriate name) of about 23◦ (Albert et al., 1997). It is also known that this friction angle

can be greatly modified (usually lowered) by using a size distribution of spheres, and it could

be the case that materials composed of rough, non-spherical grains will also exhibit a different

angle of friction, and thus a different response to tidal shearing.

A way to parametrize the effect of interlocking grains while still using spherical elements is

to use a soft sphere method, such as implemented recently by Schwartz et al. (2012). In this

method a spring and dashpot force is applied to interacting grains if they experience lateral

relative motion, and the strength of the spring can be adjusted to mimic the desired friction

angle. We chose to take a complementary approach, and simulate the interlocking directly by

modeling a rubble pile with polyhedral grains. Polyhedral grains are expected to display different

(likely higher) friction angles, since even rotating a single grain, in place, requires work to be

done against the confining pressure. Simulating polyhedral grains, however, is considerably more

difficult and computationally expensive than simulating contacts between spheres only. On the
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up side, our approach avoids the use of very small time steps that are the hallmark of soft sphere

methods.

In the present work we revisit the question of SL9’s disruption with much improved compu-

tational capabilities and simulation methods. Our logic and procedure are very similar to the

studies by Asphaug and Benz (1996) and Richardson et al. (1998), but with the advantage of

faster machines and more versatile algorithms, including public domain and commercial codes

originally developed for computer games, that are very well adaptable to the physics of rubble-

pile collisions (Korycansky and Asphaug , 2009). Our goal, as was theirs, is to constrain SL9’s

structure, diameter and density, and thereby to gain a fundamental understanding of the physics

of comets. Below we describe in detail our procedure and the numerical tools we employ. We

then present the results of several sets of runs, and argue that these results suggest a value of

ρ > 300− 400 kg m−3 for SL9’s bulk density.

But first, we must pause to entertain the notion that this is not the final answer to be

obtained by N-body methods – that in another fifteen years, another paper will come along

with still better methods, and claim a density half again smaller for SL9, defending our present

attempts as what one would do with the crude technology of the early 2010s. We do not

believe this to be the case, but we wish to emphasize the importance of finding benchmarks

for these kinds of codes at every opportunity, including in space station experiments and other

stable microgravity research platforms. The limitation to spherical particles was a fundamental

one which is now lifted. Given that our results are only weakly dependent upon friction and

restitution (see below), it appears that the major distinction between the models of the 1990s

and our present models is the aspherical geometry, leading to grain stacking and dilatancy that

limits grain motion. The next steps in granular modeling will be in even more detailed irregular

shapes (e.g. with fractal-like rather than planar surfaces) and the inclusion of cohesion forces.

However we can argue (though not perhaps convincingly, even to ourselves) that fractal-like

surfaces, i.e. roughness, are already well represented in the planar friction model, and that

cohesion was already ruled out on the basis of the ‘string of pearls’ morphology of the post-

disruption SL9, indicative of a self-gravity dominated process (Chandrasekhar , 1961; Hahn and

Rettig , 1998), and in the scale-invariance of the catenae on Ganymede and Callisto (Schenk

et al., 1996). But granular physics is still a young science and there may yet be devils in the

details.
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4.2 Method

4.2.1 Discrete Element Models

We employ DEM models using randomly shaped polyhedra as building blocks of the simulated

rubble pile, with resolution much higher than previously applied to this problem. By using these

polyhedral “grains” our models are attempting to directly simulate the cause of granular friction.

As mentioned, Asphaug and Benz (1996) represented a maximal friction by not allowing any

inter granular movement until the comet nucleus had arrived at periapse, on the premise that

sliding friction is much lower than static friction. However the shapes of grains require work

to be done in moving adjacent grains out of the way, in order to rotate, so that continuum

shear is resisted by a force that may be called dilatation, to distinguish it from the Coulomb

friction applied at the surface of the grains1. This force can only be directly simulated with

non-spherical grains, as spherical grains are free to roll in place without resistance, unless this

resistance is parametrized and explicitly supplied by the code, as in soft sphere methods.

It is easy to understand why we obtain, when all is said and done, a lower density than

before. Friction resists the tidal shear stress, in a sense substituting for density (self-gravity)

as the force that is holding the comet together against disruption. Friction being a short range

force, and gravity being a long range force, their interplay defines the final morphology of the

fragment chain, and thus we can still obtain a unique solution, even if the effect of friction

influences our choice of bulk density.

The main difficulty when moving from a spheres-based simulation to more complex shapes

is the implementation of a fast contact detection algorithm. The direct approach of solving

the geometric equations for each side, vertex, and face of every element is out of the question.

Fortunately there are better algorithms. GJK (Gilbert et al., 1988) is perhaps the most pop-

ular as it operates in linear complexity (with the number of vertices for two convex objects)

and can handle collisions between curved and polyhedral shapes. The challenge then becomes

implementing the geometric algorithm in the most efficient way. As rough shapes necessarily

1It may be argued that the microscopic origin of Coulomb friction is simply the same dilatation effect at
work on a smaller scale. In this work we use the term dilatation when the effect is the direct result of our very
macroscopic grains interlocking. The use of polyhedral grains with flat faces also opens the possibility that grains
will slide across each other much as a rectangular box slides down a sloped floor. In our models this is treated
by applying a friction force to the surface of the interacting particles, parametrized by a coefficient of friction.
Since these two effects are not easily distinguishable in our model, and since both are linearly proportional to
the confining pressure, we often refer to the combined effect resisting shear as friction.
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have many vertices, even a linear algorithm quickly becomes too slow when too many shapes

are compared against each other. Collision detection must be followed by collision resolution

(that is, physical treatment of the collision as before-and-after states). Although this is a well

studied part of classical mechanics (e.g., MacMillan, 1936) it is again not simple to implement

an optimal algorithm that can handle collisions (with and without friction) and resting contacts

with minimum operations.

Fortunately, a vast amount of research into optimal collision detection and resolution has

come out of the computer games industry. These algorithms are the main components of what

the video game industry calls physics engines. Physics engines are at their core DEM simulations,

and the financial incentive of the industry has resulted in the development of a number of

reasonably accurate, but very fast implementations. The risk in adopting such physics engines

is that what is good enough for a game, may not be good enough for science. On the other hand,

a number of these engines have been found to be excellent in their accurate physical treatment

of elastic collisions between objects with complex shapes (Longshaw et al., 2009). In the present

work we have used for the most part NVIDIA’s PhysX engine2, comparing it in key instances

with the previous model of Korycansky and Asphaug (2009) utilizing the publicly available Open

Dynamics Engine.

The PhysX engine combines rigid body dynamics and collision detection (and many other

potentially useful features) in a single library, making it very easy to use as a basis for a

DEM simulation. Among other rigid-body libraries, it stands out in terms of performance and

stability. This high performance comes at a cost, however. PhysX uses single-precision floating-

point numbers, and a first-order forward Euler scheme for dynamic integration. Being a closed

source product (although free to use and distribute in binary form) these and other choices

are not easily modified without acquisition of the source code or direct collaboration with its

developers. What single precision, first order solution means in practice, is that we must be

careful to chose small enough time steps for integration, much smaller than used in sophisticated

state-of-the-art N-body integrators. We determine the appropriate time step by careful analysis

of conservation in test simulations.

2http://developer.nvidia.com/physx
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4.2.2 Validation

Over the past two years we have validated the correct behavior of the PhysX rigid-body module

in simple and complex, dynamic and static scenarios. To validate the elementary rigid body

physics, we performed a suite of fairly simple tests. A rotating-tumbling body with a full moment

of inertia tensor was used to verify the correct integration of Euler’s equations. A point mass

orbiting in a central gravity potential verified the force and acceleration integrator, but more

than 1000 time steps per orbit were required to maintain better than one percent conservation

of orbital energy. Note that this is much worse than is possible with higher order integrators.

The planar friction model was validated by simulating a box sliding on an inclined plane.

The box begins sliding at an incline angle θ where tan θ = µ, the friction coefficient, and this

behavior is independent of the acceleration of gravity as long as a time step is chosen that is

not short enough to underflow the velocity change. A bouncing ball verified the conservation

of energy and the correct handling of a restitution coefficient, ε, the ratio of relative speed of

separation to the relative speed of impact, with the exception of perfectly elastic bodies (ε = 1)

that can lead to unstable behavior over time.

Conservation of linear and angular momentum during collisions was also validated. Here two

bodies with random shapes and sizes are set on a collision course and linear and angular momen-

tum are measured before and after collision. Linear momentum is always conserved accurately.

As for angular momentum, we found that bodies with simple, smooth shapes conserve angular

momentum very accurately. However, the binary collision between two irregular, polyhedral

shapes can lead to a change of the binary system’s angular momentum vector by up to 30% in

magnitude, perhaps corresponding to an approximation made in the collision detection. This is

disappointing, and is possibly the result of an approximation made in the interest of speeding

the engine3. The error, however, is randomly oriented, so that an ensemble of many bodies

always conserves its total angular momentum very well.

This led to tests of more complex physical systems involving aggregates of bodies. We

3After publication I discovered the reason this apparent change in angular momentum during a collision was
in fact a simplification in the way PhysX time steps a torque-free rigid body. In the interest of optimization,
rather than integrate the full Euler equations the PhysX engine maintains a constant spin vector (relative to
inertial space). This means that the angular momentum vector of an asymmetrical body precesses around a
mean value. Angular momentum is in fact conserved in collisions, but is not constant between collisions. I can
only speculate that this simplification leads to performance gains important enough to justify the unphysical
behavior of asymmetrical bodies. This simplification is not of concern in this work, but we should remember
that the PhysX engine in this form is not capable of simulating tumbling behavior of individual elements.
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used PhysX to simulate an avalanche of polyhedral dice, beginning with a simple laboratory

simulation where we let a tall pile of 1400 12-sided dice (the kind familiar to a different kind of

gamer) collapse, in 1g, to a stable slope in a transparent rectangular container. We measured

the average slope angle with a ruler. This process was then simulated with PhysX, for the same

boundary geometry, and we found an excellent agreement between the measured and modeled

angles of stable slope. This is particularly important because the slope angle depends on the

correct application of sliding friction and resting contacts between grains.

We have also performed several of our simulations using a second implementation of a DEM,

based on the Open Dynamics Engine (Korycansky and Asphaug , 2009), a DEM that uses differ-

ent algorithms, and the results from both codes are always similar, although PhysX is an order

of magnitude faster, thus allowing for much higher resolution simulations.

As in (Asphaug and Benz , 1996) we do not hope to resolve every actual granule in a cometary

nucleus. At best, our grains are tens of meters across, representing an assemblage of much smaller

particles. Even with billions of grains, we would simulate SL9 with at best meter-sized objects,

when in fact comets may be composed of dust and ice. We merely hope to resolve the granular

behavior at a scale smaller than the deformation occurring within the tidally disrupting cometary

nucleus. Asphaug and Benz (1996) found similar behavior, with increasing N , once the comet

was resolved with more than several hundreds of spheres. We likewise find similar behavior,

but converging at higher ‘resolution’ (several 1000s polyhedral grains), owing to the fact that

the grain-grain interactions are more complex. We note, however, that increasing the number

of grains in a simulation will be necessary to test the effects of different grain size distributions,

another potentially important dimension of the parameter space, not explored here.

We caution that ‘resolution’ is not really the appropriate word here, because even in the

limit of infinite numbers of grains we are not resolving a continuum. Indeed at infinitesimal

grain diameter the material would have infinite friction. Rather, each simulation, for a given

N , is actually a somewhat different physical system. But as long as we have enough grains

to simulate the inter granular effects such as dilatancy and stacking, and the frictional forces,

further increases in N do not make any apparent difference in our primary scientific result,

the determination of the density of SL9, or in the physical and morphological behavior of the

comet’s tidal disruption. Insofar as we can adequately capture shear friction in a granular mass,

and insofar as we can capture the physics of dilatancy caused when rubble expands during shear
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(requiring energy), the approach is likely to capture the most significant physical aspects of the

tidal disruption of rubble piles.

4.2.3 Simulating tidal encounters

A rubble pile is simulated in a DEM by a collection of rigid body elements we call grains. We

make a rubble pile by letting a collection of randomly shaped polyhedra collapse freely into a

roughly spherical aggregate. Making a kilometer sized body out of several thousands elements,

means that each element is ∼ 100 m in size. (We use a uniform, narrow size distribution,

intended only to inject more randomness to the grain assemblage. The smallest grain has a

bounding sphere about half the diameter of the largest grain’s bounding sphere.) An actual

cometary rubble pile is surely made of a wide distribution of grain sizes, with the near-surface

grains likely much smaller than a meter in the case of comets (based on imaging and thermal

inertia data,e.g. Fujiwara et al., 2006). Although this limitation is important to keep in mind,

the essential physics of the process we investigate, namely granular shear flow, presents itself

at these larger grain sizes. We cannot yet say whether or not a more realistic size distribution

would lead to significantly different behavior but sec. 4.3.1 describes the convergence of behavior

within our resolution limit.

When the “comet” is ready, we send it on a pre-calculated orbit past Jupiter. The orbit of

SL9 was an almost parabolic orbit with eccentricity e = 0.997 and perijove q = 1.33 Jupiter

radii (Sekanina et al., 1994). To allow for pre-encounter tides, and to follow it out to dynamical

completion, we calculate the comet’s orbit between four Roche limits pre-perijove, and 15 Jupiter

radii post- perijove. Thus the simulation starts before any significant tidal force is felt by the

comet, and continues past the orbit of Ganymede. The orbit is divided into equal time steps

of one thousandth of the dynamical time, dt = 10−3(2ρG)−1/2, where G is the gravitational

constant and ρ stands for the comet’s average density, not the material density of grains. The

average density is in fact the main control parameter of the simulation, and we set it by adjusting

the individual grain masses after determining the approximate volume of the body.

For reasons of numerical accuracy, the simulation is done in the frame of reference of the

comet. In every time step, the net force on each grain is calculated by adding the gravitational

attraction from all other grains (computed pairwise), the gravitational attraction of Jupiter,

whose position is read from the pre-calculated orbit, and the fictitious force from the non-inertial
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comet- centered frame. These external forces are applied at each time step to every grain, while

the accelerations resulting from collision between grains, as well as the time integration, are

handled by the PhysX library. As mentioned, the conservation of energy and momentum are

validated as described above, as well as the friction forces, and angular momentum is validated

for interactions averaged over assemblages of grains.

The result of a typical test run with 4096 grains is shown in figure 4.2. The position of

each grain is plotted in the plane of the orbit (the out-of-plane extent of the fragment train is

relatively small). Red circles mark clusters of grains, somewhat subjectively defined as groups of

touching or nearly touching grains with at least one per-cent of the mass of the initial body. (The

red circles are just a visual aid, they have no physical meaning.) By this stage the clustering had

completed, and the fragments continue to separate at a rate determined by simple, two-body

orbital dynamics. (Non-interacting particles along the same parabolic orbit separate at a rate

proportional to a 4/3 power of time [Sridhar and Tremaine, 1992] .) Once beyond the Roche

limit of the planet, for appropriate bulk density rubble piles we see the signature SL9 ‘string

of pearls,’ i.e., a well separated, roughly linear train of more than a few, roughly equal sized

fragments. The self-gravitational clumping instability that forms these new cometary nuclei was

described by Chandrasekhar (1961) and by Hahn and Rettig (1998).

This clumping is a sensitive measure of progenitor density. Starting with an over dense pro-

genitor, the outcome would instead of the above figure, be one or two large fragments containing

almost all the mass of the comet. Conversely, if the progenitor’s density was too low, no clus-

tering would occur and the comet would “atomize” into individual boulders, gravels and dust.

Because we know the encounter orbit so precisely (Chodas and Yeomans, 1996) it is possible

to constrain the average density of SL9 in this manner. Although the classification of a given

outcome is somewhat subjective (too few fragments, too many fragments, or just right) the two

end members are easily and unambiguously spotted (see Sec. 4.3.2), leaving a narrow range of

possible densities in between.
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Figure 4.2: Tidal break-up of a simulated comet, shown a few hours after perijove. The projec-
tion on the plane of the orbit of each grain is marked by black dots. Thick circles mark some of
the larger fragments, the largest of which contains about 19% of the original mass. The arrow
points to the position of Jupiter, about 106 km away. This run was made with a bulk density
ρ = 300 kg/m3.

4.3 Results

4.3.1 Simulation parameters

The main quantity we are interested in constraining with these simulations is the bulk density

of the progenitor SL9 comet. Several other physical parameters, however, are likely to influence

a tidal encounter. The most important are discussed next.
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Figure 4.3: Projection to the plane of orbit of grains from tidally disrupted rubble piles. All runs
followed the same orbit, and started as the same progenitor rubble pile, with a bulk density of
ρ = 300 kg/m3. The mass fraction contained in the largest clump is indicated by M∗ (but note
that our definition of “clump” is somewhat subjective). Friction is clearly a significant force,
helping to delay breakup until tidal shear exceeds some critical value.

Friction coefficient

Although including some inter-granular friction in the simulation is crucial, and easily noticeable,

our tests indicate that the exact value of the friction coefficient does not affect the outcome of

a given tidal encounter very strongly (Fig. 4.3). This is fortunate, since the exact value of the

friction coefficient between cometary material grains in vacuum is not well known. However,

many measurements are obtained, especially in engineering applications of sea ice, concrete and

other materials, where the effective coefficient of friction is of order 0.5− 0.8. We therefore use

a friction coefficient of µ = 0.5, typical of ices, rocks and other geological materials, in most of

our runs, recognizing that it is possibly a lower limit, with only minor changes for increasing

friction in the range of known values for common geologic materials.
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Restitution coefficient

The restitution coefficient between cometary material grains in vacuum – that is, the ratio of

the outgoing normal component of velocity, to the incoming normal component of velocity, cor-

responding to the height that a ball will bounce – is not known any better than the friction

coefficient (see however Durda et al., 2011; Hartman, 1978). Fortunately our numerical experi-

ments indicate that the exact value of the restitution coefficient is likewise not a main concern

(Fig.4.4), unless the value is extraordinarily high (perfectly elastic collisions) or extraordinarily

low (perfectly inelastic, such as might be the case of extremely porous materials). The value

of the restitution coefficient does play a role in the timing of the reaccumulaton, but does not

affect the timing or extent of breakup, or the number of stable clumps after the encounter is

over. Consistent with a number of experimental reports found in the literature (Durda et al.,

2011; Imre et al., 2008) we use a value of ε = 0.8 for most of our runs. But as seen in the figure,

even perfectly inelastic collisions are morphologically similar to the ε = 0.8 collisions. Thus, in

summary, we find that using nominal values for µ and ε to be a justified approach in greatly

reducing the parameter space.

Spin rate

There is no doubt that a rotating progenitor would exhibit a very different behavior, for a given

orbit and density, than a non-rotating one. In fact, since the centrifugal acceleration would be

added on top of all other forces, it is logical to expect that density and spin rate would be almost

complementary. In other words, a range of disruption levels can be achieved either by adjusting

density for a given spin rate, or by adjusting spin rate for a given density (Asphaug and Benz ,

1996). Unfortunately, there is no information on SL9’s rotation state prior to its breakup, other

than statistical knowledge that Jupiter family comets have rotation periods ranging from ∼ 6

hours to ∼2 days, mostly in the slower range, regulated by their levels of activity. Furthermore

there is no knowledge whether this is prograde rotation or retrograde rotation, or out of the

plane. Thus, our results below apply only to a non-rotating comet. It is important to recognize

that retrograde rotation can prevent the nucleus from disrupting tidally, forming a massive

central clump that was not observed for SL9. Thus Asphaug and Benz (1996) considered only

zero rotation or prograde rotation, finding that a fast-spinning prograde nucleus (period 9 h)
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Figure 4.4: Same as Fig. 4.3 but with varying values of coefficient of restitution. Progenitor
rubble piles had a bulk density of ρ = 600 kg/m3. A larger coefficient of restitution speeds up
the re-aggregation of clumps after tidal breakup, but by the time clumping is complete the final
configuration is not sensitive to the exact value of ε.

would come apart similarly, even if it were ∼ 2/3 the predicted diameter as a non-rotating

nucleus, and ∼ 3/2 the bulk density. We do not consider rotation in our present analysis, but

anticipate similarly, that what we obtain below are lower limits to the bulk density, given the

possibility (relatively minor) that SL9 could have been a prograde rapid rotator.

The effect of ‘resolution’

In DEM models, the number of discrete, elementary particles is often considered the resolution of

the model. This is appropriate in the sense that increasing this number as much as computation

resources allow is desirable, and probably leads to more physical results, in the sense that

asteroids and comets could be made of relatively fine materials. It is important, however,
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to realize that this ‘resolution’ has a different meaning than what is usually ascribed to this

parameter in numerical continuum models (such as hydrocodes). In a grid-based finite difference

scheme, say, the goal is to approximate a continuous field by its value at a finite number of grid

points, and the quality of the approximation can be rigorously related to the grid spacing – the

resolution. A natural way to decide what is an appropriate resolution is to look for convergence

of the predicted field value with successive halving of the grid spacing.

A DEM is not usually amenable to a rigorous error analysis. We do not have an upper bound

to the expected error and no theoretical basis for selecting an appropriate resolution, unless –

as in our laboratory experiment of 1400 12-sided dice falling to their angle of repose described

above – we know it apriori. Unless we are modeling a very small system (or a small volume

in a periodic system) we often must use a much smaller number of particles than exists in the

physical system. In this work, for example, we use thousands of grains to model a rubble pile

who must in reality contain billions of grains. And we have no theoretical estimate to guide us

when trying to understand how good of an approximation we are making.

Worse, we cannot even expect that using more and more grains will make our simulations

converge, in the usual sense. Figure (4.5) shows the result of a tidal encounter modeled at

different resolutions. We do not see, and should not expect to see, a convergence in the positions

of individual grains, or even of the largest clumps. Although we wish to model the same physical

system (the comet) with increasingly better approximations, we are in fact modeling four quite

different bodies. Indeed, to keep the mean density constant we must assign slightly different

material densities to each of the rubble piles, as their bulk volume cannot be made exactly

identical.

We can, however, expect a convergence of sorts with successive increase in resolution. We

can expect that the general behavior of the ensemble of grains will not depend on the number

of grains, in the sense that a pile of gravel pouring out of a dump truck, will behave similarly to

a dump truck load full of sand, with similar total mass, grain size and shape and porosity, but

with millions of times more grains. But a dump truck load of microfine powder will begin to

behave differently, as will a dump truck containing four or five huge rocks. All we can expect,

and require, is that any conclusions we draw from DEM simulations not depend too sensitively

on the sizes of the elements. This is indeed the case with our SL9 tidal encounter simulations.

The range of bulk densities we find necessary to match the appearance of post-periapse SL9
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Figure 4.5: Same as Fig. 4.4 but with different number of grains in the progenitor rubble pile.
The rubble piles had a bulk density of ρ = 600 kg/m3. The general ensemble behavior is
captured almost as well with 1024 grains as with 4096 grains. Whether or not either is a good
approximation to an ensemble of billions of grains remains open.

remains the same when we run our simulations with 1024 grains as when we ran it with 4096

grains. In this sense we believe we have used adequate resolution, a belief that must be retested

when computation resources allow.

Grain geometry

As mentioned above, all previous studies of SL9 using DEM techniques has been done with

spherical elements. Our DEM is capable of implementing arbitrary shapes, so another dimension

of the parameter space opens up – what shapes to use? It seems the logical answer is to use

random, angular shapes, since there is no reason to think planetary rubble pile elements would

have a special shape. However there is some expectation that fragments generated by past

cratering and disruption events will have an average aspect ratio 2 :
√

2 : 1 (Fujiwara et al.,
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1989). All our runs so far were made with 20 sided polyhedra, generated by a prescription that

avoids sharp “knife-edges” and extreme aspect ratios but is otherwise random.

A related question is just how important is the use of non-spherical grains. This is an

important question since computer codes that employ only spherical grains can typically run

at much higher resolutions, making them perhaps the better choice. We find this choice to be

quite important. We have compared runs with rubble piles composed of spherical grains (using

the same PhysX engine) to runs with similar rubble piles (same shape, same bulk density)

made out of random polyhedra. We find that the outcome of a simulated tidal disruption can

be significantly different in the two cases (Fig. 4.6). Spherical grains appear to be adequate

for very “dynamic” encounters, where the progenitor is quickly disrupted and the outcome is

determined by the play of long range gravity forces between grains. But for gentler encounters,

where friction and dilatation forces nearly balance the tidal stress (that is, the kinds of threshold

breakups that probably dominate such events), the use of polyhedral grains can make enough

of a difference to keep a rubble pile from disrupting at all.

In future work studying the more general aspects of rubble-pile disruption, we shall focus on

the specifics of the aspect ratios of the polyhedra, as these are closely related to what we perceive

to be the dominant factors that distinguish the present model from the previous sphere-based

models of SL9, namely the physics of grain locking and shear dilatation.

4.3.2 Progenitor’s bulk density

A tidal encounter between a cohesionless rubble pile and a planet is a tug-of-war game between

the gravitational pull of the primary planet, and the self-gravity of the interloping body. The self

gravity has three expressions, the most obvious being the long range force that holds particles

together. But intergranular friction also scales with the local normal stress, and thus can be

considered a result of self-gravity. The third expression is dilatation, the fact that irregular

grains, while rotating locally in response to shear, most move other bodies aside, posisbly against

the local normal stress. So again, dilatation can be considered an expression of self-gravity.

It is therefore ultimately the rubble pile’s bulk density that will determine the outcome of the

encounter (or more precisely, the ratio of the rubble pile’s density to the density of the primary,

to the 1/3 power), for a given structural configuration. Conversely, knowing that the outcome

of SL9’s encounter with Jupiter was a train of sizable fragments, we may use this to bracket the
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Figure 4.6: Following the same orbit, a rubble pile made of spherical grains behaves differently
than a pile made of polyhedral grains. The onset of deformation occurs sooner with spherical
grains, and the resulting fragment train contains a larger number of smaller mass fragments.
This is probably due to the more pronounced friction and dilatation experienced by polyhedral
grains.

possible density values of the progenitor rubble pile.

Using nominal values for the coefficients of friction and restitution, we ran simulated tidal

encounters of a non-rotating, 1 km rubble pile of 4096 randomly shaped polyhedra, along SL9’s

1992 nearly-parabolic orbit, varying the comet’s bulk density from 100 to 600 kg m−3. Figure 4.7

shows how varying the bulk density affects the outcome of the encounter. We can see that a

density smaller than ∼ 300 kg m−3, or greater than ∼ 400 kg m−3 would be inconsistent with

the fragment train observed in the case of SL9, or expected from the appearance of linear crater

chains on Ganymede.

4.4 Conclusions

The tidal disruption of comet Shoemaker-Levy 9 has been revisited using state of the art compu-

tational techniques for the behavior of rubble piles. The primary difference between these new

models and what has been done in previous efforts (Asphaug and Benz , 1994, 1996; Richardson

et al., 1998) is the use of non-spherical, and thus presumably more realistic grain shapes, so that

instead of ‘marble piles’ we have true rubble piles with grains that can lock and jam and pack
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Figure 4.7: Positions of mass fragments, in the orbit plane, of a rubble-pile body following SL9’s
1992 orbit, shown ∼ 5 hours after perijove. For these runs a friction coefficient µ = 0.5 and
restitution coefficient ε = 0.8 were used. The lowest and highest bulk density values are wholly
inconsistent with the appearance of the SL9 chain, thus providing a revised constraint on the
density of this comet.

differently than spheres, and which must do work in order to achieve any amount of shear strain

or even rotate in place. In this sense, dilatancy can be considered a force resisting tidal sheer,

and this force may well have been underestimated when spherical grains were used to model a

rubble pile, for in that case individual grains can respond to sheer by freely rotating in-place,

unless measures are taken to explicitly constrain them.

While we include coefficients of friction and coefficients of restitution in our simulations, we

find that varying these widely, but within reasonable values, does little to affect the final outcome

of tidal disruption. These parameters do affect the timing of disruption and re-aggregation

however. Increasing the coefficient of friction allows the progenitor body to better resist tidal

sheer, and so the point of runaway deformation and disruption is postponed. Increasing the

coefficient of restitution, the elasticity of individual grains, causes the re-aggregation phase to

continue for a longer time, as grains bounce off of each other and may take hours to settle in

stable clumps.

These observations, however, are unlikely to be the last word on the topic, because friction

as implemented is a very simple force, acting when contact surfaces shear past one another
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at the resolution scale of tens of meters. For much smaller-scale assemblages (piles of dust,

perhaps) internal friction can be much greater. That said, the overall morphology of the clumps

from Shoemaker-Levy 9 are self-gravitational in signature. This being one example, Schenk et al.

(1996) looked to the much larger record of a dozen or more tidal disruption catenae imprinted on

the satellites of Jupiter. Specifically they found no correlation between the number of clumps in

a chain, versus the diameter of the progenitor forming the chain. In other words, the clumping

process is scale invariant, suggesting self-gravitation rather than fragmentation, which does

depend on scale, is the dominant process. As for coefficient of restitution, we find even less

sensitivity to this parameter, with the range of outcomes being similar within the range of

values that might be applicable.

A bulk density ∼ 300–400 kg m−3 is obtained for Shoemaker- Levy 9. This is in good

agreement with the recent estimates of cometary bulk density from the Deep Impact mission

(highly uncertain), estimated from the rate of fallback of crater ejecta (Richardson et al., 2007),

and from the dynamics of orbiting blocks that were imaged by the same spacecraft when it

flew by Comet Hartley 2 (A’Hearn et al., 2011); further constrained by the comet’s dog-bone

shape. (A’Hearn et al. found that ρ = 220 kg m−3 works best when fitting potential contours

to the geometry of the waist.) This latter result advises caution in blindly adopting the physical

realism of ours or any other forward model, because it shows that even our present treatment,

however technically advanced, does not yet address such factors as shape and initial rotation.

That said, it is important to study these rare events because they are the only tests we

shall have, at a cosmic-geological scale, of global scale catastrophic disruption of small bodies.

It is the only way, pending spacecraft investigations that activate a comet nucleus globally

(e.g. seismology) or that form mega-craters on small asteroids (precursors to hazard mitigation,

or for science), that we are going to be able to learn how rubble piles behave, and evolve, and

respond to energetic impulses and planetary encounters. By advancing the predictive capability

of rubble-pile models, and benchmarking them against known small bodies data, we are making

forward predictions more reliable.
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Appendix A

Gravity dominated impact

simulations with SPHERAL

Spheral++ is a Lagrangian, ASPH-based hydrocode coupled with an oct-tree gravitational

code. The Adaptive SPH algorithm, originally developed for cosmological applications, is de-

scribed in (Owen, 2010; Owen et al., 1998).

For the gravity-regime collisions of interest in this work, we made some modifications to the

original, cosmological code. These include:

1. Addition of an equation-of-state for ice and rock. We implemented the Tillotson EOS

(Melosh, 1989; Tillotson, 1962). For water ice and for basalt we use the parameters

suggested by Benz and Asphaug (1999, their Table II). Because the Tillotson EOS is fully

analytical, it is very computationally efficient and easy to implement. It may not be

as complete or as accurate as the latest tabulated equations-of-state (Senft and Stewart ,

2008), however, given the mixed composition of our targets (they are surely neither pure

ice not pure rock) and the fact that we are interested in an order-of-magnitude question

only, we chose expediency over thermodynamical accuracy.

2. A gravity time step based on local accelerations instead of local densities. During and

immediately following impact, the time steps in a simulation are limited by a sound speed

criterion. In later stages, it is the gravity time scale that controls the time stepping. For
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large scale structures, some fraction of

tgrav = (Gρ)−1/2, (A.1)

where G is the gravitational constant and ρ is an average density, can be used. But when

the structure contains high- and low-density regions, as in the case of a large sheet of

ejected material, this criterion is not useful. We look instead at the local accelerations of

each SPH node, and a time step that is some fraction of

tacc =
√
L/amax, (A.2)

where L is a length scale of the system and amax is the maximum instantaneous acceleration

of any SPH node.

3. Initial condition generators for a target in hydrostatic equilibrium. The targets we are

interested in here are in the 200–2000 km range. In the upper end of this size range,

giving a target an initial constant density at the start of the simulation will result in local

velocities that are due to the target collapsing or expanding under its own weight, and

having nothing to do with the impact. To resolve this, it is important to start the target

as close to hydrostatic equilibrium as possible. In our case, because the targets are only

slightly compressed at equilibrium, we can use the first-order approximation:

p(r) =
2π

3
Gρ2(a2 − r2), (A.3)

where p is the pressure at radial distance r from the center, ρ is the average density, and a

is the satellite’s radius. This pressure profile can then be inverted (numerically) using the

chosen equation-of-state to yield a density profile that can be used for initial SPH node

placement.

When setting initial positions of SPH nodes, it is also important to keep a constant distance

between neighboring nodes. We have experimented with several methods of node place-

ment, including (a) on a rectangular grid, (b) on spherical shells, (c) randomized placement

with uniform spatial probability, and (d) an Hexagonal Close Packing arrangement. The
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Hexagonal Close Packing arrangement, trimmed to a spherical shape by removing nodes

outside a given radius, seems to work best. It guarantees equal distance between all 12

immediate neighbors of a node, and avoids the artificial singularities that result from a

rectangular grid, especially if impactor is slightly translated or rotated with respect to the

target. We have not noticed any artificial behavior that can be attributed to the geometry.

Our targets consist of 160,000 nodes (60 nodes across) and the number of nodes in the

impactors is chosen to match the mass-per-node with the target as closely as possible. This

results in ∼2000 nodes in a 250 km impactor. We simulate head-on collisions, so the impactor

is set right next to the target with their centers almost aligned. (We set the impactor a few

degrees above the target to break the artificial lattice symmetry.)

In Spheral the smoothing length h for each node is advanced based on measuring distor-

tions in the local particle spacing via moments of the point distribution (Owen, 2010) and is not

guaranteed contain a fixed number of neighbors. We thus need to limit the maximum smoothing

length hmax to avoid a situation where escaping nodes expand their smoothing length to encom-

pass the entire simulated space. Typically, hmax is a few times the initial separation between

nodes. For consistency, we then need to set a lower bound on node density:

ρmin = mnode/h
3
max. (A.4)

Of the two standard ways to calculate density in SPH simulations, we usually employ the method

of integrating the continuity equation.
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Appendix B

Additional Monte-Carlo LHB

runs

The scaling of Q∗D used in most of the Monte-Carlo runs described in chapter 2 is a velocity-

independent function of target size only, derived by fitting a power law to the combined results

of SPH simulations from this work and those of Benz and Asphaug (1999) (see section 2.2 in the

main text and appendix A for detail). In contrast, Leinhardt and Stewart (2012, hereafter LS12)

derive a more complete scaling law that makes Q∗D an increasing function of impact velocity.

This scaling law implies that using a value of Q∗D for a given target size from SPH simulations

at a given velocity to predict the outcome of higher velocity impacts might overestimate the

disruption.

To test this possibility we ran our baseline Monte-Carlo simulation using the LS12 disruption

scaling. The procedure to determine the total mass remaining post collision, Mlr, is as follows.

Given the target mass and radius, R and M , the impactor mass and radius, r and m, the

impact velocity v and the impact angle θ, we first calculate m′ the mass in the volume of
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impactor intercepting the target:

l = (R+ r)(1− sin θ), (B.1)

α =


3rl2−l3

4r3 , l < 2r,

1, otherwise,

(B.2)

m′ = αm. (B.3)

Next we compare the impact velocity with v′esc defined by

v′esc =
√

2G(M +m′)/(R+ r). (B.4)

If v < v′esc the result is perfect merging and Mlr = M +m. Otherwise we calculate:

ρ1 = 1000 kg/m3, (B.5)

Rc1 =
(3(M +m)

4πρ1

)1/3

, (B.6)

Q∗RD,γ=1 = c∗
4π

5
ρ1GR

2
c1, (B.7)

where c∗ = 1.9 and G is the gravitational constant. We also need the reduced mass µ and

reduced interacting mass µ′:

µ =
Mm

M +m
, (B.8)

µ′ =
Mm′

M +m′
. (B.9)

The disruption critical energy for head-on impacts is

Q∗RD = Q∗RD,γ=1

(1

4

(γ + 1)2

γ

) 2
3µ̄−1

, (B.10)

with µ̄ = 0.35, and the modified value for an oblique impact is

Q∗′RD = Q∗RD

( µ
µ′

)2− 3
2 µ̄

. (B.11)
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With the disruption criterion we can calculate the impact velocity at the onset of erosion:

Qe = 2Q∗′RD(1−M/(M +m)), (B.12)

ve =
√

2Qe(M +m)/µ. (B.13)

If the collision is grazing (defined by sin θ > (R/(R + r))) and v < ve then the predicted result

is a hit-and-run collision and Mlr ≈ M . Otherwise, we compare the impact velocity with the

critical velocity for super-catastrophic collisions, defined by Mlr = 0.1M :

Qsc = 2Q∗′RD(1− 0.1M/(M +m)), (B.14)

vsc =
√

2Qsc(M +m)/µ. (B.15)

If v > vsc then we use the power law

Mlr = (M +m)
0.1

1.8η

( QR
Q∗′RD

)η
, (B.16)

where η = −1.5 and QR = µv2/(2(M +m)). Otherwise the collision is in the disruption regime

and the linear relationship

Mlr = (M +m)
(

1− 1

2

QR
Q∗′RD

)
(B.17)

holds.

Figure B.1 shows the fraction of Monte-Carlo runs that included at least one collision with

energy greater than one, two, or three times Q∗′RD. Comparing with figure 2.2 in the main

text, we see that, as expected, using the velocity-dependent Q∗′RD scaling of LS12 results in less

severe destruction. We get many fewer catastrophic collisions for each target. However, the

probability of getting at least one catastrophic disruption remains high. Our conclusions about

the implications of the LHB for the mid-sized moons therefore hold, regardless of the scaling

law used.

It is worth noting that while the LS12 velocity-dependent formalism is much more complete

than the simple power law scaling (eq. (2.2) in the main text), it is not necessarily more accurate

when extrapolated to larger targets. Indeed, the LS12 scaling law does a poor job matching

our own SPH simulations. For example, LS12 predicts that a 200 km radius projectile hitting
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Figure B.1: Fraction P of Monte-Carlo runs that included at least one impact with effective
specific energy greater than one, two, or three times the catastrophic disruption threshold Q∗′RD,
eq. (B.11). Compare with figure 2.2 in the main text.

a 1000 km radius target head-on would have to impact at about 40 km/s for a catastrophic

disruption, while our simulations show the same level of destruction at only 13 km/s. So while

we have no choice but to extrapolate to higher velocities, by using our modification to the Benz

and Asphaug (1999) scaling we do not need to extrapolate to the target size.

Shortly after publication of the work reported in chapter 2 we used a suite of new SPH

simulations to develop yet another scaling law for catastrophic disruption, different from both

the Q∗D power law and the more recent LS12 formalism. This new scaling is the subject of

chapter 3. Figure B.2 shows the results of running the baseline Monte-Carlo simulation of

chapter 2 using the newly derived scaling from chapter 3. As noted in sec. 3.5, using the new

scaling leads to a lower threshold for catastrophic disruption, and this is evident when comparing

figures B.2 and 2.2. Based on this comparison we conclude that our predictions made in chapter 2

are if anything too conservative. In other words, removing the danger of catastrophic disruption

during an LHB for all mid sized moons would require even less cometary mass delivered to the
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Figure B.2: Fraction P of Monte-Carlo runs that included at least one impact with effective
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the scaling derived in chapter 3. Compare with fig. B.1 and fig. 2.2.

outer solar system than we had considered.
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Appendix C

Practical implementation of the

Iapetus Scaled Distribution

In principle, a normalized power law distribution is completely defined by its power index, α.

A segmented power law is completely defined by several indices αi and the corresponding break

points ri. In practice, fully implementing the distribution requires attention to some seemingly

minor details that are easy to overlook. I record here the complete procedure for obtaining

the size and mass distributions of cometary impactors in the outer Solar System, including the

drawing of a pseudo-random sample from a uniform random number generator.

C.1 The Iapetus Scaled Distribution

Based on crater counts on Iapetus Charnoz et al. (2009) recommend the following differential

distribution for the population of heliocentric comets presumably responsible, which they call

the Iapetus Scaled Distribution (ISD):



dN
dr ∝ r−2.5, 0 < r < r1 = 7.5,

dN
dr ∝ r−3.5, r1 < r < r2 = 100,

dN
dr ∝ r−4.5, r2 < r.

(C.1)
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In the above equation r is the comet’s radius in kilometers, and N(r) is the cumulative fraction

of comets with radius greater than r.

Equation (C.1) is not enough to uniquely define the distribution. We need to make one more

assumption, which is that N(r) is a power law too1. In general, for each branch in eq. (C.1),

N(r) can be of the form

N(r) = cir
−αi + bi,

with ci and bi undetermined constants. Continuity and normalization will provide some con-

straints but not enough to completely fix N unless we require that N be a power law, i.e. that

bi = 0. With this choice we get

N(r) =


c1r
−1.5, 0 < r < r1,

c2r
−2.5, r1 < r < r2,

c3r
−3.5, r2 < r,

(C.2)

and continuity at the break points2 requires that c3 = r2c2 = r2r1c1.

We have a problem with limr→0N(r) = ∞. This power law cannot extend to arbitrarily

small comets. We can’t normalize the distribution until we choose a minimum comet size,

rmin, below which N(r < rmin) = 1. We have to be careful with this choice though, because

setting rmin too small will fill up our population (and computer memory) with tiny comets,

while choosing a too large rmin means our population will be missing some mass. I return to

this question later, when looking at the mass distribution. For now we keep rmin unspecified.

Knowing that N(0 < r < rmin) = 1 and that N(r) must be continuous at rmin we can finally

write the complete normalized distribution:

N(r) =



1, r < rmin,

r1.5
minr

−1.5, rmin < r < r1,

r1 r
1.5
minr

−2.5, r1 < r < r2,

r1r2 r
1.5
minr

−3.5, r2 < r.

(C.3)

1Or that the differential distribution is continuous, or that the proportionality in eq. (C.1) is the same for all
branches.

2The cumulative distribution is always continuous, even if the differential distribution is not.
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C.2 The mass distribution

To find the normalized differential mass distribution we need to use the unnormalized size

distribution first:

Ñc(r) = NtotNc(r), (C.4)

where Ntot is the total number of comets. I also use Nc = 1−N to make the integration slightly

cleaner. The parameter Ntot is usually unknown. Luckily, we will see that Ntotr
1.5
min can be

simply related to the total mass in the distribution, Mtot, in the limit rmin → 0. The mass dM̃c

in the size bin rdr is

dM̃c = ρ
4π

3
r3dÑc(r) = ρ

4π

3
Ntotr

3dNc(r), (C.5)

where ρ is a comet’s bulk density in kilograms per cubic kilometer. The normalized differential

mass is

dMc =
dM̃c

Mtot
= ρ

4π

3

Ntot

Mtot
r3dNc(r). (C.6)

Integrating, we find

Mc(R < r) =

∫ r

0

dMc(r
′)

dr′
dr′ =

ρ
4π

3

Ntotr
1.5
min

Mtot



0, r < rmin,

r1.5 − r1.5
min, rmin < r < r1,

r1.5
1 − r1.5

min + 5r1r
0.5 − 5r1.5

1 , r1 < r < r2,

r1.5
1 − r1.5

min + 5r1r
0.5
2 − 5r1.5

1 − 7r1r2r
−0.5 + 7r1r

0.5
2 , r2 < r.

(C.7)

Now we can use the normalization requirement M(∞) = 1 to eliminate Ntotr
1.5
min. If we

denote

η−1 = −4r1.5
1 + 12r1r

0.5
2 − r1.5

min, (C.8)
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we can write the complete normalized mass distribution:

Mc(r) = η



0, r < rmin,

r1.5 − r1.5
min, rmin < r < r1,

−4r1.5
1 − r1.5

min + 5r1r
0.5, r1 < r < r2,

−4r1.5
1 − r1.5

min + 12r1r
0.5
2 − 7r1r2r

−0.5, r2 < r,

(C.9)

and the unnormalized distribution in terms of Mtot:

M̃c = MtotMc.

For the ISD η−1 ≈ 818− r1.5
min.

Now we can finally take the limit rmin → 0. We couldn’t do this before, because we know

that, for a given total mass, as rmin goes to zero Ntot increases without limit. But now we know

that Ntotr
1.5
min does have a limit:

lim
rmin→0

ρ
4π

3

Ntotr
1.5
min

Mtot
= 12r1r

0.5
2 − 4r1.5

1 ,

or ∼0.0012 for the ISD.

We were able to normalize the mass distribution without any reference to rmin. We can see

that in the ISD only about 0.1% of the mass resides in comets smaller than 1 km, and only

about 3% of the mass resides in comets smaller than 10 km. This gives us some confidence in

choosing a reasonably large rmin to make the number distribution practical to work with.
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C.3 Generating a pseudo-random ISD sample

Consider the cumulative distribution function (CDF):

F (r) = 1−N(r) =



0, r < rmin,

1− r1.5
minr

−1.5, rmin < r < r1,

1− r1 r
1.5
minr

−2.5, r1 < r < r2,

1− r1r2 r
1.5
minr

−3.5, r2 < r.

(C.10)

If X is a random variable with a uniform distribution on [0, 1] then

R = F−1(X) (C.11)

is a random variable with the CDF F (r). To see this is true, evaluate the probability P (R < r):

P (R < r) = P
(
F−1(X) < F−1(x)

)
= P (X < x) = x = F (r), (C.12)

where the last couple of steps are valid because F is monotonic and X is uniform. So, to draw

a random radius, in kilometers, from the ISD, we can draw a uniform random x from [0, 1] with

a pseudo-random number generator and then compute

r =



rmin, x = 0,(
(1−x)
r1.5
min

)−1/1.5

, 0 < x < 1− r1.5
minr

−1.5
1 ,(

(1−x)
r1r1.5

min

)−1/2.5

, 1− r1.5
minr

−1.5
1 < x < 1− r1r

1.5
minr

−2.5
2 ,(

(1−x)
r1r2r1.5

min

)−1/3.5

, 1− r1r
1.5
minr

−2.5
2 < x.

(C.13)

Figure C.1 shows an empirical CDF of a pseudo-random sample of 107 radii drawn using

this method. Compare with fig. (2) in Charnoz et al. (2009).
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Figure C.1: Cumulative number of comets with radii greater than a given value, summed from
a pseudo-random sample of the distribution (C.10) with rmin = 1 and scaled to give 800 Pluto
sized bodies.

C.4 Summary

Here are the relevant equations with the values recommended in Charnoz et al. (2009) for αi

and ri and with rmin = 1 km.

• Fraction of bodies with radius greater than r (in kilometers):

N(r) =



1, 0 < r < 1,

r−1.5, 1 < r < 7.5,

7.5 r−2.5, 7.5 < r < 100,

750 r−3.5, 100 < r.
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• The fraction of total mass in bodies with radius less than r (in kilometers):

Mc(r) ≈
1

818


r1.5, 0 < r < 7.5,

−82 + 37.5 r0.5, 7.5 < r < 100,

818− 5250 r−0.5, 100 < r.

• To draw a random radius, first draw a uniform 0 ≤ x ≤ 1, and then evaluate:

r =



1, x = 0,

(1− x)−2/3, 0 < x < 0.951314,

2.238847(1− x)−2/5, 0.951314 < x < 0.999925,

6.628970(1− x)−2/7, 0.999925 < x.

85



Appendix D

Summary of all hydrcocode

simulation results used to derive

the scaling law of chapter 3

Table D.1: Summary of all impact simulation parametrs and results

EOS RT (km) MT (kg) rp (km) mp (kg) θ (deg) v (m/s) fLB
1 fLB

2 grazing

ice 1000 3.793×1021 794 1.92×1021 0 2170 0.499 0.531 N

ice 1000 3.793×1021 794 1.92×1021 0 2225 0.462 0.496 N

ice 1000 1.128×1022 794 5.68×1021 0 2500 0.824 0.829 N

ice 1000 1.128×1022 794 5.68×1021 0 3500 0.506 0.531 N

ice 1000 1.128×1022 794 5.68×1021 0 3560 0.484 0.510 N

ice 1000 3.793×1021 794 1.92×1021 45 5235 0.428 0.425 Y

ice 1000 3.793×1021 794 1.92×1021 45 6000 0.343 0.343 Y

ice 1000 1.128×1022 794 5.68×1021 45 7300 0.494 0.492 Y

ice 1000 1.128×1022 794 5.68×1021 45 7400 0.489 0.488 Y

ice 1000 1.128×1022 794 5.68×1021 45 7520 0.482 0.481 Y

ice 1000 1.128×1022 794 5.68×1021 45 7800 0.465 0.463 Y
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Table D.1: Summary of all impact simulation results (Continued)

EOS RT (km) MT (kg) rp (km) mp (kg) θ (deg) v (m/s) fLB
1 fLB

2 grazing

ice 1000 1.128×1022 794 5.68×1021 45 8200 0.442 0.442 Y

ice 1000 1.128×1022 794 5.68×1021 45 9000 0.393 0.393 Y

ice 1000 1.128×1022 794 5.68×1021 45 10000 0.333 0.333 Y

ice 1000 3.793×1021 794 1.92×1021 55 6800 0.558 0.556 Y

ice 1000 3.793×1021 500 4.65×1020 0 3200 0.604 0.609 N

ice 1000 3.793×1021 500 4.65×1020 0 3330 0.514 0.514 N

ice 1000 3.793×1021 500 4.65×1020 0 3380 0.520 0.542 N

ice 1000 3.793×1021 500 4.65×1020 0 3440 0.489 0.516 N

ice 1000 3.793×1021 500 4.65×1020 0 3480 0.469 0.496 N

ice 1000 3.793×1021 500 4.65×1020 0 3610 0.409 0.425 N

ice 1000 1.128×1022 500 1.37×1021 0 4500 0.697 0.702 N

ice 1000 1.128×1022 500 1.37×1021 0 5000 0.566 0.588 N

ice 1000 1.128×1022 500 1.37×1021 0 5300 0.471 0.502 N

ice 1000 1.128×1022 500 1.37×1021 0 5500 0.393 0.434 N

ice 1000 3.793×1021 500 4.65×1020 30 4750 0.561 0.552 N

ice 1000 3.793×1021 500 4.65×1020 30 4900 0.517 0.509 N

ice 1000 3.793×1021 500 4.65×1020 30 4950 0.504 0.498 N

ice 1000 1.128×1022 500 1.37×1021 30 7990 0.504 0.501 N

ice 1000 1.128×1022 500 1.37×1021 30 8300 0.463 0.459 N

ice 1000 1.128×1022 500 1.37×1021 30 10000 0.268 0.281 N

ice 1000 3.793×1021 500 4.65×1020 45 9175 0.542 0.542 N

ice 1000 3.793×1021 500 4.65×1020 45 9400 0.525 0.524 N

ice 1000 3.793×1021 500 4.65×1020 45 9600 0.510 0.508 N

ice 1000 1.128×1022 500 1.37×1021 45 12000 0.674 0.676 N

ice 1000 1.128×1022 500 1.37×1021 45 13500 0.609 0.610 N

ice 1000 1.128×1022 500 1.37×1021 45 14800 0.542 0.544 N

ice 1000 1.128×1022 500 1.37×1021 45 15400 0.510 0.513 N
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Table D.1: Summary of all impact simulation results (Continued)

EOS RT (km) MT (kg) rp (km) mp (kg) θ (deg) v (m/s) fLB
1 fLB

2 grazing

ice 1000 1.128×1022 500 1.37×1021 45 15500 0.505 0.508 N

ice 1000 3.793×1021 300 9.81×1019 0 5000 0.853 0.840 N

ice 1000 3.793×1021 300 9.81×1019 0 6000 0.699 0.703 N

ice 1000 3.793×1021 300 9.81×1019 0 6500 0.590 0.608 N

ice 1000 3.793×1021 300 9.81×1019 0 6750 0.507 0.538 N

ice 1000 3.793×1021 300 9.81×1019 0 6800 0.487 0.519 N

ice 1000 3.793×1021 300 9.81×1019 0 7000 0.410 0.445 N

ice 1000 3.793×1021 300 9.81×1019 0 8000 0.077 0.103 N

ice 1000 1.128×1022 300 2.89×1020 0 11000 0.568 0.589 N

ice 1000 1.128×1022 300 2.89×1020 0 11400 0.514 0.537 N

ice 1000 1.128×1022 300 2.89×1020 0 11600 0.486 0.511 N

ice 1000 1.128×1022 300 2.89×1020 0 11900 0.445 0.469 N

ice 1000 1.128×1022 300 2.89×1020 0 14000 0.194 0.213 N

ice 1000 1.128×1022 300 2.89×1020 30 17380 0.498 0.504 N

ice 1000 1.128×1022 300 2.89×1020 30 18000 0.462 0.466 N

ice 1000 1.128×1022 300 2.89×1020 45 25000 0.613 0.617 N

ice 1000 1.128×1022 300 2.89×1020 45 26000 0.578 0.582 N

ice 1000 1.128×1022 300 2.89×1020 45 28000 0.508 0.500 N

ice 1000 3.795×1021 200 2.91×1019 0 13560 0.564 0.556 N

ice 1000 1.128×1022 200 7.93×1019 0 20000 0.762 0.767 N

ice 1000 1.128×1022 200 7.93×1019 0 26000 0.532 0.538 N

ice 1000 1.128×1022 200 7.93×1019 0 26800 0.500 0.498 N

ice 1000 1.128×1022 200 7.93×1019 30 34000 0.505 0.500 N

ice 1000 1.128×1022 200 7.93×1019 30 35000 0.475 0.463 N

ice 1000 1.128×1022 200 7.93×1019 45 48000 0.512 0.503 N

ice 1000 1.128×1022 200 7.93×1019 45 48200 0.507 0.498 N

ice 1000 1.128×1022 200 7.93×1019 45 50000 0.467 0.452 N
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Table D.1: Summary of all impact simulation results (Continued)

EOS RT (km) MT (kg) rp (km) mp (kg) θ (deg) v (m/s) fLB
1 fLB

2 grazing

ice 1000 1.128×1022 200 7.93×1019 45 55000 0.360 0.348 N

ice 500 4.724×1020 500 4.68×1020 0 1170 0.506 0.537 N

ice 500 4.724×1020 500 4.68×1020 0 1190 0.481 0.514 N

ice 500 1.395×1021 500 1.38×1021 0 1500 0.753 0.766 N

ice 500 1.395×1021 500 1.38×1021 0 1850 0.513 0.543 N

ice 500 1.395×1021 500 1.38×1021 0 1900 0.478 0.508 N

ice 500 1.395×1021 500 1.38×1021 0 2100 0.335 0.376 N

ice 500 1.395×1021 500 1.38×1021 45 1400 0.475 0.474 Y

ice 500 1.395×1021 500 1.38×1021 45 1600 0.462 0.460 Y

ice 500 1.395×1021 500 1.38×1021 45 1800 0.450 0.448 Y

ice 500 1.395×1021 500 1.38×1021 45 2000 0.439 0.437 Y

ice 500 1.395×1021 500 1.38×1021 45 2220 0.424 0.422 Y

ice 500 1.395×1021 500 1.38×1021 45 2450 0.410 0.407 Y

ice 500 1.395×1021 500 1.38×1021 45 2700 0.393 0.391 Y

ice 500 1.395×1021 500 1.38×1021 45 3000 0.374 0.373 Y

ice 500 4.724×1020 250 5.81×1019 0 1740 0.659 0.658 N

ice 500 4.724×1020 250 5.81×1019 0 1960 0.421 0.421 N

ice 500 4.724×1020 250 5.81×1019 0 2000 0.482 0.502 N

ice 500 4.724×1020 250 5.81×1019 0 2050 0.448 0.469 N

ice 500 4.724×1020 250 5.81×1019 0 2117 0.412 0.423 N

ice 500 1.395×1021 250 1.71×1020 0 2800 0.598 0.606 N

ice 500 1.395×1021 250 1.71×1020 0 3000 0.518 0.537 N

ice 500 1.395×1021 250 1.71×1020 0 3040 0.498 0.521 N

ice 500 1.395×1021 250 1.71×1020 0 3100 0.467 0.492 N

ice 500 1.395×1021 250 1.71×1020 30 4300 0.554 0.547 N

ice 500 1.395×1021 250 1.71×1020 30 4470 0.506 0.501 N

ice 500 1.395×1021 250 1.71×1020 30 4530 0.489 0.483 N
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Table D.1: Summary of all impact simulation results (Continued)

EOS RT (km) MT (kg) rp (km) mp (kg) θ (deg) v (m/s) fLB
1 fLB

2 grazing

ice 500 1.395×1021 250 1.71×1020 30 5000 0.321 0.329 N

ice 500 4.713×1020 250 5.80×1019 45 2000 0.835 0.834 N

ice 500 4.724×1020 250 5.81×1019 45 3400 0.733 0.733 N

ice 500 4.724×1020 250 5.81×1019 45 4650 0.577 0.577 N

ice 500 4.724×1020 250 5.81×1019 45 5053 0.457 0.460 N

ice 500 4.724×1020 250 5.81×1019 45 5100 0.503 0.506 N

ice 500 1.395×1021 250 1.71×1020 45 8000 0.494 0.498 N

ice 500 1.395×1021 250 1.71×1020 45 8100 0.482 0.488 N

ice 500 1.395×1021 250 1.71×1020 45 9000 0.380 0.387 N

ice 500 4.724×1020 250 5.81×1019 60 6000 0.792 0.792 Y

ice 500 4.724×1020 250 5.81×1019 60 9305 0.703 0.703 Y

ice 500 4.724×1020 250 5.81×1019 60 12070 0.556 0.558 Y

ice 500 4.724×1020 250 5.81×1019 60 12900 0.503 0.508 Y

ice 500 4.713×1020 250 5.80×1019 75 3000 0.888 0.888 Y

ice 500 4.724×1020 250 5.81×1019 75 6200 0.878 0.878 Y

ice 500 4.724×1020 250 5.81×1019 75 12000 0.862 0.862 Y

ice 500 4.724×1020 100 3.36×1018 0 5200 0.886 0.884 N

ice 500 4.724×1020 100 3.36×1018 0 7000 0.704 0.709 N

ice 500 4.724×1020 100 3.36×1018 0 7300 0.654 0.664 N

ice 500 4.724×1020 100 3.36×1018 0 8000 0.495 0.520 N

ice 500 4.724×1020 100 3.36×1018 0 8200 0.439 0.468 N

ice 500 4.724×1020 100 3.36×1018 0 9100 0.213 0.252 N

ice 500 4.724×1020 100 3.36×1018 0 10000 0.104 0.114 N

ice 500 1.395×1021 100 9.91×1018 0 12000 0.678 0.687 N

ice 500 1.395×1021 100 9.91×1018 0 13500 0.552 0.567 N

ice 500 1.395×1021 100 9.91×1018 0 14100 0.495 0.509 N

ice 500 1.395×1021 100 9.91×1018 0 15000 0.411 0.423 N
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Table D.1: Summary of all impact simulation results (Continued)

EOS RT (km) MT (kg) rp (km) mp (kg) θ (deg) v (m/s) fLB
1 fLB

2 grazing

ice 500 1.395×1021 100 9.91×1018 30 17840 0.501 0.515 N

ice 500 1.395×1021 100 9.91×1018 30 18000 0.490 0.503 N

ice 500 1.395×1021 100 9.91×1018 30 20000 0.369 0.375 N

ice 500 1.395×1021 100 9.91×1018 45 25000 0.495 0.506 N

ice 500 1.395×1021 100 9.91×1018 45 28000 0.362 0.357 N

ice 300 1.020×1020 150 1.25×1019 0 1000 0.793 0.789 N

ice 300 1.020×1020 150 1.25×1019 0 1200 0.627 0.630 N

ice 300 1.020×1020 150 1.25×1019 0 1290 0.530 0.543 N

ice 300 1.020×1020 150 1.25×1019 0 1390 0.417 0.440 N

ice 300 1.020×1020 150 1.25×1019 0 1800 0.036 0.051 N

ice 300 3.005×1020 150 3.69×1019 0 1950 0.534 0.548 N

ice 300 3.005×1020 150 3.69×1019 0 2015 0.491 0.511 N

ice 300 3.005×1020 150 3.69×1019 0 2030 0.482 0.501 N

ice 300 3.005×1020 150 3.69×1019 0 2300 0.296 0.331 N

ice 300 3.005×1020 150 3.69×1019 30 3000 0.533 0.530 N

ice 300 3.005×1020 150 3.69×1019 30 3100 0.500 0.500 N

ice 300 3.005×1020 150 3.69×1019 45 4200 0.674 0.672 N

ice 300 3.005×1020 150 3.69×1019 45 5110 0.503 0.508 N

ice 300 3.005×1020 150 3.69×1019 45 5200 0.480 0.485 N

ice 300 3.005×1020 60 2.14×1018 0 3200 0.970 0.970 N

ice 300 1.020×1020 60 7.27×1017 0 4945 0.697 0.700 N

ice 300 1.020×1020 60 7.27×1017 0 5500 0.545 0.567 N

ice 300 1.020×1020 60 7.27×1017 0 5600 0.507 0.529 N

ice 300 1.020×1020 60 7.27×1017 0 5770 0.424 0.459 N

ice 300 1.020×1020 60 7.27×1017 0 6320 0.180 0.188 N

ice 300 3.005×1020 60 2.14×1018 0 8100 0.629 0.642 N

ice 300 3.005×1020 60 2.14×1018 0 8600 0.549 0.566 N
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Table D.1: Summary of all impact simulation results (Continued)

EOS RT (km) MT (kg) rp (km) mp (kg) θ (deg) v (m/s) fLB
1 fLB

2 grazing

ice 300 3.005×1020 60 2.14×1018 0 8800 0.512 0.531 N

ice 300 3.005×1020 60 2.14×1018 0 8900 0.493 0.512 N

ice 300 3.005×1020 60 2.14×1018 0 8980 0.477 0.500 N

ice 300 3.005×1020 60 2.14×1018 0 9040 0.463 0.483 N

ice 300 3.005×1020 60 2.14×1018 0 9500 0.378 0.406 N

ice 300 3.005×1020 60 2.14×1018 30 11450 0.508 0.523 N

ice 300 3.005×1020 60 2.14×1018 30 11630 0.488 0.503 N

ice 300 3.005×1020 60 2.14×1018 30 12000 0.441 0.459 N

ice 300 3.005×1020 60 2.14×1018 45 16000 0.519 0.533 N

ice 300 3.005×1020 60 2.14×1018 45 16250 0.495 0.511 N

ice 300 3.005×1020 60 2.14×1018 45 16400 0.481 0.497 N

ice 300 3.005×1020 60 2.14×1018 45 17000 0.431 0.448 N

ice 100 3.775×1018 50 4.64×1017 0 590 0.496 0.508 N

ice 100 1.112×1019 50 1.37×1018 0 800 0.603 0.606 N

ice 100 3.775×1018 50 4.64×1017 0 830 0.019 0.027 N

ice 100 1.112×1019 50 1.37×1018 0 860 0.502 0.516 N

ice 100 1.112×1019 50 1.37×1018 30 1100 0.632 0.629 N

ice 100 1.112×1019 50 1.37×1018 30 1280 0.544 0.541 N

ice 100 1.112×1019 50 1.37×1018 30 1340 0.513 0.511 N

ice 100 1.112×1019 50 1.37×1018 30 1355 0.505 0.503 N

ice 100 1.112×1019 50 1.37×1018 45 2000 0.633 0.630 N

ice 100 1.112×1019 50 1.37×1018 45 2370 0.502 0.502 N

ice 100 1.112×1019 50 1.37×1018 45 2400 0.489 0.490 N

1 Gravitationally bound mass fraction as detected by the bottom-up algorithm of sec. 3.2.4.

2 Gravitationally bound mass fraction as detected by the top-down algorithm of sec. 3.2.4.
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Appendix E

Derivation of interacting mass

and energy

Consider the collision geometry illustrated in figure E.1. We are interested in the fraction of

projectile mass between the two horizontal lines tangent to the bottom of the projectile and

the top of the target. The hemispheric cap above height l from the bottom of the projectile is

assumed to not interact with the target and its kinetic energy is not available for disruption.

The height l is given by

l = rp + [RT − (RT + rp) sin θ] = (RT + rp)(1− sin θ). (E.1)

If l < 2rp the volume of the projectile below height l can be calculated by adding cylinders of

thickness dh and base a at height h above the bottom of the projectile. The base at height h

must satisfy (rp − h)2 + a2 = r2
p, so that

Vα =

∫ l

0

πa(h)2 dh =

∫ l

0

2πrph dh−
∫ l

0

πh2 dh = πrpl
2 − πl3

3
. (E.2)
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Figure E.1: Diagram of collision geometry at the moment of impact.

Dividing by the total volume of the projectile we find the fraction of projectile mass intersected

by the target:

α =


3rpl

2−l3
4r3
p

, l < 2rp.

1, l ≥ 2rp

(E.3)

In the center-of-mass frame the kinetic energy available in the collision is then

Kα =
1

2
αmpv

2
p +

1

2
MT v

2
T , (E.4)

where the velocities vp and vT are relative to the center of mass. If the projectile and target

centers are at xp and xT , respectively, then the center of mass is at

(mpxp +MTxT )/(MT +mp) = 0. (E.5a)

To express the kinetic energy in terms of the relative velocity v we write the target and projectile
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positions in terms of the relative position vector:

x = xT − xp, (E.5b)

xp = − MT

MT +mp
x, (E.5c)

and

xT =
mp

MT +mp
x. (E.5d)

Differentiating eqs. (E.5) with respect to time and plugging into eq. (E.4) we get

Kα =
1

2

( mpMT

mp +MT

)(αMT +mp

mp +MT

)
v2. (E.6)
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Appendix F

Derivation of power law scaling of

Q∗D

Housen and Holsapple (1990) derive several scaling laws for impact phenomena for both strength

and gravity dominated bodies from dimensional considerations and experimental evidence. Here

we re-derive eq. (F.7) (Housen and Holsapple, 1990, eq. 48) in a much simplified way that

sacrifices generality for brevity.

The fundamental assumption is that the measure of the projectile (assumed to be much

smaller than the target) that determines the outcome of the collision is not its size and velocity

independently but rather some product of them, such that a smaller projectile moving faster

will result in the same outcome as a larger projectile moving slower, at least for any quantity

measured far from the impact site and at times long compared with the time scale of the impact

itself. This assumption leads to the definition of the coupling parameter

C = mpv
µ̃, (F.1)

where 1 ≤ µ̃ ≤ 2. (Housen and Holsapple (1990) use a more general definition that allows the

radius and density of the projectile to enter the coupling parameter in a combination that is not

necessarily the mass of the projectile. They therefore have a second undetermined power index

for the projectile’s density, which is carried throughout the analysis only to be set at the end to

96



the value that makes the combination of size and density be, in fact, just the mass. Assuming

from the start that it the mass of the projectile that controls its “heavyness” rather than its

size and density to some unknown power is what simplifies the following greatly.)

The mass of the largest post-collision bound fragment, MLB, is an unknown function of the

following:

MLB = F (MT , RT , C,G) (F.2)

where G is the universal constant of gravity. The pi theorem says there should be a relationship

between two dimensionless parameters made from these variables. We can choose:

MLB

MT
= F (Πg) (F.3)

where F is a (different) unknown function and

Πg = CG−µ̃/2M
−µ̃/2−1
T R

µ̃/2
T . (F.4)

For some particular constant value Π∗g the parameterMLB/MT will equal one half. Consequently,

for given values of MT and RT , there will be a single value C∗ such that

Π∗g = C∗G−µ̃/2M
−µ̃/2−1
T R

µ̃/2
T . (F.5)

For comparison with experimental results it is convenient to rewrite eq. (F.5) in terms of the

variable Q = 0.5mpv
2/MT :

Π∗g = 2Q∗G−µ̃/2M
−µ̃/2
T R

µ̃/2
T vµ̃−2. (F.6)

Replacing target mass with an assumed average density ρ we get the Housen and Holsapple

(1990) result:

Q∗ ∝ ρµ̃/2Gµ̃/2Rµ̃T v
2−µ̃. (F.7)

The only thing to note is that since we started with a slightly different coupling parameter our

power index µ̃ is different from their power index µ, but of course actual powers of RT and v

are the same. (The relationship is µ̃ = 3µ.)
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Note that the dimensional analysis relies on the fact thatmp and v cannot appear in equations

except in the combination C. The fundamental result is eq. (F.5) not eq. (F.6) or eq. (F.7).

We can rearrange eq. (F.5) using different variables but we cannot expect the same scaling

law to hold between other variables like Q∗RD and RC1. We also have no reason to expect the

coupling parameter assumption to hold when the projectile is comparable in size and mass to

the target. For example, in the gravity regime the gravitational potential of the projectile is

surely important in determining the outcome of the collision. So the projectile mass and radius

have an effect on the outcome that is not coupled to the impact speed at all. The interacting

mass fraction is another variable that depends on projectile size but not its velocity. And of

course there could be other factors.
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