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Abstract

Spherical Latent Factor Model for Binary and Ordinal Data

by

Xingchen Yu

Factor models are widely used across diverse areas of application for purposes that

include dimensionality reduction, covariance estimation, and feature engineering.

Traditional factor models can be seen as an instance of linear embedding methods

that project multivariate observations onto a lower dimensional Euclidean latent

space. This thesis discusses a new class of geometric embedding models for mul-

tivariate binary and ordinal data in which the embedding space correspond to a

spherical manifold, with potentially unknown dimension. The resulting models

include traditional factor models as a special case, but provide additional flexi-

bility. Furthermore, unlike other techniques for geometric embedding, the models

are easy to interpret, and the uncertainty associated with the latent features can

be properly quantified. These advantages are illustrated using both simulation

studies and real data on voting records from the U.S. Congress as well as survey

applications.
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Chapter 1

Introduction and Backgrounds

Factor analysis [1, 2] has a long history that dates back at least to the pioneering

work of Charles Spearman on intelligence during the first decade of the 20th cen-

tury. Factor analysis is widely used across all sorts of disciplines within the social

and natural sciences to account for and explain the correlations observed across

multivariate responses. In traditional factor analysis, which in the case of nor-

mally distributed data includes principal component analysis as a special case, (the

mean of) each response variable is represented as a linear combination of a com-

mon set of subject-specific factors. These factors can be interpreted as providing

a linear embedding of the original high-dimensional data into a low-dimensional

Euclidean space. These embeddings can be useful for various purposes, including

data description, sparse estimation of covariance matrices, and/or as inputs to

predictive models.

Linear embeddings on Euclidean spaces are relatively easy to compute and inter-

pret. However, they might not be appropriate in all circumstances, particularly

when the underlying data-generation mechanism involves highly non-linear phe-
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nomena. Over the last 30 years, a rich literature has developed covering the use

of nonlinear embeddings and data-driven, non-Euclidean embedding manifolds.

Auto-encoders (e.g., see 3, 4, 5 and 6) are a natural generalization of principal

component analysis. They explain the structure in the data through the com-

position of two non-linear functions (often represented as neural networks). The

first function (usually called the encoder) embeds the input data into the low-

dimensional latent variables, while the second function (called the decoder) maps

those latent variables into the original space of the data in a way that minimizes

the reconstruction error. Alternatively, locally-linear embeddings [7] reconstruct

each input as a weighted average of its neighbours, and subsequently map the data

into a low-dimensional embedding using those same weights. Isomap [8] extends

the classical multidimensional scaling method into a general, data-driven mani-

fold using geodesic distances measured on a neighbourhood graph. The goal is to

preserve the intrinsic geometry of the manifold in which the data lies. Laplacian

eigenmaps [9] also seek to preserve the intrinsic geometry of local neighborhoods.

The embedding eigenvectors are obtained as the solution of a generalized eigen-

value problem based on the Laplacian matrix of the neighbourhood graph. Local

tangent space alignment [10] finds the local geometry through the tangent space in

the neighbourhood of inputs from which a global coordinate system for a general

manifold is constructed. The inputs are embedded into a low-dimensional space

through such global coordinate system. Finally, Gaussian process latent variable

models [11] use Gaussian process priors to model the embedding function. These

various approaches are very flexible in capturing the shape of the relationship

between latent variables and outcomes, as well as the geometry of the underly-

ing manifold on which the data lives. As a consequence, they can produce very

compact representations of high-dimensional data using a very small number of

2



latent dimensions. However, interpreting and quantifying the uncertainty associ-

ated with these embeddings can be quite difficult because of identifiability issues.

Indeed, when performing non-linear embeddings, invariance to affine transforma-

tions is not enough to ensure identifiability of the latent features. When the goal

is prediction or sparse estimation of covariance matrices, this does not matter

as these quantities are (usually) identifiable functions of the unidentified latent

factors. However, when interest lies in the embedding coordinates themselves (as

is the case in many social sciences applications), the lack of identifiability means

that we are in the presence of irregular problems in which standard techniques for

generating confidence/credible intervals are not applicable. Similarly, interpreta-

tion of the latent positions is dependent on the exact geometry of the embedding

space, which is in turn only partially specified unless the lack of identifiability is

addressed.

An alternative to the nonparametric embedding methods discussed above is to

consider more flexible (but fixed) embedding spaces for which identifiability con-

straints can be easily derived. Such approach trades off some of the flexibility of

the nonparametric methods for interpretability and the ability to properly quan-

tify the uncertainty associated with the embedding. Along these lines, this thesis

proposes a general framework for embedding multivariate binary and ordinal data

into a general Riemannian manifold by exploiting the random utility formulation

underlying binary regression models [12, 13]. To focus ideas, and because of their

practical appeal, we place a special emphasis on spherical latent spaces.

Our focus on spherical latent spaces is driven by the needs of applications in

a number of substantive areas. In political science, circular voting spaces have

both theoretical and empirical support. In marketing applications, a spherical

geometries can be used to explain the apparent lack of transitivity sometimes

3



observed in consumer behavior.

It is worthwhile noting that the literature has considered generalizations of data-

reduction techniques such as principal components and factor analysis to situa-

tions in which the observations live on a manifold. Examples include principal

Geodesic Analysis [14, 15, 16] and principal nested spheres [17]. This literature,

however, is only marginally relevant to us since it is the parameters of our model,

and not the data itself, that are assumed to live on a spherical manifold.

Next we review the traditional spatial voting models in the political science lit-

erature for which we also provide a brief background. In addition, we discuss

recent “extremes voting together” phenomenon exhibits in this paradigm which

motivates our adoption of the spherical manifold as the embedding space.

1.1 Motivation from the Political Science Liter-

ature

Spatial voting models [18, 19, 20, 21, 22, 23, 24] are widely used to estimate the

preferences of legislators from roll call voting records, and have become an in-

valuable tool in the study of legislatures and other deliberative bodies. Spatial

voting models aim to scale binary and polychotomous responses into a continuous

(potentially multidimensional) linear scale, and are intimately related to tradi-

tional statistical tools for dimensionality reduction such as principal components

and factor analysis. In the context of voting data, the latent space on which the

responses are scaled is referred to as the policy space, while the latent traits are

referred to as the ideal points of the legislators.

4



In one dimensional policy spaces, the ideal points generated by spatial voting

models are often interpreted as capturing the ideology of the legislator on a liberal-

conservative scale (e.g., see 20 and 25), with the ranking of the legislators in this

scale typically becoming a key metric of interest. However, this interpretation

can be suspect when the ideal points are learned exclusively on the basis of roll

call votes. To address this issue, [26] used Early Day Motions (EDMs) instead

of roll call records in the British House of Commons to learn about their ideol-

ogy. EDMs are rarely debated and the Speaker of the House of Commons and

Deputy Speakers generally do not sign EDMs. Another approach is to combine

roll call data with other kinds of metadata. For example, [27], [28], [29], [30] and

[31] develop methods that combine text and voting data to infer the ideology of

legislators. In a similar spirit, [32] develop a method that uses manually-curated

vote groups (such as those coming from the Policies Agenda Project, see 33) as

metadata to infer issue-specific preferences.

Traditional spatial models rely on latent spaces endowed with Euclidean geome-

tries, and therefore tend to work best in political systems in which the parties are

relatively unified. One of the key motivations for the work on this dissertation

is the analysis of voting records for legislatures in two-party systems in which

parties are “fractious”. In this kind of setting, it is common to see circumstances

in which legislators that most observers would consider to be at opposite ends

of the ideological spectrum vote together. [34] and [35] consider one example,

namely, the first Blair government (1997-2001) in the United Kingdom. This gov-

ernment represented an uneasy alliance between a leadership that “had actively

abandoned the tenants of socialist policy making and that had received a land-

slide mandate to rule” and a “historically and openly recalcitrant tranche of ’Old’

Labour legislators, dismissive of the modernizing project in its entirety” [35]. In

5



the United States, the “Tea Conservatie Revolt” led by the Tea Party movement

during the 2010 election [36, 37, 38], and the recent rise of the Justice Democrats

during the 2018 election [39, 40] represent two more examples. Traditional spatial

models fail in this setting where the “extremes vote together” because, under the

Euclidean geometry, the “rebels” who sometimes vote with the opposition must

necessarily be placed somewhere in the middle of the scale (e.g., see 34 and 35).

Neither increasing the dimensionality of the latent space nor performing linear

transformations of the latent space can address this issue (see Section 2.1).

In order to gain insights into legislatures in which the extremes vote together, [35]

proposed a Bayesian non-parametric mixture model that identifies voting blocks

within the U.K. House of Common. In a similar spirit, [41] and [42] developed ran-

dom partition models for studying the voting record of the U.S. Supreme Court.

While this kind of clustering models can provide valuable insights into the func-

tioning of a deliberative body, they do not yield the kind of fine-grained ranking

that has made spatial voting models so useful in practice. There is also an in-

teresting literature focusing on the effect of the underlying utility functions on

the estimates of the ideal points in Euclidean settings. For example, [43] describe

a model in which the form of the utility function (quadratic or Gaussian on the

Euclidean distance between points) is estimated from the data and conclude that

extreme legislators are generally more sensitive to policy change than their more

centrally located counterparts, while [44] discuss the use of the “city-block” (i.e.,

L1) instead of L2 distances in multidimensional spatial models, and [45] considers

the general case of Minkowski (i.e., Lq) distances, where q is a parameter that

is to be estimated from the data. More recently, [46] develop a model with non-

monotone utility functions to explain the phenomenon of extremes voting together

against the center. As an alternative, this thesis proposes a novel spatial voting

6



model that relies on a spherical policy space, and develops Bayesian inference

procedures for it.

The idea that spherical policy spaces might be appropriate for representing politi-

cal preferences dates back at least to [47], who provides a number of examples and

notes that “circular shapes may be expected for alliance structures and for vote

coalitions where extremists of the left and right coalesce for particular purposes”.

Our model can also be understood as operationalizing the so-called “horseshoe

theory” (48; 49, pg. 118), which asserts that the far-left and the far-right are

closer to each other than they are to the political center, in an analogous way to

how the opposite ends of a horseshoe are close to each other. More generally, the

use of spherical latent spaces for modeling preferences goes back at least to [50]

and [51] in the economic and psychology literatures.

The bulk of the illustrations discussed in this manuscript will focus on the analysis

of roll call votes in the U.S. Congress. Roll call votes are those in which each

legislators votes "yea" or "nay" as their names are called by the clerk, so that the

names of legislators voting on each side are recorded. It is important to note

that not all votes fall into this category. Voice votes (in which the position of

individual legislator are not recorded) are fairly common. This means that roll

call votes represent a biased sample from which to infer legislator’s preferences.

Nonetheless, roll call data is widely used in political science. The U.S. Congress

is composed of two chambers: the Senate and the House of Representatives. The

U.S. Senate is composed of two representatives from each of the 50 States in

the Union. On the other hand, the U.S. House of Representative consists of

435 voting members. Unlike the U.S. Senate, the delegation size of each state

is proportional to its corresponding population. The total number of legislators

included in each raw dataset might be slightly higher because of vacancies, which
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are typically filled as they arise. While turnover in membership is typically quite

low, these changes lead to voting records with (ignorable) missing values on votes

that came up during the period in which a Senator was not part of the chamber.

Additionally, missing values can also occur because of temporary absences from

the chamber, or because of explicit or implicit abstentions. In the scope of this

thesis, missing values were treated as if missing completely at random. While this

assumption is not completely accurate (e.g., see 52), it is commonly made in most

applied settings and we do not expect it to dramatically affect our analyses. Roll

call data for the U.S. Congress can be obtained from https://voteview.com/.

1.2 Bayesian factor analysis models for binary

data: A brief overview

Consider data consisting of independent multivariate binary observations y1, . . . ,

yI associated with i subjects, where yi = (yi,1, . . . , yi,J)T is a vector in which each

entry is associated with a different item. In the political science application we

discuss in Section 2.4 and 3.3, yi,j represents the vote of legislator (subject) i in

question (item) j (with yi,j = 1 corresponding to an affirmative vote, and yi,j = 0

corresponding to a negative one). On the other hand, in marketing applications,

yi,j might represent whether consumer (subject) i bought product (item) j (if

yi,j = 1) or not (if yi,j = 0).

A common approach to modeling this type of multivariate data relies on a gener-

alized bilinear model of the form

Pr (yi,j = 1 | µj,αj,βi) = G
(
µj +αTj βi

)
, (1.1)
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where G is the (known) link function, and the intercepts µ1, . . . , µJ as well as the

bilinear terms α1, . . . ,αJ ∈ RK and β1, . . .βI ∈ RK are all unknown and need to

be estimated from the data (e.g., see 53, 54, 55 and 22). Different choices for the

link function G lead to well-known classes models, such as logit and probit models.

Furthermore, given a distribution over the latent factors β1, . . . ,βI , integrating

over them (which, in the case of binary data, can be done in closed form only in

very special cases) yields a wide class of correlation structures across items.

The class of factor analysis models for binary data in (1.1) can be derived through

the use of random utility functions [12, 13]. To develop such derivation, we inter-

pret the latent trait βi ∈ RK as representing the preferences of subject i over a

set of unobserved item characteristics, and associate with each item two positions,

ψj ∈ RK (corresponding to a positive responsive, i.e., yi,j = 1) and ζj ∈ RK (cor-

responding to a negative one, i.e., yi,j = 0). Assuming that individuals make their

choice for each item based on the relative value of two random quadratic utilities,

U+(ψj,βi) = −‖ψj − βi‖2 + εi,j, U−(ζj,βi) = −‖ζj − βi‖2 + νi,j, (1.2)

where εi,j and νi,j represent random shocks to the utilities, and υi,j = νi,j − εi,j

are independently distributed for all i and j and have cumulative distribution

function Gj(x) = G(x/σj), it is easy to see that

Pr (yi,j = 1 | ψj, ζj,βi, σj) = Pr (U+ (ψj,βi) > U− (ζj,βi)) = G
(
µj +αTj βi

)
,

where αj = 2(ψj−ζj)/σj and µj = (ζTj ζj−ψT
j ψj)/σj. This formulation, which is

tightly linked to latent variable representations used to fit categorical models (e.g.,

see 56), makes it clear how the factor model embeds the binary observation into a

Euclidean latent space. Furthermore, this construction also highlights a number
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of identifiability issues associated with the model. In particular, note that the

utility functions in (4.14) are invariant to affine transformations. Therefore, the

positions ψj, ζj and βi are only identifiable up to translations, rotations and

rescalings, and the scaling σj cannot be identified separately from the scale of the

latent space. These identifiability issues are usually dealt with by fixing σj = 1 for

all j = 1, . . . , J , and by either fixing the position of K+1 legislators (e.g., see 23),

or by fixing the location and scale of the ideal points, along with constraints on the

matrix of discrimination parameters (e.g., see 57). In either case, identifiability

constraints can be enforced either a priori, or a posteriori using a parameter

expansion approach (e.g., see 58, 59 and 60).

Bayesian inference for this class of models requires the specification of prior dis-

tributions for the various unknown parameters. For computational simplicity, it

is common to use (hierarchical) priors for the µjs, αjs and βis, so that compu-

tation can proceed using well-established Markov chain Monte Carlo algorithms

(e.g., see 56 and 61). However, the hyperparameters of these priors need to be

selected carefully. For example, when the dimension K of the embedding space

is unknown and needs to be estimated from the data, it is important to ensure

that the prior variance on θi,j = G(µj + αTj βi) induced by these priors remains

bounded as K → ∞ if one is to avoid Bartlett’s paradox [62]. One approach to

accomplish this goal is to select the prior covariance matrix for the βis to be diag-

onal, and to have the marginal variance of its components decrease fast enough as

more of them are added.1 This type of construction, which is related but distinct

from the one implied by the Indian Buffet process [63], provides a prior that is

consistent as the number of components K grows, and which can be interpreted
1As an example, consider a probit model (i.e., G(x) = Φ(x)) where, a priori, µj ∼ N(0, 1/2),

αj,k ∼ N(0, 1/2), and βi,k ∼ N(0, 6/[πk]2). In this case, θi,j = Φ
(
µj +

∑K
k=1 αj,kβi,k

)
con-

verges in distribution to a uniform distribution on [0, 1] as K →∞ (see Appendix A.2.
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as a truncation of an infinite dimensional model. Assigning prior distributions to

the ψjs and ζjs (which, in turn, imply priors on the αjs and µjs) is also a pos-

sibility, but it is rarely done in practice. In that setting, ensuring a satisfactory

behavior as the number of dimensions grows typically requires that the variances

of all three latent positions decrease as the number of dimensions of the latent

space increases. This observation will be important to some of the developments

in Section 3.1.2.

1.3 Posterior inference techniques on Rieman-

nian Manifolds

The posterior distributions associated with the models proposed in this thesis are

analytically intractable and necessitate the use of approximate technique such as

Markov chain Monte Carlo (MCMC) algorithms. Furthermore, key parameters

of interest live in non-Euclidean spaces, which necessitates that we move beyond

traditional random walk Metropolis-Hastings algorithms. This section reviews

Hamiltonian Monte Carlo (HMC) algorithms [64] , with a particular emphasis on

versions of the algorithm that are applicable in general Riemannian manifolds.

These types of algorithms will be critical for posterior inference in the classes of

spherical factor models we discuss in this dissertation.

1.3.1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [64], also known as hybrid Monte Carlo, is

a gradient-based sampling method that is widely used in both statistical and
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computer science literature. It could be considered as a Metropolis-Hastings al-

gorithms that uses the Hamiltonian dynamics to generate proposals rather than

using a random work. Thanks to the Hamiltonian dynamics, the samples gener-

ated are less correlated than the traditional Metropolis-Hastings. When posterior

full conditional distributions do not belong to a known family, or the choice of

conjugate prior to force posterior conjugacy is not justified, HMC serves as a great

method of generating posterior samples. After assuming a predetermined leapfrog

steps L, step size ε and a momentum distribution q(φ), the HMC algorithm pro-

ceeds sequentially for each iteration t as follows,

1. Sample φ from the momentum distribution q(φ).

2. Make a half step for φ and a full step for θ:

(a) φ← φ+ 1
2ε

∂ log p(θ|y)
∂ θ

.

(b) θ ← θ + ε∂ log q(φ)
∂ φ

.

3. For each of the following L− 1 leap frog steps:

(a) φ← φ+ ε∂ log p(θ|y)
∂ θ

.

(b) θ ← θ + ε∂ log q(φ)
∂ φ

.

4. Make the last half step for φ to complete the leapfrog steps:

(a) φ← φ+ 1
2ε

∂ log p(θ|y)
∂ θ

.

5. Accept and reject the resulting θ based on the following step.
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(a) Compute

R← p(θ | y)q(φ)
p(θ t−1 | y)q(−φ t−1) . (1.3)

(b) set

θt =


θ with probability of min(R,1)

θ t−1 otherwise.

One key challenge associated with the use of HMC algorithms is the need to tune

the step size ε and the number of leaps L, as well as the hyperparameter for the

momentum distribution.

Practically speaking, the choice of of leapfrog steps L and step size ε and their

interaction greatly affect the acceptance ratio and the correlation between pos-

terior samples. Theory [65] suggests that HMC is optimally efficient when the

acceptance ratio is roughly 65%. This should be contrasted against a 23% op-

timal acceptance ratio [66] for multidimensional Metropolis-Hastings algorithms.

Further analysis [67] employed the underlying geometry of HMC to construct an

automatic selection criterion of the step size, which leads to immediate results

showing the target acceptance ratio of 65% could be relaxed to approximately

60% to 90% with larger values more robust in practical applications.

With these knowledge in mind, leapfrog steps L and step size ε should be ideally

tuned by targeting the acceptance ratio to be between 60% and 90% and then

use performance measures such as effective sample size, posterior log-likelihood

to compare the performance of various combination of leapfrog steps L and step
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size ε. However, in addition to L and ε, the hyper parameter of the momentum

distribution needs also be tuned. By convention, often the Gaussian distribution

is chosen as the momentum distribution which leads to the need to tune the

covariance matrix. Tuning the covariance matrix could be a very challenging

task especially for high dimensional parameter space and thus diagonal covariance

matrix is often selected to bypass this problem. However, this simplification will

result in non-optimal Hamiltonian transition towards the target distribution.

As such, various methods have been proposed to tackle this problem. Riemannian

manifolds HMC (RM-HMC) [68] takes into account the local Riemannian struc-

ture of the parameter space by using the Fisher information matrix as the precision

matrix for q(φ). This eliminates the need to tune this parameter and improves the

mixing of the algorithm. Geodesic HMC [69] (GHMC) improves from RM-HMC

by using the splitting of Hamiltonian techniques and embedding representation to

avoid the troublesome numeric integrator. Adaptive HMC [70] uses an adaptive

method such that hyper parameters could be automatically tuned based on target

acceptance ratio. Relativistic HMC [71] introduces a novel method of using the

speed of light as the maximum speed it could travel to the target distribution

and also provides a correspondence between this extension of HMC and Stochas-

tic gradient descent using momentum. [72] provides an interesting observation of

the relation between slice sampling and HMC. In the scope of this document, we

will focus our discussion on the RM-HMC and its extension GHMC since the key

parameters of our proposed models lives on a Riemannian manifold.
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1.3.2 Riemannian Manifold HMC

Riemannian manifold HMC (RM-HMC) [68] was proposed to tackle high dimen-

sional, strongly correlated posterior distributions. It uses the Fisher Information

associated with the target distribution as the precision matrix of the Gaussian dis-

tribution of the momentum variables. This provides a fully automated adaptation

process that allows exploration of different likelihood region in the Riemannian

structure of the parameter space, which gives HMC a deterministic mechanism of

HMC to auto-tune the covariance matrix of the proposed distribution. The al-

gorithm uses a semi-explicit second order symplectic integrator for non-separable

Hamiltonian equations.

The parameter space of a statistical model exhibits a Riemannian structure whose

invariant metric tensor G(θ) is defined by the non-degenerate Fisher Information

E{∇θL(θ | Y )∇θL(θ | Y )}T where L(θ | Y ) = log p(θ | Y ) [73] . Under the

conventional Gaussian momentum distribution, the Hamiltonian dynamics defined

on the Riemannian manifold incorporating the metric tensor become the following:

H(θ,φ) = p(θ | Y ) + 1
2φ

TG(θ)−1φ, (1.4)

where p(θ | Y ) = −L(θ | Y ) + 1
2 log(2π)D|G(θ)|. Consequently the Hamiltonian

dynamics with the matrix tensor becomes:

∂H

∂φi
= (G(θ)−1φ)i, (1.5)

−∂H
∂θi

= ∂L(θ | Y )
∂θi

− 1
2Tr

G(θ)−1∂G(θ)
∂θi

+ 1
2φ

TG(θ)−1∂G(θ)
∂θi

G(θ)−1φ.

(1.6)
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Evidently, unlike the vanilla HMC, the Hamiltonian dynamics now defined on

the Riemannian manifold are no longer factorisable into two equations and there

is now a coupling between the momentum φ and kinetic variable θ due to the

incorporation of the metric tensor G(θ). Therefore, a numerical symplectic nu-

merical integrator for solving this non-separable Hamiltonian is required to ensure

the posterior converges to the correct distribution. The detail of this numerical

symplectic integrator is shown in the appendix of [68]. The main disadvantage

of RM-HMC algorithms is that this simplectic integrator is computationally in-

efficient, requiring O(N3) operations, where N is the sample size. This feature

make the algorithm impractical to apply to large datasets with high dimensional

parameter spaces.

A thorough and detailed analysis of RM-HMC comparing with various algorithms

on 5 datasets could be found in [68]. The largest number of dimension studied

is merely 24 which is much smaller than our smallest dataset that contains 600

parameters. Due to the concern of the scalability, we determined RM-HMC is not

suitable in our spherical latent factor model. Fortunately, GHMC improves the

RM-HMC algorithm by using the splitting method on the Hamiltonian dynamics

and with the embedded transformation, it is able to bypass the need to use the

troublesome numeric symplectic integrator altogether.

1.3.3 Geodesic Hamiltonian Monte Carlo

An additional shortcoming of RM-HMC is that it requires a global coordinate sys-

tem, which is not available for manifolds such as great spheres in which artificial

boundaries should be induced. Sampling from manifolds is generally considered

a challenging problem that has not receive much attention. A recent introduc-
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tion to geometric measure theory by [74] illustrated the challenges associated with

sampling from the manifolds. Geodesic Hamiltonian Monte Carlo (GHMC) [69]

provides a straightforward tool for sampling from distributions defined on mani-

folds. In contrast to the RM-HMC, it avoids a complex numeric integrator and

does not require a global coordinate system. It also provides a scalable and efficient

way to obtain samples from target distributions defined on manifolds that can be

embedded in Euclidean space, by exploiting the existing forms of the geodesics

such as spheres, affine subspaces, Stiefel manifolds or product manifolds.

The Hausdorff measure is a fundamental concept in geometric measure theory, and

can be mathematically defined in terms of a limit of coverings of the manifold [74].

Heuristically, for a manifold embedded in Rn, it can be considered as the surface

area of the manifold. The relationship between the m-dimensional Hausdorff

measure Hm and the Lebesgue measure λm on RM is defined by the area formula

[75], which can be naturally extended to Riemannian manifolds, where

Hm(dθ) =
√
|G(θ)|λm(dθ). (1.7)

This extension should be familiar to Bayesians as Jeffreys prior, where G again

represents the Fisher information. Hence the Hausdorff measure becomes a natu-

ral reference measure that allows reparameterization without the need to compute

the determinant of Jacobian matrix.

Writing the log target density with respect to the Hausdorff measure of the man-

ifold in 1.4, we obtain

H(θ,φ) = − log πH(θ | Y ) + 1
2φ

TG(θ)−1φ, (1.8)
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where log πH(θ | Y ) is the log density of the posterior distribution with respect

to the Hausdorff measure. To solve the Hamiltonian dynamics in (1.8), we can

use the splitting method shown in [64]. The first component of this splitting is

the potential energy term H [1](θ,φ) = − log πH(θ | Y ) which has exact solution

of a linear update of the momentum φ. The second splitting component is just

the kinetic energy term H [2](θ,φ) = 1
2φ

TG(θ)−1φ which is simply a Hamiltonian

without any potential energy. The solution of this Hamiltonian equation can

be easily shown to be a geodesic flow under the Levi-Civita connection of G

[76]. In addition, we can represent this algorithm in terms of its embedding,

which altogether bypasses the need to explicitly compute the computationally

troublesome metric tensor G and the need to have a global coordinate system

[69]. Hence after assuming a predetermined leapfrog steps L and step size ε, the

corresponding GHMC algorithm also proceeds sequentially for each iteration t as

follows,

1. Sample φ ∼ N(0, Id).

2. Set φ←
(
Id −N(θ)N(θ)T

)
φ.

3. For each of the L leap steps:

(a) φ← φ+ ε
2∇ log πH(θ | y).

(b) φ←
(
Id −N(θ)N(θ)T

)
φ.

(c) Update (θ,φ) by its geodesic flow for a step size of ε.

(d) φ← φ+ ε
2∇ log πH(θ | y).

(e) φ←
(
Id −N(θ)N(θ)T

)
φ.
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4. Compute

h←log πH(θ | y)− 1
2φ

Tφ,

ht−1 ← log πH(θt−1 | y)− 1
2φ

T
t−1φt−1,

R← exp
(
h− ht−1

)
.

5. Set

θt =


θ with probability of min(R, 1),

θ t−1 otherwise,

where Id is the identity covariance matrix of size d and Id − N(θ)N(θ)T is the

orthogonal projection to the tangent space of θ. In the scope of this document, the

embedded manifolds of interest are spheres, and the normal to the tangent space

N(θ) = θ and
(
Id − N(θ)N(θ)T

)
φ is an orthogonal projection of an arbitrary

φ onto the tangent space. Since the geodesics of the spheres are the great circle

rotations with respect to the origin, the corresponding geodesic flows are defined

as,

θ(t) =θ(0) cos(αt) + φ(0)
α

sin(αt),

φ(t) =φ(0) cos(αt)− αφ(0) sin(αt), (1.9)

where α = ‖φ(0)‖ is the constant angular velocity at time 0. Other than the eval-

uation of gradient of the log-density and its associated gradient, the algorithm

requires only vector-vector multiplications and additions, hence it is rather effi-

cient. In other words, this algorithms scales linearly in d. In addition, because

of the way the embedding is constructed, φ can be sampled from a multivari-
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ate Gaussian distribution with an Identity covariance matrix of size d to allow

orthogonal idempotent projection. As a result, the need to tune the covariance

matrix has been completely eliminated, which is another key advantage of this

algorithm. Therefore, we employ GHMC to carry out posterior inference for our

models developed in this thesis.

1.4 Thesis structure

The first part of the thesis up so far lay the ground work to introduce our Bayesian

spherical latent factor model for binary data. In Chapter 2, we discuss the univari-

ate dimensional version of our model which generalizes its Euclidean counterpart

and we show proof-of-concept to justify the use of circular space with the roll-call

voting data from the U.S Congress between 1988 to 2019. In Chapter 3, we build

upon our univariate model to generate a general framework for embedding binary

data into spherical latent spaces on which a new class of prior distributions that

does not degenerate as dimension increases is proposed. In Chapter 4, we extend

our proposed model to also embed ordinal data into the spherical latent space.

This is achieved through a careful selection of different types of ordinal structure

and a comparison of various configurations of the link function. In Chapter 5, we

conclude the thesis and identify several areas for potential future works in this

line of research.

All the implementation of the models developed in this thesis is available at https:

//github.com/Xingchen-Yu.
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Chapter 2

Circular Factor Model for Binary

Data

This chapter introduces a new class of spatial voting models in which preferences

live in a circular space. Our formulation includes the one-dimensional version of

the Euclidean model discussed in Section 1.2 as a special (limiting case), allowing

the data to inform us about the geometry of the underlying latent space. As

we discussed in Section 1.1, a circular structure for the latent space is motivated

by both theoretical (the so-called “horseshoe theory” of political thinking) and

empirical (goodness of fit) considerations in which members at the opposite ends

of the ideological spectrum reveal similar preferences by voting together against

the rest of the legislature. In particular, by applying the model to roll-call vot-

ing data from the U.S. Congress between 1988 and 2019, we demonstrate that

circular latent spaces provide a better explanation for the political process in the

House of Representatives than Euclidean models, that policy spaces have become

increasingly circular in recent years (and, especially, since 2010), and that legis-
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lators’s rankings generated through the use of the circular geometry tend to be

more consistent with their stated policy positions.

We start this chapter by a motivating example from the traditional roll-call voting

record analysis of the 116th Congress. Next we introduces our circular factor model

and discusses the link function, prior elicitation, identifiability and its connection

to the traditional Euclidean factor model. Section 2.3 discusses our computational

approach to estimating model parameters, which is based on Geodesic Hamilto-

nian Monte Carlo (GHMC) algorithms. Section 2.4 illustrates the behavior of our

model on the roll call data of the 112 and 116th U.S. House of Representatives. In

addition, we also present a longitudinal analysis of the contemporary U.S. House

of Representatives. Finally, Section 2.5 summarizes the chapter.

2.1 A motivating example: Ranking “The Squad”

The November 2018 midterm election saw the Democratic Party win a new ma-

jority in the House of Representatives on the back of a record number of women,

young, and minority candidates. Particularly notable among them is a group

of four new members (Alexandria Ocasio-Cortez of New York, Ilhan Omar of

Minnesota, Ayanna Pressley of Massachusetts, and Rashida Tlaib of Michigan,

all women of color under 50 supported by the Justice Democrats political ac-

tion committee), who often refer to themselves as “The Squad”. As discussed in

[39] and [40], the Squad is widely understood to belong to the left wing of the

Democratic party, supporting policies such as the Green New Deal, reparations

for slavery, and abolishing the Immigration and Customs Enforcement Agency.

Partly because of their support for these policies, they have shown a willingness
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to challenge the leadership of their party and to vote against it on some issues.

Table 2.1 presents the rank order of the members of the Squad on a liberal-

conservative scale based on their voting record during the first session of the 116th

Congress (extending between January 3, 2019 and January 3, 2020). These rank-

ings were obtained by fitting one- and two-dimensional versions of the Euclidean

model described in [22] and [23] (see also Section 1.2). Counterintuitively, all

members of the Gang are ranked towards the center of the political spectrum un-

der both models. Most importantly, note that the addition of a second dimension

does not dramatically affect the original surprising conclusion that they all appear

to belong to the conservative wing of the Democratic party. As we discussed in the

introduction, this counterintuitive result is a direct consequence of the Euclidean

geometry underlying these models: If a legislator votes with the opposite party

against the majority of its own, the only possible explanation is that the legislator

is a moderate.

Table 2.1: Median rank of the members of the “Squad” during the first session
of the 116th U.S. House of Representatives according to two scaling models: A
one dimensional Euclidean model, and a two dimensional Euclidean model. In
the case of the two dimensional model, the ranking provided is along the first
(highest variability) dimension of the policy space. Lower numbers for the ranks
correspond to more liberal legislators. Numbers in parenthesis correspond to 95%
credible intervals.

Rank Order

Euclidean (1D) Euclidean (2D)

Pressley (D MA-7) 172 (131,196) 168 (113,200)

Omar (D MN-5) 176 (135,198) 160 (98,195)

Tlaib (D MI-13) 180 (146,200) 169 (108,200)

Ocasio-Cortez (D NY-14) 203 (185,215) 197 (172,213)
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To further investigate the voting behavior of the Squad, we also fitted the non-

parametric mixture model described in [35] to these data. The model identifies

three groups of Democrats that appear to have distinct behavior: a small group

of 18 legislators representing some of the districts that were flipped by Democrats

during the 2018 election and whose seats are widely understood to be at most risk

in the 2020 election (we could call these the vulnerables), a medium sized group

of 61 legislators that include most of the remaining representatives from flipped

districts as well as a number of legislators with relatively short tenures in the

House (we could call them the pragmatists), and a large group of 155 legislators

that includes the leadership as well as most representatives with a long tenure in

the House (call them the establishment). Interestingly for our purposes, the mem-

bers of the Squad are not split off into a separate group that includes left-wing

activists, but are instead clustered with the establishment. Note that, because of

the structure of the [35] model, no further rankings of the legislators are possible

within each block.

2.2 Bayesian spatial voting models with circular

policy spaces

The framework described in Section 1.2 lends itself naturally to extensions to

policy spaces with more general geometric properties. In particular, we can embed

the latent positions βi, ψj and ζj on a Riemannian manifold D, and then replace

the Euclidean distance used in the definition of the utility functions in Equation
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(4.14) with the geodesic distance ρ on D, so that

UYea(ψj,βi) = −ρ (ψj,βi)2 + εi,j, UNay(ζj,βi) = −ρ (ζj,βi)2 + νi,j. (2.1)

In this chapter, we focus on the special case where D corresponds to the unit

circle, so that βi, ψj, ζj ∈ [−π, π] can be interpreted as angular positions on the

circle, and ρ(a, b) = arccos(cos(a− b)) is just the smallest angle separating a and

b. Because of the conditional independence among votes, this formulation leads

to a likelihood function of the form

Pr(Y | ψ, ζ,β) =
I∏
i=1

J∏
j=1

[
Gκj (ei,j (ψj, ζj, βi))

]yi,j [1−Gκj (ei,j (ψj, ζj, βi))
]1−yi,j

,

(2.2)

where Y is the I × J data matrix with entries yi,j, ψ = (ψ1, . . . , ψJ)T , ζ =

(ζ1, . . . , ζJ)T and β = (β1, . . . , βI)T are the vectors of unknown positions for all

legislators and questions in the policy space, Gκj is the cumulative distribution

function associated with νi,j − εi,j, and

ei,j (ψj, ζj, βi) = {arccos(cos(ζj − βi))}2 − {arccos(cos(ψj − βi))}2.

Figure 2.1 provides some intuition for the additional flexibility intrinsic to the

circular voting model, and in particular, for its ability to accommodate situations

in which the “extremes voting together”. The left panel depicts a situation in

which the outcome of a vote follows along party lines. This type of situation, in

which the “Yea” and “Nay” positions fall close to the center of mass of opposite

parties, represents the most typical type of question in most legislatures, and is
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well modeled using traditional Euclidean policy spaces. In particular, it captures

situations in which moderates from one party vote with the other party. In con-

trast, the right panel depicts a situation in which moving the “Yea” and “Nay”

positions to the upper and lower poles leads, with the same ideal points as before,

to an outcome in which the “extreme” members of each party join forces in voting

against the question.

(a) Partisan vote (b) Extremes votes together

Figure 2.1: Two configurations in a circular policy space. Check marks and
crosses correspond to the ideal points of legislators voting in favor and against a
question, and are the same on both panels. Circles correspond to the “Yea” and
“Nay” positions for the questions. The left panel, in which the bill positions are
located in the upper hemisphere, corresponds to a vote along party lines. The
right panel, in which the “Yea” and “Nay” positions fall in the upper and lower
poles, corresponds to a question in which the extremes vote together.

2.2.1 Link function

Selecting a link function for the model is non-trivial. Note that, unlike the Eu-

clidean distance in Rq, the geodesic distance on the circle takes values in the in-

terval [0, π]. This means that the difference between two squared distances takes

values in [−π2, π2], and our link function must account for this. We propose to
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define Gκj as the cumulative distribution function of scaled and shifted symmetric

beta distribution with density,

gκj(z) = 1
2π2

Γ(2κj)
Γ(κj)Γ(κj)

π2 + z

2π2

κj−1π2 − z
2π2

κj−1

, z ∈ [−π2, π2]. (2.3)

The use of this transformed symmetric beta distribution has two advantages in

this setting. First, the parameter κj has a direct interpretation as a precision

parameter. Indeed, the variance of a random variable with density (4.26) is equal

to π4/(2κj + 1). This provides a direct analogy with the scaling parameter σj

introduced in Section 1.2. Secondly, note that

lim
κj→∞

gκj(z)√
2κj+1

2π5 exp
{
−2κj+1

π4 z2
} = 1, (2.4)

i.e., as the concentration parameter increases, the density gκj resembles that of

a normal distribution with zero mean and variance π4/(2κj + 1). This limiting

behavior will play an important role when discussing the relationship between our

circular model and traditional Euclidean models (see Section 2.2.4).

2.2.2 Identifiability

As mentioned in the introduction, the goal of our circular model is scaling rather

than prediction. Thus, the identifiability of the latent traits β1, . . . , βI is crucial.

We discuss here the constraints required to make all model parameters identifiable.

To start, notice that the likelihood in Equation 2.2 remains constant if the same

shift is applied to all βis, ψjs and ζjs. We address this location invariance through

a careful selection of the prior distribution on the βis (see Section 2.2.3). Further-
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more, the likelihood also remains constant if any angle is independently increased

or decreased by 2π. This invariance to “wrappings around the circle” is easily

addressed by mapping all angles to the [−π, π] interval. Finally, note that the

model is invariant to reflections of the policy space, just like the one-dimensional

Euclidean model. We address this by fixing the sign of the ideal point of one

particular legislator (e.g., the whip of one of the parties).

A key difference between the Euclidean and circular models, however, is that the

positions in the circular model are not invariant to changes in scale. As a conse-

quence, the parameters κ1, . . . , κJ controlling the variance of the link function in

Equation (2.2) are identifiable and can be estimated separately from the βis, ψjs

and ζjs. In fact, because the geodesic distance ρ is bounded, learning κjs from

the data and allowing them to vary across questions is key to accommodate the

full variety of voting behaviors, and in particular, unanimous votes.

2.2.3 Prior distributions

We consider now the selection of priors on the latent positions. Since βi, ζj and

ψj represent angles, it is natural to use independent von Mises distributions for

these parameters,
βi | ωβ, τβ ∼ vonMis(τβ, ωβ),

ψj | ωψ, τψ ∼ vonMis(τψ, ωψ),

ζj | ωζ , τζ ∼ vonMis(τζ , ωζ).

(2.5)

A random variable Z follows a von Mises distributions with mean τ and concen-
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tration ω, Z ∼ vonMis(τ, ω), if it has density

p(z) = 1
2πIo(ω) exp {ω cos(z − τ)}, z ∈ [−π, π],

where Ik(ω) is the modified Bessel function of order k. When ω = 0, the von

Mises distribution becomes the uniform distribution on the circle. On the other

hand, as ω grows, the distribution behaves as a normal distribution with variance

1/ω, i.e.,

lim
ω→∞

1
2πIo(ω) exp {ω cos(z − τ)}√

ω
2π exp

{
− ω

2 (z − µ)2
} = 1. (2.6)

In fact, we can think about the von Mises as being equivalent to the Gaussian

distribution on the circle.

To elicit the hyperparameters of the model we rely on the intuition provided

by Figure 2.1. Since we want the question’s positions to potentially be located

anywhere on the circle, we set ωψ = ωζ = 0 (leading, as we mentioned before, to

uniform prior on the circle for these two parameters). On the other hand, the ideal

points are assigned a zero mean, i.e., τβ = 0, and a non-zero precision, i.e, ωβ > 0.

This structure ensures (weak) identifiability of all latent positions to location

shifts (recall our discussion from Section 2.2.2). In particular, we let ωβ be an

Exponential hyperprior with mean θ = 10, so that Pr(−π/2 < βi < π/2) ≈ 0.95,

and perform a sensitivity analyses. This choice for ωβ reflects our prior belief that

a Euclidean model is reasonable in most cases, and therefore most ideal points will

be concentrated on the upper hemisphere (see discussion in Section 2.2.4). Finally,

we assume that the κjs are independent and identically distributed a priori from

an exponential prior with mean λ, which is in turn assigned a (conditionally

conjugate) inverse Gamma prior with one degree of freedom and rate parameter
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ξ = 25 (i.e., 1/λ follows an exponential distribution with mean ξ = 25). Again,

we investigate the impact of this choice in our applications through a sensitivity

analysis.

2.2.4 Relationship with traditional Euclidean models

The probit version of the one-dimensional Euclidean model described in Section

1.2 can be seen as a special (limit) case of our circular model. To understand this

relationship, consider projecting the latent angles that describe the circular model

onto the tangent space at 0 (see Figure 2.2). Two points need to be made about

such projection. First, note that as ωβ → ∞, the ideal points of the legislators

will tend to concentrate around the point of tangency. As a consequence, the

projection of the angles βi, ψj and ζj onto the tangent space (labeled β′i, ψ′j and

ζ ′j in the figure) satisfy β′i = tan βi ≈ βi, ψ′j = tanψi ≈ ψi and ζ ′j = tan ζi ≈ ζi for

large values of ωβ. Furthermore, under those circumstances, ρ(ψj, βi) ≈ |ψj − βi|

and ρ(ζj, βi) ≈ |ζj − βi|, i.e., the geodesic distance between the points in the

manifold is very close to the Euclidean distance between their projections on the

tangent space. Secondly, recall from Equation (2.4) that, as κj → ∞, the link

function Gκj we have chosen for the circular model will resemble the cumulative

distribution of the normal distribution with variance π4

2κj+1 . As a consequence of

these two features, if we let both ωβ →∞ and κj →∞ while keeping π4ωβ
2κj+1 = 1,

the likelihood function for the spherical model will converge to the likelihood of

a one-dimensional Euclidean model with a probit link constructed on the tangent

space at 0. Furthermore, under these circumstances, the von Mises prior on the

spherical coordinates maps onto the widely used Gaussian prior on the tangent

space (recall Equation (2.6)).
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The previous discussion suggests that we can use the variance of the ideal points to

measure the level of circularity in the policy space of a given dataset. In particular

small values for this variance indicate that the policy space is approximately

Euclidean, and vice versa. We will make use of this observation in Section 2.4.3.

Figure 2.2: The circular manifold and its projection on the tangent space at
the origin (located in our graphs at the upper pole). The values βi, ψj and
ζj correspond to the coordinates in the circular policy space (measured as angles
with respect to vertical axis), while the values of β′i, ψ′j and ζ ′j are their projections
on the tangent space.

Another useful interpretation of our model that arises from this connection is as

an interpolator between the one-dimensional and the two-dimensional Euclidean

models. Indeed, in addition to the natural geometric argument that arises from

embedding the circle into a two-dimensional Euclidean space, we note that the

likelihood associated with the 1D Euclidean model involves O(I + 2J) parame-

ters, the one for the circular model involves O(I + 3J) parameters, and the one

for the two-dimensional Euclidean involves O(2I + 4J). This means that the

circular model provides slightly more degrees of freedom to fit the data than a

one-dimensional Euclidean model, but less than a two-dimensional Euclidean.
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2.2.5 Ranking legislators under the circular model

The unit circle is not endowed with a total order, which represents a challenge if

our goal is to rank legislators using the latent scale. We get around this issue by

unwinding the circle into a traditional linear scale in (−π, π]. Breaking the circle

at the bottom pole is natural if we consider the fact that the prior on the ideal

points is centered at 0 (which corresponds to the middle of this interval), as well

as the behavior of the prior when ωβ →∞.

Unwinding the circle might seem somewhat ad-hoc after our heavy emphasis on

the circular nature of the policy space. A formal justification is as follows: if the

ideal points β1, . . . , βI all lie on the interval (−π/2, π/2) (i.e., the upper semi-circle

in Figure 2.1) the ranking of the projection of the ideal points on the tangent space

at 0 (given by β′i = tan βi, recall Figure 2.2) is identical to the ranking generated by

unwinding the circle (since the tangent is a monotonic function when restricted to

this domain). This scenario (all βis in the (−π/2, π/2) interval) is not a contrived

one: it is an assumption that underlies the construction of our model, one that

seems to be supported in most of the examples discussed in Section 2.4, including

some of those in which there is evidence that the circular model dominates the

Euclidean one.
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2.3 Computation

The posterior distribution for the model, which takes the form

p(β, ζ,ψ,κ, ωβ, λ | Y ) ∝ I∏
i=1

J∏
j=1

{
Gκj (ei,j (ψj, ζj, βi))

}yi,j {1−Gκj (ei,j (ψj, ζj, βi))
}1−yi,j


[
I∏
i=1

exp {ωββi}
2πI0(ωβ)

] [1
θ

exp
{
−ωβ
θ

}]  J∏
j=1

1
λ

exp
{
−κj
λ

} [ ξ
λ2 exp

{
− ξ
λ

}]
, (2.7)

is analytically intractable. Hence, inference for the model parameters is carried

out using Markov chain Monte Carlo (MCMC) algorithms.

The algorithm we propose is a hybrid that combines Gibbs sampling, random walk

Metropolis-Hastings and Hamiltonian Monte Carlo (HMC) steps to sample from

the conditional distributions of each parameter. The simplest steps correspond

to sampling the parameters λ, ωβ and κ1, . . . , κJ . More specifically, we sample λ

from its inverse-Gamma full conditional posterior distribution, and sample ωβ as

well as each of the κjs using random walk Metropolis Hastings with log-Gaussian

proposals. The variance of these proposals are tuned so that the acceptance rate

is roughly 40%. On the other hand, for sampling the latent positions we employ

the Geodesic Hamiltonian Monte Carlo (GHMC) algorithm described in Section

1.3.3.

As an example, consider the step associated with updating each of the βis. From

Equation (2.7), the density (with respect to the Lebesgue measure on [−π, π]) of

its full conditional distribution takes the form
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p(βi | · · · ) ∝ exp {ωββi}
J∏
j=1

{
Gκj

(
{arccos(cos(ζj − βi))}2 − {arccos(cos(ψj − βi))}2

)}yi,j
{

1−Gκj

(
{arccos(cos(ζj − βi))}2 − {arccos(cos(ψj − βi))}2

)}1−yi,j
,

while the density of the associated Hausdorff measure in R2 is given by

p(xβi | · · · ) ∝ exp
{
ηTβxβi

}
J∏
j=1

{
Gκj

(
{arccos(zTζjxβi)}

2 − {arccos(zTψjxβi)}
2
)}yi,j

{
1−Gκj

(
{arccos(zTζjxβi)}

2 − {arccos(zTψjxβi)}
2
)}1−yi,j

, xTβixβi = 1,

where ηTβ = (ωβ, 0), zTψj = (cosψj, sinψj), zTζj = (cos ζj, sin ζj), and the mapping

from βi to xβi is xTβi = (cos βi, sin βi)T . Given tuning parameters ε (the step size)

and L (the number of steps), the GHMC sampler takes the form:

1. Map the current value of the chain, β(c)
i onto the embedding space R2 by

setting x(c)
βi

=
(
cos β(c)

i , sin β(c)
i

)T
and initialize xβi = x

(c)
βi
.

2. Initialize the auxiliary momentum variable φ by sampling φ ∼ N(0, I2).

3. Project the momentum onto the tangent space at xβi by setting φ ←(
I2 − xβixTβi

)
φ, and then set φ(c) = φ.

4. For each of the L leap steps:

(a) Update the momentum by setting φ← φ+ ε
2∇ log pH(xβi | · · · ).

(b) Project the momentum onto the tangent space at xβi by setting φ ←(
I2 − xβixTβi

)
φ, and then set the angular velocity of the geodesic flow

34



ν = ‖φ‖.

(c) Update xβi and φ jointly according to the geodesic flow with step size

of ε,

xβi ←xβi cos(νε) + φ

ν
sin(νε), φ←φ cos(νε)− ν xβi sin(νε).

(d) Update φ← φ+ ε
2∇ log pH(xβi | · · · ).

(e) Project the momentum onto the tangent space at xβi by setting φ ←(
I2 − xβixTβi

)
φ.

5. Set the proposed values as x(p)
βi

= xβi , φ(p) = φ, and β(p) = arctan2 (xβi,2, xβi,1).

The proposed value β(p) is accepted with probability

min

1,
pH
(
x

(p)
βi
| · · ·

)
exp

{
−1

2

[
φ(p)

]T
φ(p)

}
pH
(
x

(c)
βi
| · · ·

)
exp

{
−1

2 [φ(c)]T φ(c)
}


Detailed expressions for the Hausdorff measures associated with the full condi-

tional distributions of the βis, ψjs and ζjs, as well as their gradients, can be seen

in Appendix A.1. In our implementation of the algorithm, we periodically vary

the value of the tuning parameters ε and L by randomly sampling them from pre-

determined distributions. These changes are done independently of the current

value of the parameter, thereby preserving the Markovian structure of the algo-

rithm. This approach, sometimes called “jittering” in the literature (e.g., see 77,

pg. 306), greatly improves the mixing of the algorithm in our experiments. The

specific range in which ε and L move for each parameter and dataset is selected

to target an average acceptance probability between 60% and 90% [65, 67].
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2.4 Circular voting in the modern U.S. Congress

In this Section we analyze roll call voting data from the modern U.S. House of

Representatives. We first present legislator-level results for two specific Houses

(the 116th and the 112th), and then show a longitudinal analysis of chamber-

level summaries covering the 100th to the 116th Houses. In all these analyses,

the number of leaps used in the HMC steps is randomly selected from a discrete

uniform distribution between 1 and 10 every 50 samples. Similarly, the leap sizes

are drawn from uniform distribution on (0.01, 0.04) or (0.005, 0.04) for each βi,

and from a uniform distribution on (0.01, 0.105) for each ζj and ψj. All inference

presented in this Section are based on 20,000 samples obtained after convergence

of the Markov chain Monte Carlo algorithm. The length of the burn in period

varied between 20,000 and 80,000 iterations depending on the dataset, with a

median around 30,000. Convergence was checked by monitoring the value of the

log-likelihood function, both through visual inspection of the trace plot, and by

comparing multiple chains using the procedure in [78]. Details on the convergence

and mixing analysis for the 116th House and the 112th House can be seen in its

corresponding section. For each House, we excluded legislators who are absent for

more than 40% of the votes.

2.4.1 The Squad, revisited

First, we revisit the voting record of the first session of the 116th Congress dis-

cussed in Section 2.1. Figure 2.3 presents trace plots for the log-likelihood of the

model for two runs (panel (a) corresponds to the run on which the results in this

section are based, while panel (b) contains a second run obtained from a different,
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randomly selected, starting point). Both runs include a total of 100,000 samples,

and the vertical line indicates the end of the burn-in period. Convergence of the

two chains to a common mode was checked using the Gelman and Rubin test [78]

(observed potential scale reduction factor is 1.012, with an upper limit of 1.058

for the associated 95% confidence interval). In this dataset, we can see that the

algorithm quickly moves close to a high probability area, but once there, takes

a while to find the mode. To further emphasize that the two runs identify the

same mode, we present in Figure 2.4 a comparison of the rank order of legislators

generated from both runs. We can see that the two sets of results are nearly iden-

tical, with the very small differences that can be observed likely being the result

of Monte Carlo error.

Figure 2.3: Trace plots for the log-likelihood associated with two runs of the
MCMC algorithm for the roll call data from the first session of the 116th U.S.
House of Representatives.
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Figure 2.4: Comparison of the posterior median ranks of the legislators obtained
from each of the two runs for the 116th U.S. House of Representatives.

Figure 2.5 shows the effective sample sizes associated with the rank orders gen-

erated by each of the two runs. We focus on the rank orders rather than the βis

because (1) these are the key quantities of interest in our analysis, and (2) the

ranks are identifiable from the data. Furthermore, because of the large number

of legislators involved (432), the results are presented in the form of boxplots.

For most legislators, the effective sample size is quite reasonable (75% of the

legislator’s ranks have an effective sample size above 2,000), particularly when

considering the complexity of the model. However, we do see that there is a small

number of legislators for which the effective sample size is very low. This behav-

ior, which might seem alarming at first sight, reflects a limitation of the effective

sample size as a measure of mixing, and not an issue with our algorithm and

results. Indeed, note that the ranks are are discrete parameters, and that they

are not independent across legislators. This means that, even if the algorithm
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is properly exploring the parameter space, the implied ranks might remain the

same over multiple iterations. We found this situation arising for a couple of very

extreme legislators. The prototypical example is Justin Amash, who is estimated

by our model to be the most extreme Republican in the 116th, with no uncertainty

associated with such a rank (see Table 2.3). For Amash, the posterior samples of

the rank are highly autocorrelated, leading to a low effective sample size even if

the algorithm is mixing properly.
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Figure 2.5: Effective Sample Size of the rank order of legislators generated by
the two runs for the 116th U.S. House of Representatives.

Table 2.2 reports the posterior median rank order and associated 95% credible

intervals for the members of the Squad according to our circular model. The

difference between these and those we reported in Table 2.1 is dramatic, with the

circular model clearly placing Presley, Omar, Tlaib and Ocasio-Cortez among the

most liberal members of the Democratic party.
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Table 2.2: Median rank of the members of the “Squad” during the first ses-
sion of the 116th U.S. House of Representatives according to our circular model.
Lower numbers for the ranks correspond to more liberal legislators. Numbers in
parenthesis correspond to 95% credible intervals.

Rank Order (Circular)

Pressley (D MA-7) 5 (1,21)

Omar (D MN-5) 2 (1,8)

Tlaib (D MI-13) 2 (1,9)

Ocasio-Cortez (D NY-14) 3 (1,11)

Table 2.3: Median rank of three selected Republican legislators during the first
session of the 116th U.S. House of Representatives according to two models: a one-
dimensional Euclidean voting model, and our circular model. Higher numbers for
the ranks correspond to more conservative legislators. Numbers in parenthesis
correspond to 95% credible intervals.

Rank Order

Euclidean (1D) Circular

Amash (R MI-3) 249 (244,255) 432 (432,432)

Massie (R, KY-4) 356 (334,375) 431 (430,431)

Gaetz (R FL-1) 314 (297,332) 418 (412,423)

More generally, Figure 2.6 compares the rank order of legislators estimated using

the one-dimensional Euclidean model to the rank order estimated by the circular

model. On the Democratic side, we can see some substantial differences in the

ranks estimated by the Euclidean model versus those estimated by the circular

model. However, it is clear that the largest differences correspond to the four

members of the Squad. In contrast, on the Republican side, the ranks estimated

by both models are generally in close agreement. The three main exceptions are
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representatives Justin Amash (MI-3), Thomas Massie (KY-4) and Matt Gaetz

(FL-1), who are estimated to be more extreme by the circular model (see also

Table 2.3). An inspection of their record suggests that the ranking generated by

the circular model is quite sensible. In particular, consider Justin Amash and

Thomas Massie. Justin Amash is a libertarian-leaning conservative first elected

in 2010 as a Republican. He has received high scores from from right-leaning

interest groups such as the Club for Growth, Heritage Action for America, and

Americans for Prosperity, and praise from conservative think tanks and nonprofit

organizations. He was also a founding member of the House Freedom Caucus,

a group of hard-line conservative Republicans in the House of Representatives.

However, he is also widely known for his contrarian views and for voting with

Democrats in certain issues. For example, he was the only Republican to vote

against the “In God We Trust” House Resolution passed in November 2011 and

the House Resolution supporting the officers and personnel of Immigration and

Customs Enforcement (ICE) in July 2018. Furthermore, he co-sponsored a bill by

Democrat Ayanna Pressley (one of the members of the Squad) that would abolish

the death penalty at the federal level. In fact, Amash left the Republican party

in July 2019 to become an independent, and became the only non-Democrat

in the House to vote in favor of an impeachment inquiry into the activities of

President Trump and of either of the two articles of impeachment. Thomas Massie

is another libertarian leaning Republican representative often associated with the

House Liberty Caucus of Tea Party Republicans. However, he is also know for

often being the only member of the House to vote against a number of resolutions.

For example, on March 27, 2020, Massie forced the return to Washington of

members of the House (who were sheltering in place in the midst of the Covid-19

crisis) by withholding unanimous consent on the passage of the The Coronavirus
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Aid, Relief, and Economic Security Act (CARES) Act.
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Figure 2.6: Posterior median of the rank-order in the first session of the 116th

U.S. House of Representatives under the one-dimensional Euclidean (horizontal
axis) and the circular (vertical axis) models.

To complete this illustration, we provide specific information about various bills

in which both circular and Euclidean voting patterns are present. First, Figure

2.7 provides two examples of circular voting in the 116th House of Representatives.

The first one, HRES246, opposed the global boycott, divestment, and sanctions
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movement, as well as other efforts targeting Israel. This resolution (1) urged

both sides in the Israel-Palestinian conflict to return to direct negotiations, (2)

expressed support for a solution resulting in the state of Israel existing alongside

a democratic Palestinian state, and (3) reaffirmed the right of U.S. citizens to free

speech, including the right to protest or criticize U.S. or foreign government poli-

cies. HRES246 was opposed by a group of 16 Democrats (including three members

of the Squad), as well as by Representative Massie. Massie opposed the measure

because it “calls for Israel to implement a so-called two-state solution. Rather

than dictate to Israel what the U.S. believes is best for Israel, Congress should

instead refrain from interfering with Israel’s own decisions regarding its foreign

and domestic policy." He also stated that he “do[es] not support federal efforts to

condemn any type of private boycott, regardless of whether or not a boycott is

based upon bad motives. These are matters that Congress should properly leave

to the States and to the people to decide.” Both of these are traditional “libertar-

ian” arguments. On the other hand, the main driver for Democrats voting against

this resolution was support for Palestine. For example, in her floor speech, repre-

sentative Tlaib invoked her Palestinian grandmother in opposing the resolution,

which she said “attempts to delegitimize a certain people’s political speech and

send a message that our government can and will take action against speech it

doesn’t like.” While there seems to be some ideological common ground between

both positions (in particular, a shared desire to limit government impingement

on free speech), it is clear that the underlying ideology is completely different,

making this an instantiation of the Horseshoe Theory in the context of the U.S.

House of Representatives.

The second example in this category is S1790, the National Defense Authoriza-

tion Act for Fiscal Year 2020. S1790 authorized FY2020 appropriations and set
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forth policies for Department of Defense (DOD) programs and activities, includ-

ing military personnel strengths. S1790 was opposed by two Democrats (Tlaib,

who is one of the members of the squad, and Blumenauer), as well as by two

Republicans (Massie and Amash, whom we have already discussed). Note that,

for both HRES246 and S1790, the “Nay” position is roughly located opposite to

the (circular) average of all ideal points, while the “Yea” position is located close

to the (circular) average of the ideal points of the legislators that voted in favor

of the measure. Furthermore, the posterior distribution of κj indicates moderate

to low concentration values for the link function for this kind of votes.

On the other hand, Figure 2.8 shows two examples of Euclidean voting, HRES5

and HR135. HRES5, which sets forth the rule for consideration of HRES6 (adopt-

ing the Rules of the House of Representatives for the 116th Congress), HR21

(Consolidated Appropriations Act, 2019), and HJRES1 (FY2019 Department of

Homeland Security appropriations), was voted strictly along party party lines.

We see in this case that the “Yea” and “Nay” positions are located at either side

of the parties, and that the posterior distribution ofκj favors relatively large con-

centration values. This configuration is very similar to the one that is obtained by

fitting a Euclidean model to the data. On the other hand, HR135, the Elijah E.

Cummings Federal Employee Antidiscrimination Act of 2019, requires each fed-

eral agency to establish a model Equal Employment Opportunity Program that

is independent of the agency’s Human Capital or General Counsel office, and it

establishes requirements related to complaints of discrimination and retaliation in

the workplace. HR135 was voted unanimously (except for 8 abstentions). Note

that the “Yea” and “Nay” positions in this case are similar to those estimated for

the circular votes, but the corresponding value of κj is much higher for the fully

unanimous vote.
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Figure 2.7: Two examples of circular voting patterns during the 116th House of
Representatives. Graphs on the left column depict the posterior mean ideal point
for the legislators (which are the same on both plots), along with the “Yea” and
“Nay” positions (represented through a check mark and a cross, respectively). The
names in the graphs correspond to the legislators that voted against the measure.
The right columns presents a histogram of samples of the posterior distribution
of the corresponding κj. The vertical line corresponds to E(1/λ | data) = E(κj |
data).
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Figure 2.8: Two examples of Euclidean voting patterns during the 116th House of
Representatives. Graphs on the left column depict the posterior mean ideal point
for the legislators (which are the same on both plots), along with the “Yea” and
“Nay” positions (represented through a check mark and a cross, respectively). The
right columns presents a histogram of samples of the posterior distribution of the
corresponding κj. The vertical line corresponds to E(1/λ | data) = E(κj | data).

Sensitivity analysis

In order to understand the effect of the priors on our inferences, we conducted

a sensitivity analysis by refitting the model under two alternative priors for the

116th Houses. First, we consider a Gamma prior with shape parameter a = 7 and

rate parameter b = 1 for the βis (so that Pr(−π/2 < βi < π/2) ≈ 0.995 a priori)
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and set ξ = 100. Relatively speaking, this prior favors configurations that are

closer to one-dimensional Euclidean model. Secondly, we consider an exponential

prior with rate parameter θ = 2 for the βis (so that Pr(−π/2 < βi < π/2) ≈ 0.80

a priori) and set ξ = 25. Compared to the first hyperprior, this second one favors

circular configurations.

Figures 2.9 compare the rank order of the legislators generated under our default

prior with each of our two alternative priors for the 116th Houses. In both cases,

we can see that the results are nearly identical in all cases, with the very small

differences observed in the graphs being likely driven by Monte Carlo noise.
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Figure 2.9: Posterior median rank comparison between default prior and both
alternative priors for the 116th House.

2.4.2 The Conservative Revolt of 2010

The election in November 2008 of Barack Obama as president of the United States

generated a strong conservative backlash that has had a profound impact on U.S.
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politics in general, and on the Republican party in particular [38]. This backlash

influenced the results of the 2010 midterm election [36]. The 112th Congress had a

large Republican majority (in fact, had the largest Republican majority since the

80th Congress in the late 1940s). It was also the first Congress in over 150 years

in which the Republican party held the House but not the Senate, and the first

Congress to begin with the House and the Senate controlled by different parties

since the 99th Congress (1985-1987).

Among the 242 Republican legislators elected to the 112th House of Representa-

tives was a large group of insurgent candidates, many of them backed by a loose

grassroots coalition ostensibly built on the principles of fiscal responsibility, ad-

herence to the Constitution, and limited government, that has become known as

the Tea Party movement [37]. Many of these insurgent legislators went on to form

congressional member organizations such as the Tea Party caucus and the House

Liberty caucus (both founded during the 112th Congress, the first in July 2010

and the second in March 2011), as well as the House Freedom caucus (founded in

2015 during the 114th Congress). These three caucuses are all considered to rep-

resent the most extreme wing of the Republican party, and some recent evidence

suggests that their members vote like a significantly farther-right third party in

Congress (e.g., see 79). However, as we will see shortly, many of their members

are ranked by traditional spatial voting models as mainstream, or even centrist

Republicans.

Similarly to the previous section, we present in Figure 2.10 trace plots for the log-

likelihood of the model for two runs (panel (a) corresponds to the run on which the

results in this section are based, while panel (b) contains a second run obtained

from a different, randomly selected, starting point). Both runs include a total of

100,000 samples, and the vertical line indicates the end of the burn-in period. As
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before, convergence of the two chains to a common mode was checked using the

Gelman and Rubin test (in this case, the observed potential scale reduction factor

is 1.006, with an upper limit of 1.029 for the associated 95% confidence interval).

We again observe that the algorithm quickly moves close to a high probability

area, but once there, takes a while to find the mode. Finally, Figure 2.11 presents

a comparison of the rank order of legislators generated from both runs. As before,

the two sets of results are near identical, with the very small differences that can

be observed likely being the result of Monte Carlo error.

Figure 2.10: Trace plots for the log-likelihood associated with two runs of the
MCMC algorithm for the roll call data from the 112th U.S. House of Representa-
tives.

As in Figure 2.5, Figure 2.12 shows the effective sample sizes associated with the

rank orders generated by each of the two runs. Overall, the effective sample sizes

for the data from the 112th House tend to be somewhat lower than in the case of

the of the 116th. However, the values still seem reasonable (75% of the legislator’s

ranks have effective sample sizes above 1,200). We again see a few ranks with

quite low effective sample sizes, which we still attribute to the fact that ranks are

discrete quantities that are not independent across legislators.
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Figure 2.11: Comparison of the posterior median ranks of the legislators ob-
tained from each of the two runs for the 112th U.S. House of Representatives.
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the two runs for the 112th U.S. House of Representatives.
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Figure 2.13 compares the rank order of legislators estimated using a one dimen-

sional model to the rank order estimated by our circular model. For the Demo-

cratic party, the ranking generated by both models are reasonably similar. The

main outlier is Dennis Kucinich (OH-10), who is ranked as much more liberal by

the circular model: his posterior median rank is 2 under the circular model, with

a 95% credible interval of (1,6), but it is 76 under the Euclidean model, with

a 95% credible interval (62,97). This more extreme ranking fits better with the

widely-held perception that Kucinich was was one of the most liberal members

of the United States House of Representatives during this period. In contrast,

on the Republican side, we see some very large differences between the rankings

generated by both models. In particular, we see a large group of legislators that

are ranked as much more conservative by the circular model. Figure 2.15 provides

additional details for the 15 Republican legislators for whom the difference in

posterior median rankings between the one-dimensional Euclidean and the circu-

lar models is largest. It is interesting that, in all cases, the ranks assigned by the

circular model are more extreme, and that 12 out of the 15 legislators in this list ei-

ther were members of the Tea Party or the Liberty caucuses during this Congress,

or later joined the Freedom caucus when it was formed. In particular, we must

highlight that classifying Ron Paul, Justin Amash (who we already discussed in

the previous section) or Jimmy Duncan as centrist (which is the implication from

their rank under the Euclidean model) would be very hard to justify based on

their stated political positions.
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Figure 2.13: Posterior median of the rank-order in the 112th U.S. House of
Representatives under the one-dimensional Euclidean (horizontal axis) and the
circular (vertical axis) models.

Finally, Figure 2.14 presents one example of circular voting in the 112th House of

Representatives. HR915 is the Jaime Zapata Border Enforcement Security Task

Force Act, which amended the Homeland Security Act of 2002 to establish the

Border Enforcement Security Task Force (BEST). It aimed at facilitating collab-

oration among federal, state, local, tribal, and foreign law enforcement agencies
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to execute coordinated activities in furtherance of border security and homeland

security, as well as to enhance information-sharing, including the dissemination

of homeland security information among such agencies. Note that HR915 was

opposed by representative Kucinich (according to our model, the most extreme

Democrat in the House at the time) as well as by both Amash and Massie (in

turn, the most extreme Republicans in the House according to our model) and by

representative Louie Gohmert (whose ranking also significantly shifts under the

circular model). As in Figure 2.7, the “Nay” position is roughly located opposite

to the (circular) average of all ideal points, the “Yea” position is located close

to the (circular) average of the ideal points of the legislators that voted in favor

of the measure, and the posterior distribution of κj indicates moderate to low

concentration values for the link function.
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Figure 2.14: Posterior median rank comparison between default prior and both
alternative priors for the 112th House.
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Figure 2.15: Posterior median ranks and associated 95% credible intervals for
the fifteen Republican legislators in the 112th House for whom the difference in
posterior median rankings between the one-dimensional Euclidean and the circular
models is largest. Bolded names indicate that the legislator was a member of either
the Liberty Caucus, the Freedom Caucus or the Tea Party Caucus at some of point
of their career.
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Sensitivity analysis

Similar to section 2.4.1, we conducted a sensitivity analysis by refitting the model

under the same two alternative priors for the 112th Houses. Figures 2.16 compare

the rank order of the legislators generated under our default prior with each of

our two alternative priors for the 112th Houses. In both cases, we can again see

that the results are nearly identical in all cases, with the very small differences

observed in the graphs being likely driven by Monte Carlo noise.
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Figure 2.16: Posterior median rank comparison between default prior and both
alternative priors for the 112th House.

2.4.3 A longitudinal analysis of the contemporary U.S.

House of Representatives

The previous two sections presented two very recent examples of circular voting

behavior in the U.S. House of Representatives. We are interested now in under-

standing how pervasive this behavior has been in modern history. As we mention
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in Section 2.2.4, the (circular) variance of the ideal points

χ0 = 1−


(

1
I

I∑
i=1

cos βi
)2

+
(

1
I

I∑
i=1

sin βi
)2

1
2

provides a natural metric to measure the “circularity” of voting on a given Congress.

It is important to note that this metric is useful in this context because, unlike

the analogous metric for Euclidean models, it is comparable across Congresses

(recall that the utility functions that underlie our formulation are not invariant

to rescalings of the policy space).

Figure 2.17 shows the posterior mean and 95% credible intervals for χ0 between

the 100th House (1987-1988) and (the first session of) the 116th House (2019).

We start the analysis from the mid 1980s because this period sits comfortably

after the reforms of the mid-1970s (which included the introduction of electronic

voting, leading to a dramatic increase in the number and nature of roll call votes

recorded in the chamber). Note that χ0 was relatively stable in the late 1980s

and early 1990s, but then jumped when the control of the chamber switched from

Democrats to Republican with the election of the 104th House. It then remained

more or less stable during the later half of the 1990s and the 2000s, to then

fall during the 111th House and then jump up again to historically high levels

from the 112th House on. While the overall increasing trend on χ0 agrees well

known patterns of increasing polarization in Congress, these results also suggest

that such an increase in polarization has been accompanied by an increase in the

frequency of “extremes voting together”, a phenomenon that has not yet been

fully documented or explored in the modern U.S. Congress .
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Figure 2.17: Circularity χ0 for the 100th to the 116th U.S House of Represen-
tatives. Light gray background indicates a Democratic majority, while dark gray
indicates a Republican majority. Results for the 116th House include only the first
session.

In order to better understand how circular voting has affected each party, we

present in Figure 2.18 the circular variance associated with the ideal of points of

both Democrat and Republican legislators, χD and χR, respectively. While some

of the fluctuations in these metrics roughly match those we observed in Figure

2.17, it is clear that the overall trend has been for χD to decrease and for χR to

increase over time. The divergence is particularly stark after the 112th, with the

Republican party showing an all-time high level of intraparty disagreement. Put

another way, these results suggest that the Republican party has steadily become

more fractious while the Democratic party has tended to unify, particularly over

the last 10 years. This pattern is consistent with well-known political processes.

On one hand, the steady decrease in χD between the 100th and the 107th Houses

might be seen as the upshot of the the migration of the remaining former Southern

Democrats to the Republican party. On the other hand, the large increase in χR
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starting in the 112th can be understood as a consequence of the rise of the Tea

Party movement (recall our discussion in Section 2.4.2).
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Figure 2.18: Within-party circular variances, χD and χR, for the 100th to the
116th U.S House of Representatives. Light gray background indicates a Demo-
cratic majority, while dark gray indicates a Republican majority. Results for the
116th House include only the first session.

To conclude this Section, we present in Table 2.4 the value of the Deviance Infor-

mation Criteria (DIC, see [80, 81, 82]) associated with both the circular and one-

dimensional Euclidean models fitted to the data from 100th to 116th U.S. House of

Representatives. Similarly to the well-known Akaike Information Criteria (AIC)

and the Bayesian Information Criteria (BIC), the DIC balances goodness of fit

against model complexity. However, unlike the AIC and the BIC, the DIC is well

suited for hierarchical models where the number of effective parameters can be

much smaller than the headline number. In our models, the DIC is defined as:

DIC = ` (E{Θ | data})− 2Var (` (Θ) | data) ,
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where Θ = [θi,j] is the matrix of probabilities given by θi,j =
{
Gκj (ei,j (ψj, ζj, βi))

}
for the spherical model and θi,j = Φ (µj + αjβi) for the Euclidean probit model,

` (Θ) = ∑I
i=1

∑J
j=1 {yi,j log θi,j + (1− yi,j) log(1− θi,j)}, and the expectations and

variances are computed with respect to the posterior distribution of the parameters

(which are in turn approximated from the samples generated by our Markov chain

Monte Carlo algorithm). The first term in the DIC can be understood as a

goodness-of-fit measure, while the second one can be interpreted as a measure of

model complexity. Note that, in every case, DIC favors the circular model.

2.5 Discussion

Our results suggest that the circular voting model developed in this chapter pro-

vides a better explanation for voting patterns in the modern U.S. House of Rep-

resentatives than traditional Euclidean models. This increasing circularity, driven

by the raise of extreme ideological factions willing to vote against the mainstream

of the party (especially among Republicans) seems to have gone hand in hand

with increasing polarization in the chamber.

In our interactions with with various colleagues we have heard two potential crit-

icisms of the approach discussed in this section. The first one relates to whether

the circular assumption makes mechanistic sense and, in particular, whether the

Horseshoe Theory can be applied in the context of the U.S. House of Represen-

tatives. We view this criticism as a reflection of the type deductive thinking that

tends to dominate in political science. In contrast, this chapter posits an inductive

approach to the problem in which we use data to evaluate the empirical support

for the Horseshoe Theory. The main contribution of this chapter is to provide
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a solid statistical methodology that enables this kind empirical explorations, un-

der the much laxer assumption that a circular voting space is at least minimally

plausible. We recognize that taking an inductive approach begs the question of

whether there are alternative explanations (e.g., heavy-tailed random shocks to

the latent utilities or non-monotonic utilities functions) for the “extremes voting

together” phenomenon. We agree that further exploration of these questions is

key, but also see such endeavors as beyond the scope of this particular document,

which is focused on introducing the basic methodology needed to fit and assess

evidence related to models that rely on circular policy spaces. Furthermore, the

fact that our results partially challenge the ex-ante opinion that the Horseshoe

Theory might not be a good fit in U.S. that some experts might hold should be

seen as a finding worth further investigation rather than a reason to discard the

underlying methodology enabling those conclusion.

A second criticism relates to whether the additional complexity introduced by

mapping the ideal points onto a circular space is needed when we could simply

fit a two-dimensional Euclidean model. This criticism is often leveled even after

conceding that the policy space might indeed be circular. One simple answer

is parsimony. It is true that the circle is a sub-manifold of R2, but it is one

with a lower intrinsic dimension (recall the discussion in Section 2.2.4). As a

consequence, the number of parameters required to fit our circular model is smaller

than the number of parameters in a 2D Euclidean model. A basic tenet in science

is that among models that provide similar fit, the most parsimonious one should

be preferred. More importantly, this criticism ignores one of the key messages

of this chapter, that the dimensionality and the geometry of the policy space are

related but subtly different concepts. This is a point that [47] made almost 50

years ago but is still not fully appreciated.

60



The focus of this chapter has been on circular models, which are essentially uni-

dimensional. In the next chapter, we extend it to situations in which the latent

space corresponds to high-dimensional spheres. While the likelihood formulation

is straightforward, a key challenge in this setting is the elicitation of prior distri-

butions that behave appropriately as the number of dimensions increase.

Table 2.4: DIC for the the circular and Euclidean model fitted to the 100th to
116th U.S. House of Representatives. Results for the 116th House include only the
first session.

House I J Euclidean (1D) Circular

100th 425 939 -91829 -89703

101th 429 879 -101183 -99959

102th 431 901 -101021 -99973

103th 430 1094 -112526 -110386

104th 428 1321 -129709 -127894

105th 426 1166 -112902 -110475

106th 432 1209 -107545 -103502

107th 428 990 -70693 -66771

108th 430 1218 -72599 -68973

109th 430 1210 -86097 -82397

110th 424 1865 -96678 -93227

111th 426 1647 -74824 -70219

112th 428 1602 -118707 -113963

113th 424 1202 -75144 -71718

114th 431 1322 -67848 -64067

115th 450 1207 -55772 -51162

116th 432 700 -33948 -30110
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Chapter 3

Spherical Factor Model for

Binary Data

In the previous chapter, we proposed the univariate dimensional circular factor

model which embeds binary data to a circular space by exploiting the random util-

ity formulation underlying binary regression models. We also demonstrated that

circular latent spaces offer a more consistent explanation for legislators’s stated

policy positions in the House of Representatives than Euclidean models. This

chapter builds on ideas proposed in Chapter 2 to generate a general framework

for embedding binary data into general spherical latent spaces, in a way that in-

cludes traditional factor models as a special case. This chapter focuses on two

key challenges. The first one is eliciting prior distributions for model parameters

that do not degenerate as the dimension of the embedding space grows. Well cal-

ibrated priors, in the previous sense, are key to enable dimensionality selection.

The second challenge is designing efficient computational algorithms for a model

in which some of the parameters live on a Riemannian manifold.
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The remainder of the chapter is organized as follows: Section 3.1 introduces our

spherical factor models and discusses the issues associated with prior elicitation.

Section 3.2 discusses our computational approach to estimating model parameters,

which is based on Geodesic Hamiltonian Monte Carlo algorithms. Section 3.3

illustrates the behavior of our model on both simulated and real datasets. Finally,

Section 3.4 concludes the chapter with a discussion of future directions for our

work.

3.1 Bayesian factor models for binary data on

spherical spaces

3.1.1 Likelihood formulation

As in Sections 1.2 and 2.2, we also formulate our model in this chapter under

the random utility framework. Consider a sequence of multivariate responses

y1, . . . ,yI , where yi = (yi,1, . . . , yi,J), and introduce parameters βi, ψj and ζj for

i = 1, . . . , I and j = 1, . . . , J such that βi,ψj, ζj ∈ SK , the unit hypersphere in

K + 1 dimensions, we can embed the positions βi, ψj and ζj into a connected

Riemannian manifold D equipped with a metric ρ : D × D → M ⊆ R+. In this

chapter, we focus on the case in which D corresponds to the unit hypersphere

in K + 1 dimensions, SK , which is equipped with its geodesic distance ρK , the

shortest angle separating two points measured over the great circle connecting

them. Rewriting the utility function in 2.2, we obtain

U+(ψj,βi) = −{ρK (ψj,βi)}2 + εi,j, U−(ζj,βi) = −{ρK (ζj,βi)}2 + νi,j, (3.1)
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where the errors εi,j and νi,j are such that their differences υi,j = νi,j − εi,j are

independent with cumulative distribution function Gj. This formulation leads to

a likelihood function of the form

p
(
Y | {ψj}Jj=1, {ζj}Jj=1, {βi}Ii=1

)
=

I∏
i=1

J∏
j=1

θ
yi,j
i,j (1− θi,j)1−yi,j ,

where Y is the I × J matrix of observations whose rows correspond to yTi , and

θi,j = Gj (e (ψj, ζj,βi)) , e (ψj, ζj,βi) = {ρK (ζj,βi)}2 − {ρK (ψj,βi)}2 . (3.2)

There are two alternative ways to describe SK . The first one uses a hyperspherical

coordinate system and relies on a vector ofK angles, φ = (φ1, . . . , φK) ∈ [−π, π]×

[−π/2, π/2]K−1. The second one uses the fact that SK is a submanifold of RK+1,

and relies on a vector of K + 1 Cartesian coordinates x = (x1, . . . , xK+1) subject

to the constraint ‖x‖ = 1. The two representations are connected through the

transformation
x1 = cosφ1 cosφ2 cosφ3 · · · cosφK−1,

x2 = sinφ1 cosφ2 cosφ3 · · · cosφK−1,

x3 = sinφ2 cosφ3 . . . cosφK−1

...

xK = sinφK−1 cosφK ,

xK+1 = sinφK .

(3.3)

While the hyperspherical coordinate representation tends to be slightly more in-

terpretable and directly reflects the true dimensionality of the embedding space,

Cartesian coordinates often result in more compact expressions. For example the

distance metric ρK can be simply written as ρK(x, z) = arccos
(
xTz

)
. Further-
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more, the Cartesian coordinate representation will be key to the development

of our computational approaches. Notation-wise, in the sequel, we adopt the

convention of using Greek letters when representing points in SK through their

angular representation, and using Roman letters when representing them through

embedded Cartesian coordinates.

Lastly, we discuss the selection of the link function. Gj must account for the fact

that, when SK is used as embedding space and ρK as the distance metric, the

function e (ψj, ζj,βi) introduced in Equation (3.2) has as its range the interval

[−π2, π2]. Similar to the reasons outlined in 2.2.1, we again opt to work with the

cumulative distribution of a shifted and scaled beta distribution,

Gj(z) = Gκj(z) =
∫ z

−π2

1
2π2

Γ(2κj)
Γ(κj)Γ(κj)

π2 + z

2π2

κj−1π2 − z
2π2

κj−1

dz,

z ∈ [−π2, π2]. (3.4)

As noted in Section 2.2.1, 1/√κj, which controls the dispersion of the density gj

associated withGj, plays an analogous role to the one that σj played in Section 1.2.

Furthermore, recall that, for large values of κj the density of this Beta distribution

is well approximated by a Gaussian distribution (please see Equation 2.4).

This observation, together with the fact that ρK(x, z) = arccos
(
xTz

)
≈ ‖x− z‖

for small values of ‖x− z‖, make it clear that the projection of the likelihood

of a spherical model in SK on its tangent bundle is very close to a version of

the Euclidean factor model in RK described in Equation (1.1) in which the link

function is the probit link. We expand on this connection in Section 3.1.3

Finally, a short note on the connection between the likelihood functions associated

with two models defined in SK and SK−1, respectively. Let β,ψ ∈ SK and
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β∗,ψ∗ ∈ SK−1 be (the angular representations of) two pairs of points in spherical

spaces of dimension K and K − 1, respectively. It is easy to verify that, when

βK = ψK = 0 as well as βk = β∗k and ψk = ψ∗k for all k = 1, . . . , K − 1, then

ρK(β,ψ) = ρK−1(β∗,ψ∗). Hence, the likelihood function of a spherical factor

model in which the latent positions are embedded in SK and for which βi,K =

ψj,K = ζj,K = 0 for all i and j, is identical to the likelihood function that would be

obtained by directly fitting a model in which the latent positions are embedded

in SK−1. This observation will play an important role in the next Section, which

is focused on defining prior distributions for the latent positions.

3.1.2 Prior distributions

As we discussed in the beginning of this chapter, a key challenge involved in the

implementation of the spherical factor models we just described is selecting priors

for the latent positions ψ1, . . . ,ψJ and ζ1, . . . , ζJ and β1, . . . ,βJ . This challenge

is specially daunting in settings where estimating the dimension K of the latent

space is of interest.

To illustrate the issues involved, consider the use of the von Mises-Fisher family as

priors for the latent positions. The Hausdorff density with respect to the uniform

measure on the sphere for the von Mises-Fisher distribution on Rd is given by

pH(x | η, ω) = ωd/2−1

(2π)d/2Id/2−1(ω) exp
{
ωηTx

}
, ‖x‖ = 1,

where Iν(·) is the modified Bessel function of order ν, η satisfies ‖η‖ = 1 and

represents the mean direction, and ω is a scalar precision parameter. The von

Mises-Fisher distribution is a natural prior in this setting because it is the spherical
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analogue to the multivariate Gaussian distribution with diagonal, homoscedastic

covariance matrix that is sometimes used as a prior for the latent positions in

traditional factor models. Indeed, note that

lim
ω→∞

ωd/2−1

(2π)d/2Id/2−1(ω) exp
{
ωηTx

}
(
ω
2π

)d/2
exp

{
−ω

2 (x− η)T (x− η)
} = 1.

We are interested in the behavior of the prior on

θi,j = Gκj

(
{ρK (ζj,βi)}2 − {ρK (ψj,βi)}2

)

(recall Equation (3.2)) induced by a von Mises-Fisher prior with mean direction

0 and precision ω for βi, and independent von Mises-Fisher priors with mean

direction 0 and precision τ for both ψj and ζj. Because, ψj and ζj are assigned

the same prior distributions, it is clear from a simple symmetry argument that

E (θi,j) = 1/2 for all values of ω, τ and κj. On the other hand, Figure 3.1

shows the value Var (θi,j) as a function of the embedding dimension K for var-

ious combinations of ω, τ and κj. Note that, in every case, it is apparent that

limK→∞Var (θi,j)→ 0, which implies that θi,j converges in distribution to a point

mass at 1/2 as the number of latent dimensions grows.
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Figure 3.1: Prior variance of θi,j induced by von Mises-Fisher priors on the latent
coordinates.

This behavior, which is clearly unappealing, is driven by two features. First, the

von Mises-Fisher prior has a single scale parameter for all its dimensions. Secondly,

the surface area of the K dimensional sphere, 2πK/2

Γ(K/2) , tends to zero as K →∞. In

fact, not only the von Mises-Fisher distribution, but also other widely used distri-

butions on the sphere such as the Fisher-Bingham and the Watson distributions
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suffer from the same drawback. [83] proposes to overcome this phenomenon by

scaling the (common) concentration parameter of the von Mises-Fisher according

to the number of dimensions. However, this approach is unappealing in our set-

ting for two reasons. First, it does not appear to overcome the degeneracy issues

just discussed. Secondly, under this approach changes in K would fundamentally

change the nature and structure of the prior distribution. In the sequel, we discuss

a novel class of flexible priors distributions on SK that allow for different scales

across various dimensions and can be used to construct priors for θi,j that do not

concentrate on a point mass as the number of dimensions increase.

We build our new class of prior distributions in terms of the vector of angles

φ = (φ1, . . . , φK) ∈ [−π, π] × [−π/2, π/2]K−1 associated with the hyperspherical

coordinate system. In particular, we assign each component of φ a (scaled) von

Mises distribution centered at 0, so that

p(φ | ω) =
( 1

2π

)K
2K−1 1

I0(ω1) exp {ω1 cosφ1}
K∏
k=2

1
I0(ωk)

exp {ωk cos 2φk} , (3.5)

where ω = (ω1, . . . , ωK) is a vector of dimension-specific precisions. We call this

prior the spherical von Mises distribution, and denote it by φ ∼ SvM(ω).

One key feature of this prior is that the parameters ω1, . . . , ωK control the con-

centration of each marginal distribution around their mean. In particular, when

ωK → ∞, the marginal distribution of φK becomes a point mass at zero, and

p(φ | ω) concentrates all its mass in a greater nested hypersphere of dimension

K − 1 (see Figure 3.2 for an illustration).
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Figure 3.2: Draws from two spherical von Mises distributions in S3. The left
panel corresponds to ω1 = 7 and ω2 = 4, while the right panel corresponds to
ω1 = 7 and ω2 = 30. Note that, as ω2 increases, the draws concentrate around a
great circle.

A second key feature of this class of priors is that

lim
ω→∞

(
1

2π

)K
2K−1 1

I0(ω1) exp {ω1 cosφ1}
∏K
k=2

1
I0(ωk) exp {ωk cos 2φk}(

1
2π

)K/2
2K−1

{∏K
k=1 ωk

}1/2
exp

{
−1

2

[
ω1φ2

1 + 4∑K
k=2 ωkφ

2
k

]} = 1. (3.6)

Somewhat informally, this means that for large values of the precision param-

eters, the prior behaves like a zero-mean multivariate normal distribution with

covariance matrix diag{1/ω1, 1/(4ω2), . . . , 1/(4ωK−1)}.

Finally, we note that the density of the spherical von Mises distribution can be

written in terms of the Cartesian coordinates x = (x1, . . . , xK+1)T associated with

φ (recall Equation (3.3)). More specifically, the density of the Hausdorff measure

with respect to the uniform distribution on the sphere associated with Equation
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(3.5) is given by

p(x | ω) = 1∏K
k=1

√∑k+1
t=1 x

2
t

1
2πIo(ω1) exp

ω1
x1√

x2
1 + x2

2

{
K∏
k=2

1
πIo(ωk)

}
exp

{
−

K∑
k=2

ωk

(
2 x2

k+1∑k+1
t=1 x

2
t

− 1
)}

, xTx = 1. (3.7)

See Appendix A.3 for the derivation.

Coming back to our spherical factor model, we use the spherical von Mises distri-

bution as priors for the ψjs, ζjs and βis. In particular, we set

ψi ∼ SvM(τ, 22τ, 32τ, . . . , K2τ) (3.8)

ζj ∼ SvM(τ, 22τ, 32τ, . . . , K2τ) (3.9)

βj ∼ SvM(ω, 22ω, 32ω, . . . ,K2ω) (3.10)

independently across all i = 1, . . . , I and j = 1, . . . , J .

By setting up the priors on the latent positions to have increasing marginal pre-

cisions, we can avoid the degeneracy issues that arose in the case of the von

Mises-Fisher priors. This is demonstrated in Figure 3.3, which shows the value

of Var (θi,j) as function of the latent dimension K for various combinations of ω,

τ and κj under (3.8-3.10). Note that, in every case, the variance of the prior

decreases slightly with the addition of the first few dimensions, but then seems

to quickly stabilize around a constant that is determined by the value of the hy-

perparameters. Figure 3.4 explores in more detail the shape of the implied prior

distribution on θi,j, as well as the effect of various hyperparameters. Note that

the implied prior can either be unimodal (which typically happens for relatively

large values ω and τ), or trimodal (which happens for low values of ω and τ).
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The intuition behind the formulation in Equations (3.8-3.10) comes from the fact

that these polynomial rates ensures that Var (θi,j) converges to a constant with

the number of dimensions under the Gaussian approximation in Equation (3.6).
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Figure 3.3: Prior variance of θi,j induced by spherical von Mises priors with
polynomially increasing marginal precision on the latent coordinates.

In addition to avoiding degeneracy issues, using an increasing sequence for the

marginal precision of all three sets of ψjs, ζjs and βis means that the prior

encourages the model to concentrate most of the mass on a embedded sub-sphere
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of SK (recall the discussion at the end of Section 3.1.1). Hence, we can think

of K as representing the highest intrinsic dimension allowed by our prior, and as

the combination of ω and τ as controlling the “effective” prior dimension of the

space, K∗ ≤ K. Another implication of this prior structure is that we can think

of our prior as encouraging a decomposition of the (spherical) variance that is

reminiscent of the principal nested sphere analysis introduced in [17].
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Figure 3.4: Histogram of 10,000 draws from the prior distribution on θi,j implied
by (3.8-3.10) for K = 10 and two different combinations of hyperparameters.

3.1.3 Connection to the Euclidean model

In Section 3.1.1 we argued that the spherical model of dimension K contains all

other spherical models of lower dimension as special cases. Similarly, the Euclidean

space of dimension K + 1 includes all spherical spaces of dimension K or lower.

It is also true that the K-dimensional Euclidean model discussed in Section 1.2

(with a probit link) can be seen as a limit case of our spherical model on SK .

The argument, which is analogous to Section 2.2.4, relies on projecting the spher-
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ical model onto the tangent bundle of the manifold, and making ω →∞, τ →∞

and κj → ∞ while keeping ω/τ and ω/κj constant for all j. As mentioned in

previous sections, under these circumstances, (i) the link function Gκj defined in

Equation (3.4) projects onto the probit link function, (ii) the geodesic distance

between the original latent positions converges to the Euclidean distance between

their projections onto the tangent space, and (iii) the spherical von-Mises priors

defined in Equations (3.8-3.10) project onto Gaussian priors.

This observation is important for at least three reasons. Firstly, it can guide

prior elicitation, specially for the precision parameters ω and τ . Secondly, spher-

ical models can be seen as interpolating (in terms of complexity) between Eu-

clidean models of adjacent dimensions. In particular, note that the likelihood

for Euclidean models involves O ({I + 2J}K) parameters (since the σjs are not

identifiable and typically fixed) while the likelihood of the spherical model relies on

O ({I + 2J}K + J) parameters, and finally, O ({I + 2J}K) < O ({I + 2J}K + J)

< O ({I + 2J}{K + 1}). Thirdly, it enhances the interpretability of the model.

In particular, the reciprocal of the precision, 1
ω
can be interpreted as a measure

of sphericity of the latent space that can be directly contrasted across datasets.

3.1.4 Identifiability

The likelihood function for the spherical factor model discussed in Section 3.1.1 is

invariant to simultaneous rotations of all latent positions. However, the structure

of the priors in (3.8-3.10) induces weak identifiability for the ψjs, ζjs, and βis

in the posterior distribution. Reflections, which are not addressed by our prior

formulation, can be accounted for by fixing the octant of the hypersphere to

which a particular βi belongs. In our implementation, this constraint is enforced
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a posteriori by post-processing the samples generated by the Markov chain Monte

Carlo algorithm described in Section 3.2. On the other hand, while the scale

parameters σ1, . . . , σJ are not identifiable in the Euclidean model, the analogous

precisions κ1, . . . , κJ are identifiable in the spherical model. This is because SK

has finite measure, and therefore the likelihood is not invariant to rescalings of

the latent positions. More generally, partial Procrustes analysis (which accounts

for invariance to translations and rotations, but retains the scale) can be used to

postprocess the samples to ensure identifiability.

3.1.5 Hyperpriors

Completing the specification of the model requires that we assign hyperpriors to

ω, τ and κ1, . . . , κJ . The precisions ω and τ are assigned independent Gamma

distributions, ω ∼ Gam(aω, bω) and τ ∼ Gam(aτ , bτ ). Similarly, the concentration

parameters associated with the link function are assumed to be conditionally

independent and given a common prior, κj ∼ Gam(c, λ), where λ is in turn given

a conditionally conjugate Gamma hyperprior, λ ∼ Gam(aλ, bλ). The parameters

aω, bω, aτ , bτ , aλ, bλ and c for these hyperpriors are assigned to strongly favor

configurations in which βi,1 ∈ [−π/2, π/2] (which is consistent with the assumption

that a Euclidean model is approximately correct), and so that the induced prior

distribution on θi,j is, for large K, close to a Beta(1/2, 1/2) distribution (the

proper, reference prior for the probability of a Bernoulli distribution). Various

combinations of hyperparameters satisfy these requirements, most of which lead

to priors on θi,j that are trimodal. We recommend picking one in which the

hyperpriors are not very concentrated (e.g., see Figure 3.5) and studying the

sensitivity of the analysis to the prior choice. In our experience, inferences tend
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to be robust to reasonable changes in the hyperparameters (see Section 3.3.2).
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Figure 3.5: Histogram of 10,000 samples from the prior on θi,j implied by the
hyperparameters aω = aτ = 1, bω = 1/10, bτ = 5, aλ = 2, bλ = 150, and c = 1 for
K = 10. Unless otherwise noted, these are the parameter settings we use to carry
out all the data analyses in this chapter.

3.2 Computation

The posterior distribution for the spherical factor model is analytically intractable.

Hence, inference for the model parameters is carried out using Markov chain

Monte Carlo (MCMC) algorithms. The algorithm we propose, which is very

similar to the one we introduced in Section 2.3, is a hybrid that combines Gibbs

sampling, random walk Metropolis-Hastings and Hamiltonian Monte Carlo steps

to generate samples from the full conditional distributions of each parameter.

The simplest steps correspond to sampling the parameters ω, τ , λ and κ1, . . . , κJ .

More specifically, we sample λ from its inverse-Gamma full conditional posterior

distribution, and sample ω, τ and each of the κjs using random walk Metropolis

Hastings with log-Gaussian proposals. The variance of the proposals for these

steps are tuned so that the acceptance rate is roughly 40%. On the other hand, for
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sampling the latent positions we again employ the Geodesic Hamiltonian Monte

Carlo (GHMC) algorithm described in Section 1.3.3.

As an example, consider the step associated with updating βi, the latent factor for

individual i. Denoting the associated coordinates in RK+1 by xβi (recall Equation

(3.3)), the density of the Hausdorff measure associated with the full conditional

posterior is given by

pH(xβi | · · · ) ∝
 J∏
j=1

Gκj(eij)yij
(
1−Gκj(eij)

)1−yij


exp

ω xβi,1√
x2
βi,1 + x2

βi,2


exp

−
K∑
k=2

k2ω

2
x2
βi,k+1∑k+1
t=1 x

2
βi,t

− 1



 1∏K

k=1

(∑k+1
t=1 x

2
βi,t

) 1
2

 , xTβixβi = 1,

where xβi = (xβi,1, xβi,2, . . . , xβi,K+1). Then, given tuning parameters L and ε, the

GHMC step takes the form:

1. Initialize xβi = x
(c)
βi
, as well as the auxiliary momentum variable γ by sam-

pling γ ∼ N(0, IK+1).

2. Project the momentum onto the tangent space at xβi by setting γ ←(
IK+1 − xβixTβi

)
γ, and then set γ(c) = γ.

3. For each of the L leap steps:

(a) Update the momentum by setting γ ← γ + ε
2∇ log pH(xβi | · · · ).

(b) Project the momentum onto the tangent space at xβi by setting γ ←(
IK+1 − xβixTβi

)
γ, and then set the angular velocity of the geodesic

flow ν = ‖φ‖.
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(c) Update xβi and γ jointly according to the geodesic flow with step size

of ε,

xβi ←xβi cos(νε) + φ

ν
sin(νε), φ←φ cos(νε)− ν xβi sin(νε).

(d) Update γ ← γ + ε
2∇ log pH(xβi | · · · ).

(e) Project the momentum onto the tangent space at xβi by setting γ ←(
IK+1 − xβixTβi

)
γ.

4. Set the proposed values as x(p)
βi

= xβi and the proposed value x(p)
βi

is accepted

with probability

min

1,
pH
(
x

(p)
βi
| · · ·

)
exp

{
−1

2

[
γ(p)

]T
γ(p)

}
pH
(
x

(c)
βi
| · · ·

)
exp

{
−1

2 [γ(c)]T γ(c)
}


The gradient of the logarithm of the Hausdorff measure may appear forbidding to

derive. One practical difficulty is dealing with the spherical constraint xTβixβi = 1.

We discuss the calculation of the gradient in Appendix A.4, where we also derive

a recursive formula linking the gradient of the prior density in dimensions K to

that of the gradient in dimension K − 1. Detailed expressions for the Hausdorff

measures associated with the full conditional posteriors of the xβis, xψjs and xζjs,

as well as their corresponding gradients, can also be found Appendix A.4. In our

experiments, we periodically “jitter” the step sizes and the number of leap steps

(e.g., see 77, pg. 306). The specific range in which ε and Lmove for each (group of)

parameter and each dataset is selected to target an average acceptance probability

between 60% and 90% [65, 67].
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3.3 Illustrations

In this section, we illustrate the performance of the proposed model on both

simulated and real data sets. In all of these analyses, the number of leaps used in

the HMC steps is randomly selected from a discrete uniform distribution between

1 and 10 every 50 samples. Similarly, the leap sizes are drawn from uniform

distribution on (0.01, 0.03) or (0.01, 0.05) or (0.005, 0.03) for each βi, and from a

uniform distribution on (0.01, 0.07) or (0.01, 0.105) or (0.01, 0.05) for each ζj and

ψj. All inference presented in this Section are based on 20,000 samples obtained

after convergence of the Markov chain Monte Carlo algorithm. The length of

the burn in period varied between 10,000 and 20,000 iterations depending on the

dataset, with a median around 10,000. Convergence was checked by monitoring

the value of the log-likelihood function, both through visual inspection of the trace

plot, and by comparing multiple chains using the procedure in [78].

3.3.1 Simulation study

We conducted a simulation study involving four distinct scenarios to evaluate our

spherical model. For each scenario, we generate one data set consisting of J = 700

items and I = 100 subjects (similar in size to the roll call data from the U.S. Senate

presented in Section 3.3.3). In our first three scenarios, the data is simulated from

spherical factor models on S2, S3 and S5, respectively. In all cases, the subject-

specific latent positions, as well as the item-specific latent positions, are sampled

from spherical von-Mises distributions where all component-wise precisions are

equal to 2. Note that this data generation mechanism is slightly different from

the model we fit to the data (in which the precision of the components increase
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with the index of the dimension). For the fourth scenario, data was simulated from

a Euclidean probit model (recall Section 1.2) in which the intercepts µ1, . . . , µJ ,

the discrimination parameters α1, . . . ,αJ , and latent traits β1, . . . ,βI are sampled

from standard Gaussian distributions.

In each scenario, both spherical and Euclidean probit factor models of varying

dimensions are fitted to the simulated datasets. The left column of Figure 3.6

shows the value of the DIC as a function of the dimension K of the fitted model’s

latent space for each of the four scenarios in our simulation. Recall Section 2.4.3,

we compute DIC for the Euclidean and spherical model similarly in this Chapter.

From Figure 3.6, we can see that DIC is capable of identifying the presence of

sphericity in the underlying latent space, as well as its correct dimension. In

Scenarios 1 to 3, the optimal model under DIC is correctly identified as a spherical

model with the right dimension. Furthermore, as we would expect, the optimal

Euclidean model in each case has one additional dimension (i.e., the dimension of

the space corresponds to the lowest-dimensional Euclidean space in which the true

spherical latent space can be embedded). For Scenario 4, DIC correctly selects a

Euclidean model in three dimensions, followed very closely by a spherical space

of the same dimension. Again, these results match our previous discussion about

the ability of a spherical model to approximate a Euclidean model.

The second column of Figure 3.6 shows the in-sample predictive accuracy of the

models in each scenario. This accuracy is closely linked to the goodness-of-fit

component of the DIC. Note that, from the point of view of this metric, both the

spherical and Euclidean models have about the same performance. Furthermore,

in both cases, as the dimension increases, the predictive accuracy increases sharply

at first, but quickly plateaus once we reach the right model dimension, generating
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a clear elbow in the graph. Similar elbows can be seen in the third column of

Figure 3.6, which shows the amount of variance associated with each component

of a principal nested spheres decomposition [17] of the subject’s latent positions

for the S10. This decomposition can be interpreted as a version of principal

component analysis for data on an spherical manifold. Unless stated otherwise,

principal nested spheres decomposition is implemented with a fixed radius of 1 in

this chapter. Note, however, that the elbow in Scenario 4 is much less sharp than

the elbows we observed in Scenarios 1, 2 and 3.

To get a better sense of the relationship between the spherical and Euclidean

models, Figure 3.7 presents histograms of the posterior samples for the hyperpa-

rameters ω, τ and 1/λ of our spherical model for Scenario 2 (left column) and

Scenario 4 (right column). We focus on these two scenarios because the true

dimension of the latent space is 3 in both cases. Note that the posterior distribu-

tions of these hyperparameters concentrate on very different values depending on

whether the truth corresponds to a Euclidean or a spherical model. Furthermore,

in all cases the posterior distributions are clearly different from the priors.

Finally, Figure 3.8 presents posterior estimates for the subject’s latent positions for

Scenario 1. To facilitate comparisons between the truth and the estimates, we plot

each dimension separately. While the first dimension seems to be reconstructed

quite accurately (the coverage rate for the 95% credible intervals shown in the

left panel is 98%, with an approximate 95% confidence interval of (0.953, 1.000)),

the reconstruction of the second component is less so (the coverage in this case is

68%, with an approximate 95% confidence interval of (0.578, 0.782)).
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Figure 3.6: Deviance information criteria, in-sample predictive accuracy and
principal nested sphere decomposition of the fitted models in each of the four
simulation scenarios.
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Figure 3.7: Histograms of the posterior samples for the hyperparameters ω, τ
and 1/λ in scenarios 2 and 4 for K = 3. The continuous line corresponds to the
prior distribution used in the analysis.
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Figure 3.8: Scenario 1, 95% credible interval for the latent traits in each of the
two dimensions. The true value of the traits is represented using a red triangle.
Coverage rates are 99% and 68%, respectively.

3.3.2 Sensitivity analysis

To assess the sensitivity of our estimates to the values of the hyperparame-

ters, we repeated our analysis using a different prior specification in which ω ∼

Gam(1, 1/10), τ ∼ Gam(1, 1/10) and λ ∼ Gam(2, 25). The induced prior on

θi,j for K = 10 can be seen in Figure 3.9. (Note the very different shape when

compared with Figure 3.5.)

We present here details only for Scenario 1; the results for the other 3 scenarios are

very similar. Similarly to Figure 3.6, Figure 3.10 presents the value of the DIC,

the in-sample accuracy and the principal nested sphere decomposition associated

under both the original and the alternative priors. The main difference we observe

is in the values of the DIC, with the alternative prior tending to give higher

plausibility to models of dimension 5 and above.
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Figure 3.10: Deviance information criteria, in-sample predictive accuracy and
principal nested sphere decomposition of the fitted models for Scenario 1 under
our original and alternative priors.

Furthermore, Figure 3.11 shows histograms of the posterior distributions for the

hyperparameters ω, τ and 1/λ under our two priors. The posterior distribution

of these parameters appear to be very similar, suggesting robustness to this prior

change. Finally, Figure 3.12 presents the posterior means of the subject’s latent
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positions under our alternative prior. Note that the point estimates are nearly

identical under both priors.
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Figure 3.11: Histograms of the posterior samples for the hyperparameters ω, τ
and 1/λ in Scenario 1 under the original (Figure 3.5) and the alternative (Figure
3.9) prior specifications.
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(b) Dimension 2

Figure 3.12: Comparison of the posterior means of the locations βi across two
different prior for Scenario 1. Left panel compares the first dimension of the latent
traits, while the right panel compares the values along the second dimension.

3.3.3 Roll call voting in the U.S. Senate

In this section we use our spherical factor models to investigate the geometry of

policy spaces in two different U.S. Senates, the 102nd (which met between January

3, 1991 and January 3, 1993, during the last two years of George H. W. Bush’s

presidency) and the 115th (which met between January 3, 2017 and January 3,

2019, during the first two years of Donald Trump’s presidency). We exclude from

our analysis any senators that missed more than 40% of the votes cast during

a given session, which substantially reduces the number missing values. The

remaining ones, which are a small percentage of the total number of votes, were

treated in our analysis as if missing completely at random. While this assumption

is not fully supported by empirical evidence (e.g., see 52), it is extremely common

in applications. Furthermore, the relatively low frequency of missing values in

these datasets suggests that deviations from it will likely have a limited impact in
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our results. See table 3.1 for a summary of the features of the two post processed

datasets.

Session Senators (I) Measures (J) Missing votes

102nd 100 550 2222 (4.04%)

115th 96 599 1236 (2.15%)

Table 3.1: Summary information for the two roll call datasets analyzed in this
section.

As in Section 3.3.1, we fit both Euclidean and spherical factor models of varying

dimensions to each of these two datasets. The left column of Figure 3.13 shows

the DIC values associated with these models. For the 102nd Senate, we can see

that a Euclidean model of dimension 3 seems to provide the best fit overall while,

among the spherical models, a model of dimension 3 also seems to outperform.

On the other hand, for the 115th Senate, a two-dimensional spherical model seems

to provide the best fit to the data, closely followed by a circular (one-dimensional

spherical) model. The right column of Figure 3.13 presents the principal nested

sphere decomposition associated with the posterior mean configuration estimated

by an eight-dimensional spherical model on each of the two Senates. The differ-

ences are substantial. In the case of the 115th Senate (for which DIC suggests

that the geometry of the latent space is indeed spherical), the first component of

the decomposition explains more than 95% of the variability in the latent space,

and the first three components explain close to 99%. On the other hand, for the

102nd Senate, the first three spherical dimensions explain less than 70% of the

total variability.
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Figure 3.13: Deviance information criteria as a function of the embedding
space’s dimension K (left column) and principal nested sphere decomposition
associated with the S8 model for the 102nd (top row) and the 115th (bottom row)
U.S. Senates.

At a high level, these results are consistent with the understanding that scholars of

American politics have of contemporaneous congressional voting patterns. While

congressional voting in the U.S. has tended to be at least two-dimensional for

most of its history (with one dimension roughly aligning with economic issues,

and the other(s) corresponding to a combination of various social and cultural
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issues), there is clear evidence that it has become more and more unidimensional

over the last 40 years (e.g., see 84). Increasing polarization has also been well

documented in the literature (e.g., see 25 and 85). The rise of extreme factions

within both the Republican and Democratic parties willing to vote against their

more mainstream colleagues, however, is a relatively new phenomenon that is just

starting to be documented (see 79, 39, 40) and can explain the dominance of the

spherical model for the 115th Senate voting data.

Figure 3.15 presents histograms of the posterior samples for the hyperparameters

ω, τ and 1/λ for each of the two Senates. Note that, as with the simulations,

the posterior distributions differ substantially from the priors. Furthermore, the

model prefers relatively smaller values of ω and relatively larges values of τ and

1/λ for the 115th Senate when compared with the 102nd.

To conclude this Section, we focus our attention on the one-dimensional versions

of the Euclidean and spherical models. While one-dimensional models are not

preferred by the DIC criteria in our datasets, researchers often use them in prac-

tice because the resulting ranking of legislators often reflects their ordering in a

liberal-conservative (left-right) scale. Figure 3.14 compares the median rank order

of legislators estimated under the one-dimensional Euclidean and one-dimensional

spherical (circular) models for the 102nd (left panel) and the 115th (right panel)

Senates. To generate the ranks under the circular model, we “unwrap” the circle

and compute the ranks on the basis of the associated angles (which live in the in-

terval [−π, π]). For the 102nd Senate (where DIC would prefer the one-dimensional

Euclidean model over the circular model), the median ranks of legislators under

both models are very similar. This result provides support to our argument that

the spherical model can provide a very good approximation to the Euclidean model

when there is no evidence of sphericity in the data. On the other hand, for the
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115th (where the circular model would be preferred over the one-dimensional Eu-

clidean model), the ranking of Republican legislators differs substantially between

both models. Digging a little bit deeper, we can see that the five legislators for

which the ranks differ the most are Rand Paul (KY), Mike Lee (UT), Jeff Flake

(AZ), Bob Corker (TN) and John Neely Kennedy (LA), all known for being hard

line conservatives, but also for bucking their party and voting with (left wing)

Democrats on some specific issues.
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Figure 3.14: Comparison of the rank order of legislators between the 1D Eu-
clidean and circular models for the 102nd (left panel) and the 115th (right panel)
Senates. Red triangles correspond to Republican Senators, while blue circles in-
dicate Democrats, as well as Independents who caucus with Democrats.
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3.3.4 Roll call voting in the U.S. House of Representatives

revisited

In this section, we revisit the two U.S. House of Representatives data sets analyzed

in Section 2.4. Similar to Section 3.3.3, we fit both Euclidean and spherical factor

models of varying dimensions to these two datasets. In the case of 112th House,

a spherical model of dimension 6 performs the best overall, followed closely by a

spherical model of dimension 5. On the other hand, for the 116th House, a spherical

model of dimension 3 achieves the best performance overall, while a Euclidean of

dimension 3 is the runner-up. In both cases, DIC favors the spherical latent

space over the Euclidean one. As expected, the principal nested decompositions

associated with the posterior mean configuration estimated by an nine-dimensional

spherical model are quite different. In particular, the variance explained by the

first three components for the 116th House accounts for almost 99%. In contrary,

the first three components only explain 75% of the variance.

3.4 Discussion

We have developed a new flexible class of factor analysis models for multivariate

binary data that embeds the observations on spherical latent spaces. The results

from our illustrations suggest that (i) it is possible to distinguish between different

geometries and dimensions for the embedding space, (ii) our model can closely

approximate traditional factor models when the latent space is Euclidean, (iii)

the use spherical latent spaces can be justified, both theoretically and empirically,

in applications related to choice models.
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We consider two potential extensions as part of our future work. First we could

consider ellipsoidal spaces, introduce a set of parameters that control the relative

scale across dimensions. The second extension focuses on alternative priors that

allow the ideal points to concentrate around more general sub manifolds of the

SK . This second extension is motivated by some of our illustrations. In particular,

panel (a) in Figure 3.17 shows the estimates of the ideal points for the legislators

in the 116th U.S. House of Representatives. Note that the points do not seem

to concentrate around a great circle. Instead, they seem to roughly concentrate

around a circle of radius less than one that does not align with either of the great

circles around which our prior for the latent traits is centered. In other words,

non-geodesic variation, which is discussed extensively in [17] seems to be present

in this example. Hence, we plan to investigate the use of small sphere distributions

such as Bingham-Mardia [86] and the small sphere distribution of the first and

second kind [87] as a potential alternatives priors for the latent traits.

In the next chapter, we build on all ideas developed so far and extend our spherical

models to also allow embeddings of ordinal data which is prevalent in survey

applications.
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Figure 3.16: Deviance information criteria as a function of the embedding
space’s dimension K (left column) and principal nested sphere decomposition
associated with the S9 model for the 112th (top row) and the 116th (bottom row)
U.S. House of Representatives.
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(a) PNS Small Decomposition
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Figure 3.17: Principal nested sphere decomposition associated with S2 model
(left panel) and comparison of principal nested sphere decomposition and principal
nested small sphere decomposition associated with S9 model for the 116th U.S
House of Representatives (right panel).
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Chapter 4

Spherical Factor Model for

Ordinal Data

In the previous two chapters, we developed a novel multivariate embedding method

for binary data in which the underlying latent space is spherical. In this chapter,

we build upon these ideas to build a model that embeds ordinal data into the

spherical latent space. Most our attention in this chapter focus on two key as-

pects. First, we carefully examine different types of ordinal structures that could

be incorporated into our model. Second, we evaluate various configurations avail-

able in the link function of our spherical model using both simulated and real data

sets.

The remainder of the chapter is organized as follows: Section 4.1 provides a brief

overview of different ordinal models in the Euclidean space. Section 4.2 introduces

our spherical latent factor model for ordinal data which employs the continuation-

ratio formulation. In addition, we also specify four different configurations for the

link function in our model. Section 4.3 discusses our computational approach
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which is similar to those implemented in the previous two chapters. Section 4.4

surveys various robust metrics that work well in the case of unbalanced ordinal

data which is common in survey applications. Section 4.5 compares the perfor-

mance of our model with different configurations from which we select the best

model to compare against the Euclidean model. Lastly, Section 4.6 concludes this

chapter with a discussion.

4.1 Euclidean Ordinal Latent Factor Model

In this section, we review various standard latent factor models for ordinal data

that implicitly rely on Euclidean embedding. In particular, we discuss models for

ordinal data with or without proportional odds (PO or NPO) structure [88] in the

context of latent variable modeling. In the literature, proportional odds structure

is sometimes referred to as parallel structure [89].

Consider data consisting of independent multivariate ordinal observations y1, . . . ,

yI associated with i subjects, where yi = (yi,1, . . . , yi,J)T is a vector where each

entry is associated with a different item, and yi,j ∈ {1, 2, . . . , Lj}. For example, in

customer review applications, yi,j might represent the rating consumer (subject)

i gives to (item) j in a scale of 1 star to 5 stars. On the other hand, in survey

applications, yi,j might represent the psychometric scale of respondent (subject)

i to (question) j using a typical five-level Likert scale such as strongly disagree,

disagree, neutral, agree, strongly agree. The subscript j in Lj is necessary since the

number of categories could vary across items. When Lj = 2, it corresponds to a

binary response which has been studied extensively in the previous two chapters.

In this chapter, we focus on the embedding of ordinal data and hence assume
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Lj ≥ 3.

4.1.1 Cumulative model

The PO and NPO cumulative models are formulated as follows,

PO: Pr (Yi,j ≤ l | θ) = G
(
µj,l +αTj,.βi

)
, l = 1, . . . , Lj − 1, (4.1)

NPO: Pr (Yi,j ≤ l | θ) = G
(
µj,l +αTj,l βi

)
, l = 1, . . . , Lj − 1, (4.2)

where the cutoff points (intercepts) µ1,l, . . . , µJ,l as well as the bilinear terms

αj,.,α1,l, . . . ,αJ,l ∈ RK+1 and β1, . . .βI ∈ RK+1 are all unknown and need to

be estimated from the data, and G is a link function (typically the cumulative

distribution function of logistic, normal or extreme value distribution which corre-

sponds to logit, probit and complementary log-log model respectively). The class

probability of category l is,

Pr(Yi,j = 1 | θ) = Pr(Yi,j ≤ 1 | θ),

Pr(Yi,j = l | θ) = Pr(Yi,j ≤ l | θ)− Pr(Yi,j ≤ l − 1 | θ), for l = 2, . . . , Lj − 1,

Pr(Yi,j = Lj | θ) = 1− Pr(Yi,j ≤ Lj − 1 | θ). (4.3)

For a given (item) j, the proportional odds structure arises from associating βi

with the same slope αj,. across all categories. The original terminology came from

[90] where G is a CDF of standard logistic distribution (G−1 is logit link function).
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More specifically,

Logit (Pr(Yi,j ≤ l | β1)− Logit (Pr(Yi,j ≤ l | β2)

= log Pr(Yi,j ≤ l | β1)/Pr(Yi,j > l | β1)
Pr(Yi,j ≤ l | β2)/Pr(Yi,j > l | β2) = αTj,.(β1 − β2), (4.4)

and the odds of making response Yi,j ≤ l at β1 are exp
(
αTj,.(β1 − β2)

)
times the

odds at β2. For a one-unit increase in the difference of β1−β2, the cumulative log

odds ratio is increased by αj,.. In addition, the condition µj,1 < µj,2 < . . . µj,Lj−1

allows stochastic ordering of the category along an underlying latent linear con-

tinuum. The stochastic ordering property ensures that the class probabilities in

Equation (4.3) are all non-negative. Furthermore, it allows αj,. to be invariant to

the choice of response categories (91, pg. 56) in the ordinal regression setting. For

example, collapsing a five-level scale (strongly disagree, disagree, neutral,agree,

strongly agree) to a three-level scale (disagree, neutral, agree) will leave αj,. in-

variant. This unique feature of the PO cumulative model makes model compari-

son or meta-analysis from studies using different scales possible. However, in the

scope of latent factor modeling setting when both αjs and βis are unknown, this

invariance property only holds if the model is identifiable.

The cumulative model without proportional odds structure (NPO) is obtained by

allowing the slope αj,l to be different for each category l in 1, . . . , Lj−1. However,

other than the usual parsimony argument, this model have a major limitation.

The curves for different cumulative probabilities must eventually intersect due

to non-parallel slope (90, pg. 155), which violates the stochastic ordering of the

cumulative probabilities (91, pg. 76) and leads to negative class probability in

equation (4.3). [92] proposes a Bayesian framework for logit cumulative model to

address this problem by incorporating the stochastic ordering constraint into the
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joint posterior and then employ a truncated sampling scheme to obtain posterior

samples. In addition, they also present a model selection framework to choose

between PO and NPO structure using reversible-jump MCMC. Alternatively, [93]

suggests a hierarchical ordered probit model which uses positive incremental cutoff

points through a nonlinear specification.

4.1.2 Adjacent-category model

The PO and NPO adjacent-category model are formulated as follows for l =

1, . . . , Lj − 1,

PO: Pr (Yi,j = l | Yi,j = l or Yi,j = l + 1,θ) = G
(
µj,l +αTj,.βi

)
, (4.5)

NPO: Pr (Yi,j = l | Yi,j = l, or Yi,j = l + 1,θ) = G
(
µj,l +αTj,l βi

)
, (4.6)

where the intercepts µ1,l, . . . , µJ,l as well as the bilinear terms αj,.,α1,l, . . . ,αJ,l ∈

RK+1 and β1, . . .βI ∈ RK+1 are again all unknown and need to be estimated from

the data, and G is a link function. The class probability for category t is,

πi,j,t = Pr(Yi,j = t) =
∏t−1
m=1 [1−G(ηi,j,m)]∏L−1

n=t G(ηi,j,n)∑L
t=1

[∏t−1
m=1 [1−G(ηi,j,m)]∏L−1

n=t G(ηi,j,n)
] , for t = 1, . . . , Lj,

(4.7)

where ηi,j,m = µj,m+αTj,.βi in the PO model and ηi,j,m = µj,m+αTj,lβi in the NPO

model.

Similar to the PO cumulative model, the proportional odds structure here can be
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easily obtained if G is a CDF of standard logistic distribution,

Logit [Pr (Yi,j = l | Yi,j = l or Yi,j = l + 1,β1)]

− Logit [Pr (Yi,j = l | Yi,j = l or Yi,j = l + 1,β2)]

= Logit
(

πi,j,l
πi,j,l + πi,j,l+1

| β1

)
− Logit

(
πi,j,l

πi,j,l + πi,j,l+1
| β2

)

= log
(
πi,j,l
πi,j,l+1

| β1

)
− log

(
πi,j,l
πi,j,l+1

| β2

)
= αTj,.(β1 − β2), (4.8)

Similarly, for a one-unit increase in the difference of β1−β2, the adjacent-category

log odds ratio is increased by αj,..

Unlike the NPO cumulative model, the NPO adjacent-category model is guar-

anteed to have non-negative probability for all categories by construction. In

addition, the NPO adjacent category model is permutation invariant (90, p116)

and has a well-known connection with the baseline category model under the logit

link function (91, p91) for nominal data. In other words, adjacent category NPO

model is not a ordinal model and is best suited to situations in which there is

ambiguity in the category order. These features are often associated with the

traditional regression setting, but also are valid in ordinal latent factor modeling

setting. Here we show how the adjacent-category NPO model is connected to the

baseline logit model (88, p293). For u < v and u, v ∈ (1, . . . Lj),

log
(
πi,j,u
πi,j,v

)
= log

(
πi,j,u
πi,j,u+1

)
+ log

(
πi,j,u+1

πi,j,u+2

)
+ · · ·+ log

(
πi,j,v−1

πi,j,v

)

=
{
v−1∑
l=u

µj,l

}
+
{
v−1∑
l=u
αTj,l

}
βi = µ∗j,u + (α∗j,u)Tβi. (4.9)

Evidently, this formulation is equivalent to a baseline logit model if v represents

the baseline category. Note that in the case of adjacent-category PO model,
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∑v−1
l=u α

T
j,lβi in (4.9) becomes αTj,.(v − u), which clearly shows that the PO model

recognizes the ordering of the response since the effect is proportional to the the

distance between categories.

4.1.3 Continuation-ratio model

The PO and NPO continuation-ratio model are formulated as follows,

PO: Pr (Yi,j = l | Yi,j ≥ l,θ) = G
(
µj,l +αTj,.βi

)
, l = 1, . . . , Lj − 1, (4.10)

NPO: Pr (Yi,j = l | Yi,j ≥ l,θ) = G
(
µj,l +αTj,l βi

)
, l = 1, . . . , Lj − 1, (4.11)

where the intercepts µ1,l, . . . , µJ,l as well as the bilinear terms αj,.,α1,l, . . . ,αJ,l ∈

Rd and β1, . . .βI ∈ RK are again all unknown and need to be estimated from the

data, G is again a link function similar. The class probability of category is,

Pr(Yi,j = 1 | θ) = G
(
µj,l +αTj,∗βi

)
,

Pr(Yi,j = l | θ) = G
(
µj,l +αTj,∗βi

) l−1∏
t=1

[
1−G

(
µj,t +αTj,∗βi

)]
, l = 2, . . . , Lj − 1,

Pr(Yi,j = Lj | θ) =
Lj−1∏
t=1

[
1−G

(
µj,t +αTj,∗βi

)]
, (4.12)

where αTj,∗ = αTj,. and αTj,∗ = αTj,t corresponds to the PO and NPO continuation-

ratio models respectively.

Similar to the PO cumulative model and the PO adjacent-category model, the

proportional odds structure here once again can be easily observed if G is a CDF
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of standard logistic distribution,

Logit [Pr (Yi,j = l | Yi,j ≥ l,β1)]− Logit [Pr (Yi,j = l | Yi,j ≥ l,β2)]

= log
(

πi,j,l
πi,j,l+1 + · · ·+ πi,j,Lj

| β1

)
− log

(
πi,j,l

πi,j,l+1 + · · ·+ πi,j,Lj
| β2

)

= αTj,.(β1 − β2), (4.13)

Similarly, for a one-unit increase in the difference of β1−β2, the continuation-ratio

log odds ratio is increased by αj,..

Unlike the NPO cumulative models, the NPO continuation-ratio models are guar-

anteed to have non-negative probability for all categories by construction.

4.1.4 Alternative construction of PO and NPO models

through random utility functions

The class of factor analysis models for ordinal data can also be constructed through

the use of random utility function [12, 13] similar to the factor models discussed

in previous chapters. To develop such construction, we need to assume that each

subject i has associated with it a position βi ∈ RK+1 (which can be interpreted as

representing their preferences over a set of unobserved item characteristics) and

associate with each item Lj − 1 pairs of positions, ψj,l ∈ RK+1 (corresponding

to a positive response for category l, i.e., Yi,j ≥ l in the cumulative model) and

ζj,l ∈ RK+1 (corresponding to a negative one for category l, i.e., Yi,j < l in the

cumulative model). Given these positions, individuals make their choice about

category l of item j based on the relative value of two random quadratic utilities,
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for l = 1, . . . , Lj − 1,

U l
+(ψj,l,βi) = −‖ψj,l − βi‖2 + εli,j, U l

−(ζj,l,βi) = −‖ζj,l − βi‖2 + νli,j, (4.14)

where εli,j and νli,j represent random shocks to the utilities and υli,j = νli,j − εli,j

are independently distributed for all i, j and l and have cumulative distribu-

tion function Gj,l(x) = G(x/σj,l). Under these assumptions, we can conve-

niently construct the NPO cumulative model , NPO adjacent-category model

and the NPO continuation-ratio model through such random utility framework,

for l = 1, . . . , Lj − 1,

Cumulative Model :

Pr (Yi,j ≥ l | θ) = Pr
(
U l

+ (ψj,l,βi) > U l
− (ζj,l,βi)

)
= G

(
µj,l +αTj,lβi

)
, (4.15)

Adjacent-category Model :

Pr (Yi,j = l | Yi,j = l or Yi,j = l + 1,θ) = Pr
(
U l

+ (ψj,l,βi) > U l
− (ζj,l,βi)

)
= G

(
µj,l +αTj,lβi

)
, (4.16)

Continuation-ratio Model :

Pr (Yi,j = l | Yi,j ≥ l,θ) = Pr
(
U l

+ (ψj,l,βi) > U l
− (ζj,l,βi)

)
= G

(
µj,l +αTj,lβi

)
,

(4.17)

where αj,l = 2(ψj,l−ζj,l)/σj,l and µj,l = −(ψj,l−ζj,l)T (ψj,l+ζj,l)/σj,l. In addition,

we can obtain the PO models if (ψj,l − ζj,l)s are fixed across categories while

(ψj,l + ζj,l)s are allowed to vary. The identifiability issues associated with these

Euclidean models are similar to those discussed in Section 1.2.

105



4.1.5 Bayesian Euclidean ordinal latent factor model

For reasons discussed next in Section 4.2, we employ the continuation-ratio con-

struction of the Euclidean ordinal latent factor model under the Bayesian frame-

work. In particular, we assume G in (4.17) to be the CDF of the normal distri-

bution and thus we obtain a probit continuation-ratio model. This formulation

leads to class probability,

π1
i,j = Pr(Yi,j = 1 | θ) = Φ

(
µj,l +αTj,∗βi

)
,

πli,j = Pr(Yi,j = l | θ) = Φ
(
µj,l +αTj,∗βi

) l−1∏
t=1

(
1− Φ

(
µj,t +αTj,∗βi

))
,

l = 2, . . . , Lj − 1,

π
Lj
i,j = Pr(Yi,j = Lj | θ) =

Lj−1∏
t=1

(
1− Φ

(
µj,t +αTj,∗βi

))
, (4.18)

where αTj,∗ = αTj,. and αTj,∗ = αTj,t corresponds to PO and NPO continuation-ratio

model respectively, and leads to likelihood of the form,

Pr(Y | α,µ,β) =
I∏
i=1

J∏
j=1

Lj∏
l=1

(πli,j)z
l
i,j , (4.19)

where zli,j is an indicator variable and is 1 if and only if Yi,j = l. We assume

µj,l ∼ N(0, 1), αj,∗ ∼ N(0, 1), and βj,k ∼ N(0, 1/k2). Posterior inference for both

PO and NPO Euclidean continuation-ratio model is carried out using HMC (see

Section 1.3.1).
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4.2 Bayesian Spherical Ordinal Latent Factor

Model

In this section we focus on the NPO continuation-ratio model, which is both

general and flexible, avoids the negative probability issues of the NPO cumulative,

and the prohibiting complexity of [92] and [93].

Following the same formulation from Section 3.1, we can modify the utility func-

tions in (14) by embedding the points β, ψ and ζ in a spherical manifold by

constructing the utility function through the geodesic distance, leading to

U+(ψj,l,βi) = −{ρ (ψj,l,βi)}2 + εli,j, U−(ζj,l,βi) = −{ρ (ζj,l,βi)}2 + νli,j,

(4.20)

where the errors εli,j and νli,j are such that their differences υli,j = νli,j − εli,j are

independent for all i, j and l, and have cumulative distribution function Gj,l. The

NPO spherical continuation-ratio model constructed under the random utility

framework leads to the following class probability,

θ1
i,j = Pr(Yi,j = 1 | θ) = Gj,1 (e (ψj,1, ζj,1,βi)) ,

θli,j = Pr(Yi,j = l | θ) = Gj,l (e (ψj,l, ζj,l,βi))
l−1∏
t=1

[1−Gj,l (e (ψj,l, ζj,l,βi))] ,

for l = 2, . . . , Lj − 1,

θ
Lj
i,j = Pr(Yi,j = Lj | θ) =

Lj−1∏
t=1

[
1−Gj,Lj

(
e
(
ψj,Lj , ζj,Lj ,βi

))]
, (4.21)

where e (ψj,l, ζj,l,βi) = {ρ (ζj,l,βi)}2 − {ρ (ψj,l,βi)}2 for l = 1, . . . , Lj, and leads
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to likelihood of the form,

Pr(Y | ζ,ψ,β) =
I∏
i=1

J∏
j=1

Lj∏
l=1

(
θli,j
)zli,j

, (4.22)

where zli,j is an indicator variable and is 1 only if Yi,j = l. For reasons discussed

in Section 3.1.1, we adopt the same hyperspherical coordinates which simplifies

the computation of the geodesic distance ρK(x, z) = arccos
(
xTz

)
and facilitates

the development of our computational approaches.

We use the spherical von Mises distribution (see Equation (3.5)) proposed in the

previous chapter as priors for the ψj,ls, ζj,ls and βis. In particular, we set

ψi ∼ SvM(τ, 22τ, 32τ, . . . , K2τ) (4.23)

ζj,l ∼ SvM(τ, 22τ, 32τ, . . . , K2τ) (4.24)

βj,l ∼ SvM(ω, 22ω, 32ω, . . . ,K2ω) (4.25)

independently across all i = 1, . . . , I, j = 1, . . . , J and l = 1, . . . , Lj. The corre-

sponding density of the Hausdorff measure with respect to the uniform distribution

on the sphere associated the spherical von Mises distributions is given in Equation

(3.7).

The likelihood function for the spherical factor model discussed in Section 4.2

is invariant to simultaneous rotations of all latent positions. The identifiability

issues associated ψj,ls, ζj,ls, and βis in the posterior distribution are addressed

similarly as in Section 3.1.4.

We discussed the connection of our proposed spherical model to the Euclidean

model for binary data analysis in Section 3.1.3. Such connection still holds for the
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ordinal models discussed in this chapter. In particular, the K-dimensional NPO

Euclidean continuation-ratio model with probit link discussed in Section 4.1.5 can

be seen as a limiting case of our NPO spherical continuation-ratio model on SK

with symmetric link function (configuration 2 and 4 in Table 4.1).

Next we focus on our discussion on the link function specifications and some

hyperpriors which are different than those discussed in the previous chapter.

4.2.1 Link function specifications

The link function Gj,l must account for the fact that the function e (ψj,l, ζj,l,βi)

has as its range the interval [−π2, π2]. We again choose the cumulative distribution

of a shifted and scaled beta distribution,

Gj,l(z) =
∫ z

−π2

1
2π2

Γ(aj,l + bj,l)
Γ(aj,l)Γ(bj,l)

π2 + z

2π2

aj,l−1π2 − z
2π2

bj,l−1

dz, z ∈ [−π2, π2].

(4.26)

However, there are several configurations of the parameters for this link function.

If we let aj,l = bj,l = κj,l as in previous chapters, Gj,l becomes symmetric. Because,

ψj,l and ζj,l are assigned the same prior distributions, it is clear from a simple

symmetry argument that, under this choice of aj,l and bj,l for a symmetric Gj,l,

E(Gj,l (e (ψj,l, ζj,l,βi))) = 1/2 for all values of ω, τ and κj,l. Therefore, E(θli,j) =(
1
2

)l
and the prior class probability distribution of θli,j is highly skewed to the right,

leading to increasingly smaller probabilities for the larger categories. Therefore,

we also consider the asymmetric parameterization to allow a more flexible prior

class probability distribution.
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If we let aj,1 = aj,2 = · · · = aj,Lj = sjκj and bj,1 = bj,2 = · · · = bj,Lj = κj

(sj = 1 corresponds to a symmetric link and sj 6= 1 for a asymmetric link), the

dispersion of Gj,l for each category l is constrained to be identical. We denote such

parameterization as “Tied" structure throughout the rest of this chapter. Using

a “Tied" structure ensures the same dispersion as a priori across all categories

of (item) j. Models without such structure are more flexible in the presence of

heterogeneous error distributions across ordinal categories. Therefore, we can

specify four various parameter configurations for Gj,l, which are summarized in

the following table ordered by the number of parameters in a non-decreasing order

(configuration 3 can have the same number of parameters as configuration 2 if and

only if Lj = 3 for all j),

Table 4.1: Configurations of Gj,l

Configuration Asymmetric Tied Number of Parameters aj,l bj,l

1 False True J κj κj

2 True True 2J sjκj κj

3 False False ∑J
j=1(Lj − 1) κj,l κj,l

4 True False 2∑J
j=1(Lj − 1) sj,lκj,l κj,l

Note that configuration 2 generalizes configuration 1, configuration 3 generalizes

configuration 1 while configuration 4 generalizes all other configurations. We will

compare the spherical models under these configurations in Section 4.5 using both

simulated and real data sets.
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4.2.2 Hyperpriors

Completing the specification of the model requires that we assign hyperpriors to

ω, τ and the parameters of link function in Table 4.1. The precisions ω and

τ are assigned independent Gamma distributions, ω ∼ Gam(aω, bω) and τ ∼

Gam(aτ , bτ ).

The concentration parameters associated with the symmetric link function are as-

sumed to be conditionally independent and given a common prior, κj ∼ Gam(c, λ)

and κj,l ∼ Gam(c, λ) respectively, where λ is in turn given a conditionally conju-

gate Gamma hyperprior, λ ∼ Gam(aλ, bλ). The parameters aω, bω, aτ , bτ , aλ, bλ

and c for these hyperpriors are assigned to strongly favor configurations in which

βi,1 ∈ [−π/2, π/2] (which is consistent with the assumption that a Euclidean

continuation-ratio model is approximately correct). We set these hyperparame-

ters the same way as discussed in Section 3.1.5.

Similarly, On the other hand, the parameters sj and sj,l, which controls asym-

metricity of the link function, are assumed to be conditionally independent and are

also given a common prior Gam(as, bs). Recall that E(Gj,l (e (ψj,l, ζj,l,βi))) = 1/2

if symmetric link function is used, which induces increasingly smaller proba-

bilities for the later categories. Hence, hyperparameters as and bs are speci-

fied such that it has high prior probability around 1 for which the asymmet-

ric model becomes the symmetric model, and high prior probability favoring

E(Gj,l (e (ψj,l, ζj,l,βi))) < 1/2. For these reasons, we suggest using as = 4 and

bs = 2, which is used throughout the rest of this chapter.
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4.3 Computation

The posterior distribution for the spherical factor model is again analytically in-

tractable. Similar to the previous two chapters, inference for the model param-

eters is carried out using a hybrid that combines Gibbs sampling, random walk

Metropolis-Hastings and Hamiltonian Monte Carlo steps to generate samples from

the full conditional distributions of each parameter. The simplest steps correspond

to sampling the parameters ω, τ , λ, and parameters associated with link function.

In particular, we sample λ from its Gamma full conditional posterior distribution,

and sample ω, τ and parameters associated with the link function in Table 4.1 us-

ing random walk Metropolis Hastings with log-Gaussian proposals. The variance

of the proposals for these steps are tuned so that the acceptance rate is roughly

40%. On the other hand, for sampling the latent positions we again employ the

Geodesic Hamiltonian Monte Carlo (GHMC) algorithm described in Section 1.3.3.

As an example, consider the step associated with updating βi, the latent factor for

individual i. Denoting the associated coordinates in RK+1 by xβis (recall Equation

3.3), the density of the Hausdorff measure associated with the full conditional

distribution is given by

pH(xβi | · · · ) ∝
 J∏
j=1

Lj∏
l=1

(θli,j (βi, ζj,l,ψj,l))z
l
i,j ,

exp

ω xβi,1√
x2
βi,1 + x2

βi,2




exp

−
K∑
k=2

k2ω

2
x2
βi,k+1∑k+1
t=1 x

2
βi,t

− 1


 1∏K
k=1

(∑k+1
t=1 x

2
βi,t

) 1
2

 , xTβixβi = 1,

where xβi = (xβi,1, xβi,2, . . . , xβi,K+1) and θli,j is defined in (4.21). Then, given

tuning parameters L and ε, the GHMC preceeds the same way as that described

in Section 3.2.
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Recall that in Appendix A.4, we derived the gradient of the logarithm of the Haus-

dorff measure pertain to the same prior used in this chapter. Detailed expressions

for the Hausdorff measures associated with the full conditional distributions of

the xβis, xψjs and xζjs, as well as their corresponding gradients, can be found

in Appendix A.5. Similar to the previous two chapters, we periodically “jitter”

the step sizes and the number of leap steps (e.g., see 77, pg. 306) in our experi-

ments. This approach greatly improved the mixing of the algorithm. The specific

range in which ε and L move for each (group of) parameter and each data set is

again selected to target an average acceptance probability between 60% and 90%

[65, 67].

4.4 Robust Metrics for Ordinal Data

In binary data analysis, Information Criterion such as WAIC, DIC, AIC/BIC, or

predicted test accuracy based measures could be employed to perform model se-

lections. However, such metrics may not work well in the presence of unbalanced

data which is prevalent in ordinal data analysis. For example, a trivial model

that assigns all responses to a single dominant class might outperform carefully

constructed models. Therefore, we also employ robust measures of predicted ac-

curacy including AMAE [94] and MMAE [95] to evaluate model performance. In

addition, we also propose an alternative robust metric, AACC. These metrics,

along with traditional metrics including ACC and ACC1, are defined as follows:

1. ACC denotes the percentage of correctly predicted labels among all labels.

ACC =
∑N
n=1 zn
N

, (4.27)
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where zn denotes an indicator variable and it is 1 if the model correctly

predicts the label of yn.

2. ACC1 represents the accuracy within 1 category that relaxes the above

measure by allowing category l− 1 (true label is l) to be also considered as

“correct”. For example, if the true label is 3 stars, then predicted label of

either 3 or 2 stars would both be considered as “correct”,

ACC1 =
∑N
n=1 z

∗
n

N
(4.28)

where z∗n denotes an indicator variable and it is 1 if model correctly predicts

the label of yn within 1 category.

3. AMAE is the average mean absolute error across categories. It is robust in

the presence of unbalanced data, and becomes the traditional mean absolute

error (MAE) if the data is balanced.

AMAE = 1
L

L∑
l=1

∑Nl
u=1 |ŷlu − ylu|

Nl

 , (4.29)

4. MMAE, an alternative to AMAE, is the maximum mean absolute error

across categories,

MMAE = max
l

∑Nl
u=1 |ŷlu − ylu|

Nl

 , (4.30)

where ylu denotes the true response corresponds to category l and Nl repre-

sents the associated total number of responses in that category while ŷlu is

the predicted label.

5. AACC, which is similar to the idea of AMAE and MMAE, is the average
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mean accuracy across categories proposed in this chapter. It is a robust

measure that generalizes ACC if the data is balanced,

AACC : 1
L

L∑
l

(∑Nl
u=1 z

l
u

Nl

)
. (4.31)

where zlu denotes an indicator variable for response ylu belonging to category

l and it is 1 if model correctly predicts the label of ylu.

To summarize, higher ACC, ACC1, AACC and lower AMAE, MMAE suggests

a better overall fit. In the sequel, we refer to ACC and ACC1 as the traditional

measures and the other as robust measures.

4.5 Illustrations

In this section, we illustrate the performance of the proposed models using both

simulated and real data sets. We compare all four versions of the spherical model

described in Table 4.1, as well as the PO and NPO Euclidean models from Section

4.1.5. Our objective is threefold: First, we evaluate and compare spherical models

under four different link functions specified in Table 4.1. Secondly, we compare

the spherical model with its Euclidean counterpart. Finally, we aim to evaluate

our ability to select optimal model dimension using the Deviance Information

Criteria (DIC) as well as the various performance metrics discussed in Section

4.4. To evaluate these performance metrics, we randomly select 5% of the data

as the test set.

Computation for both the spherical and Euclidean models was carried out using

HMC algorithms. In all of the analyses involving spherical models, the number
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of leaps used in the HMC steps is randomly selected from a discrete uniform

distribution between 1 and 10 or 5 and 10 every 50 samples. Similarly, the leap

sizes are drawn from uniform distribution on (0.01, εβ) for each βi where εβ ∈

[0.05, 0.2], and from a uniform distribution on (0.005, εζ) or (0.01, εψ), for each ζj,l

and ψj,l where εβ, εψ ∈ [0.01, 0.1]. All inferences presented in this section are based

on 20,000 samples obtained after convergence of the Markov chain Monte Carlo

algorithm. For the simulation study, the length of burn in period are around 15,000

iterations. On the other hand, the length of the burn in period is 20,000 and 35,000

iterations for ASES and BEPS data respectively. We also used HMC to generate

posterior samples from the PO and NPO models. The number of leaps used in

the HMC steps is randomly selected from a discrete uniform distribution between

1 and 10 Convergence was checked by monitoring the value of the log-likelihood

function, both through visual inspection of the trace plot, and by comparing

multiple chains using the procedure in [78].

4.5.1 Simulation Study

We conducted a simulation study including three distinct scenarios to evaluate

our spherical model under various link functions. Each simulated data set con-

sists of I = 1000 subjects and J = 20 items. In the first two scenarios, the

data is simulated from a spherical factor model under configuration 1 and 4 in

Table 4.1 on S3 and S2 respectively. Recall that configuration 1 represents the

most parsimonious version of the link function while configuration 4 has the most

parameters. In both of these cases, the item-specific latent positions, as well as

the subject-specific latent positions, are sampled from spherical von-Mises distri-

butions where all component-wise precisions are equal to 2. The third data set
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is simulated from a NPO Euclidean model on R3 in which the latent positions

are generated from standard Gaussian distributions. In terms of the features of

the items, the first simulated data consists of three-category items only while the

later two simulated data sets consist solely of five-category items. In the second

scenario, the scale parameters sj,1, sj,2, sj,3 and sj,4 which brings the asymmetric-

ity to the model are sampled from a uniform distribution on (1.7, 1.9), (1.4, 1.6),

(1.1, 1.3), and (0.9, 1.1) respectively to favor the case in which later categories

have more responses.

We present the marginal distribution of the answers to each item as well as the

discrete distribution of the data for these simulated data sets in Figure 4.1 and 4.2.

All three data sets display some degree of imbalance by construction. In particular,

simulated data 1 and 3 show a higher concentration in the early categories, while

simulated data 2 favors the later categories.
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Figure 4.1: Marginal distribution of the answers to each of the 20 items in each
simulated dataset. The ordinal scale is represented by the shades of gray from the
lightest to the darkest.
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Figure 4.2: Overall frequency of responses for each simulated dataset.

We start by fitting spherical and Euclidean models of varying dimensions in all

scenarios. The values of the DIC for each model and dimension are shown in

Figure 4.4. In the first two scenarios, the best model selected by DIC coincides

with the true data generating model. Moreover, the optimal NPO model in each of

these two scenarios has a dimension that is one unit higher than the true spherical

dimension, a result that is consistent with those in Section 3.3.1. On the other

hand, in the third scenario, all spherical models achieve similar or slightly better

performance than the true data generating (Euclidean) model. More specifically,

in scenario 1, the optimal model identified by DIC correspond to a two-dimensional

spherical model with a tied and symmetric link function. Nonetheless, we can

see from the first column of Figure 4.3 that the first two dimensions of the βis

recovered by the spherical models (which, in every case, capture over 95% of the

variability of the latent traits) are similar across all spherical models. Hence,

while the more complex model is (reasonably) not preferred by DIC, the results

suggests that inferences for the underlying latent traits will not be dramatically

affected by the use of a link function that is more complex that you would really

need. On the other hand, in scenario 2, DIC correctly identifies a two-dimensional

spherical model with untied and asymmetric link functions as the best model for
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the model. Furthermore, the second column of Figure 4.3 shows that βis estimated

from the correct model have a much higher variance than those estimated from the

simpler models. This suggests that specifying a link function that is not flexible

enough has serious implications, not only in terms of fit-complexity tradeoffs, but

also in terms of the ability of the model to accurately recover the value of the

latent traits. Finally, in scenario 3, DIC selects the optimal spherical models and

data generating NPO Euclidean model all at the right dimension and the optimal

spherical models achieve equivalent or better performance as the data generating

Euclidean model. While slightly surprising, this result might be explained by the

fact that the since the NPO Euclidean model is a limiting case for these spherical

models. To conclude, note that the PO Euclidean model is under-parameterized

and hence does not perform well in all of these scenarios.

Computing the DIC for each model and dimension as we just did is computation-

ally intensive. An alternative approach to dimension selection is based on fitting

a single high-dimensional model, and investigating the behavior of the principal

nested sphere (PNS) decomposition of the estimated spherical latent space (recall

Section 3.3.1). The principal nested spheres decomposition is implemented with

a fixed radius of 1 in this chapter. Figure 4.5 employs such an approach for our

three simulation scenarios and confirms several key observations from the DIC

results discussed earlier. In particular, in scenario 1, all spherical models achieve

an elbow at the correct dimension with almost identical variance decomposition.

In scenario 2, only the data generating model retains an elbow at the true dimen-

sion while the remaining models require an additional dimension. In addition, the

elbow from the data generating model is much sharper than its counterparts. In

scenario 3, the variance of each spherical model plateaus at the same (correct)

dimension.
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Another approach to dimension selection as well as model comparison is also

based on fitting a single high-dimensional model. In particular, we compare the

nested and full model performance using metrics outlined in Section 4.4. Recall

from Section 3.1.1, the nested model can be easily obtained from the full model

through an recursive procedure by zeroing out the higher dimensions of the latent

positions. The nested and the full model results are shown in Figure 4.6, Figure

4.7 and Figure 4.8 respectively. In the first scenario, the results demonstrate that

all spherical models deliver comparable performance and each retains a sharp

elbow at the underlying truth in both traditional and robust measures. In the

second scenario, only the true data generating spherical model obtains a clear

elbow at the underlying truth while the rest of the spherical models require an

additional dimension to achieve their best performance respectively. In the third

scenario, spherical models and the NPO Euclidean model all retain a clear elbow

at the right dimension. Furthermore, the spherical models perform significantly

better in terms of the robust measures than the data generating NPO Euclidean

model. On the other hand, the PO Euclidean model once again does not show

good performance in any of these scenarios. All of these observations resonates

with the DIC and PNS results.

To summarize, the simulation study conducted suggests that we could use the

nested model results computed from the full model to select the optimal latent

dimension as well as perform model comparison without fitting models of varying

dimensions.
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Figure 4.3: Pairwise plots of the first two dimensions for βi in the simulation
study.

121



1 2 3 4 5 6

−
22

00
0

−
18

00
0

−
14

00
0

Dim
D

IC

Symmetric, Tied
Asymmetric, Tied
Symmetric, not Tied
Asymmetric, not Tied
PO
NPO

(a) Scenario 1

1 2 3 4 5 6−
24

00
0

−
20

00
0

−
16

00
0

−
12

00
0

Dim

D
IC

Symmetric, Tied
Asymmetric, Tied
Symmetric, not Tied
Asymmetric, not Tied
PO
NPO

(b) Scenario 2

1 2 3 4 5 6

−
30

00
0

−
25

00
0

−
20

00
0

Dim

D
IC

Symmetric, Tied
Asymmetric, Tied
Symmetric, not Tied
Asymmetric, not Tied
PO
NPO

(c) Scenario 3

Figure 4.4: Deviance information criteria as a function of the embedding space’s
dimension K for simulated data sets. Vertical lines represent the underlying true
latent dimension.
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Figure 4.5: PNS decomposition of the latent space for the simulated data sets.
Vertical lines represent the underlying true latent dimension.
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Figure 4.6: Nested model results for Scenario 1. Vertical lines represent the
underlying true latent dimension.
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Figure 4.7: Nested model results for Scenario 2. Vertical lines represent the
underlying true latent dimension.
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Figure 4.8: Nested model results for Scenario 3. Vertical lines represent the
underlying true latent dimension.
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4.5.2 Real data

In this Section, we illustrate the performance of the proposed models on two real

data sets with unbalanced categories: the ASES and BEPS datasets. The ASES

(Asia Europe Survey) data set [96] consists of responses by 913 interviewees and 17

questions focused on various political and economical issues in the U.K. Of these

17 questions, 9 share a four-level ordinal scale, while the remaining 8 share a

three-level scale. The BEPS data set (available from https://www.britishelection

study.com/data-object/2005-2009-bes-6-wave-panel-survey/) corresponds to

British Election Study Six-Wave Panel Survey conducted through the period of

2005-2009. There were 7793 participants and we select 42 ordinal response ques-

tions concerning various social, political and economical issues to carry out our

analysis. Of the 42 questions, 38 have a five-level categorical scale, three have

a four-level scale, and one question has a three-level scale. Table 4.2 provides

some summaries of these two data sets while Figure 4.9 and 4.10 illustrates the

unbalanced nature of these data sets. ASES data does not contain any missing

values while BEPS does. In this illustration we assume that the missing responses

are missing completely at random.

Data set Surveyor (I) Questions (J) Missing Responses

ASES 913 17 0 (0.00%)

BEPS 7793 43 25431 (7.59%)

Table 4.2: Summary information for the two data sets analyzed in this chapter.
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Figure 4.9: Marginal distribution of the answers to each item in the ASES
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Figure 4.10: Marginal distribution of the answers to each item in the BEPS
data. The left panel corresponds to a three-category question, the middle panel
corresponds to four-category questions, and the right panel corresponds to five-
category questions. The ordinal scale is represented by the shades of gray from
the lightest to the darkest (Note that the varying bar length are due to missing
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Figures 4.15 and Figure 4.16 show the value of DIC for various models as a function

of the latent dimension K. For the ASES data, DIC selects the two-dimensional

NPO Euclidean model as the best model, followed by the one-dimensional NPO

Euclidean model. Among the spherical models, DIC consistently selects one-

dimensional models no matter what the exact form of the link function. Further-

more, among these spherical models, those with a symmetric link functions seem

to be preferred. In contrast to the ASES dataset, for the BEPS data, DIC chooses

a four-dimensional spherical model with tied and symmetric link function as the

best model.

Figures 4.13 and 4.14 show the variance associated with each component of a

PNS decomposition for the ASES and BEPS datasets, respectively. In the ASES

dataset, with the exception of the spherical model with untied and asymmetric

link function, the first dimension of the decomposition already accounts for 90%

of the variance, while the first two account for over 96%. This suggests, that

one or two latent dimensions are enough in this dataset, a result that agrees with

those from Figure 4.15. On the other hand, we observe an elbow at dimension 4 in

each spherical model for the BEPS data. Furthermore, the first three dimensions

account for 93% of the variance and the first four dimensions account for more

than 95% of the variance. Again, these behavior agrees with that observed in

Figure 4.16 for DIC.

The nested and full model results for ASES data are shown in Figure 4.11. All

models perform similarly in terms of the traditional measures. However, the PO

Euclidean model outperforms the rest in the robust measures by a clear margin.

On the other hand, the nested model results suggest a one-dimensional latent space

for each model class as the higher-dimensional models do not provide a significant

improvement in terms of the performance measures. This result agrees with the
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DIC and PNS results discussed earlier. Next we discuss the nested and the full

model results for the BEPS data shown in Figure 4.12. We observe that the the

spherical and Euclidean models achieve similar results in the traditional measures

but the spherical models excel at the robust measures. In addition, the results

suggest roughly a four-dimensional latent space for each model by examining the

elbow, which again are in accordance with the DIC and PNS results. In this case,

the latent space clearly favors spherical latent space. Therefore, we consider the

four-dimensional spherical model with the symmetric and tied link function as the

best model from a simple parsimony argument.

Lastly, we conclude this section by providing examples for the item specific po-

sitions in which Euclidean and spherical latent space is favored respectively in

Figure 4.17 and 4.18. Question 4 and 36 clearly exhibits spherical pattern while

question 14 and 40 favors Euclidean. In particular, the item specific positions of

question 4 and 36 are more scattered around the sphere while those of question 14

and 40 concentrates around the south pole with little variance. In addition, the

black pair in question 4 and the blue pair in question 36 are positioned around

opposing poles, which is similar to the circular bill examples discussed extensively

in Section 2.4.1.
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Figure 4.11: Nested model results of ASES data

131



Training Results Test Results

A
C
C

2 4 6 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

K

Symmetric, Tied
Asymmetric, Tied
Symmetric, not Tied
Asymmetric, not Tied
PO
NPO

2 4 6 8

0.
2

0.
3

0.
4

0.
5

0.
6

K

A
C
C
1

2 4 6 8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

K

2 4 6 8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

K

A
A
C
C

2 4 6 8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

K

2 4 6 8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

K

A
M
A
E

2 4 6 8

0.
2

0.
4

0.
6

0.
8

1.
0

K

2 4 6 8

0.
4

0.
6

0.
8

1.
0

1.
2

K

M
M
A
E

2 4 6 8

0.
5

1.
0

1.
5

K

2 4 6 8

0.
5

1.
0

1.
5

K

Figure 4.12: Nested model results for BEPS data
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Figure 4.13: PNS decomposition of the latent space in the ASES data
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Figure 4.14: PNS decomposition of the latent space in the BEPS data
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Figure 4.15: Deviance information criteria as a function of the embedding
space’s dimension K for ASES data
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Figure 4.16: Deviance information criteria as a function of the embedding
space’s dimension K for BEPS data
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Figure 4.17: Pairwise plots of the first two dimensions for two spherical ques-
tions. Points in gray represents the first two dimensions of βis. Each pair of item
specific position has the same color and the color represents different response
category.
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Figure 4.18: Pairwise plots of the first two dimensions for two Euclidean ques-
tions. Points in gray represents the first two dimensions of βis. Each pair of item
specific position has the same color and the color represents different response
category.
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4.6 Discussion

In this chapter, we demonstrated that our model is also capable of embedding or-

dinal data into the latent space through careful selection of the ordinal structure as

well as various configurations of the link function. We evaluate our model using

both simulated and real datasets based on both traditional and robust perfor-

mance measures. We conclude that our spherical model can closely approximate

traditional factor models when the true latent space is Euclidean, but yield su-

perior results when the latent space is indeed spherical. In addition, our results

suggest that we can employ the variance decomposition method and the nested

model results computed from the full model to select the optimal latent dimension

as well as perform model comparison without fitting models of varying dimensions.
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Chapter 5

Conclusion and Future Works

In this thesis, we proposed a general framework of embedding binary and cate-

gorical data into the spherical latent space. We demonstrated that it is possible

to distinguish between dimensions and geometries of the underlying embedding

space. In addition, our model can approximate the traditional Euclidean factor

model closely when the latent space is indeed Euclidean. Furthermore, we justi-

fied the use of such space theoretically and practically through both simulated and

real data sets. While we acknowledge that a spherical latent space might not be

appropriate in every application (e.g., it would be difficult to justify in application

such as educational testing), we believe that the class of models discussed in this

dissertation can have broader applications beyond the analysis of roll call data.

One such area of broader application is marketing, where choice models are widely

used to understand consumer behavior. In this context, spherical models could

serve to explain the apparent lack of transitivity of preferences that is sometimes

present in real marketing data (e.g., see [97]).

Another potential line of research is to incorporate covariates into the spherical
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model. In the context of roll call voting application, legislator’s personal char-

acteristics and backgrounds such as party and committee membership, gender,

ethnic background, age, education background, the type of constituency repre-

sented (eg., rural, urban, agricultural) may very well shape their policy decision.

Therefore, incorporating this information will likely lead to a better representation

of legislator’s latent policy space as well as helping researchers to learn the factors

that shape their legislative decision making. To accomplish this, we could adapt

method discussed in 98, pg. 258 to incorporate covariates into the one-dimensional

spherical model through the prior associated with each legislator. In particular,

we could let

βi | ωβ, τβ,h ∼ vonMis(τβ + g(hTxi), ωβ), (5.1)

where xis are covariates, h represents the regression coefficients and g(x) is a one-

to-one link function which maps the real line onto (−π, π). One such link function

g(x) is 2 tan−1(x). This approach can be further extended to higher dimensional

latent spaces in a straightforward manner, resulting in a spherical generalization

of structural equation models.

We relied on the DIC to perform model comparison in Chapter 2 and 3. In

future work, we will investigate the use of shrinkage prior such as spike and slab

prior [99] or the gamma process shrinkage prior [100] as alternatives to DIC for

dimensionality selection. We note, however, that a direct implementation may

be challenging because there is a fundamental difference between the Euclidean

and spherical manifold. More specifically, that for dimension k to be inactive for

observation yi,j, we need βi,k = ψj,k = ζj,k = 0 (recall Section 3.1.1). Ensuring

this requires a joint prior specification for all three parameters. This is different

from what happens with the Euclidean model where having βi,k = 0 is enough for
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the k-th dimension to be inactive.

While the focus of this thesis has been on spherical latent spaces, it is clear that

our approach can be extended to other classes of embedding manifolds such as

affine subspaces, Stiefel manifolds or product manifolds as long as the associated

geodesic is explicit and known. The main challenge associated with this kind of

extension is also the construction of prior distributions as illustrated in Chapter 3,

specially if we aim to estimate the intrinsic dimension of the space. The discussion

in Section 3.4 surrounding the use of alternative prior distributions for the latent

positions that concentrate their mass on small spheres with radius less than one

(such as those in [86] and [87] ) can also be seen as part of these future efforts.

Similarly, this class of models can be extended beyond binary and ordinal to

nominal observations using similar random utility formulations. For example, an

immediate extension of our model that embeds nominal data can be achieved by

adapting the NPO adjacent-category structure discussed in Section 4.1.2 into our

spherical model framework.
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Appendix A

Appendix

A.1 Hausdorff measures and their gradients for

the circular factor model

The density of the full conditional distribution for βi is given by

p(βi | · · · ) ∝ exp {ωββi}
J∏
j=1

[
Gκj

(
{arccos(cos(ζj − βi))}2 − {arccos(cos(ψj − βi))}2

)]yi,j
[
1−Gκj

(
{arccos(cos(ζj − βi))}2 − {arccos(cos(ψj − βi))}2

)]1−yi,j
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Then, the density of the associated Hausdorff measure in R2 is given by

p(xβi | · · · ) ∝ exp
{
ηTβxβi

}
J∏
j=1

[
Gκj

(
{arccos(zTζjxβi)}

2 − {arccos(zTψjxβi)}
2
)]yi,j

[
1−Gκj

(
{arccos(zTζjxβi)}

2 − {arccos(zTψjxβi)}
2
)]1−yi,j

, xTβixβi = 1,

where ηTβ = (ωβ, 0), zTψj = (cosψj, sinψj), zTζj = (cos ζj, sin ζj), and the mapping

between βi and xβi is given by xTβi = (cos βi, sin βi). Hence, the gradient of the

Hausdorff measure is simply

∇ logH p(xβi | · · · ) = ηβ +
J∑
j=1

 yi,je
′
i,j,1

gκj (ei,j)
Gκj (ei,j) − (1− yi,j)e′i,j,1

gκj (ei,j)
1−Gκj (ei,j)

yi,je
′
i,j,2

gκj (ei,j)
Gκj (ei,j) − (1− yi,j)e′i,j,2

gκj (ei,j)
1−Gκj (ei,j)

 ,

where

ei,j = {arccos(zTζjxβi)}
2 − {arccos(zTψjxβi)}

2,

e′i,j =

 e′i,j,1

e′i,j,2

 =
2 arccos

(
zTψjxβi

)
√

1−
(
zTψjxβi

)2
zψj −

2 arccos
(
zTζjxβi

)
√

1−
(
zTζjxβi

)2
zζj .

Next, the density of the full conditional distribution for zζj in terms of Hausdorff

measure in R2 is given by

p(zζj | · · · ) ∝
I∏
i=1

Gκj

(
{arccos(zTζjxβi)}

2 − {arccos(zTψjxβi)}
2
)

[
1−Gκj

(
{arccos(zTζjxβi)}

2 − {arccos(zTψjxβi)}
2
)]1−yi,j

, zTζjzζj = 1,
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and the gradient of the Hausdorff measure is

∇ logH p(zζj | · · · ) =
I∑
i=1

 yi,jδ
′
i,j,1

gκj (δi,j)
Gκj (δi,j) − (1− yi,j)δ′i,j,1

gκj (δi,j)
1−Gκj (δi,j)

yi,jδ
′
i,j,2

gκj (δi,j)
Gκj (δi,j) − (1− yi,j)δ′i,j,2

gκj (δi,j)
1−Gκj (δi,j)

 ,

where δi,j = {arccos(zTζjxβi)}
2 − {arccos(zTψjxβi)}

2,

δ′i,j =

 δ′i,j,1

δ′i,j,2

 = −
2 arccos

(
zTζjxβi

)
√

1−
(
zTζjxβi

)2
xβi .

Lastly, the density of the full conditional distribution for zψj in terms of Hausdorff

measure in R2 is given by

p(zψj | · · · ) ∝
I∏
i=1

Gκj

(
{arccos(zTζjxβi)}

2 − {arccos(zTψjxβi)}
2
)

[
1−Gκj

(
{arccos(zTζjxβi)}

2 − {arccos(zTψjxβi)}
2
)]1−yi,j

, zTψjzψj = 1,

and the gradient of the Hausdorff measure is

∇ logH p(zψj | · · · ) =
I∑
i=1

 yi,jγ
′
i,j,1

gκj (γi,j)
Gκj (γi,j) − (1− yi,j)γ′i,j,1

gκj (δi,j)
1−Gκj (γi,j)

yi,jγ
′
i,j,2

gκj (γi,j)
Gκj (γi,j) − (1− yi,j)γ′i,j,2

gκj (δi,j)
1−Gκj (γi,j)

 ,

where

γi,j = {arccos(zTζjxβi)}
2 − {arccos(zTψjxβi)}

2,

γ ′i,j =

 γ′i,j,1

γ′i,j,2

 =
2 arccos

(
zTψjxβi

)
√

1−
(
zTψjxβi

)2
xβi
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A.2 Stability of priors in the Euclidean factor

model

Let µj ∼ N(0, 1/2), αj,k ∼ N(0, 1/2), βj,k ∼ N(0, 6/[πk]2), and zi,j(K) = µj +∑K
k=1 αj,kβi,k. Because zi,j(K) is the sum of K + 1 random variables with finite

second moments, a simple application of the central limit theorem indicates that

{zi,j(K)− E(zi,j(K))}/Var(zi,j(K)) converges in distribution to standard normal

distribution as K →∞. Now, note that (zi,j(K)) = 0 by construction, and that,

Var {zi,j(K)} = Var(µj) +
K∑
k=1

Var(αj,k)Var(βi,k)

= 1
2 + 1

2

K∑
k=1

6
π2

1
k2 = 1

2 + 1
2

6
π2
π2

6 = 1

As a consequence, θi,j = Φ (zi,j(K)) converges in distribution to a uniform distri-

bution in [0, 1].

A.3 Hausdorff measure of SvM distribution

p(φ | ω) =
( 1

2π

)K
2K−1 1

I0(ω1) exp {ω1 cosφ1}
K∏
k=2

1
I0(ωk)

exp {ωk cos 2φk}

= 1
2πI0(ω1) exp {ω1 cosφ1}

{
K∏
k=2

1
πIo(ωk)

exp (ωk cos 2φk)
}

= 1
2πI0(ω1) exp {ω1 cosφ1}

{
K∏
k=2

1
πIo(ωk)

exp
(
ωk(2 cos2 φk − 1)

)}

= 1
2πI0(ω1) exp {ω1 cosφ1}

{
K∏
k=2

1
πIo(ωk)

}
exp

{
K∑
k=2

ωk
(
2 cos2 φk − 1

)}
.

Using the hyperspherical coordinates in Equation 3.3, we can express our prior
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proposed prior in terms of Hausdorff measure,

p(x | ω) = |J | × p (φ = g(x) | ω) =

 1∏K
k=1

√∑k+1
t=1 x

2
t

 1
2πIo(ω1)

exp

ω1
x1√

x2
1 + x2

2


{

K∏
k=2

1
πIo(ωk)

}
exp

{
−

K∑
k=2

ωk

(
2 x2

k+1∑k+1
t=1 x

2
t

− 1
)}

, xTx = 1.

A.4 Hausdorff measure and their gradients of

the spherical latent factor model for binary

data

A.4.1 Gradients of the loglikelihood

The gradients with respect to the Hausdorff measure for xβi ,xζj ,xψj are derived

under the unit norm constraints in which their firstK components are independent

variables while the last dimension is dependent. Therefore the gradient for the

last dimension is always 0 and the gradients shown in this Section are for the first

K dimension.

The gradient of log conditional density of xβi under the Hausdorff measure is,

∇ log pH(xβi | . . . ) = ∇ log pHl +∇ log pHπ +∇ log pJ ,

where ∇ log pHπ + ∇ log pJ is defined in (A.2). The density of the associated
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Hausdorff measure with respect to the likelihood component is given by

p(xβi | · · · ) =
J∏
j=1

[
Gκj

(
{arccos(xTζjxβi)}

2 − {arccos(xTψjxβi)}
2
)]yi,j

[
1−Gκj

(
{arccos(xTζjxβi)}

2 − {arccos(xTψjxβi)}
2
)]1−yi,j

, xTβixβi = 1,

where xβi = (xβi,1, xβi,2, . . . , xβi,K+1) ,xζj =
(
xζj ,1, xζj ,2, . . . , xζj ,K+1

)
,

xψj =
(
xψj ,1, xψj ,2, . . . , xψj ,K+1

)
Hence, the gradient of the likelihood under the

Hausdorff measure is simply

∇ logHl p(xβi | · · · ) =



∑J
j=1

{
yi,je

′
i,j,1

gκj (ei,j)
Gκj (ei,j) − (1− yi,j)e′i,j,1

gκj (ei,j)
1−Gκj (ei,j)

}
...∑J

j=1

{
yi,je

′
i,j,K

gκj (ei,j)
Gκj (ei,j) − (1− yi,j)e′i,j,K

gκj (ei,j)
1−Gκj (ei,j)

}

 ,

where ei,j = {arccos(xTζjxβi)}
2 − {arccos(xTψjxβi)}

2,

e′i,j,t =
2 arccos

(
xTψjxβi

)
√

1−
(
xTψjxβi

)2

(
xψj,t − xψj,K+1

xβi,t
xβi,K+1

)
−

2 arccos
(
xTζjxβi

)
√

1−
(
xTζjxβi

)2

(
xζj,t − xζj,K+1

xβi,t
xβi,K+1

)
.

Next the gradient of log conditional density of xζj under the Hausdorff measure

is,

∇ log pH(xζj | . . . ) = ∇ log pHl +∇ log pHπ +∇ log pJ ,

where ∇ log pHπ + ∇ log pJ is defined in (A.2). The density of the associated
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Hausdorff measure with respect to the likelihood component is given by

p(xζj | · · · ) =
I∏
i=1

[
Gκj

(
{arccos(xTζjxβi)}

2 − {arccos(xTψjxβi)}
2
)]yi,j

[
1−Gκj

(
{arccos(xTζjxβi)}

2 − {arccos(xTψjxβi)}
2
)]1−yi,j

, xTζjxζj = 1,

where xβi = (xβi,1, xβi,2, . . . , xβi,K+1) ,xζj =
(
xζj ,1, xζj ,2, . . . , xζj ,K+1

)
,

xψj =
(
xψj ,1, xψj ,2, . . . , xψj ,K+1

)
Hence, the gradient of the likelihood under the

Hausdorff measure is simply

∇ logHl p(xζj | · · · ) =



∑I
i=1

{
yi,je

′
i,j,1

gκj (ei,j)
Gκj (ei,j) − (1− yi,j)e′i,j,1

gκj (ei,j)
1−Gκj (ei,j)

}
...∑I

i=1

{
yi,je

′
i,j,K

gκj (ei,j)
Gκj (ei,j) − (1− yi,j)e′i,j,K

gκj (ei,j)
1−Gκj (ei,j)

}

 ,

where

ei,j = {arccos(xTζjxβi)}
2 − {arccos(xTψjxβi)}

2,

e′i,j,t = −
2 arccos

(
xTζjxβi

)
√

1−
(
xTζjxβi

)2

(
xβi,t − xβi,K+1

xζj,t
xζj,K+1

)
.

Lastly the gradient of log conditional density of xψj under the Hausdorff measure

is,

∇ log pH(xψj | . . . ) = ∇ log pHl +∇ log pHπ +∇ log pJ ,

where ∇ log pHπ + ∇ log pJ is defined in (A.2). The density of the associated
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Hausdorff measure with respect to the likelihood component is given by

p(xζj | · · · ) =
I∏
i=1

[
Gκj

(
{arccos(xTψjxβi)}

2 − {arccos(xTζjxβi)}
2
)]yi,j

[
1−Gκj

(
{arccos(xTψjxβi)}

2 − {arccos(xTζjxβi)}
2
)]1−yi,j

, xTψjxψj = 1,

where xβi = (xβi,1, xβi,2, . . . , xβi,K+1) ,xζj =
(
xζj ,1, xζj ,2, . . . , xζj ,K+1

)
,

xψj =
(
xψj ,1, xψj ,2, . . . , xψj ,K+1

)
Hence, the gradient of the likelihood under the

Hausdorff measure is simply

∇ logHl p(xψj | · · · ) =



∑I
i=1

{
yi,je

′
i,j,1

gκj (ei,j)
Gκj (ei,j) − (1− yi,j)e′i,j,1

gκj (ei,j)
1−Gκj (ei,j)

}
...∑I

i=1

{
yi,je

′
i,j,K

gκj (ei,j)
Gκj (ei,j) − (1− yi,j)e′i,j,K

gκj (ei,j)
1−Gκj (ei,j)

}

 ,

where

ei,j = {arccos(xTζjxβi)}
2 − {arccos(xTψjxβi)}

2,

e′i,j,t =
2 arccos

(
xTψjxβi

)
√

1−
(
xTψjxβi

)2

(
xβi,t − xβi,K+1

xψj,t
xψj,K+1

)
.

A.4.2 Derivation of the gradient of log prior and log Ja-

cobian

The gradient with respect to the log of Hausdorff measure may appear forbid-

ding to derive, especially the prior component of the full conditional because the

expression of the gradient changes with the predetermined maximum dimension.

Hence, we develop an automatic method to facilitate the computation of the gra-

dient. Interestingly, the GHMC algorithm projects all the gradient to the tangent

space through the momentum update, which allows the gradient computed with or
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without the constraint to be the same. Nevertheless, it is generally recommended

to derive the gradients under the unit norm constraint since they are invariant to

the reparameterization with respect to the constraint.

∇ log pH(xβi | . . . ) = ∇ log pHl +∇ log pHπ +∇ log pJ , (A.1)

where log pHl , log pHπ and∇ log pJ is the gradient of log-likelihood, log of prior and

log of Jacobian respectively with respect to the Hausdorff measure. For K = 1,

the model becomes the circular factor model and we focus on the derivation for

K > 1 in this paper. Let xβi,1 , . . . , xβi,K be the independent random variable and

xβi,K+1 be the dependent random variable. As a result, the gradient associated

with the last dimension xβi,K+1 is 0. The first K components of the gradient from

the prior and Jacobian are shown as follows,

∇ log pHπ +∇ log pHJ = 4ωK



x1

x2
...

xK


+ ω1x2(x2

1 + x2
2)− 3

2



x2

−x1

0
...



+ 4



x1

x2
...

xK


◦ Σ-2



ω2x
2
3/
( 3∑
t=1

x2
t

)2

...

ωK−2x
2
K−1/

(
K−1∑
t=1

x2
t

)2

ωK−1x
2
K/

(
K∑
t=1

x2
t

)2


− 4



0

0
ω2x3
3∑
t=1

x2
t

...
ωK−1xK
K∑
t=1

x2
t



−



x1

x2
...

xK


◦ Σ-1



1
2∑
t=1

x2
t

1
3∑
t=1

x2
t

...
1

K∑
t=1

x2
t


,

(A.2)
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where Σ−t is an upper triangular matrix of size K− t without the first t columns

and all non-zero entries are 1. As a special case when K = 2, Σ−2 becomes a 0

matrix and Σ−1 becomes scalar 1. Once the maximum dimension is specified, Σ−1,

Σ−2 can be generated and all the gradients can then be vectored easily during the

implementation without explicitly deriving the expression for different maximum

dimension. Recall that, xβi ,xζj and xψj share the same prior and hence the

corresponding gradient expression will also be the same.

A.5 Hausdorff measure and their gradients of

the spherical latent factor model for ordinal

data

As discussed in Section 4.2, we employ the same spherical von Mises prior for

ψj,ls, ζj,ls and βis of which the gradient is identical to those in Appendix A.5.

Therefore, we focus the derivation of the likelihood (∇ log pHl in Equation (A.1)

for xβi ,xζj and xψj .

The density of the associated Hausdorff measure with respect to the likelihood of

xβi is given by,

pHl(xβi | · · · ) =
 J∏
j=1

Lj∏
l=1

(θli,j (βi, ζj,l,ψj,l))z
l
i,j ,

 , xTβixβi = 1,

and the corresponding gradient of the log density is as follows,

∇ log pHl(xβi | · · · ) =
J∑
j=1

Lj∑
l=1

zli,j log(θli,j (βi, ζj,l,ψj,l)),
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where zli,j is an indicator variable and is 1 only if Yi,j = l and recall θli,j is defined

Equation (4.21).

The density of the associated Hausdorff measure with respect to the likelihood of

xζj,l is given by,

pHl(xζj,l | · · · ) =
 I∏
i=1

Lj∏
l=1

(θli,j (βi, ζj,l,ψj,l))z
l
i,j ,

 , xTζj,lxζj,l = 1,

and the corresponding gradient of the log density is as follows,

∇ log pHl(xζj,l | · · · ) =
I∑
i=1

Lj∑
l=1

zli,j log(θli,j (βi, ζj,l,ψj,l)),

where zli,j is an indicator variable and is 1 only if Yi,j = l and recall θli,j is defined

Equation (4.21).

The density of the associated Hausdorff measure with respect to the likelihood of

xψj,l is given by,

pHl(xψj,l | · · · ) =
 I∏
i=1

Lj∏
l=1

(θli,j (βi, ζj,l,ψj,l))z
l
i,j ,

 , xTψj,lxψj,l = 1,

and the corresponding gradient of the log density is as follows,

∇ log pHl(xψj,l | · · · ) =
I∑
i=1

Lj∑
l=1

zli,j log(θli,j (βi, ζj,l,ψj,l)),

where zli,j is an indicator variable and is 1 only if Yi,j = l and recall θli,j is defined

Equation (4.21).
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