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There is accumulating evidence that circulating estrogen 
levels inf luence processes relevant to glaucoma in the 
reproductive and post-reproductive years [1]. For example, 
elevated estrogen levels in pregnancy were associated with 
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Purpose: Circulating estrogen levels are relevant in glaucoma phenotypic traits. We assessed the association between an 
estrogen metabolism single nucleotide polymorphism (SNP) panel in relation to primary open angle glaucoma (POAG), 
accounting for gender.
Methods: We included 3,108 POAG cases and 3,430 controls of both genders from the Glaucoma Genes and Environment 
(GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium 
genotyped on the Illumina 660W-Quad platform. We assessed the relation between the SNP panels representative of 
estrogen metabolism and POAG using pathway- and gene-based approaches with the Pathway Analysis by Randomiza-
tion Incorporating Structure (PARIS) software. PARIS executes a permutation algorithm to assess statistical significance 
relative to the pathways and genes of comparable genetic architecture. These analyses were performed using the meta-
analyzed results from the GLAUGEN and NEIGHBOR data sets. We evaluated POAG overall as well as two subtypes 
of POAG defined as intraocular pressure (IOP) ≥22 mmHg (high-pressure glaucoma [HPG]) or IOP <22 mmHg (normal 
pressure glaucoma [NPG]) at diagnosis. We conducted these analyses for each gender separately and then jointly in 
men and women.
Results: Among women, the estrogen SNP pathway was associated with POAG overall (permuted p=0.006) and HPG 
(permuted p<0.001) but not NPG (permuted p=0.09). Interestingly, there was no relation between the estrogen SNP 
pathway and POAG when men were considered alone (permuted p>0.99). Among women, gene-based analyses revealed 
that the catechol-O-methyltransferase gene showed strong associations with HTG (permuted gene p≤0.001) and NPG 
(permuted gene p=0.01).
Conclusions: The estrogen SNP pathway was associated with POAG among women.
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an approximate 10% reduction in intraocular pressure (IOP) 
[2-4], despite a concomitant increase in central corneal thick-
ness [5]. Estrogen levels throughout the normal menstrual 
cycle influence the neuroretinal rim area measured with 
confocal scanning laser ophthalmoscopy [6] and mean 
sensitivity on short wavelength automated perimetry [7] 
in healthy women without ocular disease. Postmenopausal 
women have higher IOP than age-matched women who are 
still menstruating [2], and postmenopausal hormone (PMH) 
use is associated with reduced IOP in several studies [8-13]. 
Furthermore, ocular blood flow is reduced with aging, and 
PMH use seems to restore ocular blood f low resistance 
indices to levels achieved during the premenopausal period 
[9,14]. Early age at menopause was associated with increased 
risk of open angle glaucoma in the Rotterdam study [15]. In 
the Nurses Health Study (NHS), among women aged 65 or 
older, entering menopause at age 54 or later was associated 
with reduced risk of primary open angle glaucoma (POAG) 
[16]. Furthermore, the NHS revealed that PMH use was also 
associated with a reduced risk of high-tension POAG among 
women 65 years of age or older [16]. Collectively, these data 
suggest that estrogen levels in women may influence POAG, 
an age- and IOP-related optic neuropathy. Conversely, little 
is known about the role, if any, sex hormones play in POAG 
pathogenesis among men.

To date, genetic studies of estrogen’s role in POAG have 
been restricted to candidate gene studies. For example, given 
that estrogen receptor 2 (ESR2) is present in retinal ganglion 
cells of men and women [17], investigators have studied 
whether estrogen receptor 1 (ESR1) and ESR2 single nucleo-
tide polymorphisms (SNPs) are associated with POAG with 
conflicting results [18,19]. No group has assessed whether an 
entire set of estrogen metabolic pathway SNPs is associated 
with POAG using a gender-specific approach. We hypoth-
esize that if estrogen levels influence glaucoma risk, then 
a relationship may exist between the aggregate of estrogen 
pathway SNPs and POAG. This strategy allows for detection 
of a signal that arises from multiple individual weak genetic 
effects that impact the glaucomatous process. Researchers 
have studied the aggregate effects of genetic variants in the 
estrogen metabolic pathway for association with breast [20] 
and uterine cancer [21], and these approaches have yielded 
encouraging results. We assembled high throughput geno-
typing SNP data from two large data sets—the Glaucoma 
Genes and Environment (GLAUGEN) study and the National 
Eye Institute Glaucoma Human Genetics Collaboration 
(NEIGHBOR) consortium—into an estrogen metabolic SNP 
panel and used the Pathway Analysis by Randomization 
Incorporating Structure (PARIS) analysis software package 
[22] to test if this panel is associated with POAG. Similarly, 

we assessed whether collections of SNPs within genes that 
comprise the pathway are associated with POAG. Since 
the association between ESR2 SNPs and POAG [18,19] and 
other complex diseases [23,24] may differ between men and 
women, we conducted our analyses with consideration of 
such possible gender differences.

METHODS

Description of the study populations: The GLAUGEN 
study is part of a network of collaborative studies [25] that 
has contributed to an improved understanding of genotype-
phenotype associations [26] and gene–environment interac-
tions for various complex traits [27], including POAG [28,29]. 
The GLAUGEN study contains POAG cases and controls 
derived from the Genetic Etiologies of Primary Open-Angle 
Glaucoma (GEP) study, the Nurses’ Health Study (NHS), 
and the Health Professionals Follow-up Study (HPFS). The 
GEP is a clinical case-control study from Massachusetts Eye 
and Ear Infirmary while the NHS and HPFS contain cases 
and controls nested within population-based cohorts at risk 
for POAG. Details regarding the inclusion and exclusion 
criteria for the GLAUGEN POAG case-control group have 
been described at the database of Genotypes and Phenotypes 
(dbGaP), accession number phs000308.v1.p1, and by Wiggs 
et al. [30]. The institutional review boards of Massachusetts 
Eye and Ear Infirmary, Brigham and Women’s Hospital, and 
Harvard School of Public Health approved this study.

The NEIGHBOR consortium represents the collaborative 
efforts of 12 institutions where POAG cases and controls were 
collected using harmonized criteria. Information pertaining 
to the study sites, design features, inclusion criteria, and clin-
ical variables collected in the NEIGHBOR consortium has 
been described [31]. Data from the NEIGHBOR consortium 
have contributed to the understanding of the genetic struc-
ture of POAG [29] and central corneal thickness [32,33]. The 
institutional review boards of the participating institutions 
also approved this study.

Ophthalmic characteristics of study participants: For the 
patients, slit-lamp biomicroscopy did not reveal exfoliation 
syndrome, pigment dispersion syndrome, or other findings 
that could produce elevated IOP. The iridocorneal filtration 
angle was judged to be open in both eyes. At least one eye 
had a cup-disc ratio (CDR) >0.7 and visual field (VF) loss or 
the VF loss was replicated on a subsequent test regardless of 
CDR. Eyes with VF loss had defects localized to the nerve 
fiber layer on reliable tests (fixation loss was ≤33%, false 
positive rate was ≤20%, and false negative rate was ≤20%). 
The type of VF test used was not specified. IOP at diagnosis 
was collected and used to categorize the POAG cases into 
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high-pressure glaucoma (HPG with IOP ≥22 mmHg) and 
normal pressure glaucoma (NPG with IOP <22 mmHg) 
subtypes. Controls underwent an eye exam that revealed an 
IOP <22 mmHg and CDR≤0.6 in both eyes. For members 
of the NHS and HPFS, the eye exam was performed by the 
participants’ local eye care provider, and that exam reportedly 
did not reveal signs of glaucoma.

Genotyping data: The methods used to collect, extract, 
and plate DNA for GLAUGEN [30] and NEIGHBOR [29] 
have been previously outlined. Genotyping for GLAUGEN 
and NEIGHBOR was performed at the Broad Institute 
(Cambridge, MA) and the Center for Inherited Disease 
Research (Baltimore, MD), respectively. We used the Illu-
mina Human660W-Quad-v1 array (Illumina; San Diego, 
CA) to genotype subjects for both studies. The algorithm 
for calling genotypes, the SNP quality control (QC) filters 
used, and the preliminary analyses undertaken to discover 
the predictors of genotype calling rates have been discussed 
in prior publications [29,30].

Gene association analyses: We used PLINK v1.07 [34] to 
perform gene association analysis for POAG in GLAUGEN 
and NEIGHBOR for SNPs that passed the QC process 
(484,419 SNPs in GLAUGEN and 521,683 SNPs in 
NEIGHBOR) as previously described [29,30]. Briefly, these 
analyses were conducted among self-reported Caucasians and 
adjusted for age, gender, study site, and population structure 
in both study groups. In GLAUGEN, additional adjustments 
were made for the DNA extraction method (DNAzol, Beverly, 
MA; Qiagen or GENTRA, Germatown, MD) and the DNA 
source (blood or cheek cell sample) because these param-
eters influenced the genotyping call rates [29,30]. Using the 
METAL software package [35], we then performed a meta-
analysis of the GLAUGEN and NEIGHBOR data sets and 
obtained p values and odds ratios for the 480,335 overlapping 
SNPs in the combined data set that passed QC. In this paper, 
we used the p values and odds ratio for the estrogen metabo-
lism SNPs in the pathway analysis discussed below.

Defining the estrogen pathway and Pathway Analysis by 
Randomization Incorporating Structure pathway analysis: 
We generated a custom list of 903 SNPs in 23 genes across 
15 chromosomes comprising the estrogen metabolic pathway 
using the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [36] online database and other academic sources 
[37-40] (see Figure 1). In analyses in which men and women 
were considered together or men were considered alone, X 
chromosome variants involved in estrogen metabolism were 
excluded, yielding a total of 874 SNPs available for study. 
We uploaded the meta-analyzed p values for genotyped SNPs 
within these genes ± a 50kB genomic window to PARIS. 

The statistical approach used by PARIS has been previ-
ously described [22]. Conceptually, PARIS first analyzes 
the genomic features of the pathway, namely, the number of 
linkage disequilibrium (LD) blocks, the number of SNPs per 
block, and the number of SNPs not in any LD block for the 
gene biomarker assembly. The estrogen pathway contains 
122 complex features (number of LD blocks with two or 
more types SNPs) and 123 simple features (number of SNPs 
not in any LD block). After this step, PARIS compares the 
overall association between the estrogen pathway and POAG 
versus the associations between 1,000 randomly generated 
pathways with similar genetic architecture and POAG. 
PARIS assesses pathways of interest using a permuted p 
value threshold of <0.05, which is considered statistically 
significant. For example, with the estrogen pathway among 
women, the results indicated 39 significant features; specifi-
cally, 15 of 123 simple features (or SNPs) had p value<0.05 
for association with POAG, and 24 of 122 complex features 
were statistically significant in relation to POAG (a complex 
feature was significant if any SNP in the LD block had a p 
value<0.05). The PARIS-generated permuted p value=0.006 
for the estrogen pathway among women indicated that six 
of 1,000 random pathways with similar genetic architec-
ture had a higher significant feature count (>39 significant 
features with p<0.05) in relation to POAG. These analyses 
were performed for POAG in a gender-specific manner. 
Subsequently, we considered gender-specific HPG and NPG 
as outcomes. Finally, we looked at these outcomes when men 
and women were considered together. To determine which 
of the genes or SNPs in the estrogen metabolism pathway 
contributed to any significant signal in the pathway overall, 
we used the “-I” (Investigate) option within PARIS, which 
reports the p values of genes and SNPs within the pathway.

RESULTS

This study sample included 3,108 cases (976 from GLAUGEN 
and 2,132 from NEIGHBOR) and 3,430 controls (1,140 from 
GLAUGEN and 2,290 from NEIGHBOR; Table 1). The 
estrogen SNP pathway was associated with POAG overall 
(permuted p=0.006) and HPG (permuted p<0.001) but not 
NPG (permuted p=0.09) among women. Among men, the 
relation between the estrogen SNP pathway and POAG 
(permuted p>0.99), HPG (permuted p=0.92), and NPG 
(permuted p=0.59) was consistently null across the IOP 
spectrum. The estrogen pathway was not significantly associ-
ated with POAG overall (permuted p=0.72), HPG (permuted 
p=0.12), and NPG (permuted p=0.06) when men and women 
were considered together.

http://www.molvis.org/molvis/v19/1471
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Analogous to the pathway approach, we assessed the 
aggregate of SNPs within specific estrogen pathway genes 
for association with POAG. We performed this analysis to 

gain insight into which aspects of the pathway contributed to 
the association we observed among women. ESR1, aldo-keto 
reductase family 1, member D1 (AKR1D1), cytochrome P450, 

Figure 1. The estrogen metabolic pathway is depicted. The top and bottom sections represent the extracellular space, and the middle 
section represents the intracellular space. The mitochondrial compartment is labeled in pink. Enzymes are labeled in green and estrogen 
metabolites are labeled in grey. Protein definitions with corresponding abbreviations and their associated genes are as follows: CDR=Aldo-
keto reductase family 1 member C4 (Chlordecone reductase), coded by AKR1C4; 3-oxo-5-beta-steroid 4-dehydrogenase=3-oxo-5-beta-
steroid 4-dehydrogenase, coded by AKR1D1; ASD=Arylsulfatase D, coded by ARSD; COMT=catechol-O-methyltransferase, coded by 
COMT; CYP11A=cytochrome P450, family 11, subfamily A, polypeptide 1, coded by CYP11A1; CYP11B1=cytochrome P450, family 11, 
subfamily B, polypeptide 1, coded by CYP11B1; CYP17=cytochrome P450, family 17, subfamily A, polypeptide 1, coded by CYP17A1; 
CYP19A1=Cytochrome P450 19A1, coded by CYP19A1; CYP1A1=cytochrome P450, family 1, subfamily A, polypeptide 1, coded by CYP1A1; 
CYP1A2=cytochrome P450, family 1, subfamily A, polypeptide 2, coded by CYP1A2; CYP1B1=Cytochrome P450 1B1, coded by CYP1B1; 
CYP3A4=cytochrome P450, family 3, subfamily A, polypeptide 4, coded by CYP3A4; 11-beta-HSD1=Corticosteroid 11-beta-dehydrogenase 
isozyme 1 (11-beta-hydroxysteroid dehydrogenase 1), coded by HSD11B1; 17-beta-HSD1=Estradiol 17-beta-dehydrogenase 1 (17-beta-
hydroxysteroid dehydrogenase type 1), coded by HSD17B1; 17-beta-HSD3=hydroxysteroid (17-beta) dehydrogenase 3, coded by HSD17B3; 
3-beta-HSD1=3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 1, coded by HSD3B1; SRD5A1=steroid-5-alpha-reductase, 
alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1), coded by SRD5A1; ASC=Steryl-sulfatase (Arylsulfatase C), 
coded by STS; EST-1=Estrogen sulfotransferase, coded by SULT1E1; SULT2B1=Sulfotransferase family cytosolic 2B member 1, coded by 
SULT2B1; UDPGT 2B11=UDP-glucuronosyltransferase 2B11, coded by UGT2B11. Two genes not in the figure but in the pathway analysis 
are ESR1=estrogen receptor 1, coded by ESR1; ESR2=estrogen receptor 2 (ER beta), coded by ESR2. Single nucleotide polymorphisms for 
these genes are derived from the Illumina platform array. Additional abbreviations for estrogen metabolites are as follows: OH=hydroxyl; 
Me=methoxy
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family 3, subfamily A, polypeptide 4 (CYP3A4), catechol-
O-methyltransferase (COMT), and steroid sulfatase (micro-
somal), isozyme S (STS) were significantly (permuted gene 
p values of <0.001, 0.05, 0.01, <0.001, and <0.001, respec-
tively) associated with POAG overall among women (Table 
2). With the exception of AKR1D1, these genes were also 
associated with HPG among women (all with permuted gene 
p<0.001), along with aldo-keto reductase family 1, member 
C4 (AKR1C4; permuted gene p=0.002) and hydroxysteroid 
(17-beta) dehydrogenase 1 (HSD17B1; permuted p<0.001). 
Only COMT and STS were associated with HPG (permuted 
p<0.001 for both genes) and NPG (permuted gene p=0.01 
and p<0.001, respectively); otherwise, there was little overlap 
between the genes significantly associated with HPG and 
NPG. Other genes associated with NPG among women 
included AKR1D1 (permuted gene p=0.046), CYP17A1 
(permuted gene p=0.04), ESR2 (permuted gene p<0.001), 
CYP1A1 (permuted gene p<0.001), and CYP1A2 (permuted 
gene p=0.004).

Although the COMT SNP set showed a significant asso-
ciation with HPG and NPG among women, the SNP set was 
not associated with the POAG or POAG subtypes among men 
(permuted gene p≥0.66). Among men, gene-based analysis 
revealed one gene associated with POAG overall and with 
HPG: CYP1B1 (permuted gene p≤0.02). The only other gene 
associated with HPG among men was CYP11A1 (permuted 
gene p=0.02). Furthermore, the following estrogen metabo-
lism genes were associated with NPG among men: HSD11B1 
(permuted gene p=0.003), CYP1A1 (permuted gene p=0.001), 
and CYP1A2 (permuted gene p<0.001).

To refine the source of significant association between 
estrogen metabolic pathways and POAG even further 
among women, we report the nominally significant SNPs 
that were in any relevant genes in POAG overall, HPG or 
NPG (Appendix 1). The p values for all SNPs in the estrogen 
metabolic pathway are provided in Appendix 2. As with the 
genes overall, there was some overlap between the significant 
SNPs in POAG overall and HPG, but little overlap between 
the HPG and NPG subsets. For example, in COMT, one of 
two genes that were significant in HPG and NPG, only one 
significant SNP was shared between the HPG and NPG 
subsets (rs3804047). Although one COMT SNP (rs2531697) 
showed particularly strong p values for association with HPG 
in women (p=4.10E-05), the SNP would not remain signifi-
cant if one accounted for the multiple comparisons made in 
this analysis (903 SNPs stratified by gender and IOP yielding 
a corrected significance level of 1.85E-05); however, our 
pathway analysis points to a large number of COMT SNPs 
significant for POAG and its subtypes among women.

DISCUSSION

The relationship between environmental factors such as PMH 
use and POAG among women has been previously described 
[15,16,41]. Candidate gene studies assessing selected estrogen 
metabolic SNPs [19,42] as well as candidate gene–environ-
ment interactions [43,44] in POAG among women have also 
been reported. This is the first paper to assess a possible 
association between the estrogen metabolic SNP pathway 
as a whole and POAG using genome-wide association data. 

Table 1. Significance of the estrogen pathway in relation to primary open-angle glaucoma 
(POAG) in the combined GLAUGEN and NEIGHBOR dataset for overall POAG, and subtypes 

of POAG defined by intraocular pressure at diagnosis, overall and by gender.

N Mean age (years) Estrogen pathway p-value
Cases Controls Cases Controls

Overall 3108 3430 65.7 67.7 0.72
Males only 1426 1493 65.6 68.4 >0.99

Females only 1682 1937 65.7 67.3 0.006
HPG 1637 3430 61.8 67.7 0.12
NPG 717 3430 65.5 67.7 0.06

HPG, females only 859 1937 61.8 67.3 <0.001
NPG, females only 419 1937 65.1 67.3 0.09
HPG, males only 778 1493 61.8 68.4 0.92
NPG, males only 298 1493 66.1 68.4 0.59

P-values are permuted p-values. P-values <0.05 are in highlighted in bold. Abbreviations: GLAUGEN=the Glaucoma Genes and En-
vironment study; NEIGHBOR =National Eye Institute Glaucoma Human Genetics Collaboration; HPG=High pressure glaucoma; 
NPG=Normal pressure glaucoma. NB: The number of HPG and NPG do not add up to 3108 because for some POAG patients the IOP at 
diagnosis was not known.

http://www.molvis.org/molvis/v19/1471
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Our results suggest that the estrogen metabolic pathway is 
associated with POAG among women supporting the notion 
that multiple genetic signals of modest effect contribute to 
the glaucomatous process. Furthermore, the association 
between the estrogen metabolic pathway and POAG among 
women was more significant in those classified as having 
HPG. The results highlight a distinct sexual dimorphism in 
that the pathway is definitively not associated with POAG 
among men. This latter result also contributes to a null result 
when the relation between the estrogen pathway and POAG 
is considered in men and women jointly.

ESR1 codes for estrogen receptor alpha and is expressed 
in the retina of both sexes [17]. In a gene association study 
of 87 incident POAG cases and 3,616 controls, a haplotype of 
two ESR1 SNPs was not associated with open angle glaucoma 
in women or men in the Rotterdam study [19]. Our study 

with 3,108 cases and 3,430 controls contains genotypes on 
127 ESR1 SNPs. Collectively, ESR1 SNPs contributed to the 
association between the estrogen pathways and POAG overall 
and in HPG in women (see Table 2; gene permuted p<0.001). 
The signal from ESR1 was modest as the ESR1 gene permuted 
p value for association with POAG among women was 0.31 in 
NEIGHBOR alone (2132 cases) and 0.26 in GLAUGEN alone 
(976 cases), only reaching significance in the combined data 
set. Furthermore, ESR1 was modestly associated with POAG 
overall when men and women were considered together (gene 
permuted p=0.023).

Exogenous estrogen is protective in various animal 
models of neurodegeneration [45,46] including experimental 
models of glaucoma [47,48]. This raises questions regarding 
whether polymorphisms in ESR2 (which codes for the 
estrogen receptor found on retinal ganglion cells [17]) may 

Table 2. Gene significance within the estrogen pathway among women, subdi-
vided by intraocular pressure at the time of glaucoma diagnosis.

Gene Chr # of simple 
features

# of complex 
features

Gene p-value1, 
POAG overall Gene p-value1, HPG Gene p-value1, NPG

HSD11B1 1 6 7 >0.99 >0.99 0.31
HSD3B1 1 2 3 >0.99 >0.99 0.07
CYP1B1 2 1 7 0.29 >0.99 >0.99
SULT1E1 4 2 2 >0.99 >0.99 0.07
UGT2B11 4 2 1 >0.99 >0.99 >0.99
SRD5A1 5 12 6 0.06 0.49 0.45

ESR1 6 22 20 < 0.001 < 0.001 0.39
AKR1D1 7 10 7 0.05 >0.99 0.046
CYP3A4 7 4 2 0.01 < 0.001 >0.99
CYP11B1 8 1 2 >0.99 0.07 >0.99
HSD17B3 9 4 8 >0.99 >0.99 0.50
AKR1C4 10 2 7 >0.99 0.002 >0.99
CYP17A1 10 0 5 >0.99 >0.99 0.04

ESR2 14 2 7 0.11 0.10 < 0.001
CYP11A1 15 10 4 0.35 >0.99 0.34
CYP19A1 15 15 11 0.44 0.09 0.72
CYP1A1 15 1 2 >0.99 >0.99 < 0.001
CYP1A2 15 2 3 >0.99 0.21 0.004
HSD17B1 17 0 2 0.06 < 0.001 >0.99
SULT2B1 19 10 4 >0.99 0.07 >0.99

COMT 22 11 11 < 0.001 < 0.001 0.01
ARSD X 4 0 >0.99 >0.99 >0.99
STS X 0 1 < 0.001 < 0.001 < 0.001

See Figure 1 for the gene names. All p-values are permuted p-values as discussed in the methods. P values <0.05 are in bold. Sim-
ple features refer to SNPs not in any LD block. Complex features refers to LD blocks with 2 or more types SNPs. Abbreviations: 
Chr=chromosome; HPG=high pressure glaucoma; NPG=normal pressure glaucoma.
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alter affinity for estrogen and affect retinal ganglion cell 
viability in glaucoma. A Japanese group found an association 
between ESR2 rs1256031 and rs4986938 variants and HPG 
in a study including 212 female cases and 191 controls [42]. 
Our study included 859 women with HPG and 1,937 female 
controls and contained genotypes on 38 ESR2 SNPs including 
several SNPs in high LD with rs1256031 and rs4986938. 
Collectively, we found that ESR2 SNPs were associated with 
NPG (gene permuted p<0.001) but not HPG (gene permuted 
p=0.10) among women. Furthermore, the rs1256031 and 
rs4986938 variants were specifically not associated with 
HPG among the women in our data set. The Rotterdam study 
of European Caucasians did not find associations between 
these two ESR2 SNPs and open angle glaucoma in women 
but found an association in men. We did not find an associa-
tion between the ESR2 collection of SNPs and POAG in men 
(gene permuted p>0.99) or for the rs1256031 and rs4986938 
SNPs in particular (p≥0.45). The conflicting results may be 
due to differences in sample size and population stratifica-
tion. Assessing large data sets and evaluating the collective 
effects of genes in a pathway and the pathway as a whole in 
relation to glaucoma provide greater power to find existing 
associations. Overall, our data set suggests that estrogen 
receptor polymorphisms are important in POAG among 
women, with ESR1 SNPs playing an important role in HPG 
and ESR2 SNPS playing a role in NPG.

COMT codes for catechol-O-methyltransferase that 
catalyzes the transfer of a methyl group from S-adenosyl 
methionine to a hydroxyl group on estrogen, dopamine, and 
epinephrine. The enzyme COMT is involved in methyl-
ating two derivatives of estradiol—2-hydroxyestradiol and 
4-hydroxyestradiol—and perhaps reducing estrogen bioavail-
ability. Variants in COMT were associated with HPG and 
NPG in women but not men. Although no other group has 
reported on associations between COMT variants and open 
angle glaucoma, we saw some evidence of internal replica-
tion within our data sets. Among women, the permuted p 
value for association between COMT and HPG was 0.01 in 
NEIGHBOR and 0.02 in GLAUGEN. Interestingly, there is 
robust evidence that gene variants in COMT differentially 
impact brain function in men and women [20,49-55].

Cytochrome P450 enzymes have an important role in 
estrogen metabolism, and several genes coding for these liver 
enzymes contributed to the association between the estrogen 
pathway and POAG in women. CYP3A4 showed an association 
with HTG in women while CYP17A1, CYPIA1, and CYPIA2 
showed an association with NPG among women. Selected 
CYP1B1 SNPs have been studied in association with POAG. 
A prior meta-analysis of the CYP1BI SNPs in association with 

POAG consisting of 1,953 cases and 1,341 controls that found 
no significant association [56] is largely consistent with our 
larger study (3,108 cases and 3,430 controls), which found 
no association between the CYP1B1 aggregate of SNPs and 
POAG among men and women together (permuted gene 
p=0.098). The role of cytochrome P450 metabolism in 
glaucoma is unknown, but it is intriguing to speculate that 
metabolism of intracellular estrogen is involved. Members of 
the cytochrome P450 family could alter estrogen metabolism 
over time [57] and impact the development of open angle 
glaucoma.

This study has limitations. First, none of the individual 
SNPs in the estrogen metabolic pathway were significantly 
associated with POAG either overall or in either gender if a 
strict Bonferroni correction is imposed. Nonetheless, existing 
genome-wide studies of POAG are underpowered to find 
biologically meaningful SNPs of modest effects due to the 
need to curb the false discovery rate. The purpose of this 
analysis is to use a hypothesis-driven approach that involves 
SNP subsets to find potentially important associations that 
provide insight into POAG pathogenesis. Second, no other 
current data set of comparable size can be used to replicate 
the findings we present here; however, we demonstrated 
internal replication between NEIGHBOR and GLAUGEN 
for our one novel finding, the association between COMT 
and HPG in women. Therefore, even though it is intriguing 
that common polymorphisms in a network of estrogen-
metabolizing genes may be relevant to POAG development 
among women, caution is warranted until these findings can 
be replicated in other large data sets. Finally, although the 
estrogen pathway SNPs were associated with POAG overall 
in women, it is not possible to identify functional networks 
with discrete effect size on the glaucomatous process. Such 
analysis is the focus of future research.

This is the largest study (6,538 subjects) assessing the 
relation between aggregate effects of 903 estrogen-metab-
olizing SNPs in relation to POAG. We find that this SNP 
collection is associated with POAG in women but not men. 
These data may shed light on the many epidemiological data 
and basic science research implicating estrogen levels in 
POAG pathogenesis among women. The work may open new 
avenues of research into the role of estrogen in the develop-
ment of POAG and may lead to new gender-specific preven-
tion strategies that are tailored to an individual’s genetic 
makeup.
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APPENDIX 1.

Significant SNP p values with odds ratio (OR) from the 
combined GLAUGEN-NEIGHBOR dataset for genes in the 
estrogen metabolic pathway that were significantly associated 
with POAG overall or with its subtypes among women. To 
access the data, click or select the words “Appendix 1.”

APPENDIX 2.

Single nucleotide polymorphism (SNP) p values with odds 
ratios (OR) from the combined GLAUGEN-NEIGHBOR 
dataset for genes in the estrogen metabolic pathway among 
women. To access the data, click or select the words 
“Appendix 2.”
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