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S U M M A R Y
We present a methodology for 1-D imaging of upper-mantle structure using a Bayesian ap-
proach that incorporates a novel combination of seismic data types and an adaptive parametriza-
tion based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork
for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the
recent expansion of large seismic arrays and computational power alongside sophisticated
data analysis. Careful processing of P- and S-wave arrivals isolates converted phases gener-
ated at velocity gradients between the mid-crust and 300 km depth. This data is allied with
ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP

velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately
constrain velocity gradients, and S–p phases are particularly important for resolving mantle
structure, while surface waves are necessary for capturing absolute velocities. We apply the
method to several stations in the northwest and north-central United States, finding that the
imaged structure improves upon existing models by sharpening the vertical resolution of ab-
solute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric
velocity gradients indicative of thermochemical cratonic layering. This flexible method holds
promise for increasingly detailed understanding of the upper mantle.

Key words: Composition and structure of the mantle; North America; Inverse theory; Joint
inversion; Seismic tomography; Cratons.

1 I N T RO D U C T I O N

With access to greater computational power and parallel process-
ing, the geophysical community is engaged in the development of
new statistical inverse techniques that permit increasingly sophis-
ticated imaging of the Earth’s interior. Several groups (e.g. Ma-
linverno & Briggs 2004; Khan et al. 2011; Bodin et al. 2012b;
Afonso et al. 2013b; Bodin et al. 2013; Drilleau et al. 2013; Shen
et al. 2013a; Hawkins & Sambridge 2015; Bodin et al. 2016; Calò
et al. 2016; Guo et al. 2016; Tork Qashqai et al. 2016; Shen &
Ritzwoller 2016; Burdick & Lekic 2017) have developed Markov
Chain Monte Carlo frameworks that ally Bayesian statistics with
rapid forward calculations to generate probabilistic Earth models
that explain seismic data. Increasingly, these inverse computations
involve multiple data types with complementarily distinct sensitiv-
ities, such as the combination of surface wave phase velocities and
body-wave-scattered phases. We offer a new contribution within
this field, distinguished by a novel parametrization that uses adap-
tive splines, a robust method for refining body wave data, and the
inclusion of S-wave-scattered phases that add sensitivity to mantle
velocity gradients. We demonstrate that our technique is consis-
tently able to capture velocity gradients within and at the base of

the seismic lithosphere, while maintaining parsimony and smooth-
ness of Earth models. We illustrate the method using stations that
sample the North American continent, from the tectonically active
U.S. north-west to the interior of the Wyoming and Superior cratons.

Accurate seismic imaging is paramount for our understanding of
the processes that form, reshape and modify long-lived continen-
tal plates, as well as those governing the genesis and maturation
of oceanic plates. Broad-band seismograph data from the conti-
nents improves each year, as equipment developments and wider
instrumental coverage complement the longevity of ’backbone’ in-
stallations. We are poised on the cusp of a sea-change in broad-band
oceanic data, with ocean-bottom seismometer deployments rapidly
escalating in quality and distribution. The proliferation of data,
together with the increased computational resources becoming rou-
tinely available to geoscientists, demands novel methodologies to
upgrade models of Earth structure.

Methodological progress is driven by scientific questions regard-
ing the composition, thermal structure, strain history and distri-
bution of melt in the upper mantle and crust. Seismic velocity is
a highly useful proxy for interior physical properties (e.g. Dalton
& Faul 2010; Jackson & Faul 2010; Priestley & McKenzie 2013;
Abers et al. 2014; Hansen et al. 2015; Afonso et al. 2016) and
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large arrays are permitting increasingly sophisticated tomographic
coverage of the plates (e.g. Obrebski et al. 2011; Yuan et al. 2011;
French et al. 2013; Foster et al. 2014; Lin et al. 2014; Afonso et al.
2016; Shen & Ritzwoller 2016; Burdick & Lekic 2017). Most tomo-
graphic methods lack resolving power to discern sharp boundaries,
but substantial gradients in velocity at the base of, or within, tec-
tonic plates are well documented (e.g. Kind et al. 2012; Levander
& Miller 2012; Hopper et al. 2014; Hansen et al. 2015; Hopper
& Fischer 2015). Improved constraints on the magnitude, width
and absolute velocities of these seismic discontinuities are essential
for parsing the respective influences of temperature, composition,
anisotropy and ponded melt (e.g. Fischer et al. 2010; Karato 2012;
Rychert et al. 2012; Afonso et al. 2013a; Rader et al. 2015; Sel-
way et al. 2015). Short-wavelength vertical changes in velocity
likely cannot arise from gradual temperature gradients [notwith-
standing possible contributions from thermally activated anelastic
processes (Karato 2012; Olugboji et al. 2016)]; the correlation be-
tween strong, shallow velocity gradients and recent volcanism is
indirect evidence for the importance of melt (e.g. Schmerr 2012,
Hopper et al., in preparation). Absolute velocities are strongly sen-
sitive to thermal structure and the presence of melt, and help dis-
criminate mid-lithospheric discontinuities (MLDs, which connote
exogenous lithologies, isolated sills or deformation zones) from the
lithosphere–asthenosphere boundary (LAB, generally considered
to be the base of the rheologically coherent plate; e.g. Eaton et al.
2009; Fischer et al. 2010; Hansen et al. 2015).

To image the lithosphere-scale structure in fine details, we harness
a combination of surface wave and body wave data (Fig. 1; cf.
Özalaybey et al. 1997; Julia et al. 2000; Bodin et al. 2012b; Shen
et al. 2013a). Surface wave phase velocities contain information
about absolute values of VS and VP within the Earth, at the expense of
poor vertical (and horizontal) resolution. High-frequency ambient
noise data are sensitive to upper and mid crust, while earthquake
surface waves constrain upper-mantle velocity structure. Body wave
converted phases are generated at strong impedance contrasts within
the Earth; P–s phases primarily help ascertain Moho depth and S–p
converted phases provide robust, if lower resolution, information
about velocity gradients at the base of the crust and within the
mantle. However, these converted phases offer little information
about absolute velocities. S–p data have an advantage over their
P–s counterparts in their sensitivity to broader velocity gradients
and in their avoidance of crustal reverberations that can occlude
sub-Moho P–s conversions. We find the novel combination of S–p
data and surface wave phase velocities to be particularly effective
for constraining upper-mantle vertical velocity gradients.

Traditional tomography methods, primarily relying on least-
squares inversions to derive a single optimal solution, offer effi-
ciency but several limitations. Trade-offs between parameters like
VP/VS ratio, crustal thickness and vertically varying velocity limit
the resolution of linear inverse calculations (Menke 2017), and
may bias our tectonophysical interpretations. Surface-wave-derived
velocity maps are susceptible to artefacts due to the intrinsically
coarse vertical resolution of the data. Regularization, required by
the ill-posedness of mixed-determined problems, has a large effect
on least-squares inversions. However, at best, choice of regulariza-
tion rests upon poorly known estimates of data error; at worst, it
is arbitrarily user-defined. Bayesian inversion algorithms address
these shortcomings by generating an ensemble of likely models that
fit the data, revealing how parameters covary and obviating the need
for regularization (e.g. Mosegaard & Tarantola 1995; Mosegaard &
Sambridge 2002; Malinverno & Briggs 2004; Bodin et al. 2012a).
A particular advantage of Bayesian algorithms is their ability to

straightforwardly incorporate multiple data types (cf. Afonso et al.
2013a,b, 2016; Guo et al. 2016; Tork Qashqai et al. 2016), such
as the combination of surface and body wave data types we use. If
the forward problem is computationally inexpensive, an arbitrarily
large number of data sets can be brought to bear on the inversion.

Parametrization of the inverse problem dictates certain intrinsic
constraints upon the solution. Coarse parametrizations offer robust-
ness but lose the ability to resolve fine features. Fine parametriza-
tions can capture short-wavelength structure, but may yield un-
stable solutions or computational impracticality. Many Bayesian
algorithms to date parametrize V(z) in terms of layered structure
(e.g. using Voronoi cells; Bodin et al. 2013, 2016; Calò et al. 2016).
The drawback to this approach is that it may exaggerate velocity
discontinuities, including artefacts created by assumptions about
the structure such as crustal thickness, a topic explored by Roy
& Romanowicz (2017). We contend that adaptive, semi-smooth
parametrizations are the optimal choice to capture the discontin-
uous smooth structure of the real Earth (e.g. Shen et al. 2013b;
Hawkins & Sambridge 2015).

2 M E T H O D S

2.1 Framework for a Bayesian inversion

The overall goal of this study is to implement an inverse algorithm
that can capture detailed upper-mantle structure. We seek to recover
models that are ‘realistic’ (as determined by conformity to prior
expectations) and that resolve both coarse and fine-scaled structure
through fitting multiple data types that have complementary sensi-
tivity to distinct model features or depth ranges. Bayesian inverse
methods offer these attributes, together with a posterior estimation
of model uncertainty and trade-offs as well as the possibility for
autonomous data weighting.

The framework for a Bayesian probabilistic approach to inverse
problems has been laid out in detail in several recent papers (e.g.
Mosegaard & Tarantola 1995; Malinverno 2002; Mosegaard & Sam-
bridge 2002; Sambridge 2002; Sambridge et al. 2006; Bodin &
Sambridge 2009; Bodin et al. 2012b, 2013; Shen et al. 2013b; Calò
et al. 2016). Here, we briefly summarize the main points salient to
our method.

We want to compute the (posterior) probability of a certain pro-
posed model, given the observed data. From Bayes’s theorem we
have

posterior ∝ prior · likelihood (1)

or

p(m|dobs) ∝ p(m) · p(dobs|m), (2)

where p(m|dobs) is the posterior probability of model (m) given
the observed data (dobs). The prior probability (p(m)) is taken to
be uniform within some bounds, and does not change between
iterations. The likelihood function for data type i (p(di |m)) is related
to the misfit, �:

p(di |m) = 1

(
√

2π σi )n
× exp

{
− �i

2σ 2
i

}
, (3)

accounting for data error, σ i, which we assume to be uncorrelated
(i.e. the respective covariance matrices are σ 2

i I). n is the degrees
of freedom; for surface waves this is the number of frequencies
measured, while for body waves this is estimated using the first
zero-crossing of the data autocorrelation function (Silver & Chan
1991).
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(a)

(c)

(b)

Figure 1. Summary of the data types, with two illustrative 1-D velocity models. (a) VS profiles for the two models (blue model has VP/VS = 1.68, red model
has VP/VS = 1.8) and ray paths for direct and converted phases passing through blue model. (b) Phase velocity dispersion curves for the two models. (c) P–s
(left) and S–p (right) synthetic traces for the two 1-D models showing seismometer components rotated into P (top) and SV (bottom) coordinates, and with
predicted arrivals indicated by phase labels.

The overall likelihood function for a given trial model is simply
the product of misfits for each of the M data types:

p(dobs|m) =
M∏

i=1

p(di |m). (4)

Note that here we make the implicit assumption that data errors
are uncorrelated across data types (cf. Khan et al. 2011; Drilleau
et al. 2013; Shen et al. 2013b; Bodin et al. 2016; Calò et al. 2016;
Roy & Romanowicz 2017). A more comprehensive characterization
of seismic data error covariance is beyond the scope of this work.
We calculate likelihood functions for body wave data (BW) and
Rayleigh wave phase velocity dispersion curves (SW) from their
respective misfit functions:

�BW(m) = ||vp(t, m) ∗ H(t) − hp(t, m) ∗ V(t)||2 (5a)

�SW(m) = ||C( f ) − cp( f, m)||2, (6)

where H and V denote the observed horizontal and vertical (respec-
tively) components of body wave particle motion, hp and vp are the
corresponding predicted data, C and cp denote phase velocity ob-
servations and predictions, and the asterisk indicates convolution.
The body wave misfit function makes use of the cross-convolution
misfit (Menke & Levin 2003; Bodin et al. 2013) between vertical
(v) and horizontal (h) seismograms, assuming that any converted

energy due to seismic velocity gradients remains in the P–SV sys-
tem. The surface wave misfit function is simply the difference in
phase velocity, c, at each frequency, f. Error distributions implicit
in the forward calculations are assumed to be Gaussian.

2.1.1 Monte Carlo Markov chains

We employ a Monte Carlo Markov chain (MCMC) algorithm to
explore the model space, seeking a family of adequately likely
models that allows us to build a posterior likelihood distribution
of model parameters (Fig. 2). This algorithm, which has been de-
scribed in detail elsewhere (e.g. Hastings 1970; Mosegaard & Taran-
tola 1995; Malinverno 2002; Mosegaard & Sambridge 2002; Bodin
et al. 2012a) entails the proposition of a random starting model, fol-
lowed by sequential semi-random single-parameter perturbations in
each iteration (k) that are accepted as new current models based on
a Metropolis–Hastings acceptance criterion (Metropolis & Rosen-
bluth 1953; Hastings 1970). Supporting Information Table S1 de-
fines the model parameters used, their prior bounds and their prob-
abilities of perturbation in any iteration. All models are required
to conform to a priori bounds, as well as to a set of conditions
that enforce expectations about Earth structure, such as positive Vs
increases at the Moho (Table 1).
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Niter

SAVE  

If iteration is
multiple of 25

Figure 2. Algorithm for a single MCMC; several such chains are run in parallel.

Table 1. Model conditions. a

Conditions

VS change at the Moho ≥0 km s−1

VS increase at the Moho ≤30 per cent
VS within bounds (see the Supporting Information Table S1) in each layer
Adjacent spline knots no closer than 3 km
aConditions to which any new trial model must conform.

The first phase of the Markov Chain (generally <2000 itera-
tions) is characterized by steeply increasing model likelihood and
decreasing misfit. Following this ’burn in’ period, the model settles
into a quasi-stationary state of sampling from the family of models
that have acceptably high likelihood. It is from this region that the
posterior sampling occurs. So as to avoid recording codependent
models, the current model is only saved every 25 iterations. The
final posterior distribution is formed from a random subset of 2000
saved models among the post-’burn in’ phase.

During the ’burn in’ period, the model parameter sampling is
susceptible to becoming confined within local minima. In order to
prevent this, and to maximize the efficiency of the inversion, we
allow larger changes between sequential models, which we imple-
ment with a decaying thermal parameter, τ [following the simu-
lated annealing approach (Kirkpatrick et al. 1983)]. τ decays over
a ’cool down’ period of 1500 iterations: τ = 1 + 3 erfc (k/500). τ

pre-multiplies the standard deviation of the Gaussian distribution
from which we draw random model parameter perturbations (so
attempted perturbations are generally larger if τ is large) and also

pre-multiplies the likelihood of the trial model, so misfit increases
are more readily accepted early in the MCMC.

Because of the possibility for any single Markov chain to become
irrevocably stuck in a local minimum, we run several individual
chains in parallel for each station at which we perform the inver-
sion. Since the starting model in each chain is random, there is the
possibility of beginning with, or arriving at, a model that produces
inhomogeneous S-waves and P-waves when predicted P–s and S–p
phases are calculated. If 20 iterations in a row produce imaginary
seismic data (the hallmark of inhomogeneous waves in our code)
that chain is abandoned and re-started from scratch. At the con-
clusion of all chains, we discard chains that appear to stick in local
misfit minima, identified as those with a mean misfit in any data type
that exceeds the average final misfit across all chains by a factor of
≥1.3, as well as any chains whose current model does not change for
>500 iterations in a row. Posterior distributions from all accepted
chains are summed and normalized, to create a final posterior. In
addition to plotting the posterior models, we select a representative
final model (and its uncertainty bounds) from the median (and 68th

Downloaded from https://academic.oup.com/gji/article-abstract/214/1/232/4959626
by University of California-SB user
on 30 May 2018
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or 95th percentile) velocity values at each depth, having discretized
models onto a fine depth grid.

2.1.2 Hierarchical bayes

Following Malinverno & Briggs (2004), we allow the inversion to
determine the standard errors of the data (σ i) by including these
so-called ’hyperparameters’ (higher-order model parameters that
control the likelihood) as free parameters. This removes user agency
in terms of weighting data misfit; the inversion itself only fits each
data type as closely as it determines is statistically appropriate. This
approach recognizes the uncertainty in our estimates of data error
(e.g. for a multistation phase velocity inversion).

We assume that errors are normally distributed and, for the sake
of computational expense, that phase velocities have the same error
at each period (cf. Bodin et al. 2016; Calò et al. 2016). In any
iteration, random perturbations from a log-normal distribution may
be made to the data errors. In this case, the misfit will not change
(the predicted data is the same) but the likelihood will increase if

δσ

σ0

(
�

σ 2
0

− n

)
> 0, (7)

where σ 0 is the current value, and δσ is the perturbation, of the data
error. It follows that the inversion will drive the estimated data error
towards

√
�/n, which is the empirical root-mean-squared data error

(see the Appendix).

2.2 Parametrization

2.2.1 Piecewise continuous splines

The velocity model is defined using piecewise continuous splines
(Fig. 3). This choice is motivated by our goal of capturing relevant,
realistic Earth structure while achieving sufficient parsimony to
allow exhaustive Monte Carlo sampling. Drawing on previous work
(Drilleau et al. 2013; Shen & Ritzwoller 2016), we parametrize 1-
D VS structure beneath each station with three layers (sediments,
crystalline crust and mantle), each with vertically varying velocity.
We solve for the thickness of the sedimentary and crustal layers as
independent parameters.

In the sediment layer, two values (top and bottom) define the
shear velocities, with a linear increase over the layer width. Within
the crust, Mc cubic B-splines define the shear velocity structure,
which is constrained to be monotonically increasing with depth.
This assumption is easily relaxed in our algorithm, allowing for
exploration of more complex crustal structure in future applications.
Within the mantle, shear velocity is controlled by Mm cubic B-
splines which span the layer to a maximum depth of zmax. The
number of knots (Nkn = Mc + Mm + 2) that define the spline basis
is varied during the inversion, as is their position (within the layer
boundaries). The prior distribution for the number of knots in each
layer is the Jeffrey’s distribution.

Each of these model parameters (Supporting Information Table
S1) is perturbed independently, except for velocities defining the
discontinuities between lithologic layers (sediment to basement or
crust to mantle), where we apply perturbations either to the average
shear velocity at the discontinuity or to the magnitude of the shear
velocity increase across the lithologic boundary. Tests demonstrated
that this approach yielded markedly more efficient fitting of body
wave converted phases than separately varying the two velocities

that bound a given discontinuity. This is because single perturba-
tions to VS on only one side of a discontinuity often increase the
misfit, creating an impediment to altering discontinuity properties.
The depth of these sediment/crust and crust/mantle discontinuities
is also permitted to change, in which case the basis splines and ve-
locity coefficients are re-computed (by fitting to an interpolated or
extrapolated VS profile, depending on the layer shrinking or grow-
ing). If a discontinuity perturbation is large enough to move the
discontinuity ‘through’ an intralayer knot, then the two knots swap
places (i.e. the discontinuity moves to the depth of the intermediate
knot, and the knot moves to the proposed depth of the discontinuity).
This tends to slightly bias the algorithm against accepting models at
the extremes of the prior distribution of discontinuity depth, but not
to the extent that the posteriors are substantially skewed (Supporting
Information Fig. S9).

2.2.2 Adding, removing or moving a spline

A primary goal of our approach is to capture steep velocity gradients
within, or at the base of, the lithosphere (MLDs and LABs). These
gradients require a greater density of spline knots in the regions of
large second derivatives in VS(z). We also anticipate regions with
gentle velocity gradients; these regions can be well defined by sparse
splines. We use an adaptive parametrization, in which spline knots
in the crust and mantle can move, be inserted, or disappear (with
some limits, see Supporting Information Table S1).

Spline knots are moved by perturbing their depth by a random
value drawn from a zero-centred Gaussian distribution. In this case,
the velocity coefficients associated with each spline do not change.
If a knot moves past the position (in depth) of another knot, then
the velocity coefficients do not re-order (so the splines effectively
swap order). Knots are not allowed to move beyond the bounds of
their lithological layer (sediment, crust or mantle).

If a knot is removed, all splines are re-calculated, and their ve-
locity coefficients are re-computed by optimally fitting the VS pro-
file with the new spline basis. In this case a parsimony term of
Nkn/(Nkn − 1) pre-multiplies the final likelihood function. Thus,
models with fewer splines tend to be accepted unless the coarser
basis leads to significantly diminished model fit.

To add a knot, we select a random depth with uniform probability
between the layer bounds. A new set of splines is calculated, includ-
ing the new knot, and velocity coefficients are computed by fitting
the existing VS profile. Since this interpolation will provide an exact
fit to the existing VS(z), we also perturb the velocity of the spline(s)
closest to the new knot by some random δV drawn from a zero-
centred Gaussian distribution. If a single spline accounts for >40
per cent of the weighting value at this depth, then only this spline’s
coefficient is modified. If two splines account for >40 per cent of
the weighting, then they are each modified by +δV/2 and −δV/2,
respectively. In this way, the addition of a knot tends to sharpen the
velocity gradient near that depth. For knot addition, a parsimony
term of Nkn/(Nkn + 1) pre-multiplies the final likelihood function;
unless the more dense model fits the data better, it is unlikely to be
accepted.

The re-computation of splines with each birth and death step
means that it is not possible to write analytical expressions for the
proposal (the probability of a certain change to the model) associ-
ated with these two steps. As a result, we define our prior empiri-
cally as the distribution sampled by our algorithm when the likeli-
hood ratio is set to unity (Supporting Information S1; Mosegaard
& Tarantola 1995; Agostinetti & Malinverno 2010). Evaluation of
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(a) (b) (c) (d) (e)

Figure 3. Adaptive discontinuous spline parametrization. (a) Example spline model, with discontinuities shown. (b,c) Results of fitting to a spline target model,
with weighted splines shown at left and VS(z) at right. (d,e) Results of fitting a layered target model. Red (black) curves represent final (target) model. Red
circles (black triangles) represent final (target) spline knot locations. Note: Unlike the data inversion, we use for the real modelling, (b,c) and (d,e) model fits
were generated using an error term that penalized the difference between current and target VS(z) and VP(z); no data were calculated for these models. The
final models shown here are not a pdf of the posterior, but the last model in each chain (which was almost invariant after the initial burn in).

this empirical prior (Supporting Information Fig. S9) shows that the
algorithm does not bias the number of knots in each layer, which
conform to a Jeffrey’s distribution. However, the pdf of locations
of knots in the regions adjacent to the boundaries is affected by
our algorithm. So too, to a lesser extent, are the Moho depths and
mantle velocity distributions, which somewhat undersample the ex-
tremes of their theoretical priors. The former arises from the fact
that knots swap positions rather than move into different layers. The
latter results form the way that birth and death steps are executed.
Importantly, the algorithm efficiently samples the full model pa-
rameter space, introducing minimal bias. The empirical capture of
our prior permits us to confidently identify robust features in the
posterior distributions obtained once data constraints are added.

2.2.3 Conversion to layers

Although we have chosen to base our model parametrization on dis-
continuous splines, our forward model codes require inputs of dis-
crete layered models. We convert our piecewise continuous model
into a layered model according to the following algorithm:

(1) Lithological boundaries must be layer boundaries
(2) Regions with VS(z) gradients exceeding 0.5 s−1 are selected

as layer boundaries, where the boundary depth is in the centre of
the gradient.

(3) Regions with VS(z) gradients less than 0.0001 s−1 are selected
as constant velocity layers.

(4) Regions with intermediate gradients are discretized into the
minimum number of constant-thickness layers required to ensure
no interlayer velocity jumps greater than 0.05 km s−1.

This typically results in discrete models with ∼50 ± 5 layers
(compared to typically ∼10–20 splines). These models are created
solely for the forward problem, and are not stored.

2.3 The forward problem

2.3.1 Density and V P scaling

The foregoing discussion defined the VS(z) model, which is con-
verted to VP and ρ using scaling factors. VP/VS and ρ/VS in the
sediments are defined by empirical observations of crustal rocks,
as is ρ/VS in the crust (Brocher 2005). ρ/VS in the mantle is com-
puted using a linear empirical scaling for lherzolite computed using
the mineral properties calculator of Abers & Hacker (2016), as a
function of depth. The mantle VP/VS ratio at each depth is fixed to
its value in the ak135 1-D mantle model (Kennett et al. 1995). The
VP/VS value in the crust is a free parameter in the inversion.

2.3.2 Body waves

To model the body wave data, we calculate synthetic Z-, R- and T-
component seismograms using a propagator matrix approach (Keith
& Crampin 1977a,b,c), optimized for parallel computing. At each
layer, boundary (see Section 2.2.3) reflection and transmission coef-
ficients are calculated, allowing for multiples and P–SV conversions.
The ray parameter used is the data average. The source is a 1 s Gaus-
sian pulse but, since we use the cross-convolution misfit (eq. 5a),
both synthetic and actual source time functions can be moved to
the front of the misfit term. These terms, therefore, end up scaling
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the observed-minus-predicted impulse response, but if the model
structure matches the true structure then the misfit will go to zero
even if the source time functions differ (Menke & Levin 2003). This
calculation is (on average) the most computationally demanding as-
pect of the forward problem, with each forward simulation taking
∼0.1 s per body wave arrival.

2.3.3 Surface waves

Surface wave phase velocities are calculated using the MINEOS
code from CIG (Computational Infrastructure for Geodynamics)
(Masters et al. 2007). This code requires a whole-Earth 1-D model,
whereas our model extends only to 300 km depth. We construct
whole-Earth models by using PREM (Dziewonski & Anderson
1981) at all depths >400 km and our model for depths 0–300 km.
In the depth range 300–400 km, our model values of VP, VS and
ρ linearly grade into PREM values. To ensure a smooth transition
between our model and PREM, we do not permit any knots (other
than the basal knot) deeper than 250 km depth, such that the bot-
tom 50 km of our models cannot contain sharp velocity gradients.
Qκ and Qμ values are taken from PREM, and in all the models
presented in this manuscript we ignore radial anisotropy. Our data
are minimally sensitive to the whole-Earth model used; even at the
longest periods (180 s), less than 9 per cent of the Rayleigh wave
VS kernels extend deeper than 300 km, and periods ≤100 s have
essentially no sensitivity beyond this depth.

Since MINEOS is a time-consuming calculation (typically >30 s
per run), it is computationally impossible to re-run in every iteration.
Instead, we use MINEOS to compute velocity perturbation kernels,
Ki(r), for each of the periods in our dataset for five parameters Mi =
VSV, VSH, VPV, VPH, ρ. Phase velocity changes are then calculated
by integrating the kernels over Earth radius:

δc

c
=

∫ R⊕

0

[∑
i

·Ki (r ) · δMi

Mi
(r )

]
dr (8)

at each frequency.
We tested the adequacy of the perturbation kernel approach by

computing the error between exact and kernel-derived phase veloc-
ities as a function of the norm of the shear velocity perturbations.
The further the current model deviates from the model used to
construct the perturbation kernels, the less precise we expect the
kernel-derived phase velocities to be.

For three periods (20, 62 and 176 s) we ran 10 chains of models,
initially generating random models from which we calculated ker-
nels at the outset of each chain. The starting models were randomly
perturbed along each chain, and we computed exact and kernel-
derived phase velocities at each iteration in order to determine the
error in the kernel-derived phase velocities. For this test, we ac-
cepted all models and raised the thermal parameter to three, so this
approach overestimated the error buildup in the true inversion.

For model perturbations with 	 = ||δVSV/VSV||2 + ||δVSH/VSH||2
less than 0.5 per cent, the kernels yielded phase velocities that were
insignificantly (<1 per cent or <0.04 km s−1) different from the
precise values from MINEOS at all frequencies (Fig. 4). At 20 s
period, errors above the data uncertainty of ∼0.05 km s−1 (≈1.5
per cent) began to accrue in 8 per cent of cases that had 	 between
0.5 and 1 per cent, and in 27 per cent of chains for norms between
1 and 1.5 per cent. These errors are even smaller at longer periods.

Based on these tests, during our inversions we compute the per-
turbation norm at each iteration, and augment a counter by one each
iteration for which 	 ≤ 0.5 per cent, by five for each iteration that

0.5 < 	 ≤ 1.0 per cent, and by 10 for each iteration that 0.5 < 	

≤ 1.5 per cent. The full MINEOS calculation and new perturba-
tion kernels are computed from the current model when the counter
exceeds 200, or if 	 exceeds 1.5 per cent.

2.4 Data processing

2.4.1 Body wave stacking procedure

We seek to construct robust stacks of body wave arrivals that in-
clude S–p and P–s phases at individual stations. The computational
expense of the forward problem requires that we compare synthetics
to just a few high-quality observations. The automated process of
producing these data stacks is illustrated for station ECSD (Fig. 5).

First, we use a cluster analysis algorithm to define groups of
earthquakes from the recording lifetime of the stations, iteratively
selecting clusters of events within windows of 30◦ in backazimuth
and 20◦ in distance. For each cluster with ≥25 events, we rotate
components to the P−SV system using a free-surface transform
with VS = 3.1 km s−1 and VP = 5.58 km s−1 (see Section 4.1), and
apply a 100 s high-pass causal Butterworth filter before normalizing
polarities and amplitudes using the parent seismogram channel. The
filter is applied forwards in time for S arrivals, and backwards in
time for P arrivals; this approach minimized the influence of side-
lobes from the main phases impinging on the converted phases.
Arrival polarities are flipped to the same sign using a three-stage
algorithm that applies matched maxima, cross-correlation and sign-
change criteria to estimate the polarity of the main arrival. If the
three criteria yield no clear polarity, the trace is discarded. We align
traces using cross-correlation (VanDecar & Crosson 1990; having
narrow-band filtered the traces to 0.02–2 Hz for P and 0.05–1 Hz
for S, both with two-pole acausal Butterworth filters), discarding
any with a signal-to-noise less than three or a final cross-correlation
coefficient less than 0.75. Prior to stacking, each individual daughter
trace is migrated to a common ray parameter (taken to be the average
ray parameter of the remaining arrivals) using a local velocity model
(Section 4.1).

We sum traces to form a preliminary stack, before cross-
correlating the individual traces against the preliminary stack, now
discarding any with a cross-correlation coefficient less than 0.9.
The re-aligned traces are normalized and summed to form the final
stack. This processing procedure is somewhat laborious, but results
in very high-quality stacked data (Fig. 5).

By stacking over multiple events, variations in moment rate func-
tion and radiation pattern deconstructively interfere, leaving us with
seismograms that approximate the shallow scattering Green’s func-
tion (convolved with some averaged source term) for that back-
azimuth and ray parameter. Given our assumption of isotropy, we
can compare the same predicted data with observed data from each
of the backazimuthal clusters within a given distance window. The
predicted data is calculated using the mean ray parameter of all
traces remaining in the final stacks for each distance window. We
also conduct tests using synthetics that show how this stacking pro-
cedure handles the effect of varying source time function and ray
parameter (Section 3.2).

Body waves offer sensitivity to strong velocity gradients in the
shallow Earth due to the conversion of energy from the main phase
to secondary phases with distinct propagation velocity (VP versus
VS). In order to isolate these converted phases arriving after (before)
the primary P(S)-wave, both predicted and observed data series are
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Figure 4. Tests of perturbation kernels, showing error in phase velocity as a function of fractional perturbations from the starting model. Error is measured as
the fractional difference in phase velocity between exact (c0) and kernel-derived (ck) values. Model perturbation is computed as the norm of the shear velocity
fractional perturbations, 2||δVS/VS ||2. Columns show periods of 20, 62 and 167 s. Top row shows random walks of three chains of perturbations, each with
a different random starting model. Bottom row shows a density surface of absolute error versus perturbation for all models visited along 24 random chains.
Black dots represent the final states, when a new set of kernels would be computed. Green, orange, and red lines represent the thresholds for increasing a
counter towards re-calculating kernels (Section 2.3.3).

windowed from 2(30) s before the main arrival to 25(2) s after the
main arrival, with a 1 s taper.

If there were no velocity discontinuities in the Earth, we would
expect this stacking process to produce a single Gaussian spike
on the parent component (P for compressional waves and SV for
shear waves) and no energy on the daughter component (SV for
compressional waves and P for shear waves). The Moho, a posi-
tive velocity gradient (PVG), should produce a positive (negative)
amplitude pulse of converted energy on the daughter component
following (ahead of) the main arrival for P-(S-) waves. Negative
velocity gradients (NVGs) deeper in the mantle, such as the LAB,
will appear as a negative (positive) pulse of converted energy on the
daughter component even further behind (ahead of) the main P-(S-)
wave arrival (Fig. 1c).

2.4.2 Surface wave dataset

Within the continental US, we use the Rayleigh wave phase veloc-
ities of Bao et al. (2016), computed using an automated technique
based on Helmholtz tomography (Jin & Gaherty 2015), at nine peri-
ods from 25 to 180 s. Across the region of the Wyoming craton, we
use more detailed surface wave phase velocities maps from Dave &
Li (2016), who employ a least-squares two-plane wave method to
calculate phase velocities at 18 periods from 20 to 167 s. The dis-
persion curve we use is obtained by 2-D interpolation of the phase

velocity map at the location of each station. In order to improve our
sensitivity to shallow structure, we add ambient noise phase veloc-
ity results between 8 and 32 s from the model of Shen & Ritzwoller
(2016). At the locations of our stations, these ambient noise data
differ by less than 0.4 per cent (averaged over 8 to 32 s periods)
from an independently collected dataset (Schmandt et al. 2015),
bolstering our confidence in these data. We linearly average the
phase velocities from the ambient noise and earthquake dispersion
curves in their overlapping period range (20–32 s).

2.5 Misfit and likelihood

2.5.1 Body wave data

Mancinelli et al. (2017) have recently emphasized the importance of
frequency dependency for recovery of scattered structure (cf. van der
Meijde et al. 2003; Lekic & Fischer 2017). Based on these results,
we evaluate body wave data misfit in two frequency ranges: 0.02–
0.5 and 0.02–0.33 Hz for P-waves and 0.02–0.5 and 0.02–0.2 Hz
for S-waves. We filter both observed and synthetic data within these
ranges, and compute cross-convolution misfit for each filter band
separately. This is mathematically equivalent to up-weighting the fit
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Figure 5. Example of body wave data processing at station ECSD for a cluster of 62 earthquakes shallower than 100 km depth, between 59.9◦ and 74.7◦
distance and 149.5◦ and 157.5◦ azimuth. ‘Raw’ data has been rotated to the P–SV coordinate frame with a free surface transform matrix. A 100 s high-pass filter
has been applied. Stage 1: arrivals with parent component SNR less than three have been discarded, and polarities have been corrected. Stage 2: waveforms
aligned by cross-correlation of parent component; low cross-correlation coefficient (<0.75) traces discarded; traces migrated to common ray parameter. Final
stage: waveforms aligned by cross-correlation with the stack of Stage 2 data; low cross-correlation coefficient (<0.90) traces discarded. Light lines show all
traces remaining at each stage, where red is the SV component and blue is the P component. Bold lines show final stacks formed by taking the mean of all
’Final stage’ traces, after scaling each P, SV trace pair by a value that normalizes maximum SV amplitude to 1.0. In this plot, all daughter traces are multiplied
by a factor of 2.5 so that they can be more clearly seen, but this factor is obviously not applied when the ’Final’ stacks are employed as data in the inversion.

to longer periods. The total body wave likelihood is given by

ln p(dBW|m) = A −
low,high∑

f

1

κ

κ∑
j=1

(
n j ln σ f j + � f j

2σ 2
f j

)
, (9)

where we have taken the logarithm to avoid computation errors
that arise as p becomes very large. A is a constant [equal to
−(n/2)ln (2π )] that results from the normalization of the likelihood
term and that does not change between models; κ is the number
of earthquake clusters (treating P- and S-wave clusters separately);
f is the frequency band. � is the cross-convolution misfit (eq. 5a)
between observed and predicted data. The competing effect of data
uncertainty on the likelihood is evident from the term inside the
brackets: for given misfit, higher data noise reduces the likelihood
through the term on the left, while it increases likelihood by penal-
izing misfit less through the term on the right (see the Appendix).

2.5.2 Surface waves

For phase velocity measurements, we weight the misfit at each fre-
quency by the fraction of that frequency’s VS sensitivity kernel that
is within the model (i.e. at depths shallower than the maximum
model depth, zmax). These misfit weights are normalized to an aver-
age value of unity (e.g. the 8 s misfit is up-weighted to 103 per cent
while the 180 s misfit is down-weighted to 78 per cent).

3 S Y N T H E T I C T E S T S

3.1 Adaptive splines

Before applying the inversion technique to real or synthetic data, we
tested the ability of the adaptive parametrization to recover a target
velocity profile. For these tests—unlike the actual inversion—no
data were calculated or compared. Rather, the misfit term was taken
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to be the norm of the difference between the target and the current
velocity profiles (� = ||VS(z)i − VS(z)true||2 + ||VP(z)i − VP(z)true||2).
This exercise evaluated the optimal capability of the inversion prior
to the computation of data (which opens up null model parameter
spaces due to non-uniqueness).

Two target models were tested (Fig. 3). The first (A) was a model
created using splines (Fig. 3b and c). The second (B) was composed
of linear velocity gradients, including abrupt discontinuities in the
mantle (Fig. 3d and e). In both cases, the MCMC was initiated with
a random starting model, and iterated 10 000 times.

In both cases, our inversion was able to fit the target models ex-
tremely well. Final model A almost perfectly matched the location
and weight of splines used to construct target model A, despite
the chain having started with many more splines and with random
knot locations. For model B, the fit was excellent, despite splines
being highly non-ideal for capturing this sort of target structure.
In both models, the splines were dense in regions with large sec-
ond derivatives in the velocity profiles. Spline knots were sparse
or absent in regions with constant velocity gradients. These tests
demonstrated that our parametrization is capable of resolving both
sharp and broad velocity gradients in the mantle, as well as the
successful implementation of parsimony and transdimensionality.

3.2 Tests of body wave stacking procedure

The body wave data used in the inversions was produced by stacking
numerous earthquake arrivals at the stations of interest so that small
amplitude converted phases rise above the noise (Section 2.4.1). Dif-
ferences in source magnitude, moment rate function, ray parameter
and back azimuth (assuming 3-D structure) complicate this stacking
procedure by introducing waveform heterogeneity and move-out in-
terference. We tested the consequence of these factors by creating
an artificial dataset of body wave arrivals from 60 random distances
in the range of 30◦–75◦, as well as 30 random distances in the range
of 60◦–75◦ to provide more S–p phases at incidence angles that do
not result in inhomogeneous converted phases. Synthetic data were
forward modelled by propagating a 1 s Gaussian pulse through the
velocity model, before convolving the output with a 20 s source
time function that comprised three triangular wavelets with random
height, width and relative timing. After normalization to unit power,
Gaussian noise with σ = 0.005 was added. Finally, the waveforms
were stacked to produce P–s and S–p data series (Fig. 6). The resul-
tant stacked phases were markedly broader than the input Gaussian
pulse, and had the form of a two-sided exponential function. The
stacked phases were centred at the predicted times for an incident
wave with the stack’s mean ray parameter.

These stacked data were then inverted jointly with surface wave
phase velocities using our inversion algorithm (using average ray
parameters from each stack). The inversion did an excellent job of
fitting the body wave data (Fig.6), and successfully recovered Moho
depth, crustal VP/VS ratio and overall VS(z) structure.

We also performed the exercise of making the synthetic data
stacks with and without migrating the data to a common ray pa-
rameter, in this case using the (known) input velocity model. In
theory, the migration corrects for destructive interference between
daughter-component phases that result from move out. Surprisingly,
this step did not make a large difference to the quality of the stacks;
the primary conversions became slightly sharper, but the crustal
multiples were more deteriorated. We infer that if our sources are
randomly distributed in distance, move out interference is largely
accounted for by our stacking procedure. Nonetheless, because of

the modest improvement in definition of primary conversions, our
final data stack processing includes a migration step.

3.3 Sensitivities and resolution of different data types

Surface waves provide constraints on absolute velocities in the
Earth, with limited vertical resolution. Teleseismic body wave ar-
rivals encode information about strong velocity gradients in the
sub-surface, but offer no constraints on absolute velocity structure.
We conducted a series of synthetic inversions using each of these
data types, individually and then in combination (Table 2, Fig. 7 and
Supporting Information Figs S1–S4). These tests demonstrated the
ability of our algorithm to recover a range of realistic Earth structure,
including varying Moho depth (30 and 45 km) and LAB gradient
(5 per cent 	VS/VS over 0, 10 and 40 km depth). We refer to these
different inversions with concatenations of the data involved, where
’SW’ indicates Rayleigh wave phase velocities, ’Ps’ indicates P–s
body waves and ’Sp’ indicates S–p body waves.

Synthetic data were calculated using same approach as applied
for the forward modelling. Body wave data was computed for ray
parameters of 7.385 and 6.148 s deg−1 for P-waves and 11.724 s
deg−1 for S-waves, using a 2-s Gaussian source wavelet. S-wave syn-
thetic time-series were long enough to reflect the upper ∼225 km
of model structure. P-wave synthetic time-series varied in length,
as described below. For the majority of the tests, Gaussian noise
was added with standard deviation roughly equal to 1/5 of the
maximum amplitude on the daughter component. This yielded a
signal-to-noise ratio (SNR) lower than that of the real data (by a
factor of ∼2 for S–p arrivals and a factor of ∼3 for P–s arrivals).
SNR was calculated as the ratio of the maximum converted arrival
amplitude on the daughter component to 2× the RMS of the pre-
arrival noise on that component. We conducted a final test, using
all data types, where we reduced the input noise to match observed
values. Phase velocities were computed for 24 surface wave periods
log-spaced from 6 to 167 s, and Gaussian noise was added with
standard deviation of 0.015 km s−1.

Surface waves alone did a reasonable job of recovering the av-
erage velocity profiles throughout, but poorly constrained Moho
depth, and were not at all sensitive to deeper mantle discontinu-
ities (Fig. 7 and Supporting Information Fig. S1–S4). By contrast,
a combination of P–s and S–p body wave data types did an excel-
lent job of capturing the magnitude of sharp discontinuities, and
a reasonable job of capturing their depth (although this traded-off
with VP/VS ratio, not shown), at the expense of poor fits to absolute
velocities. The lack of sensitivity to absolute velocities is shown by
the multiple sub-parallel likelihood profiles in the Ps+Sp panels of
Fig. 7; these represent results from different chains that arbitrarily
selected an absolute velocity early on and remained in that local
misfit minimum.

Individually combining P–s and S–p data with surface waves pro-
vided surprisingly different improvements in fit (Fig. 7). Both body
wave data types improved the models’ recovery of Moho depth, in
terms of both misfit and posterior error bounds (see Table 2). How-
ever, we found that only S–p conversions robustly provide sensitivity
to deep, broad velocity gradients.

Our initial P–s and surface wave tests (PsSW panels) utilized
25 s of P-wave signal following the primary arrival. These inver-
sions did a decent job of recovering the Moho, but for the most
part did a very poor job of recovering deeper discontinuities due
to interference from the Moho multiples. These multiples masked
conversions from deeper velocity gradients and were often mistaken
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Figure 6. Example of synthetic test using stacked data. Left two panels show noisy synthetic body wave arrivals generated for random distances (30◦–75◦) and
source–time functions (showing a subset of 300 total traces). Bottom traces are stacks of the random data. Black: P-component, red: SV-component, daughter
components shown with 5× exaggeration. Top right: cross-convolution fits for 500 accepted models (red is Hobs∗vtry, blue is htry∗Vobs) for Ps and Sp data
types. Bottom right: histograms of prior (white) and posterior (red) from the suite of accepted models and VS(z) probability density function (true model shown
as dashed black line).

Table 2. Moho and upper-mantle recovery for different data types (LAB width 10 km)∗.

Moho Data ZMoh (km) 	VS (per cent) VP/VS V 60 km
S (km s−1)

30 SW 40.2 ± 7.6 12.9 ± 10.4 1.74 ± 0.13 4.59 ± 0.13
PsSp 30.3 ± 1.9 9.2 ± 8.5 1.79 ± 0.07 4.25 ± 0.19
PsSW 29.7 ± 0.5 10.0 ± 8.5 1.80 ± 0.05 4.42 ± 0.07
SpSW 30.9 ± 0.9 13.4 ± 9.9 1.78 ± 0.02 4.41 ± 0.04

PsSpSW 30.0 ± 1.3 13.3 ± 4.1 1.80 ± 0.02 4.38 ± 0.03
45 SW 46.9 ± 18.3 8.7 ± 14.4 1.81 ± 0.07 4.39 ± 0.30

PsSp 43.6 ± 1.5 7.5 ± 9.8 1.81 ± 0.03 4.33 ± 0.18
PsSW 42.2 ± 7.0 4.1 ± 8.5 1.77 ± 0.13 4.37 ± 0.12
SpSW 44.6 ± 1.7 8.5 ± 6.2 1.81 ± 0.02 4.38 ± 0.05

PsSpSW 45.6 ± 1.4 9.7 ± 7.4 1.79 ± 0.02 4.36 ± 0.04

∗Columns are: (i) Moho depth (km); (ii) Data types used in the inversion; (iii) Moho depth recovered by inversion with 2σ error bounds from Gaussian fit to
posterior histogram; (iv) Fractional velocity change across the Moho (true value is 10 per cent); (v) Crustal VP/VS value (true value is 1.8); (vi) VS at 60 km
depth (true value is 4.38 km s−1 for both models).

by the inversion algorithm as converted energy themselves, leading
to models that include spurious velocity gradients at depth. More-
over, since some multiple energy was erroneously fit by spurious
mantle velocity gradients, the ability of these inversions to correctly
recover the Moho itself was deteriorated. On the basis of these tests,
we were extremely cautious of incorporating late-arriving P-wave
energy, and in all other tests presented (i.e. PsSp and PsSpSW) used
only the first 10 s of P-wave synthetic time-series—long enough
to constrain the upper ∼100 km of the model but not to contain

crustal reverberations. The short P–s time-series do not constrain
deeper mantle structure, but offer good Moho recovery.

The S–p data, which do not suffer from the problem of crustal
multiples, markedly improved the recovery of mantle velocity gra-
dients. The 10-km-wide LAB gradients were perfectly recovered,
while the 40 km gradients were also well imaged, with only a small
amount of smoothing at the changes in gradient. The 0-km-wide
LAB gradient was smeared over 10 km depth, which is likely the
maximum resolution for this sort of feature. The SpSW inversions
also recovered both deeper (45 km depth) and shallower (30 km
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Figure 7. VS(z) probability density functions recovered using different combinations of data types, including Ps body waves, Sp body waves, and surface wave
(SW) phase velocities. The input model (black line) has a 10 per cent 	VS/VS Moho at 30 km depth and a 5 per cent ‘LAB’ negative velocity gradient at
100 km depth. We tested cases with an LAB width of (a) 0 km and (b) 40 km. Other test cases are shown in Supporting Information Figs S1–S4. The final
panel shows the result using synthetics that had ‘low’ noise, comparable to the real data noise. The number of successful chains contributing to each posterior
is shown in brackets at lower left.

depth) Moho discontinuities, with tight constraints both in depth
and absolute velocity changes (Fig. 7 and Supporting Information
Fig. S1–S4).

The combination of all three data types typically recovered the
input structure successfully. However, adding P–s data only signif-
icantly improved retrieval of the target model in a subset of cases
(Fig. 7). In other cases it had neutral impact (Supporting Information
Figs S1–S4). The limiting factor for these tests appears to have been
the level of noise in the data. Tests that used all three data types to
fit low-noise synthetic data (with SNR matching our observed data,
Section 4) did an excellent job of recovering target model structure,
including the shape and depth of velocity discontinuities within the
mantle. Comparison of low-noise and higher-noise PsSpSW tests is
instructive. The former shows that the inversion is highly capable of
recovering complex structure, given good enough data. The latter

shows that moderate stochastic noise can systematically bias the re-
covered model to a small degree, but that our algorithm succeeds in
exploring parameter space sufficiently for the true model to always
lie within the posterior pdf.

These tests, therefore, help proof our posterior model errors. The
p = 0.05 error bounds on the model parameters shown in Table 2
include the true values 95 per cent of the time (38 of the 40 estimated
ranges), indicating the posterior uncertainty estimates are accurate.

For the model with a 30 km Moho and a 10-km-wide LAB
gradient, we conducted an additional test with a 1.7-km-thick sedi-
mentary layer above the crystalline crust. The recovery of sediment
structure was good: estimated sediment thickness was 1.65 ± 0.10,
and top and bottom velocities of 2.94 ± 0.09 and 3.09 ± 0.25 km s−1

were very close to the target values of 2.9 and 3.1 km s−1, respec-
tively (Supporting Information Fig. S14). This test demonstrates
that the seismic properties of the sediments do not, in principle,
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lie in the null space of the data. However, this shallow structure is
controlled exclusively by short-period surface waves, which have
noisy measurements. We do not permit a sediment layer in the other
inversions included in this manuscript. Properly accounting for this
layer may require inclusion of additional data types that provide
shallow sensitivity, such as surface wave ellipticity (Li et al. 2016).

4 A P P L I C AT I O N S T O R E A L DATA

In the interior of the continental US, numerous recent studies have
leveraged dense datasets to reveal widespread but laterally discon-
tinuous NVGs from 65 to 200 km depth and strong contrasts be-
tween the eastern and western US in terms of mantle discontinuity
character (e.g. Levander & Miller 2012; Foster et al. 2013; Hopper
et al. 2014; Lekic & Fischer 2014; Hansen et al. 2015; Hopper &
Fischer 2015; Kind et al. 2015; Ford et al. 2016), crustal thickness
and crust and mantle seismic velocities (e.g. Yuan et al. 2011; Lin
et al. 2014; Porritt et al. 2014; Schmandt et al. 2015; Shen & Ritz-
woller 2016; Burdick et al. 2017), gravity (e.g., Schmandt et al.
2015), crustal structure (Lin et al. 2014), attenuation (Bao et al.
2016) and anisotropy (Lin & Schmandt 2014; Buehler & Shearer
2017). Our inversion technique is designed to accurately capture this
lithospheric structure, particularly any sharp velocity gradients, in
order to shed light on the processes that formed and continue to
modify the continents. Thus, having proofed the method with syn-
thetic data, we applied our inversion to data from long-lived stations
that span the tectonic transition across the north west to north cen-
tral continental US (Fig. 8): ECSD, EYMN, WVOR (all network
US) and RSSD (network IU).

In the west, WVOR sits on the high lava plains (HLP), the site
of bimodal volcanism since the mid-Miocene (Jordan et al. 2004),
with comparably thin (<35 km) crust (Eagar et al. 2011; Levan-
der & Miller 2012) and abnormally hot upper mantle, as inferred
from low seismic velocities (Wagner et al. 2010) and resistivity
(Meqbel et al. 2014). RSSD is on the re-worked Wyoming craton,
an Archean province with high flexural strength (Lowry & Smith
1994), ≥50 km thick crust (Hansen & Dueker 2009; Ford et al. 2016)
and thick seismic lithosphere (Humphreys et al. 2015; Ford et al.
2016) that sutured onto the Canadian shield at ∼1.8 Ga (Whitmeyer
& Karlstrom 2007). Xenolith and seismological evidence point to
pervasive modifications of the Wyoming craton during and since
the Laramide Orogeny, with arguments for wholesale removal (and
perhaps subsequent re-thickening) of the lower lithosphere (Carlson
et al. 2004; Hearn 2004; Humphreys et al. 2015; Dave & Li 2016).
ECSD and EYMN are situated within the Archean-age Superior
craton, which has low heat flow (Humphreys 2009), 45–50 km
thick crust (Ford et al. 2016; Shen & Ritzwoller 2016) and among
the thickest seismic lithosphere observed worldwide (Yuan & Ro-
manowicz 2010). Aside from a limited rifting event ∼1.1 Ga, this
long-lived tectonic province has remained largely unaffected by re-
gional tectonics since >2 Ga (Percival et al. 2006; Whitmeyer &
Karlstrom 2007).

4.1 Complications using real data

The real data inversion presented several additional challenges com-
pared to the synthetics. A major source of difficulty was the rotation
of the data into P−SV components. It was not possible to obtain
surface VP and VS values that did a perfect job removing the primary
arrival on the daughter component on all traces (Section 2.4.1); the
stacked data, therefore, have non-zero energy on the daughter at

0 s. This feature can introduce artefacts into the model (e.g. by
causing the inversion to insert a low-velocity sedimentary layer that
produces a large conversion almost co-temporally with the main
pulse). To address this problem, we used the same surface VP and
VS values to rotate the synthetic data from Z –R to P–SV as were used
to rotate the actual data. This resulted in equally mis-rotated daugh-
ter components with energy at t = 0 s on the synthetic daughter,
self-consistent with the real data. We also windowed the daughter
trace to start 1 s after the maximum on the parent trace (using a 1.5
s Hanning taper). This effectively cut out most of the mis-rotated
direct-phase energy on the daughter component, without affecting
the converted energy from crustal and mantle velocity gradients.

3-D heterogeneity in the Earth further complicated the real data.
Stacked data arriving from different backazimuthal bins revealed
systematically different shallow structure as a function of direc-
tion from the station (Supporting Information Fig. S5). This may
arise from dipping structures, anisotropy, or sharp lateral gradi-
ents in seismic properties near the station. While these phenomena
are moderately problematic for stacking direct converted phases,
the much larger move-out of crustal P-wave reverberations (PpPp,
PpPs, and PpSs; Fig. 1) means that small lateral heterogeneities can
cause these phases to destructively interfere in the data stack. The
observed waveforms were often not well fit by forward-modelled
synthetics, which suffer from no such move-out interference or
backazimuthal variation.

To ameliorate this problem, we restricted the data in each stack
to a backazimuthal window of ≤30◦ and a distance range of ≤20◦.
Within this window, we migrate data to the average ray parameter,
assuming a single P–s or S–p conversion, and using the velocity
model of Shen & Ritzwoller (2016) grading into AK135 (Kennett
et al. 1995). Due to a combination of noisy data and the effect
of our migration (which will exaggerate discrepancies in move-out
of any reverberations) the stacked P-waveforms rarely contained
clear crustal multiples. The fact that these multiples are evident
in our synthetic stacks (Fig. 6) despite also migrating that data
to common ray parameter perhaps indicates that their absence in
the real data is largely attributable to strong lateral heterogeneity
or crustal attenuation. Our pre-stacking migration step should help
accentuate converted S–p phases in the data, which arrive before the
primary phase (and well before crustal multiples). However, we note
that these phases may be more vulnerable to lateral heterogeneity
due to their sampling of a wider region beneath the stations. To
fully address this issue will require an inversion that accounts for
3-D structure, which is beyond the scope of the present study.

Our synthetic tests indicated that that while P–s data add con-
straints on crustal structure and thickness, they are not as effective
as S–p data at resolving deeper structure, and in fact can introduce
spurious structure through mis-fit crustal multiples (Section 3.3,
Fig. 7). Given this performance for (moderately noisy) synthetic
data, we are skeptical that the real P–s data (Fig. 5) contain useful
information deeper than the Moho. On the basis of these findings,
we windowed the P-wave arrival to end 10 s after the main pulse,
cutting out crustal multiples, and allowing the P–s data primarily to
constrain the Moho depth.

Finally, recognizing that S−p stacks from different backazimuths
use data that samples points hundreds of kilometres apart, for this
study we only use the S−p stack at each station that has the most
data. We use P−s data from the same approximate backazimuth
as the S−p stacks. Capturing short-wavelength lateral velocity het-
erogeneities will require array analysis, beyond the scope of this
manuscript.
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Figure 8. Tectonic map showing seismic stations in their geologic context. Cenozoic volcanism depicted in red; Snake River Plain volcanism shown with
outlined polygons; high lava plains NW progression shown by 1 Ma green contours for last 10 Myr; black lines are Proterozoic dyke swarms; blue dashed lines
are 10 km Juan de Fuca slab contours to 80 km depth; orange shading is Archean crust; blue shading is failed mid-continent rift. MHB is the Medicine Hat
Block, CRFB is the Columbia River Flood Basalt; GFTZ is the Great Falls Tectonic Zone; Y is the present-day Yellowstone hotspot location.

4.2 ECSD station example

Figs 9 and 10 show results of an example PsSpSW inversion at
station ECSD, on the South Dakota-Minnesota border, within the
Superior craton interior. The stacked data for these inversions (Sup-
porting Information Fig. S5) showed a clear positive conversion
centred ∼7 s before the main S-wave arrival. This conversion, aris-
ing most likely from a relatively deep Moho discontinuity, was also
evident on the four P-wave stacks as a broad pulse of positive en-
ergy on the SV component following the main arrival. Earlier in the
S-wave time-series, more muted pulses of energy on the daughter
component indicate conversions from velocity gradients deeper in
the mantle.

For ECSD inversions, models quickly evolved towards stable
values of likelihood and misfit by approximately 2000 iterations.
The estimates of the number of model splines (not shown), data
error and misfit (Fig. 10) were well described by stationary pro-
cesses following the burn in, demonstrating the appropriateness of
sampling from this likelihood space to derive the posterior model
ensemble. Uncertainty in Moho depth was evident from modest
variations in this parameter during and between model chains, but
the final posterior distribution was well-peaked (Fig. 11). The algo-
rithm responded to strong velocity gradients in the mid-lithosphere
by tending to add more spline knots in this region – the pdf of knot
locations (Fig. 10) had a broad swell centred at the depth of the
mantle velocity gradients.

The inversion was clearly successful in deriving estimates of data
error from the empirical fit of each data type; the values of σ closely
track the RMS misfit for each data type. σ values for different indi-
vidual P–s data stacks (from different earthquake clusters) differed
slightly and were not very stable over the course of the inversion.
This indicates that despite being unable to simultaneously fit all
stacks perfectly, the algorithm did not select a single data stack to
preferentially fit at the expense of mis-fitting the others. This was
probably because the empirical data fits (Fig. 9) were all comparably
good and, while the different stacks differed in detail, their signature
of the Moho conversion was very similar, as it was between P–s and
S–p data. The S–p data were crucial for the observation of deeper
mantle gradients. Note also that fits to the lower-frequency body
waveforms were comparable to the higher frequency data, but em-
phasize the coarser features in the data. Finally, the fit to Rayleigh
wave phase velocities was excellent, as it was consistently for all
inversions we performed.

4.3 Structure revealed by different data types

Similar to our synthetic tests (Section 3.3), we performed inversions
at station ECSD with a variety of different combinations of data, to
evaluate the structure constrained by each data type (Fig. 11).

The surface wave data alone returned very similar average VS(z)
models across the different chains, indicating the robustness of this
data set. However, these models evinced a large amount of scatter
about the mean and poor constraints on the Moho. The S-wave
data alone yielded more tightly confined model posteriors in each
chain, but showed significant differences between chains due to
trade-offs between Moho depth, absolute velocity, velocity jump and
crustal VP/VS ratio. All the S-wave-derived models included marked
velocity gradients within the mantle at depths likely corresponding
to the mid-lithosphere (based on absolute velocities). P-wave data
alone provided very little information, primarily constraining the
Moho depth, with similar trade-offs to those for S-waves mentioned
above.

We, therefore, show the model returned by joint inversions of
P-waves and Rayleigh waves. As expected, this model had similar
average velocities to the surface-wave-only profile. Surprisingly,
this model did not have markedly better resolved crustal structure
as determined by how strongly peaked the Moho depth and VP/VS

posterior distributions were (σ Moho = 2.7 km and σVP /VS = 0.041)
compared to the surface-wave-only model (σ Moho = 3.9 km and
σVP /VS = 0.024). The VS structure we recover at this station is sim-
ilar to the result of Shen & Ritzwoller (2016), who employed very
similar data types (P receiver functions and surface wave group and
phase speeds).

Our preferred model, using all three datasets, has average veloc-
ities very similar to the SW or PsSW models [and to the model of
Shen & Ritzwoller (2016)]. However, our model contains several
additional features of interest, including a large velocity jump across
the Moho, and two low velocity layers, one centered at 80 km depth
and the other at 140 km depth. These low velocity layers are too thin
to be resolved by surface waves alone, which have broad kernels at
this depth. The negative gradients at the upper boundaries of these
layers agree with the timing and polarity of body wave conversions
in this region from a prior study with S–p data (Hopper & Fischer
2015) and the deeper phase was also seen in P–s data (Ford et al.
2016). Moho depth in the ECSD model (50.6 ± 5.5 km) is deeper
than seen by Shen & Ritzwoller (2016) but is comparable to Moho
depths in Schmandt et al. (2015) and Ford et al. (2016). The Moho
velocity increase of ∼0.5 km s−1 is slightly larger than seen by
Shen & Ritzwoller (2016), but consistent with the 0.55–0.8 km s−1
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Figure 9. Example of data fit for a one-chain ECSD inversion using all three data types (Section 4.2). Top left: cross-convolution misfits for two different
period bands (only 100 s high-pass filter and ’lo’, which also includes low-pass filter at 3 s for P arrivals and 5 s for S arrivals), showing (vp ∗ Hobs) in red,
(hp ∗ Vobs) in blue. An ideal fit would result in red and blue traces perfectly agreeing. We plot a subset of successful trial models’ data in light colours and
data from the final model with dark dashed lines. Each set of traces corresponds to a different earthquake data stack (Section 4.1). Bottom left: Rayleigh wave
phase velocities, with observations plotted as circles, data from successful trial models in grey, and the final model in red dashed. Right: probability map from
posterior ensemble of models, with final model in red. The single-chain result shown here differs slightly from the final multichain result in Figs 11 and 12.

difference between upper mantle and lower crust in the models of
Schmandt et al. (2015) at this location. The average mantle veloc-
ities at this station appear typical for cratonic interiors (Fig. 12),
but it is difficult to discern any deep NVG that might represent the
LAB. The SpSW model was very similar to the PsSpSW model,
and so is not shown here.

This example also illustrates the power of the Bayesian approach
for understanding parameter covariance. Note that within the 120–
150 km depth region that we have identified as a low-velocity zone,
there is no point at which the maximum 2σ bound is less than the
minimum 2σ bound for velocities above and below this feature. In
other words, using the posterior velocity profile alone we could not
reject the null hypothesis of constant or linearly increasing velocity
throughout this depth range. However, when we consider parameter
covariance within the posterior ensemble of models, we observe that
VS at ∼115 km depth exceeds VS at ∼135 km depth in 82 per cent
of the ensemble of models (Fig. 11). This makes a highly persuasive
case that this low-velocity feature is required by the inversion.

Finally, the average fit to Rayleigh wave phase velocities was
similar between the final model inverted using just the surface wave
data (SW, RMS misfit 0.010 km s−1) and the model inverted us-
ing all data types (PsSpSW, RMS misfit 0.011 km s−1), despite the
two velocity models having marked differences. This result nicely
demonstrates the non-uniqueness of shear velocity models derived
from surface wave phase velocities alone, as a result of the broad
sensitivity kernels for this wave type. The low value of the data
error in both cases—equal to ≈0.4 per cent—indicates how well fit
this data type is in all our inversions.

4.4 Stations WVOR, RSSD and EYMN

Station WVOR, within the HLPs region of southeastern Oregon,
evinces particularly low velocities almost immediately beneath the
Moho. Based on the low mantle velocities at this station, the strong
negative velocity gradient from ∼45–75 km depth [also observed in
S–p CCP stacks across the HLPs (Hopper et al. 2014)] represents the
LAB. Beneath this depth, the velocity profile is consistent with that
of convecting mantle with an adiabatic thermal profile, as seen in
the youngest portion of the oceans. It appears that the asthenosphere
comes to within ∼80 km of the surface in this part of the continent.
Particularly low velocities at ∼75 km depth may be indicative of
trapped melt. The 39.8 ± 4.5 km Moho depth and crustal VP/VS ratio
of 1.63 ± 0.08 (2σ bounds) that we estimate at this station are at the
extreme bounds of a detailed P–s receiver function study in this area
that inferred crustal thickness of ∼34 km and VP/VS ∼1.76 from
H−κ stacking analysis (Eagar et al. 2011). Some trade-off between
these parameters is evident. Such a low VP/VS ratio may require a
quartz-rich crustal mineralogy (Christensen 1996).

Station RSSD, sitting at the eastern edge of the Wyoming craton
close to the Wyoming-South Dakota border, has a Moho depth of
47.8 ± 4.1 km and crustal VP/VS ratio of 1.86 ± 0.14. However, we
hesitate to overinterpret the latter, as the posterior distribution shows
that it is not well constrained. The average mantle velocity is con-
sistent with expected values for continental interiors, but in detail
has several features of note. There are three regions of strong ve-
locity gradients: a negative velocity gradient from the Moho down
to 80 km depth, a PVG from ∼120–170 km depth, and a broad
negative velocity gradient (likely corresponding to the LAB) be-
low 200 km depth. The shallow NVG has been previously imaged
by receiver function studies (Foster et al. 2013; Hopper & Fischer
2015; Ford et al. 2016), although these studies estimated the depth
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Figure 10. Example of an inversion at station ECSD using all data types, showing the change in spline knot locations, data error, likelihood and hyperparameters
plotted against iteration for all accepted chains, as well as a sampling of accepted models. (a) Knot locations in the crust and mantle; grey points are all saved
models, coloured points denote models after the burn-in phase of each chain (each parallel chain has its own colour). At right is a pdf of knot location. (b)
RMS error of each data type (left axis), as well as the logarithm of the likelihood of that model. (c) Estimated data uncertainty for each data type. In (a), (b),
and (c) only 1/15 models are shown. (d) VS(z) models from each chain (showing a subset of only 250 from each chain). Red profile: velocity model of Shen &
Ritzwoller (2016) at this location, for reference.

of this feature to be somewhat greater (ranging from 70–100 km).
The 120–160 km PVG has not been seen in prior studies and seems
to represent a boundary between unusually slow upper lithosphere
and relatively fast lower lithosphere. Individual P-wave stacks at
this station reveal complex crustal structure, with intracrustal dis-
continuities noted previously (Ford et al. 2016). This latter structure
is not clearly captured in our final model.

Station EYMN, in northeast Minnesota, sits within the interior
of the Superior craton, close to the ∼1.1 Ga mid-continent rift. This
station has thinner crust than the other cratonic stations in our data
set, with a 40.6 ± 4.2 km deep Moho. This value is modestly shal-
lower than previous estimates but not discrepant within uncertainty
[cf. ∼44 km for Schmandt et al. (2015) and Shen & Ritzwoller
(2016)]. If this crustal thickness was modified by the ancient rifting
episode, no obvious signature of re-working is evident in the man-
tle velocity profile, which has uniformly high (4.65–4.85 km s−1)
and monotonically increasing shear velocities from the Moho down
to 185 km depth. A broad negative velocity gradient from 185–
250 km depth is indicative of a thermal LAB. The Moho velocity
contrast of ∼0.5 km s−1 is greater than at our other stations, but well
within the range of <0.7–1.3 km s−1 seen in the North American

craton from active source studies (Snelson et al. 1998). The crustal
VP/VS ratio of 1.66 ± 0.20 is more poorly constrained than other
cratonic stations, with consequently greater uncertainty in Moho
depth at this location.

5 D I S C U S S I O N

5.1 Methodological improvements

Our results demonstrate the merit of utilizing multiple data types
alongside a flexible parametrization to achieve detailed understand-
ing of lithospheric structure. Our implementation of transdimen-
sional, adaptive, piecewise-discontinuous splines holds significant
promise as a tool for representing Earth structure. The seismic mod-
els we recover have well resolved crustal structure, Moho depth and
lithospheric mantle velocities, as determined by strongly peaked
posterior distributions for these properties. The posterior distribu-
tions offer robust uncertainty estimates and information on param-
eter covariance and null spaces (the term for model space within
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Figure 11. VS(z) models at station ECSD inverted using different combinations of data types. Left panels show probability density functions from different
inversions (abbreviations as in Fig. 7), with preferred model in red, showing estimated 2σ bounds (grey lines) from a Gaussian fit at each depth. Black dashed
line shows model of Shen & Ritzwoller (2016), who used similar data types, at this location. Right column shows histograms and samplings of the PsSpSW
model posterior (red) and prior (white). Apparent clipping of the Sp and PsSW posterior is caused by the prior bound for mantle velocities of 4.9 km s−1.

Figure 12. Final VS(z) models at four example stations across the north west continental US. Red lines: average model, grey lines: 2σ bounds. Insets show
posterior (red) versus prior (white) estimates for Moho depth and crustal VP/VS ratio. Overlaid lines show shear velocity from global model SEMum2 averaged
by age of the continental crust (Phanerozoic, Late Proterozoic, Early-Mid Proterozoic, Archean) and beneath 0–25 Myr seafloor.

which parameters can vary without affecting the data). The ob-
served velocity profiles provide detailed resolution while maintain-
ing model parsimony and realistic mantle velocity gradients. The
importance of S–p data for observing deep velocity gradients is ev-
ident from inversions of both synthetic and real data. By estimating
posterior uncertainty of each data type, we show that both S–p and
surface wave phase velocity data are highly valuable for determin-
ing mantle structure, while P–s conversions sharpen sensitivity to

crustal thickness. Our results are largely consistent with previous
studies in the region in terms of crustal and mantle discontinu-
ities (e.g. Hansen & Dueker 2009; Eagar et al. 2011; Levander &
Miller 2012; Foster et al. 2013; Hopper et al. 2014; Lekic & Fischer
2014; Hopper & Fischer 2015; Ford et al. 2016; Shen & Ritzwoller
2016) and mantle velocity structure (Wagner et al. 2010; Obrebski
et al. 2011; Humphreys et al. 2015; Shen & Ritzwoller 2016) but
combine these two observations self-consistently to deliver Earth
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models that allow us to examine imaged structure in full cognizance
of parameter trade-offs.

5.2 Lithospheric structure across the northwestern to
north-central US

Velocity models differ substantially between the stations we high-
light as examples in this study. Fig. 12 shows these stations arranged
from west to east. Several trends are clear. Average crustal veloc-
ity increases inward with distance from the edge of the cratonic
lithosphere, and the gradient of velocities in the crust—arguably a
proxy for heat flow—decreases. The average mantle velocity also
increases along this transect. Consistent trends to the velocity gra-
dients within, or at the base of, the mantle lithosphere are difficult
to ascertain from this small sample of stations. However, qualita-
tively speaking there is a clear contrast between a sharp basal LAB
for WVOR compared to generally higher velocities over the upper
200 km of mantle for cratonic stations, with a broad negative veloc-
ity gradient from 200–250 km depth that may represent a thermal
LAB.

Station WVOR has by far the lowest upper-mantle velocities,
consistent with an extremely thin mantle lithosphere comprising
∼40 km of crust above ∼20 km of mantle lithosphere with inverted
velocity gradient. The strong, shallow LAB observed here is char-
acteristic of the tectonically active western US (Fischer et al. 2010).
This region is a good candidate for basal lithospheric removal via
melt impounding or infiltration (Havlin et al. 2013). Extremely low
upper-mantle velocities in this spot have been observed previously
in surface (Wagner et al. 2010) and body-wave (Obrebski et al.
2011) studies and likely require melt. This agrees with the model
of Meqbel et al. (2014), who use magnetotelluric data to argue for
a shallow (∼55 km depth) LAB in this region overlying a highly
conductive layer.

By contrast, within the Wyoming craton Meqbel et al. (2014) find
that high resistivity persists down to approximately 250 km depth, in
agreement with our much deeper inferred LAB at station RSSD. The
most striking aspect to the velocity profile we recover at this station
is the combination of unexpectedly low velocities from 60–125 km
depth, and particularly high velocities from 150–200 km depth. This
structure qualitatively agrees with Dalton et al. (2017), who found
that the optimal match for cratonic lithosphere phase velocities
was obtained using a xenolith-determined thermal model that was
modified to include a 5 per cent velocity reduction from 60–80 km
depth and a 5 per cent velocity increase from 200–250 km. Within
the resolution of long-period surface waves, our velocity model is
surprisingly similar to that which they propose. One explanation for
the velocity reduction is the emplacement of volatile-rich mineral
assemblages due to metasomatism and/or melt infiltration, ponding
and crystallization (Hansen et al. 2015; Rader et al. 2015; Selway
et al. 2015), consistent with evidence from xenolith geochemistry
(Carlson et al. 2004; Hearn 2004), and potentially related to Farallon
slab subduction during the Laramide orogeny. The high velocities at
depth could represent an underthrust oceanic plateau (Humphreys
et al. 2015) or refertilized mantle with a high garnet and pyroxene
content that elevates velocities (Kopylova & Russell 2000; Hopper
& Fischer 2015).

The two low velocity layers observed in the mantle beneath
ECSD, one centred at 80 km and the other at 140 km, could also
represent volatile-rich phases emplaced by metasomatism and melt-
ing. The shallower layer would be consistent with melts that stalled

and cooled just below a solidus for carbonated and hydrated peri-
dotite (Dasgupta 2013; Hansen et al. 2015; Rader et al. 2015).
Metasomatism may explain the deeper layer, or it could represent
a layer formed at shallower depths that was underthrust beneath
or underneath the lithosphere of the Superior craton, for exam-
ple, during orogenesis (Hopper & Fischer 2015). Alternatively, this
deeper layer could relate to the original lithospheric base, defined
compositionally, beneath which the thermal portion of the craton
subsequently developed (Yuan & Romanowicz 2010). In this case,
the apparent velocity reduction may, in fact, represent a change in
anisotropic fabric (Wirth & Long 2014).

EYMN lies on the flank of the Mid-continent rift (Fig. 8), and
its crustal thickness (∼40 km) is comparable to values found at
other rift-flank locations along the strike of the rift, as opposed to
thicker crust found near the rift axis (∼55 km; e.g. Zhang et al.
2016). Signatures of ancient rifting in the mantle beneath EYMN
are less clear, except to the extent that the absence of low velocity
layers within the mantle lithosphere could represent the destruction
of such layers by rift-related thermal anomalies. Expanding our
technique to more stations in this neighbourhood will permit a
more thorough examination of the lateral contiguity and average
strength of these low velocity layers, in particular the deeper low
velocity layer observed beneath ECSD, which does not seem to
persist throughout the Superior craton, based on our analysis of
station EYMN.

5.3 Future work

This study represents a proof-of-concept for our method, and a vali-
dation of the utility of converted S–p phases for constraining mantle
structure. Future steps will entail the expansion of our dataset to all
long-lived stations in this region. If possible, we will extend the
analysis to short-lived stations (<5 yr deployments), if sufficient
earthquake arrivals are available to form robust station stacks. At
the expense of vulnerability to strong 3-D velocity variations, we
will explore aggregation of data across ‘mini-arrays’ of 3+ stations
within the dense TA network in order to improve signal-to-noise on
the body wave stacks. At present, our assumption of 1-D structure
beneath the stations is a source of data misfit; body wave stacks at
some stations reveal significant backazimuthal variation (Support-
ing Information Fig. S7) that cannot be simultaneously fit by any
1-D velocity profile. We plan to employ automated waveform clus-
ter analysis to separate backazimuthal bins for separate inversions
as a first step towards fully 3-D implementation.

Our methodology makes it trivial to extend the inversion to in-
clude more data types, as long as the forward-problem is compu-
tationally efficient. In particular, MINEOS can compute Rayleigh
wave group velocities at no significant added expense. Inclusion
of Rayleigh wave ellipticity (Li et al. 2016; Shen & Ritzwoller
2016) would improve constraints on crustal VP/VS ratios, which our
posterior distributions reveal to be the most poorly resolved param-
eter within our models. In this inversion, we have solved only for
isotropic structure, but our codes can handle radially anisotropic
models at no extra expense—the addition of Love wave data would
then allow us to determine anisotropic lithospheric structure that
has been linked to chemical layering within the cratons (Yuan &
Romanowicz 2010), albeit at the expense of longer run times ne-
cessitated by the addition of anisotropic parameters that expand the
model space explored by the MCMCs.
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6 C O N C LU S I O N S

We have developed a novel approach for obtaining upper-mantle ve-
locity structure by simultaneous inversion of multiple complimen-
tary data types. The use of adaptive discontinuous splines achieves
a description of a realistic Earth model that is both parsimonious
and detailed, allowing MCMCs to exhaustively explore a limited
parameter space while capturing fine scale features we seek to un-
derstand. The data uncertainty is left as a free parameter for which
the inverse algorithm solves; we show this tends towards the poste-
rior RMS of the data fit. By pre-migrating stacked body wave data
that is carefully aligned and quality controlled, converted phases
originating at sharp velocity gradients are brought to the fore. In
particular, S–p conversions are shown to be extremely powerful for
the imaging of deep discontinuities. The joint inversion of these
data with Rayleigh wave phase velocities reveals marked layering
within continental cratons. In the tectonically active northwestern
US, we find much thinner lithosphere overlying very low mantle
velocities that grade into an adiabatic velocity profile. The benefits
of our Bayesian approach include robust parameter uncertainty es-
timates, quantification of trade-offs and the flexibility to modularly
add additional data constraints as we continue to develop, and more
widely implement, this technique.
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Supplementary data are available at GJI online.
Figure S1. VS(z) probability density functions recovered using dif-
ferent combinations of data types, including Ps body waves, Sp body
waves and surface wave (SW) phase velocities. The input model
(black line) has a 10 per cent 	VS/VS Moho at 30 km depth, and a
10-km-wide, 5 per cent negative velocity gradient at 100 km depth.
The final panel shows the result using synthetics that had ‘low’
noise, comparable to the real data noise. Inversions performed with
six parallel chains (Section 2.1.1); the number of successful chains
contributing to each posterior is shown in brackets at lower left.
Figure S2. As for Fig. S1, but for target model with 45 km Moho
depth, and 0-km-wide LAB gradient.
Figure S3. As for Fig. S1, but for target model with 45 km Moho
depth, and 10-km-wide LAB gradient.
Figure S4. As for Fig. S1, but for target model with 45 km Moho
depth, and 40-km-wide LAB gradient.
Figure S5. Normalized P-wave arrival stacks (top) and S-wave ar-
rival stacks (bottom) recorded at station ECSD, aligned on the parent
arrival. Blue: P-component, red: SV-component. The daughter com-
ponent in each plot is scaled up by 3×. The number of events per
stack is shown at lower left, and the arrivals in each stack are plotted
as a function of backazimuth and great circle distance in the polar
plot to right. Grey plots indicate traces from backazimuths that were
not used in the inversion shown in the main article.
Figure S6. As for Fig. S5 but for station WVOR.
Figure S7. As for Fig. S5 but for station RSSD.
Figure S8. As for Fig. S5 but for station EYMN.
Figure S9. Test for perturbation algorithm bias, comparing theoret-
ical prior (black lines) to the empirical prior (red bars) histograms,
as described in Section S1. Blue curves show the theoretical values
for the Jeffrey’s distribution.
Figure S10. Comparisons of prior (white) and posterior (red) dis-
tributions for various model parameters at station ECSD. Velocities
are in km s−1.
Figure S11. As for Fig. S10 but for station WVOR.
Figure S12. As for Fig. S10 but for station RSSD.
Figure S13. As for Fig. S10 but for station EYMN.
Figure S14. Comparisons of prior (white) and posterior (red) dis-
tributions for various model parameters for a synthetic inversion
using P–s, S–p and surface wave data. The values for the target
model (with a 30-km-deep Moho and a 5 per cent mantle velocity
decrease over 10 km centred at 100 km depth) are shown with blue
dashed lines. This model contained a thin sediment layer above the
crystalline crust. Velocities are in km s−1.
Figure S15. Results of a synthetic test to assess recovery of a neg-
ative velocity gradient within the lithosphere. This inversion was
performed using P–s, S–p and Rayleigh wave synthetic data, with
Gaussian noise added [cf. (Section 2.1.1)] and four parallel chains.
The posterior model ensemble is shown in the heat-map, with a
histogram of discontinuity depths to right (sediments were not in-
cluded in the target model, nor permitted in the inversion. Left plots
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show the prior (black bars) versus posterior (red bars) distributions
for Moho depths, as well as comparisons of velocities at different
depths within the models that populate the final ensemble. Clearly,
the negative velocity gradient at the ‘LAB’ is well captured, as is
the negative gradient within the lithosphere.
Figure S16. Surface wave phase velocity fits for the four stations
highlighted in this paper. Observed values are plotted as cyan circles.
Red lines are dispersion curves computed for the median models at
each station (i.e. the red lines in Fig. 12). Box and whiskers plots
show the distribution of phase velocities predicted by all of the
models in the ensemble at each station (sampling from all chains).
The whiskers denote maximum/minimum values, while the boxes
(which are in most cases so thin that they cannot be discerned)
show the two-sigma bounds of phase velocity predicted by accepted
models. Note that these inversions also incorporated P–s and S–p
data (not shown).
Figure S17. Results of synthetic tests comparing recovered structure
when the input noise is Gaussian random noise or a ‘realistic’ noise
time-series. The ‘realistic’ noise is computed by taking the power
spectrum of the −95 to −25 s window prior to the main arrival on
Ps and Sp components for station RSSD (selected arbitrarily) and
re-constituting this noise, having randomized the phase. The noise
RMS for both ‘real’ and Gaussian cases is scaled to the amplitude
of the observed noise using the signal-to-noise ratio of the primary
arrival on the parent component. The phase velocities have Gaussian
noise with a standard deviation of 0.015 km s−1. The target model,
with a Moho depth of 45 km, a 0-km-wide LAB at 120 km depth
and a crustal VP/VS ratio of 1.8 is shown in blue, while the final
model is depicted as in Fig. 12.
Table S1. Perturbations and bounds of inversion parameters.
Table S2. Probabilities of altering inverse parameters.
Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X : DATA E R RO R
C O N V E RG E N C E

Here we demonstrate briefly how the random perturbations to the
data error will lead to convergence on the appropriate data misfit.
Consider the derivative of the likelihood function (eq. 3) with respect
to σ :

∂ p(di |m)

∂ σ j
= ∂

∂ σ j

(
1

(
√

2π σi )n
exp

{
− �i

2σ 2
i

})
(A1)

= δi j

(
√

2π σi )n
exp

{
− �i

2σ 2
i

} [
�i σ−3

j − ni σ−1
j

]
(A2)

at the maximum likelihood, this derivative is zero, so

0 = [
�i σ−3

i − ni σ−1
i

]
(A3)

σi =
√

�i

ni
. (A4)

The optimal value of σ is thus the RMS of the data misfit. Over the
course of the inversion, we therefore expect σ to converge towards
the true data error.

Now consider a perturbation to σ , comparing current value ’0’
to trial value ’prop’. The log-likelihood ratio is

ln

(
pprop

p0

)
= ln

(
σ−n

prop exp(−�/2σ 2
prop)

σ−n
0 exp(−�/2σ 2

0 )

)
(A5)

= n ln

(
σ0

σprop

)
+ �

2

(
1

σ 2
0

− 1

σ 2
prop

)
. (A6)

These two terms work in opposite directions. If σ prop > σ 0 then
the first term of this log-likelihood function is negative, while the
second term is positive. If σ prop < σ 0, then the opposite is true. A
change in σ is definitely accepted if the likelihood increases, that
is,

�

2σ 2
0

[
1 − γ −2

] − n ln γ > 0, (A7)

where γ = σ prop/σ 0.
We are generating proposal σ values by perturbation of existing

values: σ prop = σ 0 + δσ , where |δσ /σ 0| � 1. Thus γ = 1 + x, where
x = δσ /σ 0.

Inserting this into eq. (A7), we accept the model if

�

2σ 2
0

[
1 − [1 + x]−2

] − n ln [1 + x] > 0. (A8)

Since x � 1, we can apply Taylor expansions and discard terms in
x2 and higher, giving

x

(
�

σ 2
0

− n

)
> 0 (A9)

as the acceptance criterion.
Recognizing that

√
�/n = RMS, our acceptance criterion is

equivalent to

Accept larger σ (x > 0) if σ0 < RMS

Accept smaller σ (x < 0) if σ0 > RMS.

Thus, the acceptance criterion drives the estimated uncertainty
towards the empirical data error at that stage of the inversion.
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