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1/f Neural Noise and Electrophysiological Indices of Contextual 
Prediction in Aging

S. Dave, T.A. Brothers, and T.Y. Swaab

Abstract

Prediction of upcoming words during reading has been suggested to enhance the efficiency of 

discourse processing. Emerging models have postulated that predictive mechanisms require 

synchronous firing of neural networks, but to date, this relationship has been investigated primarily 

through oscillatory activity in narrow frequency bands. A recently-developed measure proposed to 

reflect broadband neural activity – and thereby synchronous neuronal firing – is 1/f neural noise 

extracted from EEG spectral power. Previous research (Voytek et al., 2015) has indicated that this 

measure of 1/f neural noise changes across the lifespan, and these neural changes predict age-

related behavioral impairments in visual working memory. Using a cross-sectional sample of 

young and older adults, we examined age-related changes in 1/f neural noise and whether this 

measure predicted ERP correlates of successful lexical prediction during discourse 

comprehension. 1/f neural noise across two different language tasks revealed high within-subject 

correlations, indicating that this measure can provide a reliable index of individualized patterns of 

neural activation. In addition to age, 1/f noise was a significant predictor of N400 effects of 

successful lexical prediction; however, noise did not mediate age-related declines in other ERP 

effects. We discuss broader implications of these findings for theories of predictive processing, as 

well as potential applications of 1/f noise across research populations.

1. Introduction

Studies of the effects of predictability during language comprehension in aging populations 

have traditionally examined cross-sectional differences that emerge when comparing groups 

of young versus older adult cohorts. Recent literature has sought to bolster this classic 

approach by considering the role of within-group variability. Across these studies, 

researchers have shown that neural indices of predictive processing vary between older 

adults as a function of their cognitive spans (e.g., Delong, Groppe, Urbach, & Kutas, 2012; 

Federmeier, Kutas & Schul, 2010; Federmeier, McLennan, Ochoa, & Kutas, 2002; Huettig 

& Janse, 2016). Considerably less research has examined how maintenance of neural 

function impacts prediction across the lifespan, though a number of researchers have 

proposed that strong, coherent neuronal networks likely underlie preservation of predictive 
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processing in older adults (Federmeier et al., 2010; Peelle, Troiani, Wingfield, & Grossman, 

2010; Wlotko, Federmeier, & Kutas, 2012). Testing this hypothesis directly requires finding 

a reliable measure of neuronal network dynamics that can be correlated with both age and 

predictive processing during language comprehension. One potential measure has recently 

been proposed by Voytek and colleagues (2015): 1/f neural noise extracted from spectral 

power in the EEG signal. Voytek et al. found that 1/f neural noise positively correlated with 

age, and these neural changes explained age-related decline in visual working memory 

performance. Here we investigate whether there are similar age-related differences in 1/f 
neural noise during language comprehension, and if this measure is reliable on the individual 

level when collected during different tasks. Then we examine whether 1/f noise mediates the 

effect of age on neural indices of accurate prediction of words during discourse 

comprehension, i.e., lexical prediction.

1.1. The Neural Noise Hypothesis of Aging

Neural noise has been defined as random, background electrical fluctuations within the 

central nervous system (Hong & Rebec, 2012; Li, Lindenberger, & Sikström, 2001; Serletis 

et al., 2011). Noise can be considered by comparison with the strength of the signal for 

relevant, or actively processed, information; a nervous system is noisy if the ratio of signal 

strength to random background noise is low (signal detection theory in Nevin, 1969; 

reviewed in Swets, 2014). Noisy systems may emerge when connections between neurons 

are weakened or diffuse as a function of reduced arborization, neuronal loss, or inconsistent 

inhibition (Cremer & Zeef, 1987). The brains of older adults often show these types of 

losses and changes across neural connections (e.g., Cabeza, Nyberg, & Park, 2016; Fjell & 

Walhovd, 2010; Raz et al., 2005), underlying a long-held hypothesis (Crossman & Szafram, 

1956) positing that the effective signal-to-noise ratio in neuronal networks decreases with 

age.

For decades, reaction times to degraded stimuli were the primary means by which 

researchers quantified neural noise (e.g., Creemer & Zeef, 1987; Salthouse & Lichty, 1985; 

Welford, 1981). However, behavioral measures may not accurately address connections in 

neural networks, and may only reflect age-related degradation in peripheral sensory systems 

(i.e, as opposed to cortical neural noise). An alternate method may be to measure neural 

noise directly and non-invasively using the electroencephalogram (EEG). Oscillatory neural 

activity recorded at the scalp is thought to arise from dynamic communication across 

ensembles of neurons, and a number of researchers have proposed that these oscillations 

measure synchrony in neuronal firing (e.g., Fries et al., 2007; Miller et al., 2014; Voytek & 

Knight, 2015). Recent studies have further indicated that population-level neuronal spiking 

correlates with oscillatory activity due to generalized broadband activation, as opposed to 

oscillations specific to any particular frequency band (e.g., Kreiman et al., 2006; Manning, 

Jacobs, Fried, & Kahana, 2009; Miller et al., 2007). In other words, neural noise may be 

reflected in the distribution of neuronal activation (or the power spectral density, PSD) 

across the frequency spectrum.

In order to test this hypothesis, Voytek et al. (2015) used EEG to investigate PSD in young 

and older adults. If, as suggested by the neural noise hypothesis, older adults have less 
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synchronized or less simultaneous neuronal spiking relative to younger adults, this should be 

observed in the distribution of spectral power across frequencies. The characteristic 

distribution of EEG data in the frequency domain is inversely proportional (He, 2004; 

Miller, 2010; Voytek et al., 2015), such that a linear relationship can be approximated by 

calculating the log of the PSD. Voytek and colleagues showed that the slope of this linear 

relationship can serve as a measure of 1/f neural noise1, with more power at low frequencies 

relative to higher frequencies. In this study, older adults showed a flatter, less negative 1/f 
slope than younger adults. As PSD slopes are predicted to flatten when spiking activity is 

decoupled from oscillatory synchronization (Freeman & Zhai, 2009), these differences in 1/f 
neural noise have been interpreted as reflecting age-related declines in population-level 

synchrony across neuronal networks (Hong & Rebec, 2012; Podvalny et al., 2015; Voytek & 

Knight, 2015).

Voytek and colleagues (2015) found 1/f neural noise was higher for older adults performing 

a visual working memory task. In the present study, we examined whether similar age 

differences in 1/f noise could be observed during two language comprehension tasks. In 

addition to examining the effect of age on 1/f noise, we compared 1/f noise levels between 

two language tasks within individuals. In the first task (Comprehension Paradigm), 

participants were instructed to read single sentences for comprehension, while in the second 

task (Prediction Paradigm), participants were asked to try to predict the last word of a two-

sentence passage. If 1/f noise represents a robust and reliable individual difference measure, 

we should observe strong correlations within subjects independent of differences in 

cognitive demands.

Finally, as Voytek et al. examined effects of 1/f neural noise on behavioral accuracy in their 

working memory task, this study tests if 1/f noise would similarly influence event-related 

neural responses during lexical processing. Specifically, we tested the hypothesis that age 

and neural network dynamics affect anticipatory processing.

1.2. Neural Noise and Predictive Processing

Current approaches in cognitive neuroscience emphasize the role of active, top-down 

mechanisms in the processing of incoming sensory stimuli (e.g., Clark, 2013; Friston, 2005; 

Hinton, 2010). These models suggest that the brain proactively generates expectations for 

upcoming information, compares real-world input with these internally held expectations, 

and adjusts accordingly. Such generative models of anticipatory processing – or prediction – 

are thought to have vast explanatory power across cognitive domains, and therefore have 

become an increasingly popular assumption of computational networks modeling neural 

dynamics (e.g., Dayan, Hinton, Neal, & Zemel, 1995; Jaeger & Haas, 2004; Maloney & 

Mamassian, 2009). However, very little evidence exists to link prediction to specific neural 

activation patterns.

11/f noise, alternately known as flicker or pink nose, is defined as electrical activity associated with current flow in systems with few 
charge carriers, such as neurons (e.g., Hooge & Gaal, 1971; Stevens, 1972). 1/f neural noise has been observed in mammalian neural 
circuits since Verveen and Derksen (1965).
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Emerging frameworks for anticipatory processing have described the brain as a Bayesian 

“prediction machine”, or a network that distills statistical regularities from environmental 

stimuli and uses these statistics to make predictions about future events (Bastos et al., 2012; 

Clark, 2013; Friston, 2010). The predictive brain probabilistically generates models for 

upcoming information, and is believed to pre-activate those models when information is 

highly expected (i.e., when the environment strongly supports presentation of a specific 

stimulus). In order for prediction to be both efficient and generalizable across sensory and 

cognitive domains (i.e., unifying; Friston, 2005), top-down processing must be a 

fundamental architectural feature of neural organization. One explanation for neural 

encoding of prediction suggests that anticipatory mechanisms are embedded in spatio-

temporal relationships across neuronal populations (Engel, Fries, & Singer, 2001). This 

temporal binding model postulates that higher-order brain dynamics modulate synchronous 

timing of neural firing. In other words, top-down information (e.g., expectations, goals, and 

attention) influences the size, strength, and cohesive firing of neural assemblies activated for 

expected input. If so, synchronous firing should be enhanced during prediction. Recent 

evidence shows that synchronous oscillatory activity in the brain is associated with the 

presentation of predictable, as opposed to unpredictable, stimuli (reviewed in Engel, Fries, & 

Singer, 2001; Arnal, Wyart, & Giraud, 2011; Doelling, Arnal, Ghitza, & Poeppel, 2014; 

Samaha, Bauer, Cimaroli, & Postle, 2015). In order for networks to show neural synchrony, 

stable and coherent networks must be established in the brain (Fries, 2005), and so we 

propose a corollary: prediction is enhanced for individuals with more synchronous neuronal 

networks.

In the present study, we test this hypothesis by examining the effects of age and 1/f neural 

noise on ERP indices of predictive processing during language comprehension.

1.3. Effects of Age and Noise on Prediction during Language Comprehension

ERP studies of lexical prediction typically examine effects of manipulating cloze 
probability, or the likelihood that a word will complete a given context2 (reviewed in Kutas 

& Federmeier, 2011). Effects of cloze probability have primarily been reported to modulate 

the amplitude of two ERP components: the N400 and, more recently, the post-N400 

positivity (PNP). The N400 is a negative deflection that is maximal over posterior electrode 

sites between 300 to 500ms after a word is presented. The amplitude of the N400 is reduced 

when comprehenders process high cloze (highly predictable) relative to low cloze 

(unpredictable) words in sentence or discourse contexts (reviewed in Swaab, Ledoux, 

Camblin, & Boudewyn, 2012). The N400 effect is thought to index neural facilitation when 

words are highly expected or pre-activated. The PNP is maximal to low-cloze continuations 

over frontal electrode sites between 600–900ms (reviewed in Delong & Kutas, 2016; Van 

Petten & Luka, 2012). The PNP is thought to reflect costs of resolving an unexpected word 

with the prior discourse, or costs associated with updating the discourse representation with 

new information. Modulations of the N400 and PNP as a function of critical word 

predictability are found both as a function of if critical words were actually accurately 

2For example, for the sentence: You could tell he was angry from the tone of his…, the most predictable and therefore highest cloze 
completion is voice. An example of an unpredictable, low cloze competition is violin.
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predicted by the reader, or were plausible given the preceding context. An ERP paradigm 

developed by Brothers and colleagues (2015) allows us to observe separate N400 and PNP 

effects for prediction accuracy and contextual plausibility (independent of prediction 

accuracy, henceforth referred to as effects of context).

In the Brothers et al. study, participants were asked to try to predict the last word of 

moderate cloze (40–60%) two-sentence passages and, at the end of each passage, to report 

whether the passage-final word matched the identity of the word they had predicted. The 

recorded EEG was sorted in different bins for accurately predicted and inaccurately guessed 

words. A subset of the passages presented in this study ended in low-cloze (0–7%) 

completions, and readers nearly always reported inaccurately guessing these unpredictable 

items. By comparing ERP in three conditions (accurately predicted moderate-cloze, 

inaccurately predicted moderate-cloze, and inaccurately predicted low-cloze items), Brothers 

et al. (2015; see also Brothers et al., 2017) found separable N400 and PNP effects of 

accurate prediction and contextual support (i.e., cloze probability independent of prediction 

accuracy). These components were larger in amplitude when the reader’s prediction was 

incorrect and when the critical word was incongruent given the preceding context. Using this 

paradigm, Dave et al. replicated this pattern of results in older adult readers (Dave et al., 

under review), further findings that older adults had reduced effects of prediction accuracy 

and contextual support on the N400, while PNP effects were not modulated as a function of 

age. In the current study, we examined whether separate ERP measures of prediction 

accuracy and contextual support correlated with individual estimates of 1/f neural noise, and 

if noise contributed uniquely to age-related changes in amplitudes of ERP effects.

2. Results

2.1. 1/f Neural Noise across Age in Comprehension and Prediction Paradigms

We generated linear regressions modeling the relationship between frequency and log-based 

PSD, and analyzed the slopes (1/f neural noise, or Noise) emerging from these analyses. 

Significant differences in Noise were observed between older and young adults on both tasks 

(Figure 1A). Younger adults had significantly steeper slopes than older adults 

(comprehension: t(46) = 5.10, p < .001; prediction: t(46) = 3.51, p < .001 for paired two-

tailed t-tests, replicating the result of similar analyses in Voytek et al., 2015). Regression 

analyses provided good fit of the data in both age groups and tasks (rs > .70), indicating 

linear modeling of the data is well motivated.

In order to address whether Noise was similar between tasks, we first examined the 

frequencies for which age-related differences were significant. In the Comprehension task, 

significant age differences emerged across the entire 2–25Hz scale, excluding a subset of the 

alpha range (7–12.3Hz, p range: .12 to .44). Power decreased with age at lower frequencies 

(2–7Hz, high delta and theta), but increased with age at higher frequencies (beta). In 

contrast, significant age differences only emerged in a higher, primarily beta frequency 

range in the Prediction task (13.3–25Hz). As in the comprehension task, older adults had 

high power than younger adults at higher frequencies (ps > .01).
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Next, we examined topographic correlations between age and Noise, to observe where age-

related differences in 1/f neural noise were most pronounced across the scalp (Figure 1B). In 

the Comprehension task, age differences were found over much of the scalp, with the 

strongest age correlations emerging over central electrode sites. While correlations between 

age and Noise were generally reduced for the Prediction relative to the Comprehension task, 

these differences were not significant (whole head: Z = 1.21, p = .23). As displayed in 

Figure 2B, task differences in Noise-age correlations were only significantly over frontal 

electrode sites (comprehension task average: r = .598, prediction task average: r = .233, Z = 

2.15, p = .03).

As Noise varied as a function of language task across both frequency and topography, we 

aimed to determine if participants showed intra-individual reliability (i.e., if slope measured 

across the entire scalp correlated for both tasks). 24 older adults performed both 

Comprehension and Prediction tasks3, and served as our test population for evaluating 

whether Noise was a reliable measure of individual difference. As displayed in Figure 1C, 

slopes were significantly correlated (r = .819, p < .001) between tasks for older adults, 

suggesting that Noise remains stable despite variable task demands.

2.2. ERP Analysis in the Prediction Paradigm

ERP waveforms are plotted in Figure 2 to display the effects of two conditions on discourse 

processing: accurate prediction (Prediction: unpredicted minus predicted moderate cloze 

targets) and contextual support (Context: unpredicted low minus unpredicted moderate cloze 

targets).

As seen in Brothers et al. (2015; 2017) and Dave et al. (under review), young and older 

adults showed separate negative deflections between 300–500ms for effects of Prediction 

and Context. These effects were maximal at the typical centro-parietal sites (as in Kutas & 

Federmeier, 2011; Swaab, Ledoux, Camblin, & Boudewyn, 2012). Both age groups also 

showed significant positive deflections between 600–900ms for effects of Prediction and 

Context. This post-N400 positivity (PNP) was maximal over frontal electrode sites (as in 

Brothers et al., 2015; 2017; Federmeier, Wlotko, Ochoa-Dewald & Kutas, 2007; Van Petten 

& Luka, 2012).

Older adults typically show delayed ERP effects relative to younger readers (e.g., meta-

analysis in Kutas & Iragui, 1998), and in the present study we also observed delayed N400 

and PNP effects in older relative to young adults in the Prediction Paradigm. Therefore, as 

described in Dave et al. (under review), ERP effects were measured over 100ms epochs 

centered on maximal peak amplitudes for each group. N400 effects were measured over a 

representative cluster of six centro-posterior electrode sites (CP1/2, P3/4, Cz, Pz), while 

PNP effects were calculated across a cluster of six frontal electrode sites (FP1/2, F3/4, AFz, 

Fz).

3Correlations between tasks were not calculated for young adults because two separate sets of young readers participated in the 
Comprehension and Prediction Paradigm tasks.
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Mean N400 and PNP amplitudes measured in these epochs were entered into separate 

mixed-effects rANOVAs including the 2-level factors of Age (Young, Old) and Type 

(Prediction, Context). A significant main effect of Age emerged (F(1, 70) = 44.68, p < .001) 

for N400s but not PNPs (F(1, 70) = 0.47, p = .50), indicating that older adults had smaller 

N400 effects than young adults but age did not affect average PNP amplitude. For both 

N400 and PNP effects, there was no main effect of Type, indicating that there was no 

difference in the size of N400 or PNPs effects of Prediction and Context (N400: F(1, 70) = 

0.13, p = .71; PNP: F(1, 70) = 0.14, p = .71). Further, no interaction was found between Age 

and Type (N400: F(1, 70) = 2.01, p = .16; PNP: F(1, 70) = 0.03, p = .88).

2.3. Mediation Analyses for Age, Noise, and ERP Effects

To assess the impact of age group and 1/f neural noise on ERP waveforms, we investigated if 

ERP effect amplitudes were influenced by Age and Noise. N400 effects of both Prediction 

and Context were significantly reduced in older readers (ps < .001, Figure 3A), while PNP 

effects were not impacted by Age (ps > .5). Likewise, flatter 1/f slopes correlated with 

smaller N400 effects of both Prediction (p < .001) and Context (p = .007, Figure 3B), while 

no significant correlations were found for PNP effects. As both Age and Noise were 

predictive of N400 amplitudes, and Age correlated significantly with Noise (R2 = .240, F(1, 

70) = 22.09, p < .001), structural equation models were constructed to examine if the 

strength of the relationship between Age and N400 amplitudes was altered by the addition of 

Noise as a mediating variable (Figure 3C).

The Sobel test (Sobel, 1982) for indirect effects of mediation was used to determine the 

product of the coefficients of (i) the relationship between Age and Noise (i.e., independent 

and mediating variables) and (ii) the relationship between Noise and N400 effects after 

controlling for Age (i.e., mediator and dependent variables). We first generated independent 

models for the relationship between Age and N400s effects of Prediction and Context. We 

subsequently generated models that included Noise, in order to determine if Noise explained 

Age-related changes in N400 effect amplitudes.

Age significantly predicted the N400 effect of Prediction (t(71) = 5.79, p < .001) in a model 

generated without Noise, R2 = .324, F(1, 70) = 33.56, p < .001. In a multiple regression 

analysis with both Age and Noise, the effect of Age on the Prediction N400 remained 

significant (t(71) = 4.07, p < .001) but was partially mediated by Noise (Sobel test statistic: 

2.08, p = .035). In the presence of Age, Noise still significantly predicted Prediction N400 

amplitude, t(71) = 2.32, p = .02. While Age alone explained 32% of the total variance in 

Prediction N400 amplitude, effects of Noise unrelated to Age explained an additional 5% of 

the variance, and this addition to model fit was significant.

Similar analyses were performed for effects of Age and Noise on Context N400. Age 

significantly predicted the N400 effect of Prediction (t(71) = 5.30, p < .001) in a model 

generated without Noise, R2 = .287, F(1, 70) = 28.12, p < .001. With the addition of Noise to 

the model, the effect of Age on Prediction N400 remained significant (t(71) = 4.32, p < .001) 

and Noise was not found to mediate this relationship (Sobel test statistic: 0.58, p = .565). 

Noise was not predictive of Context N400 in the presence of Age, t(71) = 0.58, p = .56, and 
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only 0.3% additional variance was explained by effects of Noise unrelated to Age in this 

model.

In addition to mediation models, we conducted two additional sets of analyses. As observed 

above, age-related differences Noise across the Prediction paradigm were primarily driven 

by increased power in the beta range (14–25Hz) for older adults. We therefore examined 

whether age-related differences in beta activity correlated with N400 amplitudes, to assess if 

correlations between Noise and N400 amplitudes were driven by beta power. However, 

average power in the beta band was not significantly correlated with either prediction 

accuracy (r = .038, p = .10) or contextual support (r = .007, p = .47) effects on the N400.

Secondly, we investigated if Age significantly moderated the effect of Noise on N400 

amplitudes, to test if different relationships between Noise and N400 effects emerged in 

each age group. However when entered alongside Age and Noise, the Noise by Age 

interaction was not significantly predictive of N400 effects of either Prediction (t(71) = 

−0.02, p = .99) or Context (t(71) = 0.84, p = .40).

3. Discussion

Consistent with previous findings, the current study demonstrates that 1/f neural noise 

reliably changes as a function of aging. Across both studies, slopes of the 1/f function 

flattened with advanced age, showing that this marker can be observed in EEG recorded in 

tasks with different cognitive demands. Several computational models (Freeman & Zhai, 

2009; Manning et al., 2009; Miller et al., 2007) have suggested that this broadband measure 

of 1/f noise may relay the degree to which neural networks are synchronized in their firing, 

proposing that observed 1/f noise differences may reflect neuronal desynchronization in 

aging (i.e., neural noise hypothesis, Crossman & Szafram, 1956). Recent in silico modeling 

in rats and macaques (Gao et al., 2017) further demonstrate5 that power spectral density 

(and thereby 1/f neural noise) may not only track firing synchrony, but also the spatial and 

temporal contributions of excitatory and inhibitory (i.e., glutamate and GABA) synaptic 

inputs onto neuronal populations. As this measure of noise increases in older adults across a 

number of cognitive tasks (e.g., the two in the current study, Voytek et al., 201; Leenders et 

al., 2018), synchronicity and excitation-inhibition balance in neural networks may change as 

a byproduct of typical aging.

While young adults typically had more negative noise slopes than older adults, slope ranges 

showed some overlap between groups. Therefore, while neural noise correlated with age, 1/f 
slopes were not entirely explained by age group differences. We observed age effects on 

noise slopes in each task, and found two key results. First, age correlated most strongly with 

1/f slopes in central regions of the scalp for both tasks. Interestingly, the addition of the 

prediction task resulted in a somewhat shifted topography for age by slopes correlations, 

suggesting that age differences in neural activation patterns are modulated by additional task 

demands (as seen in Gazzaley et al., 2008; Klostermann et al., 2007). Second, we correlated 

noise slopes across language tasks in the population of older adults studied in the current 

experiment. Whole head 1/f slopes strongly correlated despite both different reading goals 

and different topographies between tasks, reflecting that noise is a consistent and 
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characteristic measure of the individual. These results imply that 1/f noise may serve as a 

neural measure of individual differences in older cohorts. Between-task correlations in noise 

for young adults could not be calculated in the present study, as two groups of young adults 

participated in the two experiments. It will be important for future studies to examine 

whether similar 1/f noise correlations emerge in both age groups.

Expanding on the behavioral findings of Voytek and colleagues (2015), our study aimed to 

investigate whether the steepness of the 1/f slopes was correlated with ERP measures related 

to language processing. Our results show that N400 effects were modulated by this EEG-

derived measure of noise, but PNP effects were not correlated with noise. Therefore, the 

effects of neural noise may be specific to certain language comprehension processes. N400 

modulations are associated with facilitation of lexical-semantic processing when a presented 

word is accurately predicted (Prediction N400), or matches the meaning of the previous 

context independent of prediction accuracy (Context N400). In contrast, PNP amplitudes 

have been associated with “work” necessary to revise or update discourse representations 

(Brothers et al., 2015; Van Petten & Luka, 2012) following the presentation of unexpected 

words. Our findings suggest that these updating processes are less likely to be affected by 

neural synchrony. N400 activity is found to every word that is presented via RSVP, as a 

function of incremental surprisal and unfolding contextual information (Kutas & 

Federmeier, 2011). Thus it is likely that the 1/f noise measure partially reflects N400s across 

each sentence. Critically, however, our results show differential effects of 1/f noise on N400s 

associated with processing specific lexical expectations and those associated with integration 

of contextual fit information, suggesting activity across frequencies offers unique and 

partially explanatory contributions to specific components of the N400.

A key finding of the current study – that 1/f neural noise specifically influenced N400 

effects of accurate lexical prediction – is largely consistent with Engel et al.’s (2010) 

proposal that neural network dynamics (specifically, population spiking synchrony) underlie 

the strength of predictions generated during anticipatory processing. Several studies have 

found that oscillatory activity in narrowband frequency ranges change prior to presentation 

of predictable, as opposed to unpredictable, stimuli during language comprehension (Lewis 

& Bastiaansen, 2015; Rommers et al., 2016; Vignali et al., 2016). Critically, these studies 

have emphasized the “frequency [band] specificity” of these findings (Bastiaansen & 

Hagoort, 2016, p. 190). However, our results indicate that observed age-related differences 

in spectral power in specific frequency bands (i.e., beta) did not correlate with N400 effects 

of predictive accuracy, and therefore cannot explain how 1/f neural noise mediates age-

related changes in this neural index of prediction. Therefore, our current study re-affirms 

Voytek et al. (2015)’s argument that researchers benefit from studying the power spectrum 

as a “unified statistical representation of the signal” (p. 13262).

To our knowledge, no prior studies have examined the role of broadband EEG activity in 

predictive processing. Furthermore, our study is the first to find individual differences in 

predictive processing as a function of neural noise and aging. This EEG-derived measure 

represents a readily available, non-invasive index of neural synchrony that can be observed 

at the single subject level to predict individual differences in behavioural and neural 

outcomes. There is broad potential for future studies in applying this technique in 
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understanding individual differences in cognitive processes, both in typical populations and 

in individuals affected by neural disease (i.e., Alzheimer’s). However, it remains to be 

determined whether an accurate index of 1/f noise can be obtained over shorter time scales, 

or in resting state. Additional research will be necessary for determining the recording 

characteristics that will optimize 1/f neural noise measurement for laboratory and clinical 

investigation.

It is particularly important to note that in both Voytek et al. and the current study, 1/f slopes 

did not mediate all behavioral or neural measures showing age-related declines (e.g., no 

mediation was found for response times in Voytek et al., or N400 effects of Context in the 

current study). Instead, noise mediated specific age effects of (i) accurate behavioral 

responses and (ii) neural effects of prediction accuracy. Friston (2005)’s foundational model 

of predictive processing defines accuracy as a minimization of prediction error, yielding 

reductions in bottom-up neural activity when a comprehender has pre-activated (predicted) a 

representation of the expected stimulus. This conceptualization suggests that neural noise 

slopes may specifically reflect the maintenance of top-down mechanisms that allow 

comprehenders to generate expectations and/or pre-activate specific stimuli (as posited by 

Engel et al., 2010; Clark, 2013). It will be critical for future research to address how neural 

synchrony modulates top-down processing. Computational and theoretical models have 

suggested 1/f noise may dynamically influence effortful processing (Grigolini et al., 2009), 

representation formation (Gilden, 2001), and strategic shifting (reviewed in Wagenmakers, 

Farrell, & Ratcliff, 2004) – all of which have been suggested to underlie predictive 

processing across the lifespan (i.e., Clark, 2013; Federmeier, 2007; Kuperberg & Jaeger, 

2016).

Importantly, the 1/f noise component reflects broadband power measured prior to critical 

word onset. We generated the N400 Prediction effect by comparing across trials for which 

readers self-reported that they “accurately” or “inaccurately” predicted the final/critical 

word; however, the sentences themselves had equal offline cloze probability for target words 

(i.e., were all moderate-cloze trials). In other words, contextual informativeness does not 

differ between “accurate” and “inaccurate” moderate-cloze prediction conditions, and the 

only distinction between these conditions is whether the reader predicted the final word. 

Broadband activity differences preceding this point may therefore reflect strongly-held 

predictions, such that words readers marked as “accurately predicted” were highly expected. 

In contrast, contextually-similar trials that were marked as “inaccurate predictions” may 

contain not only trials where strong predictions were made for likely but unpresented words, 

but also a number of trials with weak or absent predictions. Thus differences in broadband 

activity preceding sentence-final words may reflect differences in anticipatory mechanisms 

preceding accurately as compared to inaccurately predicted words.

Because N400 effects of Context were not linked to 1/f neural noise after controlling for age, 

activation patterns required for effective contextual processing are very likely distinct from 

those underlying predictive mechanisms (as seen in oscillatory analyses performed by 

Rommers et al., 2016). Importantly, no evidence emerged to suggest differential involvement 

of 1/f noise in predictive processing in young and older adults. Instead, we posit that similar 

neural mechanisms for lexical prediction (Kuperberg & Jaeger, 2016) are recruited by both 
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young and older adults. Benefits of top-down information are likely guided by both neuronal 

spiking synchrony, as well as sources of variance that are related to age but may be 

independent of 1/f neural noise.

What these sources of variance may be is an open question, but neural noise as measured by 

EEG 1/f power alone may not fully describe how noise modulates neural network dynamics. 

Some researchers have posited that inter-trial variability may also capture age-related 

decline in signal fidelity, and have successfully linked aging to inconsistency in behavioral 

responses (Hong & Rebec, 2012; Hultsch & MacDonald, 2004; Lovden, Li, Shing, & 

Lindenberger, 2007), as well as fMRI (D’Esposito et al., 1999) and oscillatory phase 

coherence (Papenberg et al., 2013). Further, recent evidence (Payne & Federmeier, 2017) has 

emerged to suggest that contextual processing may be dependent on intra-individual, trial-to-

trial variability in ERP activity. Taken together with the results of the current study, Payne 

and Federmeier’s results indicate that effects of prediction accuracy and contextual support 

may both be modulated by synchrony, but that these measures represent distinct 

subcomponents of neural noise. Future research would benefit from incorporating elements 

of both network-level spiking synchronization (i.e., 1/f neural noise) and trial-specific neural 

activity (i.e., inter-trial variability) in gauging the mechanisms underlying language 

processing in young and older adults.

4. Methods

4.1. Participants

4.1.1. Comprehension Paradigm—EEG data were collected from 24 young adults (19 

females; mean age: 19.5; range: 18 to 28) and 24 older adults (14 females; mean age: 72.0 

years; range 64 to 79). All participants were native English speakers with normal or 

corrected-to-normal vision and no known history of psychiatric or neurological disorders, 

head trauma, or neuro-active prescription medication. All participants were right-handed, as 

assessed by self-report and the Edinburgh Handedness Inventory (Oldfield, 1971). Both 

groups provided written informed consent to a protocol approved by the Institutional Review 

Board at the University of California, Davis. Data from two additional participants in each 

age group were excluded from analyses due to excessive artefacts in EEG recordings.

4.1.2. Prediction Paradigm—EEG data were collected from 36 new young adult 

participants (19 females, mean age: 20.5; range: 18 to 33). The same 24 older adults were 

tested on the prediction paradigm, and 12 new older adult participants were also included 

(total group: 21 females; mean age: 70.8 years; range 64 to 79).4 All participants were 

consented to the same criteria described above. Data from two additional young adults and 

three additional older adults were excluded from the analyses as a result of excessive 

artefacts in EEG recordings.

4Dave et al. (under review) reports results from Prediction Paradigm ERP analyses of 48 of these 72 subjects. An additional 24 
subjects (12 young, 12 older adults) were tested for the current Prediction Paradigm findings, as well as those participants tested on the 
Comprehension Paradigm.
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4.2. Stimuli and Procedure

4.2.1. Comprehension Paradigm—Participants read 100 experimental sentences, 

presented via rapid serial visual presentation (RSVP) with a stimulus-onset asynchrony 

(SOA) of 600ms. Participants were instructed to read each sentence for comprehension, 

which was tested by manual response to true/false statements following 25 percent of trials.

4.2.2. Prediction Paradigm—Participants read 180 two-sentence discourse passages 

(detailed in Brothers et al., 2015). Sample stimuli for this paradigm are presented in Table 1.

The first sentence of each passage was presented all at once, and the second sentence was 

presented via RSVP (SOA: 600ms). Participants were instructed to try to use the discourse 

context to predict the final word of each passage, and to manually indicate whether the 

actually presented passage-final word matched their expectations. Readers were informed 

that there were no “correct” predictions for any passage.

Of the 180 passages, 120 were constrained such that the final word was very likely to be one 

of two possibilities (cloze for each possibility: 40–60%, average: 51%). For these moderate 

cloze passages, the passage-final word was equally likely to be accurately or inaccurately 

predicted by the reader (see Table 1). 60 additional passages were presented that were 

similarly constrained toward two likely target completions; however, the final word 

presented at the end of these passages was instead a low cloze, improbable item (low-cloze: 

0–7%, average: 0.9%), such that readers were likely to indicate that target word was not 

predicted.

4.3 EEG Recording

EEG data was recorded using SCAN (Compumedics Neuroscan), and processing and 

analysis was performed using Matlab (The MathWorks, Natick, MA) and EEGLAB toolbox. 

EEG was recorded during both tasks with 29 tin electrodes mounted in an elastic cap 

(ElectroCap International). Additional electrodes were attached below and on the outer 

canthi of the eyes in order to capture blinks and other eye movements. Electrode impedances 

were kept below 5kΩ, and the EEG signal was amplified with a Synamps Model 8050 

Amplifier (bandpass cutoffs: 0.05 – 100Hz). The signal was continuously digitized at a 

sampling rate of 250Hz. All channels were initially referenced to an electrode placed over 

the right mastoid and later re-referenced to the average of left and right mastoids.

After EEG recording, independent components analysis (ICA) was used to decompose EEG 

responses into subcomponents with fixed scalp distributions and independent time courses. 

After ICA, eye blink components were removed, and single-trial waveforms were screened 

for amplifier blocking, muscle artifacts, and horizontal eye movements.

4.4. EEG Analysis for 1/f Neural Noise

For data collected during the Prediction Paradigm, EEG was epoched to exclude the 

following: all times in which participants were on breaks (i.e., between passage 

presentations), the first sentence of each passage (i.e., when participants were encouraged to 

move their eyes freely over the entire sentence, presented en masse), and passage-final 
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words. For data collected during the Comprehension Paradigm, EEG was similarly epoched 

to exclude all times in which participants were on breaks, as well as sentence-final words. 

1/f noise was calculated for EEG collected during sentences presented via RSVP, from 

300ms preceding presentation of the first word to 300ms after presentation of the second-to-

last (i.e., n − 1) words of experimental stimuli.

We replicated the broadband power spectral density (PSD) analyses for 1/f neural noise 

originally performed by Voytek et al. (2015). Voytek and colleagues estimated slope from 

EEG in the 2–25Hz PSD range, excluding the alpha range (7–14Hz). High frequency 

activity (gamma band; 25–100Hz) was excluded from scalp recordings due to likely overlap 

with face and eye muscle activity (e.g., Voytek et al., 2010; Luck, 2005). Alpha activity was 

excluded from slope analyses because oscillations in this frequency band are inconsistent 

with broadband local-field potential patterns (i.e., alpha activity is believed to be 

representative of non-broadband activity; Manning et al., 2009; Miller, 2010; Miller et al., 

2014).

The fast Fourier transform (FFT) power spectrum was calculated at each channel for each 

participant (fourieeg.m function in EEGlab, wherein PSD was estimated using N 1500ms 

time windows with 50% overlap between 2 and 25Hz). PSD is thought to be inversely 

proportional with frequency (Miller, 2010), and therefore PSD was log transformed. By 

using log10PSD, linear regressions generated between frequency and PSD yielded a 

representative slope of the power spectrum (i.e., 1/f neural noise).

4.5. ERP Analysis for the Prediction Paradigm

ERP processing was performed using Matlab with the EEGLAB toolbox and ERPlab plugin 

(Luck, 2005). ERP analyses were performed over the final words of passages over epochs of 

1500ms, starting 300ms before the onset of the critical target items. ERP waveforms were 

sorted into three conditions: (i) accurately predicted moderate cloze completions, (ii) 

inaccurately predicted moderate cloze completions, and (iii) inaccurately predicted low 

cloze completions. (Very few (<10% per subject) of low cloze words were marked as 

accurately predicted, and therefore waveforms were not averaged for this condition.)

References

Arnal LH, Wyart V, Giraud AL. Transitions in neural oscillations reflect prediction errors generated in 
audiovisual speech. Nature Neuroscience. 2011; 14(6):797–801. [PubMed: 21552273] 

Bastiaansen M, Hagoort P. Oscillatory neuronal dynamics during language comprehension. Progress in 
Brain Research. 2006; 159:179–196. [PubMed: 17071231] 

Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for 
predictive coding. Neuron. 2012; 76(4):695–711. [PubMed: 23177956] 

Brothers T, Swaab TY, Traxler MJ. Effects of prediction and contextual support on Lexical processing: 
Prediction takes precedence. Cognition. 2015; 136:135–149. [PubMed: 25497522] 

Brothers T, Swaab TY, Traxler MJ. Goals and strategies influence lexical prediction during sentence 
comprehension. Journal of Memory and Language. 2017; 93:203–216.

Cabeza, R.Nyberg, L., Park, DC., editors. Cognitive neuroscience of aging: Linking cognitive and 
cerebral aging. Oxford University Press; 2016. 

Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. 
Behavioral and Brain Sciences. 2013; 36(03):181–204. [PubMed: 23663408] 

Dave et al. Page 13

Brain Res. Author manuscript; available in PMC 2019 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cremer R, Zeef EJ. What kind of noise increases with age? Journal of Gerontology. 1987; 42(5):515–
518. [PubMed: 3624810] 

Crossman ER, Szafran J. Changes with age in the speed of information-intake and discrimination. 
Experientia. 1955; 4:128–34.

D’Esposito M, Postle BR, Jonides J, Smith EE. The neural substrate and temporal dynamics of 
interference effects in working memory as revealed by event-related functional MRI. Proceedings 
of the National Academy of Sciences. 1999; 96(13):7514–7519.

Dave S, Brothers TA, Traxler MJ, Ferreira F, Henderson JM, Swaab TY. Electrophysiological evidence 
for preservation of lexical prediction in aging. (under review). 

Dayan P, Hinton GE, Neal RM, Zemel RS. The Helmholtz machine. Neural Computation. 1995; 7(5):
889–904. [PubMed: 7584891] 

DeLong KA, Kutas M. Hemispheric differences and similarities in comprehending more and less 
predictable sentences. Neuropsychologia. 2016; 91:380–393. [PubMed: 27609127] 

DeLong KA, Groppe DM, Urbach TP, Kutas M. Thinking ahead or not? Natural aging and anticipation 
during reading. Brain and Language. 2012; 121(3):226–239. [PubMed: 22406351] 

Doelling KB, Arnal LH, Ghitza O, Poeppel D. Acoustic landmarks drive delta–theta oscillations to 
enable speech comprehension by facilitating perceptual parsing. Neuroimage. 2014; 85:761–768. 
[PubMed: 23791839] 

Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top–down 
processing. Nature Reviews Neuroscience. 2001; 2(10):704–716. [PubMed: 11584308] 

Federmeier KD. Thinking ahead: The role and roots of prediction in language comprehension. 
Psychophysiology. 2007; 44(4):491–505. [PubMed: 17521377] 

Federmeier KD, Kutas M, Schul R. Age-related and individual differences in the use of prediction 
during language comprehension. Brain and Language. 2010; 115(3):149–161. [PubMed: 
20728207] 

Federmeier KD, McLennan DB, Ochoa E, Kutas M. The impact of semantic memory organization and 
sentence context information on spoken language processing by younger and older adults: An ERP 
study. Psychophysiology. 2002; 39(2):133–146. [PubMed: 12212662] 

Federmeier KD, Wlotko EW, De Ochoa-Dewald E, Kutas M. Multiple effects of sentential constraint 
on word processing. Brain Research. 2007; 1146:75–84. [PubMed: 16901469] 

Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive 
consequences. Reviews in the Neurosciences. 2010; 21(3):187–222. [PubMed: 20879692] 

Freeman WJ, Zhai J. Simulated power spectral density (PSD) of background electrocorticogram 
(ECoG). Cognitive Neurodynamics. 2009; 3(1):97–103. [PubMed: 19003455] 

Fries P, Nikolić D, Singer W. The gamma cycle. Trends in Neurosciences. 2007; 30(7):309–316. 
[PubMed: 17555828] 

Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. 
Trends in Cognitive Sciences. 2005; 9(10):474–480. [PubMed: 16150631] 

Friston K. A theory of cortical responses. Philosophical Transactions of the Royal Society of London 
B: Biological Sciences. 2005; 360(1456):815–836. [PubMed: 15937014] 

Friston K. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience. 2010; 
11(2):127–138. [PubMed: 20068583] 

Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balanca from field potentials. 
Neuroimage. 2017; 158:70–78. [PubMed: 28676297] 

Gazzaley A, Clapp W, Kelley J, McEvoy K, Knight RT, D’Esposito M. Age-related top-down 
suppression deficit in the early stages of cortical visual memory processing. Proceedings of the 
National Academy of Sciences. 2008; 105(35):13122–13126.

Gilden DL. Cognitive emissions of 1/f noise. Psychological Review. 2001; 108:33–56. [PubMed: 
11212631] 

Grigolini P, Aquino G, Bologna M, Luković M, West BJ. A theory of 1/f noise in human cognition. 
Physica A: Statistical Mechanics and its Applications. 2009; 388(19):4192–4204.

He BJ. Scale-free brain activity: past, present, and future. Trends in cognitive sciences. 2014; 18(9):
480–487. [PubMed: 24788139] 

Dave et al. Page 14

Brain Res. Author manuscript; available in PMC 2019 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hinton G. A practical guide to training restricted Boltzmann machines. Momentum. 2010; 9(1):926–
946.

Hong SL, Rebec GV. A new perspective on behavioral inconsistency and neural noise in aging: 
compensatory speeding of neural communication. Frontiers in Aging Neuroscience. 2012; 4:27. 
[PubMed: 23055970] 

Hooge FN, Gaal JLM. Fluctuations with a 1/f spectrum in conductance of ionic solutions and in 
voltage of concentration cells. Philips Research Reports. 1971; 26(2):77.

Huettig F, Janse E. Individual differences in working memory and processing speed predict 
anticipatory spoken language processing in the visual world. Language, Cognition and 
Neuroscience. 2016; 31(1):80–93.

Hultsch DF, MacDonald SW. Intraindividual variability in performance as a theoretical window onto 
cognitive aging. New Frontiers in Cognitive Aging. 2004:65–88.

Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless 
communication. Science. 2004; 304(5667):78–80. [PubMed: 15064413] 

Klostermann F, Nikulin VV, Kühn AA, Marzinzik F, Wahl M, Pogosyan A, Curio G. Task-related 
differential dynamics of EEG alpha-and beta-band synchronization in cortico-basal motor 
structures. European Journal of Neuroscience. 2007; 25(5):1604–1615. [PubMed: 17425586] 

Kreiman G, Hung CP, Kraskov A, Quiroga RQ, Poggio T, DiCarlo JJ. Object selectivity of local field 
potentials and spikes in the macaque inferior temporal cortex. Neuron. 2006; 49(3):433–445. 
[PubMed: 16446146] 

Kuperberg GR, Jaeger TF. What do we mean by prediction in language comprehension? Language, 
Cognition and Neuroscience. 2016; 31(1):32–59.

Kutas M, Federmeier KD. Thirty years and counting: finding meaning in the N400 component of the 
event-related brain potential (ERP). Annual Review of Psychology. 2011; 62:621–647.

Kutas M, Iragui V. The N400 in a semantic categorization task across 6 decades. 
Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section. 1998; 108(5):
456–471.

Leenders MP, Lozano-Soldevilla D, Roberts MJ, Jensen O, de Weerd P. Diminshed alpha lateralization 
during working memory buy not during attentional cueing in older adults. Cerebral Cortex. 2016; 
28(1):21–32.

Lewis AG, Bastiaansen M. A predictive coding framework for rapid neural dynamics during sentence-
level language comprehension. Cortex. 2015; 68:155–168. [PubMed: 25840879] 

Li SC, Lindenberger U, Sikström S. Aging cognition: from neuromodulation to representation. Trends 
in Cognitive Sciences. 2001; 5(11):479–486. [PubMed: 11684480] 

Lövdén M, Li SC, Shing YL, Lindenberger U. Within-person trial-to-trial variability precedes and 
predicts cognitive decline in old and very old age: Longitudinal data from the Berlin Aging Study. 
Neuropsychologia. 2007; 45(12):2827–2838. [PubMed: 17575988] 

Luck SJ. Ten simple rules for designing ERP experiments. Event-related potentials: A methods 
handbook. 2005 262083337. 

Maloney LT, Mamassian P. Bayesian decision theory as a model of human visual perception: testing 
Bayesian transfer. Visual Neuroscience. 2009; 26(01):147–155. [PubMed: 19193251] 

Manning JR, Jacobs J, Fried I, Kahana MJ. Broadband shifts in local field potential power spectra are 
correlated with single-neuron spiking in humans. Journal of Neuroscience. 2009; 29(43):13613–
13620. [PubMed: 19864573] 

Miller KJ. Broadband spectral change: evidence for a macroscale correlate of population firing rate? 
Journal of Neuroscience. 2010; 30(19):6477–6479. [PubMed: 20463210] 

Miller KJ, Honey CJ, Hermes D, Rao RP, Ojemann JG. Broadband changes in the cortical surface 
potential track activation of functionally diverse neuronal populations. Neuroimage. 2014; 85:711–
720. [PubMed: 24018305] 

Miller KJ, Leuthardt EC, Schalk G, Rao RP, Anderson NR, Moran DW, Ojemann JG. Spectral changes 
in cortical surface potentials during motor movement. Journal of Neuroscience. 2007; 27(9):2424–
2432. [PubMed: 17329441] 

Dave et al. Page 15

Brain Res. Author manuscript; available in PMC 2019 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nevin JA. Signal Detection Theory and Operant Behavior: A Review of David M. Green and John A. 
Swets’ Signal Detection Theory and Psychophysics. Journal of the Experimental Analysis of 
Behavior. 1969; 12(3):475–480.

Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 
1971; 9(1):97–113. [PubMed: 5146491] 

Papenberg G, Hämmerer D, Müller V, Lindenberger U, Li SC. Lower theta inter-trial phase coherence 
during performance monitoring is related to higher reaction time variability: a lifespan study. 
NeuroImage. 2013; 83:912–920. [PubMed: 23876249] 

Payne BR, Federmeier KD. Pace yourself: Intraindividual variability in context use revealed by self-
paced event-related brain potentials. Journal of Cognitive Neuroscience. 2017; 29(5):837–854. 
[PubMed: 28129064] 

Peelle JE, Troiani V, Wingfield A, Grossman M. Neural processing during older adults’ 
comprehension of spoken sentences: age differences in resource allocation and connectivity. 
Cerebral Cortex. 2010; 20(4):773–782. [PubMed: 19666829] 

Podvalny E, Noy N, Harel M, Bickel S, Chechik G, Schroeder CE, Malach R. A unifying principle 
underlying the extracellular field potential spectral responses in the human cortex. Journal of 
Neurophysiology. 2015; 114(1):505–519. [PubMed: 25855698] 

Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Acker JD. Regional 
brain changes in aging healthy adults: general trends, individual differences and modifiers. 
Cerebral Cortex. 2005; 15(11):1676–1689. [PubMed: 15703252] 

Rommers J, Dickson DS, Norton JJ, Wlotko EW, Federmeier KD. Alpha and theta band dynamics 
related to sentential constraint and word expectancy. Language, Cognition and Neuroscience. 
2017; 32(5):576–589.

Salthouse TA, Lichty W. Tests of the neural noise hypothesis of age-related cognitive change. Journal 
of Gerontology. 1985; 40(4):443–450. [PubMed: 4008879] 

Samaha J, Bauer P, Cimaroli S, Postle BR. Top-down control of the phase of alpha-band oscillations as 
a mechanism for temporal prediction. Proceedings of the National Academy of Sciences. 2015; 
112(27):8439–8444.

Serletis D, Zalay OC, Valiante TA, Bardakjian BL, Carlen PL. Complexity in neuronal noise depends 
on network interconnectivity. Annals of Biomedical Engineering. 2011; 39(6):1768–1778. 
[PubMed: 21347547] 

Sobel, ME. Asymptotic confidence intervals for indirect effects in structural equations models. In: 
Leinhart, S., editor. Sociological Methodology. 1982. p. 290-312.

Stevens CF. Inferences about membrane properties from electrical noise measurements. Biophysical 
Journal. 1972; 12(8):1028–1047. [PubMed: 5044577] 

Swaab TY, Ledoux K, Camblin CC, Boudewyn MA. Language-related ERP components. Oxford 
Handbook of Event-Related Potential Components. 2012:397–440.

Swets, JA. Signal detection theory and ROC analysis in psychology and diagnostics: Collected papers. 
Psychology Press; 2014. 

Wagenmakers EJ, Farrell S, Ratcliff R. Estimation and interpretation of 1/fα noise in human cognition. 
Psychonomic Bulletin & Review. 2004; 11(4):579–615. [PubMed: 15581115] 

Van Petten C, Luka BJ. Prediction during language comprehension: Benefits, costs, and ERP 
components. International Journal of Psychophysiology. 2012; 83(2):176–190. [PubMed: 
22019481] 

Verveen AA, Derksen HE. Fluctuations in membrane potential of axons and the problem of coding. 
Biological Cybernetics. 1965; 2(4):152–160.

Vignali L, Himmelstoss NA, Hawelka S, Richlan F, Hutzler F. Oscillatory brain dynamics during 
sentence reading: A Fixation-related spectral perturbation analysis. Frontiers in Human 
Neuroscience. 2016:10. [PubMed: 26869898] 

Voytek B, Canolty RT, Shestyuk A, Crone N, Parvizi J, Knight RT. Shifts in gamma phase–amplitude 
coupling frequency from theta to alpha over posterior cortex during visual tasks. Frontiers in 
Human Neuroscience. 2010; 4:191. [PubMed: 21060716] 

Dave et al. Page 16

Brain Res. Author manuscript; available in PMC 2019 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Voytek B, Knight RT. Dynamic network communication as a unifying neural basis for cognition, 
development, aging, and disease. Biological Psychiatry. 2015; 77(12):1089–1097. [PubMed: 
26005114] 

Voytek B, Kramer MA, Case J, Lepage KQ, Tempesta ZR, Knight RT, Gazzaley A. Age-related 
changes in 1/f neural electrophysiological noise. Journal of Neuroscience. 2015; 35(38):13257–
13265. [PubMed: 26400953] 

Welford AT. Signal, noise, performance, and age. Human Factors. 1981; 23(1):97–109. [PubMed: 
7228049] 

Wlotko EW, Federmeier KD, Kutas M. To predict or not to predict: Age-related differences in the use 
of sentential context. Psychology and Aging. 2012; 27(4):975–988. [PubMed: 22775363] 

Dave et al. Page 17

Brain Res. Author manuscript; available in PMC 2019 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• EEG-derived 1/f neural noise varies reliably as a function of age

• Noise correlates strongly within subjects across tasks

• Noise predicts N400 effects of lexical prediction in young and older adults

• Noise does not predict other N400 effects, or other ERP effects

• Specific contributions of synchronous neural firing to predictive mechanisms
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Figure 1. 
1/f neural noise across task and age. (A) EEG was recorded during and briefly following 

rapid-serial visual presentation (RSVP) of sentences in both Prediction and Comprehension 

Paradigms. EEG recordings used to calculate 1/f noise were collected until 300ms prior to 

the end of each sentence, immediately followed by non-overlapping EEG recordings that 

were later averaged to generate ERP waveforms to critical words. (B) 1/f neural noise was 

estimated for both paradigms from the slope (dotted lines) of the power spectrum across 

frequency (2–25Hz, plotted above with 95% confidence intervals), excluding alpha 

frequency (7–14Hz, shaded). (C) Correlations between Age and 1/f slopes are plotted 

topographically. Correlations were maximal over central electrode sites for both paradigms 

(addition signs). Age correlations with neural noise were not significantly different as a 

function of task, but topographic differences between tasks emerged over frontal electrode 

sites (dotted outline). (D) 1/f slopes were strongly correlated between tasks for older readers.
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Figure 2. 
ERPs in the Prediction Paradigm. ERP difference waveforms were generated for the effects 

of Prediction (unpredicted minus predicted words in moderate cloze passages) and Context 

(unpredicted low cloze minus unpredicted moderate cloze critical words), plotted at a frontal 

medial (AFz) and central (Cz) electrode site. Effects of Prediction and Context are plotted 

for young and older adults for N400 effects (A) and PNP effects (B), alongside topographic 

plots (right) indicating where effects were maximal in 100ms centered maximal epochs.
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Figure 3. 
Age, 1/f noise, and ERPs. N400 amplitudes for Prediction and Context were reduced in 

older readers (blue) relative to younger adults (red, A), but no significant effects of age were 

found for either of the PNP effects. (Error bars indicate standard errors (SEM).) 1/f neural 

noise was significantly correlated with amplitudes of both N400 effects (B), but not with the 

PNP effects. A mediation model generated for the Prediction N400 (C, left) shows that 1/f 
neural noise partially mediated age-related reductions in the Prediction N400. In contrast, a 

similar mediation analysis performed for the Context N400 (C, right) shows that 1/f neural 

noise is not predictive of Context N400 amplitudes after controlling for age, and does not 

mediate age-related reduction of the Context N400 (dotted lines).
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Table 1

Sample experimental stimuli for the Prediction Paradigm.

Condition Sentence 1 Sentence 2 Reader Expectation Actual Presentation

Moderate cloze, 
Accurately Predicted

While at the bar, Theresa glanced 
at the handsome man’s ring finger.

Her eyes widened when she 
found out that he was… Married Married

Moderate cloze, 
Inaccurately 
Predicted

While at the bar, Theresa glanced 
at the handsome man’s ring finger.

Her eyes widened when she 
found out that he was… Single Married

Low cloze, 
Inaccurately 
Predicted

While at the hospital, Theresa read 
her son’s medical report.

Her eyes widened when she 
found out that he was… Sick Married
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