
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Robust and Efficient Algorithms for Federated Learning and Distributed Computing

Permalink
https://escholarship.org/uc/item/4tw5g1br

Author
Reisizadeh, Amirhossein

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4tw5g1br
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Robust and Efficient Algorithms for Federated

Learning and Distributed Computing

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Amirhossein Reisizadehmobarakeh

Committee in charge:

Professor Ramtin Pedarsani, Chair
Professor Joao Hespanha
Professor Upamanyu Madhow
Professor Keneth Rose
Professor Salman Avestimehr, University of Southern California

September 2021

The Dissertation of Amirhossein Reisizadehmobarakeh is approved.

Professor Joao Hespanha

Professor Upamanyu Madhow

Professor Keneth Rose

Professor Salman Avestimehr, University of Southern California

Professor Ramtin Pedarsani, Committee Chair

August 2021

Robust and Efficient Algorithms for Federated Learning and Distributed Computing

Copyright © 2021

by

Amirhossein Reisizadehmobarakeh

iii

To my Mom.

iv

Acknowledgements

First and foremost, I would like to express my sincerest gratitude and appreciation to

my advisor, Prof. Ramtin Pedarsani. He has been a wonderful source of help and support

to me, in research and otherwise. I was first inspired by his unique approach to research.

Ramtin always looks for exciting and interesting problems and is open to explore new

areas. He taught me to put a great deal of effort into identifying practical challenges

and formulating them in abstract senses. While we may not be able to solve the whole

abstract problem, he believed that formulating a well-defined theoretical problem rooted

in practical engineering and solving it partially may even offer more value than solving

an extremely hard abstract one with little practical impacts. I was also inspired by his

ability to identifying the student’s interest and I deeply appreciate him letting me explore

different research areas and establish fruitful collaborations. Ramtin is also extremely

kind, patient and understanding. He genuinely cares about the well-being of his students

and graciously offers his support. I simply could not wish for a better advisor and friend.

My PhD journey would not have been as joyful without the fruitful collaborations

with an extraordinarily talented group of mentors and colleagues. My first collaborative

PhD project was a joint work with Prof. Salman Avestimehr from USC. As a leading

expert in the area, I was lucky to have the opportunity to learn the basics of fundamental

research and presentation from him. Most importantly, Prof. Avestimehr is an amazing

presenter from whom I learned how to keep the audience engaged in an impactful research

presentation. I am also thankful to Prof. Aryan Mokhtari from UT Austin. I first found

my interest in optimization theory and machine learning in our collaboration with Aryan

while he was a postdoc at MIT. He always came up with brilliant ideas and was amazingly

on top of all the tiny technical details of the proofs. He has been a wonderful source

of help and support to me during the last few years. I also thank Prof. Farzan Farnia

v

from CUHK. I was always amazed by his deep and versatile expertise on different areas.

Farzan is always full of novel ideas and it has been very joyful to work with him. I thank

Prof. Hamed Hassani from UPenn from whom I learned how to effectively present the

story of an idea and write an engaging paper. I also thank Saurav Prakash from USC

with whom we managed to publish quite a number of interesting works and were able

to make the collection of our works and ideas to the Qualcomm Innovation Fellowship’s

finals. Lastly, I thank Prof. Ali Jadbabaie from MIT. I was lucky enough to have the

opportunity to collaborate with such an experienced expert and learn a great deal about

research. While we discussed different approaches to writing the story of a paper, Prof.

Jadbabaie always came up with compelling and motivating big picture ideas while he

was thoroughly on top of the technical details and challenges.

I would like to extend my gratitude to my thesis committee members: Prof. Joao

Hespanha, Prof. Upamanyu Madhow, Prof. Keneth Rose and Prof. Salman Avestimehr.

I also thank Prof. Christos Thrampoulidis for serving on my qualifying exam committee.

Studying abroad, thousands of miles far from home is not easy particularly without

having a supportive group of friends. My wholehearted appreciation goes to my dear

friend, Behnam. He has been extremely kind and supportive, always making sure to let

me know that I can count on his help. I will always be grateful and indebted for that.

I also thank my amazing LA friends, particularly Leili, Katy and Sepehr. Such joyful

trips, parties and memories we have been together! I also thank my wonderful friends

and neighbors at Anita’s village. I will miss our tea times, hangouts and volleyballs.

Last but definitely not least, I owe this to my beloved family. Mom, I could not have

gotten this far without your help, support and sacrifice. I have been extremely lucky to

always feel your support by my side, though we have been away for the last few years.

This thesis is dedicated to you.

vi

Curriculum Vitæ
Amirhossein Reisizadehmobarakeh

Education

2021 Doctor of Philosophy, Electrical and Computer Engineering
University of California, Santa Barbara, CA, USA.

2016 Master of Science, Electrical and Computer Engineering
University of California, Los Angeles, CA, USA.

2014 Bachelor of Science, Electrical Engineering
Sharif University of Technology, Tehran, Iran.

Publications

[1] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, R. Pedarsani, “FedPAQ:
A Communication-Efficient Federated Learning Method with Periodic Averaging
and Quantization,” International Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 2021–2031, 2020.

[2] A. Reisizadeh∗, F. Farnia∗, R. Pedarsani, A. Jadbabaie, “Robust Federated Learn-
ing: The Case of Affine Distribution Shifts,” Advances in Neural Information Pro-
cessing Systems (NeurIPS), vol. 33, 2020.

[3] A. Reisizadeh, H. Taheri, A. Mokhtari, H. Hassani, R. Pedarsani, “Robust and
Communication-Efficient Collaborative Learning,” Advances in Neural Information
Processing Systems (NeurIPS), pp. 8386–8397, 2019.

[4] A. Reisizadeh, A. Mokhtari, H. Hassani, R. Pedarsani, “An Exact Quantized De-
centralized Gradient Descent Algorithm,” IEEE Transactions on Signal Processing,
67 , issue 19 (2019), pp. 4934-4947.

[5] A. Reisizadeh, I. Tziotis, A. Mokhtari, H. Hassani, and R. Pedarsani, “Straggler-
Resilient Federated Learning: Leveraging the Interplay Between Statistical Accu-
racy and System Heterogeneity,” Preprint, 2020.

[6] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded Com-
putation over Heterogeneous Clusters,” IEEE Transactions on Information Theory,
65, no. 7 (2019), pp. 4227-4242.

[7] S. Prakash∗, A. Reisizadeh∗, R. Pedarsani, and A. S. Avestimehr, “Coded Com-
puting for Distributed Graph Analytics,” IEEE Transactions on Information The-
ory, vol. 66, no. 10, pp. 6534–6554, 2020.

[8] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “CodedReduce:
A Fast and Robust Framework for Gradient Aggregation in Distributed Learn-
ing,” accepted to appear in IEEE/ACM Transactions on Networking, arXiv preprint
arXiv:1902.01981, 2019.

vii

[9] A. Reisizadeh, A. Mokhtari, H. Hassani, R. Pedarsani, “Quantized Decentralized
Consensus Optimization,” Proc. IEEE Conference on Decision and Control (CDC),
pp. 5838–5843, IEEE, 2018.

[10] A. Reisizadeh∗, S. Prakash∗, R. Pedarsani, and A. S. Avestimehr, “Tree Gradient
Coding,” to appear in Proc. IEEE International Symposium on Information Theory
(ISIT), pp. 2808–2812, IEEE, 2019.

[11] S. Prakash∗, A. Reisizadeh∗, R. Pedarsani, and A. S. Avestimehr, “Coded Com-
puting for Distributed Graph Analytics,” Proc. IEEE International Symposium on
Information Theory (ISIT), pp. 1221–1225, IEEE, 2018.

[12] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded Com-
putation over Heterogeneous Clusters,” Proc. IEEE International Symposium on
Information Theory (ISIT), pp. 2408–2412, IEEE, 2017.

[13] A. Reisizadeh, R. Pedarsani, “Latency Analysis of Coded Computation Schemes
over Wireless Networks,” Allerton Conference on Communication, Control, and
Computing, pp. 1256–1263, IEEE, 2017.

[14] S. Prakash∗, A. Reisizadeh∗, R. Pedarsani, and A. S. Avestimehr, “Hierarchical
Coded Gradient Aggregation for Learning at the Edge,” Proc. IEEE International
Symposium on Information Theory (ISIT), pp. 2616–2621, IEEE, 2020.

[15] A. Reisizadeh, P. Abdalla, R. Pedarsani, “Sub-linear Time Stochastic Thresh-
old Group Testing via Sparse-Graph Codes,” IEEE Information Theory Workshop,
2018.

[16] P. Abdalla, A. Reisizadeh, R. Pedarsani, “Multilevel Group Testing via Sparse-
graph Codes,” 51th Asilomar Conference on Signals, Systems and Computers, 2017.

[17] B. Amiri, A. Reisizadeh, H. Esfahanizadeh, J. Kliewer, and L. Dolecek, “Opti-
mized Design of Finite-Length Spatially-Coupled Codes: An Absorbing Set-Based
Analysis,” IEEE Transactions on Communications, 64, issue 10 (2016), pp 4029-
4043.

[18] A. Reisizadeh, C. Schoeny, C.-Y. Tsai, and L. Dolecek, “Approximate File Syn-
chronization: Upper Bounds and Interactive Algorithms,” Information Theory Work-
shop (ITW), pp. 320–324, IEEE, 2016.

[19] B. Amiri, A. Reisizadeh, J. Kliewer, and L. Dolecek, “Optimized Array-Based
Spatially-Coupled LDPC Codes: An Absorbing Set Approach,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 51–55, IEEE, 2015.

∗: Equal Contributions.

viii

Abstract

Robust and Efficient Algorithms for Federated Learning and Distributed Computing

by

Amirhossein Reisizadehmobarakeh

Training a large-scale model over a massive data set is an extremely computation

and storage intensive task, e.g. training ResNet with hundreds of millions of parameters

over the data set ImageNet with millions of images. As a result, there has been signifi-

cant interest in developing distributed learning strategies that speed up the training of

learning models. Due to the growing computational power of the ecosystem of billions of

mobile and computing devices, many future distributed learning systems operate based

on storing data locally and pushing computation to the network edge. Unlike traditional

centralized machine learning environments, however, machine learning at the edge is

characterized by significant challenges including (1) scalability due to severe constraints

on communication bandwidth and other resources including storage and energy, (2) ro-

bustness to stragglers, and edge failures due to slow edge nodes, (3) models generalizing

to non-i.i.d. and heterogeneous data.

In this thesis, we focus on two important distributed learning frameworks: Federated

Learning and Distributed Computing, with a shared goal in mind: how to provably ad-

dress the critical challenges in such paradigms using novel techniques from distributed

optimization, statistical learning theory, probability theory, and communication and cod-

ing theory to advance the state-of-the-art in efficiency, resiliency, and scalability.

In the first part of the thesis, we devise three methods to mitigate communication cost,

straggler resiliency and robustness to heterogeneous data in federated learning paradigms.

Our main ideas are to employ model compression, adaptive device participation and dis-

ix

tributionally robust minimax optimization, respectively for such challenges. We charac-

terize provable improvements for the proposed algorithms in terms of convergence speed,

expected runtime, and generalization gaps.

Moving on to the second part, we consider important instances of distributed com-

puting frameworks such as distributed gradient aggregation, matrix-vector multiplication

and MapReduce-type computing tasks and propose several algorithms to mitigate the

aforementioned bottlenecks in these settings. The key idea in our designs is to introduce

redundant and coded computation in an elaborate fashion in order to benefit in commu-

nication cost and the total runtime. We also support our theoretical results in both parts

by significant improvements in numerical experiments.

x

Contents

Curriculum Vitae vii

Abstract ix

1 Introduction 1
1.1 Algorithms for Federated Learning . 2
1.2 Algorithms for Distributed Computing 10

Part I Algorithms for Federated Learning 20

2 Communication-Efficient Federated Learning 21
2.1 Introduction . 22
2.2 Federated Learning Setup . 25
2.3 Proposed FedPAQ Method . 28
2.4 Convergence Analysis . 32
2.5 Numerical Results and Discussions . 38
2.6 Concluding Remarks . 42

3 Straggler-Resilient Federated Learning 43
3.1 Introduction . 44
3.2 Federated Learning Setup . 47
3.3 Adaptive Node Participation Approach 50
3.4 Theoretical Results . 55
3.5 Numerical Experiments . 60
3.6 Concluding Remarks . 63

4 Distributionally-Robust Federated Learning 65
4.1 Introduction . 66
4.2 Federated Learning Scenario . 70
4.3 The Proposed FedRobust Algorithm . 72

xi

4.4 Theoretical Guarantees:
Optimization, Generalization and Robustness 74

4.5 Numerical Results . 81
4.6 Concluding Remarks . 88

Part II Algorithms for Distributed Computing 90

5 Coded Computation over Heterogeneous Clusters 91
5.1 Introduction . 92
5.2 Problem Formulation and Main Results 97
5.3 The Proposed HCMM Scheme . 104
5.4 Generalization to the Shifted Weibull Model 108
5.5 Numerical Results . 113
5.6 Generalization to Computing Scenarios under Budget Constraints 120
5.7 Concluding Remarks . 125

6 Robust and Efficient Gradient Aggregation in Distributed Learning 126
6.1 Introduction . 127
6.2 Problem Setup and Background . 132
6.3 Proposed CodedReduce Scheme . 137
6.4 Numerical Results . 146
6.5 Concluding Remarks . 153

7 Coded Computing for Distributed Graph Analytics 154
7.1 Introduction . 155
7.2 Problem Setting . 163
7.3 Main Results . 173
7.4 Proposed Scheme and Proof of Achievability of Theorem 7.1 179
7.5 Converse for the Erdös-Rényi Model . 188
7.6 Achievability for the Power Law Model 190
7.7 Experiments over Amazon EC2 Clusters 195
7.8 Concluding Remarks . 200

Bibliography 202

A Supplements to Chapter 2 219
A.1 Proof of Theorem 2.1 . 219
A.2 Proof of Theorem 2.2 . 237

B Supplements to Chapter 3 247
B.1 Proof of Proposition 3.1 . 247
B.2 Proof of Theorem 3.1 . 250

xii

B.3 Proof of Proposition 3.2 . 253
B.4 Proof of Theorem 3.2 . 256

C Supplements to Chapter 4 260
C.1 Preliminaries and Useful Lemmas . 260
C.2 Proof of Theorem 4.1 . 265
C.3 Proof of Theorem 4.2 . 268
C.4 Proof of Useful Lemmas . 270
C.5 Proof of Theorem 4.3 . 287
C.6 Proof of Theorem 4.4 . 292

D Supplements to Chapter 5 293
D.1 Proof of Theorem 5.1 . 293
D.2 Proof of Theorem 5.2 . 298
D.3 Proof of Lemma 5.1 . 300
D.4 Proof of Lemma 5.3 . 301

E Supplements to Chapter 6 304
E.1 Pseudo-code for Computation Allocation Sub-routine 304
E.2 Pseudo-code for CodedReduce Scheme . 305
E.3 Proof of Theorem 6.1 . 305
E.4 Proof of Theorem 6.2 . 308

F Supplements to Chapter 7 315
F.1 Proof of Lemma 7.1 . 315
F.2 Proof of Claim E.1 . 319
F.3 Achievability for the Random Bi-partite Model 321
F.4 Converse for the Random Bi-partite Model 323
F.5 Achievability for the Stochastic Block Model 324
F.6 Converse for the Stochastic Block Model 326

xiii

Chapter 1

Introduction

Human and industrial automation, powered by artificial intelligence (AI) and the growing

ecosystem of billions of computing devices with sensors connected through the network

edge, is shaping the future of our society. It also provides a platform to handle training of

large-scale machine learning models over massive data sets. Unlike traditional centralized

machine learning environments, however, machine learning at the edge is characterized by

significant challenges including (1) scalability due to severe constraints on communication

bandwidth and other resources including storage and energy, (2) robustness to stragglers,

and edge failures due to slow edge nodes, (3) models generalizing to non-i.i.d. and

heterogeneous data.

In this thesis, we focus on two important distributed learning frameworks: Federated

Learning and Distributed Computing, with a shared goal in mind:

How to provably address the critical challenges in such paradigms using novel tech-

niques from distributed optimization, statistical learning theory, probability theory,

and communication and coding theory to advance the state-of-the-art in efficiency,

resiliency, and scalability.

1

Introduction Chapter 1

Figure 1.1: Illustration of a Federated Learning (FL) architecture (Figure adapted from
[1]). A shared global is deployed to participating devices (A) where it’s trained locally
(A) and local models are aggregated (B) to provide an improved global model (C). This
procedure continues till reaching accurate enough models.

This thesis consists of two main parts. In Part I, we study federated learning frame-

works and elaborate on the aforementioned challenges therein. We propose our algorithms

to mitigate such bottlenecks and study their theoretical and experimental characteristics.

We shift our focus in Part II to distributed computing paradigms and lay out our designs

to address their critical bottlenecks. In each chapter, we provide our main theoretical

and numerical results and defer the details and proofs to corresponding appendices.

1.1 Algorithms for Federated Learning

In many large-scale machine learning applications, data is acquired and processed at

the edge nodes of the network such as mobile devices, users’ devices, and IoT sensors.

Federated Learning (FL) is a novel paradigm that aims to train a learning model at the

edge nodes as opposed to traditional distributed computing systems such as data centers.

As privacy becomes a selling point, federated learning is poised to grow in popularity

among both tech giants and industries where privacy protection is critical for personal

2

Introduction Chapter 1

data, like health care. To put it briefly, instead of bringing data all to one place for

training, federated learning is done by bringing the model to the data. This allows a

data owner to maintain the only copy of their information (See Figure 1.1). Forbes

magazine enumerates FL as one of the emerging areas in the next generation of AI and

highlights its future:

“Federated learning may one day play a central role in the development of any AI

application that involves sensitive data: from financial services to autonomous

vehicles, from government use cases to consumer products of all kinds.”

- Forbes, Oct. 12, 2020

In addition to its recent and surging attention gained in the academia, federated

learning is already being implemented in several high-tech companies such as Google.

In particular, Google has implemented a next-word prediction application (GBoard) via

federated learning which further emphasizes the practicality of such promising and novel

paradigm [1]. This powerful framework is yet prone to multiple critical challenges [2, 3].

(1) Expensive Communication: A federated network is potentially comprised of

millions of devices, e.g. smart phones, IoT devices. Training on such massive

network induces a dramatically heavy communication burden over the bandwidth-

limited network.

(2) System Heterogeneity: Federated devices admit a wide range of storage, com-

putational, and communication capabilities which exacerbate challenges such as

straggler latency (slow devices) and fault tolerance.

(3) Statistical Heterogeneity: The data stored at federated devices are far from

homogeneous statistical distributions and admit a variety of different distributions

3

Introduction Chapter 1

which makes it crucial for the federated methods to properly generalize to hetero-

geneous data distributions.

In Chapters 2–4, we respectively target these three critical challenges in FL frame-

works and in the following, we briefly describe our approaches to address them. In Chap-

ter 2, we propose to employ model compression in order to reduce the communication

load of the message passing over the network. Our FedPAQ design [4] incorporates local

model training and partial device participation as well, enabling communication-efficient

federated learning. In Chapter 3, we devise an adaptive node participation approach,

namely FLANP to mitigate the stragglers by gradually growing the size of participating de-

vices with respect to the statistical accuracy of the trained models [5]. Lastly, in Chapter

4, we tackle statistical heterogeneity challenge in FL and propose a minimax approach to

make the trained model robust to worst-case distribution shifts [6]. For the case of affine

distribution shifts, we propose a gradient descent-ascent optimization routine, namely

FedRobust, and characterize its convergence and generalization implication.

1.1.1 Communication Efficiency in FL

In a federated learning architecture, a parameter server aims at finding a model

that performs well with respect to the data points that are available at different nodes

(users) of the network, while nodes exchange their local model with the server. However,

privacy and communication concerns do not allow moving the raw data between the

nodes and the server. Therefore, it is essential in federated learning to train globally

while the data remains local. In an abstract form, we consider a federated learning

framework where a network of n users are connected to a parameter server. Each user

i ∈ [n] := {1, · · · , n} stores a set of m data samples drawn from distribution Di denoted

by Si = {zij = (xij, y
i
j) : 1 ≤ j ≤ m}. Further, we define a loss function `(w; z) :W → R

4

Introduction Chapter 1

where `(w; zij) indicates how well the parameter model w ∈ W performs with respect to

the sample zij. We also define the expected risk for each node i w.r.t its data distribution

Di as follows

fi(w) := Ez∼Di [`(w, z)].

We focus on solving the following population risk minimization problem in order to find

the optimal model w∗ that minimizes the aggregate loss across the network:

min
w

f(w) :=
1

n

n∑

i=1

fi(w), (1.1)

where fi(w) denotes the local loss function corresponding to data samples on node i.

The main goal in a federated network is to collaboratively learn a good model, in the

sense that that the n users of the network with the help of the parameter server exchange

iterative messages in order to reach a shared global model w close to the optimal model

w∗ which minimizes the overall loss function f(w) defined in (1.1).

In Chapter 2, our main goal is to develop FL algorithms that induce low communi-

cation complexity while training the accurate enough model. Communication bottleneck

is indeed one of the most critical challenges in scaling up FL methods [2, 3, 7]. To re-

duce the communication overhead in federated learning methods, we proposed FedPAQ, a

communication-efficient federated learning algorithm [4]. Our proposed method consists

of three main modules: (1) Quantized message-passing; (2) periodic averaging; and (3)

partial device participation. These features address the communications and scalability

challenges in federated learning. Next, we explain the main building blocks of our method

in more detail.

Quantized message-passing: Due to the communication bottleneck, it is critical

to reduce the size of the uploaded messages from the federated devices. Our proposal

5

Introduction Chapter 1

is to employ quantization operators on the transmitted massages. Depending on the

accuracy of the quantizer, the network communication overhead is reduced by exchanging

the quantized updates. More precisely, each node compresses its model update using a

stochastic quantizer Q(·) :W →W before uploading to the parameter server. We assume

the quantizer Q(·) to be unbiased and variance bounded.

Periodic averaging: To incorporate all the available data samples on the nodes, any

training method should synchronize the intermediate models obtained at local devices.

One approach is to let the participating nodes synchronize their models through the

server in each iteration which results in communication contention over the network.

Instead, we let the devices conduct a number of local updates and synchronize through

the server periodically, imposing less communication rounds. For instance, each node

updates its own local model for τ consecutive SGD iterations after which local models

are aggregated at the parameter server and the new global model is deployed back to the

devices for next round of local updates. This implies that the number of communication

rounds is slashed by τ hence improving the bandwidth efficiency.

Partial node participation: In a typical federated network, only a few number of

devices are able to simultaneously upload their messages to the parameter server due to

limited bandwidth. Moreover, in practical federated environments, not all the devices

contribute in each round of the training. Our proposed FedPAQ method captures the

restrictions mentioned above and we assume that among the total of n devices, only r

nodes (r < n) are able to participate in each round.

We rigorously provide theoretical convergence guarantees for FedPAQ method ans

show that after T iterations, the suboptimality of the final model wT is of order E[‖wT −

w∗‖2] ≤ O(τ 2/T) for strongly convex loss functions. We also characterize the conver-

gence rate for nonconvex losses (e.g. neural network) and prove that after T iterations

of FedPAQ, there exists an iteration t with the average model of devices wt such that

6

Introduction Chapter 1

slowfast

trained model

initial model

…

<latexit sha1_base64="mJHCvbA+YguS/pG2DsWAaPf/04M=">AAACAXicbVBNS8NAEN34WetX1IvgJVgETyURRY9FLx4r2A9oYthsN+3SzSbsTpQS4sW/4sWDIl79F978N27aHLT1wcDjvRlm5gUJZwps+9tYWFxaXlmtrFXXNza3ts2d3baKU0loi8Q8lt0AK8qZoC1gwGk3kRRHAaedYHRV+J17KhWLxS2ME+pFeCBYyAgGLfnmvhthGAZh9pDfZa4CLHM/E76d+2bNrtsTWPPEKUkNlWj65pfbj0kaUQGEY6V6jp2Al2EJjHCaV91U0QSTER7QnqYCR1R52eSD3DrSSt8KY6lLgDVRf09kOFJqHAW6s7hXzXqF+J/XSyG88DImkhSoINNFYcotiK0iDqvPJCXAx5pgIpm+1SJDLDEBHVpVh+DMvjxP2id156xu35zWGpdlHBV0gA7RMXLQOWqga9RELUTQI3pGr+jNeDJejHfjY9q6YJQze+gPjM8flSmXnA==</latexit>

w?
n0

<latexit sha1_base64="+GGdNiTVa/qgxX5n2JO12h0osGA=">AAACGHicbVDLSsNAFJ3UV62vqEs3g0VwVZOi6EYounFZwT6giWEynbRDJ5MwM1FKyGe48VfcuFDEbXf+jZM2i9p64MLhnHu59x4/ZlQqy/oxSiura+sb5c3K1vbO7p65f9CWUSIwaeGIRaLrI0kY5aSlqGKkGwuCQp+Rjj+6zf3OExGSRvxBjWPihmjAaUAxUlryzDPohEgN/SB9zh5TK/PSOves7HpedaRCQju54ZlVq2ZNAZeJXZAqKND0zInTj3ASEq4wQ1L2bCtWboqEopiRrOIkksQIj9CA9DTlKCTSTaePZfBEK30YREIXV3Cqzk+kKJRyHPq6M79XLnq5+J/XS1Rw5aaUx4kiHM8WBQmDKoJ5SrBPBcGKjTVBWFB9K8RDJBBWOsuKDsFefHmZtOs1+6Jm3Z9XGzdFHGVwBI7BKbDBJWiAO9AELYDBC3gDH+DTeDXejS/je9ZaMoqZQ/AHxuQXOyWhKA==</latexit>

w0
2n0

= w?
n0

…

slowfast

slowfast

Figure 1.2: An overview of FLANP with N = 12 nodes. Training begins with n0 = 3
participating nodes, doubling in each stage. The trained model in each stage is used as
the initial model for the next stage with double participants.

E[‖∇f(wt)‖2] ≤ O(1√
T

+ τ
T

). We also highlight the communication-computation trade-

off introduced by FedPAQ via numerical experiments.

1.1.2 Stragglers and System Heterogeneity in FL

As mentioned earlier, a practical federated learning framework consists of thousands

of devices with a wide range of computation, communication and storage characteristic

which we refer to as system heterogeneity. A primal system challenge arisen from such

device heterogeneity is that there are slower users or stragglers in the network which

cause unexpected delays in the training time [2,3]. To address system heterogeneity and

straggler resiliency challenge in federated learning paradigms, we propose an adaptive

node participation approach described as follows.

In Chapter 3, we propose FLANP, a straggler-resilient FL algorithm that incorporates

statistical characteristics of the clients’ data to adaptively select the clients in order to

speed up the learning procedure [5]. The key idea of this scheme is to start the model

training procedure with only a few clients which are the fastest among all the nodes.

7

Introduction Chapter 1

These participating clients continue to train their shared models while interacting with

the parameter server. Note that since the server waits only for the participating nodes,

it takes a short time for the participating (and fast) clients to promptly train a shared

model. This model is, however, not accurate as it is trained over only a fraction of

samples. We next double the number of participating clients and include the next fastest

subset of nonparticipating nodes in the training. Note that the model trained from the

previous stage can be a warm-start initialization for the current stage (Figure 1.2).

The proposed approach provably reduces the overall runtime required to achieve the

statistical accuracy of data of all nodes. We are able to show that this adaptive method

can provide up to O(ln(Ns)) speedup compared to standard benchmarks which employ

all the N nodes during the training. Here, N and s respectively denote the total number

of available nodes and the number of data samples per node. Experimentally as well,

FLANP demonstrates speedup in wall-clock time compared to standard FL benchmarks.

1.1.3 Statistical Heterogeneity in FL

A critical and yet less-addressed challenge in scaling up the federated learning meth-

ods is their capability to learn from heterogeneous data. Most of the existing federated

methods are designed to handle homogeneous data; the case that the data distributions

among the devices are statistically homogeneous (i.e. i.i.d. data). Such frameworks are

shown to fail in generalizing to heterogeneous data distributions [8]. This challenge is

critical in making the federated learning methods practical as well, given that in practical

scenarios the data generated or stored at user devices are highly heterogeneous, such as

the photos taken by mobile devices.

In Chapter 4, we target the data heterogeneity challenge in federated learning frame-

works and propose a new federated learning scheme called FLRA, a Federated Learning

8

Introduction Chapter 1

device-dependent imperfections:
brightness, intensity, contrast …

device ! device "

<latexit sha1_base64="9zUFNDHVypPXRJqpGjAp14k7fK8=">AAACDXicbVDLSsNAFJ3UV62vqEs3g1WoUEoiii6LblxWsA9pQphMJ+3QyYOZiRhCfsCNv+LGhSJu3bvzb5y0EbT1wIXDOfdy7z1uxKiQhvGllRYWl5ZXyquVtfWNzS19e6cjwphj0sYhC3nPRYIwGpC2pJKRXsQJ8l1Guu74Mve7d4QLGgY3MomI7aNhQD2KkVSSox/ULB/Jkeul91k9OYKWoD5sOemP2svqt5mjV42GMQGcJ2ZBqqBAy9E/rUGIY58EEjMkRN80ImmniEuKGckqVixIhPAYDUlf0QD5RNjp5JsMHiplAL2QqwoknKi/J1LkC5H4rurMjxSzXi7+5/Vj6Z3bKQ2iWJIATxd5MYMyhHk0cEA5wZIliiDMqboV4hHiCEsVYEWFYM6+PE86xw3ztGFcn1SbF0UcZbAH9kENmOAMNMEVaIE2wOABPIEX8Ko9as/am/Y+bS1pxcwu+APt4xvtxJt6</latexit>

(x, y) ⇠ PX,Y

<latexit sha1_base64="tEdMESDtD13sxvJZnrGSobuq7XM=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBahBSmJKLosunFZwT6gjWUynbRDJw9mJmII9VfcuFDErR/izr9x0mahrQcGDufcyz1z3IgzqSzr2yisrK6tbxQ3S1vbO7t75v5BW4axILRFQh6Krosl5SygLcUUp91IUOy7nHbcyXXmdx6okCwM7lQSUcfHo4B5jGClpYFZro7vWbXvYzV2vfRxWjtJagOzYtWtGdAysXNSgRzNgfnVH4Yk9mmgCMdS9mwrUk6KhWKE02mpH0saYTLBI9rTNMA+lU46Cz9Fx1oZIi8U+gUKzdTfGyn2pUx8V09mKeWil4n/eb1YeZdOyoIoVjQg80NezJEKUdYEGjJBieKJJpgIprMiMsYCE6X7KukS7MUvL5P2ad0+r1u3Z5XGVV5HEQ7hCKpgwwU04Aaa0AICCTzDK7wZT8aL8W58zEcLRr5Thj8wPn8AqQ+UIQ==</latexit>

(hi(x), y)
<latexit sha1_base64="d92JExz6QIVZLDS5kyHQnaj+D4g=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK0ICURRZdFNy4r2Ae0sUymk3bs5MHMRAyh/oobF4q49UPc+TdO2iy09cDA4Zx7uWeOG3EmlWV9G0vLK6tr64WN4ubW9s6uubffkmEsCG2SkIei42JJOQtoUzHFaScSFPsup213fJX57QcqJAuDW5VE1PHxMGAeI1hpqW+WKqO7+0rPx2rkeunjpHqcVPtm2apZU6BFYuekDDkaffOrNwhJ7NNAEY6l7NpWpJwUC8UIp5NiL5Y0wmSMh7SraYB9Kp10Gn6CjrQyQF4o9AsUmqq/N1LsS5n4rp7MUsp5LxP/87qx8i6clAVRrGhAZoe8mCMVoqwJNGCCEsUTTTARTGdFZIQFJkr3VdQl2PNfXiStk5p9VrNuTsv1y7yOAhzAIVTAhnOowzU0oAkEEniGV3gznowX4934mI0uGflOCf7A+PwBqqKUIg==</latexit>

(hj(x), y)

Figure 1.3: An overview of FLRA. Samples across the devices are transformations of i.i.d.
samples.

framework with Robustness to Affine distribution shifts. FLRA has a small communi-

cation overhead and a low computation complexity. The key insight in FLRA is model

the heterogeneity of training data in a device-dependent manner, according to which

the samples stored on the ith device xi are shifted from a ground distribution by an

affine transformation xi → hi(xi) = Λixi + δi. To further illustrate this point, consider

a federated image classification task where each mobile device maintains a collection of

images. The images taken by a camera are similarly distorted depending on the intensity,

contrast, blurring, brightness and other characteristics of the camera [9, 10], while these

features vary across cameras (Figure 1.3). In addition to camera imperfections, such

unseen distributional shifts also originate from changes in the physical environment, e.g.

weather conditions [11].

We propose a novel minimax formulation that makes the learned model parameters

robust to worst-case affine transformations. To efficiently solve this minimax problem, we

proposed a robust federated learning routine named as FedRobust that enables the feder-

ated devices to individually learn their respective transformations Λi, δi while learning the

9

Introduction Chapter 1

global model and ensuring communication and computation efficiency. In addition, our

method provably ensures that when a new device with unseen data joins the federated

network, which is the case for federated mobile networks, the learned model properly

generalizes to the new device. Our numerical results also demonstrate significant im-

provements both in accuracy (up to 54%) and computation time (by 4×) compared to

well-known federated method FedAvg and adversarial projected gradient descent.

1.2 Algorithms for Distributed Computing

General distributed computing frameworks, such as MapReduce [12] and Spark [13],

along with the availability of large-scale commodity servers, such as Amazon EC2, have

made it possible to carry out large-scale data analytics at the production level. These

“virtualized data centers” enjoy an abundance of storage space and computing power,

and are cheaper to rent by the hour than maintaining dedicated data centers round the

year. However, these systems suffer from various forms of “system noise” which reduce

their efficiency: system failures, limited communication bandwidth, straggler nodes, etc.

A key distinction of this paradigm to federated learning is that the data is now

offloaded from a central server to the edge nodes for computation purpose. Therefore,

there exist coding opportunities in data allocation and communication strategy in order

to tackle the communication bottleneck at the master, as well as to provide straggler

resiliency. This is in contrast with federated learning where the local data cannot be

encoded or repeated in other edge nodes due to privacy constraints.

We focus on the problem where a user off-loads a machine learning task (e.g. learning

a face recognition model) via an access point of the edge cloud (See Figure 1.4). The

underlying edge framework then facilitates the computational task by utilizing the edge

data and carrying out the task over a large collection of edge devices. As illustrated in

10

Introduction Chapter 1

Access

Wants to compute

Edge Cloud

Straggler

Malicious
node

Bandwidth

Privacy

X1
<latexit sha1_base64="N4763W94+UhtmPVoDwRVkDyrzos=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD92BNyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVe+q6t3XK41aHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDXDY1z</latexit>

X2
<latexit sha1_base64="nfHF/A3P0yFYsYuhWU77bbnN3Zk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpoTuoDcoVt+ouQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814Y2fcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmnXqt5V1buvVxq1PI4inME5XIIH19CAO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDYkY10</latexit>

XK
<latexit sha1_base64="XXRgm9mr0qUm/6UahPuL/RvSfec=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF8FLRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8c3Mbz9xbUSsHnGScD+iQyVCwSha6aHTv+uXK27VnYOsEi8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaIRN342P3VKzqwyIGGsbSkkc/X3REYjYyZRYDsjiiOz7M3E/7xuiuG1nwmVpMgVWywKU0kwJrO/yUBozlBOLKFMC3srYSOqKUObTsmG4C2/vEpatap3UfXuLyv1Wh5HEU7gFM7Bgyuowy00oAkMhvAMr/DmSOfFeXc+Fq0FJ585hj9wPn8A/nWNjQ==</latexit>

f(X1, X2, · · · , XK)
<latexit sha1_base64="+q413Kv+wsZSM0e2+FaOthKcVbs=">AAAB/nicbZBPS8MwGMZT/875ryqevASHMGGMdgp6HHgRvExwW2ErJU3TLSxNSpIKowz8Kl48KOLVz+HNb2O29aCbDwR+PO/78r55wpRRpR3n21pZXVvf2Cxtlbd3dvf27YPDjhKZxKSNBRPSC5EijHLS1lQz4qWSoCRkpBuObqb17iORigr+oMcp8RM04DSmGGljBfZxXPUCt+YFjVofR0Irg3fngV1x6s5McBncAiqgUCuwv/qRwFlCuMYMKdVznVT7OZKaYkYm5X6mSIrwCA1IzyBHCVF+Pjt/As+ME8FYSPO4hjP390SOEqXGSWg6E6SHarE2Nf+r9TIdX/s55WmmCcfzRXHGoBZwmgWMqCRYs7EBhCU1t0I8RBJhbRIrmxDcxS8vQ6dRdy/q7v1lpdko4iiBE3AKqsAFV6AJbkELtAEGOXgGr+DNerJerHfrY966YhUzR+CPrM8frYWT9w==</latexit>

Heterogeneity

XK�1
<latexit sha1_base64="x9WjNTU1EDBr2C00sW1N0Homeu8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWxgh4LXgQvFewHtKFstpN26WYTdjdCCf0RXjwo4tXf481/47bNQVsfDDzem2FmXpAIro3rfjuFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hbmt59QaR7LRzNJ0I/oUPKQM2qs1O70s/sLb9ovV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzslZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZn9TgZcITNiYgllittbCRtRRZmxCZVsCN7yy6ukdVn1alXv4apSd/M4inACp3AOHlxDHe6gAU1gMIZneIU3J3FenHfnY9FacPKZY/gD5/MHnkCPCQ==</latexit>

Figure 1.4: Illustration of a Distributed Computing (DC) framework. Here the mobile
device intends to implement a machine learning algorithm by leveraging the data set
available at the computing nodes. Three challenges need to be tackled – (1) Bandwidth,
(2) Stragglers, (3) Security and Privacy.

Figure 1.4, there are three major concerns with distributed computing:

(1) Communication bandwidth, which is severely constrained due to low through-

put and shared communication channels,

(2) Straggling nodes, arising out of node failures and re-transmission due to com-

munication link failures, and

(3) Security and Privacy, due to malicious nodes, non-centralized computation and

data sensitivities.

The current state-of-the-art approaches to mitigate the impact of system noise in

cloud computing environments involve creation of some form of “computation redun-

dancy”. For example, replicating the straggling task on another available node is a com-

mon approach to deal with stragglers [14, 15]. However, there have been recent results

demonstrating that coding can play a transformational role for creating and exploiting

computation redundancy to effectively alleviate the impact of system noise.

11

Introduction Chapter 1

In Chapters 5–7, we target the communication bandwidth and straggler nodes chal-

lenges in distributed computing frameworks and propose our coded distributed computing

designs to mitigate such bottlenecks, enabling scalable DC methods. In Chapter 5, we

propose a coding framework for speeding up distributed matrix multiplication in hetero-

geneous clusters with straggling servers. In Chapter 6, we simultaneously consider the two

communication and straggler challenges in distributed gradient aggregation and present

our joint computation–communication design approach to mitigate them [16]. Lastly

in Chapter 7, we focus on large-scale graph processing paradigms and develop a cod-

ing scheme that systematically injects structured redundancy in the computation phase

to enable coded multicasting opportunities during message exchange between servers,

substantially reducing the communication load [17].

1.2.1 System Heterogeneity in Distributed Computing

Matrix multiplication is a fundamental component of many popular machine learning

algorithms such as logistic regression, reinforcement learning and gradient descent-based

algorithms. Implementations that speed up matrix multiplication would naturally speed

up the execution of a wide variety of popular algorithms. In Chapter 5, we focus on

general heterogeneous distributed computing clusters consisting of a variety of computing

machines with different computational capabilities. We propose a coding framework

for speeding up distributed matrix-vector multiplication in heterogeneous clusters with

straggling servers, named Heterogeneous Coded Matrix Multiplication (HCMM).

We consider the problem of matrix-vector multiplication, in which given a large matrix

A ∈ Rr×m with large r, we want to compute the output y = Ax for an input vector

x ∈ Rm. Due to limited computing power, the computation cannot be carried out at a

single server and a distributed implementation is required, i.e. horizontally split the large

12

Introduction Chapter 1

3

A. Computation Model

We consider the problem of matrix-vector multiplication, in
which given a matrix A ∈ Rr×m for some positive integers
r and m, we want to compute the output y = Ax for an
input vector x ∈ Rm. Due to limited computing power, the
computation cannot be carried out at a single server and a dis-
tributed implementation is required. As an example, consider
a matrix A with an even number of rows and two computing
nodes. The matrix can be divided into two equally tall matrices
A1 and A2, and each will be stored in a different worker
node. The master node receives the input x and broadcasts
it to the two worker nodes. These nodes will then compute
y1 = A1x and y2 = A2x locally and return their results to
the master node, which combines them to obtain the intended
outcome y = [y1;y2] = Ax. This example also illustrates an
uncoded implementation of distributed computing, in which
results from all the worker nodes are required to recover the
final result.

We now present the formal definition of Coded Distributed
Computation.

Definition 1. (Coded Distributed Computation) The coded
distributed implementation of a computation task fA(·) is
specified by:

• local data blocks ⟨Ai⟩ni=1 and local computation tasks〈
f i
Ai

(·)
〉n

i=1
;

• a decoding function that outputs fA(·) given the results
from a decodable set of local computations.

For matrix-vector multiplication tasks in particular, local
data blocks Ai ∈ Rℓi×m are matrices consisting of coded
combinations of the rows in A, for non-negative integers
ℓi. To assign the computation tasks to each worker, we use
random linear combinations of the r rows of the matrix A,
such that the master node can recover the result Ax from
any r inner products received from the worker nodes with
probability 1. As an example, if worker i is assigned a matrix-
vector multiplication with matrix size ℓi×m, it will compute
ℓi inner products of the assigned coded rows of A with x.
The master node shall wait for the first r inner products and
will use them to decode the required output. In order to ensure
the recovery of the output from any r inner products received
from the workers, we pick the computation matrix assigned to
worker i as Ai = SiA, where Si ∈ Rℓi×r is the coding matrix
with i.i.d. N (0, 1) entries. Worker i computes Aix and returns
the result to the master node. Upon receiving r inner products,
the aggregated results at the master will be in the form of
z = S(r)Ax, where S(r) ∈ Rr×r is the aggregated coding
matrix, and it is full-rank with probability 1 [32]. Therefore,

the master node can recover Ax = S−1
(r)z with probability 1.1,2

B. Network Model

The network model is based on a master-worker setup
illustrated in Fig. 1. The master node receives an input x
and broadcasts it to all the workers. Each worker computes
its assigned set of computations and unicasts the result to the
master node. The master node aggregates the results from the
worker nodes until it receives a decodable set of computations
and recovers the output Ax.

A1 A2 An· · ·

W1 W2 Wn· · ·

x

M

x

A1 A2 An· · ·

W1 W2 Wn· · ·

A1x A2x Anx

M

Ax

Fig. 1: Master-worker setup of the computing clusters: The master
node receives the input vector x and broadcasts it to all the worker
nodes. Upon receiving the input, worker node i starts computing the
inner products of the input vector with the locally assigned rows, i.e.,
yi = Aix, and unicasts the output vector yi to the master node upon
completing the computation. The results are aggregated at the master
node until r inner products are received and the desired output Ax
is recovered.

We denote by Ti the random variable representing the task
run-time at node i and assume that the run-times T1, · · · , Tn

are mutually independent. We consider the distribution of run-
time random variables to be exponential, and later generalize
it to Weibull distribution. More specifically, we consider a
2-parameter shifted exponential distribution for the execution
time of each worker, i.e., the CDF of execution time of worker
node i, Ti, loaded with ℓi row vectors is as follows:

Pr[Ti ≤ t] = 1− e
− µi

ℓi
(t−aiℓi), (1)

for t ≥ aiℓi and i ∈ [n], where ai > 0 is the shift parameter
and µi > 0 denotes the straggling parameter associated with
worker node i. The shifted exponential model for computation
time, which is the sum of a constant (deterministic) term and
a variable (stochastic) term, is motivated by the distribution
model proposed by authors in [33] for latency in querying data
files from cloud storage systems. As demonstrated in [10] as

1Although we consider random linear coding in our theoretical analysis,
other codes such as Maximum-Distance Separable (MDS) codes and Luby
transform (LT) codes are compatible with HCMM as well, given a decodable
set of results at the master. For example, in the MDS case, the entries in
the coding matrix {Si}n

i=1 are drawn from a finite field. Specifically, one
can encode the rows of A using an (

∑n
i=1 ℓi, r) MDS code and assign ℓi

coded rows to the worker node i. The output Ax can be recovered from the
inner products of any r coded rows with the input vector x. Furthermore,
to implement the ideas developed in this work, we use LT codes in our
experiments over Amazon EC2 clusters.

2Instead of i.i.d. Gaussian, we could use any continuous distribution for
the random entries, since Schwartz-Zippel lemma ensures that such random
matrix is full-rank with high probability

Figure 1.5: Master-worker setup of the computing clusters: The master node receives
the input vector x and broadcasts it to all the worker nodes. Upon receiving the input,
worker node i starts computing the inner products of the input vector with the locally
assigned rows, i.e., yi = Aix, and unicasts the output vector yi to the master node upon
completing the computation. The results are aggregated at the master node until r inner
products are received and the desired output Ax is recovered.

matrix A = [A1; · · · ; An] to smaller matrices Ai and assign computing Aix to server

i. Figure 1.5 illustrates an uncoded implementation of distributed computing, in which

results from all the worker nodes are required to recover the final result.

We propose to design coded computation tasks for worker nodes and decode the com-

putation results at the master node. For matrix-vector multiplication tasks in particular,

local data blocks Ai ∈ R`i×m are matrices consisting of coded combinations of the rows

in A, for non-negative integers `i. To assign the computation tasks to each worker, we

use random linear combinations of the r rows of the matrix A, such that the master node

can recover the result Ax from any r inner products received from the worker nodes with

probability 1. We look for optimal load allocation `∗ = (`∗1, · · · , `∗n) that minimizes the

expected waiting time at the master node in order to receive enough worker computations

and recover the final result y = Ax. While finding `∗ is computationally intractable, we

present an alternative formulation and show that the solution to the alternative formu-

lation – which we shall name HCMM – is tractable and provably asymptotically optimal.

Moreover, we consider a shifted-exponential computation time model for workers’ com-

13

Introduction Chapter 1

putation time and demonstrate that HCMM slashes the expected waiting time in uncoded

benchmarks by Θ(log(n)).

1.2.2 Straggler and Communication Bottlenecks in Distributed

Gradient Aggregation

In Chapter 6, we consider a collaborative learning setting where a machine learning

model is trained over edge nodes of a network collaboratively. In particular, we consider a

machine learning task that involves fitting a model over a training data set by minimizing

a loss function. For a given labeled data set D = {xj ∈ Rp+1 : j = 1, · · · , d}, the goal is

to solve the following optimization problem:

min
w

∑

x∈D
`(w; x) + λR(w), (1.2)

where `(·) and R(·) respectively denote the loss and regularization functions, and the op-

timization problem is parameterized by λ. One of the most popular ways of solving (1.2)

in distributed learning is to use the Gradient Descent algorithm that is based on finding

the gradient vector g =
∑

x∈D∇`(w(t); x) over the data set D an for each iteration t. At

scale, due to limited storage and computation capabilities of the computing nodes, gradi-

ent aggregation has to be carried out over distributed nodes. However, this parallelization

introduces two major bottlenecks: stragglers and communication bottleneck.

To address the straggler bottleneck, Gradient Coding [18] was recently proposed in

a master-worker topology with one master node and N distributed worker nodes. To

explain our preliminary results, we first overview Gradient Coding with the following

illustrative example. Consider a distributed learning problem with a master node and

N = 3 worker nodes. To make gradient aggregation robust to one straggler, the proposed

14

Introduction Chapter 1

M

W1
<latexit sha1_base64="ivvN6ioVjIxLB4WX93ZuapDUTiw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHbZwobtttmdmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTKUw6LrfTmljc2t7p7xb2ds/ODyqHp90TJJpxn2WyEQ/htRwKRT3UaDkj6nmNA4l74aT27nffeLaiEQ94DTlQUxHSkSCUbSSX+8OvPqgWnMb7gJknXgFqUGB9qD61R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmGVIYkSbUshWai/J3IaGzONQ9sZUxybVW8u/uf1Moyug1yoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+RM43Z</latexit><latexit sha1_base64="ivvN6ioVjIxLB4WX93ZuapDUTiw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHbZwobtttmdmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTKUw6LrfTmljc2t7p7xb2ds/ODyqHp90TJJpxn2WyEQ/htRwKRT3UaDkj6nmNA4l74aT27nffeLaiEQ94DTlQUxHSkSCUbSSX+8OvPqgWnMb7gJknXgFqUGB9qD61R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmGVIYkSbUshWai/J3IaGzONQ9sZUxybVW8u/uf1Moyug1yoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+RM43Z</latexit><latexit sha1_base64="ivvN6ioVjIxLB4WX93ZuapDUTiw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHbZwobtttmdmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTKUw6LrfTmljc2t7p7xb2ds/ODyqHp90TJJpxn2WyEQ/htRwKRT3UaDkj6nmNA4l74aT27nffeLaiEQ94DTlQUxHSkSCUbSSX+8OvPqgWnMb7gJknXgFqUGB9qD61R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmGVIYkSbUshWai/J3IaGzONQ9sZUxybVW8u/uf1Moyug1yoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+RM43Z</latexit><latexit sha1_base64="ivvN6ioVjIxLB4WX93ZuapDUTiw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHbZwobtttmdmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTKUw6LrfTmljc2t7p7xb2ds/ODyqHp90TJJpxn2WyEQ/htRwKRT3UaDkj6nmNA4l74aT27nffeLaiEQ94DTlQUxHSkSCUbSSX+8OvPqgWnMb7gJknXgFqUGB9qD61R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmGVIYkSbUshWai/J3IaGzONQ9sZUxybVW8u/uf1Moyug1yoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+RM43Z</latexit>

D1
<latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit><latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit><latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit><latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit>

D2
<latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit><latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit><latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit><latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit>

W2
<latexit sha1_base64="jHTncxvr33zmOXPqsSMmSs4GGz8=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby691Bsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+SuI3a</latexit><latexit sha1_base64="jHTncxvr33zmOXPqsSMmSs4GGz8=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby691Bsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+SuI3a</latexit><latexit sha1_base64="jHTncxvr33zmOXPqsSMmSs4GGz8=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby691Bsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+SuI3a</latexit><latexit sha1_base64="jHTncxvr33zmOXPqsSMmSs4GGz8=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby691Bsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+SuI3a</latexit>

D3
<latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit><latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit><latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit><latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit>

D2
<latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit><latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit><latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit><latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit>

W3
<latexit sha1_base64="Djbhe/ugAz/5jRhhlbnedibCJHQ=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN4ywIa9vcvungm58BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAiujet+O4WNza3tneJuaW//4PCofHzS0nGqGPosFrHqhFSj4BJ9w43ATqKQRqHAdji5m/vtJ1Sax/LRTBMMIjqSfMgZNVbyq+3+VbVfrrg1dwGyTrycVCBHs1/+6g1ilkYoDRNU667nJibIqDKcCZyVeqnGhLIJHWHXUkkj1EG2OHZGLqwyIMNY2ZKGLNTfExmNtJ5Goe2MqBnrVW8u/ud1UzO8CTIuk9SgZMtFw1QQE5P552TAFTIjppZQpri9lbAxVZQZm0/JhuCtvrxOWvWa59a8h3qlcZvHUYQzOIdL8OAaGnAPTfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDlD2N2w==</latexit><latexit sha1_base64="Djbhe/ugAz/5jRhhlbnedibCJHQ=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN4ywIa9vcvungm58BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAiujet+O4WNza3tneJuaW//4PCofHzS0nGqGPosFrHqhFSj4BJ9w43ATqKQRqHAdji5m/vtJ1Sax/LRTBMMIjqSfMgZNVbyq+3+VbVfrrg1dwGyTrycVCBHs1/+6g1ilkYoDRNU667nJibIqDKcCZyVeqnGhLIJHWHXUkkj1EG2OHZGLqwyIMNY2ZKGLNTfExmNtJ5Goe2MqBnrVW8u/ud1UzO8CTIuk9SgZMtFw1QQE5P552TAFTIjppZQpri9lbAxVZQZm0/JhuCtvrxOWvWa59a8h3qlcZvHUYQzOIdL8OAaGnAPTfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDlD2N2w==</latexit><latexit sha1_base64="Djbhe/ugAz/5jRhhlbnedibCJHQ=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN4ywIa9vcvungm58BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAiujet+O4WNza3tneJuaW//4PCofHzS0nGqGPosFrHqhFSj4BJ9w43ATqKQRqHAdji5m/vtJ1Sax/LRTBMMIjqSfMgZNVbyq+3+VbVfrrg1dwGyTrycVCBHs1/+6g1ilkYoDRNU667nJibIqDKcCZyVeqnGhLIJHWHXUkkj1EG2OHZGLqwyIMNY2ZKGLNTfExmNtJ5Goe2MqBnrVW8u/ud1UzO8CTIuk9SgZMtFw1QQE5P552TAFTIjppZQpri9lbAxVZQZm0/JhuCtvrxOWvWa59a8h3qlcZvHUYQzOIdL8OAaGnAPTfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDlD2N2w==</latexit><latexit sha1_base64="Djbhe/ugAz/5jRhhlbnedibCJHQ=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN4ywIa9vcvungm58BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAiujet+O4WNza3tneJuaW//4PCofHzS0nGqGPosFrHqhFSj4BJ9w43ATqKQRqHAdji5m/vtJ1Sax/LRTBMMIjqSfMgZNVbyq+3+VbVfrrg1dwGyTrycVCBHs1/+6g1ilkYoDRNU667nJibIqDKcCZyVeqnGhLIJHWHXUkkj1EG2OHZGLqwyIMNY2ZKGLNTfExmNtJ5Goe2MqBnrVW8u/ud1UzO8CTIuk9SgZMtFw1QQE5P552TAFTIjppZQpri9lbAxVZQZm0/JhuCtvrxOWvWa59a8h3qlcZvHUYQzOIdL8OAaGnAPTfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDlD2N2w==</latexit>

D1
<latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit><latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit><latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit><latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit>

D3
<latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit><latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit><latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit><latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit>

1
2

g 1
+
g 2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1
2 g
1 +

g
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

g
2
�

g
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 1.6: Illustration of data allocation and communication strategy in Gradient Cod-
ing for N = 3 workers.

Gradient Coding algorithm partitions the data set D uniformly to {D1,D2,D3} with

corresponding gradient vectors g1, g2 and g3, and assigns two partitions to each worker

specified by the encoding coefficients as depicted in Figure 1.6. One can then design an

encoding scheme such that the total gradient can be recovered from the computation

results of any two workers. For example, if node 3 fails, the master node can aggregate

(decode) the gradient vector by forming the following: g = 2(1
2
g1 + g2)− (g2 − g3).

While Gradient Coding is robust to stragglers and failures, in large-scale distributed

systems it suffers from a significant bandwidth bottleneck at the master, as multiple

workers concurrently send their computation results to the master, which yields com-

munication load of O(N). To alleviate this communication bottleneck, we propose to

develop a novel framework that achieves bandwidth efficiency and straggler toleration

simultaneously. Our key insight is to design a joint data allocation, communication

strategy, and encoding/decoding scheme that is robust to stragglers, alongside being

communication-efficient

As the communication topology design, we propose a tree structure for distributed

gradient aggregation. The advantage of having a tree communication topology is quite

straightforward to see: Suppose that the computing nodes form a symmetric tree such

that each parent has n children and there are a total of N = n+n2+· · ·+nL worker nodes,

15

Introduction Chapter 1

(1, 1)
<latexit sha1_base64="s4eWoGIpNYl4/1ITXAVd/JekbZI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CbZCBSmbXvRY9OKxgv2AdinZNNuGZrNLkhWWpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zM82PBtXHdb6ewsbm1vVPcLe3tHxwelY9POjpKFGVtGolI9XyimeCStQ03gvVixUjoC9b1p3dzv/vElOaRfDRpzLyQjCUPOCXGSt1qDV/hy+qwXHHr7gJoneCcVCBHa1j+GowimoRMGiqI1n3sxsbLiDKcCjYrDRLNYkKnZMz6lkoSMu1li3Nn6MIqIxREypY0aKH+nshIqHUa+rYzJGaiV725+J/XT0xw42Vcxolhki4XBYlAJkLz39GIK0aNSC0hVHF7K6ITogg1NqGSDQGvvrxOOo06duv4oVFp3uZxFOEMzqEGGK6hCffQgjZQmMIzvMKbEzsvzrvzsWwtOPnMKfyB8/kDz9yN5Q==</latexit><latexit sha1_base64="s4eWoGIpNYl4/1ITXAVd/JekbZI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CbZCBSmbXvRY9OKxgv2AdinZNNuGZrNLkhWWpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zM82PBtXHdb6ewsbm1vVPcLe3tHxwelY9POjpKFGVtGolI9XyimeCStQ03gvVixUjoC9b1p3dzv/vElOaRfDRpzLyQjCUPOCXGSt1qDV/hy+qwXHHr7gJoneCcVCBHa1j+GowimoRMGiqI1n3sxsbLiDKcCjYrDRLNYkKnZMz6lkoSMu1li3Nn6MIqIxREypY0aKH+nshIqHUa+rYzJGaiV725+J/XT0xw42Vcxolhki4XBYlAJkLz39GIK0aNSC0hVHF7K6ITogg1NqGSDQGvvrxOOo06duv4oVFp3uZxFOEMzqEGGK6hCffQgjZQmMIzvMKbEzsvzrvzsWwtOPnMKfyB8/kDz9yN5Q==</latexit><latexit sha1_base64="s4eWoGIpNYl4/1ITXAVd/JekbZI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CbZCBSmbXvRY9OKxgv2AdinZNNuGZrNLkhWWpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zM82PBtXHdb6ewsbm1vVPcLe3tHxwelY9POjpKFGVtGolI9XyimeCStQ03gvVixUjoC9b1p3dzv/vElOaRfDRpzLyQjCUPOCXGSt1qDV/hy+qwXHHr7gJoneCcVCBHa1j+GowimoRMGiqI1n3sxsbLiDKcCjYrDRLNYkKnZMz6lkoSMu1li3Nn6MIqIxREypY0aKH+nshIqHUa+rYzJGaiV725+J/XT0xw42Vcxolhki4XBYlAJkLz39GIK0aNSC0hVHF7K6ITogg1NqGSDQGvvrxOOo06duv4oVFp3uZxFOEMzqEGGK6hCffQgjZQmMIzvMKbEzsvzrvzsWwtOPnMKfyB8/kDz9yN5Q==</latexit><latexit sha1_base64="s4eWoGIpNYl4/1ITXAVd/JekbZI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CbZCBSmbXvRY9OKxgv2AdinZNNuGZrNLkhWWpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zM82PBtXHdb6ewsbm1vVPcLe3tHxwelY9POjpKFGVtGolI9XyimeCStQ03gvVixUjoC9b1p3dzv/vElOaRfDRpzLyQjCUPOCXGSt1qDV/hy+qwXHHr7gJoneCcVCBHa1j+GowimoRMGiqI1n3sxsbLiDKcCjYrDRLNYkKnZMz6lkoSMu1li3Nn6MIqIxREypY0aKH+nshIqHUa+rYzJGaiV725+J/XT0xw42Vcxolhki4XBYlAJkLz39GIK0aNSC0hVHF7K6ITogg1NqGSDQGvvrxOOo06duv4oVFp3uZxFOEMzqEGGK6hCffQgjZQmMIzvMKbEzsvzrvzsWwtOPnMKfyB8/kDz9yN5Q==</latexit>

(1, 2)
<latexit sha1_base64="buNksEWGaoSc+XUPExVHbw/Q3Bg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIxgnlAEsLsZDYZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bEUBl3328ltbG5t7+R3C3v7B4dHxeOTlokSzXiTRTLSHZ8aLoXiTRQoeSfWnIa+5G1/cjf3209cGxGpR5zGvB/SkRKBYBSt1C5XvKvaZXlQLLlVdwGyTryMlCBDY1D86g0jloRcIZPUmK7nxthPqUbBJJ8VeonhMWUTOuJdSxUNuemni3Nn5MIqQxJE2pZCslB/T6Q0NGYa+rYzpDg2q95c/M/rJhjc9FOh4gS5YstFQSIJRmT+OxkKzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJq1b13Kr3UCvVb7M48nAG51ABD66hDvfQgCYwmMAzvMKbEzsvzrvzsWzNOdnMKfyB8/kD0WKN5g==</latexit><latexit sha1_base64="buNksEWGaoSc+XUPExVHbw/Q3Bg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIxgnlAEsLsZDYZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bEUBl3328ltbG5t7+R3C3v7B4dHxeOTlokSzXiTRTLSHZ8aLoXiTRQoeSfWnIa+5G1/cjf3209cGxGpR5zGvB/SkRKBYBSt1C5XvKvaZXlQLLlVdwGyTryMlCBDY1D86g0jloRcIZPUmK7nxthPqUbBJJ8VeonhMWUTOuJdSxUNuemni3Nn5MIqQxJE2pZCslB/T6Q0NGYa+rYzpDg2q95c/M/rJhjc9FOh4gS5YstFQSIJRmT+OxkKzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJq1b13Kr3UCvVb7M48nAG51ABD66hDvfQgCYwmMAzvMKbEzsvzrvzsWzNOdnMKfyB8/kD0WKN5g==</latexit><latexit sha1_base64="buNksEWGaoSc+XUPExVHbw/Q3Bg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIxgnlAEsLsZDYZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bEUBl3328ltbG5t7+R3C3v7B4dHxeOTlokSzXiTRTLSHZ8aLoXiTRQoeSfWnIa+5G1/cjf3209cGxGpR5zGvB/SkRKBYBSt1C5XvKvaZXlQLLlVdwGyTryMlCBDY1D86g0jloRcIZPUmK7nxthPqUbBJJ8VeonhMWUTOuJdSxUNuemni3Nn5MIqQxJE2pZCslB/T6Q0NGYa+rYzpDg2q95c/M/rJhjc9FOh4gS5YstFQSIJRmT+OxkKzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJq1b13Kr3UCvVb7M48nAG51ABD66hDvfQgCYwmMAzvMKbEzsvzrvzsWzNOdnMKfyB8/kD0WKN5g==</latexit><latexit sha1_base64="buNksEWGaoSc+XUPExVHbw/Q3Bg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIxgnlAEsLsZDYZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bEUBl3328ltbG5t7+R3C3v7B4dHxeOTlokSzXiTRTLSHZ8aLoXiTRQoeSfWnIa+5G1/cjf3209cGxGpR5zGvB/SkRKBYBSt1C5XvKvaZXlQLLlVdwGyTryMlCBDY1D86g0jloRcIZPUmK7nxthPqUbBJJ8VeonhMWUTOuJdSxUNuemni3Nn5MIqQxJE2pZCslB/T6Q0NGYa+rYzpDg2q95c/M/rJhjc9FOh4gS5YstFQSIJRmT+OxkKzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJq1b13Kr3UCvVb7M48nAG51ABD66hDvfQgCYwmMAzvMKbEzsvzrvzsWzNOdnMKfyB8/kD0WKN5g==</latexit>

(1, 3)
<latexit sha1_base64="WZObg3SKCYye9avqP2wcoWFIE4M=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbD3oMevEYwTwgWcLspJMMmZ1dZmaFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glhwbVz321lb39jc2s7t5Hf39g8OC0fHTR0limGDRSJS7YBqFFxiw3AjsB0rpGEgsBWM72Z+6wmV5pF8NJMY/ZAOJR9wRo2VWqWyd3l1UeoVim7FnYOsEi8jRchQ7xW+uv2IJSFKwwTVuuO5sfFTqgxnAqf5bqIxpmxMh9ixVNIQtZ/Oz52Sc6v0ySBStqQhc/X3REpDrSdhYDtDakZ62ZuJ/3mdxAxu/JTLODEo2WLRIBHERGT2O+lzhcyIiSWUKW5vJWxEFWXGJpS3IXjLL6+SZrXiuRXvoVqs3WZx5OAUzqAMHlxDDe6hDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP0uiN5w==</latexit><latexit sha1_base64="WZObg3SKCYye9avqP2wcoWFIE4M=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbD3oMevEYwTwgWcLspJMMmZ1dZmaFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glhwbVz321lb39jc2s7t5Hf39g8OC0fHTR0limGDRSJS7YBqFFxiw3AjsB0rpGEgsBWM72Z+6wmV5pF8NJMY/ZAOJR9wRo2VWqWyd3l1UeoVim7FnYOsEi8jRchQ7xW+uv2IJSFKwwTVuuO5sfFTqgxnAqf5bqIxpmxMh9ixVNIQtZ/Oz52Sc6v0ySBStqQhc/X3REpDrSdhYDtDakZ62ZuJ/3mdxAxu/JTLODEo2WLRIBHERGT2O+lzhcyIiSWUKW5vJWxEFWXGJpS3IXjLL6+SZrXiuRXvoVqs3WZx5OAUzqAMHlxDDe6hDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP0uiN5w==</latexit><latexit sha1_base64="WZObg3SKCYye9avqP2wcoWFIE4M=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbD3oMevEYwTwgWcLspJMMmZ1dZmaFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glhwbVz321lb39jc2s7t5Hf39g8OC0fHTR0limGDRSJS7YBqFFxiw3AjsB0rpGEgsBWM72Z+6wmV5pF8NJMY/ZAOJR9wRo2VWqWyd3l1UeoVim7FnYOsEi8jRchQ7xW+uv2IJSFKwwTVuuO5sfFTqgxnAqf5bqIxpmxMh9ixVNIQtZ/Oz52Sc6v0ySBStqQhc/X3REpDrSdhYDtDakZ62ZuJ/3mdxAxu/JTLODEo2WLRIBHERGT2O+lzhcyIiSWUKW5vJWxEFWXGJpS3IXjLL6+SZrXiuRXvoVqs3WZx5OAUzqAMHlxDDe6hDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP0uiN5w==</latexit><latexit sha1_base64="WZObg3SKCYye9avqP2wcoWFIE4M=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbD3oMevEYwTwgWcLspJMMmZ1dZmaFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glhwbVz321lb39jc2s7t5Hf39g8OC0fHTR0limGDRSJS7YBqFFxiw3AjsB0rpGEgsBWM72Z+6wmV5pF8NJMY/ZAOJR9wRo2VWqWyd3l1UeoVim7FnYOsEi8jRchQ7xW+uv2IJSFKwwTVuuO5sfFTqgxnAqf5bqIxpmxMh9ixVNIQtZ/Oz52Sc6v0ySBStqQhc/X3REpDrSdhYDtDakZ62ZuJ/3mdxAxu/JTLODEo2WLRIBHERGT2O+lzhcyIiSWUKW5vJWxEFWXGJpS3IXjLL6+SZrXiuRXvoVqs3WZx5OAUzqAMHlxDDe6hDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP0uiN5w==</latexit>

(2, 1)
<latexit sha1_base64="B8DaVL1zeVU0N2rJ6haa3EcFtAY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIxgnlAEsLsZDYZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bEUBl3328ltbG5t7+R3C3v7B4dHxeOTlokSzXiTRTLSHZ8aLoXiTRQoeSfWnIa+5G1/cjf3209cGxGpR5zGvB/SkRKBYBSt1C5XalfeZXlQLLlVdwGyTryMlCBDY1D86g0jloRcIZPUmK7nxthPqUbBJJ8VeonhMWUTOuJdSxUNuemni3Nn5MIqQxJE2pZCslB/T6Q0NGYa+rYzpDg2q95c/M/rJhjc9FOh4gS5YstFQSIJRmT+OxkKzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJq1b13Kr3UCvVb7M48nAG51ABD66hDvfQgCYwmMAzvMKbEzsvzrvzsWzNOdnMKfyB8/kD0WSN5g==</latexit><latexit sha1_base64="B8DaVL1zeVU0N2rJ6haa3EcFtAY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIxgnlAEsLsZDYZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bEUBl3328ltbG5t7+R3C3v7B4dHxeOTlokSzXiTRTLSHZ8aLoXiTRQoeSfWnIa+5G1/cjf3209cGxGpR5zGvB/SkRKBYBSt1C5XalfeZXlQLLlVdwGyTryMlCBDY1D86g0jloRcIZPUmK7nxthPqUbBJJ8VeonhMWUTOuJdSxUNuemni3Nn5MIqQxJE2pZCslB/T6Q0NGYa+rYzpDg2q95c/M/rJhjc9FOh4gS5YstFQSIJRmT+OxkKzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJq1b13Kr3UCvVb7M48nAG51ABD66hDvfQgCYwmMAzvMKbEzsvzrvzsWzNOdnMKfyB8/kD0WSN5g==</latexit><latexit sha1_base64="B8DaVL1zeVU0N2rJ6haa3EcFtAY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIxgnlAEsLsZDYZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bEUBl3328ltbG5t7+R3C3v7B4dHxeOTlokSzXiTRTLSHZ8aLoXiTRQoeSfWnIa+5G1/cjf3209cGxGpR5zGvB/SkRKBYBSt1C5XalfeZXlQLLlVdwGyTryMlCBDY1D86g0jloRcIZPUmK7nxthPqUbBJJ8VeonhMWUTOuJdSxUNuemni3Nn5MIqQxJE2pZCslB/T6Q0NGYa+rYzpDg2q95c/M/rJhjc9FOh4gS5YstFQSIJRmT+OxkKzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJq1b13Kr3UCvVb7M48nAG51ABD66hDvfQgCYwmMAzvMKbEzsvzrvzsWzNOdnMKfyB8/kD0WSN5g==</latexit><latexit sha1_base64="B8DaVL1zeVU0N2rJ6haa3EcFtAY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIxgnlAEsLsZDYZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bEUBl3328ltbG5t7+R3C3v7B4dHxeOTlokSzXiTRTLSHZ8aLoXiTRQoeSfWnIa+5G1/cjf3209cGxGpR5zGvB/SkRKBYBSt1C5XalfeZXlQLLlVdwGyTryMlCBDY1D86g0jloRcIZPUmK7nxthPqUbBJJ8VeonhMWUTOuJdSxUNuemni3Nn5MIqQxJE2pZCslB/T6Q0NGYa+rYzpDg2q95c/M/rJhjc9FOh4gS5YstFQSIJRmT+OxkKzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJq1b13Kr3UCvVb7M48nAG51ABD66hDvfQgCYwmMAzvMKbEzsvzrvzsWzNOdnMKfyB8/kD0WSN5g==</latexit>

(2, 2)
<latexit sha1_base64="SejeD0K6FEgD45v63Smg5z+RwyQ=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BFuhgpTdveix6MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMCxLBtXGcb1TY2Nza3inulvb2Dw6PyscnbR2nirIWjUWsugHRTHDJWoYbwbqJYiQKBOsEk7u533liSvNYPpppwvyIjCQPOSXGSp1qzbvyLquDcsWpOwvgdeLmpAI5moPyV38Y0zRi0lBBtO65TmL8jCjDqWCzUj/VLCF0QkasZ6kkEdN+tjh3hi+sMsRhrGxJgxfq74mMRFpPo8B2RsSM9ao3F//zeqkJb/yMyyQ1TNLlojAV2MR4/jsecsWoEVNLCFXc3orpmChCjU2oZENwV19eJ22v7jp198GrNG7zOIpwBudQAxeuoQH30IQWUJjAM7zCG0rQC3pHH8vWAspnTuEP0OcP0uqN5w==</latexit><latexit sha1_base64="SejeD0K6FEgD45v63Smg5z+RwyQ=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BFuhgpTdveix6MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMCxLBtXGcb1TY2Nza3inulvb2Dw6PyscnbR2nirIWjUWsugHRTHDJWoYbwbqJYiQKBOsEk7u533liSvNYPpppwvyIjCQPOSXGSp1qzbvyLquDcsWpOwvgdeLmpAI5moPyV38Y0zRi0lBBtO65TmL8jCjDqWCzUj/VLCF0QkasZ6kkEdN+tjh3hi+sMsRhrGxJgxfq74mMRFpPo8B2RsSM9ao3F//zeqkJb/yMyyQ1TNLlojAV2MR4/jsecsWoEVNLCFXc3orpmChCjU2oZENwV19eJ22v7jp198GrNG7zOIpwBudQAxeuoQH30IQWUJjAM7zCG0rQC3pHH8vWAspnTuEP0OcP0uqN5w==</latexit><latexit sha1_base64="SejeD0K6FEgD45v63Smg5z+RwyQ=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BFuhgpTdveix6MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMCxLBtXGcb1TY2Nza3inulvb2Dw6PyscnbR2nirIWjUWsugHRTHDJWoYbwbqJYiQKBOsEk7u533liSvNYPpppwvyIjCQPOSXGSp1qzbvyLquDcsWpOwvgdeLmpAI5moPyV38Y0zRi0lBBtO65TmL8jCjDqWCzUj/VLCF0QkasZ6kkEdN+tjh3hi+sMsRhrGxJgxfq74mMRFpPo8B2RsSM9ao3F//zeqkJb/yMyyQ1TNLlojAV2MR4/jsecsWoEVNLCFXc3orpmChCjU2oZENwV19eJ22v7jp198GrNG7zOIpwBudQAxeuoQH30IQWUJjAM7zCG0rQC3pHH8vWAspnTuEP0OcP0uqN5w==</latexit><latexit sha1_base64="SejeD0K6FEgD45v63Smg5z+RwyQ=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BFuhgpTdveix6MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMCxLBtXGcb1TY2Nza3inulvb2Dw6PyscnbR2nirIWjUWsugHRTHDJWoYbwbqJYiQKBOsEk7u533liSvNYPpppwvyIjCQPOSXGSp1qzbvyLquDcsWpOwvgdeLmpAI5moPyV38Y0zRi0lBBtO65TmL8jCjDqWCzUj/VLCF0QkasZ6kkEdN+tjh3hi+sMsRhrGxJgxfq74mMRFpPo8B2RsSM9ao3F//zeqkJb/yMyyQ1TNLlojAV2MR4/jsecsWoEVNLCFXc3orpmChCjU2oZENwV19eJ22v7jp198GrNG7zOIpwBudQAxeuoQH30IQWUJjAM7zCG0rQC3pHH8vWAspnTuEP0OcP0uqN5w==</latexit>

(2, 3)
<latexit sha1_base64="4gwHlHN+/fhRJoPONg8CF+CzWoM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbD3oMevEYwTwgWcLsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDfzW09cGxGpR5zE3A/pUImBYBSt1CqVq5dXF6VeoehW3DnIKvEyUoQM9V7hq9uPWBJyhUxSYzqeG6OfUo2CST7NdxPDY8rGdMg7lioacuOn83On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XSXBw46dCxQlyxRaLBokkGJHZ76QvNGcoJ5ZQpoW9lbAR1ZShTShvQ/CWX14lzWrFcyveQ7VYu83iyMEpnEEZPLiGGtxDHRrAYAzP8ApvTuy8OO/Ox6J1zclmTuAPnM8f1HCN6A==</latexit><latexit sha1_base64="4gwHlHN+/fhRJoPONg8CF+CzWoM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbD3oMevEYwTwgWcLsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDfzW09cGxGpR5zE3A/pUImBYBSt1CqVq5dXF6VeoehW3DnIKvEyUoQM9V7hq9uPWBJyhUxSYzqeG6OfUo2CST7NdxPDY8rGdMg7lioacuOn83On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XSXBw46dCxQlyxRaLBokkGJHZ76QvNGcoJ5ZQpoW9lbAR1ZShTShvQ/CWX14lzWrFcyveQ7VYu83iyMEpnEEZPLiGGtxDHRrAYAzP8ApvTuy8OO/Ox6J1zclmTuAPnM8f1HCN6A==</latexit><latexit sha1_base64="4gwHlHN+/fhRJoPONg8CF+CzWoM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbD3oMevEYwTwgWcLsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDfzW09cGxGpR5zE3A/pUImBYBSt1CqVq5dXF6VeoehW3DnIKvEyUoQM9V7hq9uPWBJyhUxSYzqeG6OfUo2CST7NdxPDY8rGdMg7lioacuOn83On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XSXBw46dCxQlyxRaLBokkGJHZ76QvNGcoJ5ZQpoW9lbAR1ZShTShvQ/CWX14lzWrFcyveQ7VYu83iyMEpnEEZPLiGGtxDHRrAYAzP8ApvTuy8OO/Ox6J1zclmTuAPnM8f1HCN6A==</latexit><latexit sha1_base64="4gwHlHN+/fhRJoPONg8CF+CzWoM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbD3oMevEYwTwgWcLsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDfzW09cGxGpR5zE3A/pUImBYBSt1CqVq5dXF6VeoehW3DnIKvEyUoQM9V7hq9uPWBJyhUxSYzqeG6OfUo2CST7NdxPDY8rGdMg7lioacuOn83On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XSXBw46dCxQlyxRaLBokkGJHZ76QvNGcoJ5ZQpoW9lbAR1ZShTShvQ/CWX14lzWrFcyveQ7VYu83iyMEpnEEZPLiGGtxDHRrAYAzP8ApvTuy8OO/Ox6J1zclmTuAPnM8f1HCN6A==</latexit>

(2, 4)
<latexit sha1_base64="5/jJhfbeoVNybi3doDAtBzNJHYY=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbBD0GvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9dtbWNza3tnM7+d29/YPDwtFx00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpv5rSeujYjUI05i7od0qMRAMIpWapXK1curi1KvUHQr7hxklXgZKUKGeq/w1e1HLAm5QiapMR3PjdFPqUbBJJ/mu4nhMWVjOuQdSxUNufHT+blTcm6VPhlE2pZCMld/T6Q0NGYSBrYzpDgyy95M/M/rJDi48VOh4gS5YotFg0QSjMjsd9IXmjOUE0so08LeStiIasrQJpS3IXjLL6+SZrXiuRXvoVqs3WZx5OAUzqAMHlxDDe6hDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP1faN6Q==</latexit><latexit sha1_base64="5/jJhfbeoVNybi3doDAtBzNJHYY=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbBD0GvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9dtbWNza3tnM7+d29/YPDwtFx00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpv5rSeujYjUI05i7od0qMRAMIpWapXK1curi1KvUHQr7hxklXgZKUKGeq/w1e1HLAm5QiapMR3PjdFPqUbBJJ/mu4nhMWVjOuQdSxUNufHT+blTcm6VPhlE2pZCMld/T6Q0NGYSBrYzpDgyy95M/M/rJDi48VOh4gS5YotFg0QSjMjsd9IXmjOUE0so08LeStiIasrQJpS3IXjLL6+SZrXiuRXvoVqs3WZx5OAUzqAMHlxDDe6hDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP1faN6Q==</latexit><latexit sha1_base64="5/jJhfbeoVNybi3doDAtBzNJHYY=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbBD0GvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9dtbWNza3tnM7+d29/YPDwtFx00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpv5rSeujYjUI05i7od0qMRAMIpWapXK1curi1KvUHQr7hxklXgZKUKGeq/w1e1HLAm5QiapMR3PjdFPqUbBJJ/mu4nhMWVjOuQdSxUNufHT+blTcm6VPhlE2pZCMld/T6Q0NGYSBrYzpDgyy95M/M/rJDi48VOh4gS5YotFg0QSjMjsd9IXmjOUE0so08LeStiIasrQJpS3IXjLL6+SZrXiuRXvoVqs3WZx5OAUzqAMHlxDDe6hDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP1faN6Q==</latexit><latexit sha1_base64="5/jJhfbeoVNybi3doDAtBzNJHYY=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbBD0GvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9dtbWNza3tnM7+d29/YPDwtFx00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpv5rSeujYjUI05i7od0qMRAMIpWapXK1curi1KvUHQr7hxklXgZKUKGeq/w1e1HLAm5QiapMR3PjdFPqUbBJJ/mu4nhMWVjOuQdSxUNufHT+blTcm6VPhlE2pZCMld/T6Q0NGYSBrYzpDgyy95M/M/rJDi48VOh4gS5YotFg0QSjMjsd9IXmjOUE0so08LeStiIasrQJpS3IXjLL6+SZrXiuRXvoVqs3WZx5OAUzqAMHlxDDe6hDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP1faN6Q==</latexit>

(2, 5)
<latexit sha1_base64="DMUhpqf6JF1HZAQbcTRS8mKsZyg=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbED0GvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9dtbWNza3tnM7+d29/YPDwtFx00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpv5rSeujYjUI05i7od0qMRAMIpWapXK1curi1KvUHQr7hxklXgZKUKGeq/w1e1HLAm5QiapMR3PjdFPqUbBJJ/mu4nhMWVjOuQdSxUNufHT+blTcm6VPhlE2pZCMld/T6Q0NGYSBrYzpDgyy95M/M/rJDi48VOh4gS5YotFg0QSjMjsd9IXmjOUE0so08LeStiIasrQJpS3IXjLL6+SZrXiuRXvoVqs3WZx5OAUzqAMHlxDDe6hDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP13yN6g==</latexit><latexit sha1_base64="DMUhpqf6JF1HZAQbcTRS8mKsZyg=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbED0GvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9dtbWNza3tnM7+d29/YPDwtFx00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpv5rSeujYjUI05i7od0qMRAMIpWapXK1curi1KvUHQr7hxklXgZKUKGeq/w1e1HLAm5QiapMR3PjdFPqUbBJJ/mu4nhMWVjOuQdSxUNufHT+blTcm6VPhlE2pZCMld/T6Q0NGYSBrYzpDgyy95M/M/rJDi48VOh4gS5YotFg0QSjMjsd9IXmjOUE0so08LeStiIasrQJpS3IXjLL6+SZrXiuRXvoVqs3WZx5OAUzqAMHlxDDe6hDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP13yN6g==</latexit><latexit sha1_base64="DMUhpqf6JF1HZAQbcTRS8mKsZyg=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbED0GvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9dtbWNza3tnM7+d29/YPDwtFx00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpv5rSeujYjUI05i7od0qMRAMIpWapXK1curi1KvUHQr7hxklXgZKUKGeq/w1e1HLAm5QiapMR3PjdFPqUbBJJ/mu4nhMWVjOuQdSxUNufHT+blTcm6VPhlE2pZCMld/T6Q0NGYSBrYzpDgyy95M/M/rJDi48VOh4gS5YotFg0QSjMjsd9IXmjOUE0so08LeStiIasrQJpS3IXjLL6+SZrXiuRXvoVqs3WZx5OAUzqAMHlxDDe6hDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP13yN6g==</latexit><latexit sha1_base64="DMUhpqf6JF1HZAQbcTRS8mKsZyg=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLAbED0GvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9dtbWNza3tnM7+d29/YPDwtFx00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpv5rSeujYjUI05i7od0qMRAMIpWapXK1curi1KvUHQr7hxklXgZKUKGeq/w1e1HLAm5QiapMR3PjdFPqUbBJJ/mu4nhMWVjOuQdSxUNufHT+blTcm6VPhlE2pZCMld/T6Q0NGYSBrYzpDgyy95M/M/rJDi48VOh4gS5YotFg0QSjMjsd9IXmjOUE0so08LeStiIasrQJpS3IXjLL6+SZrXiuRXvoVqs3WZx5OAUzqAMHlxDDe6hDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP13yN6g==</latexit>

(2, 6)
<latexit sha1_base64="mtoEFMBv0FWjU00D8azrziMH0PA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbg3oMevEYwTwgWcLsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDfzW09cGxGpR5zE3A/pUImBYBSt1CqVq5dXF6VeoehW3DnIKvEyUoQM9V7hq9uPWBJyhUxSYzqeG6OfUo2CST7NdxPDY8rGdMg7lioacuOn83On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XSXBw46dCxQlyxRaLBokkGJHZ76QvNGcoJ5ZQpoW9lbAR1ZShTShvQ/CWX14lzWrFcyveQ7VYu83iyMEpnEEZPLiGGtxDHRrAYAzP8ApvTuy8OO/Ox6J1zclmTuAPnM8f2QKN6w==</latexit><latexit sha1_base64="mtoEFMBv0FWjU00D8azrziMH0PA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbg3oMevEYwTwgWcLsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDfzW09cGxGpR5zE3A/pUImBYBSt1CqVq5dXF6VeoehW3DnIKvEyUoQM9V7hq9uPWBJyhUxSYzqeG6OfUo2CST7NdxPDY8rGdMg7lioacuOn83On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XSXBw46dCxQlyxRaLBokkGJHZ76QvNGcoJ5ZQpoW9lbAR1ZShTShvQ/CWX14lzWrFcyveQ7VYu83iyMEpnEEZPLiGGtxDHRrAYAzP8ApvTuy8OO/Ox6J1zclmTuAPnM8f2QKN6w==</latexit><latexit sha1_base64="mtoEFMBv0FWjU00D8azrziMH0PA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbg3oMevEYwTwgWcLsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDfzW09cGxGpR5zE3A/pUImBYBSt1CqVq5dXF6VeoehW3DnIKvEyUoQM9V7hq9uPWBJyhUxSYzqeG6OfUo2CST7NdxPDY8rGdMg7lioacuOn83On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XSXBw46dCxQlyxRaLBokkGJHZ76QvNGcoJ5ZQpoW9lbAR1ZShTShvQ/CWX14lzWrFcyveQ7VYu83iyMEpnEEZPLiGGtxDHRrAYAzP8ApvTuy8OO/Ox6J1zclmTuAPnM8f2QKN6w==</latexit><latexit sha1_base64="mtoEFMBv0FWjU00D8azrziMH0PA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbg3oMevEYwTwgWcLsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDfzW09cGxGpR5zE3A/pUImBYBSt1CqVq5dXF6VeoehW3DnIKvEyUoQM9V7hq9uPWBJyhUxSYzqeG6OfUo2CST7NdxPDY8rGdMg7lioacuOn83On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XSXBw46dCxQlyxRaLBokkGJHZ76QvNGcoJ5ZQpoW9lbAR1ZShTShvQ/CWX14lzWrFcyveQ7VYu83iyMEpnEEZPLiGGtxDHRrAYAzP8ApvTuy8OO/Ox6J1zclmTuAPnM8f2QKN6w==</latexit>

(2, 7)
<latexit sha1_base64="OAQ7JZ/dQ3gWyOnFkm3EwMKgxmg=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbSzwGvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9djY2t7Z3dnN7+f2Dw6Pjwslpy0SJZrzJIhnpTkANl0LxJgqUvBNrTsNA8nYwuZv77SeujYjUI05j7od0pMRQMIpWapfK1evaValfKLoVdwGyTryMFCFDo1/46g0iloRcIZPUmK7nxuinVKNgks/yvcTwmLIJHfGupYqG3Pjp4twZubTKgAwjbUshWai/J1IaGjMNA9sZUhybVW8u/ud1Exze+KlQcYJcseWiYSIJRmT+OxkIzRnKqSWUaWFvJWxMNWVoE8rbELzVl9dJq1rx3Ir3UC3Wb7M4cnAOF1AGD2pQh3toQBMYTOAZXuHNiZ0X5935WLZuONnMGfyB8/kD2oiN7A==</latexit><latexit sha1_base64="OAQ7JZ/dQ3gWyOnFkm3EwMKgxmg=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbSzwGvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9djY2t7Z3dnN7+f2Dw6Pjwslpy0SJZrzJIhnpTkANl0LxJgqUvBNrTsNA8nYwuZv77SeujYjUI05j7od0pMRQMIpWapfK1evaValfKLoVdwGyTryMFCFDo1/46g0iloRcIZPUmK7nxuinVKNgks/yvcTwmLIJHfGupYqG3Pjp4twZubTKgAwjbUshWai/J1IaGjMNA9sZUhybVW8u/ud1Exze+KlQcYJcseWiYSIJRmT+OxkIzRnKqSWUaWFvJWxMNWVoE8rbELzVl9dJq1rx3Ir3UC3Wb7M4cnAOF1AGD2pQh3toQBMYTOAZXuHNiZ0X5935WLZuONnMGfyB8/kD2oiN7A==</latexit><latexit sha1_base64="OAQ7JZ/dQ3gWyOnFkm3EwMKgxmg=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbSzwGvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9djY2t7Z3dnN7+f2Dw6Pjwslpy0SJZrzJIhnpTkANl0LxJgqUvBNrTsNA8nYwuZv77SeujYjUI05j7od0pMRQMIpWapfK1evaValfKLoVdwGyTryMFCFDo1/46g0iloRcIZPUmK7nxuinVKNgks/yvcTwmLIJHfGupYqG3Pjp4twZubTKgAwjbUshWai/J1IaGjMNA9sZUhybVW8u/ud1Exze+KlQcYJcseWiYSIJRmT+OxkIzRnKqSWUaWFvJWxMNWVoE8rbELzVl9dJq1rx3Ir3UC3Wb7M4cnAOF1AGD2pQh3toQBMYTOAZXuHNiZ0X5935WLZuONnMGfyB8/kD2oiN7A==</latexit><latexit sha1_base64="OAQ7JZ/dQ3gWyOnFkm3EwMKgxmg=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbSzwGvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9djY2t7Z3dnN7+f2Dw6Pjwslpy0SJZrzJIhnpTkANl0LxJgqUvBNrTsNA8nYwuZv77SeujYjUI05j7od0pMRQMIpWapfK1evaValfKLoVdwGyTryMFCFDo1/46g0iloRcIZPUmK7nxuinVKNgks/yvcTwmLIJHfGupYqG3Pjp4twZubTKgAwjbUshWai/J1IaGjMNA9sZUhybVW8u/ud1Exze+KlQcYJcseWiYSIJRmT+OxkIzRnKqSWUaWFvJWxMNWVoE8rbELzVl9dJq1rx3Ir3UC3Wb7M4cnAOF1AGD2pQh3toQBMYTOAZXuHNiZ0X5935WLZuONnMGfyB8/kD2oiN7A==</latexit>

(2, 8)
<latexit sha1_base64="QOPX/1bUByvFiNQyGWCAPG60BFY=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbizkGvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9djY2t7Z3dnN7+f2Dw6Pjwslpy0SJZrzJIhnpTkANl0LxJgqUvBNrTsNA8nYwuZv77SeujYjUI05j7od0pMRQMIpWapfK1evaValfKLoVdwGyTryMFCFDo1/46g0iloRcIZPUmK7nxuinVKNgks/yvcTwmLIJHfGupYqG3Pjp4twZubTKgAwjbUshWai/J1IaGjMNA9sZUhybVW8u/ud1ExzW/FSoOEGu2HLRMJEEIzL/nQyE5gzl1BLKtLC3EjammjK0CeVtCN7qy+ukVa14bsV7qBbrt1kcOTiHCyiDBzdQh3toQBMYTOAZXuHNiZ0X5935WLZuONnMGfyB8/kD3A6N7Q==</latexit><latexit sha1_base64="QOPX/1bUByvFiNQyGWCAPG60BFY=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbizkGvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9djY2t7Z3dnN7+f2Dw6Pjwslpy0SJZrzJIhnpTkANl0LxJgqUvBNrTsNA8nYwuZv77SeujYjUI05j7od0pMRQMIpWapfK1evaValfKLoVdwGyTryMFCFDo1/46g0iloRcIZPUmK7nxuinVKNgks/yvcTwmLIJHfGupYqG3Pjp4twZubTKgAwjbUshWai/J1IaGjMNA9sZUhybVW8u/ud1ExzW/FSoOEGu2HLRMJEEIzL/nQyE5gzl1BLKtLC3EjammjK0CeVtCN7qy+ukVa14bsV7qBbrt1kcOTiHCyiDBzdQh3toQBMYTOAZXuHNiZ0X5935WLZuONnMGfyB8/kD3A6N7Q==</latexit><latexit sha1_base64="QOPX/1bUByvFiNQyGWCAPG60BFY=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbizkGvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9djY2t7Z3dnN7+f2Dw6Pjwslpy0SJZrzJIhnpTkANl0LxJgqUvBNrTsNA8nYwuZv77SeujYjUI05j7od0pMRQMIpWapfK1evaValfKLoVdwGyTryMFCFDo1/46g0iloRcIZPUmK7nxuinVKNgks/yvcTwmLIJHfGupYqG3Pjp4twZubTKgAwjbUshWai/J1IaGjMNA9sZUhybVW8u/ud1ExzW/FSoOEGu2HLRMJEEIzL/nQyE5gzl1BLKtLC3EjammjK0CeVtCN7qy+ukVa14bsV7qBbrt1kcOTiHCyiDBzdQh3toQBMYTOAZXuHNiZ0X5935WLZuONnMGfyB8/kD3A6N7Q==</latexit><latexit sha1_base64="QOPX/1bUByvFiNQyGWCAPG60BFY=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbizkGvXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSyFQdf9djY2t7Z3dnN7+f2Dw6Pjwslpy0SJZrzJIhnpTkANl0LxJgqUvBNrTsNA8nYwuZv77SeujYjUI05j7od0pMRQMIpWapfK1evaValfKLoVdwGyTryMFCFDo1/46g0iloRcIZPUmK7nxuinVKNgks/yvcTwmLIJHfGupYqG3Pjp4twZubTKgAwjbUshWai/J1IaGjMNA9sZUhybVW8u/ud1ExzW/FSoOEGu2HLRMJEEIzL/nQyE5gzl1BLKtLC3EjammjK0CeVtCN7qy+ukVa14bsV7qBbrt1kcOTiHCyiDBzdQh3toQBMYTOAZXuHNiZ0X5935WLZuONnMGfyB8/kD3A6N7Q==</latexit>

(2, 9)
<latexit sha1_base64="1WtAw8M5v5Nrajv/5MxrI5mUTlE=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbi3oLevEYwTwgWcLsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDfzW09cGxGpR5zE3A/pUImBYBSt1CqVq5c3F6VeoehW3DnIKvEyUoQM9V7hq9uPWBJyhUxSYzqeG6OfUo2CST7NdxPDY8rGdMg7lioacuOn83On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XSXBw7adCxQlyxRaLBokkGJHZ76QvNGcoJ5ZQpoW9lbAR1ZShTShvQ/CWX14lzWrFcyveQ7VYu83iyMEpnEEZPLiCGtxDHRrAYAzP8ApvTuy8OO/Ox6J1zclmTuAPnM8f3ZSN7g==</latexit><latexit sha1_base64="1WtAw8M5v5Nrajv/5MxrI5mUTlE=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbi3oLevEYwTwgWcLsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDfzW09cGxGpR5zE3A/pUImBYBSt1CqVq5c3F6VeoehW3DnIKvEyUoQM9V7hq9uPWBJyhUxSYzqeG6OfUo2CST7NdxPDY8rGdMg7lioacuOn83On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XSXBw7adCxQlyxRaLBokkGJHZ76QvNGcoJ5ZQpoW9lbAR1ZShTShvQ/CWX14lzWrFcyveQ7VYu83iyMEpnEEZPLiCGtxDHRrAYAzP8ApvTuy8OO/Ox6J1zclmTuAPnM8f3ZSN7g==</latexit><latexit sha1_base64="1WtAw8M5v5Nrajv/5MxrI5mUTlE=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbi3oLevEYwTwgWcLsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDfzW09cGxGpR5zE3A/pUImBYBSt1CqVq5c3F6VeoehW3DnIKvEyUoQM9V7hq9uPWBJyhUxSYzqeG6OfUo2CST7NdxPDY8rGdMg7lioacuOn83On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XSXBw7adCxQlyxRaLBokkGJHZ76QvNGcoJ5ZQpoW9lbAR1ZShTShvQ/CWX14lzWrFcyveQ7VYu83iyMEpnEEZPLiCGtxDHRrAYAzP8ApvTuy8OO/Ox6J1zclmTuAPnM8f3ZSN7g==</latexit><latexit sha1_base64="1WtAw8M5v5Nrajv/5MxrI5mUTlE=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYCJEkLCbi3oLevEYwTwgWcLsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDfzW09cGxGpR5zE3A/pUImBYBSt1CqVq5c3F6VeoehW3DnIKvEyUoQM9V7hq9uPWBJyhUxSYzqeG6OfUo2CST7NdxPDY8rGdMg7lioacuOn83On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XSXBw7adCxQlyxRaLBokkGJHZ76QvNGcoJ5ZQpoW9lbAR1ZShTShvQ/CWX14lzWrFcyveQ7VYu83iyMEpnEEZPLiCGtxDHRrAYAzP8ApvTuy8OO/Ox6J1zclmTuAPnM8f3ZSN7g==</latexit>

M

D1
<latexit sha1_base64="jWkLhD/Ymkd+GXudQDU/MaGeHvQ=">AAAB9HicbVDLSgMxFL1TX7W+Wl26CRbB1TBTF7os6MJlBfuAdiiZNNOGZjLTJFMoQz/ALxDBhSJu/Rh3rvwEf8FM24W2HggczrmXe3L8mDOlHefTyq2tb2xu5bcLO7t7+wfF0mFDRYkktE4iHsmWjxXlTNC6ZprTViwpDn1Om/7wKvObYyoVi8SdnsTUC3FfsIARrI3kdUKsBwTz9HradbvFsmM7M6BV4i5IuZp7vP8qye9at/jR6UUkCanQhGOl2q4Tay/FUjPC6bTQSRSNMRniPm0bKnBIlZfOQk/RqVF6KIikeUKjmfp7I8WhUpPQN5NZSLXsZeJ/XjvRwaWXMhEnmgoyPxQkHOkIZQ2gHpOUaD4xBBPJTFZEBlhiok1PBVOCu/zlVdKo2O65Xbk1bdgwRx6O4QTOwIULqMIN1KAOBEbwAM/wYo2tJ+vVepuP5qzFzhH8gfX+A5btlZ8=</latexit>

D1
<latexit sha1_base64="jWkLhD/Ymkd+GXudQDU/MaGeHvQ=">AAAB9HicbVDLSgMxFL1TX7W+Wl26CRbB1TBTF7os6MJlBfuAdiiZNNOGZjLTJFMoQz/ALxDBhSJu/Rh3rvwEf8FM24W2HggczrmXe3L8mDOlHefTyq2tb2xu5bcLO7t7+wfF0mFDRYkktE4iHsmWjxXlTNC6ZprTViwpDn1Om/7wKvObYyoVi8SdnsTUC3FfsIARrI3kdUKsBwTz9HradbvFsmM7M6BV4i5IuZp7vP8qye9at/jR6UUkCanQhGOl2q4Tay/FUjPC6bTQSRSNMRniPm0bKnBIlZfOQk/RqVF6KIikeUKjmfp7I8WhUpPQN5NZSLXsZeJ/XjvRwaWXMhEnmgoyPxQkHOkIZQ2gHpOUaD4xBBPJTFZEBlhiok1PBVOCu/zlVdKo2O65Xbk1bdgwRx6O4QTOwIULqMIN1KAOBEbwAM/wYo2tJ+vVepuP5qzFzhH8gfX+A5btlZ8=</latexit>

D2
<latexit sha1_base64="MdGC4nZ6EBXjl9hqt+giRX2v7Go=">AAAB9HicbVDLSgMxFL1TX7W+Wl26CRbB1TBTF7os6MJlBfuAdiiZNNOGZjLTJFMoQz/ALxDBhSJu/Rh3rvwEf8FM24W2HggczrmXe3L8mDOlHefTyq2tb2xu5bcLO7t7+wfF0mFDRYkktE4iHsmWjxXlTNC6ZprTViwpDn1Om/7wKvObYyoVi8SdnsTUC3FfsIARrI3kdUKsBwTz9HrarXSLZcd2ZkCrxF2QcjX3eP9Vkt+1bvGj04tIElKhCcdKtV0n1l6KpWaE02mhkygaYzLEfdo2VOCQKi+dhZ6iU6P0UBBJ84RGM/X3RopDpSahbyazkGrZy8T/vHaig0svZSJONBVkfihIONIRyhpAPSYp0XxiCCaSmayIDLDERJueCqYEd/nLq6RRsd1zu3Jr2rBhjjwcwwmcgQsXUIUbqEEdCIzgAZ7hxRpbT9ar9TYfzVmLnSP4A+v9B5hxlaA=</latexit>

D2
<latexit sha1_base64="MdGC4nZ6EBXjl9hqt+giRX2v7Go=">AAAB9HicbVDLSgMxFL1TX7W+Wl26CRbB1TBTF7os6MJlBfuAdiiZNNOGZjLTJFMoQz/ALxDBhSJu/Rh3rvwEf8FM24W2HggczrmXe3L8mDOlHefTyq2tb2xu5bcLO7t7+wfF0mFDRYkktE4iHsmWjxXlTNC6ZprTViwpDn1Om/7wKvObYyoVi8SdnsTUC3FfsIARrI3kdUKsBwTz9HrarXSLZcd2ZkCrxF2QcjX3eP9Vkt+1bvGj04tIElKhCcdKtV0n1l6KpWaE02mhkygaYzLEfdo2VOCQKi+dhZ6iU6P0UBBJ84RGM/X3RopDpSahbyazkGrZy8T/vHaig0svZSJONBVkfihIONIRyhpAPSYp0XxiCCaSmayIDLDERJueCqYEd/nLq6RRsd1zu3Jr2rBhjjwcwwmcgQsXUIUbqEEdCIzgAZ7hxRpbT9ar9TYfzVmLnSP4A+v9B5hxlaA=</latexit>

D3
<latexit sha1_base64="hFb/4cGpXLE+3g5BkVaYj7+1mto=">AAAB9HicbVDLSgMxFL1TX7W+Wl26CRbB1TDTLnRZ0IXLCvYB7VAyaaYNzWTGJFMoQz/ALxDBhSJu/Rh3rvwEf8FM24W2HggczrmXe3L8mDOlHefTyq2tb2xu5bcLO7t7+wfF0mFTRYkktEEiHsm2jxXlTNCGZprTdiwpDn1OW/7oMvNbYyoVi8StnsTUC/FAsIARrI3kdUOshwTz9Graq/aKZcd2ZkCrxF2Qci33eP9Vkt/1XvGj249IElKhCcdKdVwn1l6KpWaE02mhmygaYzLCA9oxVOCQKi+dhZ6iU6P0URBJ84RGM/X3RopDpSahbyazkGrZy8T/vE6igwsvZSJONBVkfihIONIRyhpAfSYp0XxiCCaSmayIDLHERJueCqYEd/nLq6RZsd2qXbkxbdgwRx6O4QTOwIVzqME11KEBBO7gAZ7hxRpbT9ar9TYfzVmLnSP4A+v9B5n1laE=</latexit>

D3
<latexit sha1_base64="hFb/4cGpXLE+3g5BkVaYj7+1mto=">AAAB9HicbVDLSgMxFL1TX7W+Wl26CRbB1TDTLnRZ0IXLCvYB7VAyaaYNzWTGJFMoQz/ALxDBhSJu/Rh3rvwEf8FM24W2HggczrmXe3L8mDOlHefTyq2tb2xu5bcLO7t7+wfF0mFTRYkktEEiHsm2jxXlTNCGZprTdiwpDn1OW/7oMvNbYyoVi8StnsTUC/FAsIARrI3kdUOshwTz9Graq/aKZcd2ZkCrxF2Qci33eP9Vkt/1XvGj249IElKhCcdKdVwn1l6KpWaE02mhmygaYzLCA9oxVOCQKi+dhZ6iU6P0URBJ84RGM/X3RopDpSahbyazkGrZy8T/vE6igwsvZSJONBVkfihIONIRyhpAfSYp0XxiCCaSmayIDLHERJueCqYEd/nLq6RZsd2qXbkxbdgwRx6O4QTOwIVzqME11KEBBO7gAZ7hxRpbT9ar9TYfzVmLnSP4A+v9B5n1laE=</latexit>

1
2
g1

+ g2

<latexit sha1_base64="3k5jm6dYGdu3NtX17AlzrRpt1JE=">AAACEHicbVDLSsNAFJ3UV62vqEs3g1UUhJLEhS4LbnRXwT6gCWEynbRDJ5MwMxFKCPgDbvwVNyKKuHXpzr9x0nZRWw8MnDnnXu69J0gYlcqyfozS0vLK6lp5vbKxubW9Y+7utWScCkyaOGax6ARIEkY5aSqqGOkkgqAoYKQdDK8Kv31PhKQxv1OjhHgR6nMaUoyUlnzzxA0FwpmdZ04O3QipQRBm/dy34dns1/HNqlWzxoCLxJ6Sav3o9eEmzPyGb367vRinEeEKMyRl17YS5WVIKIoZyStuKkmC8BD1SVdTjiIivWx8UA6PtdKDYSz04wqO1dmODEVSjqJAVxY7ynmvEP/zuqkKL72M8iRVhOPJoDBlUMWwSAf2qCBYsZEmCAuqd4V4gHRCSmdY0SHY8ycvkpZTs89rzq1OowYmKIMDcAhOgQ0uQB1cgwZoAgwewTN4A+/Gk/FifBifk9KSMe3ZB39gfP0CKaWflQ==</latexit>

1
2 g

1 + g
3

<latexit sha1_base64="FdFyWnvKPBWqVM6kjNxoPlladlg=">AAACEHicbVDLSsNAFJ3UV62vqEs3g1UUhJC0C10W3Oiugn1AE8JkOmmHTiZhZiKUEPAH3PgrbkQUcevSnX/jpHVRWw8MnDnnXu69J0gYlcq2v43S0vLK6lp5vbKxubW9Y+7utWWcCkxaOGax6AZIEkY5aSmqGOkmgqAoYKQTjC4Lv3NHhKQxv1XjhHgRGnAaUoyUlnzzxA0FwpmTZ7UcuhFSwyDMBrnvwLPZb903q7ZlTwAXifNLqo2jl/vrMPObvvnl9mOcRoQrzJCUPcdOlJchoShmJK+4qSQJwiM0ID1NOYqI9LLJQTk81kofhrHQjys4UWc7MhRJOY4CXVnsKOe9QvzP66UqvPAyypNUEY6ng8KUQRXDIh3Yp4JgxcaaICyo3hXiIdIJKZ1hRYfgzJ+8SNo1y6lbtRudhgWmKIMDcAhOgQPOQQNcgSZoAQwewBN4BW/Go/FsvBsf09KS8duzD/7A+PwBKymflg==</latexit>

g
2
�

g
3

<latexit sha1_base64="qQXOigSkpIc16ZsYzK1B3vBghaY=">AAACBXicbVC7SgNBFL0bH4nxtWqpxWBQbAy7SaFlwMYygnlAsiyzk9lkyOyDmVkhLGls/BUbC0VsrW3t/AbBb3A2SRETDwycOede7r3HizmTyrK+jNzK6tp6vrBR3Nza3tk19/abMkoEoQ0S8Ui0PSwpZyFtKKY4bceC4sDjtOUNrzK/dUeFZFF4q0YxdQLcD5nPCFZacs0j1A2wGnh+2h+7FXQ+/626ZskqWxOgZWLPSKmW//mOT3Mfddf87PYikgQ0VIRjKTu2FSsnxUIxwum42E0kjTEZ4j7taBrigEonnVwxRida6SE/EvqFCk3U+Y4UB1KOAk9XZjvKRS8T//M6ifIvnZSFcaJoSKaD/IQjFaEsEtRjghLFR5pgIpjeFZEBFpgoHVxRh2AvnrxMmpWyXS1XbnQaZZiiAIdwDGdgwwXU4Brq0AAC9/AIz/BiPBhPxqvxNi3NGbOeA/gD4/0X/3WbOg==</latexit>

(a) Tree topology.

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>D(2, 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(2, 2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(2, 3)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
4<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
4<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
5

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
5

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit> =<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

DT (1,1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
2<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
4<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
5

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(1, 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
2<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(1, 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(2, 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(2, 2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(2, 3)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

M

1
2
g1

+
g2

<latexit sha1_base64="3k5jm6dYGdu3NtX17AlzrRpt1JE=">AAACEHicbVDLSsNAFJ3UV62vqEs3g1UUhJLEhS4LbnRXwT6gCWEynbRDJ5MwMxFKCPgDbvwVNyKKuHXpzr9x0nZRWw8MnDnnXu69J0gYlcqyfozS0vLK6lp5vbKxubW9Y+7utWScCkyaOGax6ARIEkY5aSqqGOkkgqAoYKQdDK8Kv31PhKQxv1OjhHgR6nMaUoyUlnzzxA0FwpmdZ04O3QipQRBm/dy34dns1/HNqlWzxoCLxJ6Sav3o9eEmzPyGb367vRinEeEKMyRl17YS5WVIKIoZyStuKkmC8BD1SVdTjiIivWx8UA6PtdKDYSz04wqO1dmODEVSjqJAVxY7ynmvEP/zuqkKL72M8iRVhOPJoDBlUMWwSAf2qCBYsZEmCAuqd4V4gHRCSmdY0SHY8ycvkpZTs89rzq1OowYmKIMDcAhOgQ0uQB1cgwZoAgwewTN4A+/Gk/FifBifk9KSMe3ZB39gfP0CKaWflQ==</latexit>

(b) Data allocation and coding in CR.

Figure 1.7: Illustration of CodedReduce design for N = 12 worker nodes. (a) We design
the communication topology as a tree with L = 2 layers and n = 3 children noes per
parent. (b) Each node computes local gradients associated with the allocated data batch
and uploads a linear combination (with specified weight) to its parent node.

where the tree has L layers with the master node as the main root. Then, each parent

node has only n partial gradients to collect from its children, reducing the communication

load from O(N) to O(n) = O(N1/L) as communication across different nodes can be

parallelized. However, this communication-efficiency does not come for free since one

wants to still design a straggler-resilient coding scheme for gradient aggregation. We next

explain our achievable coding scheme over the tree structure, namely as CodedReduce

(CR) through a simple example. Consider the tree topology for N = 12 workers (n = 3)

in Figure 1.7(a). The goal is to develop a data allocation and communication design such

that the gradient aggregation at master has a resiliency of 1 straggler per parent. Similar

to Gradient Coding, we partition D into D1, D2, D3; however, this time we assign them

to the three sub-trees, as illustrated in Figure 1.7(a).

Without loss of generality, we focus on sub-tree T (1, 1) with route (1, 1). We note

that the master needs to receive 1
2
g1 + g2 from (1, 1) (left sub-tree in Figure 1.7(a). The

task allocation in this sub-tree is as follows: DT (1,1) = {D1,D2} is further partitioned into

five batches and assigned to the nodes as shown in Figure 1.7(b). The coding scheme is

16

Introduction Chapter 1

then cleverly designed such that from the computation results of any two children, node

(1, 1) together with its own local gradient computation can recover 1
2
g1 + g2.

In a nutshell, CodedReduce parallelizes the communications over a tree topology lead-

ing to efficient bandwidth utilization, and carefully designs a redundant data set alloca-

tion and coding strategy at the nodes to make the proposed gradient aggregation scheme

robust to stragglers. In particular, we quantify the communication parallelization gain

and resiliency of the proposed CR scheme, and prove its optimality when the communi-

cation topology is a regular tree.

1.2.3 Bandwidth Bottleneck in Distributed Graph Analytics

Graphs are widely used to identify and incorporate the relationship patterns and

anomalies inherent in real-life datasets, prompting the development of various large-

scale distributed graph processing frameworks, such as Pregel [19], PowerGraph [20]

and GraphLab [21]. The underlying theme in these systems is the think like a vertex

approach [22] where the computation at each vertex requires only the data available in

the neighborhood of the vertex (Figure 7.1).

In these distributed graph processing systems, for carrying out the graph computation

for a given vertex at a particular server, the intermediate values corresponding to the

neighboring vertices whose files are not available at the server have to be communicated

from other servers. These distributed graph processing systems, therefore, require many

messages to be exchanged among servers during job execution resulting in communica-

tion bottleneck [23] which accounts for more than 50% of the overall execution time in

representative cases [24].

In Chapter 7, we target the communication bottleneck in distributed graph process-

ing and develop a new framework that leverages computation redundancy by computing

17

Introduction Chapter 1

Figure 1.8: Illustrating the think like a vertex paradigm prevalent in common parallel
graph computing frameworks. The computation associated with a vertex only depends on
its neighbors. In this example, we consider the PageRank computation over a graph with
six vertices. Using vertex 1 for representation, we illustrate the file and PageRank update
at each vertex. File w1 contains the state (current PageRank Πcurr

1) and the neighborhood
parameters (probabilities of transitioning to neighbors {P(1→ 1),P(1→ 2),P(1→ 5)}).
The PageRank update associated with vertex 1 is a function of only the neighborhood
files (specifically, of the PageRanks of neighboring vertices and the transition probabilities
from neighbors to vertex 1).

the intermediate values at multiple servers via redundant subgraph allocation [17]. The

redundancy in computation of intermediate values at multiple servers allows coded mul-

ticasting opportunities during exchange of messages between servers, thus reducing the

communication load. Our proposed framework comprises of a mathematical model for

MapReduce decomposition [12] of the graph computation task. The Map computation

for a vertex corresponds to computing the intermediate values for the vertices in its

neighborhood, while the Reduce computation for a vertex corresponds to combining the

intermediate values from the neighboring vertices to obtain the final result of graph com-

putation. Referring to the example in Figure 7.1, the Map and Reduce computations

associated with vertex 1 are as follows:

Map: Πcurr
1 → {P(1→ 1)Πcurr

1 ,P(1→ 2)Πcurr
1 ,P(1→ 5)Πcurr

1 },

Reduce: Πnew
1 = v1,1 + v1,2 + v1,5,

18

Introduction Chapter 1

where v1,i = P(i→ 1)Πcurr
i is the intermediate value obtained from the Map computation

of vertex i ∈ N (1).

In distributed graph based MapReduce, each server is allocated a subgraph for Map

computations and Reduce tasks for a subset of graph vertices, and the overall execution

takes place in three phases – Map, Shuffle, and Reduce. Our framework proposes to trade

redundant computations in the Map phase with communication load during the Shuffle

phase. The key idea is to leverage the graph structure and create coded messages during

the Shuffle phase that simultaneously satisfy the data demand of multiple computing

servers in the Reduce phase.

For two popular random graph models, Erdös-Rényi model and power law model, we

prove that our proposed coded scheme asymptotically achieves an inverse-linear trade-off

between computation load in the Map phase and average normalized communication load

in the Shuffle phase. Furthermore, for the Erdös-Rényi model, we develop an information-

theoretic converse for the average communication load given a computation load. We also

specialize our coded scheme and extend the achievability results to two additional random

graph models, random bi-partite model and stochastic block model.

19

Part I

Algorithms for Federated Learning

20

Chapter 2

Communication-Efficient Federated

Learning

Federated learning is a distributed framework according to which a model is trained over

a set of devices, while keeping data localized. This framework faces several systems-

oriented challenges which include (i) communication bottleneck since a large number of

devices upload their local updates to a parameter server, and (ii) scalability as the fed-

erated network consists of millions of devices. Due to these systems challenges as well

as issues related to statistical heterogeneity of data and privacy concerns, designing a

provably efficient federated learning method is of significant importance yet it remains

challenging. In this chapter, we present FedPAQ, a communication-efficient Federated

Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key

features: (1) periodic averaging where models are updated locally at devices and only

periodically averaged at the server; (2) partial device participation where only a fraction

of devices participate in each round of the training; and (3) quantized message-passing

where the edge nodes quantize their updates before uploading to the parameter server.

These features address the communications and scalability challenges in federated learn-

21

Communication-Efficient Federated Learning Chapter 2

ing. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly

convex and non-convex loss functions and empirically demonstrate the communication-

computation tradeoff provided by our method.

2.1 Introduction

In many large-scale machine learning applications, data is acquired and processed at

the edge nodes of the network such as mobile devices, users’ devices, and IoT sensors.

Federated Learning is a novel paradigm that aims to train a statistical model at the

“edge” nodes as opposed to the traditional distributed computing systems such as data

centers [7,25]. The main objective of federated learning is to fit a model to data generated

from network devices without continuous transfer of the massive amount of collected data

from edge of the network to back-end servers for processing.

Federated learning has been deployed by major technology companies with the goal

of providing privacy-preserving services using users’ data [26]. Examples of such applica-

tions are learning from wearable devices [27], learning sentiment [28], and location-based

services [29]. While federated learning is a promising paradigm for such applications,

there are several challenges that remain to be resolved. In this chapter, we focus on

two significant challenges of federated learning, and propose a novel federated learning

algorithm that addresses the following two challenges:

(1) Communication bottleneck. Bandwidth is a major bottleneck in federated learn-

ing as a large number of devices attempt to communicate their local updates to a central

parameter server. Thus, for a communication-efficient federated learning algorithm, it is

crucial that such updates are sent in a compressed manner and infrequently.

(2) Scale. A federated network typically consists of thousands to millions of devices

that may be active, slow, or completely inactive during the training procedure. Thus, a

22

Communication-Efficient Federated Learning Chapter 2

proposed federated learning algorithm should be able to operate efficiently with partial

device participation or random sampling of devices.

The goal of this chapter is to develop a provably efficient federated learning algorithm

that addresses the above-mentioned systems challenges. More precisely, we consider the

task of training a model in a federated learning setup where we aim to find an accurate

model over a collection of n distributed nodes. In this setting, each node contains m in-

dependent and identically distributed samples from an unknown probability distribution

and a parameter server helps coordination between the nodes. We focus on solving the

population risk minimization problem for a federated architecture while addressing the

challenges mentioned above. In particular, we consider both strongly convex and non-

convex settings and provide guarantees on the performance of our proposed algorithm.

Contributions. In this chapter, we propose FedPAQ, a communication-efficient

Federated learning algorithm with Periodic Averaging and Quantization, which ad-

dresses federated learning systems’ bottlenecks. In particular, FedPAQ has three key

features that enable efficient federated learning implementation:

(1) FedPAQ allows the nodes of the network to run local training before synchronizing

with the parameter server. In particular, each node iteratively updates its local model

for a period of iterations using the stochastic gradient descent (SGD) method and then

uploads its model to the parameter server where all the received models are averaged pe-

riodically. By tuning the parameter which corresponds to the number of local iterations

before communicating to the server, periodic averaging results in slashing the number of

communication rounds and hence the total communication cost of the training process.

(2) FedPAQ captures the constraint on availability of active edge nodes by allowing a

partial node participation. That is, in each round of the method, only a fraction of the

total devices–which are the active ones–contribute to train the model. This procedure

23

Communication-Efficient Federated Learning Chapter 2

not only addresses the scalability challenge, but also leads to smaller communication load

compared to the case that all nodes participate in training the learning model.

(3) In FedPAQ, nodes only send a quantized version of their local information to the server

at each round of communication. As the training models are of large sizes, quantization

significantly helps reducing the communication overhead on the network.

Though these features have been proposed in the literature, to the best of our knowl-

edge, FedPAQ is the first federated learning algorithm that simultaneously incorporates

these features and provides theoretical convergence guarantees, while being communication-

efficient via periodic averaging, partial node participation and quantization.

In particular, we analyze our proposed FedPAQ method for two general class of loss

functions: strongly-convex and non-convex. For the strongly-convex setting, we show

that after T iterations the squared norm of the distance between the solution of our

method and the optimal solution is of O(1/T) in expectation. We also show that FedPAQ

approaches a first-order stationary point for non-convex losses at a rate of O(1/
√
T).

This demonstrates that our method significantly improves the communication-efficiency

of federated learning while preserving the optimality and convergence guarantees of the

baseline methods. In addition, we would like to highlight that our theoretical analysis is

based on few relaxed and customary assumptions which yield more technical challenges

compared to the existing works with stronger assumptions and hence acquires novel

analytical techniques. More explanations will be provided in Section 2.4.

Related Work. The main premise of federated learning has been collective learn-

ing using a network of common devices such as phones and tablets. This framework

potentially allows for smarter models, lower latency, and less power consumption, all

while ensuring privacy. Successfully achieving these goals in practice requires addressing

key challenges of federated learning such as communication complexity, systems hetero-

24

Communication-Efficient Federated Learning Chapter 2

geneity, privacy, robustness, and heterogeneity of the users. Recently, many federated

methods have been considered in the literature which mostly aim at reducing the com-

munication cost. [30] proposed the FedAvg algorithm, where the global model is updated

by averaging local SGD updates. [31] proposed one-shot federated learning in which the

master node learns the model after a single round of communication.

Optimization methods for federated learning are naturally tied with tools from stochas-

tic and distributed optimization. Minibatch stochastic gradient descent distributed op-

timization methods have been largely studied in the literature without considering the

communication bottleneck. Addressing the communication bottleneck via quantization

and compression in distributed learning has recently gained considerable attention for

both master-worker [32–35] and masterless topologies [36–39]. Moreover, [39] reduces

the communication delay by decomposing the graph.

Local updates, as another approach to reduce the communication load in distributed

learning has been studied in the literature, where each learning node carries out multi-

ple local updates before sharing with the master or its neighboring nodes. [40] consid-

ered a master-worker topology and provides theoretical analysis for the convergence of

local-SGD method. [41] introduced a variant of local-SGD namely post-local-SGD which

demonstrates empirical improvements over local-SGD. [42] provided a general analysis of

such cooperative method for decentralized settings as well.

2.2 Federated Learning Setup

In this chapter, we focus on a federated architecture where a parameter server (or

server) aims at finding a model that performs well with respect to the data points that

are available at different nodes (users) of the network, while nodes exchange their local

information with the server. We further assume that the data points for all nodes in

25

Communication-Efficient Federated Learning Chapter 2

the network are generated from a common probability distribution. In particular, we

consider the following stochastic learning problem

min
w

f(w) :=
1

n

n∑

i=1

fi(w), (2.1)

where the local objective function of each node i is defined as the expected loss of its

local sample distributions

fi(w) := Eξ∼Pi [`(w, ξ)]. (2.2)

Here ` : Rp×Ru → R is a stochastic loss function, w ∈ Rp is the model vector, and ξ ∈ Ru

is a random variable with unknown probability distribution P i. Moreover, f : Rp → R

denotes the expected loss function also called population risk. In our considered federated

setting, each of the n distributed nodes generates a local loss function according to a

distribution P i resulting in a local stochastic function fi(w) := Eξ∼Pi [`(w, ξ)]. A special

case of this formulation is when each node i maintains a collection of m samples from

distribution P i which we denote by Di = {ξi1, · · · , ξim} for i ∈ [n]. This results in

the following empirical risk minimization problem over the collection of nm samples in

D := D1 ∪ · · · ∪ Dn:

min
w

L(w) = min
w

1

nm

∑

ξ∈D
`(w, ξ), (2.3)

We denote the optimal model w∗ as the solution to the expected risk minimization

problem in (4.1) and denote the minimum loss f ∗ := minw f(w) = f(w∗) as the optimal

objective function value of the expected risk minimization problem in (4.1). In this

work, we focus on the case that the data over the n nodes is independent and identically

distributed (i.i.d.), which implies the local distributions are common.

As stated above, our goal is to minimize the expected loss f(w). However, due to

the fact that we do not have access to the underlying distribution P , there have been

26

Communication-Efficient Federated Learning Chapter 2

prior works that focus on minimizing the empirical risk L(w) which can be viewed as

an approximation of the expected loss f(w). The accuracy of this approximation is

determined by the number of samples nm. It has been shown that for convex losses `,

the population risk f is at most O(1/
√
nm) distant from the empirical risk L, uniformly

and with high probability [43]. That is, supw |f(w) − L(w)| ≤ O(1/
√
nm) with high

probability. This result implies that if each of the n nodes separately minimizes its local

empirical loss function, the expected deviation from the local solution and the solution to

the population risk minimization problem is of O(1/
√
m) (note that each node has access

to m data samples). However, if the nodes manage to somehow share or synchronize their

solutions, then a more accurate solution can be achieved, that is a solution with accuracy

of order O(1/
√
nm). Therefore, when all the mn available samples are leveraged, one

can obtain a solution ŵ that satisfies E[L(ŵ)− L(w∗)] ≤ O(1/
√
nm). This also implies

that E[f(ŵ)−minw f(w)] ≤ O(1/
√
nm).

For the case of non-convex loss function `, however, finding the solution to the ex-

pected risk minimization problem in (4.1) is hard. Even further, finding (or testing) a

local optimum is NP-hard in many cases [44]. Therefore, for non-convex losses we relax

our main goal and instead look for first-order optimal solutions (or stationary points) for

(4.1). That is, we aim to find a model ŵ that satisfies
∥∥∇f(ŵ)

∥∥ ≤ ε for an arbitrarily

small approximation error ε. [45] characterized the gap for the gradients of the two ex-

pected risk and empirical risk functions. That is, if the gradient of loss is sub-Gaussian,

then with high probability supw

∥∥∇L(w)−∇f(w)
∥∥ ≤ O(1/

√
nm). This result further

implies that having all the nodes contribute in minimizing the empirical risk results in

better approximation for a first-order stationary point of the expected risk L. In sum-

mary, our goal in non-convex setting is to find ŵ that satisfies
∥∥∇f(w)

∥∥ ≤ O(1/
√
nm)

which also implies
∥∥∇L(w)

∥∥ ≤ O(1/
√
nm).

27

Communication-Efficient Federated Learning Chapter 2

2.3 Proposed FedPAQ Method

In this section, we present our proposed communication-efficient federated learning

method called FedPAQ, which consists of three main modules: (1) periodic averaging, (2)

partial node participation, and (3) quantized message passing.

2.3.1 Periodic averaging

As explained in Section 2.2, to leverage from all the available data samples on the

nodes, any training method should incorporate synchronizing the intermediate models

obtained at local devices. One approach is to let the participating nodes synchronize their

models through the parameter server in each iteration of the training. This, however,

implies many rounds of communication between the federated nodes and the parameter

server which results in communication contention over the network. Instead, we let

the participating nodes conduct a number of local updates and synchronize through

the parameter server periodically. To be more specific, once nodes pull an updated

model from the server, they update the model locally by running τ iterations of the SGD

method and then send proper information to the server for updating the aggregate model.

Indeed, this periodic averaging scheme reduces the rounds of communication between

server and the nodes and consequently the overall communication cost of training the

model. In particular, for the case that we plan to run T iterations of SGD at each node,

nodes need to communicate with the server K = T/τ rounds, hence reducing the total

communication cost by a factor of 1/τ .

Choosing a larger value of τ indeed reduces the rounds of communication for a fixed

number of iterations T . However, if our goal is to obtain a specific accuracy ε, choosing a

very large value for τ is not necessarily optimal as by increasing τ the noise of the system

increases and the local models approach the local optimal solutions instead of the global

28

Communication-Efficient Federated Learning Chapter 2

optimal solution. Hence, we might end up running more iterations T to achieve a specific

accuracy ε comparing to a case that τ is small. Indeed, a crucial question that we need

to address is finding the optimal choice of τ for minimizing the overall communication

cost of the process.

2.3.2 Partial node participation

In a federated network, often there is a large number of devices such as smart phones

communicating through a base station. On one hand, base stations have limited down-

load bandwidth and hence only a few of devices are able to simultaneously upload their

messages to the base station. Due to this limitation the messages sent from the devices

will be pipelined at the base station which results in a dramatically slow training. On

the other hand, having all of the devices participate through the whole training process

induces a large communication overhead on the network which is often costly. Moreover,

in practice not all the devices contribute in each round of the training. Indeed, there are

multiple factors that determine whether a device can participate in the training [1]: a

device should be available in the reachable range of the base station; a device should be

idle, plugged in and connected to a free wireless network during the training; etc.

Our proposed FedPAQ method captures the restrictions mentioned above. In partic-

ular, we assume that among the total of n devices, only r nodes (r ≤ n) are available

in each round of the training. We can also assume that due to the availability criterion

described before, such available devices are randomly and uniformly distributed over the

network [46]. In summary, in each period k = 0, 1, · · · , K − 1 of the training algorithm,

the parameter server sends its current model wk to all the r nodes in subset Sk, which

are distributed uniformly at random among the total n nodes, i.e., Pr[Sk] = 1/
(
n
r

)
.

29

Communication-Efficient Federated Learning Chapter 2

2.3.3 Quantized message-passing

Another aspect of the communication bottleneck in federated learning is the limited

uplink bandwidth at the devices which makes the communication from devices to the

parameter server slow and expensive. Hence, it is critical to reduce the size of the up-

loaded messages from the federated devices [25]. Our proposal is to employ quantization

operators on the transmitted massages. Depending on the accuracy of the quantizer, the

network communication overhead is reduced by exchanging the quantized updates.

In the proposed FedPAQ, each node i ∈ Sk obtains the model w
(i)
k,τ after running τ

local iterations of an optimization method (possibly SGD) on the most recent model wk

that it has received form the server. Then each node i applies a quantizer operator Q(·)

on the difference between the received model and its updated model, i.e., w
(i)
k,τ − wk,

and uploads the quantized vector Q(w
(i)
k,τ − wk) to the parameter server. Once these

quantized vectors are sent to the server, it decodes the quantized signals and combines

them to come up with a new model wk+1.

Next, we describe a widely-used random quantizer.

Example 2.1 (Low-precision quantizer [32]) For any variable w ∈ Rp, the low pre-

cision quantizer QLP : Rp → Rp is defined as below

QLP
i (w) =‖w‖ · sign(xi) · ξi(w, s), i ∈ [p], (2.4)

where ξi(w, s) is a random variable taking on value l+1
s

with probability |xi|
‖w‖s − l and l

s

otherwise. Here, the tuning parameter s corresponds to the number of quantization levels

and l ∈ [0, s) is an integer such that |xi|‖w‖ ∈ [l
s
, l+1

s
).

30

Communication-Efficient Federated Learning Chapter 2

2.3.4 Algorithm update

Now we use the building blocks developed in Sections 2.3.1-2.3.3 to precisely present

FedPAQ. Our proposed method consists of K periods, and during a period, each node

performs τ local updates, which results in total number of T = Kτ iterations. In each

period k = 0, · · · , K − 1 of the algorithm, the parameter server picks r ≤ n nodes

uniformly at random which we denote by Sk. The parameter server then broadcasts its

current model wk to all the nodes in Sk and each node i ∈ Sk performs τ local SGD

updates using its local dataset. To be more specific, let w
(i)
k,t denote the model at node

i at t-th iteration of the k-th period. At each local iteration t = 0, · · · , τ − 1, node i

updates its local model according to the following rule:

w
(i)
k,t+1 = w

(i)
k,t − ηk,t∇̃fi

(
w

(i)
k,t

)
, (2.5)

where the stochastic gradient ∇̃fi is computed using a random sample1 picked from the

local dataset Di. Note that all the nodes begin with a common initialization w
(i)
k,0 = wk.

After τ local updates, each node computes the overall update in that period, that is

w
(i)
k,τ −wk, and uploads a quantized update Q(w

(i)
k,τ −wk) to the parameter server. The

parameter server then aggregates the r received quantized local updates and computes

the next model according to

wk+1 = wk +
1

r

∑

i∈Sk
Q
(
w

(i)
k,τ −wk

)
, (2.6)

and the procedure is repeated for K periods. The proposed method is formally summa-

rized in Algorithm 2.1.

1The method can be easily made compatible with using a mini-batch during each iteration.

31

Communication-Efficient Federated Learning Chapter 2

Algorithm 2.1: FedPAQ

for k = 0, 1, · · · , K − 1 do
server picks r nodes Sk uniformly at random
server sends wk to nodes in Sk
for node i ∈ Sk do

w
(i)
k,0 ← wk

for t = 0, 1, · · · , τ − 1 do

compute stochastic gradient ∇̃fi(w) = ∇`(w, ξ) for a ξ ∈ P i
set w

(i)
k,t+1 ← w

(i)
k,t − ηk,t∇̃fi(w

(i)
k,t)

end

send Q(w
(i)
k,τ −wk) to the server

end

server finds wk+1 ← wk + 1
r

∑
i∈Sk Q(w

(i)
k,τ −wk)

end

2.4 Convergence Analysis

In this section, we present our theoretical results on the guarantees of the FedPAQ

method. We first consider the strongly convex setting and state the convergence guar-

antee of FedPAQ for such losses in Theorem 2.1. Then, in Theorem 2.2, we present the

overall complexity of our method for finding a first-order stationary point of the aggregate

objective function f , when the loss function ` is non-convex (All proofs are provided in

the supplementary material). Before that, we first mention three customary assumptions

required for both convex and non-convex settings.

Assumption 2.1 The random quantizer Q(·) is unbiased and its variance grows with

the squared of l2-norm of its argument, i.e.,

E
[
Q(w)|w

]
= w, E

[∥∥Q(w)−w
∥∥2 |w

]
≤ q‖w‖2 , (2.7)

for some positive real constant q and any w ∈ Rp.

32

Communication-Efficient Federated Learning Chapter 2

Assumption 2.2 The loss functions fi are L-smooth with respect to w, i.e., for any

w,w′ ∈ Rp, we have
∥∥∇fi(w)−∇fi(w′)

∥∥ ≤ L‖w −w′‖.

Assumption 2.3 Stochastic gradients ∇̃fi(w) are unbiased and variance bounded, i.e.,

Eξ[∇̃fi(w)] = ∇fi(w) and Eξ[‖∇̃fi(w)−∇fi(w)‖2] ≤ σ2.

The conditions in Assumption 2.1 ensure that output of quantization is an unbiased

estimator of the input with a variance that is proportional to the norm-squared of the

input. This condition is satisfied with most common quantization schemes including

the low-precision quantizer introduced in Example 1. Assumption 2.2 implies that the

gradients of local functions ∇fi and the aggregated objective function ∇f are also L-

Lipschitz continuous. The conditions in Assumption 2.3 on the bias and variance of

stochastic gradients are also customary. Note that this is a much weaker assumption

compared to the one that uniformly bounds the expected norm of the stochastic gradient.

Challenges in analyzing the FedPAQ method.

Here, we highlight the main theoretical challenges in proving our main results. As

outlined in the description of the proposed method, in the k-th round of FedPAQ, each

participating node i updates its local model for τ iterations via SGD method in (2.5).

Let us focus on a case that we use a constant stepsize for the purpose of this discussion.

First consider the naive parallel SGD case which corresponds to τ = 1. The updated

local model after τ = 1 local update is

w
(i)
k,τ = w

(i)
k,0 − η∇̃fi

(
w

(i)
k,0

)
. (2.8)

Note that w
(i)
k,0 = wk is the parameter server’s model sent to the nodes. Since we assume

the stochastic gradients are unbiased estimators of the gradient, it yields that the local

update w
(i)
k,τ − wk is an unbiased estimator of −η∇f(wk) for every participating node.

33

Communication-Efficient Federated Learning Chapter 2

Hence, the aggregated updates at the server and the updated model wk+1 can be simply

related to the current model wk as one step of parallel SGD. However, this is not the

case when the period length τ is larger than 1. For instance, in the case that τ = 2, the

local updated model after τ = 2 iterations is

w
(i)
k,τ = wk − η∇̃fi (wk)− η∇̃fi

(
wk − η∇̃fi (wk)

)
. (2.9)

Clearly, w
(i)
k,τ −wk is not an unbiased estimator of −η∇f(wk) or −η∇f(wk− η∇f(wk)).

This demonstrates that the aggregated model at server cannot be treated as τ iterations

of parallel SGD, since each local update contains a bias. Indeed, this bias gets prop-

agated when τ gets larger. For our running example τ = 2, the variance of the bias,

i.e. E‖η∇̃fi(wk− η∇̃fi(wk))‖2 is not uniformly bounded either (Assumption 2.3), which

makes the analysis even more challenging compared to the works with bounded gradient

assumption (e.g. [40, 47]).

2.4.1 Strongly convex setting

Now we proceed to establish the convergence rate of the proposed FedPAQ method for

a federated setting with strongly convex and smooth loss function `. We first formally

state the strong convexity assumption.

Assumption 2.4 The loss functions fi are µ-strongly convex, i.e., for any w,w′ ∈ Rp

we have that 〈∇fi(w)−∇fi(w′),w −w′〉 ≥ µ‖w −w′‖2 .

Theorem 2.1 (Strongly convex loss) Consider the sequence of iterates wk at the pa-

rameter server generated according to the FedPAQ method outlined in Algorithm 2.1.

Suppose the conditions in Assumptions 2.1–2.4 are satisfied. Further, let us define the

34

Communication-Efficient Federated Learning Chapter 2

constant B1 as

B1 = 2L2

(
q

n
+

n− r
r(n− 1)

4(1 + q)

)
, (2.10)

where q is the quantization variance parameter defined in (2.7) and r is the number

of active nodes at each round of communication. If we set the stepsize in FedPAQ as

ηk,t = ηk = 4µ−1

kτ+1
, then for any k ≥ k0 where k0 is the smallest integer satisfying

k0 ≥ 4 max

{
L

µ
, 4

(
B1

µ2
+ 1

)
,

1

τ
,

4n

µ2τ

}
, (2.11)

the expected error E[‖wk −w∗‖]2 is bounded above by

E‖wk −w∗‖2 ≤ (k0τ + 1)2

(kτ + 1)2
‖wk0 −w∗‖2 + C1

τ

kτ + 1
+ C2

(τ − 1)2

kτ + 1
+ C3

τ − 1

(kτ + 1)2
,

(2.12)

where the constants in (2.12) are defined as

C1 =
16σ2

µ2n

(
1 + 2q + 8(1 + q)

n(n− r)
r(n− 1)

)
,

C2 =
16eL2σ2

µ2n
,

C3 =
256eL2σ2

µ4n

(
n+ 2q + 8(1 + q)

n(n− r)
r(n− 1)

)
. (2.13)

Proof: We defer the proof to Appendix A.1.

Remark 2.1 Under the same conditions as in Theorem 2.1 and for a total number of

iterations T = Kτ ≥ k0τ we have the following convergence rate

E‖wK −w∗‖2 ≤ O
(
τ

T

)
+O

(
τ 2

T 2

)
+O

(
(τ − 1)2

T

)
+O

(
τ − 1

T 2

)
. (2.14)

As expected, the fastest convergence rate is attained when the contributing nodes syn-

35

Communication-Efficient Federated Learning Chapter 2

chronize with the parameter server in each iteration, i.e. when τ = 1. Theorem 2.1

however characterizes how large the period length τ can be picked. In particular, any pick

of τ = o(
√
T) ensures the convergence of the FedPAQ to the global optimal for strongly

convex losses.

Remark 2.2 By setting τ = 1, q = 0 and r = n, Theorem 2.1 recovers the convergence

rate of vanilla parallel SGD, i.e., O(1/T) for strongly-convex losses. Our result is how-

ever more general since we remove the uniformly bounded assumption on the norm of

stochastic gradient. For τ ≥ 1, Theorem 2.1 does not recover the result in [40] due to our

weaker condition in Assumption 2.3. Nevertheless, the same rate O(1/T) is guaranteed

by FedPAQ for constant values of τ .

2.4.2 Non-convex setting

We now present the convergence result of FedPAQ for smooth non-convex losses.

Theorem 2.2 (Non-convex Losses) Consider the sequence of iterates wk at the pa-

rameter server generated according to the FedPAQ method outlined in Algorithm 2.1.

Suppose the conditions in Assumptions 2.1–2.3 are satisfied. Further, let us define the

constant B2 as

B2 :=
q

n
+

4(n− r)
r(n− 1)

(1 + q), (2.15)

where q is the quantization variance parameter defined in (2.7) and r is the number of

active nodes at each round. If the total number of iterations T and the period length τ

satisfy the following conditions,

T ≥ 2, τ ≤
√
B2

2 + 0.8−B2

8

√
T , (2.16)

and we set the stepsize as ηk,t = 1
L
√
T

, then the following first-order stationary condition

36

Communication-Efficient Federated Learning Chapter 2

holds

1

T

K−1∑

k=0

τ−1∑

t=0

E
∥∥∇f(wk,t)

∥∥2 ≤ 2L(f(w0)− f ∗)√
T

+N1
1√
T

+N2
τ − 1

T
, (2.17)

where the constants in (7.4) are defined as

N1 := (1 + q)
σ2

n

(
1 +

n(n− r)
r(n− 1)

)
, N2 :=

σ2

n
(n+ 1).

Proof: We defer the proof to Appendix A.2.

Remark 2.3 The result in Theorem 2.2 implies the following order-wise rate

1

T

K−1∑

k=0

τ−1∑

t=0

E
∥∥∇f(wk,t)

∥∥2 ≤ O
(

1√
T

)
+O

(
τ−1

T

)
.

Clearly, the fastest convergence rate is achieved for the smallest possible period length,

i.e., τ = 1. This however implies that the edge nodes communicate with the parameter

server in each iteration, i.e. T rounds of communications which is costly. On the other

hand, the conditions (2.16) in Theorem 2.2 allow the period length τ to grow up to O(
√
T)

which results in an overall convergence rate of O(1/
√
T) in reaching an stationary point.

This result shows that with only O(
√
T) rounds of communication FedPAQ can still ensure

the convergence rate of O(1/
√
T) for non-convex losses.

Remark 2.4 Theorem 2.2 recovers the convergence rate of the vanilla parallel SGD [47]

for non-convex losses as a special case of τ = 1, q = 0 and r = n. Nevertheless, we

remove the uniformly bounded assumption on the norm of the stochastic gradient in our

theoretical analysis. We also recover the result in [42] when there is no quatization q = 0

and we have a full device participation r = n.

37

Communication-Efficient Federated Learning Chapter 2

It is worth mentioning that for Theorems 2.1 and 2.2, one can use a batch of size m

for each local SGD update and the same results hold by changing σ2

n
to σ2

mn
.

2.5 Numerical Results and Discussions

The proposed FedPAQ method reduces the communication load by employing three

modules: periodic averaging, partial node participation, and quantization. This commu-

nication reduction however comes with a cost in reducing the convergence accuracy and

hence requiring more iterations of the training, which we characterized in Theorems 2.1

and 2.2. In this section, we empirically study this communication-computation trade-off

and evaluate FedPAQ in comparison to other benchmarks. To evaluate the total cost of

a method, we first need to specifically model such cost. We consider the total training

time as the cost objective which consists of communication and computation time [48,49].

Consider T iterations of training with FedPAQ that consists of K = T/τ rounds of com-

munication. In each round, r workers compute τ iterations of SGD with batchsize B and

send a quantized vector of size p to the server.

Communication time. We fix a bandwidth BW and define the communication time in

each round as the total number of uploaded bits divided by BW. Total number of bits in

each round is r · |Q(p, s)|, where |Q(p, s)| denotes the number of bits required to encode

a quantized vector of dimension p according to a specific quantizer with s levels. In our

simulations, we use the low-precision quantizer described in Example 2.1 and assume it

takes pF bits to represent an unquantized vector of length p, where F is typically 32 bits.

Computation time. We consider the well-known shifted-exponential model for gradient

computation time [50]. In particular, we assume that for any node, computing the

gradients in a period with τ iterations and using batchsize B takes a deterministic shift

τ · B · shift plus a random exponential time with mean value τ · B · scale−1, where

38

Communication-Efficient Federated Learning Chapter 2

Figure 2.1: Training Loss vs. Training Time: Logistic Regression on MNIST (top).
Neural Network on CIFAR-10 (bottom).

shift and scale are respectively shift and scale parameters of the shifted-exponential

distribution. Total computation time of each round is then the largest local computation

time among the r contributing nodes. We also define a communication-computation ratio

Ccomm

Ccomp

=
pF/BW

shift + 1/scale

as the communication time for a length-p-vector over the average computation time

for one gradient vector. This ratio captures the relative cost of communication and

computation, and since communication is a major bottleneck, we have Ccomm/Ccomp � 1.

In the experiments, we use batchsize B = 10 and finely tune the stepsize’s coefficient.

Logistic Regression on MNIST: In Figure 2.1, the top four plots demonstrate

the training time for a regularized logistic regression problem over MNIST dataset (‘0’

and ‘8’ digits) for T = 100 iterations. The network has n = 50 nodes each loaded with

200 samples. We set Ccomm/Ccomp = 100/1 to capture the communication bottleneck.

Among the three parameters quantization levels s, number of active nodes in each round

r, and period length τ , we fix two and vary the third one. First plot demonstrates the

39

Communication-Efficient Federated Learning Chapter 2

relative training loss for different quantization levels s ∈ {1, 5, 10} and the case with no

quantization which corresponds to the FedAvg method [30]. The other two parameters

are fixed to (τ, r) = (5, 25). Each curve shows the training time versus the achieved

training loss for the aggregated model at the server for each round k = 1, · · · , T/τ .

In the second plot, (s, τ) = (1, 5) are fixed. The third plot demonstrates the effect of

period length τ in the communication-computation tradeoff. As demonstrated, after T/τ

rounds, smaller choices for τ (e.g. τ = 1, 2) result in slower convergence while the larger

ones (e.g. τ = 50) run faster though providing less accurate models. Here τ = 10 is

the optimal choice. The last plot compares the training time of FedPAQ with two other

benchmarks FedAvg and QSGD. For both FedPAQ and FedAvg, we set τ = 2 while FedPAQ

and QSGD use quantization with s = 1 level. All three methods use r = n = 50 nodes

in each round.

Neural Network training over CIFAR-10: We conduct another set of numerical

experiments to evaluate the performance of FedPAQ on non-convex and smooth objec-

tives. Here we train a neural network with four hidden layers consisting of n = 50 nodes

and more thatn 92K parameters, where we use 10K samples from CIFAR-10 dataset

with 10 labels. Since models are much larger than the previous setup, we increase the

communication-computation ratio to Ccomm/Ccomp = 1000/1 to better capture the commu-

nication bottleneck for large models. The bottom four plots in Figure 2.1 demonstrate

the training loss over time for T = 100 iterations. In the first plot, (τ, r) = (2, 25) are

fixed and we vary the quantization levels. The second plot shows the effect of r while

(s, τ) = (1, 2). The communication-computation tradeoff in terms of period length τ is

demonstrated in the third plot, where picking τ = 10 turns out to attain the fastest

convergence. Lastly, we compare FedPAQ with other benchmarks in the forth plot. Here,

we set (s, r, τ) = (1, 20, 10) in FedPAQ, (r, τ) = (20, 10) in FedAvg and (s, r, τ) = (1, 50, 1)

for QSGD.

40

Communication-Efficient Federated Learning Chapter 2

Additional numerical results: To further illustrate the practical performance of

the proposed FedPAQ method, here we provide more numerical results using different and

more complicated datasets and model parameters. The network settings, communication

and computation time models remain the same as those in Section 6.4. The following

figures demonstrate the training time corresponding to the following scenarios:

• Figure 2.2: Training time of a neural network with four hidden layers and more

than 248K parameters over 10K samples of the CIFAR-10 dataset with 10 labels.

• Figure 2.3: Training time of a neural network with one hidden layer over 10K

samples of the CIFAR-100 dataset with 100 labels.

• Figure 2.4: Training time of a neural network with one hidden layer over 10K

samples of the Fashion-MNIST dataset with 10 labels.

Here as well, in all of the above scenarios, the data samples are uniformly distributed

among n = 50 nodes. We also keep the communication-computation ratio and the

batchsize to be Ccomm/Ccomp = 1000/1 and B = 10 respectively, and finely tune the

stepsize for every training.

Figure 2.2: Training Loss vs. Training Time: Neural Network on CIFAR-10 dataset with
248K parameters.

41

Communication-Efficient Federated Learning Chapter 2

Figure 2.3: Training Loss vs. Training Time: Neural Network on CIFAR-100 dataset.

Figure 2.4: Training Loss vs. Training Time: Neural Network on Fashion-MNIST
dataset.

2.6 Concluding Remarks

In this chapter, we addressed some of the communication and scalability challenges

of federated learning and proposed FedPAQ, a communication-efficient federated learning

method with provable performance guarantees. FedPAQ is based on three modules: (1)

periodic averaging in which each edge node performs local iterative updates; (2) partial

node participation which captures the random availability of the edge nodes; and (3)

quantization in which each model is quantized before being uploaded to the server. We

provided rigorous analysis for FedPAQ for two general classes of strongly-convex and

non-convex losses. We further provided numerical results evaluating the performance of

FedPAQ, and discussing the trade-off between communication and computation.

42

Chapter 3

Straggler-Resilient Federated

Learning

Federated learning is prone to multiple system challenges including system heterogeneity

where clients have different computation and communication capabilities. Such hetero-

geneity in clients’ computation speeds has a negative effect on the scalability of federated

learning algorithms and causes significant slow-down in their runtime due to the existence

of stragglers. In this chapter, we propose a novel straggler-resilient federated learning

method that incorporates statistical characteristics of the clients’ data to adaptively select

the clients in order to speed up the learning procedure. The key idea of our algorithm

is to start the training procedure with faster nodes and gradually involve the slower

nodes in the model training once the statistical accuracy of the data corresponding to

the current participating nodes is reached. The proposed approach reduces the overall

runtime required to achieve the statistical accuracy of data of all nodes, as the solution

for each stage is close to the solution of the subsequent stage with more samples and

can be used as a warm-start. Our theoretical results characterize the speedup gain in

comparison to standard federated benchmarks for strongly convex objectives and i.i.d.

43

Straggler-Resilient Federated Learning Chapter 3

samples (system heterogeneous and data homogeneous), and our numerical experiments

also demonstrate significant speedups in wall-clock time of our straggler-resilient method

compared to other federated learning benchmarks.

3.1 Introduction

Federated learning is a distributed framework whose objective is to train a model

using the data of many clients (nodes), while keeping each node’s data local. In contrast

with centralized learning, the federated learning architecture allows for preserving the

clients’ privacy as well as reducing the communication burden caused by transmitting

data to a cloud. Nevertheless, as we move towards deploying federated learning in prac-

tice, it is becoming apparent that several major challenges still remain and the existing

frameworks need to be rethought to address them. Important among these challenges is

system (device) heterogeneity due to existence of straggling nodes – slow nodes with low

computational capability – that significantly slow down the model training [3, 25].

In this chapter, we focus on system heterogeneity in federated learning and we leverage

the interplay between statistical accuracy and system heterogeneity to design a straggler-

resilient federated learning method that carefully and adaptively selects a subset of avail-

able nodes in each round of training. Federated networks consist of thousands of devices

with a wide range of computational, communication, battery power, and storage charac-

teristics. Hence, deploying traditional federated learning algorithms such as FedAvg [51]

on such a highly heterogeneous cluster of devices results in significant and unexpected

delays due to existence of slow clients or stragglers. In most of such algorithms, all the

available clients participate in the model training –regardless of their computational ca-

pabilities. Consequently, in each communication round of such methods, the server has

to wait for the slowest node to complete its local updates and upload its local model

44

Straggler-Resilient Federated Learning Chapter 3

which significantly slows down the training process.

In this chapter, we aim to mitigate the effect of stragglers in federated learning based

on an adaptive node participation approach in which clients are selected to participate in

different stages of training according to their computation speed. We call our straggler-

resilient scheme a Federated Learning method with Adaptive Node Participation or

FLANP. The key idea of this scheme is to start the model training procedure with only

a few clients which are the fastest among all the nodes. These participating clients

continue to train their shared models while interacting with the parameter server. Note

that since the server waits only for the participating nodes, it takes a short time for the

participating (and fast) clients to promptly train a shared model. This model is, however,

not accurate as it is trained over only a fraction of samples. We next increase the number

of participating clients and include the next fastest subset of nonparticipating nodes in

the training. Note that the model trained from the previous stage can be a warm-start

initialization for the current stage.

To discuss our main idea more precisely, consider a federated network of N available

nodes each storing s data samples and suppose that we start the learning procedure with

only m clients. Once we solve the empirical risk minimization (ERM) problem corre-

sponding to m× s samples of these nodes up to its statistical accuracy, we geometrically

increase the number of participating nodes to n = αm where α > 1, by adding the next

n−m fastest clients in the network. By doing so, the new ERM problem that we aim to

solve contains the samples from the previous stage as well as the samples of the newly

participating nodes. Moreover, the solution for the ERM problem at the previous stage

(with m clients) could be used as a warm-start for the ERM problem at the current stage

with n = αm nodes. This is due to the fact that all samples are drawn from a common

distribution, and as a result, the optimal solution of the ERM problem with fewer sam-

ples is not far from the optimal solution of the ERM problems with more samples, as

45

Straggler-Resilient Federated Learning Chapter 3

long as the larger set contains the smaller set.

In the proposed FLANP algorithm, as time progresses, we gradually increase the num-

ber of participating clients until we reach the full training set and all clients are involved.

Note that in this procedure, the slower clients are only used towards the end of the learn-

ing process, where the model is already close to the optimal model of the aggregate loss.

Another essential observation is that since the model trained in previous rounds already

has a reasonable statistical accuracy and this model serves as the initial point of the next

round of the iterative algorithm, the slower nodes are only needed to contribute in the

final rounds of training, leading to a smaller wall-clock time. This is in contrast with

having all nodes participate in training from the beginning, which leads to computation

time of each round being determined by the slowest node. In this chapter, we formally

characterize the gain obtained by using the proposed adaptive node participation scheme

compared to the case that all available nodes contribute to training at each round. Next,

we state a summary of our main contributions:

•We present a straggler-resilient federated learning meta-algorithm that leverages the

interplay between statistical accuracy and device heterogeneity by adaptively activating

heterogeneous clients.

• We specify the proposed meta-algorithm with a federated learning subroutine and

present its optimization guarantees for strongly convex risks. Further, we characterize the

wall-clock time of the proposed straggler-resilient scheme and demonstrate analytically

that it achieves up to O(ln(Ns)) speedup gain compared to standard benchmarks.

• Our numerical results show that our framework significantly improves the wall-

clock time compared to federated learning benchmarks –with either full or partial node

participation– for both convex and non-convex risks.

Related Work. System (device) heterogeneity challenge, which refers to the case

that clients have different computational, communication and storage characteristics, has

46

Straggler-Resilient Federated Learning Chapter 3

been studied in the literature. Asynchronous methods have demonstrated improvements

in distributed data centers. However, such methods are less desirable in federated settings

as they rely on bounded staleness of slow clients [52, 53]. The active sampling approach

is another direction in which the server aims for aggregating as many local updates as

possible within a predefined time span [54]. More recently, [55] proposed a normalized

averaging method to mitigate stragglers in federated systems and the objective inconsis-

tency due to mismatch in clients’ local updates. Deadline-based computation has also

been studied to mitigate stragglers in decentralized settings [49]. In a different yet related

direction, various federated algorithms have been studied to address the heterogeneity in

clients’ data distributions [6, 8, 56–59].

The idea of adaptive sample size training in which we solve a sequence of geometrically

increasing ERM problems has been used previously for solving large-scale ERM problems.

In particular, it has been shown that this scheme improves the overall computational cost

of both first-order [60,61] and second-order [62–64] methods for achieving the statistical

accuracy of the full training set. In this chapter, we exploit this idea to develop FLANP

for a different setting to address the issue of device heterogeneity in federated learning.

As mentioned, FLANP is a general meta-algorithm that can be employed with any

federated learning subroutine studied in the literature [42,51,65–76]. In this chapter, we

showcase the gain obtained by combining FLANP with the FedGATE method [56].

3.2 Federated Learning Setup

In this section, we state our setup. Consider a federated architecture where N nodes

interact with a central server, and each node i ∈ [N] = {1, · · · , N} has access to s

data samples denoted by {zi1, · · · , zis}. These samples are drawn at the beginning of the

training process, and nodes cannot draw new samples during training. Further, define

47

Straggler-Resilient Federated Learning Chapter 3

`(·, ·) : Rd × Z → R as a loss function where `(w, zij) indicates how well the model

w performs with respect to the sample zij. Also, define the empirical loss of node i

as Li(w) := 1
s

∑s
j=1 `(w, z

i
j). For any 1 ≤ n ≤ N , we denote by Ln(w) the collective

empirical risk corresponding to samples of all nodes {1, · · · , n}, which is defined as

Ln(w) :=
1

n

n∑

i=1

Li(w). (3.1)

Ln(w) represents the average loss over the n× s samples stored at nodes {1, · · · , n}. We

let w∗n denote the optimal minimizer of the loss Ln(w), i.e., w∗n = arg minw Ln(w). We

assume that the samples zij are i.i.d. realizations of a random variable Z with probability

distribution P . The problem of finding a global model for the aggregate loss of all

available N nodes, which can be considered as the empirical risk minimization (ERM) in

(3.1) for n = N , i.e.,

min
w

LN(w)=
1

N

N∑

i=1

Li(w)=
1

Ns

N∑

i=1

s∑

j=1

`(w, zij) (3.2)

is a surrogate for the expected risk minimization problem minw L(w) := EZ∼P [`(w, Z)].

Our ultimate goal is to find the optimal solution of the expected risk w∗ = arg minw L(w);

however, since distribution P is unknown and we only have access to a finite number of

realizations of the random variable Z, i.e., {zi1, · · · , zis}Ni=1, we settle for solving prob-

lem (3.2).

Let us further clarify the data heterogeneity model used in our setting. Data samples

{zi1, · · · , zis}Ni=1 are i.i.d. (data homogeneous); however, the realized samples are fixed

through the learning process. More precisely, empirical risk functions Li are realized

and fixed which yields that the local gradient directions ∇Li are not necessarily an

unbiased estimator for the aggregate loss gradient ∇LN . In other words, nodes do not

48

Straggler-Resilient Federated Learning Chapter 3

have access to unbiased estimators of the expected loss and therefore federated learning

methods designed merely for i.i.d. data settings would not be useful here. This is indeed

a significant challenge in designing fast convergent optimization methods in such settings

which we will highlight in Section 3.3.

Statistical Accuracy. The difference of expected and empirical risks Ln(w)−L(w)

is referred to as the estimation error and can be bounded by a function of the sample size.

In particular, since Ln(w) captures ns samples, we assume that there exists a constant

Vns bounding the estimation error with high probability, supw |Ln(w)− L(w)| ≤ Vns.

The estimation error Vns has been deeply studied in the statistical learning literature

[77,78]. In particular, it has been shown that for strongly convex functions the estimation

error is proportional to the inverse of sample size [79, 80]. In this work, we also assume

that Vns = c
ns

for a constant c. Note that for the loss function Ln once we find a point

w̃ that has an optimization error of Vns, i.e., Ln(w̃)− Ln(w∗n) ≤ Vns, there is no gain in

improving the optimization error as the overall error with respect to the expected risk L

would not improve. Hence, when we find a point w̃ such that Ln(w̃) − Ln(w∗n) ≤ Vns,

we state that it has reached the statistical accuracy of Ln. Our goal is to find a solution

wN that is within the statistical accuracy of the ERM problem of the full training set

defined in (3.2).

System Heterogeneity Model. As mentioned earlier, federated clients attribute

a wide range of computational powers leading to significantly different processing times

for a fixed computing task such as gradient computation and local model update. To be

more specific, for each node i ∈ [N], we let Ti denote the (expected) time to compute one

local model update. The time for such update is mostly determined by the computation

time of a fixed batch-size stochastic gradient of the local empirical risk Li(w). Clearly,

larger Ti corresponds to slower clients or stragglers. Without loss of generality, we assume

that the nodes are sorted from faster to slower, that is, T1 ≤ · · · ≤ TN with node 1 and

49

Straggler-Resilient Federated Learning Chapter 3

N respectively identifying the fastest and slowest nodes in the network.

3.3 Adaptive Node Participation Approach

Several federated learning algorithms have been proposed to solve the ERM problem

in (3.2) such as FedAvg [51], FedProx [57], SCAFFOLD [8], DIANA [81], and FedGATE [56].

These methods consist of several rounds of local computations by the clients and com-

munication with the server. Alas, in all such approaches, all the available nodes in the

network –regardless of their computational capabilities– contribute to model learning

throughout the entire procedure. As explained earlier, federated clients operate in a

wide range of computational characteristics, and therefore, the server has to wait for the

slowest node in each communication round to complete its local computation task. All in

all, the slowest nodes determine the overall runtime of such federated algorithms which

causes significant slow-down.

In this section, we describe our proposed approach to mitigate stragglers in federated

learning, and lay out the intuition behind that. Our proposal, FLANP, is essentially a

meta-algorithm that can be specified with the choice of any particular federated learning

subroutine. The rest of the section focuses on a particular case of FLANP where the

federated learning subroutine is picked to be FedGATE proposed by [56].

3.3.1 FLANP: A Straggler-Resilient FL Meta-Algorithm

Our proposal to address the device heterogeneity and mitigate the stragglers is as

follows.The server first solves the ERM problem corresponding to n0 fastest nodes, where

n0 is much smaller than the total number of available nodes N . To identify the n0 fastest

nodes, the server first broadcasts a short hand-shake message to all nodes and waits for

the first n0 nodes that respond. These n0 nodes will participate in the training process

50

Straggler-Resilient Federated Learning Chapter 3

Algorithm 3.1: FLANP

Initialize fast-to-slow nodes {1, · · · , N}, n=n0 participating nodes with initial
global model wn0

while n ≤ N do
while Ln(wn)− Ln(w∗n) > Vns do

nodes {1, · · · , n} are participating and update local models via
Federated Solver

server aggregates local models from nodes {1, · · · , n} and updates global
model wn

end
n← min{2n,N} % doubling the participants

end

in the first stage. Using Federated Solver which is a federated learning subroutine

of choice, e.g., FedAvg or FedGATE, the n0 participating nodes proceed to minimize the

empirical risk corresponding to their data points, which we denote by Ln0(w) as defined

in (3.1). This continues until the n0 nodes reach their corresponding statistical accuracy,

that is, they reach a global model wn0 such that Ln0(wn0)−Ln0(w
∗
n0

) ≤ Vn0s. Note that

at this stage the server has to wait only for the slowest client among the participating

ones, i.e., node n0, which is potentially much faster than the network’s slowest node N .

Per our discussion in Section 3.2, a more accurate solution than wn0 would not help

improving the optimality gap. Therefore, once statistical accuracy is achieved, the proce-

dure is terminated and we increase the number of participating nodes from n0 to 2n0. To

select the 2n0 fastest nodes, we repeat the hand-shaking communication protocol that we

discussed. Then, the selected nodes use Federated Solver to find the minimizer of the

loss corresponding to 2n0 participating nodes, while using the solution of the previous

stage wn0 as their starting point. Note that since the samples of nodes come from the

same distribution, we can show that the solutions of two successive stages with n0 and

2n0 participants are close to each other, as we discuss in Section 3.4.

Again, in this stage, the training process terminates when we find a point w2n0

51

Straggler-Resilient Federated Learning Chapter 3

within the statistical accuracy of the loss corresponding to 2n0 participating nodes, i.e.,

L2n0(w2n0) − L2n0(w
∗
2n0

) ≤ V2n0s. In the stage with 2n0 participating nodes, the com-

putation delay is determined by the slowest participating node among 2n0 nodes, which

is slower than the previous stage with n0 participating nodes, but still faster than the

slowest node of the network. The procedure of geometrically increasing the number of

participating nodes continues till the set of participating nodes contains all the available

N nodes, and these nodes find the final global model wN within the statistical accu-

racy of the global loss function LN(w). Algorithm 3.1 summarizes the straggler-resilient

meta-algorithm.

Remark 3.1 In our proposed scheme, clients’ computation speeds are not needed, and

the parameter server figures out the fastest n nodes only by following the presented hand-

shaking protocol.

From a high-level perspective, Algorithm 3.1 exploits faster nodes in the beginning

of the learning procedure to promptly reach a global model withing their statistical

accuracy. By doing so, the server avoids waiting for slower nodes to complete their local

updates; however, the optimality gap of such models are relatively large since only a

fraction of data samples have contributed in the global model. By gradually increasing

the number of participating nodes and activating slower nodes, the quality of the global

model improves while the synchronous computation slows down due to slower nodes. The

key point is that slower nodes join the learning process towards the end.

The criterion in Algorithm 3.1, that is Ln(wn) − Ln(w∗n) > Vns, verifies that the

current global model satisfies the statistical accuracy corresponding to n participating

nodes {1, · · · , n}. This condition, however, is not easy to check since the optimal so-

lution w∗n is unknown. A sufficient and computationally feasible criterion is to check if

‖∇Ln(wn)‖2 ≤ 2µVns, when ` is µ-strongly convex.

52

Straggler-Resilient Federated Learning Chapter 3

3.3.2 FLANP via FedGATE

As FLANP in Algorithm 3.1 is a general mechanism to mitigate stragglers in federated

settings, one needs to specify the inner optimization subroutine Federated Solver to

quantify the speedup of the proposed approach. This subroutine could be any federated

learning algorithm, but here we focus on FedGATE [56], a federated learning algorithm

that employs gradient tracking variables to provide tight convergence guarantees for

nodes with heterogeneous data distributions.

Why FedGATE? We would like to reiterate that FLANP is a meta-procedure that can

be used for any federated learning solver other than FedGATE to make it resilient against

straggling nodes. Nevertheless, we use FedGATE as the subroutine since it can handle the

case that local gradients are not an unbiased estimator of the global loss gradient, which

is the case in our setting. Algorithm 3.2 demonstrates how adaptive node participation

in FLANP is adopted to mitigate straggler delays in FedGATE.

We begin the first stage of Algorithm 3.2 with activating the n = n0 fastest nodes

{1, · · · , n0} and initialize them with global model wn0 . We also reset the gradient tracking

variables δ
(0)
i to be zero for all participating nodes at the beginning of each stage. Vari-

ables δi aim to correct the directions of local updates at node i by tracking the difference

of local gradients ∇̃Li and global gradients ∇Ln such that directions di closely follow the

correct global gradient direction. After τn iterations of local updates at any participating

node in round r, accumulations of local gradients ∆
(r)
i are uploaded to the server where it

updates the global model wn using two stepsizes ηn, γn. Note that the stepsizes ηn, γn are

fixed throughout each stage with n participating nodes but vary for different stages as n

increases. After updating the global model wn at the end of each round, participating

nodes upload their local gradients ∇Li(wn) such that the server aggregates and com-

putes the global gradient ∇Ln(wn) and checks whether ‖∇Ln(wn)‖2 ≤ 2µVns. After Rn

53

Straggler-Resilient Federated Learning Chapter 3

Algorithm 3.2: FLANP via FedGATE

Initialize n = n0 participating nodes, initial model wn0 , initial gradient tracking

δ
(0)
i = 0 for participating nodes i ∈ {1, · · · , n0}

while n ≤ N do
r = 0 % reset round counter for each stage

for participating nodes i ∈ {1, · · · , n} do

δ
(0)
i = 0 % reset gradient tracking

end
while ‖∇Ln(wn)‖2 > 2µVns do

for participating nodes i ∈ {1, · · · , n} do

w
(0,r)
i = wn

for c = 0, · · · , τn − 1 do

set d
(c,r)
i = ∇̃Li(w(c,r)

i)− δ(r)
i

update w
(c+1,r)
i = w

(c,r)
i − ηnd(c,r)

i

end

send ∆
(r)
i = (wn −w

(τn,r)
i)/ηn to server

update δ
(r+1)
i = δ

(r)
i + 1

τn
(∆

(r)
i −∆(r))

end

server broadcasts ∆(r) = 1
n

∑n
i=1 ∆

(r)
i

server broadcasts wn ← wn − ηnγn∆(r)

participating nodes i ∈ {1, · · · , n} upload gradients ∇Li(wn) to server
r ← r + 1

end
n← min{2n,N} % doubling the participants

end

rounds of communications, this condition is satisfied and the set of n participating nodes

reach the model wn within their statistical accuracy. Therefore, we augment the set of

participating nodes (from faster to slower) from {1, · · · , n} to {1, · · · , 2n} leading to a

new stage. The above procedure continues until the set of participating nodes contains

all N available nodes.

54

Straggler-Resilient Federated Learning Chapter 3

3.4 Theoretical Results

In this section, we provide rigorous analysis for FLANP outlined in Algorithm 3.2,

which employs FedGATE as its subroutine. We first characterize optimization guarantees

of Algorithm 3.2. Using such results, we derive the expected runtime of our proposed

algorithm and the speedup gain it provides compared to naive methods.

3.4.1 Optimization Guarantees

Next, we analyze FLANP outlined in Algorithm 3.2, which employs FedGATE as its

subroutine. We first characterize optimization guarantees of Algorithm 3.2. Using such

results, we derive the expected runtime of our proposed algorithm and the speedup it

provides compared to naive methods.

Connection between two successive stages. As we discussed in Section 3.3.1, we

expect the solution of each stage with m participating nodes to be close to the solution of

the next stage with n nodes, where n > m, if the larger set of nodes contain the smaller

set. This is due to the fact that within each cluster, samples are drawn from the same

distribution. To formalize this claim, consider a subset of m participating nodes and a

model w∗m within their statistical accuracy, i.e., Lm(wm) − Lm(w∗m) ≤ Vms. Next, we

show that the suboptimality error of wm for the next loss with n nodes is small, when

the set of n nodes contains m nodes.

Proposition 3.1 Consider two subsets of nodes Nm ⊆ Nn and assume that model wm

attains the statistical accuracy for the empirical risk associated with nodes in Nm, i.e.,

‖∇Lm(wm)‖2 ≤ 2µVms where the loss function ` is µ-strongly convex. Then the subopti-

mality of wm for risk Ln is w.h.p. bounded above by Ln(wm)−Ln(w∗n) ≤ 2(n−m)
n

(V(n−m)s+

Vms) + Vms.

Proof: We defer the proof to Appendix B.1.

55

Straggler-Resilient Federated Learning Chapter 3

Proposition 3.1 demonstrates that a model attaining the statistical accuracy for m

nodes can be used as an initial model for the ERM corresponding to a larger set with n

nodes. In particular, when the number of participating nodes is doubled, i.e., n = 2m,

then the initial sub-optimality error is bounded above by Ln(wm)− Ln(w∗n) ≤ 3Vms.

Next, we characterize the required communication and computation for solving each

subproblem. Specifically, consider the case that we are given a model wm which is within

the statistical accuracy of Lm corresponding to m fastest nodes in each cluster, and the

goal is to find a new model wn that is within the statistical accuracy of Ln corresponding

to n fastest nodes of each cluster, where n = 2m. To analyze this procedure, we must

specify three parameters: the choice of stepsizes ηn, γn, the number of local updates τn at

each participating node, and the number of communication rounds with the server Rn.

For these parameters we use index n, as they refer to the case that n nodes participate

in the training. Next, we state our main assumptions.

Assumption 3.1 The loss `(w, z) is µ-strongly convex with respect to w, and the gradi-

ent ∇w`(w, z) is L-Lipschitz continuous. The condition number is defined as κ := L/µ.

The conditions in Assumption 3.1 imply that the empirical risks Ln(w) and local loss

functions Li(w) are µ-strongly convex and have L-Lipschitz gradients. As we discussed

in Section 3.2, the gap between the expected and the empirical risks corresponding to ns

data samples can be bounded as |Ln(w)− L(w)| ≤ Vns, with high probability. Next, we

formalize this assumption.

Assumption 3.2 The approximation error for the expected loss L(w) using ns samples

of n nodes in the empirical risk Ln(w) is w.h.p. upper-bounded as supw |Ln(w)−L(w)|≤

Vns, where Vns = O(1/ns). Moreover, we assume that the approximation error for gradi-

ents is upper-bounded by supw

∥∥∇Ln(w)−∇L(w)
∥∥ ≤ √Vns, w.h.p.

56

Straggler-Resilient Federated Learning Chapter 3

We now turn our focus to the proposed Algorithm 3.2.

Theorem 3.1 Consider the federated ERM problem in (3.2) and suppose Assumptions

3.1 and 3.2 hold. Let the proposed FLANP in Algorithm 3.2 be initialized with the fastest

n0 nodes in {1, · · · , n0} and the model wn0. Moreover, suppose the variance of stochastic

local gradients is bounded above by σ2, i.e., E[‖∇̃Li(w) −∇Li(w)‖2] ≤ σ2 for all nodes

i. At any stage of Algorithm 3.2 with n participating nodes, if for sufficiently small αn

the stepsizes are ηn = αn
τn
√
n
, γn =

√
n

2αnL
, and each node runs τn = 1.5sσ2/c local updates,

where c captures the constant term in the statistical accuracy Vns = c
ns

, then nodes reach

the statistical accuracy of Ln after Rn = 12κ ln(6) rounds of communication (precise

characterization of αn in the proof).

Proof: We defer the proof to Appendix B.2.

The result in Theorem 3.1 guarantees that if we initialize Algorithm 3.2 with n0 fastest

nodes and in each stage the participating nodes update their local models according

to Algorithm 3.2 for τ = O(s) iterations and R = O(κ) rounds, before doubling the

number of participating nodes, then at the end of the final stage in which all N nodes are

participating, we reach a model wN that attains the statistical accuracy of the empirical

risk LN(w). Specifically, we have E[LN(wN)−LN(w∗N)] ≤ VNs. Note that to obtain the

best guarantee, τn and Rn are independent of number of participating nodes n, while the

stepsizes ηn and γn change as the number of participating nodes increases.

3.4.2 Wall-Clock Time Analysis

We have thus far established the convergence properties of Algorithm 3.2. It is,

however, equally important to show that it provably mitigates stragglers in a federated

learning framework and hence speeds up the overall wall-clock time. In the following, we

57

Straggler-Resilient Federated Learning Chapter 3

first characterize the running time of Algorithm 3.2 and then compare it with the one

for straggler-prone FedGATE benchmarks.

Let T1 ≤ · · · ≤ TN denote the computation times of the N available nodes. We

also denote by T̄FLANP the average runtime of FLANP in Algorithm 3.2 to reach the over-

all statistical accuracy of the ERM problem corresponding to all nodes defined in (3.2).

As discussed before, at the stage of FLANP with n participating nodes, the slowest node

determines the computation time of that stage. More precisely, the computation time of

each iteration of FLANP with n participating node per cluster is Tn = max{T1, · · · , Tn}.

Since each stage consists of R communication rounds each with τ local updates, the av-

erage run-time of each stage is RτTn. Therefore, the overall wall-clock time of Algorithm

3.2 is on average T̄FLANP = Rτ(Tn0 +T2n0 + · · ·+TN) with R = 12κ ln(6) and τ = 1.5sσ2/c

as characterized in Theorem 3.1.

This further demonstrates how the adaptive node participation approach incorporates

faster nodes in order to save in the overall wall-clock time. As Theorem 3.1 shows,

it suffices for each participating node in the straggler-resilient Algorithm 3.2 to run

R = O(κ) rounds of local updates and τ = O(s) iterations per round to reach the final

statistical accuracy. Therefore, the overall wall-clock time of Algorithm 3.2 is order-wise

T̄FLANP = O(κsσ2(Tn0 + T2n0 + · · ·+ TN)).

To quantify the speedup gain provided by our proposed method, we need to char-

acterize the wall-clock time for the non-adaptive benchmark FedGATE. Note that in this

benchmark, all the N available nodes participate in the training from the beginning.

Proposition 3.2 The average runtime for the non-adaptive benchmark FedGATE to solve

the federated ERM problem (3.2) and to reach the statistical accuracy of all the samples

of the N nodes is T̄FedGATE = O(κsσ2 ln(Ns)TN) where TN is the unit computation time

of the slowest node.

58

Straggler-Resilient Federated Learning Chapter 3

Proof: We defer the proof to Appendix B.3.

As expected, the result in Proposition 3.2 indicates that as all N nodes participate

in training since the beginning of the algorithm, the overall wall-clock time depends only

on the slowest node with computation time TN = max{T1, · · · , TN}.

Thus far, we have characterized the order-wise expressions of the average wall-clock

time for FLANP and FedGATE methods as follows

T̄FLANP = O(κsσ2 (Tn0 + T2n0 + · · ·+ TN)), T̄FedGATE = O(κsσ2 ln(Ns)TN). (3.3)

To establish the speedup for the straggler-resilient method, we consider a random expo-

nential time model for clients computation times, which has been widely used to capture

the computation delay for distributed clusters [50, 82]. We assume that nodes computa-

tion time are independent realizations of an exponential random variable and characterize

the speedup of the resilient Algorithm 3.2 compared to the benchmark FedGATE.

Theorem 3.2 Suppose the clients’ computation times are i.i.d. random variables drawn

from an exponential distribution with parameter λ. That is, T1, · · · , TN ∼ exp(λ). Then,

the speedup gain of the FLANP Algorithm 3.2 compared to the naive FedGATE method is

E[T̄FLANP]

E[T̄FedGATE]
≤ O

(
1

ln(Ns)

)
.

Proof: We defer the proof to Appendix B.4.

Theorem 3.2 establishes a O(ln(Ns)) speedup gain for FLANP compared to its non-

adaptive and straggler-prone benchmark FedGATE, when the clients’ computation times

are drawn from a random exponential time model.

We have so far considered device heterogeneous federated clients with potentially

well-spread computation speeds and demonstrated the speedup gain obtained by adap-

59

Straggler-Resilient Federated Learning Chapter 3

tive node participation approach, particularly in Theorem 3.2. We would like to add

that our method provides provable speedups even for device homogeneous clients with

identical speeds, i.e., T1 = · · · = TN . Comparing the expected runtimes in (3.3) yields

that FLANP in Algorithm 3.2 slashes the expected wall-clock time of FedGATE by a fac-

tor ln(Ns)/ ln(N). This observation demonstrates that the adaptive node participation

approach results in two different speedup gains: (i) leveraging faster nodes to speedup

the learning and (ii) adaptively increase the effective sample size by participating more

clients.

3.5 Numerical Experiments

We conduct various numerical experiments for convex and nonconvex risks and eval-

uate the performance of the proposed method versus other benchmarks.

Benchmarks. Bellow is a brief description for multiple federated learning benchmarks

that we use to compare with the proposed FLANP in Algorithm 3.2. Note that in all these

benchmarks all the available N nodes participate in the training process.

• FedAvg [51]. Nodes update their local model using a simple SGD rule for τ local

iterations before uploading to the server.

• FedGATE [56]. This is the subroutine used in Algorithm 3.2. Here we consider it as

a benchmark running with all the available N nodes with model update rule similar to

the subroutine in Algorithm 3.2.

• FedNova [55]. In each round, each node i updates its local model for τi iterations

where τis vary across the nodes. To mitigate the heterogeneity in τis, the server aggregates

normalized updates (w.r.t. τi) from the clients and updates the global model.

We compare the performance of FLANP with such benchmarks in terms of communica-

tion rounds and wall-clock time. We examine FLANP against the benchmarks under both

60

Straggler-Resilient Federated Learning Chapter 3

Figure 3.1: Logistic Regression over MNIST Figure 3.2: NN on CIFAR10

Figure 3.3: NN on MNIST Figure 3.4: NN on MNIST

full and partial node participation scenarios and highlight its practicality. We consider

computation speeds that are uniformly distributed and exponentially distributed.

Uniform computation speeds.

Data and Network. We use three main datasets for different problems: MNIST

(60, 000 training, 10, 000 test samples), CIFAR10 (50, 000 training, 10, 000 test samples)

and synthetic (10, 000 samples) datasets. To implement our algorithm, we employ a

federated network of N ∈ {20, 50, 100} heterogeneous clients and in order to model the

device heterogeneity, we realize and then fix the computation speed of each node i, i.e.

Ti from the interval [50, 500] uniformly at random.

Logistic Regression. We use the MNIST dataset to learn a multi-class logistic regres-

sion model. In a network of N = 50 nodes, each client stores s = 1200 samples from the

MNIST dataset. As demonstrated in Figure 3.1 (left), FLANP is slightly outperformed

by FedGATE at the initial rounds. This is however expected as FLANP starts with only

a fraction of nodes participating which leads to less accurate models. With respect to

wall-clock time however, FLANP outperforms both FedAvg and FedGATE benchmarks due

to the fact that the initial participating nodes are indeed the fastest ones. As Figure 3.1

61

Straggler-Resilient Federated Learning Chapter 3

(a) k randomly picked. (b) k fastest picked.

Figure 3.5: Partial node participation

(a) Other FL solvers. (b) Heuristics FLANP.

Figure 3.6: Heuristics FLANP other solvers.

(right) shows, the adaptive node participation approach leads FLANP to speedup gains of

up to 2.1× compared to FedGATE.

Neural Network Training. We train a fully connected neural network with two hidden

layers with 128 and 64 neurons and compare with three other benchmarks including

FedNova which is stragglers-resilient. We conduct two sets of experiments over CIFAR10

and MNIST on a network of N = 20 clients, as demonstratd in Figures 3.2 and 3.3 where

FLANP accelerates the training by up to 3× compared to FedNova.

Random exponential computation speeds. We conduct another set of experi-

ments using the same setup described earlier. However, we here pick the clients’ com-

putation speed to be i.i.d. random exponential variables, i.e. consistent with Theorem

3.2. We train a fully connected neural network with two hidden layers with 128 and

64 neurons on MNIST and compare with benchmarks FedAvg, FedGATE and FedNova as

demonstrated in Figure 3.4.

Comparison with partial node participation methods. Thus far, we have

compared the FLANP method with federated benchmarks in which all of the available

nodes participate in training in every round. To demonstrate the resiliency of FLANP

to partial node participation methods, we consider two different scenarios. First, we

compare the wall-clock time of a neural network training of FLANP with partial node

participation FedGATE in which only k out of N = 50 nodes are randomly picked and

participate in each round. As demonstrated in Figure 3.5(a), FLANP is significantly faster

62

Straggler-Resilient Federated Learning Chapter 3

than FedGATE with partial node participation. Second, we consider the case that the

k participating nodes are not randomly picked, but are the fastest clients. As shown

in Figure 3.5(b), although partial participation methods with k fastest nodes begin to

outperform FLANP, towards the end of the training, they suffer from higher training error

saturation as the data samples of only k nodes contribute in the learned model and hence

the final model is significantly inaccurate.

FLANP with other federated solvers. To illustrate the compatibility of FLANP with

solvers other than FedGATE, we train the neural network on MNIST and employ FedAvg

and FedNova as solvers of FLANP. As shown in Figure 3.6(a), FLANP is able to significantly

speedup all three solvers.

Lastly, we note that from the practical point of view, there are several heuristic

approaches to estimate the constant parameters µ, c, Vns in Algorithm 3.2. We conducted

an experiment to learn a linear regression model with Gaussian synthetic data in which

none of the constants are assumed to be known. Rather, we heuristically tune the

threshold for each stage transition (i.e. doubling the nodes) by monitoring the norm of

the global gradient and successively halving the threshold. As shown in Figure 3.6(b),

the performance of such heuristic methods is indeed close to FLANP which highlights its

practicality.

3.6 Concluding Remarks

In this chapter, we targeted straggler and system heterogeneity challenge in federated

learning frameworks and proposed an adaptive node participation scheme to mitigate

slow nodes during the training, namely FLANP. In our proposal, the training begins with

only a handful of devices which are the fastest among the total N available nodes in the

network. After the trained model on such devices reaches their corresponding statistical

63

Straggler-Resilient Federated Learning Chapter 3

accuracy, FLANP doubles the number of participating nodes. We rigorously discussed

how such doubling procedure enables the trained model at the end of each stage to be

a proper warm-up initial model for the next stage. Doubling the participants continues

till all the N nodes are incorporated in the training. For strongly convex objectives,

we characterized the convergence guarantees of FLANP when combined with FedGATE as

the inner federated learning solver. We also established order-wise speedup gain of the

proposed adaptive methods compared to its non-adaptive counter method. Our numerical

experiments also demonstrate significant speedups in different convex and non-convex

scenarios, where we highlighted the practicality of the proposed method as well.

64

Chapter 4

Distributionally-Robust Federated

Learning

In federated learning settings, the training data is often statistically heterogeneous and

manifests various distribution shifts across users, which degrades the performance of the

learnt model. The primary goal of this chapter is to develop a robust federated learning

algorithm that achieves satisfactory performance against distribution shifts in users’ sam-

ples. To achieve this goal, we first consider a structured affine distribution shift in users’

data that captures the device-dependent data heterogeneity in federated settings. This

perturbation model is applicable to various federated learning problems such as image

classification where the images undergo device-dependent imperfections, e.g. different

intensity, contrast, and brightness. To address affine distribution shifts across users, we

propose a Federated Learning framework Robust to Affine distribution shifts (FLRA)

that is robust against affine distribution shifts to the distribution of observed samples.

To solve the FLRA’s distributed minimax optimization problem, we propose a fast and

efficient optimization method and provide convergence and performance guarantees via

a gradient Descent Ascent (GDA) method. We further prove generalization error bounds

65

Distributionally-Robust Federated Learning Chapter 4

for the learnt classifier to show proper generalization from empirical distribution of sam-

ples to the true underlying distribution. We perform several numerical experiments to

empirically support FLRA. We show that an affine distribution shift indeed suffices to

significantly decrease the performance of the learnt classifier in a new test user, and

our proposed algorithm achieves a significant gain in comparison to standard federated

learning and adversarial training methods.

4.1 Introduction

A typical federated learning setting consists of a network of hundreds to millions of

devices (nodes) which interact with each other through a a parameter server. Commu-

nicating messages over such a large-scale network can lead to major slow-downs due to

communication bandwidth bottlenecks [3, 25]. In fact, the communication bottleneck is

one of the main grounds that distinguishes federated and standard distributed learning

paradigms. To reduce communication load in federated learning, one needs to depart

from the classical setting of distributed learning in which updated local models are com-

municated to the central server at each iteration, and communicate less frequently.

Another major challenge in federated learning is the statistical heterogeneity of train-

ing data [3, 25]. As mentioned above, a federated setting involves many devices, each

generating or storing personal data such as images, text messages or emails. Each user’s

data samples can have a (slightly) different underlying distribution which is another key

distinction between federated learning and classical learning problems. Indeed, it has

been shown that standard federated methods such as FedAvg [30] which are designed

for i.i.d. data significantly suffer in statistical accuracy or even diverge if deployed over

non-i.i.d. samples [8]. Device-dependency of local data along with privacy concerns in

federated tasks does not allow learning the distribution of individual users and necessi-

66

Distributionally-Robust Federated Learning Chapter 4

tates novel algorithmic approaches to learn a classifier robust to distribution shifts across

users. Specifically, statistical heterogeneity of training samples in federated learning can

be problematic for generalizing to the distribution of a test node unseen in training time.

We show through various numerical experiments that even a simple linear filter applied

to the test samples will suffice to significantly degrade the performance of a model learned

by FedAvg in standard image recognition tasks.

To address the aforementioned challenges, we propose a new federated learning scheme

called FLRA, a Federated Learning framework with Robustness to Affine distribution

shifts. FLRA has a small communication overhead and a low computation complexity.

The key insight in FLRA is model the heterogeneity of training data in a device-dependent

manner, according to which the samples stored on the ith device xi are shifted from a

ground distribution by an affine transformation xi → Λixi + δi. To further illustrate this

point, consider a federated image classification task where each mobile device maintains a

collection of images. The images taken by a camera are similarly distorted depending on

the intensity, contrast, blurring, brightness and other characteristics of the camera [9,10],

while these features vary across cameras. In addition to camera imperfections, such

unseen distributional shifts also originate from changes in the physical environment,

e.g. weather conditions [11]. Compared to the existing literature, our model provides

more robustness compared to the well-known adversarial training models xi → xi + δi

with solely additive perturbations [83–85], i.e. Λi = I . Our perturbation model also

generalizes the universal adversarial training approach in which all the training samples

are distorted with an identical perturbation xi → xi + δ [86].

Based on the above model, FLRA formulates the robust learning task as a minimax

robust optimization problem, which finds a global model w∗ that minimizes the total loss

induced by the worst-case local affine transformations (Λi∗, δi∗). One approach to solve

this minimax problem is to employ techniques from adversarial training in which for

67

Distributionally-Robust Federated Learning Chapter 4

each iteration and a given global model w, each node optimizes its own local adversarial

parameters (Λi, δi) and a new model is obtained. This approach is however undesirable

in federated settings since it requires extensive computation resources at each device

as they need to fully solve the adversarial optimization problem at each iteration. To

tackle this challenge, one may propose to use standard distributed learning frameworks

in which each node updates its local adversarial parameters and shares with the server at

each iteration of the distributed algorithm to obtain the updated global model. This is

also in contrast with the availability of limited communication resources in federated set-

tings. The key contribution of our work is to develop a novel method called FedRobust,

which is a gradient descent ascent (GDA) algorithm to solve the minimax robust opti-

mization problem, can be efficiently implemented in a federated setting, and comes with

strong theoretical guarantees. While the FLRA minimax problem is in general non-convex

non-concave, we show that FedRobust which alternates between the perturbation and

parameter model variables will converge to a stationary point in the minimax objective

that satisfies the Polyak- Lojasiewicz (PL) condition. Our optimization guarantees can

also be extended to more general classes of non-convex non-concave distributed minimax

optimization problems.

As another major contribution of the chapter, we use the PAC-Bayes framework

[87,88] to prove a generalization error bound for FLRA’s learnt classifier. Our generaliza-

tion bound applies to multi-layer neural network classifiers and is based on the classifier’s

Lipschitzness and smoothness coefficients. The generalization bound together with our

optimization guarantees suggest controlling the neural network classifier’s complexity

through Lipschitz regularization methods. Regarding FLRA’s robustness properties, we

connect the minimax problem in FLRA to a distributionally robust optimization prob-

lem [89, 90] where we use an optimal transport cost to measure the distance between

distributions. This connection reveals that the FLRA’s minimax objective provides a

68

Distributionally-Robust Federated Learning Chapter 4

lower-bound for the objective of a distributionally robust problem. Finally, we discuss

the results of several numerical experiments to empirically support the proposed robust

federated learning method. Our experiments suggest a significant gain under affine dis-

tribution shifts compared to existing adversarial training algorithms. In addition, we

show that the trained classifier performs robustly against standard FGSM and PGD

adversarial attacks, and outperforms FedAvg.

Related work. As a practical on-device learning paradigm, federated learning has

recently gained significant attention in machine learning and optimization communities.

Since the introduction of FedAvg [30] as a communication-efficient federated learning

method, many works have developed federated methods under different settings with

optimization guarantees for a variety of loss functions [70, 91]. Moreover, another line

of work has tackled the communication bottleneck in federated learning via compression

and sparsification methods [7,92,93]. [94–97] have focused on designing privacy-preserving

federated learning schemes. There have also been several recent works the study local-

SGD methods as a subroutine of federated algorithms and provide various convergence

results depending on the loss function class [38,40,74]. Making federated learning meth-

ods robust to non-i.i.d. data has also been the focus of several works [8, 58, 65].

Adversarially robust learning paradigms usually involve solving a minimax problem

of the form minw maxψ f(w,ψ). As the theory of adversarially robust learning surges,

there has been thriving recent interests in solving the minimax problem for nonconvex

cases. Most recently, [18] provides nonasymptotic analysis for nonconvex-concave settings

and shows that the iterates of a simple Gradient Descent Ascent (GDA) efficiently find

the stationary points of the function Φ(w) := maxψ f(w,ψ). [98] establishes convergence

results for the nonconvex-nonconcave setting and under PL condition. This problem has

been studied in the context of game theory as well [99].

69

Distributionally-Robust Federated Learning Chapter 4

4.2 Federated Learning Scenario

Consider a federated learning setting with a network of n nodes (devices) connected

to a server node. We assume that for every 1 ≤ i ≤ n the ith node has access to m

training samples in Si = {(xij, yij) ∈ Rd×R : 1 ≤ j ≤ m}. For a given loss function ` and

function class F = {fw : w ∈ W}, the classical federated learning problem is to fit the

best model w to the nm samples via solving the following empirical risk minimization

(ERM) problem:

min
w∈W

1

nm

n∑

i=1

m∑

j=1

`
(
fw(xij), y

i
j

)
.

As we discussed previously, the training data is statistically heterogeneous across the

devices. To capture the non-identically-distributed nature of data in federated learning,

we assume that the data points of each node have a local distribution shift from a common

distribution. To be more precise, we assume that each sample stored in node i in Si is

distributed according to an affine transformation hi of a universal underlying distribution

PX,Y , i.e., transforming the features of a sample (x, y) ∼ PX,Y according to the following

affine function hi(x) := Λix+δi. Here Λi ∈ Rd×d and δi ∈ Rd, with d being the dimension

of input variable x, characterize the affine transformation hi at node i. According to this

model, all samples stored at node i are affected with the same affine transformation while

other nodes j 6= i may experience different transformations.

This structured model particularly supports the data heterogeneity in federated set-

tings. That is, the data generated and stored in each federated device is exposed to

identical yet device-dependent distortions while different devices undergo different dis-

tortions. As an applicable example that manifests the proposed perturbation model,

consider a federated image classification task over the images taken and maintained by

70

Distributionally-Robust Federated Learning Chapter 4

mobile phone devices. Depending on the environment’s physical conditions and the cam-

era’s imperfections, the pictures taken by a particular camera undergo device-dependent

perturbations. According to the proposed model, such distribution shift is captured as

an affine transformation hi(x) = Λix + δi on the samples maintained by node i. To

control the perturbation power, we consider bounded Frobenius and Euclidean norms

‖Λ − Id‖F ≤ ε1 and ‖δ‖2 ≤ ε2 enforcing the affine transformation to have a bounded

distance from the identity transformation.

Based on the model described above, our goal is to solve the following distributionally

robust federated learning problem:

min
w∈W

1

n

n∑

i=1

max
‖Λi−I‖F≤ε1
‖δi‖≤ε2

1

m

m∑

j=1

`
(
fw(Λixij + δi), yij

)
. (4.1)

The minimax problem (4.1) can be interpreted as n+ 1 coupled optimization problems.

First, in n inner local maximization problems and for a given global model w, each node

1 ≤ i ≤ n seeks a (feasible) affine transformation (Λi, δi) which results in high losses via

solving maxΛi,δi
1
m

∑m
j=1 `(fw(Λixij + δi), yij) over its m training samples in Si. Then, the

outer minimization problem finds a global model yielding the smallest value of cumulative

losses over the n nodes.

Solving the above minimax problem requires collaboration of distributed nodes via

the central server. In federated learning paradigms however, such nodes are entitled to

limited computation and communication resources. Such challenges particularly prevent

us from employing the standard techniques in adversarial training and distributed ERM.

More precisely, each iteration of adversarial training requires solving a maximization

problem at each local node which incurs extensive computational cost. On the other

hand, tackling the minimax problem (4.1) via iterations of standard distributed learning

demands frequent message-passing between the nodes and central server at each iteration,

71

Distributionally-Robust Federated Learning Chapter 4

hence yielding massive communication load on the network. To account for such system

challenges, we constitute our goal to solve the robust minimax problem in (4.1) with

small computation and communication cost so that it can be feasibly and efficiently

implemented in a federated setting.

4.3 The Proposed FedRobust Algorithm

To guard against affine distribution shifts, we propose to change the original con-

strained maximization problem to the following worst-case loss at each node i, given a

Lagrange multiplier λ>0:

max
Λi,δi

1

m

m∑

j=1

`
(
fw(Λixij + δi), yij

)
− λ‖Λi − I‖2

F − λ‖δi‖2
2. (4.2)

Here we use a norm-squared penalty requiring a bounded distance between the feasible

affine transformations and the identity mapping, and find the worst-case affine transfor-

mation that results in the maximum loss for the samples of node i. By averaging such

worst-case local losses over all the n nodes and minimizing w.r.t. model w, we reach the

following minimax optimization problem:

min
w∈W

max
(Λi,δi)ni=1

1

nm

n∑

i=1

m∑

j=1

`
(
fw(Λixij + δi), yij

)
− λ‖Λi − I‖2

F − λ‖δi‖2
2. (4.3)

This formalizes our approach to tackling the robust federated learning problem, which

we call Federated Learning framework Robust to Affine distribution shift or FLRA in

short.

In order to solve FLRA in (4.3), we propose a gradient optimization method that

is computationally and communication-wise efficient, called FedRobust. The proposed

72

Distributionally-Robust Federated Learning Chapter 4

Algorithm 4.1: FedRobust

Input: {wi
0 = w0,Λ

i
0, δ

i
0}ni=1, η1, η2, τ , T

for each iteration t = 0, · · · , T − 1, node i computes do

Λi
t+1 = Λi

t + η2∇̃Λf
i(wi

t,Λ
i
t, δ

i
t)

δit+1 = δit + η2∇̃δf
i(wi

t,Λ
i
t, δ

i
t)

if t does not divide τ then

wi
t+1 = wi

t − η1∇̃wf
i(wi

t,Λ
i
t, δ

i
t)

else
node i uploads to server:

wi
t − η1∇̃wf

i(wi
t,Λ

i
t, δ

i
t)

server sends to all nodes i:

wi
t+1 =

1

n

n∑

j=1

[
wj
t − η1∇̃wf

j(wj
t ,Λ

j
t , δ

j
t)
]

end

end
Output: wT = 1

n

∑n
i=1 wi

T

FedRobust algorithm is an iterative scheme that applies stochastic gradient descent ascent

(SGDA) updates for solving the minimax problem (4.3). As summarized in Algorithm

4.1, in each iteration t of local updates, each node i takes a (stochastic) gradient ascent

step and updates its affine transformation parameters (Λi
t, δ

i
t). It also updates the local

classifier’s parameters wi
t via a gradient descent step. After τ local iterations, local models

wi
t are uploaded to the server node where the global model is obtained by averaging

the local ones. The averaged model is then sent back to the nodes to begin the next

round of local iterations with this fresh initialization. Note that each node updates its

perturbation parameters only once in each iteration which yields light computation cost

as opposed to standard adversarial training methods. Moreover, periodic communication

73

Distributionally-Robust Federated Learning Chapter 4

at every τ iterations, reduces the communication load compared to standard distributed

optimization methods by a factor τ .

It is worth noting that the local affine transformation variables Λi, δi are coupled even

though they remain on their corresponding nodes and are not exchanged with the server.

This is due to the fact that the fresh model w is the average of the updated models from

all the nodes; hence, updating Λi, δi for node i will affect Λj, δj for other nodes j 6= i in

the following iterations. This is indeed a technical challenge that arises in proving the

optimization guarantees of FedRobust in Section 4.4.1.

4.4 Theoretical Guarantees:

Optimization, Generalization and Robustness

In this section, we establish our main theoretical results. First, we characterize the

convergence of FedRobust in Algorithm 4.1. Next, we prove that the learned hypothesis

will properly generalize from training data to unseen test samples. Lastly, we demonstrate

that solving the FLRA’s minimax problem (4.3) results in a robust classifier to Wasserstein

shifts structured across the nodes.

4.4.1 Optimization guarantees

In this section, we establish our main convergence results and show that FedRobust

finds saddle points of the minimax problem in (4.2) for two classes of loss functions. We

first set a few notations as follows. We let matrix ψi = (Λi, δi) ∈ Rd×(d+1) denote the

joint transformation variables corresponding to node i. The collection of n such variables

corresponding to the n nodes is denoted by the matrix Ψ = (ψ1; · · · ;ψn). We can now

74

Distributionally-Robust Federated Learning Chapter 4

rewrite the minimax problem (4.3) as follows:

min
w

max
Ψ

f(w,Ψ) := min
w

max
ψ1,··· ,ψn

1

n

n∑

i=1

f i(w,ψi), (4.4)

where f and f is denote the penalized global and local losses, respectively; that is, for

each node i

f i(w,ψi) :=
1

m

m∑

j=1

`
(
fw(Λixij + δi), yij

)
− λ‖Λi − I‖2

F − λ‖δi‖2. (4.5)

We also define Φ(w) := maxΨ f(w,Ψ) and Φ∗ := minw Φ(w). Next, we state a few

customary assumptions on the data and loss functions. As we mentioned before, we

assume that data is heterogeneous (non-iid). There are several notions to quantify the

degree of heterogeneity in the data. Here, we use a notion called non-iid degree which is

defined as the variance of the local gradients with respect to the global gradient [100].

Assumption 4.1 (Bounded non-iid degree) We assume that when there are no per-

turbations, the variance of the local gradients with respect to the global gradient is bounded.

That is, there exists ρ2
f such that for ψi = (I, 0),Ψ = (ψ1; · · · ;ψn) and all w,

1

n

n∑

i=1

∥∥∥∇wf i(w,ψi)−∇wf(w,Ψ)
∥∥∥

2

≤ ρ2
f .

Assumption 4.2 (Stochastic gradients) For each node i, the stochastic gradients

∇̃wf
i and ∇̃ψf i are unbiased and have variances bounded by σ2

w and σ2
ψ, respectively.

That is, for all w,ψ,

E
∥∥∥∇̃wf

i(w,ψ)−∇wf i(w,ψ)
∥∥∥

2

≤ σ2
w, E

∥∥∥∇̃ψf i(w,ψ)−∇ψf i(w,ψ)
∥∥∥

2

≤ σ2
ψ.

Assumption 4.3 (Lipschitz gradients) All local loss functions have Lipschitz gradi-

75

Distributionally-Robust Federated Learning Chapter 4

ents. That is, for any node i, there exist constants L1, L2, L12, and L21 such that for any

w,w′,ψ,ψ′ we have

∥∥∥∇wf i(w,ψ)−∇wf i(w′,ψ)
∥∥∥ ≤ L1

∥∥w −w′
∥∥ ,

∥∥∥∇wf i(w,ψ)−∇wf i(w,ψ′)
∥∥∥ ≤ L12

∥∥ψ −ψ′
∥∥
F
,

∥∥∥∇ψf i(w,ψ)−∇ψf i(w′,ψ)
∥∥∥
F
≤ L21

∥∥w −w′
∥∥ ,

∥∥∥∇ψf i(w,ψ)−∇ψf i(w,ψ′)
∥∥∥
F
≤ L2

∥∥ψ −ψ′
∥∥
F
.

We show the convergence of FedRobust for two classes of loss functions: PL-PL and

nonconvex-PL. Next, we briefly describe these classes and state the main results. The

celebrated work of Polyak [101] introduces a sufficient condition for an unconstrained

minimization problem minx g(x) under which linear convergence rates can be established

using gradient methods. A function g(x) satisfies the Polyak- Lojasiewicz (PL) condition

if g∗ = minx g(x) exits and is bounded, and there exists a constant µ > 0 such that

‖∇g(x)‖2 ≥ 2µ(g(x) − g∗), ∀x. Similarly, we can define two-sided PL condition for our

minimax objective function in (4.4) [98].

Assumption 4.4 (PL condition) The global function f satisfies the two-sided PL con-

dition, that is, there exist positive constants µ1 and µ2 such that

(i)
1

2µ1

∥∥∇wf(w,Ψ)
∥∥2 ≥ f(w,Ψ)−min

w
f(w,Ψ),

(ii)
1

2µ2

∥∥∇Ψf(w,Ψ)
∥∥2

F
≥ max

Ψ
f(w,Ψ)− f(w,Ψ).

In other words, Assumptions 4.4 states that the functions f(·,Ψ) and −f(w, ·) satisfy

the PL condition with constants, µ1 and µ2, respectively. To measure the optimality gap

at iteration t, we define the potential function Pt := at + βbt, where at := E[Φ(wt)]− Φ∗

76

Distributionally-Robust Federated Learning Chapter 4

and bt := E[Φ(wt) − f(wt,Ψt)] and β is an arbitrary and positive constant. Note that

both at and bt are non-negative and if Pt approaches zero, it implies that (wt,Ψt) is

approaching a minimax point.

Theorem 4.1 (PL-PL loss) Consider the iterates of FedRobust in Algorithm 4.1 and

let Assumptions 4.1, 4.3, and 4.4 hold. Then for any iteration t ≥ 0, the optimality gap

Pt := at + 1
2
bt satisfies the following:

Pt ≤
(

1− 1

2
µ1η1

)t
P0 + 32η1

L̃

µ1

(τ − 1)2ρ2

+ 8η1
L̃

µ1

(τ − 1)(n+ 1)
σ2
w

n
+ η1

L̂

µ1

σ2
w

n
+
η2

2

η1

L2

2µ1

σ2
ψ,

for maximization step-size η2 and minimization step-size η1 that satisfy the following

conditions:

η2 ≤
1

L2

, 32η2
1(τ − 1)2L2

1 ≤ 1,
µ2

2η2n

η1L1L2

≥ 1 + 8
L2

12

L1L2

,

η1

(
L̂+

80L̃(τ − 1)

µ1η1(1− 1
2
µ1η1)τ−1

)
≤ 1.

Here, we denote ρ2 := 3ρ2
f + 6L2

12(ε21 + ε22) where ε1 and ε2 specify the bounds on the affine

transformations hi(x) = Λix + δi. We also use the following notations:

LΦ = L1 +
L12L21

2nµ2

, L̃ =
3

2
η1L

2
1 +

1

2
η2L

2
21, L̂ =

3

2
LΦ +

1

2
L1 +

L2
21

L2

.

Proof: We defer the proof to Appendix C.2.

Special cases of this convergence result is consistent with similar ones already estab-

lished in the literature. In the particular case of (non-federated) distributed optimiza-

tion, i.e. τ = 1, Theorem 4.1 recovers the convergence result in [98]. Moreover, putting

77

Distributionally-Robust Federated Learning Chapter 4

ε1, ε2 → 0 reduces the problem to standard (non-robust) federated learning where our

result is also consistent with the prior work [70]. We also note that the conditions on

the stepsizes can be interpreted as linear conditions on η1, η2 and is always feasible. For

instance, one can pick η1 = O(ln(T)/T), η2 = O(ln(T)/T) for running FedRobust for

T iterations, which yields that PT ≤ O(ln(T)/T). Next, we relax the PL condition on

f(·,Ψ) stated in Assumption 4.4 (i) and show that the iterates of the FedRobust method

find a stationary point of the minimax problem (4.4) when the objective function f(w,Ψ)

only satisfies the PL condition with respect to Ψ and is nonconvex with respect to w.

Theorem 4.2 (Nonconvex-PL loss) Consider the iterates of FedRobust in Algorithm

4.1 and let Assumptions 4.1, 4.3, and 4.4 (ii) hold. Then, the iterates of FedRobust after

T iterations satisfy:

1

T

T−1∑

t=0

E
∥∥∇Φ(wt)

∥∥2 ≤ 4∆Φ

η1T
+

4L2
2

µ2
2n

2

ε2

η1T
+ 64η1L̃(τ − 1)2ρ2

+ 16η1L̃(τ − 1)
n+ 1

n
σ2
w + 2η1L̂

σ2
w

n
+
η2

2

η1

L2σ
2
ψ,

with L̃, L̂, LΦ, ρ
2 defined in Theorem 4.1, ε2 := ε21 +ε22 and ∆Φ := Φ(w0)−Φ∗, if step-sizes

η1, η2 satisfy

η2 ≤
1

L2

,
η1

η2

≤ µ2
2n

2

8L2
12

, 32η2
1(τ − 1)2L2

1 ≤ 1, η1

(
L̂+ 40L̃(τ − 1)2

)
≤ 1.

Proof: We defer the proof to Appendix C.3.

It is worth noting this theorem also recovers the existing results for distributed min-

imax optimization, i.e. τ = 1 [18] and standard federated learning for nonconvex objec-

tives, i.e. ε1, ε2 → 0 [74,93].

78

Distributionally-Robust Federated Learning Chapter 4

4.4.2 Generalization guarantees

Following the margin-based generalization bounds developed in [88,102,103], we con-

sider the following margin-based error measure for analyzing the generalization error in

FLRA with general neural network classifiers:

Ladv
γ (w) :=

1

n

n∑

i=1

Pri

(
fw(hiadv(X))[Y]−max

j 6=Y
fw(hiadv(X))[j] ≤ γ

)
. (4.6)

Here, hiadv denotes the worst-case affine transformation for node i in the maximization

problem (4.2); Pri denotes the probability measured by the underlying distribution of

node i, and fw(x)[j] denotes the output of the neural network’s last softmax layer for

label j. Note that for γ = 0, the above definition reduces to the average misclassfication

rate under the distribution shifts, which we simply denote by Ladv(w). We also use

L̂adv
γ (w) to denote the above margin risk for the empirical distribution of samples, where

we replace the underlying Pri with P̂ri being the empirical probability evaluated for

the m samples of node i. The following theorem bounds the difference of the empirical

and underlying margin-based error measures in (4.6) for a general deep neural network

function.

Theorem 4.3 Consider an L-layer neural network with d neurons per layer. We assume

the activation function of the neural network σ satisfies σ(0) = 0 and maxt{|σ′(t)|, |σ′′(t)|}

≤ 1. Suppose the same Lipschitzness and smoothness condition holds for loss `, and

‖X‖2 ≤ B. We assume the weights of the neural network are spectrally regularized such

that for M > 0: 1
M
≤ (

∏d
i=1 ‖wi‖σ)1/d ≤ M with ‖ · ‖σ denoting the spectral norm.

Also, suppose that for η > 0, Lip(∇fw) :=
∑d

i=1

∏i
j=1 ‖wi‖σ ≤ λ(1 − η) holds where

Lip(∇fw) upper-bounds the Lipschitz coefficient of the gradient ∇x`(fw(x, y)). Then, for

79

Distributionally-Robust Federated Learning Chapter 4

every ξ > 0 with probability at least 1− ξ the following holds for all feasible weights w:

Ladv(w)− L̂adv
γ (w)

≤ O

√√√√B2L2d log(Ld)λ2
(∏L

i=1 ‖wi‖σ
∑L

i=1

‖wi‖2F
‖wi‖2σ

)2
+ L log nmL log(M)

ηξ

mγ2(λ− (1 +B) Lip(∇fw))2

 .

Proof: We defer the proof to Appendix C.5.

This theorem gives a non-asymptotic bound on the generalization risk of FLRA for

spectrally regularized neural nets with their smoothness constant bounded by λ. Thus,

we can control the generalization performance by properly regularizing the Lipschitzness

and smoothness degrees of the neural net.

4.4.3 Distributional robustness

To analyze FLRA’s robustness properties, we draw a connection between FLRA and

distributionally robust optimization using optimal transport costs. Consider the optimal

transport cost Wc(P,Q) for quadratic cost c(x,x′) = 1
2
‖x− x′‖2

2 defined as Wc(P,Q) :=

minM∈Π(P,Q) E[c(X,X′)], where Π(P,Q) denotes the set of all joint distributions on

(X,X′) with marginal distributions P,Q. In other words, Wc(P,Q) measures the min-

imum expected cost for transporting samples between P and Q. In order to define a

distributionally robust federated learning problem against affine distribution shifts, we

consider the following minimax problem:

min
w

1

n

n∑

i=1

max
Λi,δi

{
EP i
[
`
(
fw(ΛiX + δi), Y

)]
−Wc(P

i
X, P

i
ΛiX+δi)

}
. (4.7)

In this distributionally robust learning problem, we include a penalty term controlling

the Wasserstein cost between the original distribution of node i denoted by P i and its

80

Distributionally-Robust Federated Learning Chapter 4

perturbed version under an affine distribution shift, i.e., P i
ΛiX+δi . Note that here we use

the averaged Wasserstein cost 1
n

∑n
i=1 Wc(P

i
X, P

i
ΛiX+δi) to measure the distribution shift

caused by the affine shifts (Λi, δi)ni=1. The following theorem shows that this Wasserstein

cost can be upper-bounded by a norm-squared function of Λ and δ that appears in the

FLRA’s minimax problem.

Theorem 4.4 Consider the Wasserstein cost Wc(PX, PΛX+δ) between the distributions

of X and its affine perturbation ΛX + δ. Assuming ‖E[XXT]‖σ ≤ λ, we have

Wc(PX, PΛX+δ) ≤ max{λ, 1}
[
‖Λ− I‖2

F + ‖δ‖2
2

]
. (4.8)

Proof: We defer the proof to Appendix C.6.

Substituting the Wasserstein cost in (4.7) with the upper-bound (4.8) results in

the FLRA’s minimax (4.3). As a result, if λ
n

∑n
i=1[‖Λi − I‖2

F + ‖δi‖2
2] ≤ ε2 holds for

the optimized Λi, δi’s, we will also have the averaged Wasserstein cost bounded by

1
n

∑n
i=1Wc(P

i
X, P

i
ΛiX+δi) ≤ ε2. Theorem 4.4, therefore, shows the FLRA’s minimax ap-

proach optimizes a lower-bound on the distributionally robust (4.7).

4.5 Numerical Results

We implemented FedRobust in the Tensorflow platform [104] and numerically eval-

uated the algorithm’s robustness performance against affine distribution shifts and ad-

versarial perturbations. We considered the standard MNIST [105] and CIFAR-10 [106]

datasets and used three standard neural network architectures in the literature: AlexNet

[107], Inception-Net [108], and a mini-ResNet [109].

In the experiments, we simulated a federated learning scenario with n = 10 nodes

where each node observes m = 5000 training samples. We manipulated the training

81

Distributionally-Robust Federated Learning Chapter 4

Figure 4.1: Test accuracy under affine distribution shifts over CIFAR-10. Top: con-
straining ‖δ‖2 ≤ 1 and changing maximum allowed ‖Λ− I‖F . Bottom: constraining
‖Λ−I‖F ≤0.4 and changing maximum allowed ‖δ‖2.

samples at each node via an affine distribution shift randomly generated according to

a Gaussian distribution. We also used 5000 test samples for which we did not apply

any random affine shift and instead considered the following two scenarios: (1) affine

distribution shifts by optimizing the inner maximization in (4.1) using projected gradient

descent (PGD); (2) `2-norm bounded adversarial PGD perturbations. We considered

three baselines: (1) FedAvg where the server node averages the updated parameters of

the local nodes after every gradient step; (2) distributed FGM training where the nodes

perform fast adversarial training [84] by optimizing a norm-bounded perturbation δij

using one gradient step followed by projection onto an `2-norm ball; (3) distributed PGD

training where each node preforms PGD adversarial training [83] by applying 10 gradient

steps where each step is followed by a projection onto an `2-norm ball.

82

Distributionally-Robust Federated Learning Chapter 4

Figure 4.2: Test accuracy under PGD over CIFAR-10. X-axis shows the maximum
allowed `2-norm for PGD.

4.5.1 FedRobust vs. FedAvg and adversarial training:

Affine distribution shifts

We tested the performance of the neural net classifiers trained by FedRobust, FedAvg,

distributed FGM, and distributed PGD under different levels of affine distribution shifts.

Figure 4.1 shows the accuracy performance over CIFAR-10 with AlexNet, Inception-

Net, and ResNet architectures. As demonstrated, FedRobust outperforms the baseline

methods in most of the experiments. The improvement over FedAvg can be as large

as 54%. Moreover, FedRobust improved over distributed FGM and PGD adversarial

training, which suggests adversarial perturbations may not be able to capture the com-

plexity of affine distribution shifts. FedRobust also results in 4× faster training compared

to distributed PGD. These improvements motivate FedRobust as a robust and efficient

federated learning method to protect against affine distribution shifts.

4.5.2 FedRobust vs. FedAvg and adversarial training:

Adversarial perturbations

Figure 4.2 summarizes our numerical results of FedRobust and other baselines over

CIFAR-10 where the plots show the test accuracy under different levels of `2-norm per-

turbations. While we motivated FedRobust as a federated learning scheme protecting

83

Distributionally-Robust Federated Learning Chapter 4

Figure 4.3: Test accuracy under affine perturbations for n = 100 nodes over MNIST
data. X-axis shows the maximum allowed ‖Λ − I‖F (left) and ‖δ‖2 (right) for affine
perturbations.

against affine distribution shifts, we empirically observed its robust performance against

adversarial perturbations as well. The achieved adversarial robustness in almost all

cases matches the robustness offered by distributed FGM and PGD adversarial training.

This observation can be explained by analyzing the generalization properties of these

algorithms. We note that FedRobust’s improved robustness is obtained over the test

samples. On the other hand, PGD consistently outperformed FedRobust on the training

samples, achieving a near perfect training accuracy. However, FedRobust generalized

better to the test samples and could overall outperform PGD on the test set. Also,

the similar performance of FGM and PGD can be explained via the random Gaussian

perturbations used for simulating the heterogeneity across clients and the results of [?]

indicating FGM initialized at random perturbations performs as well as PGD. These nu-

merical results indicate that affine distribution shifts can cover the distribution changes

caused by norm-bounded adversarial perturbations. In summary, our numerical experi-

ments demonstrate the efficiency and robustness of FedRobust against PGD adversarial

attacks. We defer more details of our experiments and the numerical results on MNIST

data to the Appendix.

Finally, we performed additional numerical experiments to analyze the effect of net-

work size n and minimization iteration count τ on the robustness performance. Figure 4.3

84

Distributionally-Robust Federated Learning Chapter 4

Figure 4.4: Test accuracy under affine perturbations for τ = 5 minimization iteration
count over CIFAR-10 data. X-axis shows the maximum allowed ‖Λ−I‖F (left) and ‖δ‖2

(right) for affine perturbations.

shows the results of our experiments for a larger network size of n = 100 AlexNet neural

network classifiers, each trained using m = 500 MNIST training data points. As demon-

strated in Figure 4.3’s plots, FedRobust still outperforms the standard and adversarial

training baselines over a wide range of affine perturbation parameters. To examine the

effect of parameter τ , i.e., minimization step count per training iteration, on our experi-

mental results, we performed the CIFAR-10 experiment with the AlexNet architecture for

τ = 5 as demonstrated in Figure 4.4. We observed that after increasing τ to 5, the robust-

ness offered by FedRobust slightly decreased and was comparable to the performance of

our adversarial training baselines. While FedRobust still outperforms FedAvg by a clear

margin, the numerical results indicate the role of simultaneous min-max optimization

and proper selection of hyperparameters in the success of FedRobust.

We conclude this section by reiterating the practicality of the considered affine model.

As demonstrated in our experiments, the affine model considered in this chapter is partic-

ularly practical for image classification tasks in federated learning, where each camera’s

imperfections affect its pictures [11]. While this model provides significant robustness

compared to additive-only perturbation models (i.e. Λ = I), it lays out potential new

directions to study more complicated (non-affine) models such as neural network trans-

formations.

85

Distributionally-Robust Federated Learning Chapter 4

4.5.3 Experimental Setup

In the experiments, we simulated a federated learning scenario with n = 10 nodes

where each node observes m = 5000 training samples. We also divided the extra 10, 000

samples in each dataset to two validation and test sets containing 5000 samples each. For

CIFAR-10 samples, we applied the sandard normalization and scaled and linearly mapped

the pixel intensity values to interval [−1, 1]. We applied batch normalization [110] in order

to stabilize training and used the ADAM optimizer [111] with stepsize value 10−4 and

default beta parameters β1 = 0.9 and β2 = 0.99 to optimize the neural net’s parameters

for T = 100 epochs (10000 iterations).

We did cross validation to choose λ ∈ {0.1, 0.5, 1, 5, 10, 50} and chose the λ-value

resulting in the closest additive penalty 1
n

∑n
i=1[‖Λi∗ − I‖2

2 + ‖δi∗‖2
2] to 10 percent of the

average sample norm, i.e. 0.1
m

∑m
i=1 ‖xval

i ‖2
2, over the m = 5000 validation samples. To

perform GDA optimization, we applied two ascent steps per descent step with stepsize 1
2λ

.

In order to simulate an affine distribution shift, we manipulated each x̃ij in the original

training dataset via an affine transformation chosen randomly at each node:

xij = (Id + Λ̃i)x̃ij + δ̃i. (4.9)

Here, each Λ̃i is a random matrix with i.i.d. Gaussian entries according toN (0, σ
2

d
), and δ̃i

is a random Gaussian vector according to N (0, σ2Id) where we set σ = 0.01. In test time,

we did not apply any random affine transformation to test samples and instead considered

the following three scenarios: (1) no perturbation, (2) adversarial affine distribution shift

obtained by optimizing the inner maximization in (4.1) using projected gradient descent,

3) adversarial perturbations designed by the projected gradient descent algorithm. We

used 100 projected gradient steps with stepsize 0.1.

We considered three baselines in the experiments: (1) FedAvg where the server node

86

Distributionally-Robust Federated Learning Chapter 4

Figure 4.5: Trained networks’ test accuracy under affine distribution shifts in the MNIST
experiments. Top row: constraining ‖δ‖2 ≤ 1 and changing maximum allowed ‖Λ− I‖F ,
bottom row: constraining ‖Λ− I‖F ≤ 0.6 and changing maximum allowed ‖δ‖2.

averages the updated parameters of the local nodes after every gradient step, (2) Dis-

tributed FGM training where the nodes perform fast adversarial training [84] by optimiz-

ing an `2-norm bounded perturbation δij using one gradient step followed by projection

onto the ball {δij : ‖δij‖2 ≤ εfgm}, and (3) Distributed PGD training where each node

preforms PGD adversarial training [83] similar to distributed FGM but uses 10 projected

gradient steps, each followed by projection onto {δij : ‖δij‖2 ≤ εpgd}. We used the value

εfgm = εpgd = 0.05E[‖xi‖2] in the experiments. We observed training instability after

achieving perfect training accuracy for the baseline FedAvg algorithm, and hence per-

formed early stopping to avoid the instability in the FedAvg experiments. We did not

encounter the instability issue in FedRobust experiments.

87

Distributionally-Robust Federated Learning Chapter 4

Figure 4.6: Trained networks’ test accuracy under PGD perturbations in the MNIST
experiments. X-axis shows the maximum allowed `2-norm for PGD perturbations.

4.5.4 Numerical Results for MNIST data

We repeated the CIFAR experiments in Figures 4.1 and 4.2 for the MNIST dataset.

Figure 4.5 shows the numerical results under affine distribution shifts. The figure’s top

row includes the plots for fixed maximum delta norm ‖δ‖2 ≤ 1 and different levels of

maximum allowed ‖Λ − I‖F , while in the bottom row we fix the maximum allowed

linear shift ‖Λ − I‖F ≤ 0.6 and evaluate the test accuracy under different levels of

‖δ‖2. As shown in the plots, FedRobust results in the best performance in most of

the evaluations, which indicates the superior performance of FedRobust against affine

distribution shifts. Figure 4.6 shows the test accuracy of the trained networks under

different levels of adversarial PGD perturbations. The figure’s experiments again shows

that FedRobust can effectively shield against PGD adversarial attacks and achieve a

comparable performance to PGD and FGM adversarial training.

4.6 Concluding Remarks

We tackled data heterogeneity challenge in federated learning paradigms in this chap-

ter, and proposed FLRA, a federated learning scheme that is robust to affine distribution

shifts across the devices. Our proposal makes the trained model robust to worst-case

88

Distributionally-Robust Federated Learning Chapter 4

affine transformations on the data samples by formulating the model training via a mini-

max optimization problem. Moreover, we proposed a GDA optimization routine, named

as FedRobust to solve the minimax problem while imposing light computation and com-

munication overheads. We established optimization and generalization characteristics of

the proposed design and demonstrated its practical implications and improvements over

existing federated and adversarial training methods.

89

Part II

Algorithms for Distributed

Computing

90

Chapter 5

Coded Computation over

Heterogeneous Clusters

In large-scale distributed computing clusters, such as Amazon EC2, there are several

types of “system noise” that can result in major degradation of performance: system

failures, bottlenecks due to limited communication bandwidth, latency due to straggler

nodes, etc. There have been recent results that demonstrate the impact of coding for

efficient utilization of computation and storage redundancy to alleviate the effect of strag-

glers and communication bottlenecks in homogeneous clusters. In this chapter, we focus

on general heterogeneous distributed computing clusters consisting of a variety of com-

puting machines with different capabilities. We propose a coding framework for speeding

up distributed computing in heterogeneous clusters by trading redundancy for reducing

the latency of computation. In particular, we propose Heterogeneous Coded Matrix

Multiplication (HCMM) algorithm for performing distributed matrix multiplication over

heterogeneous clusters that is provably asymptotically optimal for a broad class of pro-

cessing time distributions. Moreover, we show that HCMM is unboundedly faster than any

uncoded scheme that partitions the total work load among the workers. To demonstrate

91

Coded Computation over Heterogeneous Clusters Chapter 5

how the proposed HCMM scheme can be applied in practice, we provide results from numer-

ical studies and Amazon EC2 experiments comparing HCMM with three benchmark load

allocation schemes – Uniform Uncoded, Load-balanced Uncoded, and Uniform Coded. In

particular, in our numerical studies, HCMM achieves speedups of up to 73%, 56% and 42%

respectively over the three benchmark schemes mentioned above. Furthermore, we carry

out experiments over Amazon EC2 clusters and demonstrate how HCMM can be combined

with rateless codes with nearly linear decoding complexity. In particular, we show that

HCMM combined with the Luby transform (LT) codes can significantly reduce the overall

execution time. HCMM is found to be up to 61%, 46% and 36% faster than the aforemen-

tioned three benchmark schemes, respectively. Additionally, we provide a generalization

to the problem of optimal load allocation in heterogeneous settings, where we take into

account the monetary costs associated with distributed computing clusters. We argue

that HCMM is asymptotically optimal for budget-constrained scenarios as well. In particu-

lar, we characterize the minimum possible expected cost associated with a computation

task over a given cluster of machines. Furthermore, we develop a heuristic for HCMM load

allocation for the distributed implementation of budget-limited computation tasks.

5.1 Introduction

General distributed computing frameworks, such as MapReduce [12] and Spark [13],

along with the availability of large-scale commodity servers, such as Amazon EC2, have

made it possible to carry out large-scale data analytics at the production level. These

“virtualized data centers” enjoy an abundance of storage space and computing power,

and are cheaper to rent by the hour than maintaining dedicated data centers round the

year. However, these systems suffer from various forms of “system noise” which reduce

their efficiency: system failures, limited communication bandwidth, straggler nodes, etc.

92

Coded Computation over Heterogeneous Clusters Chapter 5

The current state-of-the-art approaches to mitigate the impact of system noise in

cloud computing environments involve creation of some form of “computation redun-

dancy”. For example, replicating the straggling task on another available node is a

common approach to deal with stragglers [14], while partial data replication is also used

to reduce the communication load in distributed computing [15]. However, there have

been recent results demonstrating that coding can play a transformational role for creat-

ing and exploiting computation redundancy to effectively alleviate the impact of system

noise. In particular, there have been two coding concepts proposed to deal with the

communication and straggler bottlenecks in distributed computing.

The first coding concept introduced in [112–114] enables an inverse-linear tradeoff

between computation load and communication load in distributed computing. This re-

sult implies that increasing the computation load by a factor of r (i.e. evaluating each

computation at r carefully chosen nodes) can create novel coding opportunities that re-

duce the required communication load for computing by the same factor r. Hence, these

codes can be utilized to pool the underutilized computing resources at network edge to

slash the communication load of Fog computing [115]. Other related works tackling the

communication bottleneck in distributed computation include [116–120].

In the second coding concept introduced in [116], an inverse-linear tradeoff between

computation load and computation latency (i.e. the overall job response time) is estab-

lished for distributed matrix multiplication in homogeneous computing environments.

More specifically, this approach utilizes coding to effectively inject redundant computa-

tions to alleviate the effects of stragglers and speed up the computations. Hence, by

utilizing more computation resources, this can significantly speed up distributed com-

puting applications. A number of related works have been proposed recently to mitigate

stragglers in distributed computation. In [121], the authors propose the use of redun-

dant short dot products to speed up distributed computation of linear transforms. The

93

Coded Computation over Heterogeneous Clusters Chapter 5

work in [122] proposes coding schemes for mitigating stragglers in distributed batch

gradient computation. Coding schemes for high-dimensional matrix-matrix multiplica-

tion have been developed in [123–127]. Techniques for efficient straggler mitigation for

matrix-vector computation in distributed wireless settings have been developed in [128].

In [129], the potential of the multicore nature of computing machines is studied. In [130],

the authors propose an anytime approach to distributed computing, developing an ap-

proximate matrix multiplication scheme. The authors in [131] propose a novel encoding

scheme for achieving large sparsity in the encoded matrix. Work in [132] develops a

coding strategy for mitigating straggling decoders in cloud radio access network. Speed-

ing up the computation of linear transformations with unreliable components is studied

in [133]. Straggler mitigation through data encoding in distributed optimization is pro-

posed in [134]. A coded scheme based on LT codes is proposed in [135] for multiplying a

matrix by a set of vectors in a distributed computing environment. Addressing stragglers

has attracted a lot of attention in the queuing-based frameworks for large-scale compu-

tation as well [136,137]. These works utilize the technique of dynamically replicating the

tasks in a careful manner to minimize run-time.

We extend the problem of distributed matrix multiplication in homogeneous clusters

in [116] to heterogeneous environments. As discussed in [14], the computing environ-

ments in virtualized data centers are heterogeneous and algorithms based on homoge-

neous assumptions can result in significant performance reduction. In this paper, we

focus on general heterogeneous distributed computing clusters consisting of a variety of

computing machines with different capabilities. Specifically, we propose a coding frame-

work for speeding up distributed matrix multiplication in heterogeneous clusters with

straggling servers, named Heterogeneous Coded Matrix Multiplication (HCMM). Matrix

multiplication is a crucial computation module in many engineering and scientific disci-

plines. In particular, it is a fundamental component of many popular machine learning

94

Coded Computation over Heterogeneous Clusters Chapter 5

algorithms such as logistic regression, reinforcement learning and gradient descent-based

algorithms. Implementations that speed up matrix multiplication would naturally speed

up the execution of a wide variety of popular algorithms. Therefore, we envision HCMM

to play a fundamental role in speeding up big data analytics in virtualized data centers

by leveraging the wide range of computing capabilities provided by these heterogeneous

environments.

We now describe the main ideas behind HCMM, which results in asymptotically optimal

performance. In a coded implementation of distributed matrix-vector multiplication, each

worker node is assigned the task of computing inner products of the assigned coded rows

with the input vector, where the assigned coded rows are random linear combinations of

the rows of the original matrix. Computation time at each worker is a random variable,

which is first assumed to have shifted exponential distribution, and we later generalize

it to shifted Weibull distribution. The master node receives the results from the worker

nodes and aggregates them until it receives a decodable set of inner products and recovers

the matrix-vector multiplication. We are interested in finding the optimal load allocation

that minimizes the expected waiting time to complete this computation. However, due to

heterogeneity, finding the exact solution to the optimization problem seems intractable.

As the main contribution of the paper, we propose an alternative optimization that fo-

cuses on maximizing the expected number of returned computation results from the work-

ers. Apart from being computationally tractable, the alternative optimization asymp-

totically approximates the problem of finding the optimal computation load allocation.

Specifically, we develop the HCMM algorithm that is derived as a solution to the alterna-

tive formulation, and prove it is asymptotically optimal. Furthermore, we prove that

given a heterogeneous cluster of n workers, HCMM is Θ(log n) times faster than uncoded

schemes under the shifted exponential distribution for run-time. We further generalize

the proposed HCMM algorithm to shifted Weibull model and provide similar unbounded

95

Coded Computation over Heterogeneous Clusters Chapter 5

gains over uncoded scenarios.

In addition to proving the asymptotic optimality of HCMM, we carry out numerical

studies and experiments over Amazon EC2 clusters to demonstrate how HCMM can be

used in practice. We compare HCMM with three benchmark schemes – Uniform Uncoded,

Load-balanced Uncoded, and Uniform Coded. In our numerical analysis, HCMM results in

significant speedups of up to 73%, 56% and 42% over the three aforementioned benchmark

schemes, respectively. In experiments using Amazon EC2 clusters, we use the Luby

transform (LT) codes for coding and demonstrate that HCMM combined with LT codes

significantly reduces the overall execution time in comparison to uncoded and coded

schemes. In particular, HCMM achieves gains of up to 61%, 46% and 36%, respectively over

Uniform Uncoded, Load-balanced Uncoded and Uniform Coded. Furthermore, the overall

computation load of HCMM is less than the one of Uniform Coded. Our results demonstrate

that HCMM combines the benefits of both Load-balanced Uncoded and Uniform Coded

schemes by achieving efficient load balancing along with minimal number of redundant

computations.

Furthermore, we consider the problem of load allocation under budget constraints,

considering an intuitive and convincing pricing model. In particular, we show that HCMM

is the (asymptotically) optimal load allocation in feasible budget-constrained scenarios

as well, and determine whether a budget-constrained computation task is feasible given a

cluster of machines. We then develop a heuristic algorithm to find the (sub)optimal load

allocations using the proposed HCMM scheme. The heuristic is based on the observation

that given a computation task and a set of machines, decreasing the number of fastest

machines participating in HCMM results in smaller average cost.

Notation. We denote by [n] the set {1, · · · , n} for any n ∈ N. For non-negative

sequences g(n) and h(n), we denote g(n) = O
(
h(n)

)
if there exist constants c > 0 and

n0 ∈ N such that g(n) ≤ c · h(n) for all n > n0; and g(n) = Θ
(
h(n)

)
if g(n) = O

(
h(n)

)

96

Coded Computation over Heterogeneous Clusters Chapter 5

and h(n) = O
(
g(n)

)
. Moreover, we write g(n) = o

(
h(n)

)
if limn→∞ g(n)/h(n) = 0.

5.2 Problem Formulation and Main Results

In this section, we describe our computation model, the network model and the

precise problem formulation. We then conclude with four theorems highlighting the

main contributions of the chapter.

5.2.1 Computation Model

We consider the problem of matrix-vector multiplication, in which given a matrix

A ∈ Rr×m for some positive integers r and m, we want to compute the output y = Ax

for an input vector x ∈ Rm. Due to limited computing power, the computation cannot

be carried out at a single server and a distributed implementation is required. As an

example, consider a matrix A with an even number of rows and two computing nodes.

The matrix can be divided into two equally tall matrices A1 and A2, and each will be

stored in a different worker node. The master node receives the input x and broadcasts it

to the two worker nodes. These nodes will then compute y1 = A1x and y2 = A2x locally

and return their results to the master node, which combines them to obtain the intended

outcome y = [y1; y2] = Ax. This example also illustrates an uncoded implementation of

distributed computing, in which results from all the worker nodes are required to recover

the final result.

We now present the formal definition of Coded Distributed Computation.

Definition 5.1 (Coded Distributed Computation) The coded distributed implemen-

tation of a computation task fA(·) is specified by:

• local data blocks 〈Ai〉ni=1 and local computation tasks
〈
f iAi

(·)
〉n
i=1

;

97

Coded Computation over Heterogeneous Clusters Chapter 5

• a decoding function that outputs fA(·) given the results from a decodable set of local

computations.

For matrix-vector multiplication tasks in particular, local data blocks Ai ∈ R`i×m are

matrices consisting of coded combinations of the rows in A, for non-negative integers

`i. To assign the computation tasks to each worker, we use random linear combinations

of the r rows of the matrix A, such that the master node can recover the result Ax

from any r inner products received from the worker nodes with probability 1. As an

example, if worker i is assigned a matrix-vector multiplication with matrix size `i ×m,

it will compute `i inner products of the assigned coded rows of A with x. The master

node shall wait for the first r inner products and will use them to decode the required

output. In order to ensure the recovery of the output from any r inner products received

from the workers, we pick the computation matrix assigned to worker i as Ai = SiA,

where Si ∈ R`i×r is the coding matrix with i.i.d. N (0, 1) entries. Worker i computes

Aix and returns the result to the master node. Upon receiving r inner products, the

aggregated results at the master will be in the form of z = S(r)Ax, where S(r) ∈ Rr×r is

the aggregated coding matrix, and it is full-rank with probability 1 [138]. Therefore, the

master node can recover Ax = S−1
(r)z with probability 1.1,2

1Although we consider random linear coding in our theoretical analysis, other codes such as
Maximum-Distance Separable (MDS) codes and Luby transform (LT) codes are compatible with HCMM

as well, given a decodable set of results at the master. For example, in the MDS case, the entries in the
coding matrix {Si}ni=1 are drawn from a finite field. Specifically, one can encode the rows of A using an
(
∑n

i=1 `i, r) MDS code and assign `i coded rows to the worker node i. The output Ax can be recovered
from the inner products of any r coded rows with the input vector x. Furthermore, to implement the
ideas developed in this work, we use LT codes in our experiments over Amazon EC2 clusters.

2Instead of i.i.d. Gaussian, we could use any continuous distribution for the random entries, since
Schwartz-Zippel lemma ensures that such random matrix is full-rank with high probability

98

Coded Computation over Heterogeneous Clusters Chapter 5

5.2.2 Network Model

The network model is based on a master-worker setup illustrated in Fig. 5.1. The

master node receives an input x and broadcasts it to all the workers. Each worker

computes its assigned set of computations and unicasts the result to the master node.

The master node aggregates the results from the worker nodes until it receives a decodable

set of computations and recovers the output Ax.

3

A. Computation Model

We consider the problem of matrix-vector multiplication, in
which given a matrix A ∈ Rr×m for some positive integers
r and m, we want to compute the output y = Ax for an
input vector x ∈ Rm. Due to limited computing power, the
computation cannot be carried out at a single server and a dis-
tributed implementation is required. As an example, consider
a matrix A with an even number of rows and two computing
nodes. The matrix can be divided into two equally tall matrices
A1 and A2, and each will be stored in a different worker
node. The master node receives the input x and broadcasts
it to the two worker nodes. These nodes will then compute
y1 = A1x and y2 = A2x locally and return their results to
the master node, which combines them to obtain the intended
outcome y = [y1;y2] = Ax. This example also illustrates an
uncoded implementation of distributed computing, in which
results from all the worker nodes are required to recover the
final result.

We now present the formal definition of Coded Distributed
Computation.

Definition 1. (Coded Distributed Computation) The coded
distributed implementation of a computation task fA(·) is
specified by:

• local data blocks ⟨Ai⟩ni=1 and local computation tasks〈
f i
Ai

(·)
〉n

i=1
;

• a decoding function that outputs fA(·) given the results
from a decodable set of local computations.

For matrix-vector multiplication tasks in particular, local
data blocks Ai ∈ Rℓi×m are matrices consisting of coded
combinations of the rows in A, for non-negative integers
ℓi. To assign the computation tasks to each worker, we use
random linear combinations of the r rows of the matrix A,
such that the master node can recover the result Ax from
any r inner products received from the worker nodes with
probability 1. As an example, if worker i is assigned a matrix-
vector multiplication with matrix size ℓi×m, it will compute
ℓi inner products of the assigned coded rows of A with x.
The master node shall wait for the first r inner products and
will use them to decode the required output. In order to ensure
the recovery of the output from any r inner products received
from the workers, we pick the computation matrix assigned to
worker i as Ai = SiA, where Si ∈ Rℓi×r is the coding matrix
with i.i.d. N (0, 1) entries. Worker i computes Aix and returns
the result to the master node. Upon receiving r inner products,
the aggregated results at the master will be in the form of
z = S(r)Ax, where S(r) ∈ Rr×r is the aggregated coding
matrix, and it is full-rank with probability 1 [32]. Therefore,

the master node can recover Ax = S−1
(r)z with probability 1.1,2

B. Network Model

The network model is based on a master-worker setup
illustrated in Fig. 1. The master node receives an input x
and broadcasts it to all the workers. Each worker computes
its assigned set of computations and unicasts the result to the
master node. The master node aggregates the results from the
worker nodes until it receives a decodable set of computations
and recovers the output Ax.

A1 A2 An· · ·

W1 W2 Wn· · ·

x

M

x

A1 A2 An· · ·

W1 W2 Wn· · ·

A1x A2x Anx

M

Ax

Fig. 1: Master-worker setup of the computing clusters: The master
node receives the input vector x and broadcasts it to all the worker
nodes. Upon receiving the input, worker node i starts computing the
inner products of the input vector with the locally assigned rows, i.e.,
yi = Aix, and unicasts the output vector yi to the master node upon
completing the computation. The results are aggregated at the master
node until r inner products are received and the desired output Ax
is recovered.

We denote by Ti the random variable representing the task
run-time at node i and assume that the run-times T1, · · · , Tn

are mutually independent. We consider the distribution of run-
time random variables to be exponential, and later generalize
it to Weibull distribution. More specifically, we consider a
2-parameter shifted exponential distribution for the execution
time of each worker, i.e., the CDF of execution time of worker
node i, Ti, loaded with ℓi row vectors is as follows:

Pr[Ti ≤ t] = 1− e
− µi

ℓi
(t−aiℓi), (1)

for t ≥ aiℓi and i ∈ [n], where ai > 0 is the shift parameter
and µi > 0 denotes the straggling parameter associated with
worker node i. The shifted exponential model for computation
time, which is the sum of a constant (deterministic) term and
a variable (stochastic) term, is motivated by the distribution
model proposed by authors in [33] for latency in querying data
files from cloud storage systems. As demonstrated in [10] as

1Although we consider random linear coding in our theoretical analysis,
other codes such as Maximum-Distance Separable (MDS) codes and Luby
transform (LT) codes are compatible with HCMM as well, given a decodable
set of results at the master. For example, in the MDS case, the entries in
the coding matrix {Si}n

i=1 are drawn from a finite field. Specifically, one
can encode the rows of A using an (

∑n
i=1 ℓi, r) MDS code and assign ℓi

coded rows to the worker node i. The output Ax can be recovered from the
inner products of any r coded rows with the input vector x. Furthermore,
to implement the ideas developed in this work, we use LT codes in our
experiments over Amazon EC2 clusters.

2Instead of i.i.d. Gaussian, we could use any continuous distribution for
the random entries, since Schwartz-Zippel lemma ensures that such random
matrix is full-rank with high probability

Figure 5.1: Master-worker setup of the computing clusters: The master node receives
the input vector x and broadcasts it to all the worker nodes. Upon receiving the input,
worker node i starts computing the inner products of the input vector with the locally
assigned rows, i.e., yi = Aix, and unicasts the output vector yi to the master node upon
completing the computation. The results are aggregated at the master node until r inner
products are received and the desired output Ax is recovered.

We denote by Ti the random variable representing the task run-time at node i and

assume that the run-times T1, · · · , Tn are mutually independent. We consider the distri-

bution of run-time random variables to be exponential, and later generalize it to Weibull

distribution. More specifically, we consider a 2-parameter shifted exponential distribu-

tion for the execution time of each worker, i.e., the CDF of execution time of worker node

i, Ti, loaded with `i row vectors is as follows:

Pr[Ti ≤ t] = 1− e−
µi
`i

(t−ai`i), (5.1)

99

Coded Computation over Heterogeneous Clusters Chapter 5

for t ≥ ai`i and i ∈ [n], where ai > 0 is the shift parameter and µi > 0 denotes the

straggling parameter associated with worker node i. The shifted exponential model for

computation time, which is the sum of a constant (deterministic) term and a variable

(stochastic) term, is motivated by the distribution model proposed by authors in [139] for

latency in querying data files from cloud storage systems. As demonstrated in [116] as

well as by our own experiments, exponential model provides a good fit for the distribution

of computation times over cloud computing environments such as Amazon EC2 clusters.

Moreover, these experiments confirm the assumption that as a first order approximation,

both shift and mean parameters of the shifted exponential distributions linearly scale

with the load size.

We further generalize the analysis to shifted Weibull distribution in Section 5.4, where

we consider a 3-parameter shifted Weibull distribution for the execution time of each

worker. That is, the CDF of task run-time at worker node i, loaded with `i row vectors

is as follows:

Pr[Ti ≤ t] = 1− e−
(
µi
`i

(t−ai`i)
)αi
, (5.2)

for t ≥ ai`i and i ∈ [n], where ai > 0 denotes the shift parameter, µi > 0 is the straggling

parameter and αi > 0 represents the shape parameter associated with worker i. A similar

model has been considered in [140] as well.

5.2.3 Problem Formulation

We consider the problem of using a cluster of n worker nodes for distributedly com-

puting the matrix-vector multiplication Ax, where A is a size r ×m matrix for positive

integers r and m. Let ` = (`1, · · · , `n) be the load allocation vector where `i denotes the

number of rows assigned to worker node i. Let TCMP be the random variable denoting

the waiting time for receiving a decodable set of results, i.e. at least r inner products.

100

Coded Computation over Heterogeneous Clusters Chapter 5

We aim at finding the optimal load allocation vector that minimizes the average waiting

time by solving the following optimization problem:

Pmain : minimize
`

E[TCMP]. (5.3)

For a homogeneous cluster, to achieve a coded solution, one can divide A into k equal

size submatrices, and apply an (n, k) MDS code to these submatrices. The master node

can then obtain the final result from any k responses. In [116], the authors find the

optimal k for minimizing the average running time for the shifted exponential run-time

model.

For heterogeneous clusters, however, assigning equal loads to servers is clearly not

optimal. Moreover, directly finding the optimal solution to Pmain is hard. In homogeneous

clusters, the problem of finding a sufficient number of inner products can be mapped to

the problem of finding the waiting time for a set of fastest responses, and thus closed

form expressions for the expected computation time can be found using order statistics

of i.i.d. run-times. However, this is not straight-forward in heterogeneous clusters, where

the load allocation is non-uniform. In Section 5.3, we present an alternative formulation

to Pmain in (5.3), and show that the solution to the alternative formulation – which we

shall name HCMM – is tractable and provably asymptotically optimal.

Assumptions. From now onward, we consider the practically relevant regime where

the size of the problem scales linearly with the size of the network, while the computing

power and the storage capacity of each worker node remain constant. Specifically, we

assume r = Θ(n), ai = Θ(1), µi = Θ(1) and αi = Θ(1) for each worker i.

101

Coded Computation over Heterogeneous Clusters Chapter 5

5.2.4 Main Results

Having set the model and formulation of the problem, we now present the main con-

tributions of this chapter. The following theorem characterizes the asymptotic optimality

of HCMM for the shifted exponential run-time model.

Theorem 5.1 Let THCMM be the random variable denoting the finish time of the HCMM

algorithm and TOPT be the random variable representing the finish time of the optimum

algorithm obtained by solving Pmain. Then, for shifted exponential run-times in (5.1)

with constant parameters ai = Θ(1) and µi = Θ(1) for each worker i ∈ [n] and r = Θ(n),

we have limn→∞ E[THCMM] = limn→∞ E[TOPT].

Proof: We defer the proof to Appendix D.1.

Remark 5.1 Theorem 5.1 demonstrates that our proposed HCMM algorithm is asymp-

totically optimal as the number of workers n approaches infinity. In other words, the

optimal computation load allocation problem Pmain in (5.3) can be optimally solved using

the proposed HCMM algorithm as n gets large.

Remark 5.2 We note that Pmain in (5.3) is a hard combinatorial optimization problem

since it will require checking all load combinations to minimize the overall expected exe-

cution time. The key idea in Theorem 5.1 is to consider an alternative formulation to

(5.3) focusing on maximizing the expected number of returned computation results from

the workers, i.e. maximizing the aggregate return. As we describe in Section 5.3, the

alternative optimization problem not only can be solved efficiently in a tractable way giv-

ing rise to HCMM algorithm, it also asymptotically approximates Pmain and allows us to

establish Theorem 5.1.

Remark 5.3 While Theorem 5.1 theoretically characterizes the optimality of our pro-

posed scheme HCMM, we also demonstrate gains that one can get in practice. In particular,

102

Coded Computation over Heterogeneous Clusters Chapter 5

we carry out numerical studies and experiments over Amazon EC2 clusters that demon-

strate that HCMM can provide significant gains in a wide variety of computing scenarios.

In particular, we compare HCMM’s performance with three benchmark load allocation poli-

cies – Uniform Uncoded, Load-balanced Uncoded, and Uniform Coded. In numerical

studies, HCMM achieves speedups of up to 71% over Uniform Uncoded, up to 53% over

Load-balanced Uncoded, and up to 39% over Uniform Coded. In EC2 experiments, HCMM

combined with the Luby transform (LT) codes provides speedups of up to 61%, 46% and

36% over Uniform Uncoded, Load-balanced Uncoded and Uniform Coded, respectively.

Theorem 5.2 Let TUC denote the completion time of the uncoded distributed matrix

multiplication algorithm. Then, for the shifted exponential run-times with constant pa-

rameters and r = Θ(n),

E[TUC]

E[THCMM]
= Θ

(
log n

)
.

Proof: We defer the proof to Appendix D.2.

Remark 5.4 As Theorem 5.2 shows, our proposed HCMM guarantees an improvement of

Θ
(

log n
)

in expected execution time over any uncoded scheme, including the one that

optimally allocates the workers’ loads. This result illustrates that by leveraging coded

computing, one achieves the same order-wise gain over heterogeneous clusters as over

homogeneous clusters [116].

Although Theorems 5.1 and 5.2 are based on the shifted exponential model (5.1) for

run-time random variables for the workers, our analyses are general and can be extended

to other models. The following two theorems generalize the results when the execution

time of each worker follows the Weibull distribution as described in (5.2).

Theorem 5.3 For the shifted Weibull distribution of run-times with constant parameters

ai = Θ(1), µi = Θ(1) and αi = Θ(1) for each worker i ∈ [n] and r = Θ(n), the proposed

HCMM algorithm is asymptotically optimal, i.e., limn→∞ E[THCMM] = limn→∞ E[TOPT].

103

Coded Computation over Heterogeneous Clusters Chapter 5

Theorem 5.4 Under the Weibull distribution for run-times with constant parameters

and r = Θ(n), the proposed HCMM scheme unboundedly outperforms the uncoded scheme,

i.e.,

E[TUC]

E[THCMM]
≥ Θ

(
(log n)1/α̃

)
,

where α̃ = maxi∈[n] αi is the largest shape parameter among the workers.

Remark 5.5 As stated in Theorem 5.4, HCMM provides an unbounded gain over any

uncoded scheme – including the optimal uncoded load allocation – under the Weibull

distribution for workers’ run-times. Furthermore, our numerical simulations demonstrate

speedups of up to 73%, 56% and 42% over Uniform Uncoded, Load-balanced Uncoded and

Uniform Coded, respectively.

In the following section, we describe our alternative formulation based on aggregate

return and describe our proposed HCMM algorithm that solves the alternative optimiza-

tion.

5.3 The Proposed HCMM Scheme

In this section, we prove Theorems 5.1 and 5.2 for the exponential model (5.1). In

particular, we start by describing the HCMM algorithm and show that it asymptotically

achieves the optimal performance, as stated in Theorem 5.1, and lastly conclude the

section by characterizing the gain of HCMM over uncoded scheme.

To derive HCMM, we start by reformulating Pmain defined in (5.3) and show that the

alternative formulation can be efficiently solved, as opposed to solving Pmain that needs

an exhaustive search over all possible load allocations. The solution to the alternative

problem gives rise to HCMM. We will further prove the optimality of HCMM and compare its

average run-time to uncoded schemes.

104

Coded Computation over Heterogeneous Clusters Chapter 5

5.3.1 Alternative Formulation of Pmain via Maximal Aggregate

Return

Consider an n-tuple load allocation ` = (`1, · · · , `n) and let t be a feasible time for

computation, i.e., t ≥ max
i
{ai `i}. The number of equations received from worker i ∈ [n]

at the master node till time t is a random variable, Xi(t) = `i 1{Ti≤t}, where Ti is the

random execution time for machine i that is assigned the load `i and 1{·} denotes the

indicator function. Then, the aggregate return at the master node at time t is:

X(t) =
n∑

i=1

Xi(t).

We propose the following two-step alternative formulation for Pmain defined in (5.3).

First, for a fixed feasible time t, we maximize the aggregate return over different load

allocations, i.e., we solve

P(1)
alt : `∗(t) = arg max

`
E
[
X(t)

]
. (5.4)

Then, given the load allocation `∗(t) =
(
`∗1(t), · · · , `∗n(t)

)
obtained from P(1)

alt , we find the

smallest time t such that with high probability, there is enough aggregate return by time

t at the master node, i.e., we solve

P(2)
alt : minimize t

subject to Pr
[
X∗(t) < r

]
= o

(
1

n

)
,

where X∗(t) is the aggregate return at time t for load allocation obtained from P(1)
alt , that

is

X∗(t) =
n∑

i=1

X∗i (t) =
n∑

i=1

`∗i (t)1{Ti≤t}.

105

Coded Computation over Heterogeneous Clusters Chapter 5

From now onward, we denote the solution to P(2)
alt by t∗ and hence `∗(t∗) denotes the

solution to the two-step alternative formulation in (5.4) and (A.19) which gives rise to

our proposed HCMM scheme described next.

5.3.2 Solving the Alternative Formulation

Considering the exponential distribution for workers’ run-times, we first proceed to

solve P(1)
alt in (5.4). The expected number of equations aggregated at the master node at

time t is:

E
[
X(t)

]
=

n∑

i=1

E
[
Xi(t)

]
=

n∑

i=1

`i

(
1− e−

µi
`i

(t−ai `i)
)
.

Since there is no constraint on load allocations, P(1)
alt can be decomposed to n decoupled

optimization problems, i.e.,

`∗i (t) = arg max
`i

E
[
Xi(t)

]
, (5.5)

for all workers i ∈ [n]. The solution to (5.5) satisfies the following optimality condition:

∂

∂`i
E
[
Xi(t)

]
= 1− e−

µi
`i

(t−ai`i)
(
µit

`i
+ 1

)
= 0,

which yields

`∗i (t) =
t

λi
, (5.6)

where λi = Θ(1) is a constant independent of t and is the positive solution to the following

equation:

eµiλi = eaiµi(µiλi + 1).

106

Coded Computation over Heterogeneous Clusters Chapter 5

Algorithm 5.1: Heterogeneous Coded Matrix Multiplication (HCMM)

Input: computation time parameters (ai, µi) for each worker i 3

Output: computation load assigned to each worker i
Procedure HCMM

solve P(1)
alt for any feasible t obtain `∗i (t) = t

λi

solve P(2)
alt and obtain t∗

return `∗i (t
∗) = t∗

λi
row vector computations for worker i

end

One can easily check that the condition t ≥ ai`
∗
i (t) holds for all i as well. Moreover, we

denote by t∗ the solution to P(2)
alt . Now, we define the HCMM load allocation as

`∗i (t
∗) =

t∗

λi
, (5.7)

for all workers i. In the following, we formally define the HCMM algorithm which is basically

the solution to Palt.

Remark 5.6 We note that in order to implement any load allocation scheme, each

worker supposedly admits an integer number of rows as its associated computation load.

However, the load allocation `∗i (t
∗) given by HCMM scheme in Algorithm 5.1 is a real num-

ber for any worker i and therefore one needs to round the result before proceeding with

experiments. In practical scenarios, `∗i (t
∗) is fairly large, e.g. in the order of 100 row

vectors. Therefore, the effect of rounding the load allocations shall be insignificant.

We now provide an approximation to t∗ and show it asymptotically converges to t∗.

The expected aggregate return at time t for optimal loads obtained in (5.6) is

E
[
X∗(t)

]
=

n∑

i=1

`∗i (t)

(
1− e−

µi
`∗
i
(t)(t−ai`∗i (t))

)
=

n∑

i=1

t

λi

(
1− e−

µi
t/λi

(
t−ait

λi

))
= ts, (5.8)

107

Coded Computation over Heterogeneous Clusters Chapter 5

where

s =
n∑

i=1

1

λi

(
1− e−µiλi(1−

ai
λi

)
)

=
n∑

i=1

µi
1 + µiλi

= Θ(n),

since µi = Θ(1) and λi = Θ(1). Let τ ∗ be the solution to the following equation when

solved for t:

E
[
X∗(t)

]
=

n∑

i=1

`∗i (t)

(
1− e−

µi
`∗
i
(t)

(t−ai`∗i (t))
)

= r. (5.9)

In other words, τ ∗ is the time for which there are exactly r inner products – on average

– aggregated at the master node, when the workers are loaded according to the loading

obtained in (5.6). Using (5.6), (A.6) and (A.34), we find that

τ ∗ =
r

s
= Θ(1),

`∗i (τ
∗) =

τ ∗

λi
=

r

sλi
= Θ(1). (5.10)

We now present the following lemma, showing that τ ∗ converges to t∗ for large n.

Lemma 5.1 Let t∗ be the solution to the alternative formulation Palt in (5.4-A.19) and

τ ∗ be the solution to (A.34). Then,

τ ∗ ≤ t∗ ≤ τ ∗ + o(1).

Proof: We defer the proof to Appendix D.3.

5.4 Generalization to the Shifted Weibull Model

In this section, we consider the shifted Weibull distribution for the workers’ exe-

cution times, which captures a broader class of run-time models than the exponential

3For the shifted Weibull distribution, parameters (ai, µi, αi) are taken as inputs.

108

Coded Computation over Heterogeneous Clusters Chapter 5

distribution. We particularly generalize our proposed HCMM algorithm to the class of

shifted Weibull distributed run-times and prove Theorems 5.3 and 5.4. More specifically,

we argue that asymptotic optimality of HCMM is derived similar to the shifted exponen-

tial case and further show that HCMM provides unbounded gain over uncoded schemes,

asymptotically.

A random variable T has Weibull distribution with shape parameter α > 0 and scale

parameter µ > 0, denoted by T ∼ W(α, µ), if the CDF of T is of the following form:

Pr[T ≤ t] = 1− e−(µt)α , t ≥ 0.

The expected value of the Weibull distribution is known to be E[T] = 1
µ
Γ(1+1/α), where

Γ(·) denotes the Gamma function.

As stated in Section 5.2.2, we consider a 3-parameter shifted Weibull distribution for

workers’ run-times defined in (5.2). The mean value of the worker i’s run-times is then

E[Ti] = ai`i + `i
µi

Γ(1 + 1/αi). Clearly, shifted exponential distribution is a special case

of the shifted Weibull model when αi = 1. By slight reparameterizations, this model

can be similarly applied to the HCMM algorithm proposed in Algorithm 5.1, meaning that

the main and alternative optimization problems defined in (5.3), (5.4) and (A.19) can be

similarly analyzed under the shifted Weibull model.

As in the exponential case, we begin by maximizing the expected aggregate return at

the master node (P(1)
alt) under the shifted Weibull distribution, which is given by

E
[
X(t)

]
=

n∑

i=1

E
[
Xi(t)

]
=

n∑

i=1

`i

(
1− e−

(
µi
`i

(t−ai`i)
)αi)

.

The optimal load allocation that maximizes the individual expected aggregate returns at

each worker (and thus the total aggregate return) can be found by solving the following

109

Coded Computation over Heterogeneous Clusters Chapter 5

equation:

∂

∂`i
E
[
Xi(t)

]
= 1− e−

(
µi
`i

(t−ai`i)
)αi
(

1 +
µi
αiαit

`i

(
t

`i
− ai

)αi−1
)

= 0. (5.11)

Solving (5.11) for `i yields `∗i (t) = t
λi

where the constant λi > ai is the positive solution

to

eµi
αi (λi−ai)αi = 1 + αiµi

αiλi(λi − ai)αi−1.

Similar to Section 5.3, we can define s as follows,

s =
E
[
X∗(t)

]

t

=
1

t

n∑

i=1

`∗i (t)

(
1− e−

(
µi
`∗
i
(t)(t−ai`∗i (t))

)αi)

=
n∑

i=1

1

λi

(
1− e−

(
µiλi

(
1− ai

λi

))αi)

=
n∑

i=1

αiµi
αi(λi − ai)αi−1

1 + αiµiαiλi(λi − ai)αi−1

= Θ(n).

The last equality uses the fact that all the distribution parameters are constants. The

expected aggregate return with optimal loads, E
[
X∗(t)

]
, equals to r at time t = τ ∗.

Thus, τ ∗ = r
s

= Θ(1) and `∗i (τ
∗) = τ∗

λi
= r

sλi
= Θ(1).

Proof: [Proof of Theorem 5.3] With the aforementioned reparametrizations of λi,

s and τ ∗, the HCMM algorithm defined in Algorithm 5.1 is identically applicable to the

Weibull model. Proof of the asymptotic optimality of HCMM under the Weibull distribution

follows the similar steps as in the proof for the exponential case in Appendix D.1 (unless

specifically justified, e.g. (D.5)). We avoid rewriting these steps for the purpose of

readability of the paper, but we note that the concentration inequalities used to establish

110

Coded Computation over Heterogeneous Clusters Chapter 5

the proof of Theorem 5.1 can be applied to a wide class of distributions including the

Weibull distribution.

As an implication of Theorem 5.3, the induced expected execution time by HCMM algorithm

is asymptotically constant, that is E[THCMM] = Θ(1); which was also the case for shifted

exponential distribution. To compare with the uncoded scenario, we start by the following

lemma which characterizes the extreme value of a sequence of Weibull random variables.

Lemma 5.2 Let {Ti}∞i=1 be a sequence of i.i.d. W(α, µ) random variables and T ∗n =

maxi∈[n] Ti denote the maximum of the first n variables. Then,

E [T ∗n] ≥ Θ
(

(log n)1/α
)
.

Proof: Consider the sequence of maximums {T ∗i }∞i=1. From Markov’s inequality, we

have E[T ∗n]
tn
≥ Pr[T ∗n ≥ tn], for any tn > 0 and n ∈ N. Pick tn = 1

µ

(
log n

)1/α
. Therefore,

E[T ∗n]

1
µ

(
log n

)1/α
≥ Pr

[
T ∗n ≥

1

µ

(
log n

)1/α
]

= 1− Pr

[
T ∗n <

1

µ

(
log n

)1/α
]

= 1−
n∏

i=1

Pr

[
Ti <

1

µ

(
log n

)1/α
]

= 1−
(

1− e− logn
)n

= 1−
(

1− 1

n

)n
.

Therefore,

lim
n→∞

E[T ∗n]

1
µ

(
log n

)1/α
≥ lim

n→∞
1−

(
1− 1

n

)n
= 1− 1

e
> 0.63,

which implies E[T ∗n] ≥ Θ
(

(log n)1/α
)

.

Now we complete the proof of Theorem 5.4.

111

Coded Computation over Heterogeneous Clusters Chapter 5

Proof: [Proof of Theorem 5.4] Recall that TUC denotes the completion time of the op-

timum uncoded distributed matrix multiplication algorithm across n workers parametrized

by tuples {(ai, µi, αi,)}ni=1. To bound the mean of TUC, assume that every machine is re-

placed with a stochastically faster machine with parameters (ã, µ̃, α̃) where ã = mini ai,

µ̃ = maxi µi and α̃ = maxi αi, i.e., the expected run-time of the latter scenario is no

greater than that of the former one. For the new set of n identical machines, the optimal

loading is uniform, i.e., ˜̀∗i = r
n
. Let {T̃i}ni=1 denote the i.i.d. shifted Weibull run times

for new set of machines which have CDFs of the form

Pr[T̃i ≤ t] = 1− e−
(
µ̃˜̀∗
i
(t−ã˜̀∗i)

)α̃

= 1− e−
(
µ̃n
r (t−ã rn)

)α̃
,

for t ≥ ãr
n

. The mean of computation time for the new set of machines is

E[T̃UC] = E[max
i∈[n]

T̃i] =
ãr

n
+ E[max

i∈[n]

˜̃T i],

where ˜̃T i = T̃i − ãr
n

are i.i.d. W(α̃, µ̃n
r
) for all workers i ∈ [n]. Using Lemma 5.2, we can

write

E[TUC] ≥ E[T̃UC] ≥ ãr

n
+ Θ

(
(log n)1/α̃

)
= Θ

(
(log n)1/α̃

)
.

Comparing the best uncoded scheme with the proposed coded algorithm demonstrates

that HCMM outperforms the best uncoded scheme by a factor of at least Θ
(

(log n)1/α̃
)

,

i.e.,

E[TUC]

E[THCMM]
≥ Θ

(
(log n)1/α̃

)
.

112

Coded Computation over Heterogeneous Clusters Chapter 5

5.5 Numerical Results

In this section, we present our results both from simulations as well as from exper-

iments over Amazon EC2 clusters. These results demonstrate how HCMM can provide

significant speedups in comparison to state-of-the-art load allocation schemes.

5.5.1 Numerical Analysis

We now present numerical results evaluating the performance of HCMM. We consider

both the shifted exponential model in (5.1) and the shifted Weibull model in (5.2) for

run-time distributions in our simulations, assuming the unit seconds per row (s/row) for a

and 1/µ. The underlying computation task is to compute r = 10000 inner products using

a heterogeneous cluster of n = 100 workers, where different scenarios for heterogeneity

are considered. For each scenario under consideration, we implement the following load

allocation schemes4:

1. Uniform Uncoded: Each worker is assigned an equal number of rows, i.e., `i =

r/n for all workers i.

2. Load-balanced Uncoded: Each worker is assigned a load which is inversely

proportional to its expected time for computing one inner product, i.e., for the

shifted exponential model, `i ∝ µi/(aiµi + 1), while for the shifted Weibull model,

`i ∝ µi/(aiµi + Γ(1 + 1/αi)) for all workers i. Furthermore, we set
∑n

i=1 `i = r.

3. Uniform Coded: Equal number of coded rows are assigned to each worker. Re-

dundancy is numerically optimized for minimizing the average computation time

for receiving results of at least r inner products at the master node.

4For each scheme, the load number for each worker is approximated to the nearest larger integer
using the ceil() function. For the practical large load regime considered in simulations, this rounding
step has negligible impact on load allocation and on the overall results.

113

Coded Computation over Heterogeneous Clusters Chapter 5

Figure 5.2: Illustration of the performance gain of HCMM over the three benchmark schemes
for the exponential run-time model. Among the three scenarios, HCMM achieves a perfor-
mance improvement of up to 71% over Uniform Uncoded, up to 53% over Load-balanced
Uncoded, and up to 39% over Uniform Coded. Furthermore, the coding redundancy∑n

i=1 `i/r for the three scenarios is in the range of 1.41− 1.46 for HCMM and in the range
of 2.3 − 2.8 for Uniform Coded. This demonstrates the efficient utilization of resources
by HCMM.

4. HCMM: Each worker is assigned the asymptotically optimal load allocation derived

in Section 5.3.2, i.e., `i = τ ∗/λi for each worker i according to (5.7) and (5.10).

For simulations under the shifted exponential model, we consider the following three

scenarios:

• Scenario 1 (2-mode heterogeneity): (ai, µi) = (1, 1) for 50 workers, and

(ai, µi) = (4, 0.5) for the other 50 workers.

• Scenario 2 (3-mode heterogeneity): (ai, µi) = (1, 0.5) for 25 workers, (ai, µi) =

(4, 2) for 25 workers, and (ai, µi) = (12, 0.25) for the remaining 50 workers.

• Scenario 3 (Random heterogeneity): For each worker i, parameters ai and µi

are sampled from the sets {1, 4, 12}, {0.5, 2, 0.25}, respectively and all uniformly at

random.

114

Coded Computation over Heterogeneous Clusters Chapter 5

Figure 5.3: Illustration of the performance gain of HCMM over the three benchmark schemes
for Weibull model for run-time. Among the three scenarios, HCMM achieves a perfor-
mance improvement of up to 73% over Uniform Uncoded, up to 56% over Load-balanced
Uncoded, and up to 42% over Uniform Coded. Furthermore, the coding redundancy∑n

i=1 `i/r for the three scenarios is in the range of 1.30− 1.42 for HCMM and in the range
of 2.0 − 2.5 for Uniform Coded. This demonstrates the efficient utilization of resources
by HCMM.

The following three scenarios are considered for simulations under the shifted Weibull

distribution for run-times:

• Scenario 1 (2-mode heterogeneity): (ai, µi, αi) = (1, 1, 1.2) for 50 workers, and

(ai, µi, αi) = (4, 0.5, 0.8) for the other 50 workers.

• Scenario 2 (3-mode heterogeneity): (ai, µi, αi) = (1, 0.5, 0.9) for 25 workers,

(ai, µi, αi) = (4, 2, 1.2) for 25 workers, and (ai, µi, αi) = (12, 0.25, 1.5) for the re-

maining 50 workers.

• Scenario 3 (Random heterogeneity): For each worker i, parameters ai, µi and

αi are sampled from the sets {1, 4, 12}, {0.5, 2, 0.25} and {0.9, 1.2, 1.5}, respectively

and all uniformly at random.

Figure 5.2 and 5.3 illustrate the performance comparison of the four schemes for the

two run-time models. We make the following conclusions from the results.

115

Coded Computation over Heterogeneous Clusters Chapter 5

• HCMM significantly outperforms the benchmark load allocation schemes. In partic-

ular, for the shifted exponential model, HCMM provides speedups of up to 71% over

Uniform Uncoded, up to 53% over Load-balanced Uncoded, and up to 39% over

Uniform Coded, among the three scenarios. When the machine run-time is assumed

to have a shifted Weibull distribution, among the three scenarios HCMM results in

gains of up to 73%, 56% and 42% over Uniform Uncoded, Load-balanced Uncoded,

and Uniform Coded respectively.

• The coding redundancy
∑n

i=1 `i/r for Uniform Coded is higher in comparison to the

one for HCMM. In particular, for simulations under the shifted exponential model, the

coding redundancy for the three scenarios is in the range of 2.3 − 2.8 for Uniform

Coded and in the range of 1.41− 1.46 for HCMM. For simulations under the shifted

Weibull distribution, the coding redundancy is in the range of 2.0−2.5 for Uniform

Coded, while for HCMM, it is in the range 1.30− 1.42. This demonstrates that HCMM

leads to a better utilization of computing resources.

• Both Load-balanced Uncoded and Uniform Coded improve upon the performance

of Uniform Uncoded. In Load-balanced Uncoded scheme, assigning larger loads to

faster machines leads to better performance, while for Uniform Coded, repeated

computations lead to better performance as the master does not need to wait for

all the results. HCMM provides the best expected execution time among the four

schemes as it combines the gains of Load-balanced Uncoded and Uniform Coded

by employing efficient load balancing along with minimal number of redundant

computations.

Next, we present the results from our experiments over Amazon EC2 clusters. These

results show agreement with our numerical studies.

116

Coded Computation over Heterogeneous Clusters Chapter 5

5.5.2 Experiments using Amazon EC2 machines

We use Python with mpi4py package [141] to implement our developed HCMM scheme

over Amazon EC2 clusters. To emulate the straggler effects in large-scale systems [142],

we inject artificial delays.5 This is achieved by selecting some workers to be stragglers

at the beginning of experiments and slowing down each such worker by making it wait

for 3 times the amount of time it spends in computation before it sends its results to the

master. This is done using the sleep() function in time package. For each scenario, the

choice of stragglers is made by drawing a sample from the Bernoulli(0.5) distribution for

each worker, i.e., each worker is chosen to be a straggler with probability 0.5.

In line with our simulation studies, we compare the performance of HCMM with the

three benchmark load allocation schemes. For Load-balanced Uncoded, the number of

uncoded rows `i assigned to a worker i is proportional to the number of virtual CPUs,

and the loads are normalized to have a sum equal to r. For the encoding and the decoding

steps for Uniform Coded as well as HCMM, we utilize the Luby transform (LT) codes with

peeling decoder which provides nearly linear decoding complexity [144]. Utilization of

LT codes for distributed computing is proposed in [145] as well. However, they perform

a homogeneous load allocation by assigning an equal number of rows of the encoded

data matrix to each worker and hence do not capture the heterogeneity of the computing

cluster in distributing the encoded data matrix. Towards this end, we relax our goal of

recovering all the inner products from any r of the coded inner products to recovering

all the inner products from any r′ = r(1 + ε) coded inner products with high probability.

Ideally, we would like to have ε > 0 to be as small as possible. In our experiments, we keep

r = 10000, and based on the results in [145], we use the robust Soliton degree distribution

5Artificial delays are injected since stragglers are rarely observed in small clusters in Amazon EC2.
Though other emerging platforms such as federated learning, computation with deadline, mobile edge
computing, fog computing, etc., still suffer from stragglers where our ideas can be employed [143].

117

Coded Computation over Heterogeneous Clusters Chapter 5

Figure 5.4: Illustration of the performance gain of HCMM over the three benchmark
schemes. Among the three scenarios, HCMM achieves a performance improvement of up to
61% over Uniform Uncoded, up to 46% over Load-balanced Uncoded, and up to 36% over
Uniform Coded. Furthermore, the coding redundancy

∑n
i=1 `i/r for the three scenarios is

approximately 1.4 for HCMM and in the range of 2.12−2.26 for Uniform Coded. Therefore,
HCMM gives the best overall execution time among the four scenarios with minimal coding
overhead.

with (c, δ) = (0.03, 0.1) and select ε = 0.13, where c is a tuning parameter and δ is a

bound on the probability of failure of decoding from a certain number of received coded

inner products (see [145] for details). Therefore, for both HCMM and Uniform Coded, we

design the load allocation such that the master needs to wait only for r′ = 11300 coded

inner products. The total computation time is equal to the waiting time for r′ = 11300

results plus the average time for decoding the r = 10000 inner products from the received

r′ = 11300 coded inner products.6 For HCMM, we use the shifted exponential distribution

for estimating the computation model for each worker.

For performance comparison of the four schemes, we consider the following three

computing scenarios:

• Scenario 1: Each row has 500000 elements. We use a heterogeneous cluster of 11

machines – one master of instance type m4.xlarge, four workers of instance type

6The average time for decoding r = 10000 inner products from any r(1 + ε) coded inner products is
obtained using a m4.xlarge instance.

118

Coded Computation over Heterogeneous Clusters Chapter 5

r4.2xlarge, and six workers of instance type r4.xlarge.

• Scenario 2: Each row has 500000 elements. We use a heterogeneous cluster of

16 machines – one master of instance type m4.xlarge, six workers of instance type

r4.2xlarge, and nine workers of instance type r4.xlarge.

• Scenario 3: Each row has 1000000 elements. We use the same heterogeneous

cluster as in the previous scenario.

Figure 5.4 provides a performance comparison of HCMM with the benchmark load

allocation schemes for the three scenarios, where the decoding time is taken into account

as well. Figure 5.5 presents the typical cumulative distribution functions for the instances

used in the experiments. We make the following conclusions from the results:

• As demonstrated in Figure 5.5, the shifted exponential model is a good first order

fit for the run-times of the workers.

• HCMM achieves significant speedups over the benchmark load allocation policies. In

particular, HCMM combined with LT codes provides gains in the overall execution

time of up to 61% over Uniform Uncoded, up to 46% over Load-balanced Uncoded,

and up to 36% over Uniform Coded.

• As presented in Table 5.1, HCMM has significantly lower total computation load com-

pared to Uniform Coded. Hence, HCMM leads to efficient utilization of the comput-

ing resources, combining the benefits of both Load-balanced Uncoded and Uniform

Coded schemes.

These results demonstrate that HCMM can provide significant speedups in large-scale

computing environments.

119

Coded Computation over Heterogeneous Clusters Chapter 5

(a) (a, 1/µ)=(1.37×10−3, 8.25×10−6)(s/row) (b) (a, 1/µ)=(2.00×10−3, 8.72×10−6)(s/row)

Figure 5.5: Typical empirical cumulative distribution functions for two instances used
in Scenario 3 of our experiments. The measurements were taken in the absence of any
manual delay. As demonstrated here, shifted exponential distribution is a good model
for the task execution time in EC2 machines.

Table 5.1: Total computation load (
∑n

i=1 `i) of HCMM and Uniform Coded

Scenario n HCMM Uniform Coded
1 10 11397 22600
2 15 11402 21201
3 15 11403 21201

5.6 Generalization to Computing Scenarios under Bud-

get Constraints

In this section, we consider the optimization problem in (5.3) under the shifted expo-

nential distribution with a monetary constraint for carrying out the overall computation.

Running computation tasks on a commodity server costs depending on several factors

including CPU, memory, ECU, storage, bandwidth, etc. Different cloud computing plat-

forms employ different pricing policies, and these need to be taken into account for de-

veloping efficient task allocation and execution algorithms [146–150]. For example, Table

5.2 summarizes the cost per hour of using Amazon EC2 clusters with different parame-

ters (at the time of writing this manuscript) [151]. In this section, we take into account

120

Coded Computation over Heterogeneous Clusters Chapter 5

Table 5.2: Amazon EC2 Pricing for Linux

machine vCPU ECU
Memory
(GiB)

Instance
Storage
(GB)

price
(/Hour)

m3.medium 1 3 3.75 1×4 SSD $0.077
m3.large 2 6.5 7.5 1×32 SSD $0.154
m3.xlarge 4 13 15 2×40 SSD $0.308
m3.2xlarge 8 26 30 2×80 SSD $0.616

the monetary constraint in the optimization problem in (5.3) and provide a heuristic

algorithm towards finding the optimal load allocation under cost budget constraint.

We now present the precise problem formulation we are interested in. For a compu-

tation task and a given set of N machines, the goal is to minimize the expected run-time

while satisfying the budget constraint C, that is

Pmain-constrained : minimize
`

E[TCMP]

subject to
N∑

i=1

ci1{`i>0}E[TCMP] ≤ C,

where ci represents the cost per time unit of using machine i ∈ [N]. According to

the pricing polices provided by AWS, e.g. Table 5.2, a linear model for cost (versus

performance parameters) is intuitive and convincing. Considering the last two rows of

Table II for instance, doubling the parameters results in doubled cost. To be general,

we model the computation cost of a single machine as c = κµγ per unit of time, which

captures a convex dependency of the speed parameter µ for constants γ ≥ 1 and κ > 0.

We assume that there are K types of machines parameterized with {(ak, µk)}Kk=1, and

Nk, k ∈ [K] of each type is available to run a distributed computation task, where N =
∑K

k=1Nk is the total number of available machines. We also assume that µ1 ≤ · · · ≤ µK

121

Coded Computation over Heterogeneous Clusters Chapter 5

and a1µ1 = · · · = aKµK = ξ for a constant ξ.7 As we showed in Theorem 5.1, HCMM is

asymptotically optimal (i.e. optimal within a vanishing deviation) regarding the average

run-time. In this section, we also consider the asymptotic regime, i.e. for large enough

number of machines and hence HCMM attains the optimality per Pmain in (5.3).

The following lemma states a useful observation regarding the solutions to the con-

strained problem Pmain-constrained and the minimum possible cost for carrying out a com-

putation task.

Lemma 5.3 HCMM is the (asymptotic) solution to the feasible Pmain-constrained. Moreover,

given a computation task and a set of machines, decreasing the number of fastest (slowest)

machines in HCMM, results in smaller (greater) expected cost. And, the minimum (max-

imum) cost of HCMM is induced by running the task only on any number of the slowest

(fastest) machines.

Proof: We defer the proof to Appendix D.4.

Lemma 5.3 implies that if the available budget C is less than Cmin defined in (D.15),

then Pmain-constrained is infeasible and it is impossible to run the task on the given set of

machines while satisfying the budget constraint. Moreover, reducing one machine from

the available set of fastest machines along with HCMM results in a lower expected cost;

and reducing the number of participating slowest machines results in a larger expected

cost.

Now that HCMM asymptotically solves the feasible budget-constrained problem in

(5.12), i.e. for C ≥ Cmin, finding the optimal number of machines of each type to use

in HCMM requires combinatorial search over all possible allocations. However, as Lemma

5.3 suggests, using faster machines induces a larger cost. Further, the computation time

7The latter assumption can be intuitively justified as follows. If a machine is c times more powerful
than another machine, as the first order estimation, one can assume that both the shift (ak) and the
straggling parameter (µk) of the computation are c times stronger.

122

Coded Computation over Heterogeneous Clusters Chapter 5

increases if we decrease the number of machines. This is the motivation behind our

heuristic algorithm for an efficient search to find the number of machines of each type to

include in HCMM, which we describe next.

Algorithm 5.2: Heuristic Search

Procedure Heuristic Search
(n1, · · · , nK)← (N1, · · · , NK)
top

Run HCMM with (n1, · · · , nK)
if cost

(
HCMM(n1, · · · , nK)

)
> C then

nj ← nj − 1 where j = max{k : nk > 0}
goto top

else
return (n1, · · · , nK)

end

end

end

First, Algorithm 5.2 runs HCMM algorithm using all machines, i.e., nk = Nk for each

k ∈ [K]. Then, it calculates the corresponding cost according to (D.13). If the cost

is larger than C, it starts to decrease the number of available fastest machines, i.e.

nK ← nK − 1, and runs HCMM again. While the cost is larger than C, the algorithm

keeps decreasing the number of used fast machines till nK = 0. Then, the algorithm sets

nK = 0 and starts decreasing nK−1 and so on, until a feasible cost is achieved. Thus, the

algorithm returns (N1, · · · , Nj, nj+1, 0, · · · , 0) which is the first tuple that satisfies the

cost constraint. Therefore, the search space complexity of the heuristic is O(N1 + · · · +

NK) = O(N) which is more efficient than the exhaustive search where the complexity is

O(N1 · · ·NK). The pseudo-code in Algorithm 5.2 summarizes the heuristic.

Example 5.1 In this example, we consider two different scenarios to demonstrate the

application of the proposed heuristic search algorithm. For the cost model, we assume

γ = 2 and κ = 1, i.e. c = µ2. Further, we consider the task of computing r = 100

123

Coded Computation over Heterogeneous Clusters Chapter 514

n2

n1

≈

0 1 2 3 4 5 6 7 8 9 10
0

1

2

9

10

a· · ·

...

1048.71033.71016.4996.2972.4943.8908.8865.1808.9

1063.11048.7· · ·

1258.41258.4· · ·

Fig. 6: Total cost associated with every pair of (n1, n2); 0 ≤ n1, n2 ≤ 10.

n2

n1

≈

0 1 2 3 4 5 6 7 8 9 10
0

1

2

9

10

a· · ·

...

5.245.616.056.557.157.868.739.8311.23

5.425.82· · ·

7.868.73· · ·

Fig. 7: Expected time associated with every pair of (n1, n2); 0 ≤ n1, n2 ≤ 10.

Applying the proposed heuristic search, it takes 9 itera-
tions (see Fig. 6 and 7) to arrive at the load allocation
(n1, n2) = (10, 2) which corresponds to the expected cost
808.9 and average execution time E[THCMM] = 11.23.

• Scenario 2: Three types of machines are available which
are parameterized by (a1, µ1) = (1, 1), (a2, µ2) =
(0.5, 2) and (a3, µ3) = (0.125, 8), assuming 10 machines
of each type available. Further, the available budget is
C = 475. Using Lemma 3, the minimum and maximum
induced costs for the task of computing r = 100 equa-
tions are Cmin = 314.6 and Cmax = 2516.8 respectively.
It takes 15 iterations for the proposed heuristic search
algorithm to arrive at the tuple (n1, n2, n3) = (10, 6, 0).
This corresponds to the expected cost 486.2 and the
average time E[THCMM] = 14.3.

VII. CONCLUSION

In this paper, we proposed a coding framework for dis-
tributed matrix-vector multiplication in heterogeneous cloud
computing environments. In particular, we considered two
distributions for machines’ run-times, i.e. shifted exponen-
tial and shifted Weibull and tackled the intractable problem
of minimizing the average run-time of a computation task
over all possible load allocations by proposing a tractable

alternative formulation. The solution to the alternative prob-
lem established our proposed HCMM load allocation scheme
which we proved to be asymptotically optimal. We also
demonstrated the speedup of HCMM over three benchmark
load allocation schemes and presented both the numerical
and the experimental results. Experiments over Amazon EC2
clusters demonstrate that HCMM combined with LT codes and
peeling decoders can provide significant gains in the average
overall execution time. Moreover, we argued that HCMM is
the asymptotically optimal allocation in budget-constrained
scenarios as well, which led to providing a heuristic search
in order to find a (sub)optimal load-machine assignment for
a given set of machines while satisfying a pre-defined budget
constraint.

VIII. ACKNOWLEDGMENT

This material is based upon work supported by Defense
Advanced Research Projects Agency (DARPA) under Contract
No. HR001117C0053, ARO award W911NF1810400, NSF
grants CCF-1703575, ONR Award No. N00014-16-1- 2189,
CCF-1763673, CCF-1755808 and the UC Office of President
under grant No. LFR-18-548175. The views, opinions, and/or
findings expressed are those of the author(s) and should not

Figure 5.6: Total cost associated with every pair of (n1, n2); 0 ≤ n1, n2 ≤ 10.

14

n2

n1

≈

0 1 2 3 4 5 6 7 8 9 10
0

1

2

9

10

a· · ·

...

1048.71033.71016.4996.2972.4943.8908.8865.1808.9

1063.11048.7· · ·

1258.41258.4· · ·

Fig. 6: Total cost associated with every pair of (n1, n2); 0 ≤ n1, n2 ≤ 10.

n2

n1

≈

0 1 2 3 4 5 6 7 8 9 10
0

1

2

9

10

a· · ·

...

5.245.616.056.557.157.868.739.8311.23

5.425.82· · ·

7.868.73· · ·

Fig. 7: Expected time associated with every pair of (n1, n2); 0 ≤ n1, n2 ≤ 10.

Applying the proposed heuristic search, it takes 9 itera-
tions (see Fig. 6 and 7) to arrive at the load allocation
(n1, n2) = (10, 2) which corresponds to the expected cost
808.9 and average execution time E[THCMM] = 11.23.

• Scenario 2: Three types of machines are available which
are parameterized by (a1, µ1) = (1, 1), (a2, µ2) =
(0.5, 2) and (a3, µ3) = (0.125, 8), assuming 10 machines
of each type available. Further, the available budget is
C = 475. Using Lemma 3, the minimum and maximum
induced costs for the task of computing r = 100 equa-
tions are Cmin = 314.6 and Cmax = 2516.8 respectively.
It takes 15 iterations for the proposed heuristic search
algorithm to arrive at the tuple (n1, n2, n3) = (10, 6, 0).
This corresponds to the expected cost 486.2 and the
average time E[THCMM] = 14.3.

VII. CONCLUSION

In this paper, we proposed a coding framework for dis-
tributed matrix-vector multiplication in heterogeneous cloud
computing environments. In particular, we considered two
distributions for machines’ run-times, i.e. shifted exponen-
tial and shifted Weibull and tackled the intractable problem
of minimizing the average run-time of a computation task
over all possible load allocations by proposing a tractable

alternative formulation. The solution to the alternative prob-
lem established our proposed HCMM load allocation scheme
which we proved to be asymptotically optimal. We also
demonstrated the speedup of HCMM over three benchmark
load allocation schemes and presented both the numerical
and the experimental results. Experiments over Amazon EC2
clusters demonstrate that HCMM combined with LT codes and
peeling decoders can provide significant gains in the average
overall execution time. Moreover, we argued that HCMM is
the asymptotically optimal allocation in budget-constrained
scenarios as well, which led to providing a heuristic search
in order to find a (sub)optimal load-machine assignment for
a given set of machines while satisfying a pre-defined budget
constraint.

VIII. ACKNOWLEDGMENT

This material is based upon work supported by Defense
Advanced Research Projects Agency (DARPA) under Contract
No. HR001117C0053, ARO award W911NF1810400, NSF
grants CCF-1703575, ONR Award No. N00014-16-1- 2189,
CCF-1763673, CCF-1755808 and the UC Office of President
under grant No. LFR-18-548175. The views, opinions, and/or
findings expressed are those of the author(s) and should not

Figure 5.7: Expected time associated with every pair of (n1, n2); 0 ≤ n1, n2 ≤ 10.

equations.

• Scenario 1: Two types of machines are available parameterized by (a1, µ1) =

(0.5, 2) and (a2, µ2) = (0.25, 4), assuming 10 machines available of each type. Fur-

ther, the available budget is C = 860. Using Lemma 5.3, the minimum and maxi-

mum induced costs are Cmin = 629.2 and Cmax = 1258.4. As C ≥ Cmin, there exists

an HCMM load allocation which is asymptotically optimal per (5.12). Applying the

proposed heuristic search, it takes 9 iterations (see Fig. 5.6 and 5.7) to arrive at

the load allocation (n1, n2) = (10, 2) which corresponds to the expected cost 808.9

and average execution time E[THCMM] = 11.23.

• Scenario 2: Three types of machines are available which are parameterized by

124

Coded Computation over Heterogeneous Clusters Chapter 5

(a1, µ1) = (1, 1), (a2, µ2) = (0.5, 2) and (a3, µ3) = (0.125, 8), assuming 10 machines

of each type available. Further, the available budget is C = 475. Using Lemma

5.3, the minimum and maximum induced costs for the task of computing r = 100

equations are Cmin = 314.6 and Cmax = 2516.8 respectively. It takes 15 iterations for

the proposed heuristic search algorithm to arrive at the tuple (n1, n2, n3) = (10, 6, 0).

This corresponds to the expected cost 486.2 and the average time E[THCMM] = 14.3.

5.7 Concluding Remarks

In this chapter, we proposed a coding framework for distributed matrix-vector mul-

tiplication in heterogeneous cloud computing environments. In particular, we considered

two distributions for machines’ run-times, i.e. shifted exponential and shifted Weibull

and tackled the intractable problem of minimizing the average run-time of a computation

task over all possible load allocations by proposing a tractable alternative formulation.

The solution to the alternative problem established our proposed HCMM load allocation

scheme which we proved to be asymptotically optimal. We also demonstrated the speedup

of HCMM over three benchmark load allocation schemes and presented both the numeri-

cal and the experimental results. Experiments over Amazon EC2 clusters demonstrate

that HCMM combined with LT codes and peeling decoders can provide significant gains

in the average overall execution time. Moreover, we argued that HCMM is the asymptoti-

cally optimal allocation in budget-constrained scenarios as well, which led to providing a

heuristic search in order to find a (sub)optimal load-machine assignment for a given set

of machines while satisfying a pre-defined budget constraint.

125

Chapter 6

Robust and Efficient Gradient

Aggregation in Distributed Learning

We focus on the commonly used synchronous Gradient Descent paradigm for large-scale

distributed learning, for which there has been a growing interest to develop efficient and

robust gradient aggregation strategies that overcome two key system bottlenecks: com-

munication bandwidth and stragglers’ delays. In particular, Ring-AllReduce (RAR) design

has been proposed to avoid bandwidth bottleneck at any particular node by allowing each

worker to only communicate with its neighbors that are arranged in a logical ring. On

the other hand, Gradient Coding (GC) has been recently proposed to mitigate stragglers

in a master-worker topology by allowing carefully designed redundant allocation of the

data set to the workers. We propose a joint communication topology design and data set

allocation strategy, named CodedReduce (CR), that combines the best of both RAR and

GC. That is, it parallelizes the communications over a tree topology leading to efficient

bandwidth utilization, and carefully designs a redundant data set allocation and coding

strategy at the nodes to make the proposed gradient aggregation scheme robust to strag-

glers. In particular, we quantify the communication parallelization gain and resiliency of

126

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

the proposed CR scheme, and prove its optimality when the communication topology is a

regular tree. Moreover, we characterize the expected run-time of CR and show order-wise

speedups compared to the benchmark schemes. Finally, we empirically evaluate the per-

formance of our proposed CR design over Amazon EC2 and demonstrate that it achieves

speedups of up to 27.2× and 7.0×, respectively over the benchmarks GC and RAR.

6.1 Introduction

Modern machine learning algorithms are now used in a wide variety of domains.

However, training a large-scale model over a massive data set is an extremely computation

and storage intensive task, e.g. training ResNet with more than 150 layers and hundreds

of millions of parameters over the data set ImageNet with more than 14 million images.

As a result, there has been significant interest in developing distributed learning strategies

that speed up the training of learning models (e.g., [104,152–157]).

In the commonly used Gradient Descent (GD) paradigm for learning, parallelization

can be achieved by arranging the machines in a master-worker setup. Through a series of

iterations, the master is responsible for updating the underlying model from the results

received from the workers, where they compute the partial gradients using their local data

batches and upload to the master at each iteration. For the master-worker setup, both

synchronous and asynchronous methods have been developed [152–157]. In synchronous

settings, all the workers wait for each other to complete the gradient computations,

while in asynchronous methods, the workers continue the training process after their

local gradient is computed. While synchronous approaches provide better generalization

behaviors than the asynchronous ones [154,158], they face major system bottlenecks due

to (1) bandwidth congestion at the master due to concurrent communications from the

workers to the master [159]; and (2) the delays caused by slow workers or stragglers that

127

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

significantly increase the run-time [155].

gradient aggregation
g = g1 + · · · + gk

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

g
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ring-AllReduce:
bandwidth efficiency

via parallelizing
communications

M

Gradient Coding:
straggler resiliency

via redundancy

M

CodedReduce:
inter-cluster parallelization
intra-cluster redundancy

g
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

g
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

g
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

g
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

g
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

g
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

g
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ban
dwidth

effi
cie

nc
y

straggler
resiliency

Figure 6.1: Illustration of RAR, GC and CR: In RAR, workers communicate only with their
neighbors on a ring, which results in high bandwidth utilization; however, RAR is prone
to stragglers. GC is robust to stragglers by doing redundant computations at workers;
however, GC imposes bandwidth bottleneck at the master. CR achieves the benefits of
both worlds, providing high bandwidth efficiency along with straggler resiliency.

To alleviate the communication bottleneck in distributed learning, various bandwidth

efficient strategies have been proposed [160–162]. Particularly, Ring-AllReduce (RAR)

[159] strategy has been proposed by allowing each worker to only communicate with

its neighbors that are arranged in a logical ring. More precisely, the data set, D, is

uniformly distributed among N workers and each node combines and passes its partial

gradient along the ring such that at the end of the collective operation, each worker has

a copy of the full gradient g (Figure 6.1). Due to the master-less topology of RAR, it

128

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

avoids bandwidth bottleneck at any particular node. Furthermore, as shown in [160],

RAR is provably bandwidth optimal and induces O(1) communication overhead that does

not depend on the number of distributed workers. As a result, RAR has recently become

a central component in distributed deep learning for model updating [163–165]. More

recent approaches to mitigate bandwidth bottleneck in distributed gradient aggregation

include compression and quantization of the gradients [166–168].

Despite being bandwidth efficient, AllReduce-type algorithms are inherently sensitive

to stragglers, which makes them prone to significant performance degradation and even

complete failure if any of the workers slows down. Straggler bottleneck becomes even

more significant as the cluster size increases [142,169].

One approach to mitigate stragglers in distributed computation is to introduce com-

putational redundancy via replication. [14] proposes to replicate the straggling task on

other available nodes. In [15], the authors propose a partial data replication for ro-

bustness. Other relevant replication based strategies have been proposed in [170–172].

Recently, coding theoretic approaches have also been proposed for straggler mitiga-

tion [121, 123, 128, 134, 173–175]. Specifically, Gradient Coding (GC) [176] has been pro-

posed to alleviate stragglers in distributed gradient aggregation in a master-worker topol-

ogy (Figure 6.1). In GC, the data set D is carefully and redundantly distributed among

the N workers where each worker computes a coded gradient from its local batch. The

master node waits for the results of any N − S workers and recovers the total gradient

g, where the design parameter S denotes the maximum number of stragglers that can be

tolerated. Therefore, GC prevents the master from waiting for all the workers to finish

their computations, and it was shown to achieve significant speedups over the classical

uncoded master-worker setup [176].

However, as the cluser size gets large, GC suffers from significant network congestion at

the master. In particular, the communication overhead increases to O(N), as the master

129

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

needs to receive messages from O(N) workers. Thus, it is essential to design distributed

learning strategies that alleviate stragglers while imposing low communication overhead

across the cluster. Consequently, our goal in this chapter is to answer the following

fundamental question:

Can we achieve the communication parallelization of RAR and the straggler

toleration of GC simultaneously in distributed gradient aggregation?

We answer this question in the affirmative. As the main contribution of this chapter,

we propose a joint design of data allocation and communication strategy that is robust

to stragglers, alongside being bandwidth efficient. Specifically, we propose a scalable

and robust scheme for synchronous distributed gradient aggregation, called CodedReduce

(CR).

There are two key ideas behind CR. Firstly, we use a logical tree topology for commu-

nication consisting of a master node, L layers of workers, where each parent node has n

children nodes (Figure 6.1). In the proposed configuration, each node communicates only

with its parent node for downloading the updated model and uploading partial gradients.

As in the classical master-worker setup, the root node (master) recovers the full gradient

and updates the model. Except for the leaf nodes, each node receives enough number

of coded partial gradients from its children, combines them with its local and partial

gradient and uploads the result to its parent. This distributed communication strategy

alleviates the communication bottleneck at the nodes, as multiple parents can concur-

rently receive from their children. Secondly, the coding strategy utilized in CR provides

robustness to stragglers. Towards this end, we exploit ideas from GC and propose a data

allocation and communication strategy such that each node needs to only wait for any

n− s of its children to return their results.

The theoretical guarantees of the proposed CR scheme are two-fold. First, we char-

130

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 63

0 0.1 0.2 0.3

UMW

GC

RAR

CR

Average iteration run-time (in seconds)

Fig. 2: Average iteration time for gradient aggregation in different schemes CR, RAR, GC and UMW: Training a linear model is implemented
on a cluster of N = 84 t2.micro instances using Python with mpi4py.

since stragglers are fairly infrequent in Amazon clusters; moreover, in our experiments, no artificial delay is manufactured in
the workers’ run-times. These indeed make the proposed CR applicable and efficient for the real world training tasks as well.
Related Work. There has been a significant interest in developing distributed learning strategies that speed up the training of
learning models [1], [4]–[9]). For the master-worker setup, both synchronous and asynchronous methods have been developed
[1], [4]–[8]. In synchronous settings, all the workers wait for each other to complete the gradient computations, while in
asynchronous methods, the workers continue the training process after their local gradient is computed. While synchronous
approaches provide better generalization behaviours than the asynchronous ones [6], [10], they however face the two major
bandwidth congestion and straggler toleration bottlenecks as discussed before.

Various bandwidth efficient strategies have been proposed [11]–[13], however, straggler bottleneck becomes increasingly
significant as the cluster size increases [14], [15]. One of the general system approaches to mitigate stragglers in distributed
computation is to introduce computational redundancy via replication. [16] proposes to replicate the straggling task on other
available nodes. In [17], the authors propose a partial data replication for robustness. Other relevant replication based strategies
have been proposed in [18]–[20]. Recently, coding theoretic approaches have also been proposed for straggler mitigation
(e.g., [21]–[25]). However, our approach is close in spirit to coding theoretic techniques used in the recently proposed Gradient
Coding [3].

II. PROBLEM SETUP AND BACKGROUND

In this section, we provide the problem setup followed by a brief background on RAR and GC designs and their corresponding
resiliency and efficiency properties.

A. Problem Setting

Many machine learning tasks involve fitting a model over a training data set by minimizing a loss function. For a given
labeled data set D = {xj 2 Rp+1 : j = 1, · · · , d}, the goal is to solve the following optimization problem:

✓⇤ = arg min
✓2Rp

X

x2D
` (✓;x) + �R(✓), (1)

where `(·) and R(·) respectively denote the loss and regularization functions, and the optimization problem is parameterized by
�. The most popular way of solving (1) in distributed learning is to use Gradient Descent (GD) algorithm. More specifically,
under standard convexity assumptions, the following sequence of model updates {✓(t)}1t=0 converges to the optimal solution
✓⇤:

✓(t+1) = hR

⇣
✓(t),g

⌘
, (2)

where hR(·) is a gradient-based optimizer depending on the regularizer R(·) and

g =
X

x2D
r`
⇣
✓(t);x

⌘
, (3)

denotes the gradient of the loss function evaluated at the model at iteration t over the data set D. Under certain assumptions,
the iterations in (2) converge to a local optimum in the non-convex case, as well. As the core component of the iterations
defined in (2), it involves with computing the total gradient g each time at a new model and over the potentially large data set
D. Due to limited storage and computation capacity of the computing nodes, gradient aggregation task (3) has to be carried
out over distributed nodes. This parallelization, as we discussed earlier, introduces two major bottlenecks, i.e. resiliency to
stragglers and bandwidth efficiency at busy nodes.Roughly speaking, straggler resiliency refers to the fraction of the straggling

Figure 6.2: Average iteration time for gradient aggregation in different schemes CR, RAR,
GC and UMW: Training a linear model is implemented on a cluster of N = 84 t2.micro

instances.

acterize the computation load introduced by the proposed CR and prove that for a fixed

straggler resiliency, CR achieves the optimal computation load (relative size of the as-

signed local data set to the total data set) among all the robust gradient aggregation

schemes over a fixed tree topology. Moreover, CR significantly improves upon GC in the

computation load of the workers. More precisely, to be robust to straggling/failure of

α fraction of the children, GC loads each worker with ≈ α fraction of the total data set,

while CR assigns only ≈ αL fraction of the total data set, which is a major improvement.

Secondly, we model the workers’ computation times as shifted exponential random vari-

ables and asymptotically characterize the average latency of CR, that is the expected time

to aggregate the gradient at the master node as the number of workers tends to infinity.

This analysis further demonstrates how CR alleviates the bandwidth efficiency and speeds

up the training process by parallelizing the communications via a tree.

In addition to provable theoretical guarantees, the proposed CR scheme offers substan-

tial improvements in practice. As a representative case, Figure 6.2 provides the gradient

aggregation time averaged over many gradient descent iterations implemented over Ama-

zon EC2 clusters. Compared to three benchmarks – classical Uncoded Master-Worker

(UMW), GC, RAR – the proposed CR scheme attains speedups of 22.5×, 6.4× and 4.3×,

respectively.

131

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

6.2 Problem Setup and Background

In this section, we provide the problem setup followed by a brief background on RAR

and GC and their corresponding straggler resiliency and communication parallelization.

6.2.1 Problem Setting

Many machine learning tasks involve fitting a model over a training data set by

minimizing a loss function. For a given labeled data set D = {xj ∈ Rp+1 : j = 1, · · · , d},

the goal is to solve the following optimization problem:

w∗ = arg min
w∈Rp

∑

x∈D
` (w; x) + λR(w), (6.1)

where `(·) and R(·) respectively denote the loss and regularization functions, and the

optimization problem is parameterized by λ. One of the most popular ways of solving

(6.1) in distributed learning is to use the Gradient Descent (GD) algorithm. More specif-

ically, under standard convexity assumptions, the following sequence of model updates

{w(t)}∞t=0 converges to the optimal solution w∗:

w(t+1) = hR

(
w(t),g

)
, (6.2)

where hR(·) is a gradient-based optimizer depending on the regularizer R(·) and

g =
∑

x∈D
∇`
(
w(t); x

)
, (6.3)

denotes the gradient of the loss function evaluated at the model at iteration t over the

data set D. Under certain assumptions, the iterations in (6.2) converge to a local opti-

mum in the non-convex case, as well. For instance, if all the saddle points of a smooth

132

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

non-convex objective are strict-saddle, then the iterations in (6.2) converge to a local

minimum [177]. The core component of the iterations defined in (6.2) is the computation

of the gradient vector g at each iteration. At scale, due to limited storage and computa-

tion capacity of the computing nodes, gradient aggregation task (6.3) has to be carried

out over distributed nodes. This parallelization, as we discussed earlier, introduces two

major bottlenecks: stragglers and bandwidth contention. The goal of the distributed

gradient aggregation scheme is to provide straggler resiliency as well as communication

parallelization. At a high level, straggler resiliency, α, refers to the fraction of the strag-

gling workers that the distributed aggregation scheme is robust to, and communication

parallelization gain, β, quantifies the number of simultaneous communications in the

network by distributed nodes compared to only one simultaneous communication in a

single-node (master-worker) aggregation scheme.

Next, we discuss the data allocation and communication strategy of two synchronous

gradient aggregation schemes in distributed learning and their corresponding straggler

resiliency and communication parallelization gain.

6.2.2 Ring-AllReduce

In AllReduce-type aggregation schemes, the data set is uniformly distributed over

N worker nodes {W1, · · · ,WN} which coordinate among themselves in a master-less

setting to aggregate their partial gradients and compute the aggregate gradient g at each

worker. Particularly in RAR, each worker Wi partitions its local partial gradient into N

segments v1,i, · · · ,vN,i. In the first round, Wi transmits vi,i to Wi+1. Each worker then

adds up the received segment to the corresponding segment of its local gradient, i.e.,

Wi obtains vi−1,i−1 + vi−1,i. In the second round, the reduced segment is forwarded to

the neighbor and added up to the corresponding segment. Proceeding similarly, at the

133

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

end of N − 1 rounds, each worker has a unique segment of the full gradient, i.e., Wi has

vi+1,1 + . . . + vi+1,N . After the reduce-scatter phase, the workers execute the collective

operation of AllGather where the full gradient g becomes available at each node. The

RAR operation for a cluster of three workers is illustrated in Figure 6.3.

It is clear that RAR cannot tolerate any straggling nodes since the communications

are carried out over a ring and each node requires its neighbor’s result to proceed in

the ring, i.e., the straggler resiliency for RAR is αRAR = 0. However, the ring communica-

tion design in RAR alleviates the communication congestion at busy nodes, and achieves

communication parallelization gain βRAR = Θ(N) which is optimal [159].

1 3

2

W1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1

11

2

2

2

3

3

3

W1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1

3

1

1

2
2

3

3

2
W1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1

1

3 2

1

3 2

1

3 2

W1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1

1

2

2 2

3

3 3

W1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ring-AllReduce

1

Figure 6.3: Illustration of communication strategy in RAR for N = 3 workers.

6.2.3 Gradient Coding

Gradient Coding (GC) [176] was recently proposed to provide straggler resiliency

in a master-worker topology with one master node and N distributed worker nodes

{W1, · · · ,WN} as depicted in Figure 6.1. We start the description of GC with an illustra-

tive example.

134

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

Example 6.1 (Gradient Coding) To make gradient aggregation over N = 3 workers

robust to any S = 1 straggler, GC partitions the data set to {D1,D2,D3} and assigns 2

partitions to each worker as depicted in Figure 6.4. Full gradient g = g1 + g2 + g3 can

be recovered from any N − S = 2 workers, e.g., the master recovers g from W1 and W2

by combining their results as g = 2
(

1
2
g1 + g2

)
− (g2 − g3).

M

W1
<latexit sha1_base64="ivvN6ioVjIxLB4WX93ZuapDUTiw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHbZwobtttmdmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTKUw6LrfTmljc2t7p7xb2ds/ODyqHp90TJJpxn2WyEQ/htRwKRT3UaDkj6nmNA4l74aT27nffeLaiEQ94DTlQUxHSkSCUbSSX+8OvPqgWnMb7gJknXgFqUGB9qD61R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmGVIYkSbUshWai/J3IaGzONQ9sZUxybVW8u/uf1Moyug1yoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+RM43Z</latexit><latexit sha1_base64="ivvN6ioVjIxLB4WX93ZuapDUTiw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHbZwobtttmdmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTKUw6LrfTmljc2t7p7xb2ds/ODyqHp90TJJpxn2WyEQ/htRwKRT3UaDkj6nmNA4l74aT27nffeLaiEQ94DTlQUxHSkSCUbSSX+8OvPqgWnMb7gJknXgFqUGB9qD61R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmGVIYkSbUshWai/J3IaGzONQ9sZUxybVW8u/uf1Moyug1yoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+RM43Z</latexit><latexit sha1_base64="ivvN6ioVjIxLB4WX93ZuapDUTiw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHbZwobtttmdmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTKUw6LrfTmljc2t7p7xb2ds/ODyqHp90TJJpxn2WyEQ/htRwKRT3UaDkj6nmNA4l74aT27nffeLaiEQ94DTlQUxHSkSCUbSSX+8OvPqgWnMb7gJknXgFqUGB9qD61R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmGVIYkSbUshWai/J3IaGzONQ9sZUxybVW8u/uf1Moyug1yoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+RM43Z</latexit><latexit sha1_base64="ivvN6ioVjIxLB4WX93ZuapDUTiw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHbZwobtttmdmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTKUw6LrfTmljc2t7p7xb2ds/ODyqHp90TJJpxn2WyEQ/htRwKRT3UaDkj6nmNA4l74aT27nffeLaiEQ94DTlQUxHSkSCUbSSX+8OvPqgWnMb7gJknXgFqUGB9qD61R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmGVIYkSbUshWai/J3IaGzONQ9sZUxybVW8u/uf1Moyug1yoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+RM43Z</latexit>

D1
<latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit><latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit><latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit><latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit>

D2
<latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit><latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit><latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit><latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit>

W2
<latexit sha1_base64="jHTncxvr33zmOXPqsSMmSs4GGz8=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby691Bsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+SuI3a</latexit><latexit sha1_base64="jHTncxvr33zmOXPqsSMmSs4GGz8=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby691Bsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+SuI3a</latexit><latexit sha1_base64="jHTncxvr33zmOXPqsSMmSs4GGz8=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby691Bsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+SuI3a</latexit><latexit sha1_base64="jHTncxvr33zmOXPqsSMmSs4GGz8=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby691Bsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+SuI3a</latexit>

D3
<latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit><latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit><latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit><latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit>

D2
<latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit><latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit><latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit><latexit sha1_base64="2Uj/Tsv+JIUDsB4tV6vIzdWZfEc=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nfrPu2zWn4SyA1olbkBoUaPv213AUkzSiQhOOlRq4TqK9DEvNCKfzyjBVNMFkisd0YKjAEVVetgg+R+dGGaEwluYJjRbq740MR0rNosBM5inVqpeL/3mDVIdXXsZEkmoqyPJQmHKkY5S3gEZMUqL5zBBMJDNZEZlgiYk2XVVMCe7ql9dJt9lwnYZ736y1ros6ynAKZ3ABLlxCC+6gDR0gkMIzvMKb9WS9WO/Wx3K0ZBU7J/AH1ucP2R6Sig==</latexit>

W3
<latexit sha1_base64="Djbhe/ugAz/5jRhhlbnedibCJHQ=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN4ywIa9vcvungm58BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAiujet+O4WNza3tneJuaW//4PCofHzS0nGqGPosFrHqhFSj4BJ9w43ATqKQRqHAdji5m/vtJ1Sax/LRTBMMIjqSfMgZNVbyq+3+VbVfrrg1dwGyTrycVCBHs1/+6g1ilkYoDRNU667nJibIqDKcCZyVeqnGhLIJHWHXUkkj1EG2OHZGLqwyIMNY2ZKGLNTfExmNtJ5Goe2MqBnrVW8u/ud1UzO8CTIuk9SgZMtFw1QQE5P552TAFTIjppZQpri9lbAxVZQZm0/JhuCtvrxOWvWa59a8h3qlcZvHUYQzOIdL8OAaGnAPTfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDlD2N2w==</latexit><latexit sha1_base64="Djbhe/ugAz/5jRhhlbnedibCJHQ=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN4ywIa9vcvungm58BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAiujet+O4WNza3tneJuaW//4PCofHzS0nGqGPosFrHqhFSj4BJ9w43ATqKQRqHAdji5m/vtJ1Sax/LRTBMMIjqSfMgZNVbyq+3+VbVfrrg1dwGyTrycVCBHs1/+6g1ilkYoDRNU667nJibIqDKcCZyVeqnGhLIJHWHXUkkj1EG2OHZGLqwyIMNY2ZKGLNTfExmNtJ5Goe2MqBnrVW8u/ud1UzO8CTIuk9SgZMtFw1QQE5P552TAFTIjppZQpri9lbAxVZQZm0/JhuCtvrxOWvWa59a8h3qlcZvHUYQzOIdL8OAaGnAPTfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDlD2N2w==</latexit><latexit sha1_base64="Djbhe/ugAz/5jRhhlbnedibCJHQ=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN4ywIa9vcvungm58BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAiujet+O4WNza3tneJuaW//4PCofHzS0nGqGPosFrHqhFSj4BJ9w43ATqKQRqHAdji5m/vtJ1Sax/LRTBMMIjqSfMgZNVbyq+3+VbVfrrg1dwGyTrycVCBHs1/+6g1ilkYoDRNU667nJibIqDKcCZyVeqnGhLIJHWHXUkkj1EG2OHZGLqwyIMNY2ZKGLNTfExmNtJ5Goe2MqBnrVW8u/ud1UzO8CTIuk9SgZMtFw1QQE5P552TAFTIjppZQpri9lbAxVZQZm0/JhuCtvrxOWvWa59a8h3qlcZvHUYQzOIdL8OAaGnAPTfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDlD2N2w==</latexit><latexit sha1_base64="Djbhe/ugAz/5jRhhlbnedibCJHQ=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN4ywIa9vcvungm58BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAiujet+O4WNza3tneJuaW//4PCofHzS0nGqGPosFrHqhFSj4BJ9w43ATqKQRqHAdji5m/vtJ1Sax/LRTBMMIjqSfMgZNVbyq+3+VbVfrrg1dwGyTrycVCBHs1/+6g1ilkYoDRNU667nJibIqDKcCZyVeqnGhLIJHWHXUkkj1EG2OHZGLqwyIMNY2ZKGLNTfExmNtJ5Goe2MqBnrVW8u/ud1UzO8CTIuk9SgZMtFw1QQE5P552TAFTIjppZQpri9lbAxVZQZm0/JhuCtvrxOWvWa59a8h3qlcZvHUYQzOIdL8OAaGnAPTfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDlD2N2w==</latexit>

D1
<latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit><latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit><latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit><latexit sha1_base64="oG4TX4rHdfsjn0lJrT5eSgVi5lU=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBcYKGBiLRB9SG0WO67RWHSeyHaQS9UtYGECIlU9h429w2gzQciRLR+fcq3t8goQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFg54l1IvwWLCQEayN5NvV+jDCekIwz27nvlv37ZrTcBZA68QtSA0KtH37aziKSRpRoQnHSg1cJ9FehqVmhNN5ZZgqmmAyxWM6MFTgiCovWwSfo3OjjFAYS/OERgv190aGI6VmUWAm85Rq1cvF/7xBqsMrL2MiSTUVZHkoTDnSMcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf1y+uk22y4TsO9b9Za10UdZTiFM7gAFy6hBXfQhg4QSOEZXuHNerJerHfrYzlasoqdE/gD6/MH15mSiQ==</latexit>

D3
<latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit><latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit><latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit><latexit sha1_base64="O81KhoWf72zoGfBYiYsg0bzuyo0=">AAAB+HicbVA9T8MwFHwpX6V8NMDIYtEiMVVJGWCsgIGxSLRUaqPIcZ3WquNEtoNUov4SFgYQYuWnsPFvcNoM0HKSpdPde3rnCxLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5drQ8irMcE8+xm5p/XfbvmNJw50CpxC1KDAm3f/hoMY5JGVGjCsVJ910m0l2GpGeF0VhmkiiaYTPCI9g0VOKLKy+bBZ+jUKEMUxtI8odFc/b2R4UipaRSYyTylWvZy8T+vn+rw0suYSFJNBVkcClOOdIzyFtCQSUo0nxqCiWQmKyJjLDHRpquKKcFd/vIq6TYbrtNw75q11lVRRxmO4QTOwIULaMEttKEDBFJ4hld4s56sF+vd+liMlqxi5wj+wPr8Adqjkos=</latexit>

1
2

g 1
+
g 2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1
2 g
1 +

g
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

g
2
�

g
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 6.4: Illustration of data allocation and communication strategy in GC for N = 3
workers.

In general, to be robust to any S ∈ [N] = {1, · · · , N} stragglers, GC uniformly

partitions the data set D to {D1, · · · ,Dk} (e.g. k = N) with corresponding partial

gradients g1, · · · ,gk and distributes them redundantly among the workers such that each

partition is placed in S + 1 workers, thus achieving a computation load of rGC = S+1
N

.

Let matrix G = [g1, · · · ,gk]> ∈ Rk×p denote the collection of partial gradients. Each

worker Wi then computes its local partial gradients and sends biG to the master, where

B = [b1; · · · ; bN] ∈ RN×k denotes the encoding matrix, i.e. non-zero elements in bi

specifies the partitions stored in worker Wi. Upon receiving the results of any N − S

workers, the master recovers the total gradient g by linearly combining the received

results, that is g = afBG where the row vector af ∈ R1×N corresponds to a particular

set of S stragglers and A = [a1; · · · ; aF] denotes the decoding matrix with F =
(
N
S

)

distinct straggling scenarios. The GC algorithm designs encoding and decoding matrices

(B,A) such that, in the worst case, the full gradient g is recoverable from the results of

135

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

Table 6.1: Communication parallelization gain and straggler resiliency of three designs
RAR, GC, and CR in a system with N nodes with computation load r, where CR has a tree
communication topology of L layers.

Scheme
Straggler
Resiliency

(α)

Communication
Parallelization Gain

(β)

RAR 0 Θ(N)
GC r Θ(1)

CR r1/L Θ
(
N1−1/L

)

any N−S out of N workers, i.e. straggler resiliency αGC = S/N is attained. Although GC

prevents the master to wait for all the workers to finish their computations, it requires

simultaneous communications from the workers that will cause congestion at the master

node, and lead to parallelization gain βGC = Θ(1) for a constant resiliency.

Having reviewed RAR and GC strategies and their resiliency and parallelization proper-

ties, we now informally provide the guarantees of our proposed CR scheme in the following

remark.

Remark 6.1 CR arranges the available N workers via a tree configuration with L layers

of nodes and each parent having n children, i.e. N = n + · · · + nL. The proposed data

allocation and communication strategy in CR results in communication parallelization

gain βCR = Θ(N1−1/L) which approaches βRAR = Θ(N) for large L. Moreover, given a

computation load 0 ≤ r ≤ 1, CR is robust to straggling of αCR ≈ r1/L fraction of the

children per any parent in the tree, while GC is robust to only αGC ≈ r fraction of nodes

and RAR has no straggler resiliency. Therefore, CR achieves the best of RAR and GC,

simultaneously. Table 6.1 summarizes these results and Theorems 6.1 and 6.2 formally

characterize such guarantees.

136

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

6.3 Proposed CodedReduce Scheme

In this section, we first present our proposed CodedReduce (CR) scheme by describing

data set allocation and communication strategy at the nodes followed by an illustrative

example. Then, we provide theoretical guarantees of CR and conclude the section with

optimality of CR.

6.3.1 Description of CR Scheme

Let us start with the proposed network configuration. CR arranges the communication

pattern among the nodes via a regular tree structure as defined below. An (n, L)–regular

tree graph T consists of a master node and L layers of worker nodes. At any layer (except

for the lowest), each parent node is connected to n children nodes in the lower layer, i.e.

there is a total of N = n + · · · + nL nodes (See Figure 6.5). Each node of the tree is

identified with a pair (l, i), where l ∈ [L] and i ∈ [nl] denote the corresponding layer and

the node’s index in that layer, respectively. Furthermore, T (l, i) denotes the sub-tree

with the root node (l, i).

··· <latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit> <latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit> <latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit> <latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit> · · ·
<latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit>

· · ·<latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit>

··
·

<latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit>

M

(1, 1)
<latexit sha1_base64="s4eWoGIpNYl4/1ITXAVd/JekbZI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CbZCBSmbXvRY9OKxgv2AdinZNNuGZrNLkhWWpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zM82PBtXHdb6ewsbm1vVPcLe3tHxwelY9POjpKFGVtGolI9XyimeCStQ03gvVixUjoC9b1p3dzv/vElOaRfDRpzLyQjCUPOCXGSt1qDV/hy+qwXHHr7gJoneCcVCBHa1j+GowimoRMGiqI1n3sxsbLiDKcCjYrDRLNYkKnZMz6lkoSMu1li3Nn6MIqIxREypY0aKH+nshIqHUa+rYzJGaiV725+J/XT0xw42Vcxolhki4XBYlAJkLz39GIK0aNSC0hVHF7K6ITogg1NqGSDQGvvrxOOo06duv4oVFp3uZxFOEMzqEGGK6hCffQgjZQmMIzvMKbEzsvzrvzsWwtOPnMKfyB8/kDz9yN5Q==</latexit><latexit sha1_base64="s4eWoGIpNYl4/1ITXAVd/JekbZI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CbZCBSmbXvRY9OKxgv2AdinZNNuGZrNLkhWWpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zM82PBtXHdb6ewsbm1vVPcLe3tHxwelY9POjpKFGVtGolI9XyimeCStQ03gvVixUjoC9b1p3dzv/vElOaRfDRpzLyQjCUPOCXGSt1qDV/hy+qwXHHr7gJoneCcVCBHa1j+GowimoRMGiqI1n3sxsbLiDKcCjYrDRLNYkKnZMz6lkoSMu1li3Nn6MIqIxREypY0aKH+nshIqHUa+rYzJGaiV725+J/XT0xw42Vcxolhki4XBYlAJkLz39GIK0aNSC0hVHF7K6ITogg1NqGSDQGvvrxOOo06duv4oVFp3uZxFOEMzqEGGK6hCffQgjZQmMIzvMKbEzsvzrvzsWwtOPnMKfyB8/kDz9yN5Q==</latexit><latexit sha1_base64="s4eWoGIpNYl4/1ITXAVd/JekbZI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CbZCBSmbXvRY9OKxgv2AdinZNNuGZrNLkhWWpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zM82PBtXHdb6ewsbm1vVPcLe3tHxwelY9POjpKFGVtGolI9XyimeCStQ03gvVixUjoC9b1p3dzv/vElOaRfDRpzLyQjCUPOCXGSt1qDV/hy+qwXHHr7gJoneCcVCBHa1j+GowimoRMGiqI1n3sxsbLiDKcCjYrDRLNYkKnZMz6lkoSMu1li3Nn6MIqIxREypY0aKH+nshIqHUa+rYzJGaiV725+J/XT0xw42Vcxolhki4XBYlAJkLz39GIK0aNSC0hVHF7K6ITogg1NqGSDQGvvrxOOo06duv4oVFp3uZxFOEMzqEGGK6hCffQgjZQmMIzvMKbEzsvzrvzsWwtOPnMKfyB8/kDz9yN5Q==</latexit><latexit sha1_base64="s4eWoGIpNYl4/1ITXAVd/JekbZI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CbZCBSmbXvRY9OKxgv2AdinZNNuGZrNLkhWWpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zM82PBtXHdb6ewsbm1vVPcLe3tHxwelY9POjpKFGVtGolI9XyimeCStQ03gvVixUjoC9b1p3dzv/vElOaRfDRpzLyQjCUPOCXGSt1qDV/hy+qwXHHr7gJoneCcVCBHa1j+GowimoRMGiqI1n3sxsbLiDKcCjYrDRLNYkKnZMz6lkoSMu1li3Nn6MIqIxREypY0aKH+nshIqHUa+rYzJGaiV725+J/XT0xw42Vcxolhki4XBYlAJkLz39GIK0aNSC0hVHF7K6ITogg1NqGSDQGvvrxOOo06duv4oVFp3uZxFOEMzqEGGK6hCffQgjZQmMIzvMKbEzsvzrvzsWwtOPnMKfyB8/kDz9yN5Q==</latexit>

(1, n)
<latexit sha1_base64="+cGcH/OFcfhvma3wl8pf+49txzw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIxgnlAEsLspDcZMju7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bHg2rjut5Pb2Nza3snvFvb2Dw6PiscnLR0limGTRSJSHZ9qFFxi03AjsBMrpKEvsO1P7uZ++wmV5pF8NNMY+yEdSR5wRo2V2uWKdyUvy4Niya26C5B14mWkBBkag+JXbxixJERpmKBadz03Nv2UKsOZwFmhl2iMKZvQEXYtlTRE3U8X587IhVWGJIiULWnIQv09kdJQ62no286QmrFe9ebif143McFNP+UyTgxKtlwUJIKYiMx/J0OukBkxtYQyxe2thI2poszYhAo2BG/15XXSqlU9t+o91Er12yyOPJzBOVTAg2uowz00oAkMJvAMr/DmxM6L8+58LFtzTjZzCn/gfP4ALNmOIg==</latexit><latexit sha1_base64="+cGcH/OFcfhvma3wl8pf+49txzw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIxgnlAEsLspDcZMju7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bHg2rjut5Pb2Nza3snvFvb2Dw6PiscnLR0limGTRSJSHZ9qFFxi03AjsBMrpKEvsO1P7uZ++wmV5pF8NNMY+yEdSR5wRo2V2uWKdyUvy4Niya26C5B14mWkBBkag+JXbxixJERpmKBadz03Nv2UKsOZwFmhl2iMKZvQEXYtlTRE3U8X587IhVWGJIiULWnIQv09kdJQ62no286QmrFe9ebif143McFNP+UyTgxKtlwUJIKYiMx/J0OukBkxtYQyxe2thI2poszYhAo2BG/15XXSqlU9t+o91Er12yyOPJzBOVTAg2uowz00oAkMJvAMr/DmxM6L8+58LFtzTjZzCn/gfP4ALNmOIg==</latexit><latexit sha1_base64="+cGcH/OFcfhvma3wl8pf+49txzw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIxgnlAEsLspDcZMju7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bHg2rjut5Pb2Nza3snvFvb2Dw6PiscnLR0limGTRSJSHZ9qFFxi03AjsBMrpKEvsO1P7uZ++wmV5pF8NNMY+yEdSR5wRo2V2uWKdyUvy4Niya26C5B14mWkBBkag+JXbxixJERpmKBadz03Nv2UKsOZwFmhl2iMKZvQEXYtlTRE3U8X587IhVWGJIiULWnIQv09kdJQ62no286QmrFe9ebif143McFNP+UyTgxKtlwUJIKYiMx/J0OukBkxtYQyxe2thI2poszYhAo2BG/15XXSqlU9t+o91Er12yyOPJzBOVTAg2uowz00oAkMJvAMr/DmxM6L8+58LFtzTjZzCn/gfP4ALNmOIg==</latexit><latexit sha1_base64="+cGcH/OFcfhvma3wl8pf+49txzw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIxgnlAEsLspDcZMju7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bHg2rjut5Pb2Nza3snvFvb2Dw6PiscnLR0limGTRSJSHZ9qFFxi03AjsBMrpKEvsO1P7uZ++wmV5pF8NNMY+yEdSR5wRo2V2uWKdyUvy4Niya26C5B14mWkBBkag+JXbxixJERpmKBadz03Nv2UKsOZwFmhl2iMKZvQEXYtlTRE3U8X587IhVWGJIiULWnIQv09kdJQ62no286QmrFe9ebif143McFNP+UyTgxKtlwUJIKYiMx/J0OukBkxtYQyxe2thI2poszYhAo2BG/15XXSqlU9t+o91Er12yyOPJzBOVTAg2uowz00oAkMJvAMr/DmxM6L8+58LFtzTjZzCn/gfP4ALNmOIg==</latexit>

(L, 1)
<latexit sha1_base64="Se6oF+W/QwF3d+42ec5ryOc5+Eo=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYiJEkHCXRsugjYVFBPMByRH2NpNkyd7esbsnhCM/wsZCEVt/j53/xk1yhSY+GHi8N8PMvCAWXBvX/XbW1jc2t7ZzO/ndvf2Dw8LRcVNHiWLYYJGIVDugGgWX2DDcCGzHCmkYCGwF49uZ33pCpXkkH80kRj+kQ8kHnFFjpVapfH/pXZR6haJbcecgq8TLSBEy1HuFr24/YkmI0jBBte54bmz8lCrDmcBpvptojCkb0yF2LJU0RO2n83On5NwqfTKIlC1pyFz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSrZYNEgEMRGZ/U76XCEzYmIJZYrbWwkbUUWZsQnlbQje8surpFmteG7Fe6gWazdZHDk4hTMogwdXUIM7qEMDGIzhGV7hzYmdF+fd+Vi0rjnZzAn8gfP5A/k0jgA=</latexit><latexit sha1_base64="Se6oF+W/QwF3d+42ec5ryOc5+Eo=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYiJEkHCXRsugjYVFBPMByRH2NpNkyd7esbsnhCM/wsZCEVt/j53/xk1yhSY+GHi8N8PMvCAWXBvX/XbW1jc2t7ZzO/ndvf2Dw8LRcVNHiWLYYJGIVDugGgWX2DDcCGzHCmkYCGwF49uZ33pCpXkkH80kRj+kQ8kHnFFjpVapfH/pXZR6haJbcecgq8TLSBEy1HuFr24/YkmI0jBBte54bmz8lCrDmcBpvptojCkb0yF2LJU0RO2n83On5NwqfTKIlC1pyFz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSrZYNEgEMRGZ/U76XCEzYmIJZYrbWwkbUUWZsQnlbQje8surpFmteG7Fe6gWazdZHDk4hTMogwdXUIM7qEMDGIzhGV7hzYmdF+fd+Vi0rjnZzAn8gfP5A/k0jgA=</latexit><latexit sha1_base64="Se6oF+W/QwF3d+42ec5ryOc5+Eo=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYiJEkHCXRsugjYVFBPMByRH2NpNkyd7esbsnhCM/wsZCEVt/j53/xk1yhSY+GHi8N8PMvCAWXBvX/XbW1jc2t7ZzO/ndvf2Dw8LRcVNHiWLYYJGIVDugGgWX2DDcCGzHCmkYCGwF49uZ33pCpXkkH80kRj+kQ8kHnFFjpVapfH/pXZR6haJbcecgq8TLSBEy1HuFr24/YkmI0jBBte54bmz8lCrDmcBpvptojCkb0yF2LJU0RO2n83On5NwqfTKIlC1pyFz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSrZYNEgEMRGZ/U76XCEzYmIJZYrbWwkbUUWZsQnlbQje8surpFmteG7Fe6gWazdZHDk4hTMogwdXUIM7qEMDGIzhGV7hzYmdF+fd+Vi0rjnZzAn8gfP5A/k0jgA=</latexit><latexit sha1_base64="Se6oF+W/QwF3d+42ec5ryOc5+Eo=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYiJEkHCXRsugjYVFBPMByRH2NpNkyd7esbsnhCM/wsZCEVt/j53/xk1yhSY+GHi8N8PMvCAWXBvX/XbW1jc2t7ZzO/ndvf2Dw8LRcVNHiWLYYJGIVDugGgWX2DDcCGzHCmkYCGwF49uZ33pCpXkkH80kRj+kQ8kHnFFjpVapfH/pXZR6haJbcecgq8TLSBEy1HuFr24/YkmI0jBBte54bmz8lCrDmcBpvptojCkb0yF2LJU0RO2n83On5NwqfTKIlC1pyFz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSrZYNEgEMRGZ/U76XCEzYmIJZYrbWwkbUUWZsQnlbQje8surpFmteG7Fe6gWazdZHDk4hTMogwdXUIM7qEMDGIzhGV7hzYmdF+fd+Vi0rjnZzAn8gfP5A/k0jgA=</latexit>

(L, n)
<latexit sha1_base64="YYpyWelrh43fg11Chnz/WhzeGyQ=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYiJEkHCXRsugjYVFBPMByRH2NpNkyd7esbsnhCM/wsZCEVt/j53/xk1yhSY+GHi8N8PMvCAWXBvX/XbW1jc2t7ZzO/ndvf2Dw8LRcVNHiWLYYJGIVDugGgWX2DDcCGzHCmkYCGwF49uZ33pCpXkkH80kRj+kQ8kHnFFjpVapfH8pL0q9QtGtuHOQVeJlpAgZ6r3CV7cfsSREaZigWnc8NzZ+SpXhTOA03000xpSN6RA7lkoaovbT+blTcm6VPhlEypY0ZK7+nkhpqPUkDGxnSM1IL3sz8T+vk5jBtZ9yGScGJVssGiSCmIjMfid9rpAZMbGEMsXtrYSNqKLM2ITyNgRv+eVV0qxWPLfiPVSLtZssjhycwhmUwYMrqMEd1KEBDMbwDK/w5sTOi/PufCxa15xs5gT+wPn8AVYxjj0=</latexit><latexit sha1_base64="YYpyWelrh43fg11Chnz/WhzeGyQ=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYiJEkHCXRsugjYVFBPMByRH2NpNkyd7esbsnhCM/wsZCEVt/j53/xk1yhSY+GHi8N8PMvCAWXBvX/XbW1jc2t7ZzO/ndvf2Dw8LRcVNHiWLYYJGIVDugGgWX2DDcCGzHCmkYCGwF49uZ33pCpXkkH80kRj+kQ8kHnFFjpVapfH8pL0q9QtGtuHOQVeJlpAgZ6r3CV7cfsSREaZigWnc8NzZ+SpXhTOA03000xpSN6RA7lkoaovbT+blTcm6VPhlEypY0ZK7+nkhpqPUkDGxnSM1IL3sz8T+vk5jBtZ9yGScGJVssGiSCmIjMfid9rpAZMbGEMsXtrYSNqKLM2ITyNgRv+eVV0qxWPLfiPVSLtZssjhycwhmUwYMrqMEd1KEBDMbwDK/w5sTOi/PufCxa15xs5gT+wPn8AVYxjj0=</latexit><latexit sha1_base64="YYpyWelrh43fg11Chnz/WhzeGyQ=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYiJEkHCXRsugjYVFBPMByRH2NpNkyd7esbsnhCM/wsZCEVt/j53/xk1yhSY+GHi8N8PMvCAWXBvX/XbW1jc2t7ZzO/ndvf2Dw8LRcVNHiWLYYJGIVDugGgWX2DDcCGzHCmkYCGwF49uZ33pCpXkkH80kRj+kQ8kHnFFjpVapfH8pL0q9QtGtuHOQVeJlpAgZ6r3CV7cfsSREaZigWnc8NzZ+SpXhTOA03000xpSN6RA7lkoaovbT+blTcm6VPhlEypY0ZK7+nkhpqPUkDGxnSM1IL3sz8T+vk5jBtZ9yGScGJVssGiSCmIjMfid9rpAZMbGEMsXtrYSNqKLM2ITyNgRv+eVV0qxWPLfiPVSLtZssjhycwhmUwYMrqMEd1KEBDMbwDK/w5sTOi/PufCxa15xs5gT+wPn8AVYxjj0=</latexit><latexit sha1_base64="YYpyWelrh43fg11Chnz/WhzeGyQ=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYiJEkHCXRsugjYVFBPMByRH2NpNkyd7esbsnhCM/wsZCEVt/j53/xk1yhSY+GHi8N8PMvCAWXBvX/XbW1jc2t7ZzO/ndvf2Dw8LRcVNHiWLYYJGIVDugGgWX2DDcCGzHCmkYCGwF49uZ33pCpXkkH80kRj+kQ8kHnFFjpVapfH8pL0q9QtGtuHOQVeJlpAgZ6r3CV7cfsSREaZigWnc8NzZ+SpXhTOA03000xpSN6RA7lkoaovbT+blTcm6VPhlEypY0ZK7+nkhpqPUkDGxnSM1IL3sz8T+vk5jBtZ9yGScGJVssGiSCmIjMfid9rpAZMbGEMsXtrYSNqKLM2ITyNgRv+eVV0qxWPLfiPVSLtZssjhycwhmUwYMrqMEd1KEBDMbwDK/w5sTOi/PufCxa15xs5gT+wPn8AVYxjj0=</latexit>

(L, nL)
<latexit sha1_base64="T7tKwJBl9xb74ZGC+ctnijQ67IY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIhhwjmIckaZiezyZCZ2WVmVghLvsKLB0W8+jne/Bsnj4MmFjQUVd10dwUxZ9q47reTWVvf2NzKbud2dvf2D/KHR00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtHN1G89UaVZJO/NOKa+wAPJQkawsdJDsVS7kI+182IvX3DL7gxolXgLUoAF6r38V7cfkURQaQjHWnc8NzZ+ipVhhNNJrptoGmMywgPasVRiQbWfzg6eoDOr9FEYKVvSoJn6eyLFQuuxCGynwGaol72p+J/XSUx45adMxomhkswXhQlHJkLT71GfKUoMH1uCiWL2VkSGWGFibEY5G4K3/PIqaVbKnlv27iqF6vUijiycwCmUwINLqMIt1KEBBAQ8wyu8Ocp5cd6dj3lrxlnMHMMfOJ8/peCO+w==</latexit><latexit sha1_base64="T7tKwJBl9xb74ZGC+ctnijQ67IY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIhhwjmIckaZiezyZCZ2WVmVghLvsKLB0W8+jne/Bsnj4MmFjQUVd10dwUxZ9q47reTWVvf2NzKbud2dvf2D/KHR00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtHN1G89UaVZJO/NOKa+wAPJQkawsdJDsVS7kI+182IvX3DL7gxolXgLUoAF6r38V7cfkURQaQjHWnc8NzZ+ipVhhNNJrptoGmMywgPasVRiQbWfzg6eoDOr9FEYKVvSoJn6eyLFQuuxCGynwGaol72p+J/XSUx45adMxomhkswXhQlHJkLT71GfKUoMH1uCiWL2VkSGWGFibEY5G4K3/PIqaVbKnlv27iqF6vUijiycwCmUwINLqMIt1KEBBAQ8wyu8Ocp5cd6dj3lrxlnMHMMfOJ8/peCO+w==</latexit><latexit sha1_base64="T7tKwJBl9xb74ZGC+ctnijQ67IY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIhhwjmIckaZiezyZCZ2WVmVghLvsKLB0W8+jne/Bsnj4MmFjQUVd10dwUxZ9q47reTWVvf2NzKbud2dvf2D/KHR00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtHN1G89UaVZJO/NOKa+wAPJQkawsdJDsVS7kI+182IvX3DL7gxolXgLUoAF6r38V7cfkURQaQjHWnc8NzZ+ipVhhNNJrptoGmMywgPasVRiQbWfzg6eoDOr9FEYKVvSoJn6eyLFQuuxCGynwGaol72p+J/XSUx45adMxomhkswXhQlHJkLT71GfKUoMH1uCiWL2VkSGWGFibEY5G4K3/PIqaVbKnlv27iqF6vUijiycwCmUwINLqMIt1KEBBAQ8wyu8Ocp5cd6dj3lrxlnMHMMfOJ8/peCO+w==</latexit><latexit sha1_base64="T7tKwJBl9xb74ZGC+ctnijQ67IY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBhMhgoTdXPQY9OIhhwjmIckaZiezyZCZ2WVmVghLvsKLB0W8+jne/Bsnj4MmFjQUVd10dwUxZ9q47reTWVvf2NzKbud2dvf2D/KHR00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtHN1G89UaVZJO/NOKa+wAPJQkawsdJDsVS7kI+182IvX3DL7gxolXgLUoAF6r38V7cfkURQaQjHWnc8NzZ+ipVhhNNJrptoGmMywgPasVRiQbWfzg6eoDOr9FEYKVvSoJn6eyLFQuuxCGynwGaol72p+J/XSUx45adMxomhkswXhQlHJkLT71GfKUoMH1uCiWL2VkSGWGFibEY5G4K3/PIqaVbKnlv27iqF6vUijiycwCmUwINLqMIt1KEBBAQ8wyu8Ocp5cd6dj3lrxlnMHMMfOJ8/peCO+w==</latexit>· · ·<latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit>

· · ·<latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit><latexit sha1_base64="Ta7vWzYkYrn031JxQLrrQTiFx2o=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsre3wIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSgwFo2ilbrXPwhhNdVCuuDV3AbJOvJxUIEdzUP7qhzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx74xcWCUkw1jbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uh9d+JlSSIldsuWiYSoIxmT9PQqE5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBQwkPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBoOY+J</latexit>

Figure 6.5: (n, L)–regular tree topology.

We next introduce a notation that eases the algorithm description. We associate a

real scalar b to all the data points in a generic data set D, denoting it by bD, and define

137

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

the gradient over bD as gbD = bgD = b
∑

x∈D∇`(w(t); x). As a building block of CR,

we define the sub-routine CompAlloc in which given a generic data set D, n workers

are carefully assigned with data partitions and combining coefficients such that the full

gradient over D is retrievable from the computation results of any n−s workers (Pseudo-

code in Appendix E.1).

CompAlloc: For specified n and s, GC (Algorithm 2 in [176]) constructs the encoding

matrix B = [b1; · · · ; bn] = [biκ]. In CompAlloc, the input data set D is partitioned

to D = ∪kκ=1Dκ and distributed among the n workers along with the corresponding

coefficients. That is, each worker i ∈ [n] is assigned with D(i) = ∪kκ=1biκDκ which

specifies its local data set and corresponding combining coefficients. The parent of the

n workers is then able to recover the gradient over D, i.e. gD upon receiving the partial

coded gradients of any n − s workers and using the decoding matrix A designed by GC

(Algorithm 1 in [176]).

CodedReduce: CR is implemented in two phases. It first allocates each worker with its local

computation task via CR.Allocate procedure. This specifies each worker with its local

data set and combining coefficients. Then, the communication strategy is determined by

CR.Execute.

CR.Allocate:

(1) Starting from the master, data set DT (1,i) is assigned to sub-tree T (1, i) for

i ∈ [n] via the allocation module CompAlloc (Figure 6.6).

(2) In layer l = 1, each worker (1, i), i ∈ [n], picks rCRd data points from the

corresponding sub-tree’s data set DT (1,i) as its local data set D(1, i) and passes

the rest DT (1,i) = DT (1,i) \ D(1, i) to its children and their sub-trees (Figure

6.6).

138

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

(3) Step (1) is repeated by using the module CompAlloc and treating DT (1,i) as

the input data set to distribute it among the children of node (1, i).

(4) Same procedure is applied till reaching the bottom layer (Figure 6.6). By

doing so, the data set D is redundantly distributed across the tree while all

the workers are equally loaded with rCRd data points, where in Theorem 6.1

we will show that rCR is a self-derived pick for CR given in (6.5).

CR.Execute:

(1) All the N nodes start their local partial coded gradient computations on the

current model w(t), i.e. gD(l,i) for all nodes (l, i). Note that gD(l,i) is a coded

gradient (i.e. a linear combination of partial gradients) since D(l, i) carries

combining coefficients along with its data points.

(2) Starting from the leaf nodes, they send their partial coded gradient computa-

tion results (messages) m(L,i) = gD(L,i) up to their parents.

(3) Upon receiving enough results from their children (any n−s of them), workers

in layer L − 1 recover a linear combination of their children’s messages via

proper row in the decoding matrix A, e.g., parent node (L − 1, 1) recovers

from its children’s messages [m(L,1); · · · ; m(L,n)] via the proper decoding row

af(L−1,1).

(4) Recovered partial gradient is added to the local partial coded gradient and is

uploaded to the parent, e.g. node (L − 1, 1) uploads m(L−1,1) to its parent,

where

m(L−1,1) = af(L−1,1)[m(L,1); · · · ; m(L,n)] + gD(L−1,1).

(5) The same procedure is repeated till reaching the master node which is able to

aggregate the total gradient gD.

139

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

M

DT (1,1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (L�1,1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (L�1,1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(1, 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(2, 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(2, n)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(L� 1, 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(L, 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(L, n)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

……

…

DT (1,1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 6.6: Illustration of task allocation in CR.

The pseudo-code for CR is available in Appendix E.2.

6.3.2 An Example for CR

In this section, we provide a simple example to better illustrate the proposed CR

scheme.

Example 6.2 (CodedReduce) Consider a (3, 2)–regular tree with N = 12 nodes and

s = 1 straggler per parent. From GC, we have the decoding and encoding matrices

A =

0 1 2

1 0 1

2 −1 0

, B =

1/2 1 0

0 1 −1

1/2 0 1

. (6.4)

Following CR’s description, we partition the data set of size d as D = {D1,D2,D3}

and assign DT (1,1) = 1
2
D1 ∪ D2 to sub-tree T (1, 1). Node (1, 1) then picks rCRd = 4

15
d

data points from DT (1,1) as D(1, 1). To do so, DT (1,1) is partitioned to 5 sub-sets as

DT (1,1) = DT (1,1)
1 ∪ · · · ∪DT (1,1)

5 and node (1, 1) picks the first two sub-sets, i.e. D(1, 1) =

DT (1,1)
1 ∪ DT (1,1)

2 and the rest DT (1,1) = DT (1,1)
3 ∪ DT (1,1)

4 ∪ DT (1,1)
5 is passed to layer 2.

140

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>D(2, 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(2, 2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(2, 3)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
4<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
4<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
5

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
5

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit> =<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

DT (1,1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
2<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
4<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
5

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(1, 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DT (1,1)
2<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1/2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(1, 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(2, 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(2, 2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(2, 3)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

M

1
2
gD1

+
gD2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 6.7: Illustration of data allocation and communication strategy in CR for a (3, 2)–
regular tree.

Note that data points in D(1, 1) carry on the linear combination coefficients associated

with DT (1,1) = 1
2
D1 ∪ D2. Figure 6.7 demonstrates each node in sub-tree T (1, 1) with

its allocated data set along with the encoding coefficients. Moving to layer 2, DT (1,1) is

partitioned to 3 subsets and according to B in (6.4), the allocations to nodes (2, 1), (2, 2)

and (2, 3) are as follows:

D(2, 1) =
1

2
DT (1,1)

3 ∪ DT (1,1)
4 ,

D(2, 2) = DT (1,1)
4 ∪ (−1)DT (1,1)

5 ,

D(2, 3) =
1

2
DT (1,1)

3 ∪ DT (1,1)
5 .

Similarly for other sub-trees, each node now is allocated with a data set for which each

data point is associated with a scalar. For instance, node (2, 1) uploads m(2,1) = gD(2,1) =

1
2
gDT (1,1)

3
+ gDT (1,1)

4
to its parent (1, 1). Node (1, 1) can recover from any 2 surviving

children, e.g. from (2, 1) and (2, 1) and using the first row in A, it uploads

m(1,1) = [2,−1, 0][m(2,1); m(2,2); m(2,3)] + gD(1,1)

141

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

= 2m(2,1) −m(2,2) + gD(1,1)

=
1

2
gD1 + gD2

to the master. Similarly for other nodes, the master can recover the full gradient from

any two children, e.g. using the second row of decoding matrix A and surviving children

(1, 1) and (1, 3):

[1, 0, 1][m(1,1); m(1,2); m(1,3)] = m(1,1) + m(1,3)

=

(
1

2
gD1 + gD2

)
+

(
1

2
gD1 + gD3

)

= gD.

6.3.3 Theoretical Guarantees of CR

In this section, we formally present the theoretical guarantees of CR. We first charac-

terize the computation load induced by CR and demonstrate its significant improvement

over GC. Then, we consider the commonly-used shifted exponential run-time computation

distribution and a single-port communication model for workers and asymptotically char-

acterize the expected run-time of CR and conclude with a discussion on its communication

parallelization gain.

Computation Load Optimality: We show that for a fixed tree topology, the

proposed CR is optimal in the sense that it achieves the minimum per-node computation

load for a target resiliency. This optimality is established in two steps per Theorem 6.1:

(i) we first show the achievability by characterizing the computation load of CR; and (ii)

we establish a converse showing that CR’s computation load is as small as possible.

Theorem 6.1 For a fixed (n, L)–regular tree, any gradient aggregation scheme robust to

142

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

any s stragglers per any parent requires computation load r where

r ≥ rCR =
1

(
n
s+1

)
+ · · ·+

(
n
s+1

)L . (6.5)

Proof: We the proof to Appendix E.3.

Remark 6.2 While CR is α-resilient, i.e. robust to any s = αn stragglers per any parent

node, it significantly improves the per-node computation (and storage) load compared to

an equivalent GC scheme with the same resiliency. In particular, GC loads each worker

with rGC = S+1
N

= αN+1
N
≈ α fraction of the data set, while CR considerably reduces it to

rCR = 1/
∑L

l=1

(
n

αn+1

)l
≈ αL. For α = 0.5 as an instance, CR reduces the computation

load 7× by rearranging the nodes from 1 layer to 3 layers.

Remark 6.3 CR makes the distributed GD strategy α-resilient, that is any s = αn strag-

glers per any parent node which sums up to a total of S = αN stragglers – the same as

the worst case number of stragglers in GC. It is clear than if the stragglers are picked ad-

versarially, for instance all the nodes in layer 1, then CR fails to recover the total gradient

at the master. However, our experiments over Amazon EC2 confirm that stragglers are

randomly distributed over the tree and not adversarially picked, which is aligned with the

random stragglers pattern considered in this paper.

Total Gradient Computation Complexity: To better characterize the advan-

tages of CR, we characterize its total gradient computation complexity in order to reach

the final parameter model with predefined accuracy. More precisely, we focus on learning

problems with strongly convex losses and let TCR denote the total number of iterations to

reach a final model w such that ‖w−w∗‖2 ≤ ε. Since in each iteration of CR the exact gra-

dient on all the d data samples is computed (same as in GD), therefore TCR = O(log(1/ε)).

In each iteration, each of the N worker nodes compute αCR · d gradients, where according

143

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

to Theorem 6.1, we have αCR ≈ αL. All in all, in order to reach an ε-accurate model, the

CR method requires O(αL ·N · log(1/ε) · d) gradient computations in total.

One simple and yet naive approach to mitigate stragglers is to update the model using

the gradient computation results of only a fraction (α) of worker node (non-stragglers).

This approach can be treated as standard Stochastic Gradient Descent (SGD) which

requires TSGD = O(1/ε) iterations in total to reach an ε-accurate model. Since each of

the N worker nodes store d/N samples (i.e. no redundant data allocation), therefore

in each iteration, each node computes αd/N gradients. Putting all together, in order

to reach ε-accurate model, SGD requires O(α · 1/ε · d) gradient computations in total.

Comparing the two gradient computation complexities of CR and SGD, we observe that

although SGD slashes the complexity by a linear factor N , however, it suffer from two

exponential factors, that are growing αL to α and log(1/ε) to 1/ε which significantly

increase the total gradient computation complexities, as αL � α and log(1/ε)� 1/ε.

Latency Performance: While we have derived the straggler resiliency of CR, the

ultimate goal of a distributed gradient aggregation scheme is to have small latency which

is partly attained by establishing higher communication parallelization.

Computation Time Model: We consider random computation time model for

workers with shifted exponential distribution which is used in several prior works [139,

178,179]. More precisely, for a worker Wi with assigned data set of size di, we model the

computation time as a random variable with a shifted exponential distribution as follows:

Pr[Ti ≤ t] = 1− e−
µ
di

(t−adi), for t ≥ adi, (6.6)

where system parameters a = Θ(1) and µ = Θ(1) respectively denote the shift and the

exponential rate. We assume that Ti’s are independent.

Communication Time Model: To model the communication time and bandwidth

144

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

bottleneck, we assume that each node is able to receive messages from only one other

node at a time, and the total available bandwidth is dedicated to the communicating

node. We also assume that communicating a partial gradient vector (of size p) from a

child to its parent takes a constant time tc.

The following theorem asymptotically characterizes the expected run-time of CR which

we denote by TCR. More precisely, we consider the regime of interest where the data set

size d and the number of layers L in the tree are fixed, while the number of children per

parent, i.e. n is approaching infinity with a constant straggler ratio α = s/n = Θ(1).

Theorem 6.2 Considering the computation time model in (6.6) for workers, the expected

run-time of CR on an (n, L)–regular tree with resiliency α = Θ(1) satisfies the followings:

E [TCR] ≥
rCRd

µ
log

(
1

α

)
+ arCRd+

(
n(1− α)− o(n) + L− 1

) (
1− o(1)

)
tc + o(1),

E [TCR] ≤
rCRd

µ
log

(
1

α

)
+ arCRd+ n

(
1− o(1)

)
Ltc + o(1) (6.7)

Proof: We the proof to Appendix E.4.

Remark 6.4 Theorem 6.2 implies that the expected run-time of the proposed CR algo-

rithm breaks down into two terms: E [TCR] = Θ(1) + Θ(n), where the two terms Θ(1) and

Θ(n) correspond to computation and communication times, respectively. As a special

case, it also implies that the average run-time for GC is E [TGC] = Θ(1) + Θ(N). This

clearly demonstrates that CR is indeed alleviating the bandwidth bottleneck and it improves

the communication parallelization gain from βGC = Θ(1) to βCR = Θ(N/n) = Θ(N1−1/L)

by parallelizing the communications over an L-layer tree structure.

145

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

6.4 Numerical Results

In this section, we provide the results of our experiments conducted over Amazon EC2,

for which we used Python with mpi4py package. Our results demonstrate significant

speedups of CR over baseline approaches. We consider two sets of machine learning

experiments, one with a real data set, and another with an artificial data set. For

each machine learning setting, we consider two cluster configurations, one with N = 84

workers, and another with N = 156 workers, using t2.micro instance for master and

all workers. Furthermore, each experiment is run for 300 rounds. Next, we describe the

experiments in detail and provide the results.

6.4.1 Convex Optimization

Real Data Set

We consider the machine learning problem of logistic regression via gradient descent

(GD) over the real data set GISETTE [180]. The problem is to separate the often

confused digits ‘9’ and ‘4’. We use d = 6552 training samples, with model size p = 5001.

The following relative error rate is considered for model estimation:

Relative Error Rate =
‖w(t) −w(t−1)‖2

‖w(t−1)‖2
, (6.8)

where w(t) denotes the estimated model at iteration t. The following schemes are con-

sidered for data allocation and gradient aggregation:

(1) Uncoded Master-worker (UMW): This is the naive scheme in which the data set is

uniformly partitioned among the workers, and the master waits for results from all

the workers to aggregate the gradient.

146

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

Figure 6.8: Convergence curves for relative error rate vs wall-clock time for logistic
regression over N = 84 workers. The straggler resiliency is α = 1/4. CR achieves a
speedup of up to 32.8×, 5.3×, 3.8× and 3.2× respectively over UMW, GC, RAR and SGD.

(2) Gradient Coding (GC): We implement GC as described in Section 6.2.3, with the

straggler parameter S = αN .

(3) Ring-AllReduce (RAR): The data set is uniformly partitioned over the workers and

the MPI function MPI Allreduce() is used for gradient aggregation.

(4) Stochastic Gradient Descent (SGD): The data allocation is the same as UMW. However,

the master updates the model using the partial gradient obtained via aggregating

the results from results of only the first N − S children. Furthermore, as is typical

in SGD experiments, we used a learning rate of c1/(t + c2) where c1 and c2 were

numerically optimized.

(5) CodedReduce (CR): We implement our proposed scheme as presented in Section 6.3

on a tree with (n, L) = (12, 2), while the straggler parameter s = αn.

Next, we plot the relative error rate defined in (6.8) as a function of wall-clock time

for our logistic regression experiments with N = 84 workers and N = 156 workers

respectively in Fig. 6.8 and Fig. 6.9. For N = 84, we consider a straggler-resiliency of

α = 1/4, while for N = 156, we consider three different values of α : 1/12, 2/12 and 3/12.

We make the following observations from the plots:

147

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

(a) α = 1/12 (b) α = 2/12 (c) α = 3/12

Figure 6.9: Convergence results for relative error rate vs wall-clock time for logistic
regression over N = 156 workers with different straggler resiliency α. (a) CR achieves
a speed up of up to 32.3×, 27.2×, 7.0× and 25.4× respectively over UMW, GC, RAR and
SGD. (b) CR achieves a speed up of up to 29.3×, 23.3×, 6.4× and 21.9× respectively over
UMW, GC, RAR and SGD. (c) CR achieves a speed up of up to 25.0×, 16.8×, 5.4× and 15.4×
respectively over UMW, GC, RAR and SGD.

• As demonstrated by Fig. 6.8 and 6.9, CR achieves significant speedups over the

baseline approaches. Specifically, for (N,α) = (84, 1/4), CR is faster than UMW, GC,

RAR and SGD by 32.8×, 5.3×, 3.8× and 3.2× respectively. For (N,α) = (156, 1/12),

CR achieves speedups of 32.3×, 27.2×, 7.0× and 25.4× respectively over UMW, GC,

RAR and SGD. Similar speedups are obtained with (N,α) = (156, 2/12) and (N,α) =

(156, 3/12), as demonstrated by Fig. 6.9b and Fig. 6.9c respectively.

• Although GC gains over UMW by avoiding stragglers, its performance is still bottle-

necked by bandwidth congestion, and the increase in computation load at each

worker by a factor of (S + 1) in comparison to UMW. The bottlenecks are reflected

in comparison with SGD, which has similar or better performance in comparison to

GC due to much less computation load per worker.

• RAR significantly outperforms UMW as well as GC forN = 84 as well asN = 156 worker

settings. Although RAR achieves similar performance in comparison to SGD for N =

84 workers scenario, it ultimately beats all the schemes with the generic master-

worker topology when the cluster size is increased to N = 156. Our proposed CR

148

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

Figure 6.10: Convergence curves for normalized error rate vs wall-clock time for linear
regression over N = 84 workers. The straggler resiliency is α = 1/4. CR achieves a
speedup of up to 24.1×, 4.6×, 3.0× and 2.8× respectively over UMW, GC, RAR and SGD.

algorithm combines the best of GC and RAR by providing straggler robustness via

coding and alleviating bandwidth bottleneck via a tree topology.

Artificial Data Set

Next we solve a linear regression problem via GD over a synthetic data set with

parameters (d, p) = (7644, 6500). We generate the data set using the following model:

xj(p+ 1) = xj(1 : p)>w∗ + zj, for j ∈ [d], (6.9)

where the true model w∗ and features xj(1 : p) = [xj(1); · · · ; xj(p)] are drawn randomly

from N (0, Ip) distribution and zj is a standard Gaussian noise. We consider the following

normalized error rate:

Normalized Error Rate =
‖w(t) −w∗‖2

‖w∗‖2
. (6.10)

In Fig. 6.10 and 6.11, we plot the normalized error rate defined in (6.10) as a function

of wall-clock time forN = 84 andN = 156 respectively. We consider similar configuration

and schemes as for the experiments with real data set. The following observations are

149

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

(a) α = 1/12 (b) α = 2/12 (c) α = 3/12

Figure 6.11: Convergence results for normalized error rate vs wall-clock time for linear
regression over N = 156 workers with different straggler resiliency α. (a) CR achieves
a speed up of up to 31.7×, 22.0×, 5.2× and 20.7× respectively over UMW, GC, RAR and
SGD. (b) CR achieves a speed up of up to 27.1×, 18.1×, 4.4× and 16.8× respectively over
UMW, GC, RAR and SGD. (c) CR achieves a speed up of up to 22.2×, 13.7×, 3.6× and 13.0×
respectively over UMW, GC, RAR and SGD.

made with regard to the experiments:

• As in the previous case of logistic regression with real data set, CR achieves signifi-

cant speedups over baseline approaches for linear regression as well. Particularly, for

(N,α) = (84, 1/4), CR achieves speedups of 24.1×, 4.6×, 3.0× and 2.8× over UMW,

GC, RAR and SGD respectively. When (N,α) = (156, 1/12), CR achieves speedups of

31.7×, 22.0×, 5.2× and 20.7× in comparison to UMW, GC, RAR and SGD respectively.

Similar speedups are obtained for (N,α) = (156, 2/12) and (N,α) = (156, 3/12).

• GC performs better than UMW by avoiding stragglers. However, its performance is

still bottlenecked by bandwidth congestion and the increase in computation load

at each worker by a factor of (S + 1) in comparison to UMW.

• SGD achieves a gain in per iteration time over UMW and GC. However, it has higher

normalized error with respect to the true model.

• Combined with the results of logistic regression, our experiments complement the

theoretical gains of CR that have been established earlier. As demonstrated by the

150

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

Figure 6.12: Convergence curves for normalized error rate vs wall-clock time for linear
regression over N = 156 workers and (d, p) = (32760, 5000). The straggler resiliency is
α = 1/4 and the number of rounds is 50. CR achieves a speedup of up to 11.3×, 9.7×,
1.69× and 6.1× respectively over UMW, GC, RAR and SGD.

results, a tree-based topology is well-suited for bandwidth bottleneck alleviation

in large-scale commodity clusters. Furthermore, the data allocation and coding

strategy provide resiliency to stragglers.

Remark 6.5 Till now, we have considered small-scale datasets in our experiments, which

is motivated by the fact that in edge based devices with non-dedicated resources, the

amount of memory available for computation shall be low. Nevertheless, our proposed

scheme CR can speedup general machine learning in cloud environments. To illustrate this

point, we have carried out another experiment with a larger dataset (d, p) = (32760, 500),

with (N,α) = (156, 1/4). As illustrated by Fig. 6.12, CR outperforms the baseline ap-

proaches by considerable margins. Specifically, CR achieves a speedup of 11.3×, 9.7×, 1.69×

and 6.1× over UMW, GC, RAR and SGD respectively.

6.4.2 Neural Networks

We carry out simulations for evaluating the benefits of CR in distributed training

of neural networks with cross-entropy loss, which essentially involves non-convex and

non-smooth loss functions due to variety of non-linearities such as ReLUs. For this,

151

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

Figure 6.13: Convergence curves for test accuracy vs wall-clock time for neural network
training over N = 156 workers. The neural network model has p ≈ 120, 000 parameters.
The straggler resiliency is α = 5/12 and the number of rounds is 2500. CR achieves a
speedup of up to 6.6×, 4.8×, 1.8× and 4.0× respectively over UMW, GC, RAR and SGD.

we consider the CIFAR10 dataset [181], which has 10 different categories of images.

CIFAR10 has 50000 images while the test dataset has 10000 images. We provide the

details of the neural network in Table 6.2. We use an initial step size of 0.02, and a

step decay of 0.7 at iterations 1300 and 2100. We use Glorot uniform initializer for

initializing the convolutional layer weights, while for fully connected layers, we use the

default initializer.

We consider a cluster of N = 156 servers, a resiliency of 5/12, and n = 12 children

per node for CR. We use a random subset of d = 49920 training images for training.

Accuracy is reported on test dataset. We use the Pytorch library for neural network

training. Furthermore, we use the computation and communication model as described

earlier, where we assume tc = 0.05 seconds, a = 5×10−5 seconds/data, and assume

aµ = 1.

In Fig. 6.13, we plot the accuracy vs wall-clock time curves for the different ap-

proaches, where training is carried out for a total of 2500 iterations. Clearly, CR outper-

forms other approaches by significant margins. Particularly, CR achieves a speedup of up

to 6.6×, 4.8×, 1.8× and 4.0× respectively over UMW, GC, RAR and SGD.

152

Robust and Efficient Gradient Aggregation in Distributed Learning Chapter 6

Table 6.2: Details of the neural network architecture used in the simulations.

Sl. No. Parameter Shape Hyperparameters
1 Conv2d 3×16×3×3 stride= 1, padding= (1, 1)
2 Conv2d 16×64×4×4 stride= 1, padding= (0, 0)
3 Linear 64×384 -
4 Linear 384×192 -
5 Linear 192×10 -

6.5 Concluding Remarks

To conclude, we discussed two critical bottlenecks in scaling up Gradient Descent-

based distributed learning frameworks: communication efficiency and stragglers’ delays.

We proposed CodedReduce (CR), that is a joint communication topology design and data

set allocation strategy. CR combines the best of two existing approaches–Ring-AllReduce

(RAR) and Gradient Coding (GC)–by leveraging communication parallelization of RAR

and straggler resiliency of GC. Theoretically, we characterized the computation load and

straggler resiliency of CR and its asymptotic expected run-time. Lastly, we empirically

demonstrated that our proposed CR design achieves speedups of up to 27.2× and 7.0×,

respectively over the GC and RAR.

Lastly, the tree structure proposed in this paper opens up new interesting directions

in order to further improve the resiliency of distributed gradient aggregation schemes.

For instance, given a fix set of available worker nodes, how can one find the optimal tree

(i.e. optimal depth and width) in order to minimize the expected run-time.

153

Chapter 7

Coded Computing for Distributed

Graph Analytics

Many distributed computing systems have been developed recently for implementing

graph based algorithms such as PageRank over large-scale graph-structured datasets

such as social networks. Performance of these systems significantly suffers from commu-

nication bottleneck as a large number of messages are exchanged among servers at each

step of the computation. Motivated by graph based MapReduce, we propose a coded

computing framework that leverages computation redundancy to alleviate the commu-

nication bottleneck in distributed graph processing. As a key contribution of this work,

we develop a novel coding scheme that systematically injects structured redundancy in

the computation phase to enable coded multicasting opportunities during message ex-

change between servers, reducing the communication load substantially in large-scale

graph processing. For theoretical analysis, we consider random graph models, and fo-

cus on schemes in which subgraph allocation and Reduce allocation are only dependent

on vertex ID while the Shuffle design varies with graph connectivity. Specifically, we

prove that our proposed scheme enables an (asymptotically) inverse-linear trade-off be-

154

Coded Computing for Distributed Graph Analytics Chapter 7

tween computation load and average communication load for two popular random graph

models – Erdös-Rényi model, and power law model. Particularly, for a given computa-

tion load r, (i.e. when each graph vertex is carefully stored at r servers), the proposed

scheme slashes the average communication load by (nearly) a multiplicative factor of r.

Furthermore, for the Erdös-Rényi model, we prove that our proposed scheme is optimal

asymptotically as the graph size increases by providing an information-theoretic con-

verse. To illustrate the benefits of our scheme in practice, we implement PageRank over

Amazon EC2, using artificial as well as real-world datasets, demonstrating gains of up

to 50.8% in comparison to the conventional PageRank implementation. Additionally, we

specialize our coded scheme and extend our theoretical results to two other random graph

models – random bi-partite model, and stochastic block model. Our specialized schemes

asymptotically enable inverse-linear trade-offs between computation and communication

loads in distributed graph processing for these popular random graph models as well. We

complement the achievability results with converse bounds for both of these models.

7.1 Introduction

Graphs are widely used to identify and incorporate the relationship patterns and

anomalies inherent in real-life datasets. Their growing scale and importance have prompted

the development of various large-scale distributed graph processing frameworks, such as

Pregel [19], PowerGraph [20] and GraphLab [21]. The underlying theme in these systems

is the think like a vertex approach [22] where the computation at each vertex requires

only the data available in the neighborhood of the vertex (see Fig. 7.1 for an illustrative

example). This approach significantly improves performance in comparison to general-

purpose distributed data processing systems (e.g., Dryad [182]), which do not leverage

the underlying structure of graphs.

155

Coded Computing for Distributed Graph Analytics Chapter 7

Figure 7.1: Illustrating the think like a vertex paradigm prevalent in common parallel
graph computing frameworks. The computation associated with a vertex only depends on
its neighbors. In this example, we consider the PageRank computation over a graph with
six vertices. Using vertex 1 for representation, we illustrate the file and PageRank update
at each vertex. File w1 contains the state (current PageRank Πcurr

1) and the neighborhood
parameters (probabilities of transitioning to neighbors {P(1→ 1),P(1→ 2),P(1→ 5)}).
The PageRank update associated with vertex 1 is a function of only the neighborhood
files (specifically, of the PageRanks of neighboring vertices and the transition probabilities
from neighbors to vertex 1).

In these distributed graph processing systems, different subgraphs are stored at dif-

ferent servers, where a subgraph refers to the set of files associated with a subset of

graph vertices. As a result of the distributed subgraph allocation, for carrying out the

graph computation for a given vertex at a particular server, the intermediate values corre-

sponding to the neighboring vertices whose files are not available at the server have to be

communicated from other servers. These distributed graph processing systems, therefore,

require many messages to be exchanged among servers during job execution. This results

in communication bottleneck in parallel computations over graphs [23], accounting for

more than 50% of the overall execution time in representative cases [24].

To alleviate the communication bottleneck in distributed graph processing, we develop

a new framework that leverages computation redundancy by computing the intermediate

values at multiple servers via redundant subgraph allocation. The redundancy in compu-

tation of intermediate values at multiple servers allows coded multicasting opportunities

during exchange of messages between servers, thus reducing the communication load.

156

Coded Computing for Distributed Graph Analytics Chapter 7

Our proposed framework comprises of a mathematical model for MapReduce decomposi-

tion [12] of the graph computation task. The Map computation for a vertex corresponds

to computing the intermediate values for the vertices in its neighborhood, while the Re-

duce computation for a vertex corresponds to combining the intermediate values from

the neighboring vertices to obtain the final result of graph computation. Referring to the

example in Fig. 7.1, the Map and Reduce computations associated with vertex 1 are as

follows:

Map: Πcurr
1 → {v1,1, v2,1, v5,1},

Reduce: Πnew
1 = v1,1 + v1,2 + v1,5,

where vj,i = P(i→ j)Πcurr
i is the intermediate value obtained from the Map computation

of vertex i ∈ N (j).

In distributed graph based MapReduce, each server is allocated a subgraph for Map

computations and Reduce tasks for a subset of graph vertices, and the overall execution

takes place in three phases – Map, Shuffle, and Reduce. During Map phase, each server

computes the intermediate values associated with the files in the allocated subgraph.

During Shuffle phase, servers communicate with each other to exchange missing interme-

diate values that are needed for executing the allocated Reduce tasks. Finally, each server

carries out the Reduce computations allocated to it to obtain the final results, using the

intermediate values obtained locally during the Map phase and the missing intermediate

values obtained from other servers during the Shuffle phase. Using our mathematical

model of graph based MapReduce, our framework proposes to trade redundant computa-

tions in the Map phase with communication load during the Shuffle phase. The key idea

is to leverage the graph structure and create coded messages during the Shuffle phase

that simultaneously satisfy the data demand of multiple computing servers in the Reduce

157

Coded Computing for Distributed Graph Analytics Chapter 7

phase.

Our work is rooted in the recent development of a coding framework that establishes

an inverse-linear trade-off between computation and communication for general MapRe-

duce computations – Coded Distributed Computing (CDC) [113]. In the MapReduce

formulation considered in [113], there are n input files and the goal is to compute Q

output functions, where each of the Q output functions depends on all of the n input

files. In CDC, each Map computation is carefully repeated at r servers. The injected

redundancy provides coded multicast opportunities in the Shuffle phase where servers ex-

change coded messages that are simultaneously useful for multiple servers. Each server

then decodes the received messages and executes the Reduce computations assigned to

it. Compared to uncoded Shuffle, where the required intermediate values are transmitted

without leveraging coded multicast, CDC slashes the communication load by r. How-

ever, in contrast to graph based MapReduce considered in our framework, CDC does not

incorporate the heterogeneity in the file requirements by the Reducers, as each Reducer

in CDC is assumed to need intermediate values corresponding to all input files.

Figure 7.2: Demonstrating the impact of our proposed coded scheme in practice. We consider PageR-
ank implementation over a real-world dataset in an Amazon EC2 cluster consisting of 6 servers. In this
figure, we have illustrated the overall execution time as well as the times spent in different phases of
execution, as a function of computation load r (details of implementation are provided in Section ??).
One can observe that the Shuffle phase is the major component of the overall execution time in conven-
tional PageRank implementation (computation load r = 1), and our proposed coded scheme slashes the
overall execution time by shortening the Shuffle phase (i.e., reducing the communication load) at the
expense of increasing the Map phase (i.e. increasing the Map computations).

158

Coded Computing for Distributed Graph Analytics Chapter 7

Moving from the MapReduce framework in [113] to graph based MapReduce, the

key challenge is that the computation associated with each vertex highly depends on

the graph structure. In particular, graph computation at each vertex requires data only

from the neighboring vertices, while in the MapReduce framework in [113], each output

computation needs all the input files (which in graph based MapReduce shall correspond

to a complete graph). This asymmetry in the data requirements of the graph compu-

tations is the main challenge in developing efficient subgraph and Reduce computation

allocations and Shuffling schemes for graph based MapReduce. As a key component of

our proposed coding framework, we propose a coded scheme that creates coding oppor-

tunities for communicating messages across servers by Mapping the same graph vertex at

different servers, so that each coded transmission satisfies the data demand of multiple

servers. Within each multicast group, each server communicates a coded message which

is generated using careful alignment of the intermediate values that the server needs to

communicate to all the remaining members of the multicast group. Each server retrieves

the missing intermediate values required for its Reduce computations using the locally

available intermediate values from the Map phase and the coded messages received during

the Shuffle phase.

For characterization of the performance of our proposed coding framework for dis-

tributed graph analytics, we focus on random undirected graph models. In popular graph

processing frameworks such as Pregel [19], the graph partitioning for distributed process-

ing among a set of servers is solely based on vertex ID, such as using hash(ID) mod K,

where K is the number of servers. Therefore, in our problem formulation, for a given

computation load r and a random graph G = (V , E), we focus on subgraph and Reduce

computation allocations A(r) that are based only on vertex IDs and not on graph connec-

tivity. Here, V and E respectively denote the vertex set and edge set of G. Although the

Map and Reduce allocations are functions solely of vertex IDs, the Shuffle design needs to

159

Coded Computing for Distributed Graph Analytics Chapter 7

incorporate the graph connectivity of the graph realizations so that the communication

load is minimized. This motivates us to consider the characterization of the minimum

average normalized communication load L∗(r), which is defined as follows:

L∗(r) := inf
A∈A(r)

EG[LA(r,G)],

where LA(r,G) denotes the minimum normalized communication load for a realization

G of G for a given subgraph and Reduce allocation tuple A ∈ A(r). The normalization

is with respect to the total size of all the intermediate values corresponding to a fully

connected graph with same number of vertices. Further details are deferred to Section

7.2, where we describe our problem formulation in detail.

For two popular random graph models, Erdös-Rényi model and power law model, we

prove that our proposed coded scheme asymptotically achieves an inverse-linear trade-off

between computation load in the Map phase and average normalized communication load

in the Shuffle phase. Furthermore, for the Erdös-Rényi model, we develop an information-

theoretic converse for the average communication load given a computation load of r.

Using the asymptotic achievability result, we prove that the converse for the Erdös-Rényi

model is asymptotically tight, thus proving the asymptotic optimality of our proposed

coded scheme. Specifically, for a given computation load r, we show that the minimum

average normalized communication load is as follows:

L∗(r) ≈ 1

r
p

(
1− r

K

)
,

where p is the edge probability in the Erdös-Rényi model of size n, and K denotes the

number of servers.

To illustrate the benefits of our proposed coded scheme in practice, we demonstrate

160

Coded Computing for Distributed Graph Analytics Chapter 7

via simulation results that even for the Erdös-Rényi model with finite n, our proposed

coded scheme achieves an average communication load which is within a small gap from

the information-theoretic lower bound. Furthermore, it provides a gain of (almost) r in

comparison to the baseline scheme with uncoded Shuffling. Additionally, we implement

the PageRank algorithm over Amazon EC2 servers using artificial as well as real-world

graphs, demonstrating how our proposed coded scheme can be applied in practice. Fig.

7.2 illustrates the results of our experiments over the conventional PageRank approach

(r = 1) for a social network webgraph Marker Cafe Dataset [183]. As demonstrated

in Fig. 7.2, our proposed coded scheme achieves a speedup of up to 43.4% over the

conventional PageRank implementation and a speedup of 25.5% over the single server

implementation. The details of the implementation are provided in Section ??.

We also specialize our coded scheme and extend the achievability results to two ad-

ditional random graph models, random bi-partite model and stochastic block model.

Specifically, we leverage the community structure in these models to adapt our proposed

scheme to these models. In the random bi-partite model, we observe that there are no

intra-cluster edges, due to which intermediate values for a particular Reducer in one

cluster only comes from Mappers in the other cluster. Therefore, we specialize our pro-

posed coded scheme from Section 7.4 for the random bi-partite model, partitioning the

available servers in proportion to the cluster sizes, so that there is maximum overlap

between Reducers corresponding to vertices in one cluster and Mappers corresponding

to vertices in other cluster. Similarly, for the stochastic block model, we specialize our

proposed coded scheme based on the observation that Reducers corresponding to vertices

in one cluster depend on the Mappers corresponding to the vertices within the cluster

with one probability (due to intra-cluster edges), and on the vertices in the other cluster

with another probability (due to cross-cluster edges).

For both the random bi-partite model and the stochastic block model, we provide

161

Coded Computing for Distributed Graph Analytics Chapter 7

converse bounds. For the random bi-partite model, we remove vertices (and the edges

corresponding to them) from the larger cluster so that the reduced graph has two clusters

of equal sizes. The reduced graph model thus has two sets of Mappers and Reducers,

which correspond to two different Erdös-Rényi models. Applying our converse bound for

the Erdös-Rényi model, we arrive at the converse of the random bi-partite model. For

the stochastic block model converse, the key idea is to randomly remove edges from the

graph such that a larger Erdös-Rényi graph is obtained, then utilize a coupling argument,

and finally use our information theoretic converse bound for the Erdös-Rényi model.

Therefore, the modified coded schemes for these models demonstrate that inverse-linear

trade-offs between computation and communication loads in distributed graph processing

exists for these graph models as well.

Related Work. A number of coding theoretic strategies have been recently pro-

posed to mitigate the bottlenecks in large scale distributed computing [113,173]. Several

generalizations to the Coded Distributed Computing (CDC) technique proposed in [113]

have been developed. The authors in [184] extend CDC to wireless scenarios. The

work in [185] extends CDC to multistage dataflows. An alternative trade-off between

communication and distributed computation has been explored in [120] for MapReduce

framework under predetermined storage constraints. Coding using resolvable designs has

been proposed in [186]. [118] extends CDC to heterogeneous computing environments.

The work in [187] proposes coding scheme for reducing communication load for com-

putations associated with linear aggregation of intermediate results in the final Reduce

stage. The key difference between our framework and each of these works is that general

MapReduce computations over graphs have heterogeneity in the data requirements for

the Reduce functions associated with the vertices. Other notable works that deal with

communication bottleneck in distributed computation include [119, 188, 189], where the

authors propose techniques to reduce communication load in data shuffling in distributed

162

Coded Computing for Distributed Graph Analytics Chapter 7

learning.

Notation. We denote by [n] the set {1, 2, . . . , n} for n ∈ N. For non-negative

functions f and g of n, we denote f = Θ(g) if there are positive constants c1, c2 and

n0 ∈ N such that c1 ≤ f(n)/g(n) ≤ c2 for every n ≥ n0, and f = o(g) if f(n)/g(n)

converges to 0 as n goes to infinity. We define f = ω(g), if for any positive constant c,

there exists a constant n0 ∈ N such that f(n) > c · g(n) for every n ≥ n0. To ease the

notation, we let 2× Bern(p) denote a random variable that takes on the value 2 w.p. p

and 0 otherwise.

7.2 Problem Setting

We now describe the setting and formulate our distributed graph analytics problem.

In particular, we specify our computation model, distributed implementation model and

our problem formulation based on random graphs.

7.2.1 Computation Model

We consider an undirected graph G = (V , E) where V = [n] and E = {(i, j) : i, j ∈ V}

denote the set of graph vertices and the set of edges respectively. A binary file wi ∈ F2F of

size F ∈ N containing vertex state and neighborhood parameters is associated with each

graph vertex i ∈ V . We denote by W = {wi : i ∈ V} the set of files associated with all

vertices in the graph. The neighborhood of vertex i is denoted by N (i) = {j ∈ V : (j, i) ∈

E} and the set of files in the neighborhood of i is represented byWN (i) = {wj : j ∈ N (i)}.

In general, G can have self-loops, i.e., vertex i can be contained in N (i). Furthermore, a

graph computation is associated with each vertex i ∈ V as follows:

φi : F|N (i)|
2F

→ F2B ,

163

Coded Computing for Distributed Graph Analytics Chapter 7

where φi(·) is a function that maps the input files in WN (i) to a length B binary stream

oi = φi(WN (i)).

The computation φi(·) can be represented as a MapReduce computation:

φi(WN (i)) = hi({gi,j(wj) : wj ∈ WN (i)}), (7.1)

where the Map function gi,j : F2F → F2T Maps file wj to a length T binary intermediate

value vi,j = gi,j(wj), ∀i ∈ N (j). The Reduce function hi : F|N (i)|
2T

→ F2B Reduces the

intermediate values associated with the output function φi(·) into the final output value

oi = hi({vi,j : j ∈ N (i)}).

We illustrate our computation model using the graph presented in the previous sec-

tion. Figure 7.3(a) (left) illustrates the graph with n = 6 vertices, where each vertex is

associated with a file, while Figure 7.3(a) (right) illustrates the corresponding MapReduce

computations.

Common graph based algorithms can be expressed in the MapReduce computation

framework described above [190]. For brevity, we present two popular graph algorithms

and describe how they can be expressed in the proposed MapReduce computation frame-

work.

Example 7.1 (PageRank [191,192]) PageRank is a popular algorithm to measure the

importance of the vertices in a webgraph based on the underlying hyperlink structure. In

particular, the algorithm computes the likelihood that a random surfer would visit a page.

Mathematically, the rank of a vertex i satisfies the following relation:

Π(i) = (1− d)
∑

j∈N (i)

Π(j) Pr(j → i) + d
1

|V| ,

where (1−d) is referred to as the damping factor, Π(i) denotes the likelihood that the ran-

164

Coded Computing for Distributed Graph Analytics Chapter 7

(a) An example of a graph with 6 vertices, each of which has a file associated with it that
contains its state and neighborhood parameters (left). MapReduce decomposition of the graph
computations for the left graph (right).

(b) Illustration of subgraph and Reduce allocations for the above graph with computation load
r = 2 and K = 3 servers. Each server is allocated a subgraph of size 4 and 2 Reducers. After
the Map phase, each server needs to obtain the missing intermediate values that are needed
to compute the Reduce functions allocated to it. Due to redundant subgraph allocation, each
of the intermediate values missing at a server is available at both other servers. We illustrate
two Shuffling schemes. In the uncoded Shuffle, a missing intermediate value is obtained from
one of the other two servers, and each server is assigned the task of sending two intermediate
values, one for each of the other two servers. In coded Shuffle, each server sends a XOR of the
assigned intermediate values and sends only one coded message which is simultaneously useful
for the both other servers.

Figure 7.3: An illustrative example.

165

Coded Computing for Distributed Graph Analytics Chapter 7

dom surfer will arrive at vertex i, |V| is the total number of vertices in the webgraph, and

Pr(j → i) is the transition probability from vertex j to vertex i. The graph computation

can be carried out iteratively as follows:

Πk(i) = (1− d)
∑

j∈N (i)

Πk−1(j) Pr(j → i) + d
1

|V| ,

where k and k− 1 are respectively the current and previous iterations and Π0(i) = 1
|V| for

all i ∈ V and k = 1, 2, · · · . The number of iterations depends on the stopping criterion for

the algorithm. Usually, the algorithm is stopped when the change in the PageRank mass

of each vertex is less than a pre-defined tolerance. The rank update at each vertex can

be decomposed into Map and Reduce functions for each iteration k. For a given vertex

i and iteration k, let wki = {Πk−1(i)} ∪ {P(i → j) : j ∈ N (i)}, and φki (Wk
N (i)) = (1 −

d)
∑

j∈N (i) Πk−1(j) Pr(j → i) + d 1
|V| . The Mapper gi,j(·) maps file wkj to the intermediate

values vki,j = gi,j(w
k
j) = Πk−1(j) Pr(j → i) for all neighboring vertices i ∈ N (j). Using

the intermediate values from the Map computations, the Reducer hi(·) computes vertex

i’s updated rank as Πk(i) = hi
(
{vki,j : j ∈ N (i)}

)
= (1− d)

∑
j∈N (i) v

k
i,j + d 1

|V| .

Example 7.2 (Shortest path) Single-source shortest path is one of the most studied

problems in graph theory. The task here is to find the shortest path to each vertex i in

the graph from a source vertex s. A sub-problem for this task is to compute the distance

of each vertex i from the source vertex s, where distance D(i) is the length of the shortest

path from s to i. This can be carried out iteratively in parallel. First, initialize D0(s) = 0

and D0(i) = +∞, ∀i ∈ V \ {s}. Subsequently, each vertex i is updated as follows at each

iteration k:

Dk(i) = min
j∈N (i)

{
Dk−1(j) + t(j, i)

}
,

where t(j, i) is the weight of the edge (j, i). The algorithm is stopped when the change in

166

Coded Computing for Distributed Graph Analytics Chapter 7

the distance value for each vertex is within a pre-defined tolerance. The distance computa-

tion for each vertex at iteration k can be decomposed into Map and Reduce computations.

Particularly, for each vertex i and iteration k, let wki = {Dk−1(i)} ∪ {t(i, j) : j ∈ N (i)},

and φki (Wk
N (i)) = minj∈N (i)(D

k−1(j) + t(j, i)). The Mapper gi,j(·) Maps the file wkj to

the intermediate values vki,j = gi,j(w
k
j) = Dk−1(j) + t(j, i) for all neighboring vertices

i ∈ N (j). Using the intermediate values from the Map computations, the Reducer hi(·)

computes i’s updated distance value as Dk(i) = hi
(
{vki,j : j ∈ N (i)}

)
= minj∈N (i) v

k
i,j.

7.2.2 Distributed Implementation

For distributing the graph processing task, we consider K servers that are connected

through a shared multicast network. Furthermore, at any given time, only one server

can multicast over the shared network. Additionally, we assume that a multicast takes

the same amount of time as a unicast. As described next, in order to distribute the

Map computation tasks among the servers, each server is allocated a subgraph which

is comprised of a subset of graph vertices and associated files that contain state and

neighborhood information of vertices.

Subgraph Allocation: Each server is assigned the Map computations in (7.1) as-

sociated with a subgraph, which consists of a subset of vertices and associated files

containing state and neighborhood information of the vertices. We denote the subgraph

that is allocated to each server k ∈ [K] by Mk ⊆ V . Thus, server k will then store

all the files in Mk, and will be responsible for computing the Map functions on those

files. Note that each file should be Mapped by at least one server. Additionally, we

allow redundant computations, i.e., each file can be Mapped by more than one server.

The key idea in leveraging redundancy in the Map computation phase is to trade the

computational resources in order to reduce the communication load in the Shuffle phase.

167

Coded Computing for Distributed Graph Analytics Chapter 7

We define the computation load as follows.

Definition 7.1 (Computation Load) For a subgraph allocation, (M1, · · · ,MK), the

computation load, r ∈ [K], is defined as

r :=

∑K
k=1 |Mk|
n

,

where |Mk| denotes the number of vertices in the subgraph Mk for k ∈ [K].

Remark 7.1 For a desired computation load r, each server is assigned a subgraph with

the same number of vertices, i.e. for each server k ∈ [K], |Mk| = rn
K

.

To carry out the Reduce computation in (7.1) for all vertices, each server is assigned a

subset of Reduce functions as follows.

Reduce Allocation: A Reducer is associated with each vertex of the graph G as

represented in (7.1). We useRk ⊆ V to denote the set of vertices whose Reduce computa-

tions are assigned to server k ∈ [K]. The set of Reduce computations are partitioned into

K equal parts and each part is associated exclusively with one server, i.e., ∪Kk=1Rk = V

and Rm ∩Rn = φ for m,n ∈ [K],m 6= n. Therefore, |Rk| = n
K

, ∀k ∈ [K].

For the graph in Figure 7.3(a) (left) and a computation load of r = 2, we illustrate a

scheme for subgraph allocation and Reduce allocation in Figure 7.3(b). Here, each vertex

appears in exactly two subgraphs, i.e. Map computation associated with each vertex is

assigned to exactly two servers. The subgraph and Reduce allocations in Figure 7.3(b)

form key components of our proposed scheme in Section 7.4, in which for a computation

load of r, every unique set of r servers is allocated a unique batch of n/
(
K
r

)
files for Map

computations.

For a given scheme with subgraph allocation and Reduce allocation tuple denoted by

A = (M,R), whereM = (M1, · · · ,MK) and R = (R1, · · · ,RK), the distributed graph

168

Coded Computing for Distributed Graph Analytics Chapter 7

processing proceeds in three phases as described next.

Map phase: Each server first Maps the files associated with the subgraph that

is allocated to it. More specifically, for each i ∈ Mk, server k computes a vector of

intermediate values corresponding to the vertices in N (i) that is ~gi = (vj,i : j ∈ N (i)).

For the running example, we illustrate the intermediate values generated at each server

during the Map phase in Figure 7.3(b), where the color of an intermediate value denotes

the server that is allocated the task to execute the corresponding Reducer.

Shuffle phase: To be able to do the final Reduce computations, each server needs the

intermediate values corresponding to the neighbors of each vertex that it is responsible

for its Reduction. Servers exchange messages so that at the end of the Shuffle phase,

each server is able to recover its required set of intermediate values. More formally, the

Shuffle phase proceeds as follows. For each k ∈ [K],

(i) server k creates a message Xk ∈ F2ck as a function of intermediate values computed

locally at that server during the Map phase, i.e. Xk = ψk({~gi : i ∈Mk}), where ck

is the length of the binary message Xk,

(ii) server k multicasts Xk to all the remaining servers,

(iii) server k recovers the missing intermediate values {vi,j : i ∈ Rk, j ∈ N (i), j /∈ Mk}

using locally computed intermediate values {vi,j : i ∈ N (j), j ∈ Mk} and received

messages {Xk′ : k′ ∈ [K] \ {k}}.

We define the normalized communication load of the Shuffle phase as follows.

Definition 7.2 (Normalized Communication Load) The normalized communication

load, denoted by L, is defined as the number of bits communicated by K servers during

the Shuffle phase, normalized by the maximum possible total number of bits in the inter-

169

Coded Computing for Distributed Graph Analytics Chapter 7

mediate values associated with all the Reduce functions, i.e.

L :=

∑K
k=1 ck
n2T

.

For the running example in Figure 7.3(b), after the Map phase, each server obtains the

intermediate values corresponding to the files in its subgraph. The intermediate values

that are needed for computing the allocated Reduce functions but are not available

after the Map phase have also been highlighted. We illustrate an uncoded Shuffling

scheme in which each server is assigned the task of sending some of its locally available

intermediate values to other server over the shared multicast network. We highlight here

that each intermediate value missing at a server is available at two other servers. For

example, v5,1 and v6,2 are missing at server 3, and both of them are available at servers

1 and 2. In this uncoded Shuffle, exactly one of the two servers is uniquely assigned the

task to communicate the missing intermediate value to the server. For example, v5,1 is

multicasted by server 1 while v6,2 is multicasted by server 2. As a total of 6 intermediate

values are sent over the shared multicast network, the normalized communication load

of the uncoded Shuffle is L = 6
36

.

The servers can instead send linear combinations of the intermediate values over

the multicast network. For example, server 1 multicasts v5,1 ⊕ v3,4. As v5,1 is locally

available at server 2, server 2 can compute (v5,1 ⊕ v3,4) ⊕ v5,1 and obtain the missing

intermediate value v3,4. Similarly, server 3 can obtain the missing intermediate value v5,1.

This illustrates that by using coded Shuffle, in which each server sends a combination of

locally available intermediate values over the multicast network, the communication load

can be improved over the uncoded Shuffle. In this case specifically, the communication

load for the coded Shuffle is L = 3
36

, which is factor of two (same as the computation

load r = 2) improvement over uncoded Shuffle. This forms the motivation behind our

170

Coded Computing for Distributed Graph Analytics Chapter 7

proposed scheme in Section 7.4.

Reduce phase: Using its locally computed intermediate values and the intermediate

values recovered from the messages received from other servers during the Shuffle phase,

server k ∈ [K] computes the Reduce functions inRk to calculate oi = hi({vi,j : j ∈ N (i)})

for all i ∈ Rk.

In Figure 7.3(b), each server has all the intermediate values that are needed to com-

pute the allocated Reduce functions. For example, for computing the Reduce function

associated with vertex 1, server 1 has intermediate values v1,1 and v1,2 available locally

from the Map phase and the intermediate value v1,5 obtained from server 2 in the Shuffle

phase. Therefore, each of the three servers can compute the Reduce functions allocated

to it.

7.2.3 Problem Formulation

As illustrated in Figure 7.3, the communication load during Shuffle phase depends on

subgraph allocation, Reduce allocation, and Shuffle strategy. For an allowed computation

load r, our broader goal is to minimize the communication load during Shuffle phase

through efficient schemes for allocation of subgraphs and Reducers to servers and for coded

Shuffling of intermediate values among the servers. We consider a random undirected

graph G = (V , E), where edges independently exist with probability Pr[(i, j) ∈ E] for all

i, j ∈ V . Let A(r) be the set of all possible subgraph and Reduce allocations for a given

computation load r (as defined in the previous subsection). For a graph realization G

of G and an allocation A ∈ A(r), a coded Shuffling scheme is feasible if each server can

compute all the Reduce functions assigned to it. We denote by LA(r,G) the minimum

(normalized) communication load (as defined in Definition 7.2) over all feasible Shuffling

coding schemes that enable each server to compute all the Reduce functions assigned to

171

Coded Computing for Distributed Graph Analytics Chapter 7

it.1 Hence, for a given realization G of the random graph G, the minimum communication

load among all possible subgraph and Reduce allocations and feasible coded Shuffling

schemes is as follows:

L∗G(r) := inf
A∈A(r)

LA(r,G). (7.2)

Remark 7.2 Partitioning of graphs in popular graph processing frameworks such as

Pregel [19] is solely based on the vertex ID and not on the vertex neighborhood density.

Furthermore, designing subgraph allocation, Reduce allocation and Shuffling schemes for

characterizing the minimum communication load in (7.2) is NP-hard in general. This

is because for the case of computation load r = 1, finding the minimum communication

load is equivalent to finding the minimum K-cut over the graph, which is NP-hard for

general graphs [193]. Additionally, existing heuristics for load balancing in distributed

graph processing involve additional steps such as migration of vertex files during graph

algorithm execution [194], which adds latency to the overall execution time. Hence, we

focus on the problem of finding the subgraph and Reduce allocation tuple A ∈ A(r) that

minimizes the average normalized communication load across all graph realizations G of

G.

We formally define our problem as follows.

Problem: For a given random undirected graph G = (V , E) and a computation load

r ∈ [K], our goal is to characterize the minimum average normalized communication

load, i.e.

L∗(r) := inf
A∈A(r)

EG[LA(r,G)]. (7.3)

Remark 7.3 For r ≥ K, L∗(r) is trivially 0 as each vertex can be mapped at each server,

1The uncoded Shuffling schemes are special cases of the coded Shuffling schemes and are thus included
in the set of all feasible coded Shuffling schemes under consideration.

172

Coded Computing for Distributed Graph Analytics Chapter 7

so all the intermediate values associated with the Reducers of any server is available at

the server.

Remark 7.4 As defined above, L∗(r) essentially reveals a fundamental trade-off between

computation and communication in distributed graph processing.

Remark 7.5 In the above problem formulation, for a given subgraph and Reduce alloca-

tion tuple A ∈ A(r), in order to minimize the average communication load, the Shuffle

scheme needs to take into consideration the connectivity of each realization G of G. As

we describe in Section 7.4, our proposed coded scheme utilizes careful alignment of inter-

mediate values for creating coded messages for multicast during the Shuffle phase, leading

to significant improvement in the average communication load.

Remark 7.6 Although the main focus of our problem formulation is on minimizing the

average communication load for random graph models, our proposed coded scheme in

Section 7.4 is applicable to any real-world graph. As demonstrated in Section 7.7, our

proposed coded scheme can provide significant performance gains in practice. Specifically,

for implementing PageRank over the real-world social webgraph TheMarker Cafe [183],

our proposed scheme provides a gain of up to 43.4% in the overall execution time in

comparison to the conventional PageRank implementation.

In the next Section, we discuss our main results for four popular random graph

models.

7.3 Main Results

In this section, we present the main results of our work. Our first result is the

characterization of L∗(r) (defined in (7.3)) for the Erdös-Rényi model that is defined

below.

173

Coded Computing for Distributed Graph Analytics Chapter 7

Erdös-Rényi Model: Denoted by ER(n, p), this model consists of graphs of size n

in which each edge exists with probability p ∈ (0, 1], independently of other edges (Figure

7.5(a)).

Theorem 7.1 For the Erdös-Rényi model ER(n, p) with p = ω(1
n2), we have

lim
n→∞

L∗(r)

p
=

1

r

(
1− r

K

)
.

Proof: We prove the achievability and the converse in Theorem 7.1 in Sections 7.4

and 7.5, respectively.

Remark 7.7 Theorem 7.1 reveals an interesting inverse-linear trade-off between com-

putation and communication in distributed graph processing. Specifically, our proposed

coded scheme in Section 7.4 asymptotically gives a gain of r in the average normalized

communication load in comparison to the uncoded Shuffling scheme that as we discuss

later in Section 7.4, only achieves an average normalized communication load of p(1− r
K

).

This trade-off can be used to leverage additional computing resources and capabilities to

alleviate the costly communication bottleneck. Moreover, we numerically demonstrate that

even for finite graphs, not only the proposed scheme significantly reduces the communica-

tion load in comparison to the uncoded scheme, but also has a small gap from the optimal

average normalized communication load (Figure 7.4). Finally, the assumption p = ω(1
n2)

implies the regime of interest in which the average number of edges in the graph is growing

with n. Otherwise, the problem would not be of interest since the communication load

would become negligible even without redundancy/coding in computation.

Remark 7.8 Achievability Theorem 7.1 is proved in Section 7.4, where we provide sub-

graph and Reduce allocations followed by the code design for Shuffling for our proposed

174

Coded Computing for Distributed Graph Analytics Chapter 7

1 2 3 4 5

0

2

4

6

8

·10−2

Computation Load (r)

E
x
p

ec
te

d
C

om
m

u
n
ic

at
io

n
L

oa
d

(L
)

Uncoded Scheme
Proposed Coded Scheme
Lower Bound

Figure 7.4: Performance comparison of our proposed coded scheme with uncoded Shuffle
scheme and the proposed lower bound. The averages for the communication load for
the two schemes were obtained over graph realizations of the Erdös-Rényi model with
n = 300, p = 0.1 and K = 5.

scheme. The main idea is to leverage the coded multicast opportunities offered by the

injected redundancy and create coded messages which simultaneously satisfy the data de-

mand of multiple servers. Careful combination of available intermediate values during

the Shuffle phase benefits from the missing graph connections by aligning the intermedi-

ate values assigned to be communicated over the shared network. Conversely, Theorem

7.1 demonstrates that the asymptotic bandwidth gain r achieved by the proposed scheme

is optimal and can not be improved. For the proof of converse provided in Section 7.5,

we use induction to derive information-theoretic lower bounds on the average normalized

communication load required by any subset of servers and then use the induction on the

set of all the K servers.

Our second result is the characterization of L∗(r) for the power law model that is

defined below.

Power Law Model: Denoted by PL(n, γ, ρ), this model consists of graphs of size

n in which degrees are i.i.d random variables drawn from a power law distribution with

exponent γ and edge probabilities are ρ-proportional to product of the degrees of the two

175

Coded Computing for Distributed Graph Analytics Chapter 7

(a) Erdös-Rényi model with n = 20. (b) Power law model with n = 40, γ = 2.3
and 100 edges.

(c) Random bipartite model with n1 = 6
and n2 = 4.

(d) Stochastic block model with n1 = 12
and n2 = 18.

Figure 7.5: Illustrative instances of the random graph models considered in the paper.
In Figure 7.5(a), each edge exists with a given probability p. In Figure 7.5(b), expected
degree of each vertex follows a power law distribution with exponent γ. In Figure 7.5(c),
each cross-edge exists with a given probability q. In Figure 7.5(d), each intra-cluster edge
exists with a given probability p and each cross-edge exists with a given probability q.

end vertices (Figure 7.5(b)).

Theorem 7.2 For the power law model graph PL(n, γ, ρ) with node degrees {d1, · · · , dn},

γ > 2 and ρ = 1∑n
i=1 di

, we have

lim sup
n→∞

nL∗(r)(
γ−1
γ−2

) ≤ 1

r

(
1− r

K

)
.

Proof: We prove the achievability in Theorem 7.2 in Section 7.6.

176

Coded Computing for Distributed Graph Analytics Chapter 7

Remark 7.9 Theorem 7.2 demonstrates that an inverse-linear trade-off between compu-

tation load and communication load can also be achieved in the power law model. We

leverage our coded scheme proposed in Section 7.4 for the proof of Theorem 7.2 in Section

7.6.

Furthermore, we specialize our proposed coded scheme in Section 7.4 to develop

subgraph allocation and Reduce allocation schemes along with coded Shuffling schemes

for two other popular random graph models which are described below:

Random Bi-partite Model: Denoted by RB(n1, n2, q), this model consists of

graphs with two disjoint clusters of sizes n1 and n2 in which each inter-cluster edge exists

with probability q ∈ (0, 1], independently of other inter-cluster edges (Figure 7.5(c)). No

intra-cluster edge exists in this model.

Stochastic Block Model: Denoted by SBM(n1, n2, p, q), this model consists of

graphs with two disjoint clusters of sizes n1 and n2 such that each intra-cluster edge exists

with probability p and each inter-cluster edge exists with probability q, 0 < q < p ≤ 1,

all independent of each other (Figure 7.5(d)).

The following theorems provide the achievability and converse results for RB and

SBM models.

Theorem 7.3 For the random bi-partite model RB(n1, n2, q) with n = n1 + n2, n1 =

Θ(n), n2 = Θ(n), |n1 − n2| = o(n) and q = ω(1
n2), we have

1

8r

(
1− 2r

K

)
≤ lim sup

n→∞

L∗(r)

q
≤ 1

2r

(
1− 2r

K

)
.

Proof: We defer the proof of the achievability and the converse in Theorem 7.3 to

Appendices F.3 and F.4, respectively.

Remark 7.10 Theorem 7.3 characterizes the optimal average normalized communica-

177

Coded Computing for Distributed Graph Analytics Chapter 7

tion load within a factor of 4 for the random bi-partite model. We provide the proofs

for achievability and converse of Theorem 7.3 in Appendices and F.3 and F.4 respec-

tively. For achievability, we observe that there are no intra-cluster edges in the random

bi-partite model, due to which intermediate values for a particular Reducer in one cluster

only comes from Mappers in the other cluster. Therefore, we specialize our proposed coded

scheme in Section 7.4 for the random bi-partite model, partitioning the available servers

in proportion to the cluster sizes. Therefore, there is maximum overlap between Reducers

corresponding to vertices in one cluster and Mappers corresponding to vertices in other

cluster. For proving the converse, we remove vertices (and the edges corresponding to

them) from the larger cluster so that the reduced graph has two clusters of equal sizes.

The reduced graph model thus has two sets of Mappers and Reducers, which correspond to

two different Erdös-Rényi models. Applying our lower bound for the Erdös-Rényi model

in Theorem 7.1, we arrive at the converse of the bi-partite model.

Theorem 7.4 For the stochastic block model SBM(n1, n2, p, q) with n = n1 + n2, n1 =

Θ(n), n2 = Θ(n), and p = ω(1
n2), q = ω(1

n2), we have

lim sup
n→∞

L∗(r)
pn2

1+pn2
2+2qn1n2

(n1+n2)2

≤ 1

r

(
1− r

K

)
. (7.4)

Moreover, the following converse inequality holds:

L∗(r)

q
≥ 1

r

(
1− r

K

)
. (7.5)

Proof: We defer the proof of the achievability and the converse in Theorem 7.4 to

Appendices F.5 and F.6, respectively.

Remark 7.11 Using (7.4) and (7.5), it can be easily verified that for the stochastic block

model, the converse is within a constant factor of achievability if p = Θ(q). The achiev-

178

Coded Computing for Distributed Graph Analytics Chapter 7

ability and converse of Theorem 7.4 are proved in Appendices F.5 and F.6 respectively.

For achievability, we specialize our proposed coded scheme from Section 7.4 based on the

observation that in SBM, the Reducers corresponding to vertices in one cluster depend on

the Mappers corresponding to the vertices within the cluster with one probability (due to

intra-cluster edges), and on the vertices in the other cluster with another probability (due

to cross-cluster edges). For the converse, the key idea is to randomly remove edges from

the SBM model such that a larger ER model is obtained, then utilize a coupling argument,

and finally use our information theoretic converse bound in Theorem 7.1.

7.4 Proposed Scheme and Proof of Achievability of

Theorem 7.1

In this section, we first describe our proposed coded scheme for distributed graph

analytics, and then leverage it to prove the achievability for the Erdös-Rényi model in

Theorem 7.1.

7.4.1 Proposed Scheme

As described in our distributed graph processing framework in Section 7.2, a scheme

for distributed implementation of the graph computations consists of subgraph allocation,

Reduce allocation, and Shuffling algorithm. We next precisely describe our proposed

scheme for a given realization G of the underlying random graph G = (V , E).

Subgraph Allocation: The n files associated with the n vertices of G are first

partitioned serially into
(
K
r

)
batches B1,B2, . . . ,B(Kr)

, where Bj comprises of the files

associated with the vertices with IDs in the range {(j − 1)g + 1, (j − 1)g + 2, . . . , jg}.

Here, g = n/
(
K
r

)
denotes the number of files in each batch. For our example with a graph

179

Coded Computing for Distributed Graph Analytics Chapter 7

of 6 vertices, 3 servers, and computation load 2 presented in Section 7.2, the 6 files are

partitioned into
(
K
r

)
= 3 batches each of size g = 2 as follows (see Figure 7.6(a)):

B1 = {1, 2},

B2 = {3, 4},

B3 = {5, 6}.

Each of the
(
K
r

)
batches of files is associated with a unique set of r servers. Specifically,

let F1,F2, . . . ,F(Kr)
denote all possible combinations of the elements of {1, 2, . . . , K}.

Then, each of the servers with indices in Fj is allocated each of the files contained in

batch Bj. Thus, server k ∈ [K] Maps the vertices in Bj if k ∈ Fj. Equivalently, Bj ⊆Mk

if k ∈ Fj. Therefore, we have the following for the subgraph allocation for server k:

Mk = ∪
j∈
[
(Kr)

]
,k∈Fj
Bj.

As each server is present in
(
K−1
r−1

)
of the

(
K
r

)
unique combinations of servers, we have the

following for each server k ∈ [K]:

|Mk| =
(
K − 1

r − 1

)
g =

(
K − 1

r − 1

)
n(
K
r

) =
rn

K
.

In Figure 7.6(a), we illustrate the subgraph allocation for our running example. F1 =

{1, 2}, F2 = {1, 3} and F3 = {2, 3}. Each of the two files in batch Bj is assigned to

each of the servers in Fj, for j ∈ {1, 2, 3}. Thus, server 1 is allocated files B1 ∪ B2 =

{w1, w2, w3, w4}, server 2 is allocated files B1 ∪ B3 = {w1, w2, w5, w6} and server 3 is

allocated B2 ∪ B3 = {w3, w4, w5, w6}. Thus, |M1| = |M2| = |M3| = 4.

Reduce Allocation: The n Reduce functions associated with the n graph vertices

180

Coded Computing for Distributed Graph Analytics Chapter 7

are disjointly and uniformly partitioned into K subsets and each subset is assigned ex-

clusively to one server. Specifically, for k ∈ [K], |Rk| = n
K

and Rk = {(k− 1) n
K

+ 1, (k−

1) n
K

+ 2, . . . , k n
K
}. In our running example, R1 = {1, 2}, R2 = {3, 4} and R3 = {5, 6}.

For notational convenience, we denote our proposed subgraph allocation and Reduce

allocation by AC.

Coded Shuffle: As illustrated in Figure 7.3(b), the key idea in coded Shuffling is

to create coded combinations of locally available intermediate values so that the same

message can be useful for many servers simultaneously. Due to the subgraph and Reduce

allocation AC described above, every set Fj of r servers has a unique batch of files Bj.

Thus, all the intermediate values corresponding to the Map computations associated

with the files in Bj are available at every server in Fj after the Map phase. With this

observation, consider without loss of generality the set of servers S = {1, 2, . . . , r + 1}.

For each server k ∈ S, let ZkS\{k} be the set of all intermediate values that are needed by

Reduce functions in k, and are available exclusively at each server k′ ∈ S \ {k}, i.e.

ZkS\{k} = {vi,j : (i, j) ∈ E , i ∈ Rk, j ∈ ∩k′∈S\{k}Mk′}. (7.6)

We observe that after the Map phase, server r+ 1 has ZkS\{k} for k ∈ {1, . . . , r}. Further-

more, server 1 has ZkS\{k} for k ∈ {2, . . . , r}, server 2 has ZkS\{k} for k ∈ {1, 3, . . . , r}, and

so on. Therefore, server r + 1 can create a coded message by selecting one intermediate

value each from ZkS\{k} for k ∈ {1, . . . , r}, and taking a XOR of them. The coded message

is simultaneously useful for the servers {1, . . . , r} as each of them can XOR out its own

missing intermediate value as it has the remaining intermediate values associated with

the coded message. Similar arguments hold for the coded messages from other servers

within S.

In light of the above arguments, for each k ∈ S, each intermediate value vi,j ∈ ZkS\{k}

181

Coded Computing for Distributed Graph Analytics Chapter 7

is evenly split into r segments v
(1)
i,j , · · · , v(r)

i,j , each of size T
r

bits. Each segment is associated

with a distinct server in S \ {k}, where the segment assignment is based on the order

(a) Illustrating the subgraph allocation and Reduce allocation AC for the example graph with
6 vertices. The 6 files are partitioned into 3 batches and each batch is assigned to a unique
subset of 2 servers. The Reduce functions are partitioned into 3 sets, one set is assigned to each
server.

(b) For the subgraph and Reduce allocations AC in Figure 7.6(a), we illustrate our proposed
coded Shuffle scheme. For each intermediate value needed by a server, each of the remaining two
servers is assigned the task of communicating a segment which is one-half of the intermediate
value. The servers create a table of the segments that they are assigned to send, with each row
corresponding to the intermediate values required exclusively by one of the remaining servers.
Each server sends two coded messages, each of which is simultaneously useful for both the
remaining servers.

Figure 7.6: Illustration of our proposed scheme.

182

Coded Computing for Distributed Graph Analytics Chapter 7

of the indices of the r servers S \ {k}. Therefore, ZkS\{k} is evenly partitioned to r sets,

which are denoted by ZkS\{k},s for s ∈ S \ {k}. Depending on the connectivity of G, the

number of intermediate values in ZkS\{k} shall vary, and the maximum possible size of

ZkS\{k} is g̃ = g n
K

= n2

K(Kr)
. Each server s ∈ S creates an r × g̃ table and fills that out

with segments which are associated with it. Each row of the table is filled from left by

the segments in one of the sets ZkS\{k},s, where k ∈ S \ {s} (see Figure 7.7). Then, server

s broadcasts the XOR of all the segments in each non-empty column of the table, where

for each non-empty column, the empty entries are zero padded. Clearly, there exist at

most g̃ of such coded messages. The process is carried out similarly for every other subset

S ⊆ [K] of servers with |S| = r + 1.

After the Shuffle phase, for each multicast group of r + 1 servers, all but one inter-

mediate values contributed in each coded message are locally available. Moreover, all

possible subsets of multicast servers have sent their corresponding messages. Therefore,

each server can recover all of the intermediate values associated with its assigned set of

Reduce functions using the received coded messages and the locally computed interme-

diate values. Thus, our proposed coded Shuffling scheme is feasible, i.e. for any given

graph, and subgraph and Reduce allocation AC, our proposed Shuffling enables each

server to compute all the Reduce functions assigned to it.

Remark 7.12 The proposed scheme carefully aligns and combines the existing interme-

diate values to benefit from the coding opportunities. This resolves the issue posed by the

asymmetry in the data requirements of the Reducers which is one of the main challenges

in moving from the general MapReduce framework in [113] to graph analytics.

In Figure 7.6(b), every intermediate value in Z3
{1,2} = {v5,1, v6,2} is split into r = 2

segments, each associated with a distinct server in {1, 2}. This is done similarly for servers

1 and 2. Then, servers 1, 2, and 3 broadcast their coded messages X1 = {v(1)
5,1⊕v(1)

4,3, v
(1)
3,4⊕

183

Coded Computing for Distributed Graph Analytics Chapter 7

v
(1)
6,2}, X2 = {v(2)

5,1 ⊕ v(1)
1,5, v

(2)
6,2 ⊕ v(1)

2,6}, and X3 = {v(2)
4,3 ⊕ v(2)

1,5, v
(2)
3,4 ⊕ v(2)

2,6}, respectively. All

three servers can recover their missing intermediate values. For instance, server 3 needs

v5,1 to carry out the Reduce function associated with vertex 5. Since it has already

Mapped vertices 3 and 5, intermediate values v4,3 and v1,5 are available locally. Server

3 can recover v
(1)
5,1 and v

(2)
5,1 from v

(1)
5,1 ⊕ v(1)

4,3 and v
(2)
5,1 ⊕ v(1)

1,5, respectively. As each server

sends 2 coded messages to other servers and each coded message is half the size of an

intermediate value, therefore, the overall normalized communication load is 3
36

, which is

two times better than the normalized communication load for uncoded Shuffling.

7.4.2 Proof of Achievability of Theorem 7.1

We now analyze the performance of our proposed coded scheme in Section 7.4.1

for the Erdös-Rényi random graph model to prove the achievability of Theorem 7.1.

For our proposed subgraph and Reduce allocation AC, we first compute the average

communication for uncoded Shuffle where no coding is utilized during the Shuffle phase.

Uncoded Shuffle: Given the subgraph and Reduce allocation AC, consider a server

k ∈ [K]. Due to symmetry, the total expected communication load is sum of the com-

munication loads of each server. Hence we can focus on finding the communication load

of server 1. Note that there are n/K Reducers assigned to server 1, and rn
K

Mappers as-

signed to server 1. Therefore, for each Reducer in server 1, the expected communication

required is (pn − p rn
K

)T . Summing over the expected communication loads for all the

Reducers in server 1 and appropriate normalization, the total expected communication

load for server 1 is n
K

(pn − p rn
K

)T . Summing over all the K servers, we get the average

normalized communication load for the uncoded Shuffle as follows:

L̄UC
AC

:= EG[LUC
AC

(r,G)] = K
n

K

(
pn− prn

K

)
T

1

n2T
= p

(
1− r

K

)
,

184

Coded Computing for Distributed Graph Analytics Chapter 7

where LUC
AC

(r,G) denotes the normalized communication load for uncoded Shuffle for the

graph realization G of the Erdös-Rényi random graph model G.

We now apply our proposed coded Shuffle scheme and compute the induced average

communication load. Without loss of generality, we analyze our algorithm by a generic

argument for servers S = {1, · · · , r + 1} which can be similarly applied for any other set

of servers S with |S| = r+1, due to the symmetric structure induced by the graph model

and subgraph allocation and Reduce allocation AC. Denote r+ 1 servers as s1, · · · , sr+1,

and consider the messages that s1 is assigned to send within the multicast group S,

the coded messages that are sent by other servers within S are also created similarly.

As described in Section 7.4.1 and illustrated in Figure 7.7, server s1 creates a table of

intermediate value segments for transmission. In this table, each row is filled from the

left, and for i ∈ [r], i’th row contains the allocated segments for the intermediate values in

the set Zsi+1

S\{si+1},s1 . The number of segments in Zsi+1

S\{si+1},s1 , denoted by g̃i, depends on the

connectivity of the graph G and is upper bounded by g̃, the total number of intermediate

values in Zsi+1

S\{si+1} for a completely connected graph. Server s1 broadcasts at most g̃max =

max(g̃1, g̃2, . . . , g̃r) coded messages X1, · · · , X g̃max , zero padding the empty entries in the

non-empty columns. These coded messages are simultaneously and exclusively useful for

the servers s2, · · · , sr+1. For each non-empty column j ∈ [g̃max], Xj is XOR of at most

r non-zero segments of size T
r

bits, associated with server s1. More formally, for each

non-empty column j ∈ [g̃max], we have the following:

Xj =
r⊕

i=1

v
(1)
α(i,j). (7.7)

In (7.7), for i ∈ [r] and j ∈ [g̃i], we have used v
(1)
α(i,j) to denote the non-zero segment in

the table in i’th row and j’th column, while for j ∈ {g̃i + 1, g̃i + 2, . . . , g̃}, v(1)
α(i,j) denotes

the zero padding segment.

185

Coded Computing for Distributed Graph Analytics Chapter 7

Let Bern(p) random variable Eα(i,j) indicate the existence of the edge α(i, j) ∈ V×V ,

i.e. Eα(i,j) = 1, if α(i, j) ∈ E , and Eα(i,j) = 0, otherwise. Clearly, for all vertices

i, j, t, u ∈ V , Eα(i,j) is independent of Eα(t,u) if α(i, j) and α(t, u) do not represent the

same edge, and Eα(i,j) = Eα(t,u), otherwise. For i ∈ [r], the random variable Pi is defined

as

Pi =

g̃∑

j=1

Eα(i,j), (7.8)

i.e. each Pi is sum of g̃ possibly dependent Bern(p) random variables. Note that Pi’s are

not independent in general. By careful alignment of present intermediate values (Figure

7.7), s1 broadcasts Q coded messages each of size T
r

bits, where Q = maxi∈[r] Pi. Thus, the

total coded communication load sent from server s1 exclusively for servers s2, · · · , sr+1 is

T
r
Q bits. By similar arguments for other sets of servers, we can characterize the average

11

We now apply our proposed coded Shuffle scheme and com-
pute the induced average communication load. Without loss of
generality, we analyze our algorithm by a generic argument for
servers S = {1, · · · , r + 1} which can be similarly applied
for any other set of servers S with |S| = r + 1, due to the
symmetric structure induced by the graph model and subgraph
allocation and Reduce allocation AC. Denote r + 1 servers as
s1, · · · , sr+1, and consider the messages that s1 is assigned
to send within the multicast group S , the coded messages
that are sent by other servers within S are also created
similarly. As described in Section IV-A and illustrated in Fig.
7, server s1 creates a table of intermediate value segments for
transmission. In this table, each row is filled from the left,
and for i 2 [r], i’th row contains the allocated segments for
the intermediate values in the set Zsi+1

S\{si+1},s1
. The number

of segments in Zsi+1

S\{si+1},s1
, denoted by g̃i, depends on the

connectivity of the graph G and is upper bounded by g̃,
the total number of intermediate values in Zsi+1

S\{si+1} for a
completely connected graph. Server s1 broadcasts at most
g̃max = max(g̃1, g̃2, . . . , g̃r) coded messages X1, · · · , X g̃max ,
zero padding the empty entries in the non-empty columns.
These coded messages are simultaneously and exclusively use-
ful for the servers s2, · · · , sr+1. For each non-empty column
j 2 [g̃max], Xj is XOR of at most r non-zero segments of size
T
r bits, associated with server s1. More formally, for each
non-empty column j 2 [g̃max], we have the following:

Xj =
rM

i=1

v
(1)
↵(i,j). (7)

In (7), for i 2 [r] and j 2 [g̃i], we have used v
(1)
↵(i,j) to denote

the non-zero segment in the table in i’th row and j’th column,
while for j 2 {g̃i + 1, g̃i + 2, . . . , g̃}, v

(1)
↵(i,j) denotes the zero

padding segment.
Let Bern(p) random variable E↵(i,j) indicate the existence

of the edge ↵(i, j) 2 V⇥V , i.e. E↵(i,j) = 1, if ↵(i, j) 2 E , and

X1

=

v
(1)
↵(1,1)

v
(1)
↵(2,1)

v
(1)
↵(r,1)

�

�

�

...

X2

=

v
(1)
↵(1,2)

v
(1)
↵(2,2)

v
(1)
↵(r,2)

�

�

�

...

X3

=

v
(1)
↵(1,3)

v
(1)
↵(2,3)

v
(1)
↵(r,3)

�

�

�

...

X g̃

=

v
(1)
↵(1,g̃)

v
(1)
↵(2,g̃)

v
(1)
↵(r,g̃)

�

�

�

...

. . .

. . .

. . .

P1 :

P2 :

Pr :

Fig. 7: Creating coded messages by aligning the associated interme-
diate value segments.

E↵(i,j) = 0, otherwise. Clearly, for all vertices i, j, t, u 2 V ,
E↵(i,j) is independent of E↵(t,u) if ↵(i, j) and ↵(t, u) do not
represent the same edge, and E↵(i,j) = E↵(t,u), otherwise.
For i 2 [r], the random variable Pi is defined as

Pi =

g̃X

j=1

E↵(i,j), (8)

i.e. each Pi is sum of g̃ possibly dependent Bern(p) random
variables. Note that Pi’s are not independent in general. By
careful alignment of present intermediate values (Fig. 7), s1

broadcasts Q coded messages each of size T
r bits, where

Q = maxi2[r] Pi. Thus, the total coded communication load
sent from server s1 exclusively for servers s2, · · · , sr+1 is
T
r Q bits. By similar arguments for other sets of servers, we
can characterize the average normalized coded communication
load of the proposed scheme as follows:

L̄C
AC

:= EG [LC
AC

(r, G)] =
1

rn2
K

✓
K � 1

r

◆
E[Q], (9)

where LC
AC

(r, G) denotes the normalized communication load
for the proposed coded Shuffle for the graph realization G of
the Erdös-Rényi random graph model G.

The following lemma asymptotically upper bounds E[Q]
and the proof is provided in Section IV-C.
Lemma 1. For ER(n, p) graphs with p = !(1

n2), we have
E[Q] pg̃ + o(pg̃).

Putting (9) and Lemma 1 together, we have

L⇤(r) L̄C
AC
 1

r
p
⇣
1� r

K

⌘
+ o(p),

hence the achievability claimed in Theorem 1 is proved.
Finally, we note that as explained in the uncoded Shuffle
algorithm, the average normalized uncoded communication
load of the proposed scheme is L̄UC

AC
= p

�
1� r

K

�
, which

implies that our scheme achieves an asymptotic gain of r.

Remark 13. As we next show in the proof of Lemma 1, the
regime p = !(1/n2) is essential in order to have pg̃ = !(1).
As g̃ = n2

K(K
r)

= ⇥(n2) is a deterministic function of n, the

regime p = !(1/n2) is needed to get the achievability and
asymptotic optimality of Theorem 1.

C. Proof of Lemma 1

Before proving Lemma 1, we first present the following
lemma that will be used in our proof.
Lemma 2. For random variables {Pi}r

i=1 defined in (8), their
moment generating functions for s0 > 0 can be bounded by

E
⇥
es0Pi

⇤
 (pe2s0

+ 1� p)g̃/2.

Proof. Consider a generic random variable of the form (8)

P =

g̃X

j=1

Ej ,

where Ej’s are Bern(p) and possibly dependent. However,
although Ej’s may not be all independent, but dependency is
restricted to pairs of Ej’s. In other words, for all 1 j g̃,
Ej is either independent of all E[g̃]\{j}, or is equal to E`

Figure 7.7: Creating coded messages by aligning the associated intermediate value seg-
ments.

186

Coded Computing for Distributed Graph Analytics Chapter 7

normalized coded communication load of the proposed scheme as follows:

L̄C
AC

:= EG[LC
AC

(r,G)] =
1

rn2
K

(
K − 1

r

)
E[Q], (7.9)

where LC
AC

(r,G) denotes the normalized communication load for the proposed coded

Shuffle for the graph realization G of the Erdös-Rényi random graph model G.

The following lemma asymptotically upper bounds E[Q].

Lemma 7.1 For ER(n, p) graphs with p = ω(1
n2), we have

E[Q] ≤ pg̃ + o(pg̃).

Proof: We defer the proof to Appendix F.1.

Putting (A.6) and Lemma 7.1 together, we have

L∗(r) ≤ L̄C
AC
≤ 1

r
p

(
1− r

K

)
+ o(p),

hence the achievability claimed in Theorem 7.1 is proved. Finally, we note that as ex-

plained in the uncoded Shuffle algorithm, the average normalized uncoded communication

load of the proposed scheme is L̄UC
AC

= p
(
1− r

K

)
, which implies that our scheme achieves

an asymptotic gain of r.

Remark 7.13 As we next show in the proof of Lemma 7.1, the regime p = ω(1/n2) is

essential in order to have pg̃ = ω(1). As g̃ = n2

K(Kr)
= Θ(n2) is a deterministic function

of n, the regime p = ω(1/n2) is needed to get the achievability and asymptotic optimality

of Theorem 1.

187

Coded Computing for Distributed Graph Analytics Chapter 7

7.5 Converse for the Erdös-Rényi Model

In this section, we prove the asymptotic optimality of our proposed coded scheme for

the Erdös-Rényi model, by leveraging the techniques employed in [113]. More precisely,

we complete the proof of Theorem 7.1 by deriving the lower bound on the best average

communication load for the Erdös-Rényi model, that matches the achievability in (7.10).

Let G be an ER(n, p) random graph and consider a subgraph and Reduce allocation

A = (M,R) ∈ A(r), where
∑K

k=1 |Mk| = rn and |Rk| = n
K

, for all k ∈ [K]. We denote

the number of files that are Mapped at j vertices under Map assignment M, as ajM, for

all j ∈ [K]. The following lemma holds.

Lemma 7.2 EG[LA(r,G)] ≥ p
∑K

j=1

ajM
n

K−j
Kj

.

Proof: We let intermediate values vi,j be realizations of random variables Vi,j,

uniformly distributed over F2T . For a random graph G = (V , E) and subsets I,J ⊆ V =

[n], define V GI,J = {Vi,j : (i, j) ∈ E , i ∈ I, j ∈ J } as the set of present intermediate values

in graph G corresponding to Reducers in I and Mappers in J . For a given allocation

A = (M,R) ∈ A(r) and a subset of servers S ⊆ [K], we define XS = {Xk : k ∈ S}

and Y GS = (V GRS ,:, V
G

:,MS), where “:” denotes all possible indices (which depend on both

allocation and graph realization). As described in Section 7.2.2, each coded message

is a function of the present intermediate values Mapped at the corresponding server.

Moreover, all the intermediate values required by the Reducers are decodable from the

locally available intermediate values and received messages at the corresponding server.

That is, H(Xk|V G:,Mk
) = 0 and H(V GRk,:|X[K], V

G
:,Mk

) = 0 for all servers k ∈ [K] and graphs

G. We denote the number of vertices that are exclusively Mapped by j servers in S as

aj,SM , that is

aj,SM :=
∑

S1⊆S:|S1|=j
|(∩k∈S1Mk) \ (∪k′ /∈S1Mk′)|.

188

Coded Computing for Distributed Graph Analytics Chapter 7

We prove the following claim by induction in Appendix F.2.

Claim 7.1 For any subset S ⊆ [K],

EG
[
H(XS |Y GSc)

]
≥ pT

|S|∑

j=1

aj,SM
n

K

|S| − j
j

. (7.10)

Proof: We defer the proof to Appendix F.2.

Now, pick S = [K]. Then,

EG
[
LA(r,G)

]
≥

EG
[
H(XS |Y GSc)

]

n2T
≥ p

K∑

j=1

ajM
n

K − j
Kj

.

Proof of Converse for Theorem 7.1. First, we use the result in Claim E.1 and bound the

best average normalized communication load as follows:

L∗(r) ≥ inf
A

EG
[
LA(r,G)

]
≥ inf

A
p

K∑

j=1

ajM
n

K − j
Kj

,

where the infimum is over all subgraph and Reduce allocations A = (M,R) ∈ A(r) for

which
∑K

k=1 |Mk| = rn and |Rk| = n
K

, ∀k ∈ [K]. Additionally, for any Map allocation

with computation load r, we have the following equations:

K∑

j=1

ajM = n,

K∑

j=1

jajM = rn. (7.11)

Using convexity of K−j
Kj

in j and (7.11), the converse is proved as follows:

L∗(r) ≥ inf
A
p

K∑

j=1

ajM
n

K − j
Kj

≥ inf
A
p
K −∑K

j=1 j
ajM
n

K
∑K

j=1 j
ajM
n

=
1

r
p

(
1− r

K

)
.

189

Coded Computing for Distributed Graph Analytics Chapter 7

7.6 Achievability for the Power Law Model

We consider a general model for random graphs where the expected degree sequence

d = (d1, · · · , dn) is independently drawn from a power law distribution with exponent

γ, i.e. Pr[di = d] = cd−γ for i ∈ [n] and d ≥ 1 and proper constant c [195]. Given

the realization of the expected degrees d, for ρ = 1∑n
i=1 di

and all i, j ∈ [n], vertices i

and j are connected with probability pi,j = Pr[(i, j) ∈ E] = ρdidj, independently of other

edges. We now proceed to analyze the coded and uncoded communication loads averaged

over the random connections and random degrees induced by the subgraph and Reduce

allocation AC proposed in Section 7.4.1.

Consider the allocation AC = (M,R) and a subset of servers S ⊆ [K] of size |S| =

r+ 1. According to the proposed scheme in Section 7.4.1, for every server s ∈ S, servers

in S \ {s} form a table and construct coded messages using the intermediate values in

the sets ZkS\{k} (defined in (7.6)) where k ∈ S \ {s}. Therefore, r + 1 tables are formed

each constructing coded messages of size maxk∈S\{s} |ZkS\{k}|Tr bits. The total coded load

induced by the subset S (and exclusively for the use of servers in S) denoted by LC
AC

(S)

is

LC
AC

(S) =
1

n2r

∑

s∈S
max
k∈S\{s}

|ZkS\{k}|.

However, in uncoded scenarios, denoted by LUC
AC

(S) the total uncoded load induced by

subset S (and exclusively for the use of servers in S) is

LUC
AC

(S) =
1

n2

∑

s∈S
|ZsS\{s}|.

190

Coded Computing for Distributed Graph Analytics Chapter 7

We have

|ZsS\{s}| = 2
∑

i∈Rs
|N (i) ∩ (∩k′∈S\{s}Mk′)| =

∑

i∈Rs
m∈∩k′∈S\{s}Mk′

1{(i,m) ∈ E}, (7.12)

where the random Bernoulli 1{(i,m) ∈ E} indicates the realization of the edge connecting

vertices i and m, i.e. E[1{(i,m) ∈ E}|d] = ρdidm. We note that |Rs| = n/K and

| ∩k′∈S\{s}Mk′| = n/
(
K
r

)
. Therefore, there are g̃ = n2

K(Kr)
Bernoulli summands in (7.12)

in which every two summands are either independent or equal and independent of other

summands. More precisely, (7.12) can be decomposed to sum of all independent Bernoulli

random variables and sum of dependent ones as follows:

|ZsS\{s}| =
∑

i∈Rs
m∈∩k′∈S\{s}Mk′

1{(i,m) ∈ E}

=
∑

F1 or F2 or F3

1{(i,m) ∈ E}+ 2
∑

i,m∈Rs∩(∩k′∈S\{s}Mk′)
i<m

1{(i,m) ∈ E}, (7.13)

where we denote the events

F1 := {i ∈ Rs \ ∩k′∈S\{s}Mk′ , m ∈ ∩k′∈S\{s}Mk′},

F2 := {i ∈ Rs , m ∈ ∩k′∈S\{s}Mk′ \ Rs},

F3 := {i = m ∈ Rs ∩ (∩k′∈S\{s}Mk′)}.

Note that with this decompostion, all the Bernoulli summands in both terms in (7.13)

are independent. Assume that the first and second terms in (7.13) contain g̃− 2J and J

summands respectively.

According to Kolmogorov’s strong law of large numbers (Proposition 7.1 provided at the

191

Coded Computing for Distributed Graph Analytics Chapter 7

end of this section) and given that the second condition in the proposition is satisfied for

Bernoullis, we have

1

g̃ − 2J

∑

F1 or F2 or F3

1{(i,m) ∈ E} − E[ρdidm]
a.s.−−→ 0,

and

1

J

∑

i,m∈Rs∩(∩k′∈S\{s}Mk′)
i<m

1{(i,m) ∈ E} − E[ρdidm]
a.s.−−→ 0.

Therefore, size of the set ZsS\{s} converges almost surely, that is

1

g̃

(
|ZsS\{s}| − E

[
|ZsS\{s}|

])
=
g̃ − 2J

g̃

1

g̃ − 2J

∑

F1 or F2 or F3

1{(i,m) ∈ E} − E[ρdidm]

+
J

g̃

1

J
2

∑

i,m∈Rs∩(∩k′∈S\{s}Mk′)
i<m

1{(i,m) ∈ E} − E[ρdidm]

a.s.−−→ 0,

where

E
[
|ZsS\{s}|

]
=

∑

i∈Rs
m∈∩k′∈S\{s}Mk′

E[ρdidm] = E
[
ρ vol(Rs)vol(∩k′∈S\{s}Mk′)

]
,

and vol(V) =
∑

v∈V dv for any subset of vertices V ⊆ [n]. Moreover,

lim
n→∞

n

g̃
E
[
|ZsS\{s}|

]
= lim

n→∞
E

[
(ρn)

1

n/K
vol(Rs)

1

n/
(
K
r

)vol(∩k′∈S\{s}Mk′)

]
. (7.14)

Each of the terms vol(Rs), vol(∩k′∈S\{s}Mk′) and inverse of ρ are summation of i.i.d power

law random variables for which the expected value exists for γ > 2 and E[d1] = γ−1
γ−2

.

192

Coded Computing for Distributed Graph Analytics Chapter 7

Therefore, by strong law of large numbers (Proposition 7.1) each term approaches its

average almost surely, that is for γ > 2

1

n/K
vol(Rs)

a.s.−−→ E[d1] =
γ − 1

γ − 2
,

1

n/
(
K
r

)vol(∩k′∈S\{s}Mk′)
a.s.−−→ E[d1] =

γ − 1

γ − 2
.

ρn
a.s.−−→ 1

E[d1]
=
γ − 2

γ − 1
.

Plugging into (7.14), we have limn→∞
n
g̃
E
[
|ZsS\{s}|

]
=
(
γ−1
γ−2

)
. Therefore, n

g̃
|ZsS\{s}|

a.s.−−→
(
γ−1
γ−2

)
for any s ∈ S and S ⊆ [K]. Putting all together, we have for γ > 2,

lim
n→∞

nE[LUC
AC

(S)] = lim
n→∞

n

n2

∑

s∈S
E
[
|ZsS\{s}|

]

=
1

K
(
K
r

) lim
n→∞

∑

s∈S

n

g̃
E
[
|ZsS\{s}|

]

=
r + 1

K
(
K
r

)
(
γ − 1

γ − 2

)
.

Therefore, denoted by LUC
AC

the total uncoded communication load, we have

lim
n→∞

nE[LUC
AC

] = lim
n→∞

∑

S⊆[K]
n|S|=r+1

E[LUC
AC

(S)]

=

(
K

r + 1

)
r + 1

K
(
K
r

)
(
γ − 1

γ − 2

)

=
(
1− r

K

)(γ − 1

γ − 2

)
.

193

Coded Computing for Distributed Graph Analytics Chapter 7

For the coded scheme, we have

lim
n→∞

nE[LC
AC

(S)] = lim
n→∞

n

n2r

∑

s∈S
E
[

max
k∈S\{s}

|ZkS\{k}|
]

≤ lim
n→∞

n(r + 1)

n2r
E
[
max
s∈S
|ZsS\{s}|

]

=
r + 1

rK
(
K
r

)
(
γ − 1

γ − 2

)
. (7.15)

The last equality follows the fact that n
g̃

maxs∈S |ZsS\{s}|
a.s.−−→

(
γ−1
γ−2

)
, since n

g̃
|ZsS\{s}|

converges almost surely for any s ∈ S. Plugging into (7.15), the expected coded load is

lim
n→∞

nE[LC
AC

] = lim
n→∞

n
∑

S⊆[K]
|S|=r+1

E[LC
AC

(S)]

≤
(

K

r + 1

)
r + 1

rK
(
K
r

)
(
γ − 1

γ − 2

)

=
1

r

(
1− r

K

)(
γ − 1

γ − 2

)
,

which yields

lim
n→∞

nL∗(r)

(γ−1
γ−2

)
≤ lim

n→∞

nE[LC
AC

]

(γ−1
γ−2

)
≤ 1

r

(
1− r

K

)
.

Comparing the coded load with uncoded load proves the achievability of gain r for the

power law model.

Proposition 7.1 (Kolmogorov’s Strong Law of Large Numbers [196,197]) Let X1,

X2, · · · , Xn, · · · be a sequence of independent random variables with |E[Xn]| < ∞ for

n ≥ 1. Then

1

n

n∑

i=1

(
Xi − E[Xi]

) a.s.−−→ 0,

if one of the following conditions are satisfied:

194

Coded Computing for Distributed Graph Analytics Chapter 7

(1) Xi’s are identically distributed,

(2) ∀n, var(Xn) <∞ and
∑∞

n=1
var(Xn)

n2 <∞.

7.7 Experiments over Amazon EC2 Clusters

In this section, we demonstrate the practical impact of our proposed coded scheme

via experiments over Amazon EC2 clusters. We first present our implementation choices

and experimental scenarios. Then, we discuss the results and provide some remarks.

Implementation codes are available at [198].

7.7.1 Implementation Details

We implement one iteration of the popular PageRank algorithm (Example 7.1), for

a real-world graph as well as artificially generated graphs. For real-world dataset, we

use TheMarker Cafe Dataset [183]. For generating artificial graph datasets, we use the

Erdös-Rényi model, where each edge in the graph is present with probability p. We

consider the following three scenarios:

• Scenario 1: We use a subgraph of size n = 69360 of TheMarker Cafe Dataset

[183]. The computing cluster consists of K = 6 servers and one master with

communication bandwidth of 100 Mbps at each server.

• Scenario 2: We generate a graph using the Erdös-Rényi model with n = 12600

vertices and p = 0.3. The computing cluster consists of K = 10 servers and one

master with communication bandwidth of 100 Mbps at each server.

• Scenario 3: We generate a graph using the Erdös-Rényi model with n = 90090

vertices and p = 0.01. The computing cluster consists of K = 15 servers and one

195

Coded Computing for Distributed Graph Analytics Chapter 7

master with communication bandwidth of 100 Mbps at each server.

For each scenario, we carry out PageRank implementation for different values of

the computation load r. The case of r = 1 corresponds to the conventional PageRank

implementation, where each vertex i ∈ V = [n] is stored at exactly one server and

Mk = Rk for each server k ∈ [K], i.e. the Map and Reduce tasks associated with any

vertex i take place in the same server. For r > 1, we increase the computation load until

the overall execution time starts increasing.

We now describe our implementation choices. We use Python with mpi4py package.

In all of our experiments, master is of type r4.large and servers are of type m4.large.

For Scenario 2 and Scenario 3, we use a sample from the Erdös-Rényi model. This

process is carried out using a c4.8xlarge server instance. For each scenario, the graphs

are processed and subgraph allocation is done as a pre-processing step. For r = 1, the

graph is partitioned into smaller instances which have equal numbers of vertices. Each

such partition consists of two Python lists, one that consists of the vertices that will be

Mapped by the corresponding server, and the other one that consists of the neighborhood

information of each vertex to be Mapped. The position of the neighborhood tuple in

the neighborhood list is same as the position of the corresponding vertex in the vertex

list, so that one can iterate over the two together during the Map stage. For r > 1, the

graph is divided into
(
K
r

)
batches, where each batch consists of equal numbers of vertices.

Then each batch is included in the subgraph of the corresponding set of r servers. This

way, we get a a computation load of r.

The overall execution consists of the following phases:

(1) Map: Without loss of generality, the rank for each vertex is initialized to 1
n
. Each

server goes over its subgraph and Maps the rank associated with a vertex to in-

termediate values that are required by the neighboring vertices during the Reduce

196

Coded Computing for Distributed Graph Analytics Chapter 7

stage. Each intermediate value consists of key-value pair, where the key is an in-

teger storing the vertex ID, while the value is a real number storing the associated

value. Based on the vertex ID, the intermediate value is associated with the parti-

tion where the vertex is Reduced, which is obtained by hashing the vertex ID. For

each partition, a separate list is created for storing keys and values.

(2) Encode/Pack: In conventional PageRank, no encoding is done as the transfer

of intermediate values is done directly. For r > 1, coded multicast packets are

created using the proposed encoding scheme. Transmission data is serialized before

Shuffling.

(3) Shuffle: At any time, only one server is allowed to use the network for transmission.

In conventional PageRank, each server unicasts its message to different servers,

while for r > 1, the communication takes place in multicast groups. For any

multicast group, each server takes its turn to broadcast its message to all the

remaining servers in the group.

(4) Unpack/Decode: The messages received during the Shuffle phase are de-serialized.

For r > 1, each server decodes the coded packets received from other servers in ac-

cordance with the proposed coded scheme to recover the intermediate values. After

the decoding phase, all intermediate values that are needed for Reduce phase are

available at the servers.

(5) Reduce: Each server goes over its set of vertices that it needs to Reduce and

updates the corresponding PageRank values. In conventional PageRank, for any

vertex i ∈ V , the Map and Reduce operations associated with it are done at the

same server. Therefore, no further data transmission is needed to communicate

the updated ranks for the Map phase in next iteration. In the proposed coded

197

Coded Computing for Distributed Graph Analytics Chapter 7

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 7.8: Overall execution times for distributed PageRank implementation for different
computation load for the three scenarios.

scheme, message passing is done in order to transmit the updated PageRanks to

the Mappers.

Next, we discuss the results of our experiments.

7.7.2 Experimental Results

We now present the results from our experiments. The overall execution times for the

three scenarios have been presented in Figure 7.8.2 We make the following observations

from the results:

• As demonstrated in Figure 7.8(a), maximum gain for Scenario 1 is obtained with

a computation load of r = 5. Our proposed scheme achieves a speedup of 43.4%

2The Map time includes the time spent in Encode/Pack stage, while the Unpack stage is combined
with Reduce phase.

198

Coded Computing for Distributed Graph Analytics Chapter 7

over conventional PageRank implementation (r = 1) and a speedup of 25.5% over

the single server implementation (r = 6).

• For Scenarios 2 and 3, the optimal gain is obtained for r = 4, after which the

overall execution time increases due to saturation of gain in Shuffling time and

large Map time. As demonstrated by Figure 7.8(b) and Figure 7.8(c), our proposed

scheme achieves speedups of 50.8% and 41.8% for Scenarios 2 and 3 respectively,

in comparison to the conventional PageRank.

• As demonstrated by Figure 7.8, Shuffle phase dominates the overall execution time

in the naive implementation of PageRank. By increasing the computation load,

our proposed coded scheme leverages extra computing in the Map phase to slash

the Shuffle phase, thus speeding up the overall execution time.

• Theoretically, we demonstrated that by increasing the computation load by r, we

slash the expected communication load in Shuffle phase by nearly r. Here, we

empirically observe that due to large size of the graph model, we have a similar

trade-off between computation load and communication load for each sample of the

graph model as well.

• While the Map phase increases almost linearly with r, the overall gain begins to

saturate, since the Shuffle phase does not decrease linearly with r. This is because

as we increase r, the overheads in multicast data transmissions increase and start to

dominate the overall Shuffling time. Furthermore, unicasting one packet is smaller

than the time for broadcasting the same packet to multiple servers [173].

Remark 7.14 The overall execution time can be approximated as follows:

TTotal(r) ≈ rTMap + TShuffle/r + TReduce, (7.16)

199

Coded Computing for Distributed Graph Analytics Chapter 7

where TMap, TShuffle and TReduce are the Map, Shuffle and Reduce times for the naive

MapReduce implementation. For selecting the computation load for coded implementa-

tion, one heuristic [113] is to choose r that is the nearest integer to the minimizer r∗ of

(7.16) where

r∗ =

√
TShuffle

TMap

= arg min
r

TTotal(r).

For instance, in Scenario 2, TMap = 1.649, TShuffle = 43.78 and r∗ = 5.15. As demon-

strated by Figure 7.8(b), a computation load of r = 5 gives close to the optimal perfor-

mance attained at r = 4.

7.8 Concluding Remarks

We described a mathematical model for graph based MapReduce computations and

demonstrated how coding theoretic strategies can be employed to substantially reduce the

communication load in distributed graph analytics. Our results reveal that an inverse-

linear trade-off exists between computation load and communication load in distributed

graph processing. This trade-off can be used to leverage additional computing resources

and capabilities to alleviate the costly communication bottleneck in distributed graph

processing systems.

As a key contribution of this work, we developed a novel coding scheme that sys-

tematically injects structured redundancy in the computation phase to enable coded

multicasting opportunities during message exchange between servers, reducing the com-

munication load substantially in large-scale graph processing. For theoretical analysis,

we considered random graph models, and proved that our proposed scheme enables an

asymptotically inverse-linear trade-off between computation load and average normal-

ized communication load for two popular random graph models – Erdös-Rényi model,

200

and power law model. Furthermore, for the Erdös-Rényi model, we provided proof for

a matching converse, showing the optimality of our proposed scheme. We also carried

out experiments over Amazon EC2 clusters to corroborate our claims using real-world

as well as artificial graphs, demonstrating speedups of up to 50.8% in the overall execu-

tion time of PageRank over the conventional approach. Additionally, we specialized our

coded scheme and extended our theoretical results to two other random graph models –

random bi-partite model, and stochastic block model. Our specialized schemes asymp-

totically enable inverse-linear trade-offs between computation and communication loads

in distributed graph processing for these popular random graph models as well. We

complemented the achievability results with converse bounds for both of these models.

Lastly, we note that we focused on subgraph allocation and Reduce allocation schemes

that are oblivious to graph realizations. Our motivation came from popular graph pro-

cessing frameworks such as Pregel [19], where partitioning of graphs is solely based on

the vertex ID and not on the vertex neighborhood density. Also, designing subgraph al-

location, Reduce allocation and Shuffling schemes for characterizing the minimum com-

munication load in (7.2) is NP-hard in general. It might, however, be an interesting

future direction to explore the development of coded schemes that allocate resources

after looking at the graph.

201

Bibliography

[1] B. McMahan and D. Ramage, “Federated learning: Collaborative machine
learning without centralized training data.” https:

//ai.googleblog.com/2017/04/federated-learning-collaborative.html,
2017. Accessed: 2019-09-13.

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, Federated learning: Challenges,
methods, and future directions, IEEE Signal Processing Magazine 37 (2020), no. 3
50–60.

[3] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et. al., Advances and open
problems in federated learning, arXiv preprint arXiv:1912.04977 (2019).

[4] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, Fedpaq:
A communication-efficient federated learning method with periodic averaging and
quantization, in International Conference on Artificial Intelligence and Statistics,
pp. 2021–2031, 2020.

[5] A. Reisizadeh, I. Tziotis, H. Hassani, A. Mokhtari, and R. Pedarsani,
Straggler-resilient federated learning: Leveraging the interplay between statistical
accuracy and system heterogeneity, arXiv preprint arXiv:2012.14453 (2020).

[6] A. Reisizadeh, F. Farnia, R. Pedarsani, and A. Jadbabaie, Robust federated
learning: The case of affine distribution shifts, Advances in Neural Information
Processing Systems 33 (2020).

[7] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
Federated learning: Strategies for improving communication efficiency, arXiv
preprint arXiv:1610.05492 (2016).

[8] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh,
Scaffold: Stochastic controlled averaging for on-device federated learning, arXiv
preprint arXiv:1910.06378 (2019).

202

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

[9] K. Pei, Y. Cao, J. Yang, and S. Jana, Deepxplore: Automated whitebox testing of
deep learning systems, in proceedings of the 26th Symposium on Operating
Systems Principles, pp. 1–18, 2017.

[10] D. Hendrycks and T. Dietterich, Benchmarking neural network robustness to
common corruptions and perturbations, arXiv preprint arXiv:1903.12261 (2019).

[11] A. Robey, H. Hassani, and G. J. Pappas, Model-based robust deep learning, arXiv
preprint arXiv:2005.10247 (2020).

[12] J. Dean and S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Communications of the ACM 51 (2008), no. 1 107–113.

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark:
cluster computing with working sets, HotCloud 10 (2010) 10–10.

[14] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica, Improving
mapreduce performance in heterogeneous environments., in OSDI, vol. 8, p. 7,
2008.

[15] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, and
I. Stoica, Low latency geo-distributed data analytics, ACM SIGCOMM Computer
Communication Review 45 (2015), no. 4 421–434.

[16] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, Codedreduce: A
fast and robust framework for gradient aggregation in distributed learning, arXiv
preprint arXiv:1902.01981 (2019).

[17] S. Prakash, A. Reisizadeh, R. Pedarsani, and A. S. Avestimehr, Coded computing
for distributed graph analytics, IEEE Transactions on Information Theory 66
(2020), no. 10 6534–6554.

[18] T. Lin, C. Jin, and M. I. Jordan, On gradient descent ascent for
nonconvex-concave minimax problems, arXiv preprint arXiv:1906.00331 (2019).

[19] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, Pregel: a system for large-scale graph processing, SIGMOD (2010).

[20] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, Powergraph:
distributed graph-parallel computation on natural graphs., in OSDI, 2012.

[21] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein,
Distributed graphlab: A framework for machine learning in the cloud, PVLDB 5
(2012), no. 8 716–727.

203

[22] R. R. McCune, T. Weninger, and G. Madey, Thinking like a vertex: a survey of
vertex-centric frameworks for large-scale distributed graph processing, ACM
Computing Surveys (2015).

[23] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, Challenges in parallel
graph processing, Parallel Processing Letters (2007).

[24] R. Chen, X. Ding, P. Wang, H. Chen, B. Zang, and H. Guan, Computation and
communication efficient graph processing with distributed immutable view, HPDC
(2014).

[25] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, Federated learning: Challenges,
methods, and future directions, arXiv preprint arXiv:1908.07873 (2019).

[26] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan, et. al., Towards federated
learning at scale: System design, arXiv preprint arXiv:1902.01046 (2019).

[27] L. Huang, Y. Yin, Z. Fu, S. Zhang, H. Deng, and D. Liu, Loadaboost: Loss-based
adaboost federated machine learning on medical data, arXiv preprint
arXiv:1811.12629 (2018).

[28] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, Federated multi-task
learning, in Advances in Neural Information Processing Systems, pp. 4424–4434,
2017.

[29] S. Samarakoon, M. Bennis, W. Saady, and M. Debbah, Distributed federated
learning for ultra-reliable low-latency vehicular communications, arXiv preprint
arXiv:1807.08127 (2018).

[30] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et. al.,
Communication-efficient learning of deep networks from decentralized data, arXiv
preprint arXiv:1602.05629 (2016).

[31] N. Guha, A. Talwlkar, and V. Smith, One-shot federated learning, arXiv preprint
arXiv:1902.11175 (2019).

[32] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, Qsgd:
Communication-efficient sgd via gradient quantization and encoding, in Advances
in Neural Information Processing Systems, pp. 1709–1720, 2017.

[33] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, 1-bit stochastic gradient descent
and its application to data-parallel distributed training of speech dnns, in Fifteenth
Annual Conference of the International Speech Communication Association, 2014.

204

[34] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, signsgd:
Compressed optimisation for non-convex problems, arXiv preprint
arXiv:1802.04434 (2018).

[35] V. Smith, S. Forte, C. Ma, M. Takac, M. I. Jordan, and M. Jaggi, Cocoa: A
general framework for communication-efficient distributed optimization, arXiv
preprint arXiv:1611.02189 (2016).

[36] A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, An exact quantized
decentralized gradient descent algorithm, IEEE Transactions on Signal Processing
67 (2019), no. 19 4934–4947.

[37] X. Zhang, J. Liu, Z. Zhu, and E. S. Bentley, Compressed distributed gradient
descent: Communication-efficient consensus over networks, arXiv preprint
arXiv:1812.04048 (2018).

[38] A. Koloskova, S. U. Stich, and M. Jaggi, Decentralized stochastic optimization and
gossip algorithms with compressed communication, .

[39] J. Wang, A. K. Sahu, Z. Yang, G. Joshi, and S. Kar, Matcha: Speeding up
decentralized sgd via matching decomposition sampling, arXiv preprint
arXiv:1905.09435 (2019).

[40] S. U. Stich, Local sgd converges fast and communicates little, arXiv preprint
arXiv:1805.09767 (2018).

[41] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, Don’t use large mini-batches, use
local sgd, arXiv preprint arXiv:1808.07217 (2018).

[42] J. Wang and G. Joshi, Cooperative sgd: A unified framework for the design and
analysis of communication-efficient sgd algorithms, arXiv preprint
arXiv:1808.07576 (2018).

[43] L. Bottou and O. Bousquet, The tradeoffs of large scale learning, in Advances in
neural information processing systems, pp. 161–168, 2008.

[44] K. G. Murty and S. N. Kabadi, Some np-complete problems in quadratic and
nonlinear programming, Mathematical programming 39 (1987), no. 2 117–129.

[45] S. Mei, Y. Bai, A. Montanari, et. al., The landscape of empirical risk for
nonconvex losses, The Annals of Statistics 46 (2018), no. 6A 2747–2774.

[46] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith, On the
convergence of federated optimization in heterogeneous networks, arXiv preprint
arXiv:1812.06127 (2018).

205

[47] H. Yu, S. Yang, and S. Zhu, Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning, in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 5693–5700, 2019.

[48] A. Berahas, R. Bollapragada, N. S. Keskar, and E. Wei, Balancing
communication and computation in distributed optimization, IEEE Transactions
on Automatic Control (2018).

[49] A. Reisizadeh, H. Taheri, A. Mokhtari, H. Hassani, and R. Pedarsani, Robust and
communication-efficient collaborative learning, in Advances in Neural Information
Processing Systems, pp. 8388–8399, 2019.

[50] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, Speeding
up distributed machine learning using codes, IEEE Transactions on Information
Theory 64 (2017), no. 3 1514–1529.

[51] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
Communication-efficient learning of deep networks from decentralized data, in
Artificial Intelligence and Statistics, pp. 1273–1282, PMLR, 2017.

[52] S. U. Stich, Local sgd converges fast and communicates little, in ICLR 2019 ICLR
2019 International Conference on Learning Representations, no. CONF, 2019.

[53] C. Xie, S. Koyejo, and I. Gupta, Asynchronous federated optimization, arXiv
preprint arXiv:1903.03934 (2019).

[54] T. Nishio and R. Yonetani, Client selection for federated learning with
heterogeneous resources in mobile edge, in ICC 2019-2019 IEEE International
Conference on Communications (ICC), pp. 1–7, IEEE, 2019.

[55] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, Tackling the objective
inconsistency problem in heterogeneous federated optimization, arXiv preprint
arXiv:2007.07481 (2020).

[56] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi, Federated
learning with compression: Unified analysis and sharp guarantees, arXiv preprint
arXiv:2007.01154 (2020).

[57] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, Federated
optimization in heterogeneous networks, arXiv preprint arXiv:1812.06127 (2018).

[58] M. Mohri, G. Sivek, and A. T. Suresh, Agnostic federated learning, in
International Conference on Machine Learning, pp. 4615–4625, 2019.

206

[59] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ, S. Kumar, and
H. B. McMahan, Adaptive federated optimization, arXiv preprint
arXiv:2003.00295 (2020).

[60] A. Mokhtari and A. Ribeiro, First-order adaptive sample size methods to reduce
complexity of empirical risk minimization, in NeurIPS, 2017.

[61] A. Mokhtari, A. Ozdaglar, and A. Jadbabaie, Efficient nonconvex empirical risk
minimization via adaptive sample size methods, in AISTATS, 2019.

[62] A. Mokhtari, H. Daneshmand, A. Lucchi, T. Hofmann, and A. Ribeiro, Adaptive
Newton method for empirical risk minimization to statistical accuracy, in
NeurIPS, 2016.

[63] M. Eisen, A. Mokhtari, and A. Ribeiro, Large scale empirical risk minimization
via truncated adaptive Newton method, in AISTATS, 2018.

[64] M. Jahani, X. He, C. Ma, A. Mokhtari, D. Mudigere, A. Ribeiro, and M. Takác,
Efficient distributed hessian free algorithm for large-scale empirical risk
minimization via accumulating sample strategy, in AISTATS, 2020.

[65] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, On the convergence of fedavg
on non-iid data, in International Conference on Learning Representations, 2019.

[66] Z. Huo, Q. Yang, B. Gu, L. C. Huang, et. al., Faster on-device training using new
federated momentum algorithm, arXiv preprint arXiv:2002.02090 (2020).

[67] G. Malinovsky, D. Kovalev, E. Gasanov, L. Condat, and P. Richtarik, From local
sgd to local fixed point methods for federated learning, arXiv preprint
arXiv:2004.01442 (2020).

[68] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan,
Adaptive federated learning in resource constrained edge computing systems, IEEE
Journal on Selected Areas in Communications 37 (2019), no. 6 1205–1221.

[69] F. Zhou and G. Cong, On the convergence properties of a k-step averaging
stochastic gradient descent algorithm for nonconvex optimization, arXiv preprint
arXiv:1708.01012 (2017).

[70] F. Haddadpour and M. Mahdavi, On the convergence of local descent methods in
federated learning, arXiv preprint arXiv:1910.14425 (2019).

[71] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe, Local sgd with
periodic averaging: Tighter analysis and adaptive synchronization, in Advances in
Neural Information Processing Systems, pp. 11082–11094, 2019.

207

[72] A. K. R. Bayoumi, K. Mishchenko, and P. Richtarik, Tighter theory for local sgd
on identical and heterogeneous data, in International Conference on Artificial
Intelligence and Statistics, pp. 4519–4529, 2020.

[73] S. U. Stich and S. P. Karimireddy, The error-feedback framework: Better rates for
sgd with delayed gradients and compressed communication, arXiv preprint
arXiv:1909.05350 (2019).

[74] J. Wang and G. Joshi, Adaptive communication strategies to achieve the best
error-runtime trade-off in local-update sgd, arXiv preprint arXiv:1810.08313
(2018).

[75] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. U. Stich, A unified theory of
decentralized sgd with changing topology and local updates, arXiv preprint
arXiv:2003.10422 (2020).

[76] X. Liang, S. Shen, J. Liu, Z. Pan, E. Chen, and Y. Cheng, Variance reduced local
sgd with lower communication complexity, arXiv preprint arXiv:1912.12844
(2019).

[77] V. Vapnik, The nature of statistical learning theory. Springer science & business
media, 2013.

[78] O. Bousquet, Concentration inequalities and empirical processes theory applied to
the analysis of learning algorithms. PhD thesis, École Polytechnique: Department
of Applied Mathematics Paris, France, 2002.

[79] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, Convexity, classification, and
risk bounds, Journal of the American Statistical Association 101 (2006), no. 473
138–156.

[80] R. Frostig, R. Ge, S. M. Kakade, and A. Sidford, Competing with the empirical
risk minimizer in a single pass, in Conference on learning theory, pp. 728–763,
2015.

[81] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik, Distributed learning
with compressed gradient differences, arXiv preprint arXiv:1901.09269 (2019).

[82] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, Coded
computation over heterogeneous clusters, IEEE Transactions on Information
Theory 65 (2019), no. 7 4227–4242.

[83] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, Towards deep
learning models resistant to adversarial attacks, arXiv preprint arXiv:1706.06083
(2017).

208

[84] I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing adversarial
examples, arXiv preprint arXiv:1412.6572 (2014).

[85] A. Shafahi, M. Najibi, Z. Xu, J. Dickerson, L. S. Davis, and T. Goldstein,
Universal adversarial training, arXiv preprint arXiv:1811.11304 (2018).

[86] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, Universal
adversarial perturbations, in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1765–1773, 2017.

[87] D. A. McAllester, Pac-bayesian model averaging, in Proceedings of the twelfth
annual conference on Computational learning theory, pp. 164–170, 1999.

[88] B. Neyshabur, S. Bhojanapalli, and N. Srebro, A pac-bayesian approach to
spectrally-normalized margin bounds for neural networks, arXiv preprint
arXiv:1707.09564 (2017).

[89] W. Wiesemann, D. Kuhn, and M. Sim, Distributionally robust convex
optimization, Operations Research 62 (2014), no. 6 1358–1376.

[90] S. Shafieezadeh-Abadeh, D. Kuhn, and P. M. Esfahani, Regularization via mass
transportation, Journal of Machine Learning Research 20 (2019), no. 103 1–68.

[91] A. Khaled, K. Mishchenko, and P. Richtárik, Tighter theory for local sgd on
identical and heterogeneous data, in The 23rd International Conference on
Artificial Intelligence and Statistics (AISTATS 2020), 2020.

[92] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, Expanding the reach of
federated learning by reducing client resource requirements, arXiv preprint
arXiv:1812.07210 (2018).

[93] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, Fedpaq:
A communication-efficient federated learning method with periodic averaging and
quantization, arXiv preprint arXiv:1909.13014 (2019).

[94] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers, Protection
against reconstruction and its applications in private federated learning, arXiv
preprint arXiv:1812.00984 (2018).

[95] R. C. Geyer, T. Klein, and M. Nabi, Differentially private federated learning: A
client level perspective, arXiv preprint arXiv:1712.07557 (2017).

[96] J. Li, M. Khodak, S. Caldas, and A. Talwalkar, Differentially private
meta-learning, arXiv preprint arXiv:1909.05830 (2019).

[97] O. Thakkar, G. Andrew, and H. B. McMahan, Differentially private learning with
adaptive clipping, arXiv preprint arXiv:1905.03871 (2019).

209

[98] J. Yang, N. Kiyavash, and N. He, Global convergence and variance-reduced
optimization for a class of nonconvex-nonconcave minimax problems, arXiv
preprint arXiv:2002.09621 (2020).

[99] M. Nouiehed, M. Sanjabi, T. Huang, J. D. Lee, and M. Razaviyayn, Solving a
class of non-convex min-max games using iterative first order methods, in
Advances in Neural Information Processing Systems, pp. 14905–14916, 2019.

[100] H. Yu, R. Jin, and S. Yang, On the linear speedup analysis of communication
efficient momentum sgd for distributed non-convex optimization, arXiv preprint
arXiv:1905.03817 (2019).

[101] B. T. Polyak, Gradient methods for minimizing functionals, Zhurnal
Vychislitel’noi Matematiki i Matematicheskoi Fiziki 3 (1963), no. 4 643–653.

[102] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, Spectrally-normalized margin
bounds for neural networks, in Advances in Neural Information Processing
Systems, pp. 6240–6249, 2017.

[103] F. Farnia, J. M. Zhang, and D. Tse, Generalizable adversarial training via spectral
normalization, arXiv preprint arXiv:1811.07457 (2018).

[104] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et. al., Tensorflow: Large-scale machine learning on
heterogeneous distributed systems, arXiv preprint arXiv:1603.04467 (2016).

[105] Y. LeCun, The mnist database of handwritten digits, http://yann. lecun.
com/exdb/mnist/ (1998).

[106] A. Krizhevsky, G. Hinton, et. al., Learning multiple layers of features from tiny
images, .

[107] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep
convolutional neural networks, in Advances in neural information processing
systems, pp. 1097–1105, 2012.

[108] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

[109] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image
recognition, in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[110] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift, arXiv preprint arXiv:1502.03167 (2015).

210

[111] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[112] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, Coded MapReduce, in
Communication, Control, and Computing (Allerton), 2015 53rd Annual Allerton
Conference on, pp. 964–971, IEEE, 2015.

[113] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, A fundamental tradeoff
between computation and communication in distributed computing, IEEE
Transactions on Information Theory 64 (2018), no. 1 109–128.

[114] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and S. Avestimehr, Coded
terasort, in Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2017 IEEE International, pp. 389–398, IEEE, 2017.

[115] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, Fog computing and its role in the
internet of things, in Proceedings of the first edition of the MCC workshop on
Mobile cloud computing, pp. 13–16, ACM, 2012.

[116] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, Speeding
up distributed machine learning using codes, IEEE Transactions on Information
Theory 64 (2018), no. 3 1514–1529.

[117] L. Song and C. Fragouli, A pliable index coding approach to data shuffling, arXiv
preprint arXiv:1701.05540 (2017).

[118] M. Kiamari, C. Wang, and A. S. Avestimehr, On heterogeneous coded distributed
computing, in GLOBECOM 2017-2017 IEEE Global Communications Conference,
pp. 1–7, IEEE, 2017.

[119] M. Attia and R. Tandon, Information theoretic limits of data shuffling for
distributed learning, arXiv preprint arXiv:1609.05181 (2016).

[120] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, Communication vs distributed
computation: an alternative trade-off curve, in Information Theory Workshop
(ITW), 2017 IEEE, pp. 279–283, IEEE, 2017.

[121] S. Dutta, V. Cadambe, and P. Grover, Short-dot: Computing large linear
transforms distributedly using coded short dot products, in Advances In Neural
Information Processing Systems, pp. 2092–2100, 2016.

[122] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, Gradient coding,
arXiv preprint arXiv:1612.03301 (2016).

[123] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, Polynomial codes: an optimal
design for high-dimensional coded matrix multiplication, arXiv preprint
arXiv:1705.10464 (2017).

211

[124] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and P. Grover, On
the optimal recovery threshold of coded matrix multiplication, in Communication,
Control, and Computing (Allerton), 2017 55th Annual Allerton Conference on,
pp. 1264–1270, IEEE, 2017.

[125] K. Lee, C. Suh, and K. Ramchandran, High-dimensional coded matrix
multiplication, in Information Theory (ISIT), 2017 IEEE International
Symposium on, pp. 2418–2422, IEEE, 2017.

[126] S. Wang, J. Liu, N. Shroff, and P. Yang, Fundamental limits of coded linear
transform, arXiv preprint arXiv:1804.09791 (2018).

[127] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, Straggler mitigation in
distributed matrix multiplication: Fundamental limits and optimal coding, arXiv
preprint arXiv:1801.07487 (2018).

[128] A. Reisizadeh and R. Pedarsani, Latency analysis of coded computation schemes
over wireless networks, in Communication, Control, and Computing (Allerton),
2017 55th Annual Allerton Conference on, pp. 1256–1263, IEEE, 2017.

[129] K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, Coded
computation for multicore setups, in Information Theory (ISIT), 2017 IEEE
International Symposium on, pp. 2413–2417, IEEE, 2017.

[130] N. S. Ferdinand and S. C. Draper, Anytime coding for distributed computation, in
Communication, Control, and Computing (Allerton), 2016 54th Annual Allerton
Conference on, pp. 954–960, IEEE, 2016.

[131] G. Suh, K. Lee, and C. Suh, Matrix sparsification for coded matrix multiplication,
in Communication, Control, and Computing (Allerton), 2017 55th Annual
Allerton Conference on, pp. 1271–1278, IEEE, 2017.

[132] M. Aliasgari, J. Kliewer, and O. Simeone, Coded computation against straggling
decoders for network function virtualization, in 2018 IEEE International
Symposium on Information Theory (ISIT), pp. 711–715, IEEE, 2018.

[133] Y. Yang, P. Grover, and S. Kar, Computing linear transformations with unreliable
components, IEEE Transactions on Information Theory 63 (2017), no. 6
3729–3756.

[134] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, Straggler mitigation in distributed
optimization through data encoding, in Advances in Neural Information Processing
Systems, pp. 5440–5448, 2017.

[135] A. Severinson, E. Rosnes, et. al., Block-diagonal and LT codes for distributed
computing with straggling servers, arXiv preprint arXiv:1712.08230 (2017).

212

[136] M. F. Aktas, P. Peng, and E. Soljanin, Effective straggler mitigation: which
clones should attack and when?, ACM SIGMETRICS Performance Evaluation
Review 45 (2017), no. 2 12–14.

[137] D. Wang, G. Joshi, and G. Wornell, Using straggler replication to reduce latency
in large-scale parallel computing, ACM SIGMETRICS Performance Evaluation
Review 43 (2015), no. 3 7–11.

[138] M. Rudelson and R. Vershynin, Non-asymptotic theory of random matrices:
extreme singular values, in Proceedings of the International Congress of
Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and
Ceremonies Vols. II–IV: Invited Lectures, pp. 1576–1602, World Scientific, 2010.

[139] G. Liang and U. C. Kozat, Tofec: achieving optimal throughput-delay trade-off of
cloud storage using erasure codes, in IEEE INFOCOM 2014-IEEE Conference on
Computer Communications, pp. 826–834, IEEE, 2014.

[140] S. Dutta, V. Cadambe, and P. Grover, Coded convolution for parallel and
distributed computing within a deadline, arXiv preprint arXiv:1705.03875 (2017).

[141] L. Dalćın, R. Paz, and M. Storti, MPI for Python, Journal of Parallel and
Distributed Computing 65 (2005), no. 9 1108–1115.

[142] J. Dean and L. A. Barroso, The tail at scale, Communications of the ACM 56
(2013), no. 2 74–80.

[143] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, Coding for distributed fog
computing, IEEE Communications Magazine 55 (2017), no. 4 34–40.

[144] D. J. MacKay and D. J. Mac Kay, Information theory, inference and learning
algorithms. Cambridge university press, 2003.

[145] A. Mallick, M. Chaudhari, and G. Joshi, Rateless codes for near-perfect load
balancing in distributed matrix-vector multiplication, arXiv preprint
arXiv:1804.10331 (2018).

[146] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, and J. Wang, Cost-efficient task
scheduling for executing large programs in the cloud, Parallel Computing 39
(2013), no. 4-5 177–188.

[147] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, The cost of doing
science on the cloud: the montage example, in High Performance Computing,
Networking, Storage and Analysis, 2008. SC 2008. International Conference for,
pp. 1–12, IEEE, 2008.

213

[148] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson, Cost-benefit
analysis of cloud computing versus desktop grids., in IPDPS, vol. 9, pp. 1–12,
2009.

[149] S. Yi, A. Andrzejak, and D. Kondo, Monetary cost-aware checkpointing and
migration on amazon cloud spot instances, IEEE Transactions on Services
Computing 5 (2012), no. 4 512–524.

[150] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, Algorithms for cost-and
deadline-constrained provisioning for scientific workflow ensembles in iaas clouds,
Future Generation Computer Systems 48 (2015) 1–18.

[151] https://aws.amazon.com/ec2/pricing/.

[152] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, Optimal Distributed Online
Prediction Using Mini-Batches, Journal of Machine Learning Research 13 (2012),
no. Jan 165–202.

[153] M. Zinkevich, M. Weimer, A. J. Smola, and L. Li, Parallelized stochastic gradient
descent., in NIPS, vol. 4, p. 4, Citeseer, 2010.

[154] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, Revisiting distributed
synchronous SGD, arXiv preprint arXiv:1604.00981 (2016).

[155] B. Recht, C. Re, S. Wright, and F. Niu, Hogwild: A Lock-Free Approach to
Parallelizing Stochastic Gradient Descent, in Advances in Neural Information
Processing Systems, pp. 693–701, 2011.

[156] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le, et. al., Large scale distributed deep networks, in
Advances in neural information processing systems, pp. 1223–1231, 2012.

[157] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, Project Adam:
Building an Efficient and Scalable Deep Learning Training System., in OSDI,
vol. 14, pp. 571–582, 2014.

[158] G. Cong, O. Bhardwaj, and M. Feng, An efficient, distributed stochastic gradient
descent algorithm for deep-learning applications, in Parallel Processing (ICPP),
2017 46th International Conference on, pp. 11–20, IEEE, 2017.

[159] P. Patarasuk and X. Yuan, Bandwidth optimal all-reduce algorithms for clusters
of workstations, Journal of Parallel and Distributed Computing 69 (2009), no. 2
117–124.

[160] P. Patarasuk and X. Yuan, Bandwidth Efficient All-reduce Operation on Tree
Topologies, in Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, pp. 1–8, IEEE, 2007.

214

https://aws.amazon.com/ec2/pricing/

[161] R. Thakur, R. Rabenseifner, and W. Gropp, Optimization of Collective
Communication Operations in MPICH, The International Journal of High
Performance Computing Applications 19 (2005), no. 1 49–66.

[162] K. Kandalla, H. Subramoni, A. Vishnu, and D. K. Panda, Designing
topology-aware collective communication algorithms for large scale infiniband
clusters: Case studies with Scatter and Gather, in Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International
Symposium on, pp. 1–8, IEEE, 2010.

[163] A. Gibiansky, Bringing HPC Techniques to Deep Learning, tech. rep., Baidu
Research, Tech. Rep., 2017, http://research. baidu.
com/bringing-hpc-techniques-deep-learning/. Bingjing Zhang TESTS &
CERTIFICATIONS IBM Certified Database Associate-DB2 Universal Database,
2017.

[164] A. Sergeev and M. Del Balso, Horovod: fast and easy distributed deep learning in
TensorFlow, arXiv preprint arXiv:1802.05799 (2018).

[165] P. H. Jin, Q. Yuan, F. Iandola, and K. Keutzer, How to scale distributed deep
learning?, ML Systems Workshop, NIPS (2016).

[166] Y. Li, M. Yu, S. Li, S. Avestimehr, N. S. Kim, and A. Schwing, Pipe-SGD: A
Decentralized Pipelined SGD Framework for Distributed Deep Net Training, in
Advances in Neural Information Processing Systems, pp. 8056–8067, 2018.

[167] M. Yu, Z. Lin, K. Narra, S. Li, Y. Li, N. S. Kim, A. Schwing, M. Annavaram, and
S. Avestimehr, GradiVeQ: Vector Quantization for Bandwidth-Efficient Gradient
Aggregation in Distributed CNN Training, in Advances in Neural Information
Processing Systems, pp. 5129–5139, 2018.

[168] J. Sun, T. Chen, G. B. Giannakis, Q. Yang, and Z. Yang, Lazily aggregated
quantized gradient innovation for communication-efficient federated learning,
IEEE Transactions on Pattern Analysis and Machine Intelligence (2020).

[169] Y. Zhao, L. Wang, W. Wu, G. Bosilca, R. Vuduc, J. Ye, W. Tang, and Z. Xu,
Efficient Communications in Training Large Scale Neural Networks, in
Proceedings of the on Thematic Workshops of ACM Multimedia 2017,
pp. 110–116, ACM, 2017.

[170] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, Effective straggler
mitigation: Attack of the clones, in Presented as part of the 10th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 13),
pp. 185–198, 2013.

215

[171] D. Wang, G. Joshi, and G. Wornell, Efficient task replication for fast response
times in parallel computation, in ACM SIGMETRICS Performance Evaluation
Review, vol. 42, pp. 599–600, ACM, 2014.

[172] N. B. Shah, K. Lee, and K. Ramchandran, When Do Redundant Requests Reduce
Latency?, IEEE Transactions on Communications 64 (2016), no. 2 715–722.

[173] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, Speeding
Up Distributed Machine Learning Using Codes, IEEE Transactions on
Information Theory 64 (2018), no. 3 1514–1529.

[174] M. Ye and E. Abbe, Communication-Computation Efficient Gradient Coding, in
Proceedings of the 35th International Conference on Machine Learning, vol. 80,
pp. 5610–5619, 10–15 Jul, 2018.

[175] Q. Yu, S. Li, N. Raviv, M. Kalan, M. Soltanolkotabi, and A. S. Avestimehr,
Lagrange Coded Computing: Optimal Design for Resiliency, Security and Privacy,
To appear in Proceedings of 2019 AISTATS (2019).

[176] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, Gradient Coding:
Avoiding Stragglers in Distributed Learning , in International Conference on
Machine Learning, pp. 3368–3376, 2017.

[177] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, Gradient descent only
converges to minimizers, in Conference on learning theory, pp. 1246–1257, PMLR,
2016.

[178] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, Coded computation
over heterogeneous clusters, in IEEE International Symposium on Information
Theory (ISIT), 2017, pp. 2408–2412.

[179] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi, Near-optimal
straggler mitigation for distributed gradient methods, in 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 857–866, IEEE, 2018.

[180] I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider, and M. Uhr,
Competitive baseline methods set new standards for the NIPS 2003 feature
selection benchmark, Pattern recognition letters 28 (2007), no. 12 1438–1444.

[181] A. Krizhevsky, V. Nair, and G. Hinton, Cifar-10 (canadian institute for advanced
research), .

[182] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, Dryad: distributed
data-parallel programs from sequential building blocks, EuroSys (2007).

216

[183] M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and Y. Elovici, Link
prediction in social networks using computationally efficient topological features,
in IEEE Third International Confernece on Social Computing (SocialCom),
pp. 73–80, IEEE, 2011.

[184] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, A scalable framework for
wireless distributed computing, IEEE/ACM Transactions on Networking (2017).

[185] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, Coded distributed computing:
Straggling servers and multistage dataflows, in Communication, Control, and
Computing (Allerton), 2016 54th Annual Allerton Conference on, pp. 164–171,
IEEE, 2016.

[186] K. Konstantinidis and A. Ramamoorthy, Leveraging coding techniques for
speeding up distributed computing, arXiv preprint arXiv:1802.03049 (2018).

[187] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, Compressed coded distributed
computing, arXiv preprint arXiv:1805.01993 (2018).

[188] M. A. Attia and R. Tandon, Near optimal coded data shuffling for distributed
learning, arXiv preprint arXiv:1801.01875 (2018).

[189] J. Chung, K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
Ubershuffle: Communication-efficient data shuffling for sgd via coding theory,
NIPS Workshop on ML Systems (2017).

[190] J. Lin and M. Schatz, Design patterns for efficient graph algorithms in mapreduce,
MLG Workshop (2010).

[191] L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank citation ranking:
Bringing order to the web., Tech. Rep. 1999-66, Stanford InfoLab, 1999.

[192] W. Xing and A. Ghorbani, Weighted pagerank algorithm, in Communication
Networks and Services Research, 2004. Proceedings. Second Annual Conference
on, pp. 305–314, IEEE, 2004.

[193] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and
M. Yannakakis, The complexity of multiway cuts, STOC (1992).

[194] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis,
Mizan: a system for dynamic load balancing in large-scale graph processing, in
Proceedings of the 8th ACM European Conference on Computer Systems,
pp. 169–182, 2013.

[195] F. Chung and L. Lu, The average distance in a random graph with given expected
degrees, Internet Mathematics 1 (2004), no. 1 91–113.

217

[196] R. P. E., Sen, p. k.; singer, j. m.: Large sample methods in statistics. an
introduction with applications. chapman & hall, new york-london 1993, xii,
382pp., £35.00, isbn 0–412–04221–5, Biometrical Journal 36 no. 5 602–602,
[https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.4710360511].

[197] M. Loeve, Probability Theory I. Graduate Texts in Mathematics. Springer New
York, 1977.

[198] https://github.com/AvestimehrResearchGroup/Coded-PageRank.

218

http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.4710360511
https://github.com/AvestimehrResearchGroup/Coded-PageRank

Appendix A

Supplements to Chapter 2

A.1 Proof of Theorem 2.1

We first introduce some additional notations which will be used throughput the proofs.

Additional notations. For each period k = 0, 1, · · · , K−1 and iteration t = 0, 1, · · · , τ−

1 we denote

wk+1 := wk +
1

r

∑

i∈Sk
Q
(
w

(i)
k,τ −wk

)
,

ŵk+1 := wk +
1

n

∑

i∈[n]

Q
(
w

(i)
k,τ −wk

)
,

wk,t :=
1

n

∑

i∈[n]

w
(i)
k,t. (A.1)

We begin the proof of Theorem 2.1 by noting a few key observations. Based on

the above notations and the assumptions we made earlier, the optimality gap of the

parameter server’s model at period k, i.e. E‖wk+1 −w∗‖2, can be decomposed as stated

in the following lemma.

Lemma A.1 Consider any period k = 0, · · · , K−1 and the sequences {wk+1, ŵk+1,wk,τ}
219

generated by the FedPAQ method in Algorithm 2.1. If Assumption 2.1 holds, then

E‖wk+1 −w∗‖2 = E‖wk+1 − ŵk+1‖2 + E
∥∥ŵk+1 −wk,τ

∥∥2
+ E

∥∥wk,τ −w∗
∥∥2
, (A.2)

where the expectation is with respect to all sources of randomness.

Proof: See Section A.1.1.

In the following three lemmas, we characterize each of the terms in the right-hand

side (RHS) of (A.2).

Lemma A.2 Consider the sequence of local updates in the FedPAQ method in Algorithm

2.1 and let Assumptions 2.2, 2.3 and 2.4 hold. The optimality gap for the average model

at the end of period k, i.e. wk,τ , relates to that of the initial model of the k-th period wk

as follows:

E
∥∥wk,τ −w∗

∥∥2 ≤
(
1 + nη2

k

)
(1− µηk)τ E‖wk −w∗‖2 + τ(τ − 1)2L2σ

2

n
eη2

k + τ 2σ
2

n
η2
k

+ τ 2(τ − 1)L2σ2eη4
k, (A.3)

for the stepsize ηk ≤ min{ µ
L2 ,

1
Lτ
}.

Proof: See Section A.1.2.

Lemma A.3 For the proposed FedPAQ method in Algorithm 2.1 with stepsize ηk ≤

min{ µ
L2 ,

1
Lτ
} and under Assumptions 2.1, 2.2, 2.3 and 2.4, we have

E
∥∥ŵk+1 −wk,τ

∥∥2 ≤ 2
q

n
τ 2L2η2

kE‖wk −w∗‖2 + 2qτ 2σ
2

n
η2
k + 2q(τ − 1)τ 2L2σ

2

n
eη4

k, (A.4)

where ŵk+1 and wk,τ are defined in (A.1).

Proof: See Section A.1.3.

220

Lemma A.4 For the proposed FedPAQ method in Algorithm 2.1 with stepsize ηk ≤

min{ µ
L2 ,

1
Lτ
} and under Assumptions 2.1–2.4, we have

E‖wk+1 − ŵk+1‖2

≤ n− r
r(n− 1)

8(1 + q)

{
τ 2L2η2

kE‖wk −w∗‖2 + τ 2σ2η2
k + (τ − 1)τ 2L2σ2eη4

k

}
, (A.5)

where r denotes the number of nodes contributing in each period of the FedPAQ method.

Proof: See Section A.1.4.

Now that we have established the main building modules for proving Theorem 2.1,

let us proceed with the proof by putting together the results in Lemmas A.1–A.4. That

is,

E‖wk+1 −w∗‖2

≤ E‖wk −w∗‖2

(
(
1 + nη2

k

)
(1− µηk)τ + 2L2τ 2η2

k

(
q

n
+

n− r
r(n− 1)

4(1 + q)

))

+

(
1 + 2q + 8(1 + q)

n(n− r)
r(n− 1)

)
σ2

n
τ 2η2

k + L2σ
2

n
eτ(τ − 1)2η2

k

+

(
n+ 2q + 8(1 + q)

n(n− r)
r(n− 1)

)
L2σ

2

n
e(τ − 1)τ 2η4

k (A.6)

Let us set the following notations:

δk := E‖wk −w∗‖2 ,

C0 :=
(
1 + nη2

k

)
(1− µηk)τ + 2L2τ 2η2

k

(
q

n
+

n− r
r(n− 1)

4(1 + q)

)
,

C1 :=
16

µ2

(
1 + 2q + 8(1 + q)

n(n− r)
r(n− 1)

)
σ2

n
,

C2 :=
16

µ2
L2σ

2

n
e,

221

C3 :=
256

µ4

(
n+ 2q + 8(1 + q)

n(n− r)
r(n− 1)

)
L2σ

2

n
e. (A.7)

Consider C0, the coefficient of E‖wk −w∗‖2 in (A.6). One can show that if the condition

in (2.11) in Theorem 2.1 is satisfied, then we have C0 ≤ 1 − 1
2
µτηk (See Section A.1.6).

Therefore, for each period k ≥ k0 we have

δk+1 ≤
(

1− 1

2
µτηk

)
δk +

µ2

16
C1τ

2η2
k +

µ2

16
C2τ(τ − 1)2η2

k +
µ4

256
C3(τ − 1)τ 2η4

k. (A.8)

Now, we substitute the stepsize ηk = 4µ−1

kτ+1
in (A.8) which yields

δk+1 ≤
(

1− 2

k + 1/τ

)
δk + C1

1

(k + 1/τ)2
+ C2

(τ − 1)2

τ

1

(k + 1/τ)2
+ C3

τ − 1

τ 2

1

(k + 1/τ)4
.

(A.9)

In Lemma A.5, we show the convergence analysis of such sequence. In particular, we

take k1 = 1/τ , a = C1 +C2(τ − 1)2/τ and b = C3(τ − 1)/τ 2 in Lemma A.5 and conclude

for any k ≥ k0 that

δk ≤
(k0 + 1/τ)2

(k + 1/τ)2
δk0 + C1

1

k + 1/τ
+ C2

(τ − 1)2

τ

1

k + 1/τ
+ C3

τ − 1

τ 2

1

(k + 1/τ)2
. (A.10)

Finally, rearranging the terms in (A.10) yields the desired result in Theorem 2.1, that is

E‖wk −w∗‖2 ≤ (k0τ + 1)2

(kτ + 1)2
E‖wk0 −w∗‖2 + C1

τ

kτ + 1
+ C2

(τ − 1)2

kτ + 1
+ C3

τ − 1

(kτ + 1)2
.

(A.11)

A.1.1 Proof of Lemma A.1

Let Fk,t denote the history of all sources of randomness by the t-th iteration in period

k. The following expectation arguments are conditional on the history Fk,τ which we

222

remove in our notations for simplicity. Since the random subset of nodes Sk is uniformly

picked from the set of all the nodes [n], we can write

ESkwk+1 = wk + ESk
1

r

∑

i∈Sk
Q
(
w

(i)
k,τ −wk

)

= wk +
∑

S⊆[n]
|S|=r

PrSk = S 1

r

∑

i∈Sk
Q
(
w

(i)
k,τ −wk

)

= wk +
1(
n
r

) 1

r

(
n− 1

r − 1

)∑

i∈[n]

Q
(
w

(i)
k,τ −wk

)

= wk +
1

n

∑

i∈[n]

Q
(
w

(i)
k,τ −wk

)

= ŵk+1. (A.12)

Moreover, the quantizer Q(·) is unbiased according to Assumption 2.1, which yields

EQ ŵk+1 = wk +
1

n

∑

i∈[n]

EQQ
(
w

(i)
k,τ −wk

)

=
1

n

∑

i∈[n]

w
(i)
k,τ

= wk,τ . (A.13)

Finally, since the two randomnesses induced by the quantization and random sampling

are independent, together with (A.12) and (A.13) we can conclude that:

E‖wk+1 −w∗‖2 = E
∥∥wk+1 − ŵk+1 + ŵk+1 −wk,τ + wk,τ −w∗

∥∥2

= E‖wk+1 − ŵk+1‖2 + E
∥∥ŵk+1 −wk,τ

∥∥2
+ E

∥∥wk,τ −w∗
∥∥2
. (A.14)

223

A.1.2 Proof of Lemma A.2

According to update rule in Algorithm 2.1, local model at node i for each iteration

t = 0, · · · , τ − 1 of period k = 0, · · · , K − 1 can be written as follows:

w
(i)
k,t+1 = w

(i)
k,t − ηk∇̃fi

(
w

(i)
k,t

)
, (A.15)

where all the nodes start the period with the initial model w
(i)
k,0 = wk. In parallel, let us

define another sequence of updates as follows:

βk,t+1 = βk,t − ηk∇f
(
βk,t
)
, (A.16)

also starting with βk,0 = wk. The auxiliary sequence {βk,t} represents Gradient Descent

updates over the global loss function f while w
(i)
k,t captures the sequence of SGD updates

on each local node. However, both sequences are initialized with wk at the beginning

of each period k. To evaluate the deviation
∥∥wk,τ −w∗

∥∥2
, we link the two sequences.

In particular, let us define the following notations for each k = 0, · · · , K − 1 and t =

0, · · · , τ − 1:

ek,t =
1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,t

)
−∇f

(
βk,t
)
. (A.17)

One can easily observe that Eek,0 = 0 as w
(i)
k,0 = βk,0 = wk and ∇̃fi is unbiased for ∇f .

However, Eek,t 6= 0 for t ≥ 1. In other words, 1
n

∑
i∈[n] ∇̃fi(w

(i)
k,t) is not unbiased for

∇f(βk,t). We also define ek = ek,0 + · · · + ek,τ−1 and gk = ∇f(βk,0) + · · · +∇f(βk,τ−1).

Now, the average model obtained at the end of period k can be written as

wk,τ =
1

n

∑

i∈[n]

w
(i)
k,τ

224

= wk − ηk

 1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,0

)
+ · · ·+ 1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,τ−1

)

= wk − ηk (gk + ek) . (A.18)

Therefore, the optimality gap for the averaged model can be written as

E
∥∥wk,τ −w∗

∥∥2
= E‖wk − ηkgk −w∗‖2 − 2ηkE 〈wk − ηkgk −w∗, ek〉+ η2

kE‖ek‖2

≤ E‖wk − ηkgk −w∗‖2

+ nη2
kE‖wk − ηkgk −w∗‖2 +

1

n
‖Eek‖2

+ η2
kE‖ek‖2

=
(
1 + nη2

k

)
E‖wk − ηkgk −w∗‖2 +

1

n
‖Eek‖2 + η2

kE‖ek‖2 , (A.19)

where we used the inequality −2〈a,b〉 ≤ α‖a‖2 + α−1‖b‖2 for any two vectors a,b

and scalar α > 0. In the following, we bound each of the three terms in the RHS of

(A.19). First, consider the term ‖wk − ηkgk −w∗‖2 and recall the auxiliary sequence

{βk,t} defined in (A.20). For every t and k we have

∥∥βk,t+1 −w∗
∥∥2

=
∥∥βk,t − ηk∇f(βk,t)−w∗

∥∥2

=
∥∥βk,t −w∗

∥∥2 − 2ηk
〈
βk,t −w∗,∇f(βk,t)

〉
+ η2

k

∥∥∇f(βk,t)
∥∥2

≤
(
1− 2µηk + L2η2

k

)∥∥βk,t −w∗
∥∥2

≤ (1− µηk)
∥∥βk,t −w∗

∥∥2
. (A.20)

In the above derivations, we used the facts that f is µ-strongly convex and its gradient

is L-Lipschitz (Assumptions 2.2 and 2.4). The stepsize is also picked such that ηk ≤ µ
L2 .

225

Now, conditioned on the history Fk,0 and using (A.20) we have

‖wk − ηkgk −w∗‖2 =
∥∥βk,τ −w∗

∥∥2

≤ (1− µηk)τ
∥∥βk,0 −w∗

∥∥2

= (1− µηk)τ‖wk −w∗‖2 . (A.21)

Secondly, consider the term‖Eek‖2 in (A.19). By definition, we have Eek = Eek,1 + · · ·+

Eek,τ−1 and hence ‖Eek‖2 ≤ (τ − 1)
∥∥Eek,1

∥∥2
+ · · · + (τ − 1)

∥∥Eek,τ−1

∥∥2
. The first term

∥∥Eek,1
∥∥2

can be bounded using Assumptions 2.2 and 2.3 as follows:

∥∥Eek,1
∥∥2

=

∥∥∥∥∥∥
1

n

∑

i∈[n]

E∇̃fi
(
w

(i)
k,1

)
−∇f

(
βk,1
)
∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
1

n

∑

i∈[n]

E∇f
(
w

(i)
k,1

)
−∇f

(
βk,1
)
∥∥∥∥∥∥

2

≤ 1

n

∑

i∈[n]

E
∥∥∥∥∇f

(
w

(i)
k,1

)
−∇f

(
βk,1
)∥∥∥∥

2

≤ 1

n
L2
∑

i∈[n]

E
∥∥∥w(i)

k,1 − βk,1
∥∥∥

2

=
1

n
L2
∑

i∈[n]

E

∥∥∥∥∥

(
w

(i)
k,0 − ηk∇̃fi

(
w

(i)
k,0

))
−
(
βk,0 − ηk∇f

(
βk,0
))
∥∥∥∥∥

2

=
1

n
L2η2

k

∑

i∈[n]

E
∥∥∥∇̃fi (wk)−∇f (wk)

∥∥∥
2

≤ L2σ2η2
k. (A.22)

In general, for each t = 1 · · · , τ − 1 we can write

∥∥Eek,t
∥∥2

=

∥∥∥∥∥∥
1

n

∑

i∈[n]

E∇̃fi
(
w

(i)
k,t

)
−∇f

(
βk,t
)
∥∥∥∥∥∥

2

226

=

∥∥∥∥∥∥
1

n

∑

i∈[n]

E∇f
(
w

(i)
k,t

)
−∇f

(
βk,t
)
∥∥∥∥∥∥

2

≤ 1

n

∑

i∈[n]

E
∥∥∥∥∇f

(
w

(i)
k,t

)
−∇f

(
βk,t
)∥∥∥∥

2

≤ 1

n
L2
∑

i∈[n]

E
∥∥∥w(i)

k,t − βk,t
∥∥∥

2

. (A.23)

Let us denote ak,t := 1
n

∑
i∈[n] E

∥∥∥w(i)
k,t − βk,t

∥∥∥
2

. In the following, we will derive a recursive

bound on at. That is,

ak,t =
1

n

∑

i∈[n]

E
∥∥∥w(i)

k,t − βk,t
∥∥∥

2

=
1

n

∑

i∈[n]

E

∥∥∥∥∥

(
w

(i)
k,0 − ηk∇̃fi

(
w

(i)
k,0

)
− · · · − ηk∇̃fi

(
w

(i)
k,t−1

))

−
(
βk,0 − ηk∇f

(
βk,0
)
− · · · − ηk∇f

(
βk,t−1

))
∥∥∥∥∥

2

=
1

n
η2
k

∑

i∈[n]

E

∥∥∥∥∥∇̃fi
(
w

(i)
k,0

)
−∇f

(
βk,0
)

+ · · ·+ ∇̃fi
(
w

(i)
k,t−1

)
−∇f

(
βk,t−1

)
∥∥∥∥∥

2

≤ η2
kσ

2 +
1

n
η2
k

∑

i∈[n]

E

∥∥∥∥∥∇̃fi
(
w

(i)
k,1

)
−∇f

(
βk,1
)

+ · · ·+ ∇̃fi
(
w

(i)
k,t−1

)
−∇f

(
βk,t−1

)
∥∥∥∥∥

2

≤ η2
kσ

2 +
1

n
η2
k

∑

i∈[n]

E

∥∥∥∥∥∇̃fi
(
w

(i)
k,1

)
−∇f

(
w

(i)
k,1

)
+∇f

(
w

(i)
k,1

)
−∇f

(
βk,1
)

+ · · ·+ ∇̃fi
(
w

(i)
k,t−1

)
−∇f

(
w

(i)
k,t−1

)
+∇f

(
w

(i)
k,t−1

)
−∇f

(
βk,t−1

)
∥∥∥∥∥

2

≤ tη2
kσ

2 +
1

n
η2
k

∑

i∈[n]

E

∥∥∥∥∥∇f
(
w

(i)
k,1

)
−∇f

(
βk,1
)

+ · · · ∇f
(
w

(i)
k,t−1

)
−∇f

(
βk,t−1

)
∥∥∥∥∥

2

≤ tη2
kσ

2 + (t− 1)L2η2
k

1

n

∑

i∈[n]

E

∥∥∥∥∥w
(i)
k,1 − βk,1

∥∥∥∥∥

2

+ · · · (t− 1)L2η2
k

1

n

∑

i∈[n]

E

∥∥∥∥∥w
(i)
k,t−1 − βk,t−1

∥∥∥∥∥

2

227

= tη2
kσ

2 + (t− 1)L2η2
k

(
ak,1 + · · ·+ ak,t−1

)

≤ τη2
kσ

2 + τL2η2
k

(
ak,1 + · · ·+ ak,t−1

)
. (A.24)

Therefore, for the sequence {ak,1, · · · , ak,τ−1} we have shown that

ak,t ≤ τη2
kσ

2 + τL2η2
k

(
ak,1 + · · ·+ ak,t−1

)
, (A.25)

where ak,1 ≤ σ2η2
k. We can show by induction, that such sequence satisfies the following

inequality:

ak,t ≤ τη2
kσ

2
(
1 + τL2η2

k

)t−1
. (A.26)

See Section A.1.5 for the detailed proof. Therefore, we have

‖Eek‖2 ≤ (τ − 1)
∥∥Eek,1

∥∥2
+ · · ·+ (τ − 1)

∥∥Eek,τ−1

∥∥2

≤ (τ − 1)L2 (a1 + · · ·+ aτ−1)

≤ τ(τ − 1)2L2σ2η2
k

(
1 + τL2η2

k

)τ
. (A.27)

Now, we use the inequality 1 + x ≤ ex and conclude that

‖Eek‖2 ≤ τ(τ − 1)2L2σ2η2
ke
τ2L2η2k . (A.28)

Therefore, if τ 2L2η2
k ≤ 1, we have

‖Eek‖2 ≤ τ(τ − 1)2L2σ2eη2
k. (A.29)

228

Finally, we bound the third term in (A.19), that is E‖ek‖2. Using the definition, we know

that E‖ek‖2 ≤ τE
∥∥ek,0

∥∥2
+ · · ·+ τE

∥∥ek,τ−1

∥∥2
. Firstly, note that

E
∥∥ek,0

∥∥2
= E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,0

)
−∇f

(
βk,0
)
∥∥∥∥∥∥

2

= E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇̃fi (wk)−∇f (wk)

∥∥∥∥∥∥

2

≤ σ2

n
. (A.30)

For each t = 1, · · · , τ − 1 we have

E
∥∥ek,t

∥∥2
= E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,t

)
−∇f

(
βk,t
)
∥∥∥∥∥∥

2

= E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,t

)
−∇f

(
w

(i)
k,t

)
+

1

n

∑

i∈[n]

∇f
(
w

(i)
k,t

)
−∇f

(
βk,t
)
∥∥∥∥∥∥

2

≤ σ2

n
+ L2 1

n

∑

i∈[n]

E
∥∥∥w(i)

k,t − βk,t
∥∥∥

2

=
σ2

n
+ L2ak,t. (A.31)

Summing over t = 0, 1, · · · , τ − 1 results in the following

E‖ek‖2 ≤ τE
∥∥ek,0

∥∥2
+ · · ·+ τE

∥∥ek,τ−1

∥∥2

≤ τ 2σ
2

n
+ τL2 (a1 + · · ·+ aτ−1)

≤ τ 2σ
2

n
+ τ 2(τ − 1)L2σ2η2

k

(
1 + τL2η2

k

)τ

≤ τ 2σ
2

n
+ τ 2(τ − 1)L2σ2eη2

k. (A.32)

229

Now, we can put everything together and conclude Lemma A.2, as follows

E
∥∥wk,τ −w∗

∥∥2
=
(
1 + nη2

k

)
E‖wk − ηkgk −w∗‖2 +

1

m
‖Eek‖2 + η2

kE‖ek‖2

≤
(
1 + nη2

k

)
(1− µηk)τ E‖wk −w∗‖2

+ τ(τ − 1)2L2σ
2

n
eη2

k + τ 2σ
2

n
η2
k

+ τ 2(τ − 1)L2σ2eη4
k. (A.33)

A.1.3 Proof of Lemma A.3

According to the notations defined on (A.1), we can write

E
∥∥ŵk+1 −wk,τ

∥∥2
= E

∥∥∥∥∥∥
wk +

1

n

∑

i∈[n]

Q
(
w

(i)
k,τ −wk

)
− 1

n

∑

i∈[n]

w
(i)
k,τ

∥∥∥∥∥∥

2

= E

∥∥∥∥∥∥
1

n

∑

i∈[n]

Q
(
w

(i)
k,τ −wk

)
−
(
w

(i)
k,τ −wk

)
∥∥∥∥∥∥

2

=
1

n2

∑

i∈[n]

E
∥∥∥∥Q
(
w

(i)
k,τ −wk

)
−
(
w

(i)
k,τ −wk

)∥∥∥∥
2

≤ q
1

n2

∑

i∈[n]

E
∥∥∥w(i)

k,τ −wk

∥∥∥
2

, (A.34)

where, we used Assumption 2.1. In particular, the last equality above follows from the fact

that the random quatizer is unbiased and the quantizations are carried out independently

in each iteration and each worker. Moreover, the last inequality in (A.34) simply relates

the variance of the quantization to its argument. Next, we bound E
∥∥∥w(i)

k,τ −wk

∥∥∥
2

for

230

each worker i ∈ [n]. From the update rule in Algorithm 2.1 we have

w
(i)
k,τ = wk − ηk

(
∇̃fi

(
w

(i)
k,0

)
+ · · ·+ ∇̃fi

(
w

(i)
k,τ−1

))

= wk − ηk
(
gk + e

(i)
k

)
, (A.35)

where we denote

e
(i)
k := ∇̃fi

(
w

(i)
k,0

)
−∇f

(
βk,0
)

+ · · ·+ ∇̃fi
(
w

(i)
k,τ−1

)
−∇f

(
βk,τ−1

)
, (A.36)

and gk = ∇f(βk,0) + · · ·+∇f(βk,τ−1) as defined before. Using these notations we have

E
∥∥∥w(i)

k,τ −wk

∥∥∥
2

= η2
kE
∥∥∥gk + e

(i)
k

∥∥∥
2

≤ 2η2
k‖gk‖2 + 2η2

kE
∥∥∥e(i)

k

∥∥∥
2

. (A.37)

Let us first bound the first term in (A.37), i.e. ‖gk‖2. That is,

‖gk‖2 ≤ τ
∥∥∇f(βk,0)

∥∥2
+ · · ·+ τ

∥∥∇f(βk,τ−1)
∥∥2

(a)

≤ τL2
(
‖wk −w∗‖2 + · · ·+ (1− µηk)τ−1‖wk −w∗‖2

)

≤ τ 2L2‖wk −w∗‖2 , (A.38)

where we used the smoothness of the loss function f (Assumption 2.2) and the result in

(A.20) to derive inequality (a). To bound the second term in (A.37), i.e. E
∥∥∥e(i)

k

∥∥∥
2

, we

can employ our result in (A.32) for the special case n = 1. It yields that for ηk ≤ 1
Lτ

,

E
∥∥∥e(i)

k

∥∥∥
2

≤ τ 2σ2 + τ 2(τ − 1)L2σ2eη2
k. (A.39)

231

Plugging (A.38) and (A.39) in (A.37) implies that

E
∥∥∥w(i)

k,τ −wk

∥∥∥
2

≤ 2τ 2L2η2
kE‖wk −w∗‖2 + 2τ 2σ2η2

k + 2(τ − 1)τ 2L2σ2eη4
k, (A.40)

which together with (A.34) concludes Lemma A.3:

E
∥∥ŵk+1 −wk,τ

∥∥2 ≤ 2
q

n
τ 2L2η2

kE‖wk −w∗‖2 + 2qτ 2σ
2

n
η2
k + 2q(τ − 1)τ 2L2σ

2

n
eη4

k. (A.41)

A.1.4 Proof of Lemma A.4

For each node i ∈ [n] denote z
(i)
k,τ = Q(w

(i)
k,τ −wk) and zk,τ = 1

n

∑
i∈[n] z

(i)
k,τ . Then,

ESk‖wk+1 − ŵk+1‖2 = ESk

∥∥∥∥∥∥
1

r

∑

i∈Sk
z

(i)
k,τ − zk,τ

∥∥∥∥∥∥

2

=
1

r2
ESk

∥∥∥∥∥∥
∑

i∈[n]

1{i ∈ Sk}
(
z

(i)
k,τ − zk,τ

)
∥∥∥∥∥∥

2

=
1

r2

{∑

i∈[n]

Pr i ∈ Sk
∥∥∥z(i)

k,τ − zk,τ

∥∥∥
2

+
∑

i 6=j
Pr i, j ∈ Sk

〈
z

(i)
k,τ − zk,τ , z

(j)
k,τ − zk,τ

〉}

=
1

nr

∑

i∈[n]

∥∥∥z(i)
k,τ − zk,τ

∥∥∥
2

+
r − 1

rn(n− 1)

∑

i 6=j

〈
z

(i)
k,τ − zk,τ , z

(j)
k,τ − zk,τ

〉

=
1

r(n− 1)

(
1− r

n

)∑

i∈[n]

∥∥∥z(i)
k,τ − zk,τ

∥∥∥
2

, (A.42)

232

where we used the fact that
∥∥∥z(i)

k,τ − zk,τ

∥∥∥
2

+
∑

i 6=j

〈
z

(i)
k,τ − zk,τ , z

(j)
k,τ − zk,τ

〉
= 0. Further

taking expectation with respect to the quantizer yields

∑

i∈[n]

EQ
∥∥∥z(i)

k,τ − zk,τ

∥∥∥
2

≤ 2
∑

i∈[n]

EQ
∥∥∥z(i)

k,τ

∥∥∥
2

+ 2nEQ
∥∥zk,τ

∥∥2

≤ 4
∑

i∈[n]

EQ
∥∥∥z(i)

k,τ

∥∥∥
2

= 4
∑

i∈[n]

EQ
∥∥∥∥Q
(
w

(i)
k,τ −wk

)∥∥∥∥
2

≤ 4(1 + q)
∑

i∈[n]

∥∥∥w(i)
k,τ −wk

∥∥∥
2

. (A.43)

In the above derivations, we used the fact that under Assumption 2.1 and for any w we

have E
∥∥Q(w)

∥∥2 ≤ (1 + q)‖w‖2. Therefore, (A.43) together with the equality derived in

(A.42) yields that

E‖wk+1 − ŵk+1‖2 ≤ 1

r(n− 1)

(
1− r

n

)
4(1 + q)

∑

i∈[n]

E
∥∥∥w(i)

k,τ −wk

∥∥∥
2

. (A.44)

Finally, we substitute the bound in (A.40) into (A.44) and conclude Lemma A.4 as

follows:

E‖wk+1 − ŵk+1‖2 ≤ n− r
r(n− 1)

8(1 + q)
{
τ 2L2η2E‖wk −w∗‖2 + τ 2σ2η2 + (τ − 1)τ 2L2σ2eη4

}
.

(A.45)

A.1.5 Proof of Equation (A.26)

Let us fix the period k and for simplicity of the notations in this proof, let us take

at = ak,t and η = ηk. We showed that at ≤ τη2σ2 + τL2η2 (a1 + · · ·+ at−1) for every

t = 2, · · · , τ − 1 and also a1 ≤ η2σ2. For t = 1, (A.26) holds. Assume that (A.26) holds

233

also for {a1, · · · , at−1}. Now, for at we have

at ≤ τη2σ2 + τL2η2 (a1 + · · ·+ at−1)

≤ τη2σ2 + τL2η2

t−2∑

i=0

τη2σ2
(
1 + τL2η2

)i

= τη2σ2 + τη2σ2 · τL2η2 ·
(
1 + τL2η2

)t−1 − 1

τL2η2

= τη2σ2
(
1 + τL2η2

)t−1
, (A.46)

as desired. Therefore, (A.26) holds for every t = 1, · · · , τ − 1.

A.1.6 Discussion on stepsize ηk

Here we show that for any k ≥ k0 we have C0 ≤ 1 − 1
2
µτηk, where k0 satisfies the

condition in Theorem 2.1, that is

k0 ≥ 4 max

{
L

µ
, 4

(
B1

µ2
+ 1

)
,

1

τ
,

4n

µ2τ

}
. (A.47)

First note that this condition on k0 implies the following conditions on the stepsize

ηk = 4µ−1

kτ+1
for k ≥ k0:

ηkτ ≤ min

{
1

L
,

µ

4 (µ2 +B1)

}
, and ηk ≤ min

{
µ

L2
,
µ

4n

}
. (A.48)

Now consider the term (1− µηk)τ in C0. We have

(1− µηk)τ =

(
1− µτηk

τ

)τ

≤ e−µτηk

234

≤ 1− µτηk + µ2τ 2η2
k, (A.49)

where the first inequality follows from the assumption ηk ≤ 1
µ

and the second inequality

uses the fact that ex ≤ 1 + x+ x2 for x ≤ 0. Therefore,

C0 ≤
(
1 + nη2

k

) (
1− µτηk + µ2τ 2η2

k

)
+B1τ

2η2
k

= 1− µτηk + τ 2η2
k(B1 + µ2) + nη2

k

(
1− µτηk + µ2τ 2η2

k

)
. (A.50)

Note that from the assumption ηk ≤ 1
Lτ

we have 0 ≤ µτηk ≤ µ
L
≤ 1. This implies that

1− µτηk + µ2τ 2η2
k ≤ 1. Hence,

C0 ≤ 1− µτηk + τ 2η2
k(B1 + µ2) + nη2

k. (A.51)

Now from the condition ηkτ ≤ µ
4(B1+µ2)

we have

τ 2η2
k(B1 + µ2) ≤ 1

4
µτηk, (A.52)

and from ηk ≤ µ
4n

we have

nη2
k ≤

1

4
µτηk, (A.53)

sine τ ≥ 1. Plugging (A.52) and (A.53) in (A.51) yields that for any k ≥ k0 we have

C0 ≤ 1− 1
2
µτηk.

235

A.1.7 Skipped lemmas and proofs

Lemma A.5 Let a non-negative sequence δk satisfy the following

δk+1 ≤
(

1− 2

k + k1

)
δk +

a

(k + k1)2
+

b

(k + k1)4
, (A.54)

for every k ≥ k0, where a, b, c, k1 are positive reals and k0 is a positive integer. Then for

every k ≥ k0 we have

δk ≤
(k0 + k1)2

(k + k1)2
δk0 +

a

k + k1

+
b

(k + k1)2
. (A.55)

Proof: We prove by induction on k ≥ k0. The claim in (A.55) is trivial for k = k0.

Let (A.55) hold for s ≥ k0, that is

δs ≤
(k0 + k1)2

(s+ k1)2
δk0 +

a

s+ k1

+
b

(s+ k1)2
. (A.56)

We can then write

δs+1 ≤
(

1− 2

s+ k1

)
δs +

a

s+ k1

+
b

(s+ k1)2

≤
(

1− 2

s+ k1

)(
(k0 + k1)2

(s+ k1)2
δk0 +

a

s+ k1

+
b

(s+ k1)2

)
+

a

(s+ k1)2
+

b

(s+ k1)4

=
s+ k1 − 2

(s+ k1)3
(k0 + k1)2δk0 +

s+ k1 − 1

(s+ k1)2
a+

(s+ k1 − 1)2

(s+ k1)4
b. (A.57)

Now, take s′ = s+ k1. We have for s′ ≥ 1 that

s′ − 2

s′3
≤ 1

(s′ + 1)2
,

s′ − 1

s′2
≤ 1

s′ + 1
,

(s′ − 1)2

s′4
≤ 1

(s′ + 1)2
. (A.58)

Plugging (A.58) in (A.57) yields that the claim in (A.55) holds for s + 1 and hence for

236

any k ≥ k0.

A.2 Proof of Theorem 2.2

We begin the proof of Theorem 2.2 by noting the following property for any smooth

loss function.

Lemma A.6 Consider the sequences of updates {wk+1, ŵk+1,wk,τ} generated by FedPAQ

method in Algorithm 2.1. If Assumptions 2.1 and 2.2 hold, then

Ef(wk+1) ≤ Ef(wk,τ) +
L

2
E
∥∥ŵk+1 −wk,τ

∥∥2
+
L

2
E‖ŵk+1 −wk+1‖2 , (A.59)

for any period k = 0, · · · , K − 1.

Proof: See Section A.2.2.

In the following three lemmas, we bound each of the three terms in the RHS of (A.59).

Lemma A.7 Let Assumptions 2.2 and 2.3 hold and consider the sequence of updates in

FedPAQ method with stepsize η. Then, for every period k = 0, · · · , K − 1 we have

Ef(wk,τ) ≤ Ef(wk)−
1

2
η

τ−1∑

t=0

E
∥∥∇f(wk,t)

∥∥2

− η
(

1

2n
− 1

2n
Lη − 1

n
L2τ(τ − 1)η2

) τ−1∑

t=0

∑

i∈[n]

E
∥∥∥∥∇f

(
w

(i)
k,t

)∥∥∥∥
2

+ η2L

2

σ2

n
τ + η3σ

2

n
(n+ 1)

τ(τ − 1)

2
L2. (A.60)

Proof: See Section A.2.3.

237

Lemma A.8 If Assumptions 2.1 and 2.3 hold, then for sequences {ŵk+1,wk,τ} defined

in (A.1) we have

E
∥∥ŵk+1 −wk,τ

∥∥2 ≤ q
σ2

n
τη2 + q

1

n2
τη2

∑

i∈[n]

τ−1∑

t=0

∥∥∥∥∇f
(
w

(i)
k,t

)∥∥∥∥
2

. (A.61)

Proof: See Section A.2.4.

Lemma A.9 Under Assumptions 2.1 and 2.3, for the sequence of averages {ŵk+1} de-

fined in (A.1) we have

E‖ŵk+1 −wk+1‖2 ≤ 1

r(n− 1)

(
1− r

n

)
4(1 + q)

nσ

2τη2 + τη2
∑

i∈[n]

τ−1∑

t=0

∥∥∥∥∇f
(
w

(i)
k,t

)∥∥∥∥
2

 .

(A.62)

Proof: See Section A.2.5.

After establishing the main building modules in the above lemmas, we now proceed

to prove the convergence rate in Theorem 2.2. In particular, we combine the results in

Lemmas A.6–A.9 to derive the following recursive inequality on the expected function

value on the models updated at the parameter servers, i.e. {wk : k = 1, · · · , K}:

Ef(wk+1) ≤ Ef(wk)−
1

2
η
τ−1∑

t=0

E
∥∥∇f(wk,t)

∥∥2

− η 1

2n

(
1− L

(
1 +

1

n
qτ + 4

n− r
r(n− 1)

(1 + q)τ

)
η − 2L2τ(τ − 1)η2

)

×
τ−1∑

t=0

∑

i∈[n]

E
∥∥∥∥∇f

(
w

(i)
k,t

)∥∥∥∥
2

+ η2L

2
(1 + q)τ

(
σ2

m
+ 4

σ2

r

n− r
n− 1

)
+ η3σ

2

m
(m+ 1)

τ(τ − 1)

2
L2. (A.63)

238

For sufficiently small η, such that

1− Lη − L
(

1

n
q + 4

n− r
r(n− 1)

(1 + q)

)
τη − 2L2τ(τ − 1)η2 ≥ 0, (A.64)

we have

Ef(wk+1) ≤ Ef(wk)−
1

2
η
τ−1∑

t=0

E
∥∥∇f(wk,t)

∥∥2

+ η2L

2
(1 + q)τ

(
σ2

n
+ 4

σ2

r

n− r
n− 1

)
+ η3σ

2

n
(n+ 1)

τ(τ − 1)

2
L2. (A.65)

In Section A.2.1 we show that if the stepsize is picked as η = 1/L
√
T and the T ans τ satisfy

the condition (2.16) in Theorem 2.2, then (A.64) also holds. Now summing (A.65) over

k = 0, · · · , K − 1 and rearranging the terms yield that

1

2
η
K−1∑

k=0

τ−1∑

t=0

E
∥∥∇f(wk,t)

∥∥2

≤ f(w0)− f ∗ +Kη2L

2
(1 + q)τ

(
σ2

n
+ 4

σ2

r

n− r
n− 1

)
+Kη3σ

2

n
(n+ 1)

τ(τ − 1)

2
L2,

(A.66)

or

1

Kτ

K−1∑

k=0

τ−1∑

t=0

E
∥∥∇f(wk,t)

∥∥2

≤ 2(f(w0)− f ∗)
ηKτ

+ ηL(1 + q)

(
σ2

n
+ 4

σ2

r

n− r
n− 1

)
+ η2σ

2

n
(n+ 1)(τ − 1)L2. (A.67)

Picking the stepsize η = 1/L
√
T = 1/L

√
Kτ results in the following convergence rate:

1

T

K−1∑

k=0

τ−1∑

t=0

E
∥∥∇f(wk,t)

∥∥2

239

≤ 2L(f(w0)− f ∗)√
T

+ (1 + q)

(
σ2

n
+
σ2

r

n− r
n− 1

)
1√
T

+
σ2

n
(n+ 1)

τ − 1

T
, (A.68)

which completes the proof of Theorem 2.2.

A.2.1 Discussion on stepsize η

Here, we consider the constraint on the stepsize derived in (A.64) and show that if η

is picked according to Theorem 2.2, then it also satisfies (A.64). First, let the stepsize

satisfy 1− Lη ≥ 0.1. Now, if the following holds

L

(
1

n
q + 4

n− r
r(n− 1)

(1 + q)

)
τη + 2L2(τη)2 ≤ 0.1, (A.69)

the condition in (A.64) also holds. It is straightforward to see when (A.69) holds. To do

so, consider the following quadratic inequality in terms of y = ητ :

2L2y2 + LB2y − 0.1 ≤ 0, (A.70)

where

B2 :=
1

n
q + 4

n− r
r(n− 1)

(1 + q). (A.71)

We can solve the quadratic form in (A.70) for y = ητ which yields

ητ ≤
√
B2

2 + 0.8−B2

4L
. (A.72)

This implies that if the parameter τ and the stepsize η satisfy (A.72) and η ≤ 0.9/L, then

the condition (A.64) is satisfied. In particular, for our pick of η = 1/L
√
T , the condition

240

η ≤ 0.9/L holds if T ≥ 2; and the constraint in (A.72) is equivalent to having

τ ≤
√
B2

2 + 0.8−B2

8

√
T . (A.73)

A.2.2 Proof of Lemma A.6

Recall that for any L-smooth function f and variables w,w′ we have

f(w) ≤ f(w′) +
〈
∇f(w′),w −w′

〉
+
L

2

∥∥w −w′
∥∥2
. (A.74)

Therefore, we can write

f(wk+1) = f(ŵk+1 + wk+1 − ŵk+1)

≤ f(ŵk+1) +
〈
∇f(ŵk+1),wk+1 − ŵk+1

〉
+
L

2
‖wk+1 − ŵk+1‖2 . (A.75)

We take expectation of both sides of (A.75) and since ŵk+1 is unbiased for wk+1, that is

ESkwk+1 = ŵk+1 (See (A.12)), it yields that

Ef(wk+1) ≤ Ef(ŵk+1) +
L

2
E‖ŵk+1 −wk+1‖2 . (A.76)

Moreover, ŵk+1 is also unbiased for wk,τ , i.e. EQŵk+1 = wk,τ (See (A.13)), and since f

is L-smooth, we can write

Ef(ŵk+1) ≤ Ef(wk,τ) +
L

2
E
∥∥ŵk+1 −wk,τ

∥∥2
, (A.77)

which together with (A.76) concludes the lemma.

241

A.2.3 Proof of Lemma A.7

According to the update rule in Algorithm 2.1, for every t = 0, · · · , τ − 1 the average

model is

wk,t+1 = wk,t − η
1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,t

)
. (A.78)

Since f is L-smooth, we can write

f(wk,t+1) ≤ f(wk,t)− η
〈
∇f(wk,t),

1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,t

)〉
+ η2L

2

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,t

)
∥∥∥∥∥∥

2

.

(A.79)

The inner product term above can be written in expectation as follows:

2E

〈
∇f(wk,t),

1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,t

)〉
=

1

n

∑

i∈[n]

2E
〈
∇f(wk,t),∇f

(
w

(i)
k,t

)〉

= E
∥∥∇f(wk,t)

∥∥2
+

1

n

∑

i∈[n]

E
∥∥∥∥∇f

(
w

(i)
k,t

)∥∥∥∥
2

− 1

n

∑

i∈[n]

E
∥∥∥∥∇f(wk,t)−∇f

(
w

(i)
k,t

)∥∥∥∥
2

, (A.80)

where we used the identity 2〈a,b〉 =‖a‖2 +‖b‖2 −‖a− b‖2 for any two vectors a,b. In

the following, we bound each of the three terms in the RHS of (A.80). Starting with the

third term, we use the smoothness assumption to write

∥∥∥∥∇f(wk,t)−∇f
(
w

(i)
k,t

)∥∥∥∥
2

≤ L2
∥∥∥wk,t −w

(i)
k,t

∥∥∥
2

. (A.81)

242

Moreover, local models w
(i)
k,t and average model wk,t are respectively

w
(i)
k,t = wk − η

(
∇̃fi(wk) + ∇̃fi

(
w

(i)
k,1

)
+ · · ·+ ∇̃fi

(
w

(i)
k,t−1

))
, (A.82)

and

wk,t = wkτ − η

 1

n

∑

j∈[n]

∇̃fj(wk) +
1

n

∑

j∈[n]

∇̃fj
(
w

(j)
k,1

)
+ · · ·+ 1

n

∑

j∈[n]

∇̃fj
(
w

(j)
k,t−1

)

 .

(A.83)

Therefore, the expected deviation of each local model form the average model can be

written as

E
∥∥∥wk,t −w

(i)
k,t

∥∥∥
2

≤ 2η2E

∥∥∥∥∥∥
1

n

∑

j∈[n]

∇̃fj(wk) +
1

n

∑

j∈[n]

∇̃fj
(
w

(j)
k,1

)
+ · · ·+ 1

n

∑

j∈[n]

∇̃fj
(
w

(j)
k,t−1

)
∥∥∥∥∥∥

2

+ 2η2E
∥∥∥∥∇̃fi(wk) + ∇̃fi

(
w

(i)
k,1

)
+ · · ·+ ∇̃fi

(
w

(i)
k,t−1

)∥∥∥∥
2

≤ 2η2

tσ

2

n
+

∥∥∥∥∥∥
1

n

∑

j∈[n]

∇f(wk) +
1

n

∑

j∈[n]

∇f
(
w

(j)
k,1

)
+ · · ·+ 1

n

∑

j∈[n]

∇f
(
w

(j)
k,t−1

)
∥∥∥∥∥∥

2

+ 2η2

(
tσ2 +

∥∥∥∥∇f(wk) +∇f
(
w

(i)
k,1

)
+ · · ·+∇f

(
w

(i)
k,t−1

)∥∥∥∥
2
)

≤ 2η2t

 1

n

∑

j∈[n]

∥∥∇f(wk)
∥∥2

+
1

n

∑

j∈[n]

∥∥∥∥∇f
(
w

(j)
k,1

)∥∥∥∥
2

+ · · ·+ 1

n

∑

j∈[n]

∥∥∥∥∇f
(
w

(j)
k,t−1

)∥∥∥∥
2

+ 2η2tσ2 + 2η2t

(
∥∥∇f(wk)

∥∥2
+

∥∥∥∥∇f
(
w

(i)
k,1

)∥∥∥∥
2

+ · · ·+
∥∥∥∥∇f

(
w

(i)
k,t−1

)∥∥∥∥
2
)

+ 2η2t
σ2

n
.

(A.84)

243

Summing (A.84) over all the workers i ∈ [n] yields

∑

i∈[n]

E
∥∥∥wk,t −w

(i)
k,t

∥∥∥
2

≤ 2η2tσ2 + 2η2t

∑

j∈[n]

∥∥∇f(wk)
∥∥2

+
∑

j∈[n]

∥∥∥∥∇f
(
w

(j)
k,1

)∥∥∥∥
2

+ · · ·+
∑

j∈[n]

∥∥∥∥∇f
(
w

(j)
k,t−1

)∥∥∥∥
2

+ 2η2tσ2n+ 2η2t

∑

i∈[n]

∥∥∇f(wk)
∥∥2

+
∑

i∈[n]

∥∥∥∥∇f
(
w

(i)
k,1

)∥∥∥∥
2

+ · · ·+
∑

i∈[n]

∥∥∥∥∇f
(
w

(i)
k,t−1

)∥∥∥∥
2

= 2η2tσ2(n+ 1)

+ 4η2t

∑

j∈[n]

∥∥∇f(wk)
∥∥2

+
∑

j∈[n]

∥∥∥∥∇f
(
w

(j)
k,1

)∥∥∥∥
2

+ · · ·+
∑

j∈[n]

∥∥∥∥∇f
(
w

(j)
k,t−1

)∥∥∥∥
2

 . (A.85)

Finally, summing (A.85) over t = 0, · · · , τ − 1 results in the following:

τ−1∑

t=0

∑

i∈[n]

E
∥∥∥wk,t −w

(i)
k,t

∥∥∥
2

≤ 2η2σ2(n+ 1)
τ−1∑

t=0

t

+ 4η2

τ−1∑

t=0

t

∑

j∈[n]

∥∥∇f(wk)
∥∥2

+
∑

j∈[n]

∥∥∥∥∇f
(
w

(j)
k,1

)∥∥∥∥
2

+ · · ·+
∑

j∈[n]

∥∥∥∥∇f
(
w

(j)
k,t−1

)∥∥∥∥
2

≤ η2σ2(n+ 1)τ(τ − 1) + 2η2τ(τ − 1)
τ−2∑

t=0

∑

i∈[n]

∥∥∥∥∇f
(
w

(i)
k,t

)∥∥∥∥
2

. (A.86)

Next, we bound the third term in (D.1). Using Assumption 2.3 we have

E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,t

)
∥∥∥∥∥∥

2

= E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇f
(
w

(i)
k,t

)
∥∥∥∥∥∥

2

+ E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,t

)
−∇f

(
w

(i)
k,t

)
∥∥∥∥∥∥

2

≤ 1

n

∑

i∈[n]

E
∥∥∥∥∇f

(
w

(i)
k,t

)∥∥∥∥
2

+
σ2

n
. (A.87)

244

Summing (A.87) over iterations t = 0, · · · , τ − 1 yields

τ−1∑

t=0

η2L

2
E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,t

)
∥∥∥∥∥∥

2

≤ η2L

2

1

n

τ−1∑

t=0

∑

i∈[n]

E
∥∥∥∥∇f

(
w

(i)
k,t

)∥∥∥∥
2

+ η2L

2

σ2

n
τ. (A.88)

Now we can sum (D.1) for t = 0, · · · , τ − 1 and use the results in (A.86) and (A.88) to

conclude:

Ef(wk,τ) ≤ Ef(wk)−
1

2
η
τ−1∑

t=0

E
∥∥∇f(wk,t)

∥∥2 − 1

2n
η
τ−1∑

t=0

∑

i∈[n]

E
∥∥∥∥∇f

(
w

(i)
k,t

)∥∥∥∥
2

+
1

2n
η
τ−1∑

t=0

∑

i∈[n]

E
∥∥∥∥∇f(wk,t)−∇f

(
w

(i)
k,t

)∥∥∥∥
2

+
τ−1∑

t=0

η2L

2
E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇̃fi
(
w

(i)
k,t

)
∥∥∥∥∥∥

2

≤ Ef(wk)−
1

2
η
τ−1∑

t=0

E
∥∥∇f(wk,t)

∥∥2

− η
(

1

2n
− 1

2n
Lη − 1

n
L2τ(τ − 1)η2

) τ−1∑

t=0

∑

i∈[n]

E
∥∥∥∥∇f

(
w

(i)
k,t

)∥∥∥∥
2

+ η2L

2

σ2

n
τ + η3σ

2

n
(n+ 1)

τ(τ − 1)

2
L2. (A.89)

A.2.4 Proof of Lemma A.8

According to definitions in (A.1) and using Assumption 2.1 we have

E
∥∥ŵk+1 −wk,τ

∥∥2 ≤ 1

n2

∑

i∈[n]

q E
∥∥∥w(i)

k,τ −wk

∥∥∥
2

. (A.90)

Using the model update in (A.82) and Assumption 2.3, we can write

E
∥∥∥w(i)

k,τ −wk

∥∥∥
2

= η2E
∥∥∥∥∇̃fi(wk) + ∇̃fi

(
w

(i)
k,1

)
+ · · ·+ ∇̃fi

(
w

(i)
k,τ−1

)∥∥∥∥
2

= η2E
∥∥∥∥∇̃fi(wk)−∇f(wk) + · · ·+ ∇̃fi

(
w

(i)
k,τ−1

)
−∇f

(
w

(i)
k,τ−1

)∥∥∥∥
2

245

+ η2

∥∥∥∥∇f(wkτ) + · · ·+∇f
(
w

(i)
k,τ−1

)∥∥∥∥
2

≤ η2σ2τ + η2τ

τ−1∑

t=0

∥∥∥∥∇f
(
w

(i)
k,t

)∥∥∥∥
2

. (A.91)

Summing (A.91) over all workers i ∈ [n] and using (A.90) yields

E
∥∥ŵk+1 −wk,τ

∥∥2 ≤ q
σ2

n
τη2 + q

1

n2
τη2

∑

i∈[n]

τ−1∑

t=0

∥∥∥∥∇f
(
w

(i)
k,t

)∥∥∥∥
2

, (A.92)

as desired in Lemma A.8.

A.2.5 Proof of Lemma A.9

The steps to prove the bound in (A.44) for strongly convex losses in Lemma A.4

can also be applied for non-convex losses. That is, we can use (A.44) and together with

(A.91) conclude the following:

E‖ŵk+1 −wk+1‖2 ≤ 1

r(n− 1)

(
1− r

n

)
4(1 + q)

∑

i∈[n]

∥∥∥w(i)
k,τ −wk

∥∥∥
2

≤ 1

r(n− 1)

(
1− r

n

)
4(1 + q)

nσ

2τη2 + τη2
∑

i∈[n]

τ−1∑

t=0

∥∥∥∥∇f
(
w

(i)
k,t

)∥∥∥∥
2

 .

(A.93)

246

Appendix B

Supplements to Chapter 3

B.1 Proof of Proposition 3.1

Let us present and prove the following lemma which includes the claim in Proposition

3.1.

Lemma B.1 Consider two subsets of nodes Nm ⊆ Nn and assume that model wm at-

tains the statistical accuracy for the empirical risk associated with nodes in Nm, that is,

‖∇Lm(wm)‖2 ≤ 2µVms where the loss function ` is µ-strongly convex. Then the subopti-

mality of wm for risk Ln, i.e., Ln(wm)− Ln(w∗n) is w.h.p. bounded above as follows:

Ln(wm)− Ln(w∗n) ≤ 2(n−m)

n

(
V(n−m)s + Vms

)
+ Vms. (B.1)

Moreover, norms of local and global gradients are upper-bounded w.h.p. as follows:

‖∇Ln(wm)‖2 ≤ 2

(
n−m
n

)2 (
V

1/2
(n−m)s + V 1/2

ms

)2

+ 4µVms, (B.2)

247

and

‖∇Li(wm)‖2 ≤ 3(2µ+ 1)Vms + 3Vs. (B.3)

Proof: We begin the proof of Lemma B.1 by proving the inequality in (B.1). Let us

decompose the sub-otpimiality error Ln(wm)−Ln(w∗n) to four difference terms as follows:

Ln(wm)− Ln(w∗n) = Ln(wm)− Lm(wm) + Lm(wm)− Lm(w∗m)

+ Lm(w∗m)− Lm(w∗n) + Lm(w∗n)− Ln(w∗n). (B.4)

From definition of local empirical risks in (3.1), the difference of local risks Ln(w) and

Lm(w) for any w can be bounded w.h.p. as follows:

Ln(w)− Lm(w) ≤
∣∣Ln(w)− Lm(w)

∣∣

=

∣∣∣∣∣∣
1

n

∑

i∈Nn
Li(w)− 1

m

∑

i∈Nm
Li(w)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

n

∑

i∈Nn\Nm

Li(w)− n−m
n
· 1

m

∑

i∈Nm
Li(w)

∣∣∣∣∣∣

=
n−m
n

∣∣∣∣∣∣
1

n−m
∑

i∈Nn\Nm

Li(w)− 1

m

∑

i∈Nm
Li(w)

∣∣∣∣∣∣

≤ n−m
n

∣∣∣∣∣∣
1

n−m
∑

i∈Nn\Nm

Li(w)− L(w)

∣∣∣∣∣∣
+
n−m
n

∣∣∣∣∣∣
1

m

∑

i∈Nm
Li(w)− L(w)

∣∣∣∣∣∣

≤ n−m
n

(
V(n−m)s + Vms

)
, (B.5)

where the last inequality is implied from Assumption 3.2 when applied to empirical risks

1
n−m

∑
i∈Nn\Nm L

i(w) and 1
m

∑
i∈Nm L

i(w) with (n −m)s and ms samples, respectfully.

We now proceed to bound the next term in (B.4), that is the optimality gap Lm(wm)−
248

Lm(w∗m). Using the strong convexity assumption in Assumption 3.1 and the condition

‖∇Lm(wm)‖2 ≤ 2µVms assumed to hold in the statement of the lemma, we can write

Lm(wm)− Lm(w∗m) ≤ 1

2µ

∥∥∇Lm(wm)
∥∥2 ≤ 2µVms

2µ
= Vms. (B.6)

Next, the term Lm(w∗m)−Lm(w∗n) in (B.4) can be simply bounded as Lm(w∗m)−Lm(w∗n) ≤

0, since w∗m is the minimizer of Lm(w). Finally, to bound Lm(w∗n)−Ln(w∗n) in (B.4), we

use the result in (B.5) which holds for any w and here we pick w = w∗n to conclude

Lm(w∗n)− Ln(w∗n) ≤ n−m
n

(
V(n−m)s + Vms

)
. (B.7)

Putting the upper bounds for the four terms in (B.4) together proves inequality (B.1)

which is the same claim as in Proposition 3.1.

Next we prove inequality (B.2) by first noting the following:

∥∥∇Ln(wm)
∥∥2 ≤ 2

∥∥∇Ln(wm)−∇Lm(wm)
∥∥2

+ 2
∥∥∇Lm(wm)

∥∥2
. (B.8)

The first term ‖∇Ln(wm)−∇Lm(wm)‖ can be bounded as follows:

∥∥∇Ln(wm)−∇Lm(wm)
∥∥ =

∥∥∥∥∥∥
1

n

∑

i∈Nn
∇Li(w)− 1

m

∑

i∈Nm
∇Li(w)

∥∥∥∥∥∥

=

∥∥∥∥∥∥
1

n

∑

i∈Nn\Nm

∇Li(w)− n−m
n
· 1

m

∑

i∈Nm
∇Li(w)

∥∥∥∥∥∥

=
n−m
n

∥∥∥∥∥∥
1

n−m
∑

i∈Nn\Nm

∇Li(w)− 1

m

∑

i∈Nm
∇Li(w)

∥∥∥∥∥∥

≤ n−m
n

∥∥∥∥∥∥
1

n−m
∑

i∈Nn\Nm

∇Li(w)−∇L(w)

∥∥∥∥∥∥

249

+
n−m
n

∥∥∥∥∥∥
1

m

∑

i∈Nm
∇Li(w)−∇L(w)

∥∥∥∥∥∥

≤ n−m
n

(
V

1/2
(n−m)s + V 1/2

ms

)
. (B.9)

In the last inequality above, we used Assumption 3.2 to upper-bound the approxima-

tion of empirical gradients for (n −m)s and ms samples. Together with (B.8) and the

assumption of the lemma, that is
∥∥∇Lm(wm)

∥∥2 ≤ 2µVms, the claim in (B.2) is concluded:

‖∇Ln(wm)‖2 ≤ 2

(
n−m
n

)2 (
V

1/2
(n−m)s + V 1/2

ms

)2

+ 4µVms. (B.10)

Finally, we prove the claim in inequality (B.3) by bounding node i’s local gradient

∇Li(wm) as follows:

∥∥∥∇Li(wm)
∥∥∥

2

≤ 3
∥∥∥∇Li(wm)−∇L(wm)

∥∥∥
2

+ 3
∥∥∇Lm(wm)−∇L(wm)

∥∥2
+ 3
∥∥∇Lm(wm)

∥∥2

≤ 3Vs + 3Vms + 6µVms

= 3(2µ+ 1)Vms + 3Vs, (B.11)

where we used Assumption 3.2 to upper-bound the approximation error of empirical

gradients for node i with s samples and m nodes with ms samples.

B.2 Proof of Theorem 3.1

Consider a stage of Algorithm 3.2 running with n participating nodes. More precisely,

n nodes in {1, · · · , n} begin a sequence of local and global model updates according

to FedGATE initialized with wm obtained from the previous stage (n = 2m). After Rn

250

communication rounds each with τn local updates, the final sub-optimality error is upper-

bounded as follows: (refer to Algorithm 2 and Theorem E.6 in [56] with no quantization)

E[Ln(w)− Ln(w∗n)] ≤
(

1− 1

3
µηnγnτn

)Rn (
Ln(wm)− Ln(w∗n)

)

+ 24κ3Lτ 2
nη

2
n

1

n

n∑

i=1

∥∥∥∇Li(wm)
∥∥∥

2

+ 24κLτ 2
nη

2
n

∥∥∇Ln(wm)
∥∥2

+ 24κ2L2τ 2
nη

3
nσ

2 + 15κL3τ 3
nη

2
n(ηnγn)2σ

2

n
+
L

2
ηnγn

σ2

n
, (B.12)

where two stepsizes ηn, γn satisfy the following conditions:

1− Lηnγnτn +
10η2

nτ
4
nL

4(ηnγn)2

1− µτnγnηn + 20µγnη3
nL

2η3
n

≤ 1 & 30η2
nL

2τ 2
n ≤ 1. (B.13)

To satisfy the two conditions in (B.13), we can pick stepsizes ηn, γn such that

2ηnγnτnL = 1 & 30η2
nL

2τ 2
n ≤ 1. (B.14)

Now we use the result in Lemma B.1 and put n = 2m to conclude that

Ln(wm)− Ln(w∗n) ≤ 3Vms,

‖∇Ln(wm)‖2 ≤ 2(2µ+ 1)Vms,

‖∇Li(wm)‖2 ≤ 3(2µ+ 1)Vms + 3Vs. (B.15)

Substituting the three inequalities (B.15) in the sub-optimality error (B.12) yields that

E[Ln(w)− Ln(w∗n)] ≤ 3

(
1− 1

3
µηnγnτn

)Rn
Vms

+ 72κ3Lτ 2
nη

2
n

(
(2µ+ 1)Vms + Vs

)
+ 48(2µ+ 1)κLτ 2

nη
2
nVms

251

+ 24κ2L2τ 2
nη

3
nσ

2 + 15κL3τ 3
nη

2
n(ηnγn)2σ

2

n
+
L

2
ηnγn

σ2

n
. (B.16)

We use the fact that 2ηnγnτnL = 1 and rearrange the terms in (B.16) and rewrite it as

follows:

E[Ln(w)− Ln(w∗n)] ≤ 3

(
1− 1

6κ

)Rn
Vms

+ 72κ3Lτ 2
nη

2
nVs + 24(3κ2 + 2)(2µ+ 1)κLτ 2

nη
2
nVms

+ 24κ2L2τ 2
nη

3
nσ

2 +
15

4
κLτnη

2
n

σ2

n
+
L

2
ηnγn

σ2

n
. (B.17)

To ensure that a model w = wn attains the statistical accuracy of Ln(w), i.s. E[Ln(wn)−

Ln(w∗n)] ≤ Vns, it suffices to have each of the six terms in RHS of (B.17) less than or

equal to Vns/6. That is,

3

(
1− 1

6κ

)Rn
Vms ≤

Vns
6
,

72κ3Lτ 2
nη

2
nVs ≤

Vns
6
,

24(3κ2 + 2)(2µ+ 1)κLτ 2
nη

2
nVms ≤

Vns
6
,

24κ2L2τ 2
nη

3
nσ

2 ≤ Vns
6
,

15

4
κLτnη

2
n

σ2

n
≤ Vns

6
,

L

2
ηnγn

σ2

n
≤ Vns

6
, (B.18)

where n = 2m and Vns = c
ns

for any n. One can check that the following picks for the

stepsizes ηn, γn satisfies all the conditions in (B.13) and (B.18):

ηn =
αn
τn
√
n
,

252

γn =

√
n

2αnL
, (B.19)

where

αn ≤ min

1

12
√

3κ
√
κL

,

√
n

12
√

2(3κ2 + 2)(2µ+ 1)κL
,

(√
n

96κ2L2

)1/3

,

√
n√

15cκL
,

√
n

L
√

30

 .

(B.20)

Moreover, the first and the last conditions in (B.18) yield that the number of local updates

and the number of communication rounds for the stage with n participating nodes are

τn =
3

2

σ2s

c
,

Rn = 12κ ln(6). (B.21)

B.3 Proof of Proposition 3.2

In order to characterize the runtime of FedGATE, we first need to determine its two

major parameters τ and R. More precisely, we run FedGATE algorithm with all the N

available nodes while initialized with arbitrary model w0 and look for τ, R after which the

global model w̃ attains the statistical accuracy of LN(w), i.e. E[LN(w̃)−LN(w∗N)] ≤ VNs.

We use the convergence guarantee of FedGATE [56] in (B.12) with n = N nodes, that is,

E[LN(w)− LN(w∗N)] ≤
(

1− 1

3
µηγτ

)R (
LN(w0)− LN(w∗N)

)

+ 24κ3Lτ 2η2 1

N

N∑

i=1

∥∥∥∇Li(w0)
∥∥∥

2

+ 24κLτ 2η2
∥∥∇LN(w0)

∥∥2

+ 24κ2L2τ 2η3σ2 + 15κL3τ 3η2(ηγ)2σ
2

N
+
L

2
ηγ
σ2

N
, (B.22)

253

where the stepsizes η, γ satisfy the following conditions:

1− Lηγτ +
10η2τ 4L4(ηγ)2

1− µτγη + 20µγη3L2η3
≤ 1 and 30η2L2τ 2 ≤ 1. (B.23)

Note that the initial model w0 is arbitrary and therefore the initial sub-optimality error

can be treated as a constant (and not scaling with N), that is, LN(w0)−LN(w∗N) = ∆0

for a constant ∆0 = O(1). Similarly, we can assume that 1
N

∑N
i=1

∥∥∇Li(w0)
∥∥2

= ∆′0 for a

constant ∆′0 = O(1) which also yields that
∥∥∇LN(w0)

∥∥2 ≤ ∆′0. We can therefore further

simplify (B.22) and write

E[LN(w)− LN(w∗N)] ≤
(

1− 1

3
µηγτ

)R
∆0 + 24κ(κ2 + 1)Lτ 2η2∆′0

+ 24κ2L2τ 2η3σ2 + 15κL3τ 3η2(ηγ)2σ
2

N
+
L

2
ηγ
σ2

N
. (B.24)

We furthermore pick the parameters such that 2ηγτL = 1 which further simplifies (B.24)

as follows:

E[LN(w)− LN(w∗N)] ≤
(

1− 1

6κ

)R
∆0 + 24κ(κ2 + 1)Lτ 2η2∆′0

+ 24κ2L2τ 2η3σ2 +
15

4
κLτη2σ

2

N
+
L

2
ηγ
σ2

N
. (B.25)

Now to ensure that E[LN(w̃)−LN(w∗N)] ≤ VNs holds for a model w̃ in (B.25), it suffices

to satisfy the following inequalities:

(
1− 1

6κ

)R
∆0 ≤

VNs
5
,

24κ(κ2 + 1)Lτ 2η2∆′0 ≤
VNs
5
,

24κ2L2τ 2η3σ2 ≤ VNs
5
,

254

15

4
κLτη2σ

2

N
≤ VNs

5
,

L

2
ηγ
σ2

N
≤ VNs

5
, (B.26)

with VNs = c
Ns

. The following picks for the stepsizes satisfy the aforementioned conditions

η =
α

τ
√
Ns

,

γ =

√
Ns

2αL
, (B.27)

where

α ≤ min

√
c

2
√

30
√
κ(κ2 + 1)L∆′0

,

(√
Ns

96κ2L2

)1/3

,

√
Ns√

15κL
,

√
Ns

L
√

30

 . (B.28)

Moreover, the number of local updates and the number of communication rounds to reach

the final statistical accuracy are as follows:

τ =
5

4

σ2s

c
= O(s),

R = 6κ ln

(
5∆0Ns

c

)
= O(κ ln(Ns)). (B.29)

Now note that the expected runtime of each communication round of FedGATE is τTN

as the server has to wait for the slowest node that is node N with processing time TN .

Therefore, the total expected wall-clock time of FedGATE to reach the final statistical

accuracy of all the samples of the N nodes in LN(w) is

T̄FedGATE = RτTN = O(κsσ2 ln(Ns)TN),

as claimed in Proposition 3.2.

255

B.4 Proof of Theorem 3.2

Recall the result in Proposition 3.2 and the following discussion in (3.3). As discussed,

the average runtime for the proposed FLANP with FedGATE in Algorithm 3.2 is as follows:

T̄FLANP = RFLANP τFLANP
∑

i=n0, 2n0, 4n0,··· , N
Ti =

18 ln(6)

c
κsσ2 (Tn0 + T2n0 + · · ·+ TN) , (B.30)

where RFLANP = 12κ ln(6) and τFLANP = 1.5sσ2/c per Theorem 3.1. Moreover, we showed

in Proposition 3.2 that the expected runtime for FedGATE is

E[T̄FedGATE] = RFedGATE τFedGATE TN =
15

2c
κsσ2 ln

(
5∆0Ns

c

)
TN . (B.31)

In the case that clients’ computation times Tis are random, the expected runtimes are

E[T̄FLANP] =
18 ln(6)

c
κsσ2

(
E[Tn0] + E[T2n0] + · · ·+ E[TN]

)
,

E[T̄FedGATE] =
15

2c
κsσ2 ln

(
5∆0Ns

c

)
E[TN]. (B.32)

Therefore, in order to derive the runtime gain E[TFLANP]
E[TFedGATE]

, we first characterize the ratio

E[Tn0] + E[T2n0] + · · ·+ E[TN]

E[TN]
, (B.33)

where the clients runtimes Ti are i.i.d. with random exponential distribution exp(λ) with

rate λ. Note that we assumed that the clients are sorted with respect to their processing

speeds from fastest to slowest. Here, since the computation times Tis are random, we

first sort them as T(1) ≤ T(2) ≤ T(3) ≤ · · ·T(N). Without loss of generality and for

256

simplification, let us take n0 = 1 and λ = 1 and proceed to bound the ratio

E[T(1)] + E[T(2)] + E[T(4)] + · · ·+ E[T(N)]

E[T(N)]
. (B.34)

We first provide the following facts about i.i.d. random exponential variables. If Ti ∼

exp(1) are i.i.d. random variables from exponential distribution with mean value of 1,

then the order statistics T(i) have the following properties:

T(1) ∼ exp

(
1

N

)
, T(i) − T(i−1) ∼ exp

(
1

N − i+ 1

)
. (B.35)

Therefore, the expected value of client i’s computation speed T(i) can be written as

E[T(i)] = E[T(i) − T(i−1)] + E[T(i−1) − T(i−2)] + · · ·+ E[T(2) − T(1)] + E[T(1)]

=
1

N − i+ 1
+

1

N − i+ 2
+ · · ·+ 1

N − 1
+

1

N

= HN −HN−i, (B.36)

for any 1 ≤ n ≤ N . In above, Hn = 1+ 1
2

+ 1
3

+ · · ·+ 1
n

denotes the nth harmonic number.

Now we use the bounds ln(n)+γ ≤ Hn ≤ ln(n+1)+γ for each n ≥ 2 where γ ≈ 0.577 is

the Euler-Mascheroni constant. For further simplification, we assume that N is a power

of 2, that is N = 2K for some integer K. Therefore, we can write

E[T(1)] = HN −HN−1 ≤ ln(N + 1)− ln(N − 1),

E[T(2)] = HN −HN−2 ≤ ln(N + 1)− ln(N − 2),

E[T(4)] = HN −HN−4 ≤ ln(N + 1)− ln(N − 4),

E[T(8)] = HN −HN−8 ≤ ln(N + 1)− ln(N − 8),

...

257

E[T(N/2)] = HN −HN/2 ≤ ln(N + 1)− ln(N/2),

E[T(N)] = HN ≤ ln(N + 1) + γ. (B.37)

Therefore, we can bound the numerator of the ratio in (B.34) as follows:

E[T(1)] + E[T(2)] + E[T(4)] + · · ·+ E[T(N)]

≤ (K + 1) ln
(

2K + 1
)

+ γ − ln

((
2K − 1

)(
2K − 2

)(
2K − 4

)
· · ·
(

2K−1
))

≤ (K + 1) ln
(

2K + 1
)

+ γ − (K2 −K) ln(2)

≤ (K + 1)

(
K ln(2) +

1

2K

)
+ γ − (K2 −K) ln(2)

= K

(
2 ln(2) +

1

2K

)
+

1

2K
+ γ (B.38)

Moreover, the denominator of the ratio in (B.34) can be bounded as follows:

E[T(N)] = HN ≥ ln(N) + γ = K ln(2) + γ. (B.39)

Putting (B.38) and (B.39) together, we can bound the ratio in (B.34) as follows:

E[T(1)] + E[T(2)] + E[T(4)] + · · ·+ E[T(N)]

E[T(N)]
≤ K

(
2 ln(2) + 1

2K

)
+ 1

2K
+ γ

K ln(2) + γ
≤ 2 +

1

N
.

(B.40)

Now, we are able to precisely characterize the speedup gain of FLANP compared to

FedGATE according to the expressions in (B.32) and the ratio in (B.40) to conclude that

E[T̄FLANP]

E[T̄FedGATE]
=

12 ln(6)

5 ln (5c−1∆0Ns)

E[T(1)] + E[T(2)] + E[T(4)] + · · ·+ E[T(N)]

E[T(N)]

≤ 12 ln(6)

5 ln (5c−1∆0Ns)

(
2 +

1

N

)

258

= O
(

1

ln(Ns)

)
, (B.41)

which completes the proof of Theorem 3.2.

259

Appendix C

Supplements to Chapter 4

C.1 Preliminaries and Useful Lemmas

In this section, we provide preliminary and useful results in order to prove Theorems

4.1 and 4.2. For notational convenience, we use the following short-hand notations:

Now, we present a set of useful lemmas and observations which we will invoke to prove

the convergence results for both PL-PL and nonconvex-PL loss cases. The following

lemma establishes the Lipschitz gradient parameter for the global function given those

of the local objectives.

Lemma C.1 If the local functions f is have Lipschits gradients with parameters stated

in Assumption 4.3, then the global function f has also Lipschitz gradients as follows: for

any w,w′,Ψ,Ψ′ it holds that

∥∥∇wf(w,Ψ)−∇wf(w′,Ψ)
∥∥ ≤ L1

∥∥w −w′
∥∥ ,

∥∥∇wf(w,Ψ)−∇wf(w,Ψ′)
∥∥ ≤ L12√

n

∥∥Ψ−Ψ′
∥∥
F
,

∥∥∇Ψf(w,Ψ)−∇Ψf(w′,Ψ)
∥∥
F
≤ L21√

n

∥∥w −w′
∥∥ ,

260

Notation Description

ψi
t =

(
Λi
t , δ

i
t

)
maximization variables of node i iteration t

Ψt =
(
ψ1
t ; · · · ; ψn

t

) concatenation of all nodes’ maximization
models at iteration t

wt =
1

n

∑

i∈[n]

wi
t average model at iteration t

at = E[Φ(wt)]− Φ∗
optimality gap measure

between Φ(wt) and minw Φ(w)

bt = E[Φ(wt)− f(wt,Ψt)]
optimality gap measure

between f(wt,Ψt) and maxΨ f(wt,Ψ)

et =
1

n

∑

i∈[n]

E
∥∥∥wi

t −wt

∥∥∥
2 average deviation of the local models

from the average model at iteration t

gt = E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇wf i(wi
t,ψ

i
t)

∥∥∥∥∥∥

2

norm squared of
local gradients w.r.t w at iteration t

ht = E

∥∥∥∥∥∥
∇Φ(wt)−

1

n

∑

i∈[n]

∇wf i(wi
t,ψ

i
t)

∥∥∥∥∥∥

2

norm squared of deviation in gradients w.r.t w
of maxΨ f(wt,Ψ) and local functions f i(wi

t,ψ
i
t)

Table C.1: Table of notations.

∥∥∇Ψf(w,Ψ)−∇Ψf(w,Ψ′)
∥∥
F
≤ L2

n

∥∥Ψ−Ψ′
∥∥
F
. (C.1)

Proof: We defer the proof to Section C.4.1.

Recall the definition of the function Φ(·), that is,

Φ(w) := max
Ψ

f(w,Ψ) = max
ψ1,··· ,ψn

1

n

∑

i∈[n]

f i(w,ψi) = max
(Λ1,δ1),··· ,(Λn,δn)

1

n

∑

i∈[n]

f i(w,Λi, δi).

(C.2)

Next lemma shows that Φ has Lipschitz gradients and characterizes its parameter.

Lemma C.2 ([99]) If Assumptions 4.3 and 4.4 (ii) hold, that is, the local objectives

261

have Lipschitz gradients and −f(w, ·) is µ2-PL, then we have

∇Φ(w) = ∇wf(w,Ψ∗(w)), (C.3)

where Ψ∗(w) ∈ arg maxΨ f(w,Ψ) for any w. Moreover, Φ has Lipschitz gradients with

parameter LΦ = L1 + L12L21

2nµ2
.

Proof: We defer the proof to Section C.4.2.

Next lemma shows the contraction of the sequence {E[Φ(wt)]}t≥0 when running the

update rule of FedRobust method in Algorithm 4.1. Please refer to Table C.1 to recall

the definition of ht and gt.

Lemma C.3 If Assumptions 4.2 and 4.3 hold, then the iterates of FedRobust satisfy

the following contraction inequality for any iteration t ≥ 0

E[Φ(wt+1)]− E[Φ(wt)] ≤ −
η1

2
E
∥∥∇Φ(wt)

∥∥2
+
η1

2
ht −

η1

2
(1− η1LΦ) gt + η2

1

LΦ

2

σ2
w

n
.

(C.4)

Proof: We defer the proof to Section C.4.3.

Next lemma further bounds ht w.r.t. the two sequences bt and et.

Lemma C.4 If Assumptions 4.3 and 4.4 (ii) hold, that is, the local objectives have

Lipschitz gradients and −f(w, ·) is µ2-PL, then we have

ht ≤
4L2

12

µ2n
bt + 2L2

1et. (C.5)

Proof: We defer the proof to Section C.4.4.

Next lemma establishes a contraction bound on the sequence bt.

262

Lemma C.5 If Assumptions 4.2, 4.3 and 4.4 (ii) hold, then the sequence of {bt}t≥0

generated by the FedRobust iterations with η2 ≤ 1/L2 satisfies the following contraction

bound:

bt+1 ≤ (1− µ2η2n)

(
1 + η1

4L2
12

µ2n

)
bt +

η1

2
E
∥∥∇Φ(wt)

∥∥2
+
η2

1

2

(
L1 + LΦ + 2η2L

2
21

)
gt

+
(
η1L

2
1 + η2L

2
21

)
et +

η2
1

2

(
L1 + LΦ + 2η2L

2
21

) σ2
w

n
+
η2

2

2
L2σ

2
ψ, (C.6)

where LΦ is the Lipschitz gradient parameter of the function Φ(·) characterized in Lemma

C.2.

Proof: We defer the proof to Section C.4.5.

Next lemma bounds et, that is the average deviation of local parameter models from their

average.

Lemma C.6 If Assumptions 4.1, 4.2 and 4.3 hold and the step-size η1 satisfies 32η2
1(τ−

1)2L2
1 ≤ 1, then the sequence et = 1

n

∑
i∈[n] E

∥∥wi
t −wt

∥∥2
is bounded as follows

et ≤ 16η2
1(τ − 1)2ρ2 + 4η2

1(τ − 1)(n+ 1)
σ2
w

n
+ 20η2

1(τ − 1)
t−1∑

l=tc+1

gl, (C.7)

where tc denotes the index of the most recent server-worker communication, i.e. tc =
⌊
t
τ

⌋
τ

and we also denote ρ2 := 3ρ2
f + 6L2

12(ε21 + ε22).

Proof: We defer the proof to Section C.4.6.

Next generic lemma is adopted form [70].

Lemma C.7 Assume that two non-negative sequences {Pt}t≥0 and {gt}t≥0 satisfy the

following inequality for each iteration t ≥ 0 and some constants 0 < Υ < 1, L ≥ 0,

263

B ≥ 0, and Γ ≥ 0:

Pt+1 ≤ ΥPt −
η1

2
(1− η1L) gt + η2

1B

t−1∑

l=tc+1

gl + Γ, (C.8)

where tc =
⌊
t
τ

⌋
τ . Then, for each t ≥ 0 we have

Pt ≤ ΥtP0 +
Γ

1−Υ
, (C.9)

if η1 satisfies the following condition

η1

(
L+

2B

Υτ−1(1−Υ)

)
≤ 1. (C.10)

Proof: We defer the proof to Section C.4.7.

Next lemma bounds the overall optimality gap bt averaged over T iterations.

Lemma C.8 If Assumptions 4.2, 4.3 and 4.4 (ii) hold and the step-sizes satisfy the

conditions η2 ≤ 1/L2 and η2
η1
≥ 8L2

12

µ22n
2 , then the average of the sequence {bt}T−1

t=0 generated

from the FedRobust can be bounded as follows:

1

T

T−1∑

t=0

bt ≤
4L2

2

µ2
2n

2

ε21 + ε22
η2T

+
η1

η2

1

µ2n

1

T

T−1∑

t=0

E
∥∥∇Φ(wt)

∥∥2

+
η2

1

η2

1

µ2n

(
L1 + LΦ + 2η2L

2
21

) 1

T

T−1∑

t=0

gt +
1

η2

2

µ2n

(
η1L

2
1 + η2L

2
21

) 1

T

T−1∑

t=0

et

+
η2

1

η2

1

µ2n

(
L1 + LΦ + 2η2L

2
21

) σ2
w

n
+ η2

L2

µ2n
σ2
ψ, (C.11)

where LΦ is the Lipschitz gradient parameter of the function Φ(·) characterized in Lemma

C.2 and ε1, ε2 represent the radius of the affine perturbation balls, i.e. ‖Λi− I‖ ≤ ε1 and

‖δi‖ ≤ ε2 for each node i ∈ [n].

264

Proof: We defer the proof to Section C.4.8.

Next lemma bounds the averaged local model deviations et over T iterations.

Lemma C.9 If Assumptions 4.1, 4.2 and 4.3 hold and the step-size η1 satisfies 32η2
1(τ−

1)2L2
1 ≤ 1, then the average of the sequence et over t = 0, · · · , T −1 is bounded as follows

1

T

T−1∑

t=0

et ≤ 20η2
1(τ − 1)2 1

T

T−1∑

t=0

gt + 16η2
1(τ − 1)2ρ2 + 8η2

1(τ − 1)(n+ 1)
σ2
w

n
. (C.12)

Proof: We defer the proof to Section C.4.9.

C.2 Proof of Theorem 4.1

Having established the key lemmas, now we proceed to prove Theorem 4.1 for any

β ≤ 1/2. To show the convergence of the sequence Pt = at + βbt, we firstly need to

establish a contraction inequality on Pt+1 with respect to Pt. We begin by the following

bound on the sequence at = E[Φ(wt)]− Φ∗ which is directly implied from Lemma C.3:

at+1 ≤ at −
η1

2
E
∥∥∇Φ(wt)

∥∥2
+
η1

2
ht −

η1

2
(1− η1LΦ) gt + η2

1

LΦ

2

σ2
w

n
. (C.13)

Using Lemma C.4 that shows ht ≤ 4L2
12bt/(µ2n) + 2L2

1et, the bound in (C.13) yields that

at+1 ≤ at −
η1

2
E
∥∥∇Φ(wt)

∥∥2
+ η1

2L2
12

µ2n
bt + η1L

2
1et −

η1

2
(1− η1LΦ) gt + η2

1

LΦ

2

σ2
w

n
. (C.14)

Next, we employ the result of Lemma C.5 which establishes a contraction bound on the

bt sequence. Putting together with (C.14) implies that

Pt+1 = at+1 + βbt+1

≤ at −
η1

2
(1− β)E

∥∥∇Φ(wt)
∥∥2

265

+ β

η1

2L2
12

βµ2n
+ (1− µ2η2n)

(
1 + η1

4L2
12

µ2n

)
 bt

−
(
η1

2
(1− η1LΦ)− η2

1

β

2

(
L1 + LΦ + 2η2L

2
21

))
gt

+
(
η1L

2
1 + β

(
η1L

2
1 + η2L

2
21

))
et

+
η2

1

2

(
LΦ + β

(
L1 + LΦ + 2η2L

2
21

)) σ2
w

n
+ η2

2L2
β

2
σ2
ψ. (C.15)

We begin simplifying the above bound by first considering the first two terms in RHS of

(C.15). We can show that the function Φ(·) is µ1-PL [98], which implies that

E
∥∥∇Φ(wt)

∥∥2 ≥ 2µ1E[Φ(wt)]− Φ∗ = 2µ1at. (C.16)

Therefore, for any β ≤ 1/2 we have

at −
η1

2
(1− β)E

∥∥∇Φ(wt)
∥∥2 ≤

(
1− 1

2
µ1η1

)
at, (C.17)

which implies the coefficient of at in (C.15) is bounded by 1− 1
2
µ1η1. Next, the coefficient

of βbt in (C.15) can be bounded as follows:

η1
2L2

12

βµ2n
+ (1− µ2η2n)

(
1 + η1

4L2
12

µ2n

)

= 1− η1
L1L2

µ2n

(
µ2

2η2n

η1L1L2

− 2L2
21

βL1L2

− 4(1− µ2η2n)
L2

21

L1L2

)

(a)

≤ 1− η1
L1L2

µ2n
(b)

≤ 1− 1

2
µ1η1, (C.18)

266

where (a) holds for our choice of β and assuming
µ22η2n

η1L1L2
≥ 1 + (4 + 2

β
)
L2
12

L1L2
and (b) is

implies from the fact that

η1
L1L2

µ2n

1
2
µ1η1

= 2

(
L1

µ1

)(
L2

µ2n

)
≥ 1. (C.19)

Now that we have bounded the coefficients of at and βbt in (C.15), rearranging the terms

and using the assumption η2 ≤ 1/L2 simplifies the contraction on Pt as follows

Pt+1 ≤
(

1− 1

2
µ1η1

)
Pt −

η1

2

(
1− η1L̂β

)
gt + L̃βet + η2

1

L̂β
2

σ2
w

n
+ η2

2

L2

2
βσ2

ψ, (C.20)

where we picked the following notations for convenient of the exposition

L̃β = (1 + β)η1L
2
1 + βη2L

2
21, L̂β = (1 + β)LΦ + βL1 + 2β

L2
21

L2

. (C.21)

Next, we use Lemma C.6 which for 32η2
1(τ − 1)2L2

1 ≤ 1 provides an upper bound on et

with respect to gt. We can write

Pt+1 ≤
(

1− 1

2
µ1η1

)
Pt −

η1

2

(
1− η1L̂β

)
gt + 20η2

1L̃β(τ − 1)
t−1∑

l=tc+1

gl

+ 16η2
1L̃β(τ − 1)2ρ2 + 4η2

1L̃β(τ − 1)(n+ 1)
σ2
w

n
+ η2

1

L̂β
2

σ2
w

n
+ η2

2

L2

2
βσ2

ψ. (C.22)

We have shown in Lemma C.7 that how a such contraction sequence converges. In

particular, let us pick the following notations and apply the result of Lemma C.7 to

contraction in (C.22)

L = L̂β,

Υ = 1− 1

2
µ1η1,

267

B = 20L̃β(τ − 1),

Γ = 16η2
1L̃β(τ − 1)2ρ2 + 4η2

1L̃β(τ − 1)(n+ 1)
σ2
w

n
+ η2

1

L̂β
2

σ2
w

n
+ η2

2

L2

2
βσ2

ψ. (C.23)

It implies that if the step-sizes satisfy the following condition

η1

L̂β +

80L̃β(τ − 1)

η1µ1

(
1− 1

2
µ1η1

)τ−1

 ≤ 1, (C.24)

then we have

Pt ≤
(

1− 1

2
µ1η1

)t
P0 + 32η1

L̃β
µ1

(τ − 1)2ρ2

+ 8η1
L̃β
µ1

(τ − 1)(n+ 1)
σ2
w

n
+ η1

L̂β
µ1

σ2
w

n
+
η2

2

η1

L2

µ1

βσ2
ψ, (C.25)

which concludes the proof of Theorem 4.1. Note to hold this result, in addition to

condition (C.24), we have assumed the following constraints on the step-sizes as well

η2L2 ≤ 1, 32η2
1(τ − 1)2L2

1 ≤ 1,
µ2

2η2n

η1L1L2

≥ 1 +

(
4 +

2

β

)
L2

12

L1L2

. (C.26)

C.3 Proof of Theorem 4.2

We begin the proof by combining the results of Lemmas C.3 and C.4 which yields

that for every iteration t = 0, · · · , T − 1 we have

E[Φ(wt+1)]− E[Φ(wt)] ≤ −
η1

2
E
∥∥∇Φ(wt)

∥∥2 − η1

2
(1− η1LΦ) gt

+ η1
2L2

12

µ2n
bt + η1L

2
1et + η2

1

LΦ

2

σ2
w

n
. (C.27)

268

Summing up all the T inequalities in (C.27) for t = 0, · · · , T −1 and dividing by T yields

the following

1

T

(
E[Φ(wT)]− Φ(w0)

)
≤ −η1

2

1

T

T−1∑

t=0

E
∥∥∇Φ(wt)

∥∥2 − η1

2
(1− η1LΦ)

1

T

T−1∑

t=0

gt

+ η1
2L2

12

µ2n

1

T

T−1∑

t=0

bt + η1L
2
1

1

T

T−1∑

t=0

et + η2
1

LΦ

2

σ2
w

n
. (C.28)

Next we use Lemmas C.8 and then Lemma C.9 to replace the terms 1
T

∑T−1
t=0 bt and

1
T

∑T−1
t=0 et and rewrite the above bound in terms of 1

T

∑T−1
t=0 gt. It yields that

1

T

(
E[Φ(wT)]− Φ(w0)

)
≤ −η1

2

(
1− η1

4L2
12L2

µ2
2n

2

)
1

T

T−1∑

t=0

E
∥∥∇Φ(wt)

∥∥2

− η1

2

(
1− η1

(
L̂+ 40L̃(τ − 1)2

)) 1

T

T−1∑

t=0

gt

+
η1

η2

8L2
12L

2
2

µ3
2n

3

ε21 + ε22
T

+ 16η2
1L̃(τ − 1)2ρ2

+
η2

1

2
L̂
σ2
w

n
+ η1η2

4L2
12

µ2
2n

2
L̂σ2

ψ, (C.29)

where we adopt the following short-hand notations

L̃ =
3

2
η1L

2
1 +

1

2
η2L

2
21, L̂ =

3

2
LΦ +

1

2
L1 +

L2
21

L2

. (C.30)

Finally, we use the assumption η1(L̂ + 40L̃(τ − 1)2) ≤ 1 to remove the term 1
T

∑T−1
t=0 gt

and apply η1
η2
≤ µ22n

2

8L2
12

to simply the bound and conclude the proof:

1

T

T−1∑

t=0

E
∥∥∇Φ(wt)

∥∥2 ≤ 4∆Φ

η1T
+

4L2
2

µ2
2n

2

ε21 + ε22
η1T

+ 64η1L̃(τ − 1)2ρ2

+ 16η1L̃(τ − 1)(n+ 1)
σ2
w

n
+ 2η1L̂

σ2
w

n
+
η2

2

η1

L2σ
2
ψ. (C.31)

269

C.4 Proof of Useful Lemmas

C.4.1 Proof of Lemma C.1

Proof of all four cases in the claim is simple. We derive the proof for the fourth one

as an instance. Recall definition of the global function f , that is

f(w,Ψ) =
1

n

∑

i∈[n]

f i(w,ψi). (C.32)

Therefore, the gradient of f with respect to Ψ is

∇Ψf(w,Ψ) =

∂
∂ψ1f(w,Ψ)

...

∂
∂ψn

f(w,Ψ)

=
1

n

∇ψf 1(w,ψ1)

...

∇ψfn(w,ψn)

. (C.33)

We can then write for any w,Ψ = (ψ1; · · · ;ψn),Ψ′ = (ψ′1; · · · ;ψ′n) and using Assump-

tion 4.3 that

∥∥∇Ψf(w,Ψ)−∇Ψf(w,Ψ′)
∥∥2

F
=

1

n2

∑

i∈[n]

∥∥∥∇ψf i(w,ψi)−∇ψf i(w,ψ′i)
∥∥∥

2

F

≤ L2
2

n2

∑

i∈[n]

∥∥∥ψi −ψ′i
∥∥∥

2

F

=
L2

2

n2

∥∥Ψ−Ψ′
∥∥2

F
. (C.34)

C.4.2 Proof of Lemma C.2

The detailed proof can be found in [99], Lemma A.5. Note that in our case, according

to Lemma C.1 the function f has Lipschitz gradients with constants L1, L12/
√
n, L21/

√
n,

270

L2/n; implying the Lipschitz gradient parameter of the function Φ to be

LΦ = L1 +
(L12/

√
n)(L21/

√
n)

2µ2

= L1 +
L12L21

2nµ2

. (C.35)

C.4.3 Proof of Lemma C.3

We invoke Lemma C.2 which shows that the gradient of the function Φ(·) is LΦ-

Lipschitz. We can write

Φ(wt+1)− Φ(wt) ≤
〈
∇Φ(wt),wt+1 −wt

〉
+
LΦ

2
‖wt+1 −wt‖2

= −η1

〈
∇Φ(wt),

1

n

∑

i∈[n]

∇̃wf
i(wit,ψ

i
t)

〉
+ η2

1

LΦ

2

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇̃wf
i(wit,ψ

i
t)

∥∥∥∥∥∥

2

,

(C.36)

where we use the update rule of FedRobust and note that the difference of averaged

models can be written as wt+1 − wt = −η1
1
n

∑
i∈[n] ∇̃wf

i(wit,ψ
i
t). Moreover, since the

stochastic gradients ∇̃wf
i are unbiased and variance-bounded by σ2

w, we can take expec-

tation from both sides of (C.36) and further simplify it as follows

E[Φ(wt+1)− E[Φ(wt)] ≤ −
η1

2
E
∥∥∇Φ(wt)

∥∥2
+
η1

2
ht −

η1

2
(1− η1LΦ) gt + η2

1

LΦ

2

σ2
w

n
.

(C.37)

In above, we used the inequality 2〈a,b〉 = ‖a‖2 +‖b‖2−‖a−b‖2 as well as the notations

for gt and ht as defined in Table C.1.

271

C.4.4 Proof of Lemma C.4

We begin bounding ht by adding/subtracting the term ∇wf(wt,Ψt) and use the

inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 to write

ht = E

∥∥∥∥∥∥
∇Φ(wt)−

1

n

∑

i∈[n]

∇wf i(wi
t,ψ

i
t)

∥∥∥∥∥∥

2

≤ 2E
∥∥∇Φ(wt)−∇wf(wt,Ψt)

∥∥2
+ 2E

∥∥∥∥∥∥
∇wf(wt,Ψt)−

1

n

∑

i∈[n]

∇wf i(wi
t,ψ

i
t)

∥∥∥∥∥∥

2

.

(C.38)

The first term in RHS of (C.38) can be bounded as follows:

E
∥∥∇Φ(wt)−∇wf(wt,Ψt)

∥∥2
= E

∥∥∇wf(wt,Ψ
∗(wt))−∇wf(wt,Ψt)

∥∥2

(a)

≤ L2
12

n
E
∥∥Ψ∗(wt)−Ψt

∥∥2

F

(b)

≤ 2L2
12

µ2n
E
[
Φ(wt)− f(wt,Ψt)

]

(c)
=

2L2
12

µ2n
bt. (C.39)

In above and to derive (a), we employ the result of Lemma C.1 which shows that given

Assumption 4.3, the gradient function ∇wf(w, ·) is L12/
√
n Lipschitz. To derive (b), we

use Assumption 4.4 (ii) and lastly, (c) is implied from the definition of bt. The second

term in RHS of (C.38) can be bounded by noting that the local gradients ∇wf i(·,ψi)

are L1-Lipschitz, which we can write

E

∥∥∥∥∥∥
∇wf(wt,Ψt)−

1

n

∑

i∈[n]

∇wf i(wi
t,ψ

i
t)

∥∥∥∥∥∥

2

272

= E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇wf i(wt,ψ
i
t)−

1

n

∑

i∈[n]

∇wf i(wi
t,ψ

i
t)

∥∥∥∥∥∥

2

≤ L2
1

n

∑

i∈[n]

E
∥∥∥wi

t −wt

∥∥∥
2

= L2
1et. (C.40)

Finally, plugging (C.39) and (C.40) back in (C.38) implies the claim of the lemma, that

is

ht ≤
4L2

12

µ2n
bt + 2L2

1et. (C.41)

C.4.5 Proof of Lemma C.5

We begin the proof by noting the definition of bt and use the fact that the gradients

∇Ψf(w, ·) are L2

n
-Lipschitz (Refer to Lemma C.1). We can accordingly write

Φ(wt+1)− f(wt+1,Ψt+1) ≤ Φ(wt+1)− f(wt+1,Ψt)− 〈∇Ψf(wt+1,Ψt),Ψt+1 −Ψt〉

+
L2

2n
‖Ψt+1 −Ψt‖2

F . (C.42)

In this work, we define the inner product for any two matrices A,B as follows

〈A,B〉 := Tr(A>B). (C.43)

Note that according to the ascent update rule of FedRobust in Algorithm 4.1, we can

write

Ψt+1 −Ψt = η2∂̃tf, (C.44)

273

where we adopt the following short-hand notation for the stochastic gradients at iteration

t with respect to the maximization variables ψi
t = (Λi

t, δ
i
t)

∂̃tf =

∇̃ψf
1(w1

t ,ψ
1
t)

...

∇̃ψf
n(wn

t ,ψ
n
t)

=

∇̃Λf
1(w1

t ,Λ
1
t , δ

1
t) ∇̃δf

1(w1
t ,Λ

1
t , δ

1
t)

...
...

∇̃Λf
n(wn

t ,Λ
n
t , δ

n
t) ∇̃δf

n(wn
t ,Λ

n
t , δ

n
t)

. (C.45)

We also denote the gradients by ∂tf = E[∂̃tf] where the expectation is with respect to

the randomness in stochastic gradients ∇̃ψf
i. According to Assumption 4.2, each of the

local stochastic gradients ∇̃ψf
i(wi

t,ψ
i
t) are variance-bounded by σ2

ψ. Therefore, we can

bound the variance of ∂̃tf as E‖∂̃tf − ∂tf‖2
F ≤ nσ2

ψ. Now, we can plug these back in

(C.42) which implies

Φ(wt+1)− Ef(wt+1,Ψt+1) ≤ Φ(wt+1)− f(wt+1,Ψt)− η2
n

2

∥∥∇Ψf(wt+1,Ψt)
∥∥2

F
+ η2

2

L2

2
σ2
ψ

+ η2
n

2

∥∥∥∥∇Ψf(wt+1,Ψt)−
1

n
∂tf

∥∥∥∥
2

F

− η2

2n
(1− η2L2)‖∂tf‖2

F ,

(C.46)

where the expectation is with respect to the randomness of the stochastic gradients ∂̃tf

while conditioning on all the randomness history. Now recall from Assumption 4.4 (ii)

that−f(wt+1, ·) is µ2-PL implying that ‖∇Ψf(wt+1,Ψt)‖2
F ≥ 2µ2(Φ(wt+1)−f(wt+1,Ψt)).

Moreover, assume that η2 ≤ 1/L2 to remove the last term in (C.46). Putting altogether

implies that

Φ(wt+1)− Ef(wt+1,Ψt+1) ≤ (1− µ2η2n)
(
Φ(wt+1)− f(wt+1,Ψt)

)
+ η2

2

L2

2
σ2
ψ

+ η2
n

2

∥∥∥∥∇Ψf(wt+1,Ψt)−
1

n
∂tf

∥∥∥∥
2

F

. (C.47)

274

Next, we continue to bound the last term in RHS of (C.47). We can write

∥∥∥∥∇Ψf(wt+1,Ψt)−
1

n
∂tf

∥∥∥∥
2

F

=
1

n2

∑

i∈[n]

∥∥∥∇ψf i(wt+1,ψ
i
t)−∇ψf i(wi

t,ψ
i
t)
∥∥∥

2

F

≤ L2
21

n2

∑

i∈[n]

∥∥∥wt+1 −wi
t

∥∥∥
2

≤ 2L2
21

n2

∑

i∈[n]

∥∥∥wi
t −wt

∥∥∥
2

+
2L2

21

n
‖wt+1 −wt‖2 , (C.48)

where the first inequality above uses Assumption 4.3 on Lipschitz continuity of local

gradients and the second inequality simply uses the inequality ‖a+b‖2 ≤ 2‖a‖2 +2‖b‖2.

Next, let us bound the term ‖wt+1 −wt‖2 in expectation as follows. Using the descent

update rule in Algorithm 4.1 and considering Assumption 4.2 on variance of the stochastic

gradients ∇̃wf
i we can write

E‖wt+1 −wt‖2 = η2
1E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇̃wf
i(wi

t,ψ
i
t)

∥∥∥∥∥∥

2

≤ η2
1E

∥∥∥∥∥∥
1

n

∑

i∈[n]

∇wf i(wi
t,ψ

i
t)

∥∥∥∥∥∥

2

+ η2
1

σ2
w

n

= η2
1gt + η2

1

σ2
w

n
, (C.49)

where we use the short-hand notation of gt also listed in Table C.1. Plugging (C.49) back

in (C.48) and noting the notation et = 1
n

∑
i∈[n] E

∥∥wi
t −wt

∥∥2
implies that

E
∥∥∥∥∇Ψf(wt+1,Ψt)−

1

n
∂tf

∥∥∥∥
2

F

≤ 2L2
21

n
et + η2

1

2L2
21

n
gt + η2

1

2L2
21

n

σ2
w

n
. (C.50)

Before proceeding to bound more terms, let us recall what we have shown till this point.

We plug (C.50) back in (C.47), take the expectation with respect to all the sources of

275

randomness and use the notation bt = E[Φ(wt)− f(wt,Ψt)] to conclude

bt+1 ≤ (1− µ2η2n)E
[
Φ(wt+1)− f(wt+1,Ψt)

]

+ η2L
2
21et + η2

1η2L
2
21gt + η2

1η2L
2
21

σ2
w

n
+ η2

2

L2

2
σ2
ψ. (C.51)

To bound the term E
[
Φ(wt+1)− f(wt+1,Ψt)

]
, we can decompose it to the following

three terms:

Φ(wt+1)− f(wt+1,Ψt) = Φ(wt)− f(wt,Ψt) + f(wt,Ψt)− f(wt+1,Ψt) + Φ(wt+1)− Φ(wt).

(C.52)

Given the Lipschitz gradient assumption for the local functions in Assumption 4.3 and

using Lemma C.1 on Lipschitz gradient for the global function, we can write

f(wt,Ψt)− f(wt+1,Ψt) ≤ −〈∇wf(wt,Ψt),wt+1 −wt〉+
L1

2
‖wt+1 −wt‖2 , (C.53)

where wt+1 − wt = −η1
1
n

∑
i∈[n] ∇̃wf

i(wi
t,ψ

i
t). Taking expectation from both sides of

(C.53) implies that

E
[
f(wt,Ψt)− f(wt+1,Ψt)

] (a)

≤ η1E
∥∥∇wf(wt,Ψt)−∇Φ(wt)

∥∥2
+ η1E

∥∥∇Φ(wt)
∥∥2

+

(
η1

2
+ η2

1

L1

2

)
gt + η2

1

L1

2

σ2
w

n
(b)

≤ η1
2L2

12

µ2n
bt + η1E

∥∥∇Φ(wt)
∥∥2

+

(
η1

2
+ η2

1

L1

2

)
gt + η2

1

L1

2

σ2
w

n
,

(C.54)

where in inequality (a) we use the inequality 2〈a,b〉 ≤‖a‖2 +‖b‖2 and also the result in

(C.49). To derive (b), we use Assumptions 4.3 and 4.4 (ii), result of Lemma C.1 and the

276

notation bt = E[Φ(wt)− f(wt,Ψt)] to write

E
∥∥∇Φ(wt)−∇wf(wt,Ψt)

∥∥2
= E

∥∥∇wf(wt,Ψ
∗(wt))−∇wf(wt,Ψt)

∥∥2

≤ L2
12

n
E
∥∥Ψ∗(wt)−Ψt

∥∥2

F

≤ 2L2
12

µ2n
E
[
Φ(wt)− f(wt,Ψt)

]

=
2L2

12

µ2n
bt. (C.55)

We now have all the ingredients to conclude the claim of Lemma C.5. To do so, we

combine the result of Lemma C.3 which bounds the term E[Φ(wt+1)]−E[Φ(wt)], Lemma

C.4 that shows ht ≤ 4L2
12bt/(µ2n) + 2L2

1et, and the bound (C.54); plug back in (C.52)

and then in (C.51) and conclude the claim of the lemma, that is

bt+1 ≤ (1− µ2η2n)

(
1 + η1

4L2
12

µ2n

)
bt +

η1

2
E
∥∥∇Φ(wt)

∥∥2
+
η2

1

2

(
L1 + LΦ + 2η2L

2
21

)
gt

+
(
η1L

2
1 + η2L

2
21

)
et +

η2
1

2

(
L1 + LΦ + 2η2L

2
21

) σ2
w

n
+
η2

2

2
L2σ

2
ψ, (C.56)

C.4.6 Proof of Lemma C.6

To prove this lemma, we first need to establish an intermediate step, which is stated

in the following.

Proposition C.1 If Assumptions 4.1, 4.2 and 4.3 hold, then

et ≤ 16η2
1(τ − 1)L2

1

t−1∑

l=tc+1

el + 10η2
1(τ − 1)

t−1∑

l=tc+1

gl + 8η2
1(τ − 1)2ρ2 + 4η2

1(τ − 1)(n+ 1)
σ2
w

n
.

(C.57)

277

Proof: [Proof of Proposition C.1] Consider an iteration t ≥ 1 and let tc denote

the index of the most recent communication between the workers and the server, i.e.

tc =
⌊
t
τ

⌋
τ . Therefore, all the workers share the same local minimization model at iteration

tc + 1, i.e. w1
tc+1 = · · · = wn

tc+1 = wtc+1. According to the update rule of FedRobust, we

can write for each node i that

wi
tc+2 = wi

tc+1 − η1∇̃wf
i(wi

tc+1,ψ
i
tc+1),

...

wi
t = wi

t−1 − η1∇̃wf
i(wi

t−1,ψ
i
t−1). (C.58)

Summing up all the equalities in (C.58) yields that

wi
t = wi

tc+1 − η1

t−1∑

l=tc+1

∇̃wf
i(wi

l ,ψ
i
l). (C.59)

Therefore, the difference of the local models wi
t and their average wt can be written as

wi
t −wt = wi

tc+1 − η1

t−1∑

l=tc+1

∇̃wf
i(wi

l ,ψ
i
l)−

wtc+1 − η1

1

n

∑

j∈[n]

t−1∑

l=tc+1

∇̃wf
j(wj

l ,ψ
j
l)

= −η1

t−1∑

l=tc+1

∇̃wf
i(wi

l ,ψ
i
l)−

1

n

∑

j∈[n]

t−1∑

l=tc+1

∇̃wf
j(wj

l ,ψ
j
l)

 . (C.60)

This yields the following bound on each local deviation from the average E‖wi
t −wt‖2:

E
∥∥∥wi

t −wt

∥∥∥
2

= η2
1E

∥∥∥∥∥∥

t−1∑

l=tc+1

∇̃wf
i(wi

l ,ψ
i
l)−

1

n

∑

j∈[n]

t−1∑

l=tc+1

∇̃wf
j(wj

l ,ψ
j
l)

∥∥∥∥∥∥

2

≤ 2η2
1E

∥∥∥∥∥∥

t−1∑

l=tc+1

∇̃wf
i(wi

l ,ψ
i
l)

∥∥∥∥∥∥

2

+ 2η2
1E

∥∥∥∥∥∥
1

n

∑

j∈[n]

t−1∑

l=tc+1

∇̃wf
j(wj

l ,ψ
j
l)

∥∥∥∥∥∥

2

278

(a)

≤ 2η2
1 E

∥∥∥∥∥∥

t−1∑

l=tc+1

∇wf i(wi
l ,ψ

i
l)

∥∥∥∥∥∥

2

︸ ︷︷ ︸
T3

+2η2
1 E

∥∥∥∥∥∥
1

n

∑

j∈[n]

t−1∑

l=tc+1

∇wf j(wj
l ,ψ

j
l)

∥∥∥∥∥∥

2

︸ ︷︷ ︸
T4

+ 2η2
1(t− tc − 1)(n+ 1)

σ2
w

n
, (C.61)

where we used Assumption 4.2 to bound the variance of the stochastic gradients and

derive (a). The term T4 in (C.61) can simply be bounded as

T4 ≤ E

∥∥∥∥∥∥
1

n

∑

j∈[n]

t−1∑

l=tc+1

∇wf j(wj
l ,ψ

j
l)

∥∥∥∥∥∥

2

≤ (t− tc − 1)
t−1∑

l=tc+1

E

∥∥∥∥∥∥
1

n

∑

j∈[n]

∇wf j(wj
l ,ψ

j
l)

∥∥∥∥∥∥

2

(C.62)

Note that tc denotes the latest server-worker communication before iteration t, hence

t− tc ≤ τ where τ is the duration of local updates in each round. Therefore, we have

T4 ≤ (τ − 1)
t−1∑

l=tc+1

E

∥∥∥∥∥∥
1

n

∑

j∈[n]

∇wf j(wj
l ,ψ

j
l)

∥∥∥∥∥∥

2

≤ (τ − 1)
t−1∑

l=tc+1

gl (C.63)

Now we proceed to bound the term T3 in (C.61) as follows:

T3 = E

∥∥∥∥∥∥

t−1∑

l=tc+1

∇wf i(wi
l ,ψ

i
l)

∥∥∥∥∥∥

2

≤ (τ − 1)
t−1∑

l=tc+1

E
∥∥∥∇wf i(wi

l ,ψ
i
l)
∥∥∥

2

≤ 4(τ − 1)
t−1∑

l=tc+1

E
∥∥∥∇wf i(wi

l ,ψ
i
l)−∇wf i(wl,ψ

i
l)
∥∥∥

2

+ 4(τ − 1)
t−1∑

l=tc+1

E

∥∥∥∥∥∥
∇wf i(wl,ψ

i
l)−

1

n

∑

j∈[n]

∇wf j(wl,ψ
j
l)

∥∥∥∥∥∥

2

279

+ 4(τ − 1)
t−1∑

l=tc+1

E

∥∥∥∥∥∥
1

n

∑

j∈[n]

∇wf j(wl,ψ
j
l)−

1

n

∑

j∈[n]

∇wf j(wj
l ,ψ

j
l)

∥∥∥∥∥∥

2

+ 4(τ − 1)
t−1∑

l=tc+1

E

∥∥∥∥∥∥
1

n

∑

j∈[n]

∇wf j(wj
l ,ψ

j
l)

∥∥∥∥∥∥

2

(C.64)

We can simply this bound by using Assumption 4.3 on Lipschitz gradients for the local

objectives f is and applying the notations for el and gl to derive

T3 ≤ 4(τ − 1)L2
1

t−1∑

l=tc+1

E
∥∥∥wi

l −wl

∥∥∥
2

+ 4(τ − 1)
t−1∑

l=tc+1

E
∥∥∥∇wf i(wl,ψ

i
l)−∇wf(wl,Ψl)

∥∥∥
2

+ 4(τ − 1)L2
1

t−1∑

l=tc+1

el + 4(τ − 1)
t−1∑

l=tc+1

gl (C.65)

We can plug (C.63) and (C.65) into (C.61) and take the average of the both sides over

i = 1, · · · , n. This implies that

et ≤ 16η2
1(τ − 1)L2

1

t−1∑

l=tc+1

el + 10η2
1(τ − 1)

t−1∑

l=tc+1

gl + 8η2
1(τ − 1)2ρ2 + 4η2

1(τ − 1)(n+ 1)
σ2
w

n
.

(C.66)

In above, we used the result of Proposition C.2 that given Assumption 4.1, bounds

the gradient diversity 1
n

∑
i∈[n] ‖∇wf i(w,ψi)−∇wf(w,Ψ)‖2 ≤ ρ2, where ρ2 = 3ρ2

f +

6L2
12(ε21 + ε22). We defer the proof this proposition to the end of this section. This

concludes the proof of Proposition C.1.

Having set the required intermediate steps, we resume the proof of Lemma C.6. According

to Proposition C.1, we can write the term et as follows

et ≤ C1

t−1∑

l=tc+1

el + C2

t−1∑

l=tc+1

gl + C3 (C.67)

280

where we use the following short-hand coefficients

C1 := 16η2
1(τ − 1)L2

1

C2 := 10η2
1(τ − 1)

C3 := 8η2
1(τ − 1)2ρ2 + 4η2

1(τ − 1)(n+ 1)
σ2
w

n
. (C.68)

We can then write this bound for every iteration in [tc + 1 : t], that is

etc+1 = 0

etc+2 ≤ C1etc+1 + C2gtc+1 + C3

...

et ≤ C1 (etc+1 + · · ·+ et−1) + C2 (gtc+1 + · · ·+ gt−1) + C3. (C.69)

Summing all of the inequalities results in the following

t−1∑

l=tc+1

el ≤ C1(τ − 1)
t−1∑

l=tc+1

el + C2(τ − 1)
t−1∑

l=tc+1

gl + C3(τ − 1). (C.70)

We can further rearrange the terms above and write

t−1∑

l=tc+1

el ≤
C2(τ − 1)

1− C1(τ − 1)

t−1∑

l=tc+1

gl +
C3(τ − 1)

1− C1(τ − 1)
. (C.71)

Now, if we assume that C1(τ − 1) ≤ 1/2, then we get the following bound on
∑t−1

l=tc+1 el

t−1∑

l=tc+1

el ≤ 2C2(τ − 1)
t−1∑

l=tc+1

gl + 2C3(τ − 1) (C.72)

281

Plugging back in (C.90) and using the assumption C1(τ − 1) ≤ 1/2 yields that

et ≤ C1

2C2(τ − 1)

t−1∑

l=tc+1

gl + 2C3(τ − 1)

+ C2

t−1∑

l=tc+1

gl + C3

≤ 2C2

t−1∑

l=tc+1

gl + 2C3, (C.73)

which concludes the proof of Lemma C.6. Lastly, we present the following proposition

along with its proof which we used this result to prove Proposition C.1.

Proposition C.2 An immediate implication of Assumptions 4.1 and 4.3 is that for any

w,Ψ, the diversity of the local gradients is bounded in the following sense

1

n

∑

i∈[n]

∥∥∥∇wf i(w,ψi)−∇wf(w,Ψ)
∥∥∥

2

≤ ρ2, (C.74)

where we denote ρ2 = 3ρ2
f + 6L2

12(ε21 + ε22).

Proof: [Proof of Proposition C.2] The proof is simply implied from Assumptions 4.1

and 4.3 by writing

1

n

∑

i∈[n]

∥∥∥∇wf i(w,ψi)−∇wf(w,Ψ)
∥∥∥

2

≤ 3
1

n

∑

i∈[n]

∥∥∥∇wf i(w,Λi, δi)−∇wf i(w, I, 0)
∥∥∥

2

+ 3
1

n

∑

i∈[n]

∥∥∥∇wf i(w)−∇wf(w)
∥∥∥

2

+ 3
1

n

∑

i∈[n]

∥∥∇wf(w, I, 0)−∇wf(w,Ψ)
∥∥2

≤ 3ρ2
f + 6L2

12(ε21 + ε22). (C.75)

282

C.4.7 Proof of Lemma C.7

[70] proves a similar claim for Γ = 0. For completeness, we provide the proof for

general case when Γ 6= 0. Let tc denote the index of the most recent communication

round, i.e. tc =
⌊
t
τ

⌋
τ . We can write t = tc + r where 1 ≤ r ≤ τ . Starting from r = 1, we

can write

Ptc+2 ≤ ΥPtc+1 −
η1

2
(1− η1L) gtc+1 + Γ

≤ ΥPtc+1 + Γ, (C.76)

where the last inequality holds if

η1L ≤ 1. (C.77)

We can continue for r = 2 as follows

Ptc+3 ≤ ΥPtc+2 −
η1

2
(1− η1L) gtc+2 + η2

1Bgtc+1 + Γ

(a)

≤ Υ2Ptc+1 −
η1

2
Υ

(
1− η1L− η1

2B

Υ

)
gtc+1 + Γ(1 + Υ)

(b)

≤ Υ2Ptc+1 + Γ(1 + Υ) (C.78)

where (a) is due to the inequality Ptc+2 ≤ ΥPtc+1 − η1
2

(1− η1L)gtc+1 + Γ and (b) holds if

1− η1L− η1
2B

Υ
≥ 0, (C.79)

or equivalently

η1

(
L+

2B

Υ

)
≤ 1. (C.80)

283

We can continue the same argument up to r + 1 and write

Ptc+r+1 ≤ ΥrPtc+1 + Γ(1 + Υ + · · ·+ Υr−1), (C.81)

if the step-size is as small as follows

η1

(
L+

2B

Υr−1

(
1 + Υ + · · ·+ Υr−2

))
≤ 1. (C.82)

Since 1 + Υ + · · · + Υr−2 ≤ 1
1−Υ

, then the following condition implies all the previous

ones on η

η1

(
L+

2B

Υr−1(1−Υ)

)
. (C.83)

Moreover, since Υ < 1, then the strongest condition on η is (C.83) when we put the

largest possible value for r which is τ , yielding

η1

(
L+

2B

Υτ−1(1−Υ)

)
. (C.84)

Lastly, we note that 1 + Υ + · · ·+ Υr−1 ≤ 1
1−Υ

in (C.81), and the claim is concluded.

C.4.8 Proof of Lemma C.8

Recall the result of Lemma C.5 in which we showed that if η2 ≤ 1/L2, then the

following contraction bound on the sequence {bt}t≥0 holds:

bt+1 ≤ (1− µ2η2n)

(
1 + η1

4L2
12

µ2n

)
bt +

η1

2
E
∥∥∇Φ(wt)

∥∥2
+
η2

1

2

(
L1 + LΦ + 2η2L

2
21

)
gt

+
(
η1L

2
1 + η2L

2
21

)
et +

η2
1

2

(
L1 + LΦ + 2η2L

2
21

) σ2
w

n
+
η2

2

2
L2σ

2
ψ, (C.85)

284

and consider the coefficient of bt in above. A simple calculation yields that if the step-sizes

satisfy the condition η2
η1
≥ 8L2

12

µ22n
2 , then we have

(1− µ2η2n)

(
1 + η1

4L2
12

µ2n

)
≤ 1− 1

2
µ2η2n. (C.86)

Now, we denote γ = 1− 1
2
µ2η2n and apply (C.85) to all iterations t = 0, · · · , T −1, which

yields that

b0 ≤
2L2

2

µ2n

(
ε21 + ε22

)
,

b1 ≤ γb0 +
η1

2
E
∥∥∇Φ(wt)

∥∥2
+
η2

1

2

(
L1 + LΦ + 2η2L

2
21

)
g0 +

(
η1L

2
1 + η2L

2
21

)
e0

+
η2

1

2

(
L1 + LΦ + 2η2L

2
21

) σ2
w

n
+
η2

2

2
L2σ

2
ψ,

...

bT−1 ≤ γbT−2 +
η1

2
E
∥∥∇Φ(wt)

∥∥2
+
η2

1

2

(
L1 + LΦ + 2η2L

2
21

)
gT−2 +

(
η1L

2
1 + η2L

2
21

)
eT−2

+
η2

1

2

(
L1 + LΦ + 2η2L

2
21

) σ2
w

n
+
η2

2

2
L2σ

2
ψ. (C.87)

Taking the average of the T inequalities above yields that

(1− γ)
1

T

T−1∑

t=0

bt ≤
2L2

2

µ2n

ε21 + ε22
T

+
η1

2

1

T

T−1∑

t=0

E
∥∥∇Φ(wt)

∥∥2

+
η2

1

2

(
L1 + LΦ + 2η2L

2
21

) 1

T

T−1∑

t=0

gt +
(
η1L

2
1 + η2L

2
21

) 1

T

T−1∑

t=0

et

+
η2

1

2

(
L1 + LΦ + 2η2L

2
21

) σ2
w

n
+
η2

2

2
L2σ

2
ψ. (C.88)

We can further divide both sides of (C.88) by 1− γ and conclude

1

T

T−1∑

t=0

bt ≤
4L2

2

µ2
2n

2

ε21 + ε22
η2T

+
η1

η2

1

µ2n

1

T

T−1∑

t=0

E
∥∥∇Φ(wt)

∥∥2

285

+
η2

1

η2

1

µ2n

(
L1 + LΦ + 2η2L

2
21

) 1

T

T−1∑

t=0

gt +
1

η2

2

µ2n

(
η1L

2
1 + η2L

2
21

) 1

T

T−1∑

t=0

et

+
η2

1

η2

1

µ2n

(
L1 + LΦ + 2η2L

2
21

) σ2
w

n
+ η2

L2

µ2n
σ2
ψ. (C.89)

C.4.9 Proof of Lemma C.9

We begin by noting the result of Proposition C.1 in which we showed the following

bound on et

et ≤ C1

t−1∑

l=tc+1

el + C2

t−1∑

l=tc+1

gl + C3, (C.90)

where we defined the coefficients C1, C2, C3 in (C.68) and recall here for more convenient:

C1 := 16η2
1(τ − 1)L2

1

C2 := 10η2
1(τ − 1)

C3 := 8η2
1(τ − 1)2ρ2 + 4η2

1(τ − 1)(n+ 1)
σ2
w

n
. (C.91)

Next, we apply this bound to each iteration t = 0, · · · , T − 1 as follows

e0 = 0

e1 = 0

e2 ≤ C1e1 + C2g1 + C3

...

eτ ≤ C1 (e1 + · · ·+ eτ−1) + C2 (g1 + · · ·+ gτ−1) + C3

286

eτ+1 = 0

eτ+2 ≤ C1eτ+1 + C2gτ+1 + C3

...

e2τ ≤ C1 (eτ+1 + · · ·+ e2τ−1) + C2 (gτ+1 + · · ·+ g2τ−1) + C3

...

eTc+1 = 0

eTc+2 ≤ C1eTc+1 + C2gTc+1 + C3

...

eT−1 ≤ C1 (eTc+1 + · · ·+ eT−2) + C2 (gTc+1 + · · ·+ gT−2) + C3,

(C.92)

where Tc =
⌊
T
τ

⌋
τ denote the index of the most recent communication between the workers

and the server before iteration T . Summing the above inequalities yields that

T−1∑

t=0

et ≤ C1(τ − 1)
T−1∑

t=0

et + C2(τ − 1)
T−1∑

t=0

gt + C3T. (C.93)

Now if we assume that C1(τ − 1) = 16η2
1(τ − 1)2L2

1 ≤ 1
2
, the the claim is concluded by

rearranging the terms in (C.93):

1

T

T−1∑

t=0

et ≤ 2C2(τ − 1)
1

T

T−1∑

t=0

gt + 2C3. (C.94)

C.5 Proof of Theorem 4.3

Fix a distribution P̃ and consider

max
Λ,δ

EP̃ [`(fw(Λx + δ))]− λ‖δ‖2
2 − λ‖Λ− I‖2

F (C.95)

287

Assuming a 1-Lipschitz loss ` with 1-Lipschitz gradient, based on [103]’s Lemma 7 the

above function’s gradient with respect to δ has a Lipschitz constant bounded by

Lip(∇fw) :=
(L∏

i=1

‖wi‖σ
) l∑

i=1

i∏

j=1

‖wj‖σ.

Similarly, the expected loss’s derivative with respect to Λ will also be Lipschitz in the

spectral norm with a Lipschitz constant upper-bounded by

B Lip(∇fw) = B
(L∏

i=1

‖wi‖σ
) l∑

i=1

i∏

j=1

‖wj‖σ.

Given weights in w, we denote the optimal solution for δ and Λ by δw and Λw, respec-

tively. To apply the Pac-Bayes generalization analysis, we need to bound the change in

δw,Λw caused by perturbing w to w + u. Note that since λ > (1 + B) Lip(∇fw), the

maximization problem for optimizing Λw, δw is maximizing a strongly-concave objective

whose solutions will satisfy:

δw =
1

λ
E[∇` ◦ fw(Λwx + δw)],

Λw − I =
1

λ
E[(∇` ◦ fw(Λwx + δw))X>]

which are norm-bounded by Lip(`◦fw)
λ

≤
∏d
i=1 ‖wi‖σ

λ
and B Lip(`◦fw)

λ
≤ B

∏d
i=1 ‖wi‖σ

λ
, respec-

tively. Therefore, for a norm-bounded perturbation u where ‖ui‖σ ≤ 1
L
‖wi‖σ we can

write

∥∥δw+u − δw
∥∥

2
+
∥∥Λw+u − Λw

∥∥
σ

=
∥∥1

λ
E[∇`(fw+u(Λw+uX + δw+u))]− 1

λ
E[∇`(fw(ΛwX + δw))]

∥∥
2

+
∥∥1

λ
E[∇`(fw+u(Λw+uX + δw+u))X>]− 1

λ
E[∇`(fw(ΛwX + δw))X>]

∥∥
σ

288

=
∥∥1

λ
E[∇`(fw+u(Λw+uX + δw+u))−∇`(fw(ΛwX + δw))]

∥∥
2

+
∥∥1

λ
E[(∇`(fw+u(Λw+uX + δw+u))−∇`(fw(ΛwX + δw)))X>]

∥∥
σ

≤
∥∥1

λ
E[∇`(fw+u(Λw+uX + δw+u))−∇`(fw(Λw+uX + δw+u))]

∥∥
2

+
∥∥1

λ
E[∇`(fw(Λw+uX + δw+u))−∇`(fw(ΛwX + δw+u))]

∥∥
2

+
∥∥1

λ
E[∇`(fw(ΛwX + δw+u))−∇`(fw(ΛwX + δw))]

∥∥
2

+
∥∥1

λ
E[(∇`(fw+u(Λw+uX + δw+u))−∇`(fw(Λw+uX + δw+u)))X>]

∥∥
σ

+
∥∥1

λ
E[(∇`(fw(Λw+uX + δw+u))−∇`(fw(ΛwX + δw+u)))X>]

∥∥
σ

+
∥∥1

λ
E[(∇`(fw(ΛwX + δw+u))−∇`(fw(ΛwX + δw)))X>]

∥∥
σ

≤ (B + 1) lip(` ◦ fw)

λ

(
‖δw+u − δw‖2 + ‖Λw+u − Λw‖σ

)

+ (B + 1)e2(
L∏

i=1

‖wi‖σ)
d∑

i=1

[‖ui‖σ
‖wi‖σ

+B(
i∏

j=1

‖wj‖σ)
i∑

j=1

‖uj‖σ
‖wj‖σ

]
,

where the last inequality follows from Lemma 3 in [103]. As a result,

∥∥δw+u − δw
∥∥

2
+
∥∥Λw+u − Λw

∥∥
σ

≤ λ

λ− (B + 1) lip(` ◦ fw)

[
(B + 1)e2(

L∏

i=1

‖wi‖σ)
d∑

i=1

[‖ui‖σ
‖wi‖σ

+B(
i∏

j=1

‖wj‖σ)
i∑

j=1

‖uj‖σ
‖wj‖σ

]]
.

Then, we can bound the change in the loss function caused by perturbing w at any

‖x‖2 ≤ B with any norm-bounded ‖ui‖σ ≤ 1
L
‖wi‖σ:

∥∥fw+u(Λw+uX + δw+u)− fw(ΛwX + δw)
∥∥

2

≤
∥∥fw+u(Λw+uX + δw+u)− fw(Λw+uX + δw+u)

∥∥
2

+
∥∥fw(Λw+uX + δw+u)− fw(ΛwX + δw+u)

∥∥
2

+
∥∥fw(ΛwX + δw+u)− fw(ΛwX + δw)

∥∥
2

289

≤ eB
(L∏

i=1

‖wi‖σ
) L∑

i=1

‖ui‖2

‖wi‖2

+ (1 +B)
(d∏

i=1

‖wi‖σ
)

e2

λ− (B + 1) Lip(∇fw)

L∑

i=1

[‖ui‖σ
‖wi‖σ

+B(
i∏

j=1

‖wj‖σ)
i∑

j=1

‖uj‖σ
‖wj‖σ

]
.

Now, for a fixed weight vector w̃ we consider a multivariate Gaussian distribution Q with

zero-mean and diagonal covaraince matrix for perturbation u where each entry ui has

standard deviation κi = ‖w̃i‖σ
L
√∏L

i=1 ‖w̃i‖σ
κ with κ chosen as

κ =
γ

8e5L
√

2d log(4dL)B
(∏L

i=1 ‖w̃i‖σ
)(

1 + λ
λ−(1+B)Lip(∇fw)

∑L
i=1

∏i
j=1 ‖w̃j‖σ

) . (C.96)

Also, for any w which satisfies |‖wi‖σ − ‖w̃i‖σ| ≤ η
4L
‖w̃i‖σ, we have Lip(` ◦ fw) ≤

eη/2λ(1− η) ≤ (1− η/2)λ. Therefore,

KL(Pw+u‖Q)

≤
d∑

i=1

‖wi‖2
F

2κ2
i

≤O
(
L2B2d log(dL)

(
∏L

i=1 ‖w̃i‖2
σ)
(
1 + 1

λ−(1+B)Lip(∇fw)

∑L
i=1

∏i
j=1 ‖w̃j‖σ

)2

γ2

d∑

i=1

‖wi‖2
F

‖w̃i‖2
σ

)

≤O
(
L2B2d log(dL)

(
∏L

i=1 ‖wi‖2
σ)
(
1 + 1

λ−(1+B)Lip(∇fw)

∑L
i=1

∏i
j=1 ‖wj‖σ

)2

γ2

d∑

i=1

‖wi‖2
F

‖wi‖2
σ

)

Now we plug the above result into [103]’s Lemma 1, implying that given a fixed underlying

distribution P and any ξ > 0 with probability at least 1−ξ for any w satisfying |‖wi‖σ−

290

‖w̃i‖σ| ≤ η
4L
‖w̃i‖σ we have

Ladv
0−1(w)− L̂adv

γ (w) ≤ O

√√√√B2L2d log(Ld)λ2
(∏L

i=1 ‖wi‖σ
∑L

i=1

‖wi‖2F
‖wi‖2σ

)2
+ log m

ξ

mγ2(λ− (1 +B) Lip(∇fw))2

 .

(C.97)

Now we use a cover of size O(L
η

logM) points where for any feasible ‖wi‖σ we can find a

point ai in the cover such that |‖wi‖σ − ai| ≤ η
4L
ai. As a result, we can cover the space

of feasible wi’s with O
(
(L
η

logM))LL
)

number of points. This proves that for a fixed

underlying distribution for every ξ > 0, with probability at least ξ > 0 for any feasible

norm-bounded w we have

Ladv
0−1(w)− L̂adv

γ (w)

≤ O

√√√√B2L2d log(Ld)λ2
(∏L

i=1 ‖wi‖σ
∑L

i=1
‖wi‖22
‖wi‖2σ

)2
+ L log mL log(M)

ηξ

mγ2(λ− (1 +B) Lip(∇` ◦ fw))2

 . (C.98)

To apply the result to the network of n nodes, we apply a union bound to have the bound

hold simultaneously for the distribution of every node, which proves for every ξ > 0 with

probability at least 1− ξ the average worst-case loss of the nodes satisfies the following

margin-based bound:

Ladv
0−1(w)− L̂adv

γ (w)

≤ O

√√√√B2L2d log(Ld)λ2
(∏L

i=1 ‖wi‖σ
∑L

i=1

‖wi‖2F
‖wi‖2σ

)2
+ L log nmL log(M)

ηξ

mγ2(λ− (1 +B) Lip(∇fw))2

 . (C.99)

Therefore, the proof is complete.

291

C.6 Proof of Theorem 4.4

Define random vector U = ΛX + δ. According to the definition of optimal transport

cost Wc(PX, PU) for quadratic c(x,u) = 1
2
‖x− u‖2

2,

Wc(PX, PU) := min
PX,U∈Π(PX,PU)

E
[1
2
‖X−U‖2

2

]
(C.100)

where Π(PX, PU) contains any joint distribution PX,U with marginals PX, PU. One dis-

tribution in Π(PX, PU) is the joint distribution of (X,ΛX + δ) implying that

Wc(PX, PU) ≤ 1

2
E
[
‖X− ΛX− δ‖2

2

]

=
1

2
E
[
‖(I − Λ)X− δ‖2

2

]

(a)

≤ E
[
‖(I − Λ)X‖2

2

]
+ ‖δ‖2

2

(b)

≤ Tr
(
(I − Λ)(I − Λ)>E[XX>]

)
+ ‖δ‖2

2

(c)

≤ λTr
(
(I − Λ)(I − Λ)>

)
+ ‖δ‖2

2

(d)

≤ λ‖I − Λ‖2
F + ‖δ‖2

2

≤ max{λ, 1}
(
‖I − Λ‖2

F + ‖δ‖2
2

)
.

In the above, (a) holds since for every two vectors u1,u2 we have ‖u1 + u2‖2
2 = ‖u1‖2

2 +

‖u2‖2
2 + 2u>1 u2 ≤ 2(‖u1‖2

2 + ‖u2‖2
2). (b) follows from the fact that E[‖(I − Λ)X‖2

2] =

E[Tr((I − Λ)XX>(I − Λ)>) = Tr
(
(I − Λ)(I − Λ)>E[XX>]

)
. (c) holds because of the

theorem’s assumption implying that E[XX>] ≤ λI. Last, (d) holds because we have

Tr(AA>) = ‖A‖2
F for every A. Therefore, the proof is complete.

292

Appendix D

Supplements to Chapter 5

D.1 Proof of Theorem 5.1

In this section, we prove the asymptotic optimality of HCMM as claimed in Theorem

5.1.

Consider the HCMM load assignment in (5.7). Let the random variable THCMM denote

the finish time associated to this load allocation, i.e. the waiting time to receive at least

r inner products from the workers. Let Tmax be the random variable denoting the finish

time of all the workers for the HCMM load assignment.

First, we show that

E[THCMM] ≤ t∗ + o(1).

Let us define two events E1 and E2 as follows:

E1 = {Tmax > Θ(n)} and E2 = {THCMM > t∗}.

293

Conditioning on these events, we can write

E[THCMM] = E[THCMM|E1] Pr[E1] + E[THCMM|E1
c ∩ E2] Pr[E1

c ∩ E2]

+ E[THCMM|E1
c ∩ E2

c] Pr[E1
c ∩ E2

c]. (D.1)

We can write the second term in RHS of (D.1) as follows:

E[THCMM|E1
c ∩ E2] Pr[E1

c ∩ E2]

= E[THCMM|Tmax ≤ Θ(n), THCMM > t∗] Pr[Tmax ≤ Θ(n), THCMM > t∗]

≤ E[Tmax|Tmax ≤ Θ(n), THCMM > t∗] Pr[THCMM > t∗]

(a)

≤ Θ(n) · o
(

1

n

)

= o(1). (D.2)

To prove (a), we note that HCMM returns r inner products by time THCMM. Moreover, the

aggregate return is increasing in time. Therefore,

Pr[THCMM > t∗] ≤ Pr[X∗(t∗) < r] = o

(
1

n

)
.

Furthermore, we have

E[Tmax|Tmax ≤ Θ(n), THCMM > t∗]

=
1

Pr[Tmax ≤ Θ(n), THCMM > t∗]

∫ Θ(n)

t1=0

∫ ∞

t2=t∗
t1dPr[Tmax ≤ t1, THCMM ≤ t2]

≤ Θ(n)

Pr[Tmax ≤ Θ(n), THCMM > t∗]

∫ Θ(n)

t1=0

∫ ∞

t2=t∗
dPr[Tmax ≤ t1, THCMM ≤ t2]

= Θ(n).

294

Moreover, the third term in RHS of (D.1) can be written as

E[THCMM|E1
c ∩ E2

c] Pr[E1
c ∩ E2

c]

= E[THCMM|Tmax ≤ Θ(n), THCMM ≤ t∗] Pr[Tmax ≤ Θ(n), THCMM ≤ t∗]

≤ E[THCMM|Tmax ≤ Θ(n), THCMM ≤ t∗]

(b)

≤ t∗, (D.3)

where proof of (b) is similar to proof of (a) in (D.2). Regarding the first term in RHS of

(D.1), we have

E[THCMM|E1] Pr[E1] = E[THCMM|Tmax > Θ(n)] Pr[Tmax > Θ(n)]

≤ E[Tmax|Tmax > Θ(n)] Pr[Tmax > Θ(n)]

=

∫ ∞

Θ(n)

tfmax(t) dt

(c)

≤
∫ ∞

Θ(n)

tnk1e
−k1t

(
1− e−k1t

)n−1

dt

≤
∫ ∞

Θ(n)

nk1te
−k1t dt

≤
∫ ∞

Θ(n)

1

t2
dt = o(1), (D.4)

for some k1 = Θ(1) and large enough n. To derive inequality (c), we find a stochastic

upper bound on Tmax by considering n i.i.d. copies of the worker run-times with largest

shift and smallest straggling parameters that are also Θ(1), and use the PDF of the

maximum of n i.i.d. exponential random variables. As we later use in the proof of

Theorem 5.3, one can similarly write for the shifted Weibull distribution:

E[THCMM|E1] Pr[E1] ≤
∫ ∞

Θ(n)

tfmax(t) dt

295

≤
∫ ∞

Θ(n)

nk1k2t
k2e−k1t

k2
(

1− e−k1tk2
)n−1

dt

≤
∫ ∞

Θ(n)

nk1k2t
k2e−k1t

k2 dt

≤
∫ ∞

Θ(n)

1

t2
dt = o(1), (D.5)

for some constants k1 and k2. Therefore, using (D.2), (D.3) and (D.4) (or (D.5) for the

shifted Weibull model) in (D.1) we have

E[THCMM] ≤ t∗ + o(1).

Let `OPT = (`OPT,1, · · · , `OPT,n) denote the optimal load allocation corresponding to

Pmain in (5.3) and XOPT(·) represent the aggregate return under load allocation `OPT.

Now we prove the following lower bound on the average completion time of the optimum

algorithm:

E[TOPT] ≥ t∗ − o(1).

To this end, we show the following two inequalities,

E[TOPT]
(d)

≥ τ − δ1

(e)

≥ t∗ − δ2 − δ1,

where δ1 = Θ
(

logn√
n

)
, δ2 = Θ

(
logn√
n

)
and τ is the solution to E[XOPT(τ)] = r. We have

r − E[XOPT(τ − δ1)] =
n∑

i=1

`OPT,i

(
Pr[Ti < τ]− Pr[Ti < τ − δ1]

)

=
n∑

i=1

`OPT,i

(
d

dτ
Pr[Ti < τ]δ1 +O

(
δ2

1

))

= Θ(nδ1) +O
(
nδ2

1

)
= Θ(nδ1),

296

where we used the fact that `OPT,i = Θ(1)1. By McDiarmid’s inequality (see Appendix

for its description), we have

Pr[XOPT(τ − δ1) ≥ r] = Pr[XOPT(τ − δ1)− E[XOPT(τ − δ1)] ≥ r − E[XOPT(τ − δ1)]]

≤ exp

−2

(
E[XOPT(τ − δ1)]− r

)2

∑n
i=1 `

2
OPT,i

= e−Θ(nδ21) = o

(
1

n

)
,

which implies inequality (d). We proceed to prove (e) by showing the following two

inequalities,

τ ≥ τ ∗, (D.6)

τ ∗ ≥ t∗ − δ2, (D.7)

where τ ∗ is obtained in (??). Given the fact that HCMM maximizes the expected aggregate

return, we have

E[X∗(t)] ≥ E[XOPT(t)],

for every feasible t, which implies (D.6). Moreover, Lemma 5.1 proves (D.7). All in all,

we have

t∗ − o(1) ≤ E[TOPT] ≤ E[THCMM] ≤ t∗ + o(1),

which yields limn→∞ E[THCMM] = limn→∞ E[TOPT] and the claim is concluded.

1We argue that the allocated loads in the optimum coded scheme are all Θ(1). Without loss of
generality, suppose `OPT,1 > Θ(1) which implies limn→∞ Pr[T1 < t] = 0 for any t = Θ(1). We have
already implemented HCMM, a (sub-)optimal algorithm achieving computation time τ∗ = Θ(1), therefore
the optimal scheme should have a better finishing time τ ≤ Θ(1). Now assume the load of machine 1 is
replaced by ˜̀

OPT,1 = Θ(1). Clearly, for any time t = Θ(1), the aggregate return for the new set of loads
is larger than the former one by any Θ(1) time, almost surely. This is in contradiction to optimality
assumption.

297

D.2 Proof of Theorem 5.2

This section provides the proof of Theorem 5.2 by comparing the performance of

HCMM to uncoded scheme. In an uncoded scheme, the redundancy factor is 1; thus, the

master node has to wait for the results from all the worker nodes in order to complete

the computation.

We start by characterizing the expected run-time of the best uncoded scheme. Par-

ticularly, we show that

E[TUC] = Θ
(

log n
)
,

where TUC denotes the completion time of the optimum uncoded distributed matrix

multiplication algorithm. To do so, we start by showing that

E[TUC] ≥ c log n,

for a constant c independent of n. For a set of machines with parameters {(ai, µi)}ni=1,

let ã = mini ai and µ̃ = maxi µi. Now, consider another set of n machines in which every

machine is replaced with a faster machine with parameters (ã, µ̃). Since the computation

times of the new set of machines are i.i.d., one can show that the optimal load allocation

for these machines is uniform, i.e.,

˜̀∗
i =

r

n
,

for every machine i ∈ [n]. Let {T̃i}ni=1 represent the i.i.d. shifted exponential random

variables denoting the execution times for the new set of machines where each machine

is loaded by ˜̀∗i = r
n
. Therefore, the CDF of the completion time of each new machine

can be written as

Pr[T̃i ≤ t] =1− e−
µ̃˜̀∗
i
(t−ã˜̀∗i)

= 1− e−µ̃nr (t−ã rn),

298

for t ≥ ãr
n

and the expected computation time can be written as

E[T̃i] =
r

n

(
ã+

1

µ̃

)
,

for all i ∈ [n]. Since the master needs to wait for all of the machines to return their

results, the total run-time is T̃UC = maxi∈[n] T̃i. Therefore,

E[T̃UC] = E[max
i∈[n]

T̃i] =
ãr

n
+
rHn

nµ̃
, (D.8)

where Hn = 1 + 1
2

+ 1
3

+ · · ·+ 1
n

is the sum of the harmonic series. We can further bound

(D.8) using the fact that

ãr

n
+
rHn

nµ̃
≥ ãr

n
+

r

nµ̃
log(n+ 1) ≥ c log n,

for a constant c independent of n, since r = Θ(n), ã = Θ(1), and µ̃ = Θ(1) for all i ∈ [n].

All in all, we have the following lower bound on the optimal uncoded scheme:

E[TUC] ≥ E[T̃UC] ≥ c log n. (D.9)

Now consider another set of n machines, where each machine is replaced with a slower

one with parameters (â, µ̂) for â = maxi ai and µ̂ = mini µi. By an argument similar to

the one employed the lower bound, we can write

E[TUC] ≤ âr

n
+

r

nµ̂
Hn ≤ C log n, (D.10)

299

for another constant C. From (D.9) and (D.10), one can conclude that

E[TUC] = Θ
(

log n
)
. (D.11)

Further, by Theorem 5.1 and Lemma 5.1, we find that

E[THCMM] = Θ(1). (D.12)

Comparing (D.11) to (D.12) demonstrates that HCMM outperforms the best uncoded

scheme by a factor of Θ(log n), i.e.,

E[TUC]

E[THCMM]
= Θ

(
log n

)
.

D.3 Proof of Lemma 5.1

Let us first state a useful inequality which we will use to prove Lemma 5.1.

McDiarmid’s Inequality: Let X1, · · · , Xn be independent random variables taking

values in X . Further, let the function f : X n → R be Li-Lipschitz for all i ∈ [n], that is

|f(x1, · · · , xi, · · · , xn)− f(x1, · · · , x′i, · · · , xn)| ≤ Li,

for any x1, · · · , xn, x′i ∈ X and i ∈ [n]. Then, for any ε > 0,

Pr
[
f(X1, · · · , Xn)− E[f(X1, · · · , Xn)] ≥ ε

]
≤ exp

(
− 2ε2∑n

i=1 L
2
i

)
,

Pr
[
E[f(X1, · · · , Xn)]− f(X1, · · · , Xn) ≥ ε

]
≤ exp

(
− 2ε2∑n

i=1 L
2
i

)
.

For each i, the aggregate return at time t satisfies Xi(t) ∈ {0, `i}. Therefore, we can use

300

McDiarmid’s inequality as follows:

Pr
[
X(t)− E[X(t)] ≥ ε

]
≤ exp

(
− 2ε2∑n

i=1 `
2
i

)
,

Pr
[
E[X(t)]−X(t) ≥ ε

]
≤ exp

(
− 2ε2∑n

i=1 `
2
i

)
,

for any ε > 0. Now, we proceed to the proof of Lemma 5.1.

Let t = τ ∗ + δ for some δ = Θ
(

logn√
n

)
and ε = δ2. The claim is that Pr

[
X∗(t) ≤

r − ε
]

= o
(

1
n

)
. From McDiarmid’s inequality, we have

Pr
[
X∗(t) ≤ r − ε

]
≤ exp

−2

(
E[X∗(t)]− r + ε

)2

∑
i `
∗
i

2(t)

= exp

(
−2
(
ts− r + ε)2

∑
i `
∗2
i (t)

)

= exp

(
− 2δ2s2 + 2δ4 + 4δ3s(

(r
s
)2 + δ2 + 2δ r

s

)∑
i λ

2
i

)

(g)
= e−Θ(nδ2) = o

(
1

n

)
.

In above, equality (g) follows from the fact that r = Θ(n), s = Θ(n), λi = Θ(1),

δ = Θ
(

logn√
n

)
, and therefore

∑
i λ

2
i = Θ(n) and s2 = Θ(n2). Moreover, if t∗ < τ ∗, with a

positive probability there are less than r equations at the master node by time t∗ which

is a contradiction. Therefore,

τ ∗ ≤ t∗ ≤ τ ∗ + δ.

D.4 Proof of Lemma 5.3

We first argue that if the budget-constrained problem defined in Pmain-constrained is

feasible, then HCMM determines the asymptotically optimal load allocation. Consider a

301

set of N machines and assume that M of them are assigned non-zero loads in the optimal

budget-constrained scheme. Now, one can run HCMM load allocation over the set of these

M machines and according to asymptotic optimality results, HCMM asymptotically attains

the optimal run-time while satisfying the budget constraint.

Now assume that nk number of type k ∈ [K] machine is used. Then, by assigning

the loads obtained from HCMM and the result of Theorem 5.1, the induced expected cost

(for large number of machines) can be written as

cost
(
HCMM(n1, · · · , nK)

)
= τ ∗

K∑

k=1

nkck

=
r

s

K∑

k=1

nkck

=
r∑K

k=1
nkµk

1+µkλk

K∑

k=1

nkκµ
γ
k

= κrxξ

∑K
k=1 nkµ

γ
k∑K

k=1 nkµk
, (D.13)

where xξ = 1 + µkλk is the solution to the equation exξ−ξ−1 = xξ for all machine type

k ∈ [K]. In another scenario, assume that we remove one machine of type K (the fastest

machine type) and run HCMM accordingly, i.e. nk of type k ∈ [K − 1] and nK − 1 of type

K. The expected cost of this scenario can be written as follows:

cost
(
HCMM(n1, · · · , nK − 1)

)
= κrxξ

∑K−1
k=1 nkµ

γ
k + (nK − 1)µγK∑K−1

k=1 nkµk + (nK − 1)µK
(f)

≤ κrxξ

∑K
k=1 nkµ

γ
k∑K

k=1 nkµk

= cost
(
HCMM(n1, · · · , nK)

)
, (D.14)

where inequality (f) can be easily verified given that µ1 ≤ · · · ≤ µK . We can iteratively

302

apply the same argument and conclude that the minimum expected cost is achieved when

only the slowest machines are used, that is

Cmin := cost
(
HCMM(n1, 0, · · · , 0)

)
= κrxξµ

γ−1
1 , (D.15)

for any 1 ≤ n1 ≤ N1. Similar to (D.14), one can show that reducing the number of

participating slowest machines increases the induced expected cost of HCMM, that is

cost
(
HCMM(n1 − 1, · · · , nK)

)
≥ cost

(
HCMM(n1, · · · , nK)

)
. (D.16)

Therefore, applying (D.16) iteratively shows that the maximum expected cost occurs

when only the fastest machines are employed, that is

Cmax := cost
(
HCMM(0, · · · , 0, nK)

)
= κrxξµ

γ−1
K ,

for any 1 ≤ nK ≤ NK .

303

Appendix E

Supplements to Chapter 6

E.1 Pseudo-code for Computation Allocation Sub-

routine

Algorithm E.1: Computation Allocation (CompAlloc)

Input: dataset D, n workers, straggler toleration s, computation matrix
B = [b1; · · · ; bn] ∈ Rn×k

Output: data set allocation {D(1), · · · ,D(n)} for n workers
Procedure CompAlloc(D,B)

uniformly partition D = ∪kκ=1Dκ
for worker i← 1 to n do
D(i) ← ∪kκ=1biκDκ % D(i) is assigned to worker Wi

end

end

304

Algorithm E.2: CodedReduce

Input: dataset D, (n, L)–regular tree T , straggler toleration s (per parent),
model w(t)

Output: gradient gD =
∑

x∈D∇`(w(t); x) aggregated at the master
Procedure CR.Allocate

GC generates B specified by n, s for l← 1 to L do
for i← 1 to nl−1 do
{DT (l,n(i−1)+1), · · · ,DT (l,ni)} = CompAlloc(DT (l−1,i),B)

end
for i← 1 to nl do

pick rCR · d data points of DT (l,i) as D(l, i)
DT (l,i) ← DT (l,i) \ D(l, i)

end

end

end
Procedure CR.Execute

GC generates A from B
all the workers compute their local partial gradients gD(l,i)

for l← L− 1 to 1 do
for i← 1 to nl do

worker nodes (l, i):
receives [m(l+1,n(i−1)+1); · · · ; m(l+1,ni)] from its children
uploads m(l,i) = af(l,i)[m(l+1,n(i−1)+1); · · · ; m(l+1,ni)] + gD(l,i) to its

parent
end

end
master node:

receives [m(1,1); · · · ; m(l,n)] from its children
recovers g = af(0,1)[m(1,1); · · · ; m(1,n)]

end

E.2 Pseudo-code for CodedReduce Scheme

E.3 Proof of Theorem 6.1

Achievability: According to the data allocation described in Algorithm E.2, to be

robust to any s straggling children of the master, the data set D is redundantly assigned

to sub-trees T (1, 1), · · · , T (1, n) such that each data point is placed in s + 1 sub-trees,

305

which yields

|DT (1,i)| =
(
s+ 1

n

)
d, ∀i ∈ [n]. (E.1)

Then, nodes in layer l = 1 pick rCRd data points as their corresponding data sets and

similarly distribute the remaining among their children which together with (E.1) yields

|DT (2,i)| =
(
s+ 1

n

)((
s+ 1

n

)
d− rCRd

)

=

(
s+ 1

n

)((
s+ 1

n

)
− rCR

)
d, ∀i ∈ [n2].

By the same argument for each layer, we have

|DT (L,i)| =
(
s+ 1

n

)((
s+ 1

n

)L−1

−
(
s+ 1

n

)L−2

rCR − · · · −
(
s+ 1

n

)
rCR − rCR

)
d,

(E.2)

for all i ∈ [nL]. Putting (E.2) together with |DT (L,i)| = rCRd yields

rCR =
1

(
n
s+1

)
+ · · ·+

(
n
s+1

)L .

Optimality: In an α–resilient scheme, the master node is able to recover from any

s = αn straggling sub-trees T (1, 1), · · · , T (1, n). Therefore, each data point has to be

placed in at least s+ 1 of such sub-trees, which yields

|DT (1,1)|+ · · ·+ |DT (1,n)| ≥ (s+ 1)d, (E.3)

where the equality is achieved only if each data point is assigned to only s+ 1 sub-trees.

Hence, we can assume the optimal scheme satisfies (E.3) with equality. Moving to the

306

second layer, the following claim bounds the required redundancy assigned to sub-trees

T (2, 1), · · · , T (2, n). Similar claim holds for any other group of the siblings in this layer.

Claim E.1 The following inequality holds:

|DT (2,1)|+ · · ·+ |DT (2,n)| ≥ (s+ 1)
(
|DT (1,1)| − rd

)
.

Proof: [Proof of Claim E.1] First, note that |DT (1,1) \ D(1, 1)| ≥ |DT (1,1)| − rd. If

the claim does not hold, then there exists data point x ∈ DT (1,1) \ D(1, 1) such that x is

placed in at most s sub-trees rooting in the node (1, 1), e.g. T (2, 1), · · · , T (2, s). Note that

besides sub-tree T (1, 1), x is placed in only s more sub-trees, e.g. T (1, 2), · · · , T (1, s+1).

Now consider a straggling pattern where T (1, 2), · · · , T (1, s+ 1) and T (2, 1), · · · , T (2, s)

fail to return their results. Therefore, x is missed at the master and fails the aggregation

recovery.

By the same logic used in the above proof, Claim E.1 holds for any parent node and

its children, i.e. for any layer l ∈ [L] and i ∈ [nl−1],

|DT (l,n(i−1)+1)|+ · · ·+ |DT (l,ni)| ≥ (s+ 1)
(
|DT (l−1,i)| − rd

)
. (E.4)

Specifically applying (E.4) to layer L and noting that |DT (L,i)| = |D(L, i)| = rd for any

i, we conclude that

rd

((
n

s+ 1

)
+ 1

)
≥ |DT (L−1,1)|.

We can then use the above inequality and furthermore write (E.4) for layer L− 1 which

results in

rd

((
n

s+ 1

)2

+

(
n

s+ 1

)
+ 1

)
≥ |DT (L−2,1)|.

307

By deriving the above inequality recursively up to the master node, we get

rd

((
n

s+ 1

)L−1

+ · · ·+
(

n

s+ 1

)
+ 1

)
≥ s+ 1

n
d,

which concludes the optimality in Theorem 6.1.

E.4 Proof of Theorem 6.2

Let us begin with the lower bound

E [TCR] ≥
rCRd

µ
log

(
1

α

)
+ arCRd+

(
n(1− α)− o(n) + L− 1

) (
(1− o(1)

)
tc + o(1).

Consider the group of siblings1 placed in layer L whose result reaches their parent nodes

first. Let T̂ denote the time at which the parent of such group is able to recover the partial

gradient from its fastest children’s computations, i.e. fastest n − s of them. We also

denote by T1, · · · , Tn the partial gradient computation times for the siblings. According

to the random computation time model described in the paper and the computation load

of CR, each Ti is shifted exponential with the shift parameter adi = arCRd and the rate

parameter µ
di

= µ
rCRd

. Since CR is robust to any s stragglers per parent, the partial gradient

computation time for any group of siblings is T(n−s), i.e. the (n− s)’th order statistics of

{T1, · · · , Tn}. In [128], authors consider coded computation scenarios in a master-worker

topology where the master only needs to wait for results of the first α fraction of the

workers. However, as in the scenario here, the limited bandwidth at the master only

allows for one transmission at the time. From the latency analysis in [128], we have the

following.

1A group of siblings refers to n nodes with the same parent.

308

Lemma E.1 (Theorem 2, [128]) With probability 1− o(1), we have

T̂ ≥ T(n−s) +
(
n (1− α)− o(n)

)
tc. (E.5)

Now, conditioned on the event in (E.5) we can write

E [TCR] ≥
(
E
[
T(n−s)

]
+
(
n (1− α)− o(n)

)
tc

) (
1− o(1)

)
+
(
E
[
T(n−s)

]
+ Ltc

)
o(1)

≥ E
[
T(n−s)

]
+
(
n(1− α)− o(n) + L− 1

) (
1− o(1)

)
tc

(a)

≥ rCRd

µ
log

(
1

α

)
+ arCRd+

(
n(1− α)− o(n) + L− 1

) (
1− o(1)

)
tc + o(1),

where inequality (a) uses the fact that E
[
T(n−s)

]
= rCRd

µ
(Hn −Hs) + arCRd and log(i) <

Hi = 1 + 1
2

+ · · ·+ 1
i
< log(i+ 1) for any positive integer i.

To derive upper bound on E[TCR], that is

E [TCR] ≤
rCRd

µ
log

(
1

α

)
+ arCRd+ n

(
1− o(1)

)
Ltc + o(1),

we prove the following concentration inequality on the computation time for any group

of siblings.

Lemma E.2 Let T1, · · · , Tn denote i.i.d. exponential random variables with constant

rate λ = Θ(1). For ε = Θ
(

1
n1/4

)
and constant α = s

n
, we have the following concentration

bound for the order statistics T(n−s):

Pr
[
T(n−s) − E

[
T(n−s)

]
≥ ε
]
≤ e−Θ(

√
n). (E.6)

Proof: [Proof of Lemma E.2] Given i.i.d. exponentials T1, · · · , Tn ∼ exp(λ), we can

write the successive differences of order statistics as independent exponentials. That is,

309

we have

T(1) = E1 ∼ exp

(
λ

n

)
,

T(2) − T(1) = E2 ∼ exp

(
λ

n− 1

)
,

...

T(n−s) − T(n−s−1) = En−s ∼ exp

(
λ

s+ 1

)
,

...

T(n) − T(n−1) = En ∼ exp (λ) ,

where Ei’s are independent. Thus, T(n−s) =
∑n−s

i=1 Ei. We have the following for inde-

pendent exponentials Ei’s and λ = Θ(1):

E
[
|Ei|k

]
= E

[
Ek
i

]

=

(
λ

n− i+ 1

)k
k!

=
1

2
E
[
E2
i

](λ

n− i+ 1

)k−2

k!

≤ 1

2
E
[
E2
i

]
Bk−2k!,

for B = λ
s

= λ
αn

= Θ
(

1
n

)
. Moreover,

n−s∑

i=1

E
[
E2
i

]
= 2λ2

(
1

n2
+ · · ·+ 1

(s+ 1)2

)

≤ 2λ2 · n− s
s2

=
2λ2(1− α)

α2
· 1

n

= Θ

(
1

n

)
.

310

According to Bersterin’s Lemma (See Lemma E.3), for ε = Θ
(

1
n1/4

)
we have

Pr
[
T(n−s) − E

[
T(n−s)

]
≥ ε
]
≤ exp

− ε2

2
(∑n−s

i=1 E
[
E2
i

]
+ εB

)

≤ exp

− ε2

2
(

Θ
(

1
n

)
+ εΘ

(
1
n

))

= e−Θ(
√
n).

As described in Section 6.3.1, in the proposed CR scheme all the worker nodes start their

assigned partial gradient computations simultaneously; each parent waits for enough

number of children to receive their results; combines with its partial computation and

sends the result up to its parent. To upper bound the total aggregation time TCR, one

can separate all the local computations from the communications. Let Tcomp denote the

time at which enough number of workers have executed their local gradient computations

and no more local computation is needed for the final gradient recovery. Moreover, we

assume that all the communications from children to parent are pipe-lined. Hence, we

have E [TCR] ≤ E
[
Tcomp

]
+ L(n − s)tc. To bound the computation time Tcomp, consider

the following event which keeps the local computation times for all the N/n groups of

siblings concentrated below their average deviated by ε = Θ
(

1
n1/4

)
:

E1 :=

{
T gr(n−s) ≤ E

[
T gr(n−s)

]
+ ε for all the N/n groups gr

}
,

where a group gr is a collection of n children with the same parent, i.e. there are N/n

groups in the (n, L)–regular tree. For a group gr, {T gr1 , · · · , T grn } denote the random

311

run-times of the nodes in the group and T gr(n−s) represents its (n − s)’th order statistics.

Clearly,

E
[
Tcomp|E1

]
≤ E

[
T(n−s)

]
+ o(1). (E.7)

Now let T̃ denote the computation time corresponding to the slowest group of siblings,

i.e.

T̃ := max
over all N/n groups gr

T gr(n−s).

Consider the following event:

E2 :=
{
T̃ > Θ(log n)

}
.

We can write

E
[
Tcomp|Ec1 ∩ Ec2

]
≤ Θ(log n), (E.8)

and

E
[
Tcomp|Ec1 ∩ E2

]
Pr [E2] ≤ E

[
T̃ |Ec1 ∩ E2

]
Pr [E2]

= E
[
T̃ |T̃ ≤ Θ(log n)

]
Pr
[
T̃ ≤ Θ(log n)

]

≤ E
[
T̃
]

≤ E [Tmax]

=
rCRd

µ
HN + arCRd

= Θ (logN)

312

= LΘ (log n) . (E.9)

In the above derivation, Tmax denotes the largest computation time over all the N nodes.

Putting (E.8) and (E.9) together, we can write

E
[
Tcomp|Ec1

]
= E

[
Tcomp|Ec1 ∩ E2

]
Pr [E2] + E

[
Tcomp|Ec1 ∩ Ec2

]
Pr [Ec2]

≤ Θ (log n) . (E.10)

Moreover, using union bound on the N/n groups of workers, we derive the following

inequality.

Pr [Ec1] ≤ N

n
Pr
[
T(n−s) ≥ E

[
T(n−s)

]
+ ε
]

≤ Θ
(
nL−1

)
e−Θ(

√
n). (E.11)

Putting (E.7), (E.10) and (E.11) together, we have

E
[
Tcomp

]
= E

[
Tcomp|E1

]
Pr [E1] + E

[
Tcomp|Ec1

]
Pr [Ec1]

≤ E
[
T(n−s)

]
+ ε+ Θ (log n) Θ

(
nL−1

)
e−Θ(

√
n)

= E
[
T(n−s)

]
+ o(1)

=
rCRd

µ
(Hn −Hs) + arCRd+ o(1).

Therefore,

E [TCR] ≤ E
[
Tcomp

]
+ Ln(1− α)tc

=
rCRd

µ
(Hn −Hs) + arCRd+ Ln(1− α)tc + o(1)

313

≤ rCRd

µ
log

(
1

α

)
+ arCRd+ n

(
1− o(1)

)
Ltc + o(1),

which completes the proof.

Lemma E.3 (Bernstein’s Inequality) Suppose E1, · · · , Em are independent random

variables such that

E
[
|Ei|k

]
≤ 1

2
E
[
E2
i

]
Bk−2k!,

for some B > 0 and every i = 1, · · · ,m, k ≥ 2. Then, for ε > 0,

Pr

m∑

i=1

Ei −
m∑

i=1

E [Ei] ≥ ε

 ≤ exp

− ε2

2
(∑m

i=1 E
[
E2
i

]
+ εB

)

 .

314

Appendix F

Supplements to Chapter 7

F.1 Proof of Lemma 7.1

Before proving Lemma 7.1, we first present the following lemma that will be used in

our proof.

Lemma F.1 For random variables {Pi}ri=1 defined in (7.8), their moment generating

functions for s′ > 0 can be bounded by

E
[
es
′Pi
]
≤ (pe2s′ + 1− p)g̃/2.

Proof: Consider a generic random variable of the form (7.8)

P =

g̃∑

j=1

Ej,

where Ej’s are Bern(p) and possibly dependent. However, although Ej’s may not be

all independent, but dependency is restricted to pairs of Ej’s. In other words, for all

1 ≤ j ≤ g̃, Ej is either independent of all E[g̃]\{j}, or is equal to E` for some ` ∈ [g̃] \ {j}

315

and independent of all E[g̃]\{j,`}. By merging dependent pairs, we can write

P =

g̃−J∑

j=1

Fj,

where

(i) Fj’s are independent,

(ii) g̃ − 2J of Fj’s are Bern(p),

(iii) J of Fj’s are 2× Bern(p),

for some integer 0 ≤ J ≤ b g̃
2
c. Now, we can bound the moment generating function of

P . For s′ > 0,

E
[
es
′P
]

= E
[
es
′∑J

j=1 Fj
]

=

g̃−J∏

j=1

E
[
es
′Fj
]

=
(
pes

′
+ 1− p

)g̃−2J(
pe2s′ + 1− p

)J

=
[(
pes

′
+ 1− p

)2
]g̃/2−J(

pe2s′ + 1− p
)J

(a)

≤
(
pe2s′ + 1− p

)g̃/2−J(
pe2s′ + 1− p

)J

=
(
pe2s′ + 1− p

)g̃/2
,

where inequality (a) is obtained using Lemma F.2 (proof available in Appendix F.6).

We now complete the proof of Lemma 7.1. For any s′ > 0, we can write

es
′E[Q] ≤ E

[
es
′Q
]

= E
[

max
i=1,··· ,r

es
′Pi
]

316

≤ E
[r∑

i=1

es
′Pi
]

=
r∑

i=1

E
[
es
′Pi
]

≤ r(pe2s′ + 1− p)g̃/2,

where the last inequality follows from Lemma F.1. Taking logarithm from both sides

yields

E[Q] ≤ 1

s′
log(r) +

g̃

2s′
log(pe2s′ + 1− p). (F.1)

Let us substitute s = 2s′ in (F.1). Then,

E[Q] ≤ 1

s
log(r2) +

g̃

s
log(pes + 1− p), (F.2)

for any s > 0. Let p̄ = 1− p and pick

s∗ = 2

√
log(r)

g̃pp̄
.

We proceed with evaluation of the right hand side (RHS) of (F.2) at s = s∗. We first

recall the following Taylor series

log(1 + x) = x− x2

2
+
x3

3
− · · · , for x ∈ (−1, 1],

ex = 1 + x+
x2

2
+
x3

3!
+ · · · , for x ∈ R.

Let x = p(es∗ − 1). It is easy to check that for p = ω(1
n2), we have x→ 0 and s∗ → 0 as

317

n→∞. Therefore, for n→∞ we can write

log(pes∗ + 1− p) = log(x+ 1)

= x− x2

2
+
x3

3
− · · ·

= p(es∗ − 1)− p2(es∗ − 1)2

2
+
p3(es∗ − 1)3

3
− · · ·

= p
(
s∗ +

s∗2

2
+
s∗3

3!
+ · · ·

)
− p2

2

(
s∗ +

s∗2

2
+
s∗3

3!
+ · · ·

)2

+
p3

3

(
s∗ +

s∗2

2
+
s∗3

3!
+ · · ·

)3 − · · ·

= ps∗ +
pp̄

2
s2
∗ + o(ps2

∗).

Putting everything together, we have

E[Q] ≤ 1

s∗
log(r2) +

g̃

s∗
log(pes∗ + 1− p)

=
1

s∗
log(r2) +

g̃

s∗

(
ps∗ +

pp̄

2
s2
∗ + o(ps2

∗)
)

=
1

s∗
log(r2) + g̃p+

g̃pp̄

2
s∗ + o(g̃ps∗)

= g̃p+ 2
√
g̃pp̄ log(r) + o

(√
g̃p
)
.

Recall that g̃ = n2

K(Kr)
which is a deterministic function of n. Therefore, we choose

p = ω(1
n2) to have g̃p = ω(1) and thus

√
g̃pp̄ log(r) = Θ

(√
g̃p
)

= o (g̃p). Therefore,

E[Q] ≤ pg̃ + o(pg̃), as n→∞.

318

F.2 Proof of Claim E.1

(i) If S = {k}, for any k ∈ [K] and graph G we have H(XS |Y GSc) ≥ 0. Therefore,

EG
[
H(XS |Y GSc)

]
≥ 0 = pT

1∑

j=1

a1,S
M

n

K

1− 1

1
.

(ii) Assume that claim (7.10) holds for all subsets of size S0. For any subset S ⊆ [K]

of size S0 + 1, the following steps hold:

H(XS |Y GSc) =
1

|S|
∑

k∈S
H(XS , Xk|Y GSc)

=
1

|S|
∑

k∈S
(H(XS |Xk, Y

G
Sc) +H(Xk|Y GSc)) (F.3)

≥ 1

|S|
∑

k∈S
H(XS |Xk, Y

G
Sc) +

1

|S|H(XS |Y GSc). (F.4)

where (F.4) follows from (F.3) using chain rule and conditional entropy relations.

Simplifying (F.4) and using |S| − 1 = S0, we have the following:

H(XS |Y GSc) ≥
1

S0

∑

k∈S
H(XS |V G:,Mk

, Y GSc). (F.5)

Moreover,

H(XS |V G:,Mk
, Y GSc) = H(V GRk,:|V

G
:,Mk

, Y GSc) +H(XS |V G:,Mk
, V GRk,:, Y

G
Sc). (F.6)

We can lower bound expected value of the first RHS term in (F.6) as follows

EG
[
H(V GRk,:|V

G
:,Mk

, Y GSc)
]

= EG

∑

v∈Rk
H(V G{v},:|V G{v},Mk∪MSc)

319

= EG

∑

v∈Rk
|N (v)| − |N (v) ∩ (Mk ∪MSc)|

=
n

K
pT

S0∑

j=0

a
j,S\{k}
M

≥ n

K
pT

S0∑

j=1

a
j,S\{k}
M . (F.7)

Expected value of the second term in RHS of (F.6) can be lower bounded from the

induction assumption:

EG
[
H(XS |V G:,Mk

, V GRk,:, Y
G
Sc)
]

= EG
[
H(XS\{k}|Y GS\{k})

]

≥ pT

S0∑

j=1

a
j,S\{k}
M

n

K

S0 − j
j

. (F.8)

Putting (F.5), (F.6), (F.7), and (F.8) together, we have

EG
[
H(XS |Y GSc)

]
≥ 1

S0

∑

k∈S
EG
[
H(XS |V G:,Mk

, Y GSc)
]

=
1

S0

∑

k∈S
EG
[
H(V GRk,:|V

G
:,Mk

, Y GSc)
]

+ EG
[
H(XS |V G:,Mk

, V GRk,:, Y
G
Sc)
]

≥ 1

S0

∑

k∈S

(n
K
pT

S0∑

i=1

a
i,S\{k}
M + pT

S0∑

j=1

a
j,S\{k}
M

n

K

S0 − j
j

)

= pT

S0∑

j=1

n

K

1

j

∑

k∈S
a
j,S\{k}
M

= pT

S0+1∑

j=1

aj,SM
n

K

S0 + 1− j
j

.

(iii) Therefore, for any subset S ⊆ [K], claim (7.10) holds.

320

F.3 Achievability for the Random Bi-partite Model

In this Section, we specialize our proposed scheme in Section 7.4 for the random bi-

partite model and prove the achievability of Theorem 7.3. Consider RB(n1, n2, q) graph

G = (V1 ∪ V2, E) with n = n1 + n2, |V1| = n1 = Θ(n), and |V2| = n2 = Θ(n) where

|n1 − n2| = o(n). The prior knowledge of the bi-partite structure of the graph implies

that Reduction of vertices in V1 depends only on the Mappers in V2. Therefore, the

two operations would better be assigned to the same set of servers. Inspired by that

argument, we describe subgraph and Reduce allocations as follows. We divide the total

K servers into two sets of K1 = n1

n
K and K2 = n2

n
K servers. Assume n1 ≥ n2.

(I) Mappers in V1 and Reducers in V2 are distributedly allocated to K1 servers accord-

ing to the allocation scheme proposed in Section 7.4.1. Each of the K1 servers Maps

n1
r
K1

= n r
K

vertices (in V1) and Reduces n2

K1
= n2

n1

n
K

vertices (in V2). Note that

although each server in K1 is loaded at its capacity with n r
K

Mappers, these servers

are assigned n2

n1

n
K
≤ n

K
Reducers which implies more Reducers can be assigned to

these servers.

(II) Next we allocate the Mappers in V2 to the other set of K2 servers similar to Mappers

in V1. According to our pick for K2 and the allocation scheme proposed in Section

7.4.1, each server in K2 is assigned with n2
r
K2

= n r
K

vertices (in V2). To allocate the

n1 Reductions in V1 to the K2 servers, we note that these servers can accommodate

at most K2
n
K

= n2 Reductions which is less than n1. To allocate all Reductions,

we use the remaining Reduction space in the K1 servers. More precisely, we first

allocate n2 out of the total n1 Reductions in V1 to the K2 servers.

(III) Finally, we allocate the remaining n1 − n2 vertices to the K1 servers.

All in all, each of the K servers is now assigned with nr/K Mappers and n/K Reducers.

321

We denote this allocation by Ã ∈ A(r). Moreover, coded Shuffling applies the coded

scheme proposed in Section 7.4.1 for Reducing functions in phases (I) and (II) separately.

We also allow uncoded communications for enabling Reductions required in phase (III).

Now, we evaluate the communication load of each of the above phases. Let L̄C1
Ã

,

L̄C2
Ã

denote the average normalized communication loads for phases (I) and (II); and

L̄UC3
Ã

denote the average normalized communication load regarding phase (III). From the

achievability result in Theorem 7.1, for q = ω(1
n2), we have

L̄C1
Ã
≤ 1

r
q
n1n2

n2

(
1− r

K1

)
+ o(q),

and

L̄C2
Ã
≤ 1

r
q
n2

2

n2

(
1− r

K2

)
+ o(q).

As mentioned before, Reduction of the remaining n1−n2 vertices in phase (III) is carried

out uncoded, which induces the average normalized communication load as follows:

L̄UC3
Ã

= q
n2(n1 − n2)

n2
.

Putting all together, the proposed achievable scheme has the total average normalized

communication load L̄Ã as follows:

L̄Ã = L̄C1
Ã

+ L̄C2
Ã

+ L̄UC3
Ã

≤ 1

r
q
n1n2

n2

(
1− r

K1

)
+

1

r
q
n2

2

n2

(
1− r

K2

)
+ q

n2(n1 − n2)

n2
+ o(q).

Hence, the achievability claim of Theorem 7.3 can be concluded as follows:

lim sup
n→∞

L∗(r)

q
≤ lim sup

n→∞

L̄Ã
q

322

≤ lim sup
n→∞

1

r

n1n2

n2

(
1− r

K1

)
+ lim sup

n→∞

1

r

n2
2

n2

(
1− r

K1

)

+ lim sup
n→∞

n2(n1 − n2)

n2

=
1

2r

(
1− 2r

K

)
. (F.9)

F.4 Converse for the Random Bi-partite Model

Here we provide a lower bound on the optimal average communication load for the

random bi-partite model that is within a constant factor of the upper bounds and com-

plete the proof of Theorem 7.3. Consider G = (V1 ∪ V2, E) and assume that n1 ≥ n2. To

derive a lower bound on L∗(r), for every realization of RB(n1, n2, q) graph, we arbitrarily

remove n1 − n2 vertices in V1 along with their corresponding edges. The new bi-partite

graph represents two random ER graphs with n2 vertices. Consider Reducing the vertices

in one side of the new graph, e.g. V2. Clearly, this provides a lower bound on L∗(r). Note

that now each Mapper can benefit from a redundancy factor of 2r. According to Theorem

7.1, Reducing V2 induces the (optimal) communication load of 1
2r
q
(
1− 2r

K

)
+ o(q) which

implies

lim sup
n→∞

L∗(r)

q
≥ lim sup

n→∞

1

2r
q
n2

2

n2

(
1− 2r

K

)
+ o(q) =

1

8r

(
1− 2r

K

)
. (F.10)

Hence, the proof of converse of Theorem 7.3 is complete. Furthermore, (F.9) and (F.10)

together asymptotically characterize the optimal average normalized communication load

L∗(r) within a factor of 4.

323

F.5 Achievability for the Stochastic Block Model

In this Section, we specialize our proposed scheme in Section 7.4 for the stochastic

block model and prove the achievability of Theorem 7.4. Consider an SBM(n1, n2, p, q)

graph G = (V1∪V2, E1∪E2∪E3) with n = n1+n2, |V1| = n1 = Θ(n), and |V2| = n2 = Θ(n).

Edge subsets E1, E2 and E3 respectively represent intra-cluster edges among vertices in V1,

intra-cluster edges among vertices in V2, and inter-cluster edges between vertices in V1

and V2. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs induced by V1 and V2, respectively,

and denote the graph of inter-cluster connections by G3 = (V1 ∪ V2, E3). Clearly, G1 and

G2 are ER(n1, p) and ER(n2, p) graphs, while G3 is RB(n1, n2, q) graph.

Subgraph and Reduce allocations are described as follows. Mappers in V1 and Re-

ducers in V2 are distributedly allocated to K servers according to the allocation scheme

proposed in Section 7.4. Similarly, Mappers in V2 and Reducers in V1 are distribut-

edly allocated to K servers according to the allocation scheme proposed in Section 7.4.

Therefore, each server Maps n1r/K vertices in V1 and n2r/K vertices in V2, inducing

the computation load r. Moreover, each server Reduces n1/K functions in V1 and n2/K

functions in V2. We consider this allocation, denoted by Ã, for both uncoded and coded

Shuffling schemes. In uncoded scheme, Reducing each function in V1 requires on average

pn1 intermediate values Mapped by vertices in V1 due to intra-cluster connections which

introduces the average uncoded load L̄UC1
Ã

= p
n2
1

(n1+n2)2

(
1− r

K

)
. Similarly, the average un-

coded load for Reducing V2 due to intra-cluster connections is L̄UC2
Ã

= p
n2
2

(n1+n2)2

(
1− r

K

)
.

Moreover, inter-cluster connections induce an average load L̄UC3
Ã

= q 2n1n2

(n1+n2)2

(
1− r

K

)
.

In the coded scheme, we propose to employ coded Shuffling for the ER and RB

models in the regime of interest, that is p = ω(1
n2), q = ω(1

n2) and p ≥ q. Thus, the

overall communication load can be decomposed into three components. We first apply

the coded Shuffling scheme described in Section 7.4.1 to ER graph G1 which induces the

324

average normalized communication load

L̄C1
Ã
≤ 1

r
L̄UC1
Ã

+ o(p) =
1

r
p

n2
1

(n1 + n2)2

(
1− r

K

)
+ o(p).

Similarly, the same scheme applied to ER graph G2 results in the average normalized

communication load

L̄C2
Ã
≤ 1

r
L̄UC2
Ã

+ o(p) =
1

r
p

n2
2

(n1 + n2)2

(
1− r

K

)
+ o(p).

Finally, we employ the same scheme twice for the two ER models constituting the RB

graph G3 which induces the average normalized communication load

L̄C3
Ã
≤ 1

r
L̄UC3
Ã

+ o(q) =
1

r
q

2n1n2

(n1 + n2)2

(
1− r

K

)
+ o(q).

Let us denote by L̄C
Ã

and L̄UC
Ã

the total average normalized communication loads of the

coded and uncoded schemes, respectively. Therefore,

L∗(r) ≤ L̄C
Ã

= L̄C1
Ã

+ L̄C2
Ã

+ L̄C3
Ã

≤ 1

r
(L̄UC1

Ã
+ L̄UC2

Ã
+ L̄UC3

Ã
) + o(p)

=
1

r
L̄UC
Ã

+ o(p)

=
pn2

1 + pn2
2 + 2qn1n2

(n1 + n2)2

(
1− r

K

)
+ o(p),

which concludes the proof of achievability of Theorem 7.4.

325

F.6 Converse for the Stochastic Block Model

In this section, we provide the proof of the converse of Theorem 7.4. Consider an

SBM(n1, n2, p, q) graph G = (V1 ∪ V2, E1 ∪ E2 ∪ E3) with n = n1 + n2, |V1| = n1 = Θ(n),

and |V2| = n2 = Θ(n). Our approach to derive a lower bound for the minimum average

communication load is to randomly remove edges from the two intra-cluster edges, i.e.

E1 and E2. Moreover, edges are removed such that each of those clusters are then Erdos-

Renyi models with connectivity probability q (reduced from p). This can be simply

verified by the following coupling-type argument. Let the Bernoulli random variable Ep

denote the indicator of existence of a generic edge in an ER(n, p) graph, i.e. Pr[Ep =

1] = 1 − p. Now, generate another Bernoulli Eq by randomly removing edges from the

realized ER graph as follows:

Eq =

if Ep = 0 0

if Ep = 1

0 w.p. 1− q/p

1 w.p. q/p.

Clearly, Eq is Bernoulli(q) and the resulting graph has fewer number of edges compared

to the original one (with probability 1). By doing so for the two ER components of the

SBM graph, we have a larger ER graph of size n = n1 +n2 with connectivity probability

q. Using the converse in Theorem 7.1, we have the following for average normalized

communication load for the stochastic block model:

L∗(r)

q
≥ 1

r

(
1− r

K

)
.

Lemma F.2 For all p ∈ [0, 1] and s′ > 0, we have
(
pes

′
+ 1− p

)2 ≤ pe2s′ + 1− p.

326

Proof: For given p ∈ [0, 1], define f(s′) =
(
pes

′
+ 1− p

)2 −
(
pe2s′ + 1− p

)
. Clearly

f(0) = 0. Moreover,

f ′(s′) = 2pp̄(es
′ − e2s′) < 0,

for s′ > 0. Therefore, f(s′) ≤ 0 for all s′ > 0, concluding the claim of the lemma.

327

	Curriculum Vitae
	Abstract
	Introduction
	Algorithms for Federated Learning
	Algorithms for Distributed Computing

	Part I Algorithms for Federated Learning
	Communication-Efficient Federated Learning
	Introduction
	Federated Learning Setup
	Proposed FedPAQ Method
	Convergence Analysis
	Numerical Results and Discussions
	Concluding Remarks

	Straggler-Resilient Federated Learning
	Introduction
	Federated Learning Setup
	Adaptive Node Participation Approach
	Theoretical Results
	Numerical Experiments
	Concluding Remarks

	Distributionally-Robust Federated Learning
	Introduction
	Federated Learning Scenario
	The Proposed FedRobust Algorithm
	Theoretical Guarantees: Optimization, Generalization and Robustness
	Numerical Results
	Concluding Remarks

	Part II Algorithms for Distributed Computing
	Coded Computation over Heterogeneous Clusters
	Introduction
	Problem Formulation and Main Results
	The Proposed HCMM Scheme
	Generalization to the Shifted Weibull Model
	Numerical Results
	Generalization to Computing Scenarios under Budget Constraints
	Concluding Remarks

	Robust and Efficient Gradient Aggregation in Distributed Learning
	Introduction
	Problem Setup and Background
	Proposed CodedReduce Scheme
	Numerical Results
	Concluding Remarks

	Coded Computing for Distributed Graph Analytics
	Introduction
	Problem Setting
	Main Results
	Proposed Scheme and Proof of Achievability of Theorem 7.1
	Converse for the Erdös-Rényi Model
	Achievability for the Power Law Model
	Experiments over Amazon EC2 Clusters
	Concluding Remarks

	Bibliography
	Supplements to Chapter 2
	Proof of Theorem 2.1
	Proof of Theorem 2.2

	Supplements to Chapter 3
	Proof of Proposition 3.1
	Proof of Theorem 3.1
	Proof of Proposition 3.2
	Proof of Theorem 3.2

	Supplements to Chapter 4
	Preliminaries and Useful Lemmas
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Useful Lemmas
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Supplements to Chapter 5
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Lemma 5.1
	Proof of Lemma 5.3

	Supplements to Chapter 6
	Pseudo-code for Computation Allocation Sub-routine
	Pseudo-code for CodedReduce Scheme
	Proof of Theorem 6.1
	Proof of Theorem 6.2

	Supplements to Chapter 7
	Proof of Lemma 7.1
	Proof of Claim E.1
	Achievability for the Random Bi-partite Model
	Converse for the Random Bi-partite Model
	Achievability for the Stochastic Block Model
	Converse for the Stochastic Block Model

