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influences on Child Health Outcomes 

Abstract 

Background  A major challenge in epidemiology is knowing when an exposure effect is large enough to be clini-
cally important, in particular how to interpret a difference in mean outcome in unexposed/exposed groups. Where it 
can be calculated, the proportion/percentage beyond a suitable cut-point is useful in defining individuals at high risk 
to give a more meaningful outcome. In this simulation study we compute differences in outcome means and propor-
tions that arise from hypothetical small effects in vulnerable sub-populations.

Methods  Data from over 28,000 mother/child pairs belonging to the Environmental influences on Child Health 
Outcomes Program were used to examine the impact of hypothetical environmental exposures on mean birthweight, 
and low birthweight (LBW) (birthweight < 2500g). We computed mean birthweight in unexposed/exposed groups 
by sociodemographic categories (maternal education, health insurance, race, ethnicity) using a range of hypothetical 
exposure effect sizes. We compared the difference in mean birthweight and the percentage LBW, calculated using 
a distributional approach.

Results  When the hypothetical mean exposure effect was fixed (at 50, 125, 167 or 250g), the absolute difference 
in % LBW (risk difference) was not constant but varied by socioeconomic categories. The risk differences were greater 
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in sub-populations with the highest baseline percentages LBW: ranging from 3.1–5.3 percentage points for exposure 
effect of 125g. Similar patterns were seen for other mean exposure sizes simulated.

Conclusions  Vulnerable sub-populations with greater baseline percentages at high risk fare worse when exposed 
to a small insult compared to the general population. This illustrates another facet of health disparity in vulnerable 
individuals.

Keywords  Pregnancy outcomes, Child health outcome, Health disparities, Environmental exposure, Social 
determinants of health

Introduction
A major challenge in epidemiological research is to 
determine whether or not an observed negative or posi-
tive effect of an exposure is large enough to be of clinical 
or public health importance. There are many ways that an 
exposure might impact the distribution of a continuous 
outcome and one summary measure is to compare the 
mean health outcome in exposed and unexposed groups. 
However, the clinical relevance of observed differences 
between such group means is often hard to interpret. To 
address this, researchers may compare an observed dif-
ference with a recognized minimal clinically meaningful 
difference (MCID), or if the MCID is unknown, Cohen’s 
standardized effect size ‘d’ (estimate/standard devia-
tion) where an effect size of 0.8 is considered ‘large’, 0.5 
is’medium’ and 0.2 is ‘small’, with these terms interpreted 
as indicating importance of the effect size [1]. We note 
that the erroneous interpretation of the p-value as a 
measure of effect size and hence of clinical importance 
is sometimes still seen in papers [2]; underpowered non-
significant studies are commonly interpreted as show-
ing ‘no difference’ or’no association’ and conversely large 
studies showing statistical significance may not imply a 
clinically relevant effect. This circles back to the impor-
tance of reporting and understanding the actual effect 
sizes alongside the challenges in interpreting mean differ-
ences that are described above.

One approach to assist the interpretation of a mean 
difference is to additionally consider whether there is a 
known cut-point for the continuous health outcome that 
can be used to define individuals at ‘high risk’ of poor 
later outcome and to calculate the difference in the pro-
portion at high risk in the exposed and unexposed groups 
– the absolute risk difference – to provide more informa-
tion. For example, ‘low birthweight’ is commonly defined 
using the World Health Organization cut-point of 2500g 
to describe a dichotomous outcome. At the population 
level, this division can be used to determine the propor-
tion of individuals with low versus normal birthweight 
who are more likely to suffer a poor perinatal outcome [3].

The calculation of the complementary dichotomous 
outcome, the absolute risk difference, based on the pro-
portion at high risk, can be reported alongside the dif-
ference in means to give a ‘dual outcome’ that provides 
more information and so helps with the interpretation 
of study results. Further, if the dichotomized outcome 
is calculated using the whole distribution using a dis-
tributional approach [4–7], then the usual loss in pre-
cision associated with dichotomization does not occur 
and a study can provide a fully powered continuous 
and dichotomous outcome with the same sample size. 
This dual outcome approach was used to determine the 
potential impact of a statistically significant but very 
small difference in mean lung function z-score by rand-
omized group in a RCT follow up [8].

A further challenge arises in that these two measures 
of effect size, the difference in means and the absolute 
risk difference are not constant across different popula-
tions. This is because the proportion at high risk and 
hence the difference between those exposed and not 
exposed is greater in vulnerable populations whose 
baseline mean outcome is usually more extreme than 
that of the general population [9]. To illustrate this con-
sider the impact of an exposure causing a small reduc-
tion in mean birthweight in births that are full-term 
and preterm. As the risk of low birthweight is already 
higher among preterm than term births, even a small 
shift in mean birthweight in a preterm population 
has a relatively greater impact in the proportion with 
low birthweight. In general, small differences in mean 
health outcomes in vulnerable populations may be 
missed due to insufficient statistical power – they are 
‘non-significant’, or they may be dismissed as too small 
to be clinically important despite the potential for a 
larger proportion of the population to move into a high 
risk category.

In this paper we use data from the pan-US NIH-
funded “Environmental influences on Child Health Out-
comes” (ECHO) program to simulate the impact of 
hypothetical small differences on a child health outcome in 
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sub-populations defined by socioeconomic variables. The 
aim and focus of this paper is not to report new findings on 
effect sizes for specific outcomes in themselves but to illus-
trate the impact of environmental exposures across a range 
of plausible effect sizes. In this way we highlight the impor-
tance of the choice of outcome to assist ECHO and other 
researchers in child health in interpreting small effects.

Methods
Study participants
The Environmental influences on Child Health Outcomes 
(ECHO) program http://​www.​echoc​hildr​en.​org/funded 
by NIH, was established in 2016 to investigate the 
impacts of a wide range of environmental exposures on 
children’s health to “enhance the health of children for 
generations to come” [10, 11]. In cycle 1, 2016–2023, the 
ECHO program included 69 cohorts in 31 consortia rep-
resenting the diversity in sociodemographic features and 
exposures among children born in the United States. The 
cycle 1 program includes participant data for over 43,000 
pregnancies and children who have consented to the 
ECHO-wide protocol. Further details of the study sample 
are given in the Additional file (eMethods1).

Characterization of health outcomes by social factors
These ECHO-wide cohort data were used to characterize 
the distributions of the birthweight outcome according to 
a range of populations stratified by known social deter-
minants of health. This outcome was chosen to illustrate 
a key perinatal child health outcome. The following social 
factors were included: maternal education (categorized 
as less than high school, high school, college-no degree, 
bachelor’s degree, master’s degree or higher), health 
insurance (‘HI’: No HI/public HI, employer/market/pri-
vate HI, more than one HI), race (White, Black, Native 
Hawaiian/Pacific Islander, American Indian/Alaskan 
Native, More than one race, Other races) and ethnicity 
(non-Hispanic, Hispanic). Children’s race and ethnicity 
were based on caregiver reports and categories were 
collapsed (e.g. into More than one race, Other races) 
where the numbers were small. All social factors were 
included as proxy indicators of socio-environmental 
health risks [12].

We chose to examine the effect of a set of fixed absolute 
mean differences since absolute mean difference is com-
monly used to characterize the effect of an exposure on 
a continuous outcome. The baseline mean outcome and 
standard deviation (SD) values in each subgroup were 
used as the mean and SD in the respective unexposed 
subgroups. The SDs were assumed to be the same in each 
pair of unexposed and exposed sub-groups. We then 
considered four plausible scenarios to illustrate the effect 
of a hypothetical exposure on a population: i) a very small 

effect on mean birthweight where the mean is reduced by 
50g, ii) a small effect where mean birthweight is reduced 
by 125g, iii) a medium effect where mean birthweight is 
reduced by 167g, and iv) a larger effect where the mean 
is reduced by 250g. These were used to assess the effect 
on the difference in population at high risk between the 
groups. We assume that a reduction in mean indicates a 
poorer birthweight [13]. For each of the four scenarios 
we computed the equivalent mean outcome in the hypo-
thetically unexposed and exposed groups and the pro-
portions at high risk using below 2500g, ‘low birthweight’ 
to indicate high risk. These analyses were repeated by 
population subgroup according to the socioeconomic 
categories.

Figure 1 demonstrate the principles using hypothetical 
data to illustrate the distribution of the unexposed and 
exposed groups and the proportion at high risk (z < -1.645 
or below the 5th percentile) and shows that the propor-
tions at high risk are much greater in the vulnerable pop-
ulations and so the impact of the same small decrease in 
the mean is greater than it is in general populations.

The proportions at high risk and their differences were 
calculated using a distributional approach, a statistical 
method that uses the whole distribution to calculate the 
proportion beyond a given cut-point, to avoid the loss of 
power and precision usually associated with dichotomi-
zation. This method works in a similar way to the calcula-
tion of reference ranges [4–6]. The distributional method 
used permits analysis with a range of distributional 
forms, symmetric and skewed, and is described more 
fully in the Additional file (eMethods2). Analyses were 
conducted using the R 4.2.2 package DistdichoR [14, 15].

Results
Data were drawn from the first phase of the ECHO pro-
gram (ECHO Cycle 1, 2016–2023) as part of 50 partici-
pant cohorts listed in Additional file eTable1. Analyses 
included a maximum of 28,496 mother/child pairs with a 
birthweight recorded (Table 1).

Birthweight (g) and Low Birthweight (LBW)
Mean (SD) birthweight was 3308g (569) overall and the 
distribution was slightly negatively skewed (Additional 
file eFigure1). The birthweight means varied by the social 
factors analyzed: ranging from 3190 to 3345g in maternal 
education categories, 3266g to 3363g by health insurance 
status, 3131g to 3373g by race and 3243g to 3319g by eth-
nic group (Table 1). In parallel the percentage of infants 
with low birthweight (LBW) was 7.8% overall and varied 
markedly by maternal education, health insurance, race 
and ethnicity. The participant categories with the high-
est percentage of LBW were mothers with less than high 
school education (12.2%) and Black race (13.5%).

http://www.echochildren.org/


Page 4 of 13Peacock et al. BMC Public Health         (2024) 24:2655 

Table 2 and Fig. 2 depict the impact of a hypothetical 
and constant small change in mean birthweight, 50g, on 
the percentage of infants with low birthweight (% LBW) 
according to the categories of the four social factors ana-
lyzed. This shows the expected trend in LBW by maternal 
education whereby % LBW is inversely associated with 

educational attainment. Further, the absolute difference 
in % LBW was not constant, ranging from 1.2 percent-
age points to 1.8 percentage points, and was greatest for 
those with the highest baseline % LBW. A similar pat-
tern was seen for LBW by race where Black mothers had 
more than twice the % LBW compared to White mothers 

Fig. 1  Illustration of the impact of a small effect, 0.25 standard deviations, in general populations compared with vulnerable populations showing 
that the same decrease in mean value has a greater impact in vulnerable populations. The hypothetical distributions are standard Normal 
with means in the unexposed distribution of 0 (general population) and -1 (vulnerable population), and standard deviation 1. High risk is defined 
as below 5th centile (< -1.645)
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(13.5% vs 5.9%) and the same small decrease in mean 
birthweight was associated with a greater increase in % 
LBW among Black than White mothers (2.0% vs 1.1%) 
(Table 2, Fig. 2). In general, the offspring of women iden-
tifying as non-White race, i.e. Asian, Native Hawaiian/
Pacific Island, American Indian/Alaskan Natives, Multi-
ple races and Other races fared worse than the offspring 
of White mothers in terms of % LBW and the impact of 
a constant small decrease in mean birthweight. The pat-
terns by health insurance and ethnic group were visible 
but less marked (Table  2, Fig.  2). Overall, the greatest 
risk difference was seen in Black children, 2.0 percentage 
points, and least risk difference was seen in White chil-
dren, 1.1 percentage points when the exposure shifted 
mean birthweight by 50g.

Almost identical overall patterns were seen when mean 
birthweight was reduced by 125g, 167g and 250g with 
the effect sizes in differences of proportions increasing as 
expected. The trend in risk was particularly marked for 

maternal education and race (Table 3, eTable 2-eTable 3, 
Figs. 3– 5): for example the risk difference in Black chil-
dren was 5.3% points compared to 3.1% points in White 
children for an exposure effect of 125g Table  3, Fig.  3), 
and was 7.4% (11.8%) vs 4.4% (7.3%) points for the expo-
sure effect of 167g (250g) (eTables 2–3, Figs. 4– 5). Fig-
ure  6 (eTable  4) shows the overall relationship between 
mean birthweight in each of the 21 sub-populations that 
comprised the four social factors, by the size of the expo-
sure, 50-250g. This figure displays the clear and strong 
inverse relationship between mean birthweight and the 
difference in percentage LBW across all categories.

In general, 95% confidence intervals around the esti-
mated difference in proportions were narrow although 
they were naturally wider in small subgroups.

Table 1  Characteristics of the ECHO participants included in the 
study by outcome: Birthweight (N = 28,496)

N Mean SD % Low 
birthweight

All participants 28,496 3308 569 7.8%

Maternal education
  Less than high school 1064 3190 591 12.2%

  High school 2283 3249 579 9.8%

  College, no degree 4985 3273 601 9.9%

  Bachelor’s degree 5557 3340 584 7.5%

  Master’s degree or higher 5177 3345 558 6.5%

  Missing/unknown 9430 3315 539 6.5%

Health Insurance (HI)
  No HI/public HI 6781 3266 577 9.2%

  Employer/market/private 9743 3363 552 5.9%

  More than one 2916 3273 591 9.5%

  Missing/unknown 9056 3292 569 8.2%

Race
  White 16,393 3373 557 5.9%

  Black 4303 3131 573 13.5%

  Asian 993 3152 522 10.6%

  Native Hawaiian/Pacific Islands 102 3285 556 7.9%

  American Indian/Alaskan Native 570 3356 600 7.7%

  Multiple Races 3002 3271 585 9.4%

  Other races 1295 3249 568 9.4%

  Missing/unknown 1838 3309 538 6.6%

Ethnicity
  Hispanic 7174 3283 563 8.2%

  Non-Hispanic 20,450 3319 572 7.6%

  Missing/unknown 872 3243 540 8.5%

Table 2  Modeled proportions with low birthweight (< 2500g) 
associated with a shift in mean of 50g, overall and by social 
determinants in the ECHO consortium (N = 28,496)

% LBW 
unexposed

% LBW 
exposed

Difference in 
percentage 
points (exposed-
unexposed)

95% 
Confidence 
Interval

All participants 7.8 9.1  1.4 1.1, 1.6

Maternal education

  Less than high 
school

12.2 14.0 1.8 0.0, 3.6

  High school 9.8 11.4 1.6 0.5, 2.6

  College, no degree 9.9 11.5 1.5 0.8, 2.3

  Bachelor’s degree 7.5 8.8 1.3 0.7, 1.9

  Master’s degree 
or higher

6.5 7.7 1.2 0.7, 1.7

  Missing/unknown 6.5 7.8 1.3 0.9, 1.7

Health Insurance (HI)

  No HI/public HI 9.2 10.8 1.5 0.9, 2.1

  Employer/market/
private

5.9 7.1 1.1 0.8, 1.5

  More than one 9.5 11.1 1.5 0.6, 2.4

  Missing/unknown 8.2 9.6 1.4 0.9, 1.9

Race

  White 5.9 7.0 1.1 0.9, 1.4

  Black 13.5 15.5 2.0 1.0, 3.0

  Asian 10.6 12.4 1.9 0.2, 3.6

  Native Hawaiian/
Pacific Islands

7.9 9.3 1.4 -2.9, 5.7

  American Indian/
Alaskan Native

7.7 9.0 1.3 -0.5, 3.1

  Multiple Races 9.4 10.9 1.5 0.6, 2.4

  Other races 9.4 10.9 1.6 0.2, 2.9

  Missing/unknown 6.6 7.9 1.3 0.4, 2.2

Ethnicity

  Hispanic 8.2 9.7 1.4 0.9, 2.0

  Non-Hispanic 7.6 8.9 1.3 1.0, 1.6

  Missing/unknown 8.5 10.0 1.5 0.0, 3.1
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Discussion
This simulation study has shown the variability in distri-
bution of a key child health outcome according to four 
social factors and illustrates the considerable disparities 
in children’s health across the United States. The analyses 
have shown clear differences in both mean birthweight 
and the percentage of children with low birthweight 
(LBW) across categories of maternal education, health 
insurance status, race and ethnicity. Particularly marked 
effects were seen for maternal education ranging from 
6.5% LBW to 12.2% and even more extreme, for race with 
13.5% LBW among Black mothers compared to 5.9% in 
White mothers.

The current paper sought to explore the potential for 
adverse exposures to have a disproportionately harm-
ful impact on the most vulnerable. Using a statistical 
approach, we have looked at the proportion of partici-
pants whose health outcomes put them in a high risk 
category to see how that risk changes when a hypo-
thetical environmental exposure leads to a small shift in 
their outcome distribution’s mean value [13]. Our find-
ings have shown that the highest-risk individuals (i.e., at 
the extreme of an outcome distribution) are impacted 
more than those who are less vulnerable when both 
are exposed to the same small insult. The most strik-
ing contrast was in analyses by race where the same a 

Fig. 2  Modeled percentage of low birthweight (LBW) in unexposed and exposed populations by social factors associated with a change in mean 
birthweight of 50g (N = 28,496)
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hypothetical exposure would have a markedly greater 
impact in Black mothers who are already more vulner-
able than White mothers due to their higher baseline risk 
of low birthweight (LBW): the respective LBW risk dif-
ferences are 2.0 versus 1.1 percentage points – an almost 
twofold difference for a 50g mean birthweight exposure 
effect, and increasing to 11.8 versus 7.3 percentage points 
for a 250g mean birthweight exposure effect. Hence the 
disparities were observed for any exposure effects. This 
illustrates the compounded health disparities in already 
vulnerable women and their children when they are sub-
ject to adverse environmental exposures.

These findings are particularly relevant for ECHO-wide 
studies where the broad aim is to identify adverse effects 
of environmental exposures. In particular, we need to 
understand how environmental exposures impact not 

only the population as a whole but also sub-populations, 
particularly those that are more vulnerable because 
their baseline risk is already high. An understanding of 
impacts of environmental exposures in vulnerable popu-
lations is critical in building the evidence base that will 
guide public and environmental health policy and pre-
ventive programs.

This study reinforces the importance of the statistical 
phenomenon that a constant exposure effect expressed 
as a shift in mean of an outcome does not equate to a 
constant shift in the proportions at high risk. This can 
be expressed in terms of Cohen’s indices for effect sizes 
of differences in means (‘Cohen’s d’) and proportions 
(‘Cohen’s h’) [1], and shows that for sub-populations 
within the same overall population, the relationship 
between d and h is not constant. Hence small effects 
might be dismissed as not clinically important or are 
non-significant overall and might be of clinical rel-
evance in vulnerable sub-populations [9]. In order to 
avoid missing important effects, analyses should be 
stratified by sociodemographic factors with both mean 
values and proportions at high risk reported for contin-
uous outcomes. Further the potential for a small shift 
in mean to have important impact in vulnerable groups 
requires consideration in study planning and analysis 
and in designing preventive programs where seemingly 
small changes might be very important.

Limitations of this work include the choice of the child 
health outcome and the four social factors. These were 
chosen to give representation of outcomes measured at 
birth and of key social indicators, but we acknowledge 
this represents a small subset of the vast number of out-
comes and social factors assessed in ECHO. We could 
have added more social factors and/or more outcomes, 
but we believe that the results would be the same and 
that adding more data risks obscuring the message. We 
also recognize that the ECHO cycle 1 sample is skewed 
towards higher educated, higher income women and so 
there may be less power to detect effects at the lower end 
of the distribution, as shown by the wider confidence 
intervals in the small subgroups.

The use of the distributional method to calculate the 
proportions at high risk avoided the usual loss of pre-
cision associated with dichotomization [4]. However 
these estimates have been computed to illustrate prin-
ciples rather than to be used to generate hypotheses 
and should be treated as such. We could have chosen 
to use quantile regression to estimate the distribution 
tail areas; previous work has indicated that estimates 
using a distributional approach and quantile regres-
sion would be similar but that estimates calculated 
using quantile regression are less precise [7]. However, 

Table 3  Modeled proportions with low birthweight (< 2500g) 
associated with, a shift in means of 125g overall and by social 
determinants in the ECHO consortium (N = 28,496)

% LBW 
unexposed

% LBW 
exposed

Difference in 
percentage 
points (exposed-
unexposed)

95% 
Confidence 
Interval

All participants 7.8 11.5 3.7 3.4, 4.0

Maternal education

  Less than high 
school

12.2 17.0 4.8 2.9, 6.8

  High school 9.8 14.1 4.3 3.1, 5.4

  College, no degree 9.9 14.1 4.1 3.3, 4.9

  Bachelor’s degree 7.5 11.0 3.5 2.9, 4.1

  Master’s degree 
or higher

6.5 9.8 3.4 2.8, 3.9

Missing/unknown 6.5 10.0 3.5 3.1, 3.9

Health Insurance (HI)

  No HI/public HI 9.2 13.4 4.1 3.5, 4.8

  Employer/market/
private

5.9 9.1 3.2 2.8, 3.6

  More than one 9.5 13.6 4.1 3.1, 5.1

  Missing/unknown 8.2 12.1 3.9 3.3, 4.4

Race

  White 5.9 9.0 3.1 2.8, 3.4

  Black 13.5 18.8 5.3 4.3, 6.4

  Asian 10.6 15.6 5.1 3.2, 6.9

  Native Hawaiian/
Pacific Islands

7.9 11.8 3.9 -0.9, 8.6

  American Indian/
Alaskan Native

7.7 11.2 3.5 1.5, 5.4

  Multiple Races 9.4 13.5 4.1 3.1, 5.1

  Other races 9.4 13.6 4.2 2.7, 5.7

  Missing/unknown 6.6 10.2 3.6 2.5, 4.6

Ethnicity

  Hispanic 8.2 12.1 3.9 3.3, 4.5

  Non-Hispanic 7.6 11.2 3.6 3.3, 4.0

  Missing/unknown 8.5 12.6 4.2 2.5, 5.9
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in general, quantile regression with its extensions using 
a Bayesian approach, offers a very flexible approach to 
modeling multiple quantiles [16].

In raising awareness of the importance of consider-
ing multiple effect measures when comparing effects 
between subgroups, it can be argued that dichotomiza-
tion is not essential as there are other summary meas-
ures such as relative mean difference which are more 
natural choices. However,

it is our observation that dichotomization is widely 
used by clinicians because it is natural and meaningful 
to them. They use dichotomization to aid diagnosis and 
treatment decisions as well as in the interpretation of 

population-level data as it provides a clinically mean-
ingful outcome, as we have described in our previous 
publications [4, 7].

Analyzing combinations of factors was beyond the 
scope of this work but it seems very plausible that at 
least some vulnerable groups of mothers and their chil-
dren will be subject to a combination of neighborhood 
stressors for example as assessed in ECHO using the 
instrument ‘Combined social and environmental stressor 
exposure’ measure. Hence the by-category estimates 
given for the four single social factors in our paper will 
be underestimates of the impact of the totality of adverse 
factors vulnerable families are exposed to [17].

Fig. 3  Modeled percentage of low birthweight (LBW) in unexposed and exposed populations by social factors associated with a change in mean 
birthweight of 125g (N = 28,496)
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We have focused on estimating proportions at high 
risk and on hypothetical exposures that increase the risk 
of poor outcome. We could have chosen to look at fac-
tors that lead to positive health [18] i.e. benefits where 
the same principles will apply, namely that a small change 
in the mean outcome in a positive direction will increase 
the proportion at normal/low risk by a greater amount 
in a vulnerable population with a lower baseline value. 
Therefore it follows that an intervention or preventive 
strategy that makes just a small difference will have a 
greater effect in the vulnerable than in the general popu-
lation, and therefore may be worthwhile to consider.

This paper has directed attention to the choice 
of outcome in estimating the impact of an expo-
sure but this is a simplification of the real world. We 
have not considered the prevalence or distribution of 
the hypothetical exposure which are likely to vary by 
socioeconomic factors. It seems very plausible that 
the prevalence of exposure may be greater in more 
deprived areas. In like manner, we have ignored the 
severity of the overall child outcome by considering 
birthweight alone. These simplifications seem to make 
it likely that the illustrative impacts may underesti-
mate their true values in real life. Further, by using our 

Fig. 4  Modeled percentage of low birthweight (LBW) in unexposed and exposed populations by social factors associated with a change in mean 
birthweight of 167g (N = 28,496)
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observed subgroup standard deviations for both the 
unexposed and exposed subgroups, we have assumed 
that the exposure affects only the mean and not the 
shape of each subgroup distribution. We chose to use a 
set of fixed absolute differences for birthweight in our 
subgroup calculations – we might have fixed on the 
number of SDs but considered that an absolute differ-
ence for birthweight was more intuitive.

The major strengths of this work are that we have 
analyzed pooled participant data across the ECHO 
Cycle 1 Program including up to 50 pan-US cohorts 
with up to 28,000 mother/child pairs and so the sam-
ple is not only very large but covers the diversity of 

populations of mothers and children in the United 
States [10, 11]. Therefore the principles that have 
arisen here are relevant in research into factors affect-
ing child health across the US and worldwide.

Conclusions
We have used data from the pan-US ECHO program 
to illustrate the importance of carefully considering 
the impact of an environmental exposure in vulnerable 
sub-populations of mothers and children using the dual 
outcome between exposed and unexposed individu-
als and families: difference in means and absolute risk 
difference based on the proportion at high risk. This 

Fig. 5  Modeled percentage of low birthweight (LBW) in unexposed and exposed populations by social factors associated with a change in mean 
birthweight of 250g (N = 28,496)
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matters greatly because a small perturbation in mean 
outcome translates to a range of effect sizes for the pro-
portions at high risk. Since vulnerable populations start 
with a higher proportion at high risk than the general 
population, a small perturbation will lead to a larger 
effect on the proportion at high risk than happens in 
the general population.
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