
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Authorization policy in a PKI environment

Permalink
https://escholarship.org/uc/item/4tx0n540

Authors
Thompson, Mary R.
Mudumbai, Srilekha S.
Essiari, Abdelilah
et al.

Publication Date
2002-04-10

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4tx0n540
https://escholarship.org/uc/item/4tx0n540#author
https://escholarship.org
http://www.cdlib.org/

Authorization Policy in a PKI Environment

Mary R. Thompson, Srilekha Mudumbai, Abdelilah Essiari, Willie Chin

National Energy Research Scientific Computing Division
Ernest Orlando Lawrence Berkeley National Laboratory

Berkeley, CA, 94720
pkidev@george.lbl.gov

s
of
r

m
d
ed
.
d
an
n
nd
n

es
a
le
of
d
m
ur
o-
is
-
a

i-

-
rce
iza
-

n

ms

za-
to

is
om
r-
a
tes
I.
e
en-
is-
er
a

ch
le
’s

l
a

us

o
run
r-
g
o-
ids
ve
ch-
rs.
Abstract
The major emphasis of Public Key Infrastructure ha
been to provide a cryptographically secure means
authenticating identities. However, procedures fo
authorizing the holders of these identities to perfor
specific actions still needs additional research an
development. While there are a number of propos
standards for authorization structures and protocols
[17, 5, 22, 10, 6] based on X.509 or other key-base
identities, none have been widely adopted. As part of
effort to use X.509 identities to provide authorization i
highly distributed environments, we have developed a
deployed an authorization service based on X.509 ide
tified users and access policy contained in certificat
signed by X.509 identified stakeholders. The major go
of this system, called Akenti, is to produce a usab
authorization system for an environment consisting
distributed resources used by geographically an
administratively distributed users. Akenti assumes co
munication between users and resources over a sec
protocol such as secure socket layer (TLS) which pr
vides mutual authentication with X.509 certificates. Th
paper explains the authorization model and policy lan
guage used by Akenti, and how we have implemented
Apache authorization module to provide Akenti author
zation.

Background
There is significant and growing set of distributed com
puting environments where the resources, resou
stakeholders and users are geographically and organ
tionally distributed. The DOE sponsored Collaborato
ries [1] and various “Computational Grids” [13] are
examples of these as well as the ubiquitous Web-co
es
za-
i-

This work is supported by the U. S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, Mathe-
matical, Information and Computation Sciences office (http://
www.er.doe.gov/production/octr/mics), under contract DE-AC03-
76SF00098 with the University of California.See the disclaimer
at http://www-library.lbl.gov/teid/tmRco/howto/RcoBerkeley-
LabDisclaimer.htm.This document is report LBNL-49512.
-

l

-
e

n

-

-

trolled sets of documents and services. These syste
effectively define aVirtual Organizationwhose mem-
bers and resources span many different real organi
tions. These virtual organizations need a way
authenticate and then authorize their users.

One of the characteristics of a collaboratory or Grid
that both the stakeholders and users may come fr
many different administrative domains. Thus the vi
tual organization needs to identify its users in
domain neutral manner. The most common candida
for cross-domain identities are Kerberos and PK
Kerberos is mostly used within a single administrativ
domain, but there are many examples of cross-auth
ticated Kerberos realms, where the Kerberos admin
trators have agreed to accept tokens from anoth
realm. Negotiating cross-realm agreements is often
lengthy and complex process. Some examples of su
domains are universities where there may be multip
Kerberos realms within the university, and the DOE

ASCI-DisCom2 program [9] that connects Lawrence
Livermore National Laboratory, Los Alamos Nationa
Laboratory and Sandia National Laboratories in
computational Grid.

Looser collaborations, such as Grids based on Glob
[14] middleware, [24,27] Collaboratories [8,25] and
portals [20] have chosen to use PKI identities t
authenticate members. These organizations either
a Certificate Authority of their own and/or accept ce
tificates from a set of trusted CAs. Establishin
trusted CA relationships can also be a lengthy pr
cess, but since many current collaboratories and gr
are experimental in nature, the trust relations ha
been established on an informal basis by the resear
ers, rather than the system security administrato
Once a collaboration has decided to use PKI identiti
to authenticate users, it needs to develop an authori
tion system using those identities plus some add
tional access policy information for each of its
resources.

nd-
ity

e
rce
d
a

a
on
At
per

s to
r-

pt-
ed

rol
el,
per
d
ility
nts
te-
pa-
e
d-

on
Another characteristic of collaboratories and Grids is
that their resources, such large scientific instruments,
computing resources and data stores, may have more
than one person (called a stakeholder) who needs to
control access to the resource. For example, when
remote control of an instrument is allowed the instru-
ment administration may want assurance that any user
who can control the instrument has passed a local train-
ing course, while the principal investigator may be
mostly concerned that the person controlling the instru-
ment during his allowed time is a member of his
research group. An authorization system that allows
access policy to be defined independently and remotely
from the resource gateway is needed.

However, standard access control methods typically
require that the stakeholder has privileged access to the
machine on which the resource resides to set the access
control. Also such systems, to the extent that they use
the underlying operating system for actual access con-
trol, require that all users of a shared resource must have
a local account on the system. The requirement for indi-
vidual system accounts on the resource machine does
not scale well.

We have developed the Akenti [32] authorization system
to meet these two needs: to use a virtual organization-
wide user identity (in our case an X.509 identity certifi-
cate); and to facilitate setting access policy by multiple
independent stakeholders remote from the actual
resource gateway.

This paper explains the authorization model and policy
language that we use, and how we have implemented an
Apache authorization module to provide the same
authorization policy and mechanism for resources
accessed via a Web browser as accessed by other remote
methods such as Globus job submission [14] or CORBA
object invocation.

Akenti
Akenti is built using X.509 identity certificates [18] and
the SSL/TLS [7] connection protocols to securely iden-
tify a user that is requesting access to a resource. It rep-
resents the authorization policy for a resource as a set of
(possibly) distributed digitally signed certificates. These
policy certificates are independently created by autho-
rized stakeholders. When an authorization decision
needs to be made, the Akenti policy engine gathers up
all the relevant certificates for the user and the resource,
validates them, and determines the users rights with
respect to the resource.

Authorization model

The Akenti model consists ofresourcesthat are being
accessed via aresource gatewayby users. These users
connect to the resource gateway using the SSL ha
shake protocol to present authenticated X.509 ident
certificates. Thestakeholdersfor the resources express
access constraintson the resources as a set ofsigned
certificates, a few of which are self-signed and must b
stored on a known secure host (probably the resou
gateway machine), but most of which can be store
remotely. These certificates express what attributes
user must have in order to get specific rights to
resource, who is trusted to make such Use-conditi
statements and who can attest to a user’s attributes.
the time of the resource access, the resource gatekee
asks a trusted Akenti server, what access the user ha
the resource. The Akenti server finds all the relevant ce
tificates, verifies that each one is signed by an acce
able issuer, evaluates them, and returns the allow
access. See Figure 1.

There are several models for arriving at access cont
decisions. One is the classical access control list mod
where the user just presents an identity to the gatekee
who finds the policy information for the resource an
evaluates the users access. Another is the capab
model, where the user presents a capability which gra
the holder specific rights to the resource, and the ga
keeper has to verify that the user has come by the ca
bility legitimately and then interpret the rights that hav
been presented. There are also hybrids of the two mo
els, where a user may present some identity informati
and possibly a restricted set of his full rights.

Client
Resource
Gateway Akenti

Resources

policy
certificates

Figure 1. Akenti Authorization Model

to
.
at
ign
on-
e

on
ig-
d

rs
s.
to
te
nti
n

We have mostly concentrated on the first model in order
to allow applications to use Akenti authorization over
standard SSL connections which can transport and ver-
ify X.509 identity certificates. We have also experi-
mented with s capability model where Akenti will return
a signed capability certificate containing a subject’s Dis-
tinguished Name (DN), public key, the Certificate
Authority (CA) that signed for this name, the name of
the resource and the subject’s rights. If this is presented
to a resource gatekeeper, along with an authenticated
identity certificate, the gatekeeper need only verify the
signature of the certificate by using its copy of the
Akenti server’s public key, and verify that the subject
named in the capability is the same as that in the identity
certificate. These capability certificates are short-lived in
order to avoid the problems of revocation.

Akenti policy language

Akenti policy is expressed in XML and stored in three
types of signed certificates:Policy certificates, Use-con-

dition certificatesandAttribute certificates. Policy cer-
tificates are self-signed, co-located with the resources
which they apply and contain only minimal information
Use-condition certificates contain the constraints th
control access to a resource. Attribute certificates ass
attributes to users that are needed to satisfy the use c
straints. Akenti attribute certificates are simpler than th
proposed IETF Attribute certificates. See the section
Related Work for a more detailed comparison. See F
ure 2 for an example of a Use-condition certificate an
Appendix A for the DTD definition of the complete
Akenti Certificate schema.

Policy certificates specify who the resource stakeholde
are, and thus who may sign Use-condition certificate
The Use-condition certificates specify who can attest
the required attributes and thus who may sign Attribu
certificates. Whenever a certificate is used, the Ake
policy engine will check that it has been signed by a
acceptable issuer, and that the signature verifies.
<?xml version=”1.0” encoding=”US-ASCII”?>
<!DOCTYPE AkentiCertificate SYSTEM “/home/g1/proj/akenti/release/common/AkentiCertificate.dtd”>

<AkentiCertificate>
 <SignablePart>
 <Header Type=”useCondCertificate” SignatureDigestAlg=”RSA-MD5” CanonAlg=”AkentiV1”>
 <Version ver=”V1”/>
 <ID id=”griffy.lbl.gov#4e6ba338#Mon Mar 01 10:56:51 PST 1999”/>
 <Issuer>
 <UserDN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=Mary R. Thompson </UserDN>
 <CADN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA </CADN>
 </Issuer>
 <ValidityPeriod start=”981224003646Z” end=”020123003646Z”/>
 </Header>
 <UseConditionCert scope=”local” enable=”false”>
 <ResourceName> LBL </ResourceName>
 <Condition>
 <Constraint>(o=Lawrence Berkeley National Laboratory | (group = distrib)) </Constraint>
 <AttributeInfo type=”X509”>

 <AttrName> o </AttrName>
 <AttrValue> Lawrence Berkeley National Laboratory </AttrValue>
 <CADN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA </CADN>

 </AttributeInfo>
 <AttributeInfo type=”AKENTI”>

 <AttrName> group </AttrName>
 <AttrValue> distrib </AttrValue>
 <Principal>
 <UserDN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=Srilekha Issuer </UserDN>
 <CADN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA </CADN>
 </Principal>

 </AttributeInfo>
 </Condition>
 <Rights> read, write </Rights>
 <SubjectCA> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA </SubjectCA>
 </UseConditionCert>
 </SignablePart>
</AkentiCertificate>

Figure 2. UseCondition Certificate

ch
e-
n

in
to

m
e-

is
ly
tif-
r

d
re

ed
o
be

s
me
by
e
st
the
e
r-

on
e-
o,
.
el
,

ces

m-

of
-
n-
rce

for
or
,
ere
pt
ra-
-
s
s,
Resources controlled by Akenti authorization may be
grouped into aresource realm.A resource realm can be
organized as a flat structure of resources such as instru-
ments or compute platforms, or a hierarchical structure
such as a file system or set of Web documents. Each
resource realm has at least one Policy certificate which
must be stored in a known and secure place. Normally it
is on the same machine that controls access to the
resource, but it could also be on the platform where the
Akenti server is running, if they are different. Since a
Policy certificate is centrally stored and may be admin-
istratively difficult to update there is a minimal amount
of information in it. It contains information about the
Certificate Authorities that are trusted to sign identity
certificates, including a copy of their public keys and
information about where they publish certificates and
certificate revocation lists. It also lists the stakeholders
(or stakeholder groups) for the resource and where they
store the Use-condition certificates that they issue. It
may optionally store URLs in which to search for
Attribute certificates.

In the case of hierarchical resources, there must be at
least one Policy certificate at the top of the tree (some-
times referred to as the root policy). Then there may be a
Policy certificate at any level where there are new stake-
holders, or restrictions on the allowed CAs. Levels with-
out their own Policy certificates inherit policy from
higher levels. Policy certificates are signed by one of the
stakeholders listed in the certificate, making them self-
signed certificates. As such they must be uploaded by a
trusted method and kept in a secure location.

Each stakeholder group for a resource must create at
least one and possibly more Use-condition certificates
for its resource. A Use-condition certificate consists of a
constraint which is a relational expression of the
attributes a user must have to get a certain set of rights
with respect to the resource. Components of the X.509
distinguished name can be used such as CN=Mary R.
Thompson, or O=Diesel Combustion Collaboratory, or
values of attributes that are defined in the context of the
resource. For example, role = researcher or group =
accounting. These attribute requirements can be com-
bined with the boolean operators && or ||. It is also pos-
sible to specify real-time or system parameters such as
time<=5PM && time>=9AM, or system_load < 2. If
Akenti is unable to evaluate such system parameters it
may pass them back to the resource gateway for evalua-
tion. An attribute authority (consisting of an issuer and
its CA) is specified as the signing authority for each
attribute-value pair. Thus the stakeholder for a resource
must specify who is trusted to attest to the attributes that
are required.

The Policy certificate contains URLs to search for ea
stakeholder group’s Use-condition certificates. A stak
holder may put Use-condition certificates in more tha
one place for reliability, but each directory must conta
the complete set. Since Use-conditions restrict access
a resource, it is essential that either all or none of the
are found. If no Use-conditions are found for a stak
holder group, all access to the resource is denied. This
not the case with Attribute certificates since they on
serve to increase access. Thus a missing Attribute cer
icate may limit or deny a user’s access, but will neve
allow an access that should be denied.

Attribute certificates contain an attribute-value pair an
the subject name and issuer to whom it applies. They a
signed by attribute authorities that have been specifi
in a Use-condition certificate. Attributes can apply t
more than one resource, although they are likely to
applicable in only a single resource realm.

Creating policy

Since policy is contained in signed XML certificate
which are interdependent, a stakeholder needs so
tools to assist in their creation. A stakeholder starts
creating the root Policy certificate for the resourc
realm. The X.509 certificates of all the trusted CAs mu
be available from a trusted source and are placed in
root Policy certificate. This certificate also contains th
URLs of the locations where these CAs publish the ce
tificates that they issue and their certificate revocati
lists. The first stakeholder must decide if other stak
holders for the resource are to be allowed and, if s
include their DNs and CAs in the root Policy certificate
In a hierarchical set of resources, only the top lev
stakeholders need to be known initially. They in turn
can delegate control to other stakeholders for resour
lower in the hierarchy.

Akenti certificates can be created either by using a co
mand line tool to sign an XML input certificate, or by a
GUI program that steps a stakeholder though a menu
choices for each field in the certificate. The GUI pro
gram is supported by a Resource Definition Server ru
ning on the resource host which in turn reads a Resou
Definition File and any existing Policy files to find
stakeholder names, acceptable attributes and actions
a resource realm. The command line method is fine f
very simple policy, and for the root Policy certificate
but as soon as the policy becomes hierarchical, or th
are many stakeholders, the GUI interfaces which prom
the stakeholder with acceptable choices become prefe
ble. The Resource Definitions File is only used to pro
vide suggestions to the policy creation GUIs. It include
the names of the CAs, and their publishing directorie

-
Web
he
d

ral
e-
r. It
oto-
e
le

a
e a

e
e

a
he
e
on
g

te
l
e
lu-

he

y
e

g
on-
er
ifi-
l-
er
a-
e
If
P
e
ifi-
eb

ve
s
of
ci-

ve
to
principals that are acceptable for issuing specific
attribute and values, and a list of actions that are relevant
to the resource realm. Information that is used at access
decision making time, such as the certificates of the
CAs, must be stored in the root Policy certificate, since
it is a signed document. In summary the two methods of
getting started are:

• Create an XML version of a root Policy certificate,
following one of the templates provided by the
Akenti distribution, sign it using CertGen with the
stakeholder’s private key contained in a pkcs12 for-
mat file, and store it in the resource tree

• Create a Resource Definition File, start the
Resource Definition Server, and then use the GUI,
PolicyCert.shto create, sign and store a Policy cer-
tificate.

The stakeholder must now create at least one Use-condi-
tion certificate for the resource. Anyone can create a
Use-condition certificate, but it will only be used during
the access control decision if it is issued and signed by
one of the stakeholders currently listed in the resource’s
Policy certificate. As in the case of the Policy certificate,
a Use-condition certificate can either be created by
inputting an XML version of the certificate and private
key to CertGen or can be generated and signed by a GUI
program,UseCondition.sh.The GUI program uses the
Policy certificate to determine the allowed stakeholders,
and the Resource Definitions File to determine what
attributes, values and actions have been defined for this
resource realm. The stakeholder is led through a process
to specify who he is, where his private key is, what
resource the certificate applies to, what attributes and
values are required, which attribute authorities should
vouch for them, and what actions are to be granted. It
also asks about such details as the length of time for
which this certificate should be valid, the scope of the
Use-condition (does it just apply to the one resource or
to a hierarchy of resources), whether it is a critical Use-
condition (it must be satisfied or the user gets no access
to the resource even if he satisfies other Use-conditions).
The Use-condition certificates must be stored in a direc-
tory that is specified in the Policy certificate.

Attribute certificates can also be created by either Cert-
Gen or a GUI programAttribute.sh. Attribute certifi-
cates are actually independent of a particular resource,
but the GUI program will look at the Resource Defini-
tions File associated with a particular resource to get a
list of attribute names. Resource Policy certificates, and
Use-condition certificates may specify where the
Attribute certificates should be stored.

Once a set of Policy, Use-condition and Attribute certifi
cates have been stored, the stakeholder can use a
based interface to see what access they provide. T
Resource Definition Server will execute the require
CGI script.

Checking access

The Akenti authorization service can be called in seve
ways: It can be invoked as a function call by a gat
keeper program and thus run as part of the gatekeepe
can be contacted as a server through an insecure pr
col such a TCP. If the akenti server is running on th
gatekeeper host, it can return the rights as a simp
string. If it is running on another host, it can return
signed certificate. The gatekeeper process must hav
copy of the Akenti servers’s public key and verify th
certificate, before it can trust the information. Or th
Akenti server can be contacted as a server through
secure protocol such as SSL and the protocol will do t
authentication of the Akenti server and encrypt th
returned access string. Akenti returns an authorizati
answer in one of two ways: a list of strings representin
unconditional actions; or a signed capability certifica
which may include both conditional and unconditiona
rights. Conditional rights are rights that may have som
conditions attached that only the gatekeeper can eva
ate, such as current machine load, disk availability or t
state of some related systems.

As has been mentioned previously, the Akenti polic
engine finds all the Use-conditions by searching in th
URLs specified in the Policy certificates and verifyin
the issuer and signature on each certificate. If a Use-c
dition certificate cannot be found for each stakehold
group, access to the resource is denied. Attribute cert
cates are searched by following URLs in either the Po
icy certificates and/or Use-conditions. Again, the issu
and signature of each certificate is verified. This sign
ture verification requires that the Akenti policy engin
be able to find the X.509 certificates for each issuer.
the CAs who issue certificates publish them in an LDA
server, Akenti will look there. Otherwise there must b
some setup actions taken to put all the expected cert
cate issuers’ X.509 certificates in a file system or a w
browser where they can be found.

Mod_akenti module for Apache web server
Web-controlled sets of documents and services ha
rapidly grown from collections of read-only document
that are centrally administered to a vast array
remotely managed documents and services. In the s
entific community such Web based systems ha
become known as portals, and are increasingly used

c
id
urn
e a
ts.
ion
of
l-
L

o-
-

he
c-

e
an
er,
-

u-
),
d,

be
n
ir-
ec-
d
c-

re
provide a common interface to static documents, to
allow shared authoring of documents, to allow access to
legacy data bases, to allow execution of codes on shared
server machines, and practically anything else an inven-
tive scientist can think of. Authorization to perform such
access is usually implemented by the httpBasic Authen-
tication mechanisms, (e.g. user/password or domain
based) or by ad-hoc scripts based on the username.
These passwords are passed across the internet in clear
text and are thus deemed insecure.

In order to make Akenti authorization available for the
widest range of distributed resources, we wanted to
make it available to Web-accessed resources. There
were several ways to accomplish this: referencing
resources through CGI scripts that called Akenti, refer-
encing resources through Java servlets or JSPs that
called Akenti, or building Akenti authorization into a
Web server. The first two methods, involve an indirec-
tion between the request and response which is both less
efficient and requires more complicated URLs to refer to
documents. Since the Apache Web server makes it
straightforward to include new functionality, we decided
to build a Akenti module for Apache.

The Apache [2] web server is a widely-used, high-per-
formance freeware server which is built around an API
[30] which allows third-party programmers to add new
server functionality. Indeed, most of the server’s visible
features (logging, authentication, access control, CGI,
and so forth) are implemented as one of several mod-
ules, using the same extension API available to third
parties. The modules can be statically or dynamically
linked to the server. [33]

How apache modules work

Apache divides the handling of requests into different
phases:

• URI to file name translation
• Authentication and access checking
• Determining theMIMEtypeof therequestedentity
• Returning data to the client
• Logging the request

Each module can contribute to any of these phases. For
each phase, a module can completely replace an existing
module or can be added to a list of existing modules.
The list of modules acts as a queue in which control is
passed from one module to another. Each module can
return one of three values: OK, DECLINE and FOR-
BID. If a module returns OK, then the server passes the
request on to other modules in the queue. A module

returns DECLINE when it wishes to ignore a specifi
request. A FORBID return causes the server to forb
access to the resource requested. The FORBID ret
veto’s other modules replies. Each module can declar
set of handlers to handle specific types of URI reques
The interface between the server core and the extens
modules is through a module structure which consists
vector of callback routines. A module provides a cal
back for each phase that it wishes to handle and NUL
for the rest. The module structure for Apache 1.3.x pr
vides the option of defining one or more of the follow
ing callback routines.

module MODULE_NAME = {

STANDARD_MODULE_STUFF,
<module initializer routine>,
<per-directory config creator routine>,
<merge routine for directory config>,
<server config creator routine>,
<server config merge routine>,
<command table for defining directives>,
<list of handlers to handle specific requests>,
<filename-to-URI translation routine>,
 <check/validate user_id routine>,
<check user_id is valid *here* routine>,
<check access routine>,
<MIME type checker/setter routine>,
<module specific fixup of header fields routine>,
<module specific logging activities routine>,
<header parser routine>,
<process initializerroutine>,
< process exit/cleanup routine>,
<post read_request handling routine>
};

Apache allows each module to read directives from t
configuration file by specifying a command table stru
ture. The entries in the command table include the nam
of the command, a pointer to the command handler,
argument which is passed to the command handl
items which tell the server core code where the com
mand may appear (RSRC_CONF), what sort of arg
ments it takes (TAKE2 means two string arguments
and a description of what arguments should be supplie
in case of syntax errors.

There are three major classes of directives that can
defined in Apache. First Global directives which ca
occur inside server config files but must be outside v
tual host sections. The second class is per-server dir
tives which occur within the context of server config an
the virtual host sections. The third class is the per-dire
tory directives which can pretty much occur anywhe

sed
or

eb
the
les
is
ith

d-
ide
e.

ng
es,
ser
ain
n

a
of
the

te
rver
nd
ly
nd
m-
ch
can
ifi-
is
the

f
. If
te
er

er

ral

’s
eds
ve
n-

ily
(server config, virtual host, directory,.htaccess). These
three classes are subsets of each other.

How mod_akenti works

Mod_akenti is an Apache module that provides Akenti
authorization capabilities for the Apache web server.
Mod_akenti is implemented as a Dynamic Shared
Object module which can be loaded into the server at
start-up or restart time. It currently works in Apache
1.3.x. Mod_akenti does not define any handlers as it
serves as an access control mechanism for all requests to
the web server unless otherwise specified.

Mod_akenti defines two global directives inside the
server configuration, and defines a check access call-
back. So its interface consists of a call for per-directory
configuration, a command table, and a callback for the
check access routine.

The two Akenti directives are: AkentiConf, which sup-
plies the name of the configuration file used to configure
Akenti policy engine; and AkentiResources, which is
used to specify what part of the document tree should be
controlled by Akenti. The second directive is of interest
as it allows other authorization mechanisms to coexist
with that of mod_akenti. It accepts a set of resource
names to be controlled, or ‘ALL’ to control the whole
hierarchy or an empty argument to control none of the
resources.

Configuration and installation

Mod_akenti is a C++ module, while the core Apache
server is written in C. Hence the shared object standard
C++ library (ex. libstdc++.so) must be linked at server
start-up. This is done through the LoadFile command in
httpd.conf. The other shared object libraries can be
either in LD_LIBRARY_PATH or defined in the
httpd.conf similar to standard c++ library. The Akenti
module requires a secure Apache web server (Apache +
mod_ssl., which in turn requires that the server be built
with the Extended API), the OpenSSL libraries (an open
source toolkit that implements SSL and TLS as well as
general cryptography), the OpenLDAP libraries (open
source library for LDAP suite of applications) and the
Akenti suite of libraries. A special program apxs
(APache eXtenSion) is used to insert mod_akenti into
the web server before start-up. The mod_akenti distribu-
tion package [23] provides detailed information about
how to build and configure the Akenti module.

Web authentication and authorization
methods
Standard Web authentication and access control is ba
either on the domain in which the request originated,
something calledBasic Authentication[15] where the
user provides a user name and password which the W
browser matches against user information stored on
server machine. There are many authentication modu
for Apache based on this mechanism [3]. Mod_auth
the basic module that matches a user and password w
an entry in Web specific password and group files. Mo
ules such as mod_auth_dbm and mod_auth_db prov
greater scalability by looking up users in a data bas
There are also modules available for authenticati
users in ldap directories, Oracle, and msql data-bas
and Kerberos users. In all of these schemes the u
name and password is passed over the network in pl
text. There is one other form of user authenticatio
which is not supported by many browsers calledDigest
Authentication which is implemented by
mod_auth_digest. This protocol has the server send
nonce to the browser who then returns an MD5 hash
the nonce, the user name, password, http request and
URI. Thus the password is not sent in the clear.

Mod_ssl [21] which uses X.509 certificates to crea
encrypted channels between the browser and the se
adds a whole new dimension to authentication a
authorization. In the typical commercial use of SSL on
the server is required to have an identity certificate a
private key. This key is used to establish encrypted co
munication between the browser and server over whi
passwords can be passed securely. However, SSL
run in a mode that requires the browser to have a cert
cate and private key for the client. When this mode
used mod_ssl can provide access control based on
client certificate.

The mod_ssl directive SSLVerifiyClient can hold one o
the three possible values: none, optional and require
it is set to require, the browser must provide a certifica
that identifies the user. If it is set to optional, the brows
will look for a user certificate, but if none exists will
attempt the access anyway. If it is set to none, no us
certificate is sent.

Once mod_ssl has a client certificate, it provides seve
more types of access control. It can implement aFake-
BasicAuthoption where it uses the subject of the client
X.509 certificate as a user name, but no password ne
to be obtained from the user. It also provides a directi
called SSLRequire (see Figure 3.) which specifies co
straints which need to be fulfilled in order to allow
access. The requirement specification is an arbitrar

ifi-
s a
a
me

trol
n

ns
,

e

g
to-
ed.
e
ty
if-
if-
n
al

so
s
s
d

the
int
d
ct

o-
t-
-

-

h

ed
als
ge.
I
to
s

e

ay
complex boolean expression containing any number of
access checks. The variables used in the expression
include all the standard CGI/1.0 and Apache variables,
plus a large number of variables defined by mod_ssl that
refer to parts of both the server and client certificates:
e.g. client subject’s DN, the client issuer’s DN and most
components of the client’s certificate. The syntax also
allows an expression to be used from an arbitrary file.
This method is used to match portions of distinguished
name compared to the FakeBasicAuth where the whole
DN is used.

While the SSLRequire directive is very powerful its
main limitation is that the constraints are specified as
part of server’s configuration file. If many resources
need to be controlled, the server configuration will
expand to the point where it becomes difficult to man-
age. In distributed environments where policies for
resource access are managed by multiple owners, a cen-
tralized access control list does not scale well. For
example, WebDAV [16] has been implemented as
Apache module, mod_dav, which allows extensions to
HTTP protocol in order to provide a shared file system.

If several projects need to be managed by one server,
there should be a a way tolimit the writing of access
policy for a set of resources to the project manager. But
since all the policy is in one file, this is not possible.

Mod_akenti, on the other hand, stores all of its policy
information outside of the Web server configuration file.
The only information in the configuration file is the
name of the resources which mod_akenti wishes to con-
trol and a pointer to Akenti’s own configuration file. The
Akenti configuration file points to where the root Policy
certificate for each resource tree is. Akenti policy
defines who the resource owners are and allows resource
owners to express use-conditions on each resource. The
use-conditions are signed and stored in a distributed
fashion at the owner’s convenience. The variables used
in the use-conditions are defined by the stakeholder,
rather than the Web server. Thus the same access policy
can be used for resource referenced via the Web or by
another remote method. At run-time Akenti collects all
the use-conditions applicable for a certain resource in

order to make access decisions. Akenti caches cert
cates in order to reduce search time. It also cache
Capability which has the access rights of a user for
resource, so that subsequent requests for the sa
resource require no decision making.

mod_akenti could also be used to provide access con
for mod_dav which currently uses basic authorizatio
provided by Apache. In this case, the use-conditio
have to be specified for WebDAV methods (MOVE
COPY, PROPFIND, DELETE etc.). In addition, a few
additional directives are required for mod_akenti insid
the per-directory configuration.

Related Work

Policy representations

While there has been a great deal of work in formulatin
use requirements and standards for authorization pro
cols or data structures, no single standard has emerg
There is an IETF proposed Attribute Certificate profil
[12] to carry attributes associated with an X.509 identi
certificate. While the contents and purpose of this cert
icate are basically the same as an Akenti Attribute cert
icate, we chose not to use it in our implementatio
because it is difficult for users and applications to de
with ASN.1 structures. A major goal of Akenti was to
make the policy as easy to understand as possible,
using ASCII files to represent policy and principal
names consisting of a CA’s DN and the user’s DN wa
preferable to using a an ASN.1 structure that identifie
the holder as a CA and serial number. To understand
meaning of such a certificate, requires a program to pr
the contents in a readable form, and the ability to fin
the holder’s X.509 certificate and extract the subje
name.

KeyNote [5] is a trust management system, which pr
vides a simple language for describing and implemen
ing security policies, trust relationships, and digitally
signed credentials. The KeyNote definesprincipal as
any convenient string which may include a crypto
graphic public key. Authorization policy is contained in
assertionswhich consist of a sequence of fields. Eac
field is represented by a keyword and value. Acreden-
tial asserts some attribute about a principal and is sign
by a trusted authority. Both assertions and credenti
are represented by the same keyword policy langua
Akenti and KeyNote both provide a function call AP
for compliance-checking for a resource gatekeeper
call when making an access decision. Both system
return list of trusted actions. KeyNote is less tied to on
form of authentication than Akenti. A KeyNote princi-
pal may be represented by a cryptographic key, or it m

<Directory /foo>
SSLRequireSSL
SSLRequire %{SSL_CLIENT_S_DN_O} eq

“LBNL” and
 %{SSL_CLIENT_S_DN_OU}

in {“DSD”, “ICSD”, “NERSC”}

 Figure 3 Example of SSLRequire

di-
ur-
te
er-
a
the
m

ity
d

ut
o-
ay

lly
t to
at
n

of
ori-
e.
ts

d
e
a-

n
b-
et2
e
e
a
e
o
n
ver
-
r
tes
er
se
ne
by
s
t
th
at
ss
d.
just be an opaque string. They deliberately did not
require X.509 certificates in order to separate the issues
of secure naming and authorization. While this removes
the need for maintaining a PKI, it means that the princi-
pals named in the authorization policy may be opaque
making it harder for a stakeholder to read and evaluate
the policy of a resource.

The mechanisms for creating and storing policy asser-
tions and storing and marshaling certificates are left up
to the installer of a KeyNote system. In contrast, one of
the emphases of the Akenti system is to support remote
creation and storage of policy certificates. It thus pro-
vides several tools to help in their creation and signing,
while the policy engine supports gathering certificates
from file systems, LDAP servers or Web servers. Other
systems rely on the user being able to edit policy files on
the resource gateway machine which does not meet our
goal of accommodating distributed stakeholders.

In our original implementation of Akenti, we chose a
simple keyword language for our certificates similar to
that used by KeyNote. Eventually, expressing the con-
straints and trust relationships for all the attributes
became increasingly awkward, with too much informa-
tion being implicit in the ordering of fields or in rela-
tionships between fields. For our second implementation
we switched to XML for greater flexibility and more
precise definition of the semantics. We were also
encouraged by the availability of XML parsing tools in a
variety of languages and have made use of the Xerces
parsers from the Apache XML Project [4]

A recent XML standard specification for security asser-
tions named Security Assertion Markup Language
(SAML) [17] has been published by the OASIS [29]
consortium. This standard defines both XML protocols
and assertion structures. Assertions come in three types:
Authentication: the specified subject was authenticated
by a particular means at a particular time; Authorization
Decision: a request to allow the specified subject to
access the specified resource has been granted or
denied; Attribute: the specified subject is associated
with the supplied attributes. Since Akenti is only sup-
porting X.509 authentication, it does not need a general
purpose Authentication structure. It just uses the X.509
certificate (or chain of certificates if delegation is
involved) and assumes that the resource gateway has
authenticated the certificate. Akenti will check for revo-
cation, since the current implementations of SSL do not
do this. The capability certificate returned by the Akenti
server differs from the Authorization Decision assertion
in that it does not contain the reasons (evidence) of why

it made the decision, but may contain unresolved con
tions on the actions, so that the gatekeeper can do f
ther checks. Again the attribute assertion/certifica
covers has the same purpose as the PKIX Attribute C
tificate and the Akenti Attribute certificate: namely,
subject name, an associated attribute-value pair and
authority that attests to this. The SAML standards see
to be focused on letting various peers report secur
decisions. The focus in Akenti, is more on gathering an
interpreting of policy (Use-condition) statements abo
the resource. The only real communication is the auth
rization request and reply between the resource gatew
and the Akenti server.

Authorization models

The authorization model used by KeyNote is essentia
the same as Akenti uses. A principal makes a reques
a resource gateway, handing it an identity credential th
can be authenticated. In Akenti this is normally just a
X.509 certificate, while KeyNote supports other types
credentials. Then the gateway server makes an auth
zation request to the authorizer, e.g. Akenti or KeyNot
The current implementation of KeyNote only suppor
function calls, where Akenti will support function or
server calls. The authorizer returns a list of allowe
actions to the gate keeper for its interpretation or in th
case of Akenti being called as a server, it returns a cap
bility certificate signed by Akenti.

Shibboleth [11] is a cross-institutional authenticatio
and authorization service for access control to We
accessed resources. It is being specified by the InterN
middleware architecture committee. It has many of th
standard goals of distributed authorization with on
additional twist. It wants to be able to grant access to
user who can still maintain anonymity at the resourc
site. The major motivation for this goal is access t
library materials by academics. Their authorizatio
model entails a user making a request to a web ser
and providing a identity handle back to his home institu
tion. The Web server then asks that institution fo
attributes about the user. It then checks those attribu
against its local policy to allow or deny access. The us
need only authenticate to his host site and may u
whatever type of credentials that site recognizes. O
difference between this trust model and that used
Akenti, is that in Akenti, the resource provider specifie
a limited number of trusted authorities that it will accep
for authenticating users and attributes. In the Shibbole
case, each member institute must trust all the sites
which any of its user’s reside. So for a user to get acce
to a remote resource, its whole site must be truste

ti-
y
ss
ho-
ed
pa-
y
to
le-
he
to
ssed
a

e
cy
by
e

th-
r at
so
d
-

ol-
u-
ted
cy

or
/

al

e-
While in a more traditional PKI environment, a user
only needs to get a credential for himself from an
authority that the resource site trusts.

The Community Authorization Server (CAS) [28] is a
new authorization service being developed by the Glo-
bus Project [13] for Grid environments. Their authoriza-
tion model allows a resource site to grant a community
access to resources and the authorization server for that
community to grant access to the community members.
This is implemented by having the user go to the CAS
server and get a delegated proxy certificate [31] with the
CAS server’s identity, which includes a rights restriction
extension that limits what resources can be accessed.
The resource gatekeeper must interpret the restricted
rights extension and verify that the community has such
rights to the resource. Since the delegated proxy is a
short-lived X.509 identity certificate it gets passed
between the user and the resource gateway as part of the
SSL connection. There is no additional information that
needs to conveyed, as is the case when a user needs to
hand attribute certificates to the gatekeeper. CAS differs
from Akenti in that the examination of policy and grant-
ing of rights is done before the gatekeeper is contacted.
This means the user must ask for all the rights he will
need in advance of referencing the resource. In Akenti,
all the gathering and checking of policy is done after the
call to the gatekeeper to perform a certain action. Akenti
does cache the rights that the user was granted, to deal
with the common case of several calls in rapid succes-
sion for resources in the same realm.

Policy about resources is stored and managed by the
CAS servers and so far mainly consists of lists of
objects and allowed rights. This information is included
in the rights restriction extension of the delegated proxy.
The intent of the CAS project is to extend the policy lan-
guage as the need arises. The CAS administrator is
responsible for adding each community member to the
appropriate groups. The CAS administrator may also
delegate administration of subsets of the objects to addi-
tional people. In contrast, in Akenti, a new user would
need to contact the stakeholder for the resource to be
added to the policy files.

Conclusions
Akenti is an authorization service that uses authen
cated X.509 identity certificates and distributed digitall
signed authorization policy certificates to make acce
decisions about distributed resources. It supports aut
rization decisions based either on policy that is gather
by the resource gatekeeper, or on a rights-granting ca
bility presented by the user. It supports Globus prox
identity certificates, and could be easily extended
handle restricted delegation credentials. We have imp
mented an Apache Web server module which allows t
same authorization policy to be used to control access
Web accessed resources as well as resources acce
by other remote methods. Thus all the resources in
portal can use the same authorization mechanism.

Akenti differs from most of the other work that we hav
surveyed in the emphasis on using easily read poli
statements that are independently created and signed
multiple stakeholders. This policy can be stored on th
resource host or locally to the stakeholder and be ga
ered and evaluated by the trusted authorization serve
the time of resource access. The Akenti distribution al
includes several tools for displaying the combine
authorization policy for a given resource and for track
ing the steps in a user’s authorization or rejection.

It has been used as part of the Diesel Combustion C
laboratory [26] to control access to Web-based doc
ments and remote execution and is now being integra
with the Globus job manager to control access to lega
applications in the National Fusion Grid [19].

The code is freely available as C++ source code,
Linux and Solaris executables. (http://www-itg.lbl.gov
Akenti)

Acknowledgments
The original idea for Akenti came from William
Johnston. Case Larsen did a large part of the origin
implementation. Maria Kulick, Guillaume Farret and
Xiang Sun have also contributed to the current impl
mentation.

Appendix A: XML definition for the Akenti policy language
<?xml version=”1.0” encoding=”US-ASCII”?>
<!-- This DTD is intended to define all the Akenti Policy elements:
 Policy Certificates, UseCondition Certificates, Attribute Certificates,
 Capability/Authorization Certificates, and Cache Certificates
 -->
<!-- Note: one or more (+), zero or more (*), or zero or one times (?)-->

<!ELEMENT AkentiCertificate (SignablePart, Signature)>

<!ELEMENT SignablePart (Header, (PolicyCert | UseConditionCert | AttributeCert | CapabilityCert))>

<!ELEMENT Header (Version, ID, Issuer, ValidityPeriod) >
 <!ATTLIST Header

Type (attributeCertificate | cacheCertificate |capabilityCertificate | policyCertificate | useCondCertificate) #REQUIRED
SignatureDigestAlg (RSA-MD5 | RSA-SHA1 | DSA-MD5) #REQUIRED
CanonAlg (AkentiV1) #REQUIRED >

<!ELEMENT PolicyCert (ResourceName, CAInfo*, UseCondIssuerGroup+, AttrDirs*, CacheTime)>
<--

ResourceName Name of the resouce to which this policy applies
CAInfo The DN and X509 identity certificates of all the CAs we will trust.

May include pointers places where it publishes CRL’s and identity certificates
UseCondIssuerGroups Stakeholders and their Certificate directories

At least one UseCondCert must be found from
each group.

AttrDirs optional list of URLs in which to search for Attribute certificates
CacheTime Maximum time in seconds that certificates relevant to this resource may be cached

-->
<!ELEMENT UseConditionCert (ResourceName, Condition, Rights, SubjectCA*)>
<!--

ResourceName name of the resource to which the useCondition applies
Condition A boolean expression stating what attributes a user needs to satisfy the UseCondition and what users

and CAs are trusted to attest to specified attribute
Rights An opaque list of actions known to the stakeholder and the resource gateway

 -->
 <!ATTLIST UseConditionCert

enable (true | false) #REQUIRED >
<!--

scope if sub-tree the UseCondCertificate applies to all the resources that are in the sub-tree named by the resource
if local, it applies just to the one resource named

enable if true, this UseCondition must be satisfied by anyone wanting to use the resource, if false it need not be satisfied
if a user satisfies other UseConditions.

-->
<!ELEMENT AttributeCert (SubjectAndCA, AttrName, AttrValue, Condition*)>
<!--

SubjectAndCA Subject to which this attribute applies
AttrName name of attribute
AttrValue value of attribute
Condition An optional Constraint that is placed on how or when the attribute should apply

-->
<!ELEMENT CapabilityCert (ResourceName, SubjectAndCA, Actions*, ConditionalActions*)>
<!--

ResourceName name of the resource to which the rights apply
SubjectAndCA user who has the rights
UnConditionalActionsthe actions that have been authorized
ConditionalActions actions that still have some unevaluated constraints.

 -->
<!ELEMENT ConditionalActions (Condition, Actions)>
 <!ATTLIST ConditionalActions

critical (true | false) #REQUIRED >
<!--

Condition Constraint that is placed on how or when the attribute should apply

Actions The access rights that are allowed if the condition is true
Critical If this is false, the Condition must evaluate to true, or even the UnConditionalActions do not apply

-->

<!ELEMENT CAInfo (CADN, X509Certificate+, IdDirs*, CRLDirs*)>
<!--

CADN the distinguished name of the CA
X509Certificate A chain of the X509 identity certificates of the CA, includes its public key.
IdDirs an optional list of directories in which the CA stores the certs it issues
CRLDirs a list of 0 or more URLs to directory services in which to search for certificate revocation lists

-->

<!ELEMENT Condition (Constraint, AttributeInfo+)>
<!-- A Condition contains a boolean expression stating what attributes a user needs to satisfy the UseCondition and

what users and CA are trusted to attest to what attribute/value pairs.
-->
<!ELEMENT CRLDirs (URL+)><!-- list of 0 or more URLs to directory services in which to search for certificate revocation lists-->
<!ELEMENT AttrDirs (URL+)> <!-- AttrDirs list of 0 or more URLs to directory services in which to search for attribute certificates.-->
<!ELEMENT IdDirs (URL+)> <!-- list of 0 or more URLs to a directory services in which to search for identity certificates.-->
<!ELEMENT UseCondIssuerGroup (Principal+,URL+)> <!-- group of stakeholder and their certificate directories. -->
<!ELEMENT AttributeInfo (AttrName, AttrValue, (CADN | Principal), AttrDirs*, ExtArgs*) >
 <!ATTLIST AttributeInfo type (STANDARD | X509 | AKENTI | EXT_AUTH) #REQUIRED>
<!--

STANDARD attributes if they are evaluated by some system call
X509 attributes if they are part of an X509 Identity certificate, e.g. O, OU, CN;
AKENTI attributes if there is an Attribute certificate to attest to a user’s possession of the attribute
 EXT_AUTH if some external authority is called to evaluate them

AttrName name of attribute used in constraint
AttrValue name of value required by constraint
CADN name of CA that issues the identity certificate that contains the x509 attribute we need.
Principal the name of the attribute issuer and CA for Akenti attr

or the name of an external authority that can evaluate an attribute
 AttrDirs an optional list of directories in which to search for Attribute Certificates
 ExtArgs optional list of arguments that may be handed to an external authority.

-->

<!ELEMENT ValidityPeriod EMPTY><!-- Beginning and End date in UCTime of when the certificate is valid -->
 <!ATTLIST ValidityPeriod
 start CDATA #REQUIRED
 end CDATA #REQUIRED
 >
<!ELEMENT ExtArgs (String+)>
<!ELEMENT ID EMPTY> <!--A unique ID assigned to every certificate when it is created -->

<!ATTLIST ID id CDATA #REQUIRED >
<!ELEMENT Version EMPTY> <!-- Certificate format version -->

<!ATTLIST Version ver CDATA #REQUIRED >
<!ELEMENT Issuer (UserDN,CADN,URL*)>
<!ELEMENT Principal (UserDN,CADN)>
<!ELEMENT SubjectAndCA (UserDN,CADN)>
<!ELEMENT URL (#PCDATA)> <!-- protocol, host, port and file name -->
<!ELEMENT CADN (#PCDATA)>
<!ELEMENT SubjectCA (#PCDATA)>
<!ELEMENT X509Certificate (#PCDATA)>
<!ELEMENT UserDN (#PCDATA)>
<!ELEMENT ResourceName (#PCDATA)>

://

r

.

-

-

References
1. D. A.Agarwal, S. R. Sachs, W.E.JohnstonThe Real-

ity of CollaboratoriesComputer Physics Communi-
cations, 1998, vol. 110, p. 134-141

2. Apache Software Foundation
http://www.apache.org

3. Apache Module Registry,
http://modules.apache.org/

4. Apache XML Project; http://xml.apache.org/
5. M. Blaze, J. Feigenbaum, J. Ioannidis, A. Keromy-

tis.The KeyNote Trust Management System, Version
2. RFC-2704. IETF,September 1999.
http://www.crypto.com/papers/rfc2704.txt

6. N. Damianou, N. Dulay, E. Lupu, M Sloman,:The
Ponder Specification Language Workshop on Poli-
cies for Distributed Systems and Networks
(Policy2001), HP Labs Bristol, 29-31 Jan 2001

7. T. Dierks, C. Allen,The TLS Protocol, Version 1
IETF RFC 2246; http://www.ietf.org/rfc/rfc2246.txt

8. Diesel Combustion Collaboratory (DCC), http://
www-collab.ca.sandia.gov/dcc/

9. DisCom2, http://www.llnl.gov/asci/discom/
10. C. EllisonSPKI Requirements,IETF RFC 2692

1999, http://www.ietf.org/rfc/rfc2692.txt
11. M. Erdos, S. Cantor,Shibboleth-Architecture

DRAFT v04, http://middleware.internet2.edu/shib-
boleth/docs/raft-internet2-shibboleth-architecture-
04.pdf

12. S. Farrell, R. Housley,An Internet Attribute Certifi-
cate Profile for Authorization, <draft-ietf-pkix-
ac509prof-09.txt>, June, 2001 http://www.ietf.org/
internet-drafts/draft-ietf-pkix-ac509prof-09.txt

13. I. Foster, C. Kesselman, eds.The Grid: Blueprint
for a New Computing Infrastructure,1999, Morgan
Kaufmann

14. I. Foster, C. Kesselman, S. Tuecke, The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.
International J. Supercomputer Applications, 15(3),
2001. http://www.globus.org/

15. J. Franks, et.al.HTTP Authentication: Basic and
Digest Access Authentication, IETF RFC 2617,
http://www1.ics.uci.edu/pub/ietf/http/rfc2617.txt

16. Y. Goland, et al.,HTTP Extensions for Distributed
Authoring-- WEBDAV, IETF RFC2518
http://www.ietf.org/rfc/rfc2518.txt

17. P. Hallam-Baker, E. Maler, eds. Assertions and Pro-
tocol for the OASIS Security Assertion Markup
Language (SAML),draft-sat-core-25, http://
www.oasis-open.org/committees/security/docs

18. R. Housley, W. Polk, W. Ford, D. Solo,Internet
X.509 Public Key Infrastructure Certificate and
CRL Profile<draft-ietf-pkix-new-part1-12.txt>,
http://www.ietf.org/internet-drafts/draft-ietf-pkix-
new-part1-12.txt

19. K. Keahey, et al.,Computational Grids in Action:
The National Fusion Collaboratory, submitted to
Future Generation Computer System, 2001., http
www.fusiongrid.org

20. Launch Pad, Portal to the IPG, http://
www.ipg.nasa.gov/launchpad/servlet/launchpad

21. modssl, http://www.modssl.org/
22. J. Myers,Simple Authentication and Security Laye

(SASL), IETF RFC 2222, 1997, http://www.ietf.org/
rfc/rfc2222.txt

23. S. Mudumbai,mod_akenti: Akenti Access Control
module for Apache http://www-itg.lbl.gov/Akenti/
docs/mod_akenti.html

24. NASA’s Information Power Grid, http://
www.ipg.nasa.gov/

25. National Fusion Grid, http://www.fusiongrid.org/
26. C. Pancerella, L. Rahn, C. Yang,The Diesel Com-

bustion Collaboratory: Combustion Researchers
Collaborating over the Internet, Proceedings of
ACM/IEEE SC99 Conference, November 13-19,
1999. Portland, Oregon, USA, http://www-col-
lab.ca.sandia.gov/dcc/

27. Particle Physics Data Grid (PPDG), http://
www.ppdg.net/

28. L Pearlman, V. Welch, I. Foster, C. Kesselman, S
Tuecke.A Community Authorization Service for
Group Collaboration. Submitted to IEEE 3rd Inter-
national Workshop on Policies for Distributed Sys
tems and Networks, 2001, http://www.globus.org/
research/papers.html#CAS-2002.

29. Oasis, www.oasis-open.org
30. R. Thau , Apache API notes, http://mod-

ules.apache.org/doc/API.html
31. S. Tuecke, et al.,Internet X.509 Public Key Infra-

structure Proxy Certificate Profile , IETF draft,
http://www.ietf.org/internet-drafts/draft-ietf-pkix-
proxy-01.txt

32. M. Thompson, et.al.,Certificate-based Access Con
trol for Widely Distributed Resources, Proceedings
of the Eighth Usenix Security Symposium, Aug.
‘99

33. Wainwright P.Professional Apache,Wrox 2001,
http://www.apache.org/

