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Abstract 

Metal halide perovskite (MHP) derivatives, a promising class of optoelectronic materials, 
have been synthesized with a range of dimensionalities that govern their optoelectronic properties 
and determine their applications. We demonstrate a data-driven approach combining active 
learning and high-throughput experimentation to discover, control, and understand the formation 
of phases with different dimensionalities in the morpholinium (morph) lead iodide system. Using 
a robot-assisted workflow, we synthesized and characterized two novel MHP derivatives that have 
distinct optical properties: a one-dimensional (1D) morphPbI3 phase ([C4H10NO][PbI3]) and a 2D 
(morph)2PbI4 phase ([C4H10NO]2[PbI4]). To efficiently acquire the data needed to construct a 
machine learning (ML) model of the reaction conditions where the 1D and 2D phases are formed, 
data acquisition was guided by a diverse-mini-batch-sampling active learning algorithm, using 
prediction confidence as a stopping criterion. Querying the  ML model uncovered the reaction 
parameters that have the most significant effects on dimensionality control. Based on these insights, 
we propose a reaction scheme that rationalizes the formation of different dimensional MHP 
derivatives in the morph-Pb-I system. The data-driven approach presented here, including the use 
of additives to manipulate dimensionality, will be valuable for controlling the crystallization of a 
range of materials over large reaction-composition spaces.  

 

Keywords: metal halide perovskite, high-throughput experimentation, machine learning, active 

learning, morpholinium. 
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I. Introduction 

Metal halide perovskite (MHP) derivatives are emerging optoelectronic materials with 
tunable physical properties1–4 and applications in photovoltaic5,6 and ferroelectric devices,7 
light-emitting diodes,8,9 and lasers.9,10 MHP derivatives have been synthesized with diverse 
crystal structures, with their metal halide frameworks exhibiting connectivities across one,11 
two,12 or three dimensions.13 MHP dimensionality (1D, 2D, and 3D, respectively) is a critical 
material parameter since it governs physical properties such as optical absorption, 
luminescence wavelength, charge transport, and stability.14–16  

One strategy for controlling the dimensionality of MHP derivatives is tuning the inorganic 
or organoammonium A-cations that lie between metal halide [BX6]4- octahedra, e.g., in the 
canonical ABX3 perovskite unit cell. When A-cations are small, with effective radii of 1.7-2.6 
Å (e.g., methylammonium),17 3D MHP derivatives form. In contrast, larger cations (> 2.6 Å) 
often give rise to lower dimensional MHP derivatives.18,19 When the cross-sectional area of the 
cations is larger than 40 Å2, MHP derivatives almost exclusively exhibit 0D or 1D 
connectivities rather than 2D, owing to steric hindrance.20 For example, heterocyclic 
organoammonium cations with six or fewer ring members are able to form 2D MHP 
derivatives with lead iodide, while seven-member and larger rings rarely form in 2D.20–23 
Despite this limited ability to predict the dimensionalities of heterocyclic organoammonium 
lead halides, controlling dimensionalities for MHP derivatives incorporating a wide range of 
cations is still a major challenge.  

One factor that complicates the prediction of MHP dimensionality is that different phases 
in an A-B-X reaction system (e.g., the 3D FAPbBr3 and 2D FA2PbBr424, where FA = 
formamidinium) may form under different reaction conditions (FA:Pb ratio), given a reaction 
of A-cations, metal (B2+) cations, and halide anions (X-). Controlling dimensionality is a 
practical challenge for device applications — mixed phases24 in MHP thin films can lead to 
low device performance.25 Developing design rules for synthesizing MHPs with controllable 
dimensionalities will drive increases in performance of real-world MHP devices. Furthermore, 
understanding the kinetic and thermodynamic factors that influence dimensionality in a single 
cation-metal-halide (CMH) system will allow us to design functional materials and their 
reaction pathways. Nevertheless, it is still unclear how to control the dimensionalities of MHP 
derivatives by tuning the reaction parameters in a single CMH system. Multiple crystalline 
phases in a single CMH system are typically discovered through trial and error. This time- and 
resource-intensive approach is particularly inefficient for crystallizing new MHP phases since 
it can require simultaneous optimization of a large number of experimental variables in high-
dimensional experimental parameter space. Insufficient sampling of reaction spaces risks 
missing rare MHP phases and precludes a comprehensive understanding of the formation of 
different phases.  

Machine learning (ML) and high-throughput experimentation (HTE) have been recently 
leveraged to accelerate material discovery and design,26,27 inspiring our efforts to apply these 
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tools to the crystallization of MHP derivatives.28 Yet, even with HTE, it can be impractical to 
perform the large number of experiments needed to train common ML models. To overcome 
this challenge, researchers have utilized active learning (AL),29,30 a sequential learning method 
in which a ML model is iteratively refined over repeated cycles of experimentation through an 
algorithm that selects new experiments based on the performance of the most recent model. 
An efficient AL sampling algorithm increases the learning speed of ML models and reduces 
the number of experiments needed.  This efficiency is beneficial for constructing material 
phase diagrams,31–33 – AL  has been used to accelerate the acquisition of phase and composition 
diagrams of multicomponent materials including ferroelectric ceramics,34 piezoelectric 
materials,35 phase-change materials,36 catalysts,37 and metal halide perovskite thin films.38 In 
these workflows, samples have been typically labeled using data acquired from simulations,31–

33 existing datasets,37 or high-throughput characterization of existing material libraries.36,37,38  

Controlling the dimensionality of MHP derivatives requires the analogous task of mapping 
the reaction conditions that produce specific phases in different regions of synthetic 
composition space. We hypothesized that an approach combining AL and HTE would be 
advantageous for building ML models that, given reaction conditions as inputs, predict the 
phase and dimensionality of MHP products. Solution-phase crystallization of materials 
presents a stringent test for AL since each reaction tends to be more costly than a simulation 
or measurement and can involve large numbers of reaction parameters, reagents, and additives. 
These syntheses are often governed by complex reaction networks39 and stochastic processes 
(e.g., nucleation) that can lead to noisier and less predictable outcomes than observed with 
simulation and characterization. These problems are particularly acute when mapping phases 
across more than three dimensions. When exploring such high-dimensional space, determining 
when to stop AL experimentation is challenging40 (and an ongoing subject of research41), since 
one cannot determine the actual accuracy of a model without synthesizing a large test set that 
is representative of the entire experimental space. To realize the potential of AL-guided 
materials synthesis, there is a strong need for robust AL workflows with clear stopping criteria 
and tolerance for noisy, high-dimensional data. 

 In this work, we used AL + HTE to discover, control, and understand the formation of 
MHP derivatives with different dimensionality in the morpholinium lead iodide (morph-Pb-I) 
system. We focused on this reaction system because morph+ is a six-membered heterocyclic 
organoammonium that should theoretically form a 2D MHP derivative with PbI2.20–22 However, 
only 1D structures have been observed when morph is combined with different metal cations 
(e.g., Pb2+, Sb4+) and halides.42–49 Using HTE, we successfully synthesized the 2D MHP 
derivative in the morph-Pb-I system. We adopted and modified an AL method to train ML 
classification models to predict the dimensionalities of phases formed in this chemical system. 
We established and validated a stopping criterion, based on the model prediction confidence,  
for terminating experimentation when the ML model was not improving significantly. We used 
a predictive ML model to uncover the reaction parameters that have the most significant effects 
on dimensionality control. These insights, combined with density functional theory 
calculations, allowed us to formulate a plausible reaction scheme that rationalized the 
formation of MHP derivatives with different dimensions in the morph-Pb-I system. 
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II. Results and discussion 

Benchtop synthesis of morpholinium lead iodide. 

A range of synthetic methods is used to grow MHP derivative crystals, such as seeded 
crystal growth,50 slow evaporation,51 and inverse temperature crystallization.52 In this work, to 
synthesize morpholinium lead iodide (morph-Pb-I) structures across a range of 
dimensionalities, we used Anti-Solvent Vapor-assisted Crystallization (ASVC), a 
straightforward, room-temperature approach known to produce high-quality MHP crystals 
suitable for structure determination using single-crystal X-ray diffraction (sXRD)53. In initial 
experiments, we manually performed ASVC reactions by exposing a solution of morpholinium 
iodide and lead iodide (1:1 morph:Pb mole ratio) in dimethylformamide (DMF) to a saturated 
vapor of dichloromethane (DCM), the anti-solvent (scheme illustrated in Figure S1). These 
benchtop syntheses yielded yellow crystals (Figure 1a). Structural determination based on 
sXRD confirmed a new MHP derivative—morphPbI3, crystallizing in the orthorhombic space 
group P212121 (no. 19). Full crystallographic details of this new phase are given in Table S1; 
bond length and angles are listed in Table S2a and S2b. In morphPbI3, [PbI6]4- units are 
arranged in 1D chains of face-sharing octahedra (Figure 1b). The powder XRD (pXRD) pattern 
of morphPbI3 matches the pXRD pattern simulated for the sXRD-derived crystal structure 
(Figure S2a). Tauc analysis of the absorption spectrum of the ground powder of morphPbI3 
indicates a direct bandgap of 2.69 eV (Figure 1e). No photoluminescence (PL) is detected for 
this compound. Despite the large bandgap and the absence of PL, the 1D yellow phase could 
have possible applications in second-order nonlinear optics54 and piezoelectric devices55 owing 
to its non-centrosymmetric space group (only ~18% of inorganic crystal structures reported 
are non-centrosymmetric)56. 
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Figure 1. (a) Optical micrograph of a large crystal of the 1D “yellow” phase (scale bar: 1 mm). (b) The 
packing of [PbI6/2]− chain structures in morphPbI3 (1D yellow  phase). (c) Optical micrograph of a large 
crystal of the 2D “red” phase (scale bar: 1 mm). (d) The packing of [PbI2/1I4/2]2− layer structures in 
(morph)2PbI4 (2D red phase). For (b) and (d), dark gray polyhedra represent [PbI6] octahedra, while 
purple, light gray, red, and blue atoms correspond to iodine, carbon, oxygen, and nitrogen, respectively. 
Hydrogen atoms have been removed for clarity. (e) Diffuse reflectance spectra of ground powders of 
morphPbI3 and (morph)2PbI4 in Tauc plots and absorbance units (in the inset). (f) Photoluminescence 
spectrum of (morph)2PbI4 (λex = 470 nm). 

 

Robot-accelerated ASVC perovskite workflow. 

Although we only observed a single 1D morph-Pb-I structure with our isolated benchtop 
syntheses, 2D derivatives have been predicted theoretically.20 To more comprehensively 
search for morph-Pb-I phases of different dimensionalities (especially 2D), we developed a 
robot-accelerated perovskite workflow based on high-throughput (HT) ASVC to explore a 
much larger reaction-composition space (see Figure S3 for the workflow). Similar to our 
previous robot-assisted perovskite investigation and discovery workflow,28 our HT-ASVC 
workflow utilizes a liquid handling robot to dispense perovskite precursor solutions into 
reaction vials. We designed a custom, multi-well ASVC microplate (see Figure S3; CAD file 
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available57) that allowed our liquid-handling robot to prepare 24 parallel ASVC reactions on 
the 500 µl scale. Additional details for the HT-ASVC process are described in the SI. After 
crystallization, we photographed the reaction vials and recorded the morphologies and colors 
of the solid products. Then we characterized the solid products using HT optical microscopy, 
absorption and PL spectroscopy, and pXRD (HT characterization workflow illustrated in 
Figure S4). Representative optical micrographs, absorption/PL spectra, and pXRD patterns are 
shown in Figure S5-8. 

 

Primary screening of 3D reaction-composition space. 

Using our robotic workflow, we performed primary screening of the reaction-composition 
space of PbI2 concentration ([Pb]), morphI concentration ([morph]), and formic acid 
concentration ([FAH]). We chose this reaction space because our previous HTE work has 
demonstrated that tuning the analogous concentrations in different ammonium lead halide 
systems resulted in the successful synthesis of 19 MHP derivatives from 45 A-cation 
candidates.28 We used the Kennard-Stone (KS) algorithm58,59 to uniformly sample 48 primary 
reactions from grid points generated in the allowed reaction-composition space (concentration 
constraints shown in Table S4). KS and grid-point generation algorithms are implemented in 
the ESCALATE software pipeline we developed to manage HT experiments and capture 
data.60 

 

 
Figure 2. Convex hull of the allowed reaction-composition space (black lines) and the primary 
screening experiments (colored circles) contained within it, as a function of [Pb], [morph], and [FAH]. 
The blue circles indicate a clear solution with no crystals. The red and yellow circles indicate reaction 
outcomes of 2D (red) and 1D (yellow) phases, respectively. 
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Unlike benchtop syntheses, primary HT-ASVC screening produced both yellow-colored 
solids and red-colored solids with an unknown structure. Structural determination based on 
sXRD confirmed that the red crystals (Figure 1c) are a new MHP derivative with formula 
(morph)2PbI4 in the monoclinic space group C2/c (no. 15, see Table S1 and Table S3a and b 
for details). In this crystal structure, [PbI6]4- octahedral units are corner-connected to form 2D 
layers (Figure 1d). Therefore, we successfully demonstrated the efficacy of the robotic 
workflow in the discovery of a new 2D phase in the morph-Pb-I system, which was found 
neither in our benchtop synthesis nor experimentally reported by the literature. Compared to 
the 1D yellow phase, the 2D red phase has distinct optical properties. The absorption spectrum 
of the 2D phase indicates a direct bandgap of 2.15 eV, which is 0.54 eV lower than the 1D 
phase (Figure 1e). Under 470 nm excitation, the 2D phase exhibits a broad emission peak at 
588 nm (Figure 1f), which could be utilized in the application of light-emitting diodes.61 Unlike 
the 1D phase, the 2D phase has a centrosymmetric crystal structure.   

Visualizing the distribution of reaction outcomes across the [morph]-[Pb]-[FAH] 
composition space (Figure 2) illustrates how reaction conditions determine the crystallization 
of the 1D and 2D (red and yellow) phases. For each HT-AVSC experiment in this space, we 
assigned a reaction outcome from one of three classes: (1) clear solution, (2) red phase, and (3) 
yellow phase (see “Product Scoring Rubric Based on Human Inspection” in the SI). For 
mixtures of yellow and red products, we labeled the reaction outcomes based on the major 
product. In general, clear solutions (no solids) were observed below 6 M FAH. Above 6 M 
FAH, the yellow phase formed at lower morph:Pb ratios (~1), while the red phase was more 
likely to form at higher morph:Pb. This dependence on the morph-to-Pb ratio is due to the 
different chemical stoichiometries of the two phases (morph:Pb = 1 in yellow phase, and 2 in 
red phase). Tuning the reactant ratio per target-compound stoichiometry has been utilized 
previously in several CMH systems, such as FA-Pb-Br24. Therefore, not only did primary HT-
ASVC screening of the morph-Pb-I system identify a 2D phase, but the resulting dataset also 
provided guidance for controlling the dimensionality of morph-Pb-I in 3D reaction-
composition space.  

 

A modified workflow to screen additives in 6D reaction-composition space.  

A prevailing trend in the fabrication of MHP devices is to use mixed solvents and additives 
to modify the crystallinity and morphology of MHP thin films, which can improve device 
performance.62 However, the effect of these solvents and additives on the dimensionality of 
MHP products is still unclear. To understand such effects, we simultaneously incorporated four 
additional solvents and additives into our HT-ASVC reactions. These included three common 
solvents for MHP syntheses:  DMF, dimethyl sulfoxide (DMSO), and γ-butyrolactone (GBL). 
These solvents were selected due to their distinct physical properties, such as their polarity63 
and their affinity for coordinating metal ions62 and accepting hydrogen bonds.64 We also 
included water as an additive since our previous study demonstrated that water content in 
perovskite precursor solutions affects the crystallinity of MHP single crystals and thin films.65 
Unlike DMSO or DMF, water and formic acid are both hydrogen bond donors and acceptors.66 
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When coexisting in solution, DMSO (or DMF) and water (or formic acid) are likely to form 
hydrogen bonds. Our new reaction-composition space was thus composed of six reaction 
parameters: [morph]; [Pb]; the volume fraction of DMSO, Vf, DMSO; the volume fraction of GBL, 
Vf, GBL; [FAH]; and the concentration of water, [H2O]. A seventh parameter, Vf, DMF, was not 
included in this reaction space since it is calculated as 1- Vf, DMSO - Vf, GBL. The modified robotic-
synthesis procedure is described in the SI, and the constraints of all six parameters are given 
in Table S5. In the constrained 6D space, we generated a pool of 469,326 possible reaction 
compositions located on a fixed grid. 

To rapidly characterize the outcomes of reactions performed in this extended 6D space, we 
acquired absorption spectra on products with a multifunction plate reader. Automated scripts 
classified reaction products with absorption edges ≥ 2.3 eV as the “yellow phase” and the 
reactions with absorption edges ≤ 2.15 eV as the “red phase” (see Figure S6a). If no solids 
formed, we labeled the reaction as a “clear solution.” Representative pXRD patterns (Figure 
S7 and Figure S8) verified that the diffraction peaks of reaction products correspond to the 
phases predicted using absorption edges.  

Exploring the role of MHP additives using AL. 

To understand how combinations of additives contribute to the dimensionality of crystals 
in the morph-Pb-I system, we sought to train a ML model to predict the phase and 
dimensionality (i.e., 1D yellow phase or 2D red phase) for each combination of reagents in our 
6D reaction pool. To train such a model efficiently in such high-dimensional space, we 
developed an uncertainty-based active learning method to perform repeated cycles of HT-
ASVC microplate reactions that iteratively refine the ML model. For each cycle in our method, 
an AL algorithm selects the next batch of reactions to perform by identifying the regions of the 
6D reaction-composition space where the ML model has the highest prediction uncertainty.29,67 

To initiate AL, we performed a uniform sampling of 48 reactions using the KS algorithm. 
Since visualizing 6D data graphically is difficult, we projected reaction outcomes onto a lower-
dimensional space using t-distributed stochastic neighborhood embedding (t-SNE)68 (Step ❶ 
in Figure 3). In this initial sampling, we observed all three classes of reaction outcomes. We 
tested Random Forest (RF) models and Pearson VII Universal Function Kernel-based 
Supporting Vector Machine (SVM_PUFK) models, optimizing their hyperparameters on the 
initial dataset using five-fold cross-validation (CV). We selected the RF model as the basis for 
our AL algorithm since it exhibited the highest CV accuracy of 0.80 ± 0.09 (Table S6). The 
RF model, trained by the initial dataset, was used to predict reaction outcomes (yellow, red, or 
no crystals) and calculate the prediction probabilities P for each member of the reaction pool 
(Steps ❷ and ❸ in Figure 3). P is defined as the probability of the reaction outcome predicted 
to have the highest likelihood of forming (e.g., P = 0.6 if prediction likelihoods are 0.2 for 
clear solution, 0.6 for red phase, and 0.2  for yellow phase). Then the prediction uncertainty 
(U) for each point is calculated as 1 – P. The distribution of U (Step ❹ in Figure 3) shows
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that the regions with high uncertainty (U > 0.5) are found where multiple compounds form 
under similar conditions.  

Our AL algorithm is designed to generate the next batch of 24 robot reactions based on the 
points in reaction-composition space with highest U. Simply selecting the 24 reactions with 
the highest U, however, would result in reactions with very similar conditions. To avoid such 
over-sampling in a small region, we implemented the diverse-mini-batch-sampling 
algorithm,69 which divides high-uncertainty reactions (U > 0.5) into 24 mini-batches using k-
Mean Clustering,70 weighted by U. Then the centers of mass of the 24 mini-batches are selected 
as the set of reactions to perform in the next AL cycle. As shown in Step ❺ in Figure 3, the 
selected reactions have diverse reaction conditions and are located in the regions of high U. 
After this batch of reactions is performed and characterized, the reaction outcomes are 
collected (❻) and added to the dataset. The updated dataset is then used to retrain the RF 
model, at which point, the next active learning cycle (❷-❻) commences.  

Figure 3. Illustration of the diverse-mini-batch-sampling AL loop. Uniformly sampled seed reactions (Step 
1) are used to train a Random Forest model (2), which is then used to calculate prediction uncertainties (4)
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for the entire pool of potential reactions previously generated in 6D experimental space (3). In subsequent 
cycles of AL, reactions are selected using a diverse-mini-batch-sampling algorithm that prioritizes reaction 
conditions where model predictions have high uncertainty (5). These reactions are performed using a 
synthesis robot (6), and the data are used to retrain the model and perform additional cycles of active 
learning (2-6). All potential reactions (gray), AL-sampled reactions (colored scattered circles), and 
prediction uncertainty distribution (colored map) are projected onto 2D space using t-distributed stochastic 
neighborhood embedding (t-SNE). 

A critical outstanding question in AL-guided materials synthesis is when to terminate the 
AL loop. In principle, the RF model performance should be evaluated during AL to terminate 
the AL process when the model ceases to improve, but such evaluation is practically 
challenging since a large test set is not available to evaluate the RF model. To determine the 
stopping point for our AL runs, we monitored the average uncertainty (AU) and prediction 
confidence (PC) of the RF model after each AL iteration.71  AU and PC are defined in equations 
(1) and (2):

𝐴𝑈 = 	∑ "!"
!#$
#

(1) 

𝑃𝐶 = 	∑ (%!&%!
%)"

!#$
#

(2) 

Here, N = 469,326 is the number of potential reactions in the reaction pool ;	𝑈(  is the prediction 
uncertainty for the kth reaction in the reaction pool; 𝑃( and 𝑃()  are the prediction probabilities 
of the most likely class and second most likely class for the kth reaction. A rising PC 
(decreasing AU) over AL cycles indicates that AL is still improving the RF model. A 
decreasing PC (rising AU) suggests that the RF model has ceased to improve, and AL should 
be stopped. Heuristically, PC usually increases at the beginning of AL and then decreases, 
which indicates that ML models were often improved by AL in the first several cycles and then 
remained little changed.71,72 In general, adding new data to the training set does not reduce 
model performance, so decreasing PC implies a lack of improvement rather than a reduction 
in prediction quality. 

After the 1st AL iteration of 24 reactions, the PC of our RF model increased from 0.41 to 
0.45, and AU decreased from 0.34 to 0.32 (Figure 4a), which indicates an improvement of the 
RF model. Surprisingly, the 2nd AL iteration reduced PC and increased AU, suggesting that 
that experimentation should stop, as the model is no longer improving with the added data 
points. To confirm the downward trend of PC (and upward trend of AU), we performed three 
more AL iterations after the 2nd iteration. PC continued to decrease, so we ceased the AL 
experiments after the 5th iteration (the practical stopping point). The dataset from AL iterations 
2-5 (shown in Figure S9) is included in the training set because expanding a training set rarely
reduces the prediction accuracy for the test set.
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Figure 4. (a) Prediction confidence and average uncertainty of the RF model in each iteration of AL. 
(b) CV accuracies of the Gaussian process and RF models on the dataset collected after each iteration 
of AL (error bars represent the standard deviation across 5-fold CV). 

To justify the practical stopping point, one could in principle calculate the prediction 
accuracy of the RF model (trained by initial sampling + 5 AL iterations) over a large test set 
representative of the overall reaction pool. However, the time and labor required to collect this 
test set defeats the purpose of AL,71 which is to minimize the number of experiments. Here, 
we performed three analyses to support the conclusion that we have reached a reasonable 
stopping point after five AL iterations.  

A good ML model should show modest variance during the last few AL iterations before 
the practical stopping point (from the 2nd to 5th iteration),73 shown as small changes in its CV 
accuracy when including the last few AL runs in the training set. It is worth noting that since 
the training set has been collected, we are not limited to using RF models in the search for the 
best ML model. Our first analysis calculated the CV accuracies of multiple ML models after 
different AL iterations (Tables S7 and Figure S10). After the 5th AL iteration, the Gaussian 
process (GP) model shows the highest CV accuracy of 0.78 ± 0.04 (Figure 4b) and close to the 
theoretical limit of 0.78 (calculated by overfitting the dataset with deep neural networks, shown 
in Figure S11).74 The CV accuracy is well above the random-classification (control) accuracy 
of 0.34 and the majority-class vote accuracy of 0.41. As the most accurate ML model, the GP 
model shows only slight variation in CV accuracy from the 2nd to 5th AL iteration, which 
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indicates an insignificant variance in the GP model and suggests that the AL experiments have 
reached the stopping point.  

If the most accurate model, the GP model (trained on the dataset after the 5th AL iteration), 
can accurately predict unseen reaction conditions, AL has likely reached its stopping point. 
Therefore, in our second analysis, we performed 24 reactions located far from the tested 
reactions (initial sampling + 5 AL runs) in the reaction-composition space (Figure S12a). The 
24 reactions were selected by the KS algorithm. The GP model, trained on the tested reactions, 
shows a prediction accuracy of 0.92 for the unseen 24 reactions (Figure S12b), which leaves 
little room for improvement and indicates that AL has reached its stopping point. 

Testing the AL algorithm on a synthetic dataset (with labels) allows us to monitor the 
model prediction accuracy for the whole dataset and to investigate whether the stopping 
criterion based on prediction confidence is reasonable. As the final analysis, we ran the AL 
algorithm on a synthetic dataset with a similar structure to our experimental dataset (see Figure 
S13 and SI for details). After AL commences, the RF model’s PC increases until the 4th AL 
cycle, after which PC  decreases (Figure S14a). Thus, the 4th iteration is considered the 
theoretical stopping point. Like our AL experiment, the decreasing trend can be confirmed 
with a few additional iterations. Meanwhile, the prediction accuracy for the whole dataset 
rapidly increases from 0.48 (after initial sampling) to 0.82 (after four AL iterations) (Figure 
S14b). After the 4th cycle, the accuracy plateaus, eventually stabilizing at 0.85 after 100 
iterations. Therefore, the model performance has only a 4% improvement with additional 96 
AL iterations after the theoretical stopping point, confirming that the stopping criterion based 
on prediction confidence is reasonable. Clear stopping criteria, such as that demonstrated here, 
will benefit AL-assisted materials and chemistry research. 

To summarize, we determined the AL stopping point based on the changes in prediction 
confidence and performed three tractable analyses to support the stopping point. Using diverse-
mini-batch AL and a stopping criterion based on prediction confidence, we only needed to 
explore at most 0.035% of the reaction pool to successfully build and confirm the stopping 
point of ML models that accurately predict the formation of the 1D and 2D MHP derivatives 
in the morph-Pb-I system.  

Importance of features and their effect on dimensionality. 

A predictive ML model can be used to understand the physicochemical process of 
morpholinium lead iodide crystallization. To uncover the reaction parameters that have the 
most significant influence on morph-Pb-I dimensionality, we performed a permutation-feature-
importance analysis75 (see details in SI) on the RF model trained by portion of the dataset that 
includes only yellow and red phase outcomes.  Feature-importance analysis revealed that [Pb], 
[morph], [FAH], and [H2O] are important for controlling the formation of 1D and 2D phases 
(feature importance > 0.1) while the compositions of solvents (i.e., Vf, DMSO and Vf, GBL) are 
much less important (feature importance < 0.05) and can be ignored (Figure 5a). To validate 
the feature downselection, we retrained the RF model with the yellow/red dataset and used 
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only [Pb], [morph], [FAH], and [H2O] as features. Similar CV accuracies were observed 
compared to the model trained by the full set of features (Figure 5b), suggesting that the feature 
selection is effective. This analysis is corroborated by the visually distinguishable boundary 
between yellow and red phases in the parameter space of ln([morph]/[Pb]), [FAH], and [H2O] 
(Figure 5c).  

 

 
Figure 5. (a) Permutation-feature-importance of the RF model trained by the yellow and red phase 
reactions. (b) CV accuracies of the RF model on predicting yellow phase vs. red phase, with all features 
(black line) and only [morph], [Pb], [H2O], and [FAH] (red line). (c) Outcomes of the yellow and red 
phase reactions as a function of ln([morph]/[Pb]), [FAH], and [H2O]. 

 

To determine whether the important features have positive or negative effects on the formation 
of the yellow and red phases, we developed a data-driven approach that combines logistic 
regression (LG) modeling and statistical hypothesis testing. Using a “crystals only” dataset 
containing only outcomes that produced solids, we performed LG using only [Pb], [morph], 
[FAH], and [H2O] as inputs, and with the outcomes labeled as “1” for the  yellow phase and 
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“0” for the red phase. Since the LG model demonstrated a reasonable CV accuracy of 0.81 ± 
0.07, the sign of the slope can be treated as the direction of the correlation between the 
corresponding feature and yellow phase formation. To test the hypotheses with statistical 
significance, we used bootstrapping76 to sample the “crystals only” dataset 1000 times. We fit 
the 1000 samples into the LG model and obtained a distribution of slopes for each important 
feature (Figure S16a). The slopes of [morph], [Pb], [FAH], and [H2O] are -2.33 ± 0.24, 2.37 ± 
0.16, 1.09 ± 0.24, and 1.51 ± 0.22, respectively. Based on this LG analysis, we hypothesized 
that when solid is formed, [morph] has a negative effect on yellow phase formation while [Pb], 
[FAH], and [H2O] have positive effects.  

To further validate the correlations between reagent concentrations and crystal phases, we 
performed one-tailed statistical hypothesis testing.77 We defined one null hypothesis for each 
feature: for the yellow phase formation, [morph] is hypothesized to have positive or no effect 
while [Pb], [FAH], and [H2O] are hypothesized to have negative or no effect. Given the mean 
values and standard errors of the slopes, we rejected all four null hypotheses with a confidence 
level of 99%. Therefore, all four features have the hypothesized effects on the yellow phase 
formation. Using the same approach, we discovered that when solid is formed, [morph] has a 
positive effect on red phase formation while [Pb], [FAH], and [H2O] have negative effects. 

 

Understanding the underlying physicochemical process of dimensionality control. 

The effects of [Pb] and [morph] on dimensionality control can be explained by the chemical 
stoichiometries in the two phases. The physicochemical process through which additives (i.e., 
water and formic acid) influence the dimensionality is still unclear. To understand this 
physicochemical process, we studied both the thermodynamics and kinetics of the ASVC 
reaction. First, we investigated whether the reaction is under thermodynamic control. We 
calculated the total energy of the yellow phase and red phase using density functional theory 
(DFT).78 DFT calculations show that the yellow phase is slightly more stable than the red phase. 
However, the formation energy difference between these two phases is negligible (∆Eform = 6.8 
kJ per mole of Pb) and within the typical intrinsic error of DFT (~0.1 eV or ~10 kJ/mole)79. 
Thermogravimetric analysis (TGA) shows that the thermal decomposition temperatures for the 
yellow and red phases are close (240 ℃ and 200 ℃ respectively, shown in Figure S17), which 
agrees with DFT results. DFT calculations also show that only a small amount of energy (33.77 
kJ/mol) is needed to convert the yellow phase to the red phase in the solid state (Scheme 1). 
Theoretically, this conversion can be achieved by mechanochemical grinding, which provides 
energy of 95-112 kJ/mol.80 UV-vis absorption spectra show that at room temperature, the 
yellow phase can be converted to the red phase in the solid state with one equivalent morphI 
and manual grinding (Figure 6). The room-temperature synthesis of ASVC and the small 
energy difference between the 1D and 2D phases suggest that the formation of different 
dimensional phases in the morph-Pb-I system is not under thermodynamic control. 
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Scheme 1. Solid-state conversion of yellow phase to red phase. 

 

 
Figure 6. UV-vis absorption spectra of red phase, yellow phase, and yellow phase ground with 
additional morphI. The inset photos are powders of yellow phase (left) and yellow phase ground 
with morphI (right). 

 

Based on the additives’ effects on dimensionality control and  intermediate species 
previously identified in MHP syntheses, we propose a reaction scheme that rationalizes how 
water and formic acid control the dimensionality by influencing the reaction kinetics of 
morpholinium lead iodide syntheses (Scheme 2). When morphI and PbI2 are dissolved in the 
solution, solvent (i.e., DMF and DMSO) and additive molecules (i.e., formic acid and H2O) 
coordinate with PbI2 to form 1D complexes (INT-1 and INT-2 in Scheme 2) as prenucleation 
intermediates.81–83 When the additives’ concentrations are low, the 1D PbI2 chains are 
coordinated mainly by solvent molecules to form intermediates similar to INT-2. When the 
additives’ concentrations increase, more solvent molecules on the 1D PbI2 chains are 
substituted by water and formic acid to form intermediates similar to INT-1.82 In INT-1 and 
INT-2, additive molecules on Pb can form hydrogen bonds with the axial ligands (additives 
and solvents) on the adjacent Pb atoms at the same side of the 1D chain. Such intra-chain 
hydrogen bonds labilize the additive and solvent molecules on Pb by reducing the density of 
lone-pair electrons (from N and O) in the metal-ligand bonds and allocating part of the electron 
density to forming the hydrogen bonds.  

In INT-1, the abundant intra-chain hydrogen bonds reduce the distance between adjacent 
axial ligands and facilitate the simultaneous dissociation of these ligands, which are substituted 
by the bridging-I- from morphI. Thus, INT-1 is converted to INT-4—the 1D PbI2 chain that 
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forms the framework of the yellow phase (see crystal structure in Figure 1b). Compared to 
INT-1 → INT-4, the I- ligand substitution reaction that polymerizes INT-1 to INT-3 (the 2D 
polymeric intermediate) could be much slower, making the formation of 1D yellow phase 
dominant process at higher additive concentrations. For INT-2, the lower density of intra-chain 
hydrogen bonds make the reaction rate of INT-2 → INT-4 slower than INT-2 → INT-5, which 
then becomes the dominant pathway. With additional I-, INT-5 can be converted to INT-6, the 
2D Pb-I plane that composes the red phase. For this reason, the 2D red phase becomes the main 
product at lower [H2O] and [FAH].  

These results suggest that water and formic acid influence the dimensionality of the 
products in morpholinium lead iodide syntheses by accelerating the formation of the 1D phase 
through intra-chain hydrogen bonding. Controlling dimensionality of MHP derivatives through 
the use of hydrogen-bonding additives should be applicable to other MHP systems. 

 

17



 
Scheme 2. Proposed reaction scheme for the formation of the 1D yellow phase and 2D red phase. 

 

III. Conclusion 

Using a robotic workflow based on ASVC, we synthesized two novel MHP derivatives 
[1D morphPbI3 and 2D (morph)2PbI4] with distinct optical properties. Although the existence 
(but not crystal structures) of 2D MHP derivatives based on morpholinium has been postulated 
theoretically, the synthesis and characterization of a 2D derivative has not been reported until 
this work.  We demonstrated the efficacy of the KS sampling algorithm + robotic workflow in 
finding rare MHP derivatives. Using the uncertainty-based AL method with decreased 
prediction confidence as a stopping criterion, we sampled only 0.035% of the reaction-
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composition space to build a predictive ML model to classify the reaction conditions where 
1D and 2D phases are formed. By analyzing the feature importance of the predictive ML model, 
we elucidated that [Pb], [morph], [FAH], and [H2O] have significant influence on the 
dimensionality control in the morph-Pb-I system. Using this data, along with DFT calculations, 
thermogravimetric measurements and mechanochemistry observations, we proposed a reaction 
scheme to explain the formation of the 1D and 2D phases. In the hypothesized scheme, water 
and formic acid accelerate the formation of the 1D phase via intra-chain hydrogen bonding, 
which is likely observed with other A-cations and MHP systems. Our strategy of using 
additives to control dimensionality has the potential to be applied in many other CMH systems. 
With the AL stopping criterion developed and tested in this work, the AL + HTE approach will 
be valuable for any materials research that benefits from predicting and controlling different 
phases/compounds in a vast reaction-composition space.  
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1. Materials and methods 

Chemicals 
Lead iodide (PbI2) (99%), formic acid (FAH) (≥95 %), dimethylformamide (DMF) (99.8 %), 
dimethyl sulfoxide (DMSO) (≥99.5 %), and dichloromethane (DCM) (≥99.8 %) were purchased 
from Sigma Aldrich Chemicals. γ-Butyrolactone (GBL) (≥98 %) was purchased from Spectrum 
Chemical. Morpholinium iodide (morphI) (98 %) was purchased from GreatCell Solar.  

Equipment 
Liquid handling robot 
A Hamilton Microlab NIMBUS4 liquid handling robot was used in this study for the HT-ASVC 
synthesis of morpholinium lead iodide. The robot features four independent pipetting channels for 
transferring liquid. The pipettors aspirate reagent stock solutions stored in polypropylene 
containers organized in racks placed in programmatically defined positions on the robot deck. 
Stock solutions were used on the same day as they were prepared (within 8 hours) to avoid any 
possible solution degradation. New pipette tips were used for each stock solution. Solutions for 
HT-ASVC reactions were prepared on a Hamilton Heater and Shaker (HHS) module, which can 
be heated up to 105 ℃ (actual temperature solution temperature reaches 95 ℃) and can vortex 
microplates up to 2000 rpm. Robotic protocols were programmed in the Hamilton Method Editor 
software; reaction time, shaking speed etc., were imported from Microsoft Excel.xls spread sheets 
generated by ESCALATE. Complete, step-by-step synthetic protocols are shown in the “Robotic 
Workflow” section. 
 
Powder X-ray Diffraction 
Powder X-ray diffraction (pXRD) measurements were performed on a Bruker AXS D8 Discover 
GADDS X-Ray Diffractometer, which is equipped with a Vantec-500 area detector and is operated 
at 35kV/40mA with a Co Kα radiation source with a wavelength of 1.79Å.  
 
UV-visible absorption spectra 
UV-visible (Vis) absorption spectra were collected using an Agilent Cary-5000 UV-Vis-NIR 
spectrophotometer. Absorbance spectra of powders ground from morpholinium lead iodide 
crystals were measured using an internal diffuse reflectance accessory. 
 
Photoluminescence spectra 
Photoluminescence (PL) spectra of powders ground from morpholinium lead iodide crystals were 
measured using a Horiba Jobin Yvon Fluorolog-3 spectrofluorometer. PL spectra were collected 
from 530 to 720 nm with 1 nm wavelength steps and 0.01 s integration time per step. 
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Thermogravimetric analysis 
Thermogravimetric analysis were performed using TA Instruments Q5500 TGA-MS. The sample 
weight change was measured from room temperature to 450 °C with a ramp rate of 10 °C /min 
under nitrogen. 
 
High-throughput powder X-ray Diffraction 
High-throughput pXRD Measurements were performed on glass slides in a customized sample 
holder on the same Bruker X-Ray Diffractometer. The sample locations (e.g., A1) are 
programmatically defined in pXRD software. The diffractometer automatically performs pXRD 
measurements and switches samples until all samples are finished. 
 
High-throughput UV-Vis absorption spectra 
High-throughput UV-Vis-NIR absorption spectra were collected using a custom-built reflection-
mode UV-Vis-NIR absorption spectrometer. The spectra were measured from 350 nm to 2500 nm 
and averaged over 100 acquisitions (each acquisition takes one second). A motorized XY stage 
enables automated measurement on samples in a 96-well microplate. 
 
High-throughput photoluminescence spectra 
High-throughput PL spectra were collected using a Biotek Synergy 4 UV-Vis 
Absorption/Fluorescence Microplate Reader. The PL spectra were measured from 540 nm to 720 
nm with 450 nm excitation.  
 
High-throughput microscopic images 
High-throughput optical micrographs were acquired using a Biotek Cytation 5 Cell Imaging Multi-
Mode Reader with a 4x objective lens. Bright-field and fluorescent (excitation at 469 nm; emission 
at 525 nm and 593 nm) images are measured for solid products in a 96-well Hellma quartz 
microplate. 
 

Benchtop ASVC synthesis  
A precursor solution was made by dissolving 1.6 mmol morphI, 1.6 mmol PbI2, and 50 μL formic 
acid in 1 mL DMF in a 4 mL clear scintillation vial. The precursor solution was heated and stirred 
at 75 °C and 450 rpm for 1 hour. After dissolution, the 4 mL vial (uncapped) containing 1 mL 
precursor solution was cooled to room temperature and placed in a 20 mL scintillation vial. Then 
5 mL DCM was added between the 4 mL vial and 20 mL vial. Care was taken not to add DCM in 
the precursor solution. Then the 20 mL vial was sealed by a PTFE-lined solid-top storage cap. The 
reaction was stored in the dark for 16 hours without disturbance. Large yellow-colored crystals 
formed after 16 hours of crystallization. The crystals were isolated via vacuum filtration. Then 
they were dried in a desiccator before characterization. 
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Robotic Workflow 
Solubility measurement 
The solubility of PbI2 depends on the concentration of coexisting morphI in the solution. To 
determine the solubility of PbI2 for HT-ASVC reactions, we weighed fixed masses of PbI2 with 
different percentages of morphI and stirred the suspensions in a heated oil bath at 75 °C and 450 
rpm. DMF was added gradually until the solid was completely dissolved. The solution was then 
brought to room temperature to ensure its stability. This step also ensured that the solution 
remained a homogeneous solution during the robotic run and that the PbI2 did not precipitate, 
which can disrupt the pipetting of liquid handler. The solubility was then calculated as total moles 
of PbI2 divided by the total volume of the solutions. The solubility of PbI2 in DMF is 2.32 M 
(mixed with 2.91 M morphI). Using the same method, the solubility of morphI in DMF was 
calculated as 2.36 M. 

 

Overview of HT-synthesis and HT-characterization workflows 
Stock solutions of PbI2-morphI mixture solution and morphI solution were prepared based on 
experimental data entry files generated by ESCALATE using the solubility data. The 
concentrations of PbI2-morphI mixture solution were 2.32 M (PbI2) and 2.91 M (morphI). The 
concentration of morphI-only solution was 2.36 M. After stock solution preparation, all reaction 
components (i.e., the stock solutions, pure solvents, and additives) were placed in 
programmatically designated locations on NIMBUS operation deck. During the addition of all 
reaction components, the reaction solutions were kept at an actual temperature of 75 ºC (measured 
by an IR camera at a set point temperature of 80 ºC) for dissolution. A synthetic flow chart is 
shown in Figure S3, describing stock solution preparation and robotic procedures. Figure S3 
contains a photograph of NIMBUS operation deck, labeled with the locations of stock solutions. 
A customized robot-compatible crystallization block (circled in white dash square), containing 24 
pairs of wells, was placed on the Hamilton Heater and Shaker (HHS). For one pair of wells in the 
block, perovskite stock solution occupied one well, and the other well was taken by anti-solvent 
(DCM). The 8x43 mm (diameter x height) glass scintillation vials were used as reaction and anti-
solvent vessels. The vials were pre-heated to 55 ºC before addition of the stock solutions. Formic 
acid was added to each reaction vial, followed by 15 minutes shaking to avoid premature 
precipitation of PbI2, morphI, or perovskite. After vortexing, the crystallization block was cooled 
to room temperature before DCM was added to the anti-solvent wells in the crystallization block. 
After DCM addition, we sealed the block with a metal cap and stored the block at 20 ºC without 
disturbance for 16 h. The actual, step-by-step synthetic protocol of the robot is given in the below 
section.   
 
After crystallization was completed, we opened the crystallization block and took side photos of 
each reaction vial. Based on visual inspection, we recorded the morphologies and colors of solid 
products. Then we labeled the reaction outcomes by the colors of the major products. The examples 
of side photos, notes, and scores are shown in Table S1 in the “Product Scoring Rubric Based 
on Human-Inspection” section. 
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The solid products were filtered and dried. Then we took HT bright-field and fluorescent images 
of the products in a quartz-bottom 96-well microplate (Hellma Analytics) using a Biotek Cytation 
5 Cell Imaging Multi-Mode Reader (Figure S5). After the microscopic imaging, solid products 
were ground to powder and placed in an opaque round-bottom 96-well microplate. Then HT UV-
Vis absorption spectra were measured using a custom-built automated reflection-mode UV-Vis-
NIR absorption spectrometer. Representative absorption spectra are shown in Figure S6a. HT PL 
spectra of the powders were collected in the same microplate using a Biotek Synergy 4 plate reader 
(Figure S6b). For HT pXRD, the powder samples need to be transferred to a flat surface. After HT 
PL measurement, the microplate was covered by ten layers of nonwoven wipes (55% cellulose and 
45% polyester) and then a plastic plate. The microplate was flipped, and the powder samples were 
knocked out to the top layer of the nonwoven wipes. Then the microplate was lifted and removed. 
Care should be taken not to move the powder samples on the wipe. A glass slide, covered with 
double-sided tapes on one side, was stamped on the powder samples on the nonwoven wipe (with 
the taped side down). Then the wipe was peeled off, leaving the powder samples on the double-
sided tapes on the glass slide. The powder samples on the glass slide kept the same corresponding 
locations as they have in the round-bottom microplate. Then HT pXRD was performed on the 
samples. The whole HT-characterization workflow is illustrated in the flow charts in Figure S4. 
 

Step-by-step synthetic protocols 
Primary screening in the reaction-composition space of [Pb], [morph], and [FAH] 

1. Stock solutions are manually prepared with concentrations specified in the “overview” 
section and are named Reagents 1-5 in order of their addition during the liquid handling 
process. Reagents 1, 4, and 5 are pure DMF, formic acid, and DCM, respectively. They are 
used without any additional treatment. Reagent 2, a stock solution of PbI2-morphI in DMF, 
is prepared by adding PbI2, morphI and then DMF to the stock solution container (in that 
order). Reagent 3 is the morphI solution, prepared by adding DMF to morphI. Reagents 2 
and 3 stock solutions are prepared in glass containers and stirred in a heated oil bath at 75 
°C and 450 rpm for one hour to completely dissolve any solids. Reagents 2 and 3 are then 
cooled to room temperature, where they should remain a clear solution. Then, all reagent 
solutions are manually loaded into designated locations on liquid handler deck and kept at 
room temperature. Reagents 1 and 5 are stored in reusable 50 mL polypropylene solvent 
containers. Sets of four, 15 mL Falcon polypropylene centrifuge tubes are used as 
containers for Reagents 2-4.  

2. When the robot protocol is initiated, the crystallization block is pre-heated to a set point 
temperature at 80 ºC, with the actual temperature of the HHS reactor module measured and 
recorded in the software. The heating rate is approximately 7 ºC/ min.  

3. After the measured temperature of HHS reaches 80 ºC, the liquid handler dispenses 
Reagent 1 (0-300 µL), into each of the 24, 1-mL glass vials (in “precursor solution” 
positions) in the crystallization block, followed by Reagent 2 (0-300 µL) and Reagent 3 (0-
300 µL). The temperature of the HHS will reach 80 ºC (75 ºC for solution) during 
dispensing of Reagents 1-3. The liquid dispensing process is programmed and 
automatically carried out without any delay time between each dispense.  
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4. After addition of Reagents 1-3, 0-300 μL formic acid (Reagent 4) is dispensed into the 24 
vials. The combined volume of Reagents 1-4 dispensed in each vial is maintained at 300 
µL. The addition of formic acid is followed by 15 minutes of shaking at 500 rpm. 

5. After the 15 minutes of shaking, heating is stopped, and the perovskite precursor solution 
is cooled with a fan to 25 ºC in ~50 minutes. 

6. DCM (800 μL) is added into the 24 vials in “anti-solvent” positions in the crystallization 
block. After DCM addition is completed, the block is manually sealed with a metal cap and 
screws. The crystallization block is then stored at 20 ºC without disturbance for 16 h.  
 

Screening in the reaction-composition space of [Pb], [morph], [FAH], [H2O], Vf, DMSO, and Vf, 
GBL. 

1. Stock solutions are manually prepared as Reagents 1-8 in order of their addition during the 
liquid handling process. Reagents 1, 2, 3, 6, 7, and 8 are pure DMF, DMSO, GBL, DI 
water, and DCM, respectively. They are used without any additional treatment. Reagents 
4 and 5 are stock solutions of PbI2-morphI and morphI in DMF, and they are prepared in 
the same way as in primary screening. All reagent solutions are manually loaded into 
designated locations on liquid handler deck and kept at room temperature. Reagents 1, 2, 
3, 7, 8 are stored in reusable 50 mL polypropylene solvent containers. Reagents 4-6 are 
stored in 15 mL Falcon centrifuge tubes.  

2. This step is the same as step 2 in primary screening. 
3. This step is similar to step 3 in primary screening. The liquid handler dispenses Reagents 

1-5 (0-300 µL) into the glass vials (in “precursor solution” positions) in the crystallization 
block. 

4. After addition of Reagents 1-5, formic acid (Reagent 6) and water (Reagent 7) are 
dispensed into the 24 vials. The combined volume of Reagents 1-7 dispensed in each vial 
is maintained at 300 µL. The addition of water is followed by 15 minutes of shaking at 500 
rpm. 
 
Step 5 and 6 are the same as primary screening. 

 

Product Scoring Rubric Based on Human Inspection 
To score the reaction outcomes of primary screening, reaction vials were inspected at different 
angles by eye. In some reactions, there was a mixture of both yellow- and red-colored solid 
products, so we labeled the reaction outcomes by the colors of the major products. Thus, there are 
three classes of reaction outcomes in the primary screening: (1) class 1, clear solution without any 
solid; (2) class 2, red phase; (3) class 3, yellow phase. 

 

Crystal 
Scores 

Criteria Notes Photos 
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1 No solid was observed in 
the solutions. 

NA 

 
2 Red-colored crystals or 

powder are the major solid 
products. 

Large-red-flake crystals 

 
3 Yellow-colored crystals 

or powder are the major 
solid products. 

Bulky-yellow crystals 
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Software and Computation 
Software and packages 
Our custom-developed pipeline software: ESCALATE1, was used to specify experimental 
parameters in robot readable files, provide instructions for human operators, and capture 
experiment results and observations. All algorithms in this work were written in Python 3.6 in 
Jupyter notebooks using the following libraries: Numpy 1.18.0, Pandas 0.22.0, Scipy 1.3.0, 
Matplotlib 3.1.0, Scikit-learn 0.21.3, and modAL 0.3.5. 

 

Five-fold cross-validation 
We used a “Stratified Shuffle Split” method from Scikit-learn to generate training/testing datasets 
for cross-validation (CV) of machine learning models. In the case of 5-fold cross-validation, there 
are 5 different train/test splits on the dataset: in each split, 80 % of the data were used to train the 
machine learning model, while 20% of the data were reserved for testing. The testing sets were 
randomly drawn from whole datasets in a stratified style (i.e., testing sets have the same percentage 
of samples of each target class as the whole datasets). Before each drawing, the datasets were 
shuffled, so the testing datasets are not necessarily exclusive between splits. 

 

Machine learning metrics 
CV accuracies were calculated by averaging the prediction accuracies of five different train/test 
splits created by CV on the dataset. The prediction accuracy is defined in the equation below.  

Accuracy = (TP + TN)/(TP + TN + FP + FN) 

Here, TP is the total number of "True Positive” results (i.e., the predicted and actual scores are 
both “positive”). Likewise, “FP” is the number of “False Positive” results, “TN” is the number of 
“True Negative” results, and “FN” is the number of “False Negative” results.  

Our experimental results were interpreted as either two-class or three-class classification problems. 
In the two-class case, “yellow phase” outcome was considered “positive” result while “red phase” 
outcome was considered “negative” result. The “clear solution” outcomes were excluded. The 
prediction accuracy was calculated using the above equation directly.  

In the three-class case, we calculated the overall prediction accuracy by averaging the prediction 
accuracies from all possible one-vs-all classifications [e.g., yellow phase (positive) vs. non-yellow 
phase (negative)]. 

 

Grid-point generation  
Grids were generated as cuboids/hypercuboids in reaction-composition space. The ranges of the 
cuboid/hypercuboid’ sides are the allowed ranges of the concentration/volume fraction (Table S4 
and S5). The interval number of a grid is n. The total numbers of grid points are n3 and n6 for the 
primary screening and 6D screening. 
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Kennard-Stone algorithm 
Kennard-Stone (KS) algorithm was used to generate uniform sampling pools from candidate pools 
in reaction-composition space. Before performing KS sampling, the features of the candidate pools 
were scaled by standardization (subtracting the mean and dividing the result by the standard 
deviation). The sampling algorithm works as follows: 

1. First, two points with the largest Euclidean distance (p1 and p2) are selected as the initial 
points of the sampling pool and removed from the candidate pool. 

2. The separation distance between a candidate point and the sampling pool is defined as the 
distance from the candidate point to its closest sampling point (p1 or p2). 

3. The candidate point with the largest separation distance (p3) is selected and added to the 
sampling pool. This step is repeated until the sampling pool reaches the required size k. 

 

Selecting 48 primary reactions in 3D reaction-composition space 
1. First, we constructed a 3D convex hull2 (C3D) of the allowed reaction-composition space 

of [Pb], [morph], and [FAH]. Pure FAH, Reagent 2, and Reagent 3 were used as vertices 
to construct an initial convex hull, and then the concentration constraints (Table S4) are 
applied on the initial convex hull to generate C3D. 

2. Then, we generated a 3D grid (with interval number n) in the smallest cuboid containing 
C3D. The number of grid points contained in C3D is defined as NC. We chose n that 
minimized NC while kept NC ≥ 48. The calculated n and NC are 9 and 51.  

3. Last, using the Kennard-Stone algorithm, we selected 48 data points from the 51 grid points 
in C3D as our primary sampling points. 

 

Generating the reaction pool in 6D reaction-composition space 
We constructed a 6D convex hull (C6D) of the allowed reaction-composition space of [Pb], [morph], 
[FAH], [H2O], Vf, DMSO, and Vf, GBL. The constraints of the experimental variables are listed in 
Table S5. Then we generated a 6D grid (interval number n = 20, see “Grid-point generation”) in 
the smallest hypercuboid containing C6D. The grid points contained in C6D are defined as the 
reaction pool (the grid points outside C6D are excluded since they are inaccessible to our 
experimental workflow). There are 469,326 points in the reaction pool. 

 

Diverse-mini-batch active learning 
To initiate AL, 24 reactions were selected from the reaction pool using the KS algorithm. The RF 
model was trained on the 24 initial reactions and then generated prediction uncertainties (U) for 
all the reactions in the reaction pool. The reactions with U > 0.5 were prefiltered, and the k-mean 
clustering algorithm was used to divide the prefiltered reactions into 24 clusters (k = 24). In k-
mean clustering, the weight of a reaction was its U value. After clustering, the centroids of the 
clusters were determined. Then 24 different reactions closest to the centroids were selected for the 
next AL iteration. The AL process continued until the stopping criterion was met. 
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Random-classification accuracy 
The random-classification accuracy was calculated as one minus the Gini impurity of the dataset 
(after the 5th AL run). The Gini impurity (g) is defined below. 

	𝑔 =$ 𝑓!(1 − 𝑓!)
"

!#$
 

 
𝑓! is the number fraction of ith class in the dataset. For the dataset after the 5th AL run, 𝑓$, 𝑓%, and 
𝑓" are 0.41, 0.33, and 0.26 respectively. Therefore, the Gini impurity and random-classification 
accuracy are 0.66 and 0.34. 
 

Theoretical limit of CV accuracy 
The theoretical limit of CV accuracy of any ML models on the tested dataset (initial sampling + 5 
AL runs) was calculated as one minus intrinsic error of the dataset. The intrinsic error was 
estimated as one minus the average CV accuracy of multiple deep neural networks that overfit the 
dataset. The hidden layer numbers of the deep neural networks are 40, 48, 57, 69, 83, and 100. The 
CV accuracies of these models were calculated using the “leave-one-out” strategy. 

Number of 
hidden layers 

Hyper-parameters 
(fixed) 

Intrinsic error Average intrinsic error 

40  
 

activation = ‘relu’ 
solver = ‘lbfgs’ 
alpha = 0.001, 

0.27  
 
 

0.24 ± 0.02 

48 0.22 
57 0.24 
69 0.26 
83 0.21 
100 0.26 

 

Selecting 24 reactions far from initial sampling + 5 AL runs 
We selected 24 reactions located far from the 168 tested reactions (initial sampling + 5 AL runs) 
using the KS algorithm in the 6D reaction-composition space. In the KS sampling, the tested 
reactions were treated as the initial points of the sampling pool. The reaction, with the largest 
Euclidean distance to the sampling pool, was picked from the candidate pool and added to the 
sampling pool. The selection process continued until all 24 reactions were picked and added to the 
sampling pool. Then the newly added 24 reactions in the sampling pool were performed to test the 
RF model’s predicting ability on unseen reactions. 

 

Synthetic dataset 
The synthetic dataset was generated using the “make_classification” function in the Scikit-learn 
library. All parameters of the synthetic dataset are shown in the table below. The synthetic dataset 
has six input features, three output classes, and the same weight distribution of classes as our 
experimental dataset, which is [0.43, 0.29, 0.28] for Class 1, 2, and 3, respectively. The dataset has 
50,000 data points. The “class_sep” is set as 0.8 to create overlaps between the classes (the larger 
the value is, the less the overlap will be), and “flip_y” = 0.1 means that there are 10% of data points 
whose classes are assigned randomly.  
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The same AL experiment was performed on the synthetic dataset: 1) there were 48 data points 
selected by the KS algorithm to initiate the AL process; 2) AL queried 24 data points in each 
iteration. 

 

 

Library module function parameters 
Scikit-
learn 

dataset make_classification n_samples = 50000, n_features = 6,  
n_redundant = 0, n_repeated = 0, n_informative = 6, 

n_classes = 3, n_clusters_per_class = 1,  
weights = [0.43, 0.29, 0.28], class_sep = 0.8, 

random_state = 1, flip_y = 0.1 
 

Permutation-feature-importance analysis 
The permutation-feature-importance is defined as the decrease in a ML model’s prediction score 
when the value of a feature is randomly shuffled. Since the shuffling breaks relationship between 
the feature and the outcome, the decrease in the model score is indicative of how much the model 
depends on that feature. In this work, we calculated the reduction of the five-fold CV accuracy of 
the RF model on the “crystals only” dataset after each feature was randomly shuffled.  

 

Bootstrapping the “crystals only” dataset 
We used bootstrapping to create 1000 samples from the “crystals only” dataset. Each sample was 
randomly selected and had the same size as the “crystals only” dataset. In each sampling, the same 
reaction could be drawn repeatedly. 

 

One-tailed statistical hypothesis testing 
To validate the effects of the important features (i.e., [Pb], [morph], [FAH], [H2O]) on yellow/red 
phase formation, we performed one-tailed statistical hypothesis tests with a confidence level of 
0.99 (i.e., significance level = 0.01). A critical value of Z0 = 2.8 (the value to separate the “rejection” 
and “fail to reject” regions for null hypothesis) was calculated from a normal probability 
distribution using the confidence level after Bonferroni correction [we are testing four hypotheses 
at the same time, so the confidence level used for calculating Z0 should be 1-(0.01)/4]. The actual 
Z value for each important feature (Zc) was calculated using the mean (μ) and standard deviation 
(σ) of the 1000 slopes (from bootstrapping) with the below equation. 

 

𝑍& =	
(𝜇 − 0)

(𝜎/√1000)
 

 

For yellow phase formation, 
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Feature Hypothesized 
effect on 

yellow phase 
formation 

Null 
hypothesis 

Type 
of 

test 

μ σ Zc Conclusion 

[morph] Negative Positive or 
none 

Left 
tail 

-2.33 0.24 -310 < -Z0 Reject null 
hypothesis 

[Pb] Positive Negative or 
none 

Right 
tail 

2.37 0.16 471 > Z0 Reject null 
hypothesis 

[FAH] Positive Negative or 
none 

Right 
tail 

1.09 0.24 139 > Z0 Reject null 
hypothesis 

[H2O] Positive Negative or 
none 

Right 
tail 

1.51 0.22 224 > Z0 Reject null 
hypothesis 

 

 

For red phase formation, 

Feature Hypothesize 
effect on red 

phase 
formation 

Null 
hypothesis 

Type 
of 

test 

μ σ Zc Conclusion 

[morph] Positive Negative or 
none 

Right 
tail 

2.33 0.24 299 > Z0 Reject null 
hypothesis 

[Pb] Negative Positive or 
none 

Left 
tail 

-2.36 0.15 -498 < -Z0 Reject null 
hypothesis 

[FAH] Negative Positive or 
none 

Left 
tail 

-1.09 0.24 -141 < -Z0 Reject null 
hypothesis 

[H2O] Negative Positive or 
none 

Left 
tail 

-1.53 0.21 -228 < -Z0 Reject null 
hypothesis 

 

Density functional theory (DFT) calculations  
The first-principles DFT calculations were carried out within the Perdew-Burke-Ehrenzhof 
exchange-correlation functional revised for solids (PBEsol).3 Because of the importance of van 
der Waals interactions in the hybrid perovskites4, we applied the Tkatchenko-Scheffler scheme to 
correct the PBEsol energies.5,6 The electron-nucleus interactions were modeled using the projector 
augmented wave (PAW) pseudopotentials7,8 as implemented in the Vienna Ab initio Simulation 
Package (VASP) package. Due to the importance of computational setup, planewave cutoff, kgrid, 
and energy tolerances were properly chosen, as tested before.9  In our calculations, we relaxed the 
atomic positions and the lattice while constraining the system to maintain the initial lattice 
symmetry to avoid complications from shallow minima that exist in the potential energy surface.10 
Thermodynamic stability was assessed by accounting for vibrational energy as computed using 
phonopy. 
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2. Supplemental Figures and Tables 
 

 

 
Figure S1. Illustration of benchtop ASVC of morpholinium lead iodide. 

 

 

Single Crystal Structure Refinement Details 
Single crystals of morphPbI3 and (morph)2PbI4 were transferred to the goniometer head of a Bruker 
Quest diffractometer with a fixed chi angle, a sealed tube fine focus X-ray tube, single crystal 
curved graphite incident beam monochromator, a Photon100 area detector and an Oxford 
Cryosystems low-temperature device. Examination and data collection were performed with Mo 
Kα radiation (λ = 0.71073 Å) at 100(2) K. 

Data were collected, reflections were indexed and processed, and the files were scaled and 
corrected for absorption using APEX3.11 Heavy atom positions were determined using SIR92.31  
All other non-hydrogen sites were located from Fourier difference maps.  All non-hydrogen sites 
were refined using anisotropic thermal parameters with full matrix least squares procedures on Fo2 
with I > 3�(I).  Hydrogen atoms were placed in geometrically idealized positions.  All calculations 
were performed using Crystals v. 14.23c.32  Complete crystallographic data, in CIF format, has 
been deposited with the Cambridge Crystallographic Data Centre. CCDC 210021 and 2110022 
contain the supplementary crystallographic data for this paper. These data can be obtained free of 
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charge from The Cambridge Crystallographic Data Centre via 
www.ccdc.cam.ac.uk/data_request/cif. 

 

 

 

 
Table S1. Crystallographic data for [C4H10NO][PbI3] (yellow phase) and [C4H10NO]2[PbI4] (red 
phase). 
 

Compound [C4H10NO][PbI3] [C4H10NO]2[PbI4] 
Formula C4H10I3NOPb C8H20I4N2O2Pb 

fw 676.04 891.08 
Space-Group P212121 (no. 19) C2/c (no. 15) 

a / Å 8.1767(3) 9.3920(4) 
b / Å 8.7039(4) 8.6729(3) 
c / Å 16.5225(7) 23.2152(9) 
a / º 90 90 
b / º 90 94.5715(13) 
g / º 90 90 

V / Å3 1175.89(9) 1885.00(13) 
Z 4 4 

rcalc / g cm-3 3.818 3.140 
l / Å 0.71073 0.71073 
T / K 100(2) 100(2) 

µ / mm-1 22.177 15.497 
R1,

a 0.0235 0.0248 
wR2

b 0.0513 0.0583 
 
a R1 = S║Fo½- ½Fc║ / S½Fo½. b wR2 = [Sw(Fo

2 – Fc
2)2 / [Sw(Fo

2)2]1/2. 

 

Table S2a. Selected bond lengths (Å) in [C4H10NO][PbI3]. 

Bond Length (Å) 
Pb1 – I1 3.3096(4) 
Pb1 – I1 3.1525(4) 
Pb1 – I2 3.2443(4) 
Pb1 – I3 3.4061(4) 
Pb1 – I3 3.0831(4) 

 

Table S2b.  Selected bond angles (º) in [C4H10NO][PbI3]. 

Bonding atoms Angle (º) 
I2 – Pb1 – I1 88.806(10) 
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I2 – Pb1 – I3 113.808(10) 
I1 – Pb1 – I3 112.907(10) 
I2 – Pb1 – I1 89.054(11) 
I1 – Pb1 – I1 167.705(9) 
I3 – Pb1 – I1 78.974(10) 
I2 – Pb1 – I2 168.201(9) 
I1 – Pb1 – I2 88.048(10) 
I3 – Pb1 – I2 77.851(9) 
I1 – Pb1 – I2 91.609(11) 
I2 – Pb1 – I3 82.648(10) 
I1 – Pb1 – I3 81.472(10) 
I3 – Pb1 – I3 157.398(11) 
I1 – Pb1 – I3 86.246(11) 
I2 – Pb1 – I3 85.640(10) 

 

Table S3a. Selected bond lengths (Å) in [C4H10NO]2[PbI4]. 

Bond Length (Å) 
Pb1 – I1 3.1946(4) 
Pb1 – I2 3.1828(3) 
Pb1 – I2 3.2169(3) 

 

Table S3b.  Selected bond angles (º) in [C4H10NO]2[PbI4]. 

Bonding atoms Angle (º) 
I1 – Pb1 – I1 179.154(12) 
I1 – Pb1 – I2 86.583(8) 
I1 – Pb1 – I2 87.353(8) 
I1 – Pb1 – I2 93.191(8) 
I1 – Pb1 – I2 92.812(8) 
I2 – Pb1 – I2 85.472(3) 
I2 – Pb1 – I2 174.363(12) 
I2 – Pb1 – I2 100.147(12) 
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Figure S2. Powder X-ray diffraction (pXRD) patterns of the yellow phase (a) and red phase (b). 

Black lines are experimental pXRD patterns; red lines are simulated pXRD patterns based on 
structures derived from single crystal XRD analysis. 
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Figure S3. Robotic system and perovskite synthetic workflow based on high-throughput ASVC. 

 

 

 
Figure S4. High-throughput tools and characterization workflow for metal halide perovskites. 
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Figure S5. Representative high-throughput microscopic images [bright-field and fluorescent (λex 
= 469 nm)] for the yellow and red phases. 
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Figure S6. High-throughput a) UV-vis absorption spectra and b) PL spectra of primary screening 
reaction products. 

 

 

 

 
Figure S7. pXRD patterns of representative yellow phase samples from primary screening. 
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Figure S8. pXRD patterns of representative red phase samples from primary screening. 
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Table S4. Experiment variables and their constraints in primary screening. 

Experiment variables Constraints 
[morph]a Lower bound: 0;  

Upper bound: 2.91 M (concentration of morphI in Reagent 2) 
[Pb]a Lower bound: 0.1 M;  

Upper bound: 2.32 M (concentration of PbI2 in Reagent 2)  
[FAH]a Lower bound: 0; Upper bound: 16 M 

Solventsb DMF 
Crystallization temperatureb 20 °C 

Crystallization timeb 16 h 
 

a Variables that have been varied. 
b Variables that have been kept constant. 
 

Table S5. Experiment parameters and their constraints in 6D screening. 

Experiment variables Constraints 
[morph]a Lower bound: 0;  

Upper bound: 2.91 M (concentration of the morphI in Reagent 2) 
[Pb]a Lower bound: 0.1 M;  

Upper bound: 2.32 M (concentration of PbI2 in Reagent 2)  
[FAH]a Lower bound: 0; Upper bound: 16 M 
[H2O]a Lower bound: 0; Upper bound: 13.5 M 

Vf(DMSO)a Lower bound: 0; Upper bound: 1 
Vf(GBL)a Lower bound: 0; Upper bound: 1 
Solventsa DMF, DMSO, GBL 

Crystallization temperatureb 20 °C 
Crystallization timeb 16 h 

 
a Variables that have been varied. 
b Variables that have been kept constant. 
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Table S6. Tested machine learning models and their CV accuracies for initial sampling in 6D 
composition space screening. 

Model Hyper-parameters sets* 

(tested) 

Best Hyper-parameters 
(from grid-search) 

CV accuracy 

Random Forest bootstrap = [True, False], 
max_features = ['auto', 
'sqrt'], 
n_estimators = [100, 300, 
500, 800, 1200], 
max_depth = [2, 5, 8, 15, 25, 
30], 
min_samples_split = [2, 5, 
10, 15, 100], 
min_samples_leaf = [1, 2, 4, 
8], 
criterion = 'entropy', 
class_weight = 'balanced', 
random_state = 42 

bootstrap = True 
max_features = 'auto' 
n_estimators = 800 
max_depth = 5 
min_samples_split = 5 
min_samples_leaf = 1 
criterion = 'entropy', 
class_weight = 'balanced' 
random_state = 42 

0.80 ± 0.09 

Support Vector Machine 
(Pearson VII Universal 
Function Kernel) 

C = [0.001, 0.01, 0.1, 1, 10, 
100, 1000], 
decision_function_shape = 
'ovr',  
probability = True, 
class_weight = 'balanced' 

C = 1, 
decision_function_shape 
= 'ovr',  
probability = True, 
class_weight = 'balanced' 

0.78 ± 0.07 

 

* see explanations of the hyper-parameters in Scikit-learn documents at https://scikit-learn.org/stable/supervised_learning.html 
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Figure S9. Projections of the reaction-composition space using the t-distributed stochastic 
neighborhood embedding (t-SNE) algorithm for initial sampling (a) and 1st to 5th AL iterations (b-
f). The gray points represent the next AL iteration. 
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Table S7. Machine learning models tested after each iteration of AL (their CV accuracies are 
shown in Figure S10) 

Model Hyper-parameters* 

Random Forest bootstrap = True 
max_features = 'auto' 
n_estimators = 800 
max_depth = 5 
min_samples_split = 5 
min_samples_leaf = 1 criterion = 'entropy', 
class_weight = 'balanced' 
random_state = 42 

Support Vector Machine (Pearson VII Universal 
Function Kernel) 

C = 1, 
decision_function_shape = 'ovr',  
probability = True, class_weight = 'balanced' 

Support Vector Machine (Radial Basis Function 
Kernel) 

C = 1, 
gamma = 0.001 
decision_function_shape = 'ovr',  
probability = True, class_weight = 'balanced' 

XGBoost booster='gbtree',  
n_estimators=100 

K-nearest neighbor n_neighbors = 1,  
p = 2, 
weights = 'distance' 

Gaussian Process kernel=1**2 * RBF(length_scale=1) 

 

* see explanations of the hyper-parameters in Scikit-learn and XGBoost documents [ref] 
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Figure S10. Cross-validation accuracies of different machine learning models on the dataset 

collected after each iteration of AL. 

 

 
Figure S11. Classification errors (one minus cross-validation accuracies) of artificial neural 
networks with different numbers of hidden units. The red dashed line represents the mean value of 
the classification errors.  
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Figure S12. a) Projections of the reaction-composition space using t-SNE for initial sampling + 
five AL iterations and 24 unseen reactions (labeled by experimental outcomes) selected by the KS 
algorithm. b) Confusion matrix of experimental outcomes vs. predicted outcomes. c)  Projections 
of the reaction pool labeled with predicted outcomes. 
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Figure S13. Projections of the 6D synthetic dataset (50,000 data points) using t-SNE. 

 

 
Figure S14. (a) Prediction confidence and average uncertainty of the RF model on the synthetic 
dataset in each iteration of AL. (b) Prediction accuracy (on the whole synthetic dataset) of the RF 
model in each iteration of AL. 
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Figure S15. 2D projection plots of the “crystals only” dataset using axis from [Pb], [morph], 
[FAH], and [H2O]. 
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Figure S16a. Distributions of logistic regression (LG) slopes for a) [morph], b) [Pb], c) [FAH], 
and d) [H2O] when treating “yellow phase” class as “1”. 

 

 
Figure S16b. Distributions of logistic regression (LG) slopes for a) [morph], b) [Pb], c) [FAH], 
and d) [H2O] when treating “red phase” class as “1”. 
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Figure S17. Thermogravimetric analysis of the yellow phase and red phase. 
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