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A high-order spectral deferred correction strategy for low Mach
number flow with complex chemistry

Will E. Paznera∗, Andrew Nonakab, John B. Bellb, Marcus S. Dayb and
Michael L. Minionb

aDivision of Applied Mathematics, Brown University, Providence, USA; bCenter for Computational
Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, USA

(Received 14 October 2015; accepted 26 January 2016)

We present a fourth-order finite-volume algorithm in space and time for low Mach
number reacting flow with detailed kinetics and transport. Our temporal integration
scheme is based on a Multi-Implicit Spectral Deferred Correction (MISDC) strategy that
iteratively couples advection, diffusion, and reactions evolving subject to a constraint.
Our new approach overcomes a stability limitation of our previous second-order method
encountered when trying to incorporate higher-order polynomial representations of the
solution in time to increase accuracy. We have developed a new iterative scheme that
naturally fits within our MISDC framework and allows us to conserve mass and energy
while simultaneously satisfying the equation of state. We analyse the conditions for
which the iterative schemes are guaranteed to converge to the fixed point solution. We
present numerical examples illustrating the performance of the new method on premixed
hydrogen, methane, and dimethyl ether flames.

Keywords: low Mach number combustion; spectral deferred corrections; fourth-order
spatiotemporal discretisations; flame simulations; detailed chemistry and kinetics

1. Introduction

A broad range of problems in fluid mechanics are characterised by dynamics with low Mach
number. In such systems, acoustic propagation typically has negligible impact on the system
state. Low Mach number models exploit this separation between flow and acoustic dynamics
by analytically removing sound waves from the system entirely. In the approximation,
pressure formally becomes an elliptic field with global coupling, and the set of conservation
laws takes the form of a coupled differential–algebraic system. Numerically, the low Mach
number model can be time-advanced on the scales of (slow) advection processes. However,
such schemes can be quite complex to implement for multidimensional, time-dependent
flows. Moreover, there are many low Mach number systems where the chemical and diffusive
dynamics can operate on timescales that can be much faster than the advection; practically,
the realisable timestep becomes limited by the extent to which these processes are properly
coupled during time-advance. In this paper, we develop a highly efficient low Mach number
integration strategy that is fourth order in space and time, while simultaneously respecting
the nonlinear coupling of all the processes. We compare this new algorithm to earlier
versions that are both low order and less efficiently coupled in order to demonstrate the
significant improvements afforded by the new scheme.

∗Corresponding author. Email: will_pazner@brown.edu; Tel: +1 (401) 863-2115

C© 2016 Informa UK Limited, trading as Taylor & Francis Group
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2 W.E. Pazner et al.

For smooth test problems, characterising the convergence behaviour of a numerical
integration algorithm is straightforward; with increasing resolution, higher-order spatial
and temporal discretisation methods will eventually provide more accurate solutions than
lower-order methods. For more complex problems, however, we cannot a priori assume that
the minimum resolution falls within the asymptotic range of the methods, and therefore
that higher-order methods are always more efficient. In simple inert flow applications,
we can appeal to Reynolds numbers and Kolmogorov scales to develop absolute accuracy
requirements. As an example of this approach, it was demonstrated in [1] that for low-speed
turbulent flows high-order temporal and spatial discretisations outperformed comparable
second-order schemes, reducing by a factor of two in each dimension the size of the
computational mesh needed to resolve turbulent flows at a given Reynolds number. For
reacting low Mach number flows, resolution requirements are additionally determined by
the need to resolve the chemical dynamics accurately, and to capture the coupling between
chemistry and the transport processes in the fluid.

In [2] a second-order method for reacting low Mach number flow with detailed kinetics
and transport is introduced. The low Mach number model is a set of differential algebraic
equations representing coupled advection, diffusion, and reaction processes that evolve
subject to a constraint. One approach to solving such a system is to recast the equation
of state as a constraint on the velocity divergence that determines the evolution of the
thermodynamic state. The numerical method in [2] uses a finite-volume discretisation in
space and a timestepping method based on a variant of Spectral Deferred Corrections
(SDC) [3]. SDC is an iterative method for ordinary differential equations that has the
appealing feature that variants of arbitrarily high order can be constructed from relatively
simple lower-order methods. In [4], a Semi-Implicit variant method (SISDC) is introduced
for Ordinary Differential Equations (ODEs) with both stiff and non-stiff processes, such as
advection–diffusion systems. The correction equations for the non-stiff terms are discretised
explicitly, whereas the stiff corrections are treated implicitly. Bourlioux, Layton, and Minion
[5,6] introduce a Multi-Implicit SDC approach (MISDC) for Partial Differential Equations
(PDEs) with advection, diffusion, and reaction processes. The advection correction equation
is treated explicitly, while the diffusion and reaction corrections are treated implicitly and
independently.

In [2], a modified MISDC method is employed where the reaction correction equation
is solved with a separate ODE solver in a manner similar to the classic defect correction
schemes [7]. This allows the advection, diffusion, and reaction terms to be decoupled in the
timestep while retaining second-order accuracy in time. In addition, the tighter coupling of
the terms in the deferred corrections, as compared to classical Strang splitting, results in
a reduction of computational effort in the reaction solutions because of smaller artificially
stiff transients caused by operator splitting. In this paper, we extend the results in [2] to
construct a method which is fourth order in space and time for realistic test problems in
one dimension. The algorithm is closer in spirit to the original MISDC [5,6] approach, and
we present an analysis demonstrating why the approach in [2] is ill-suited for extension to
higher orders in time.

In this paper we also develop a new technique where we evolve mass and energy
using conservation equations while satisfying the equation of state. Our approach is based
on previous ‘volume discrepancy’ approaches [2,8,9] where the divergence constraint is
modified to drive the state variables toward equilibrium with the ambient pressure, but now
leverages the iterative nature of our SDC algorithm to essentially eliminate thermodynamic
drift.
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Combustion Theory and Modelling 3

The rest of this paper is organised as follows. In Section 2 we review the low Mach
number equation set. In Section 3 we review the MISDC methodology, present detailed
convergence analysis of a fourth-order variant, and discuss the implementation of this
method for a model problem. In Section 4 we present our new volume discrepancy ap-
proach, and describe the spatial and temporal discretisation for the full low Mach number
reacting flow equations. In Section 5 we present results for our model problem as well as
several laminar flames with detailed kinetics and transport. We summarise and conclude in
Section .

2. Low Mach number equation set

In the low Mach number regime, the characteristic fluid velocity is small compared to
the sound speed (typically the Mach number is M = U/c ∼ O(0.1) or smaller), and the
effect of acoustic wave propagation is unimportant in the overall dynamics of the system.
In a low Mach number numerical method, acoustic wave propagation is mathematically
removed from the equations of motion, allowing for a timestep based on an advective CFL
condition,

max
i

|Ui |�t

�x
≤ σ ; 0 ≤ σ ≤ 1, (1)

whereσ is the advective CFL number, the maximum is taken over all grid cells, �x is the
grid spacing, and Ui is the fluid velocity in cell i. Thus, this approach leads to a ∼1/M
increase in the allowable timestep over an explicit compressible approach. Note that a
low Mach number method does not force the Mach number to remain small, but rather is
suitable for flows in this regime.

In this paper, we use the low Mach number equation set from [2,9], which is based
on the model for low Mach number combustion introduced by Rehm and Baum [10] and
rigorously derived from an asymptotic analysis by Majda and Sethian [11]. We consider
a gaseous mixture ignoring Soret and Dufour effects, and assume a mixture model for
species diffusion [12,13]. The resulting equations are a set of partial differential equa-
tions representing coupled advection, diffusion, and reaction processes that are closed by
an equation of state. The equation of state takes the form of a divergence constraint on
the velocity, which is derived by differentiating the equation of state in the Lagrangian
frame of the moving fluid and forcing the thermodynamic pressure to remain constant.
Physically, this manifests itself as instantaneous acoustic equilibration to the constant ther-
modynamic pressure p0 (we only consider open containers in non-gravitationally stratified
environments). In the model, sound waves are analytically eliminated from our system
while retaining local compressibility effects due to reactions, mass diffusion, and thermal
diffusion.

Using the notation in [2,9], the evolution equations for the thermodynamic variables,
(ρ, Y, h), are instantiations of mass and energy conservation:

∂(ρYj )

∂t
= −∇ · (UρYj ) + ∇ · ρDj∇Yj + ω̇j , (2)

∂(ρh)

∂t
= −∇ · (Uρh) + ∇ · λ

cp

∇h +
∑

j

∇ · hj

(
ρDj − λ

cp

)
∇Yj , (3)
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4 W.E. Pazner et al.

where ρ is the density, Y = (Y1, . . ., YN) are the species mass fractions, Dj (Y, T ) are
the species mixture-averaged diffusion coefficients, T is the temperature, ω̇j (Y, T ) is the
production rate for ρYj due to chemical reactions, h = ∑jYjhj is the enthalpy with hj =
hj(T) the enthalpy of species j, λ(Y, T) is the thermal conductivity, and cp =∑j Yj dhj/dT

is the specific heat at constant pressure. Our definition of enthalpy includes the standard
enthalpy of formation, so there is no net change to h due to reactions. These evolution
equations are closed by an equation of state, which states that the thermodynamic pressure
remains constant,

p0 = ρRT
∑

j

Yj

Wj

, (4)

where R is the universal gas constant and Wj is the molecular weight of species j. A
property of multicomponent diffusive transport is that the species diffusion fluxes must
sum to zero in order to conserve total mass. For mixture models such as the one considered
here, �j ≡ ρDj∇Yj , and that property is not satisfied in general. Our approach is to identify
a dominant species, in this case N2, and define �N2 = −∑j �=N2

�j . Summing the species
equations and noting that

∑
jYj = 1 and

∑
j ω̇j = 0, we see that (2) implies the continuity

equation,

∂ρ

∂t
= −∇ · (Uρ). (5)

Equations (2), (3), and (4) form the system that we would like to solve. Rather than
directly attacking this system of constrained differential algebraic equations, we use a
standard approach of recasting the equation of state as a divergence constraint on the
velocity field. The constraint is derived by taking the Lagrangian derivative of Equation (4),
forcing p0 to remain constant, and substituting in the evolution equations for ρ, Y, and T
as described in [8,9]. This leads to the constraint

∇ · U = 1

ρcpT

⎛⎝∇ · λ∇T +
∑

j

�j · ∇hj

⎞⎠
+ 1

ρ

∑
j

W

Wj

∇ · �j + 1

ρ

∑
j

(
W

Wj

− hj

cpT

)
ω̇j ≡ S, (6)

where W = (
∑

jYj/Wj)−1 is the mixture-averaged molecular weight. This constraint is a
linearised approximation to the velocity field required to hold the thermodynamic pressure
equal to p0 subject to local compressibility effects due to reaction heating, compositional
changes, and thermal diffusion.

In two and three dimensions, there is an evolution equation for velocity. In second-
order schemes for incompressible and low Mach number flow, the velocity field is evolved
subject to this evolution equation, and later projected onto the vector space that satisfies
the divergence constraint. In one dimension, the velocity field is uniquely specified by
(6) and the inflow boundary condition, and therefore no projection is necessary. We are
currently exploring ways to extend the higher-order methodologies in this paper to multiple
dimensions subject to the divergence constraint.
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Combustion Theory and Modelling 5

3. Multi-implicit SDC

Here we review the SDC and MISDC methodology. SDC methods for ODEs are introduced
in Dutt, Greengard, and Rokhlin [3]. The basic idea of SDC is to write the solution of an
ODE

φt (t) = F (t, φ(t)), t ∈ [tn, tn + �t]; (7)

φ(tn) = φn, (8)

as the associated integral equation

φ(t) = φn +
∫ t

tn
F (τ, φ(τ )) dτ. (9)

We will suppress explicit dependence of F and φ on τ for notational simplicity. Given an
approximation φ(k)(t) to φ(t), we use an update equation to improve the solution iteratively:

φ(k+1)(t) = φn +
∫ t

tn

[
F (φ(k+1)) − F (φ(k))

]
dτ +
∫ t

tn
F (φ(k)) dτ, (10)

where a low-order discretisation (e.g. forward or backward Euler) is used to approximate
the first integral and a higher-order quadrature is used to approximate the second integral.
By doing so, each iteration in k improves the overall order of accuracy of the approximation
by one, up to the order of accuracy of the underlying quadrature rule used to evaluate the
second integral.

For a given timestep, we subdivide the interval [tn, tn + �t] into M subintervals, with
M + 1 temporal nodes given by

tn = tn,0 < tn,1 < · · · < tn,M = tn + �t ≡ tn+1.

For notational simplicity we will write tm = tn, m. We choose the temporal nodes tm to be
the appropriate Gauss–Lobatto quadrature points, though other choices are available [14].
We also denote the substep time interval by �tm = tm + 1 − tm. We let φm, (k) represent the
kth iterate of the solution at the mth temporal node.

Bourlioux et al. [5] and Layton and Minion [6] introduce a variant of SDC, referred to
as MISDC, in which F is decomposed into distinct processes with each treated sequentially
with an appropriate explicit or implicit temporal discretisation. An important difference
between MISDC methods and operator splitting methods such as Strang splitting is that
MISDC methods iteratively couple all physical processes together by including the effects
of each process during the integration of any particular process. This is in contrast to
Strang splitting, where each process is discretised in isolation, ignoring the effects of other
processes. Here, we write

φt = FA(φ) + FD(φ) + FR(φ) ≡ F (φ), (11)
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6 W.E. Pazner et al.

where FA, FD, and FR represent the advection, diffusion, and reaction processes, respec-
tively. In our problems of interest, diffusion and reactions operate on fast timescales com-
pared to advection. Thus, we seek an explicit treatment of advection and an implicit
treatment of reactions and diffusion.

We begin by initialising the solution at all temporal nodes to the solution at tn, i.e. φm, (0)

= φn, for all m ∈ [0, M]. We seek to compute the next iterate of the solution, φm, (k + 1), for
all m given that we know φm, (k) for all m. We do this by noting that φ0, (k) = φn for all k ∈
[0, K], and then solving for each φm + 1, (k + 1) from m = 0 to M − 1 using the following
sequence:

φ
m+1,(k+1)
A = φm,(k+1) +

∫ tm+1

tm

[
FA(φ(k+1)

A ) − FA(φ(k))
]

dt +
∫ tm+1

tm
F (φ(k)) dt, (12)

φ
m+1,(k+1)
AD = φm,(k+1) +

∫ tm+1

tm

[
FA(φ(k+1)

A ) − FA(φ(k)) + FD(φ(k+1)
AD ) − FD(φ(k))

]
dt

+
∫ tm+1

tm
F (φ(k)) dt, (13)

φm+1,(k+1) = φm,(k+1) +
∫ tm+1

tm

[
FA(φ(k+1)

A ) − FA(φ(k)) + FD(φ(k+1)
AD ) − FD(φ(k))

+FR(φ(k+1)) − FR(φ(k))
]

dt +
∫ tm+1

tm
F (φ(k)) dt.

(14)

Once φ(k + 1) is known at all temporal nodes m, the entire process can be repeated to
compute the solution at all temporal nodes for the next iteration in k. By using first-order
discretisations in time for the first integrals in (12), (13), and (14), and using a higher-order
quadrature to evaluate the second integrals, the overall accuracy of the solution for each k
iterate is increased by one, up to the order of the quadrature rule used to evaluate the second
integral over the entire timestep.

In this case, if we use forward Euler to discretise advection, and backward Euler to
discretise diffusion and reactions, we note that φ

m+1,(k+1)
A does not need to be computed

and the update consists of the following two sequential discretisations of Equations (13)
and (14):

φ
m+1,(k+1)
AD = φm,(k+1) + �tm

[
FA(φm,(k+1)) − FA(φm,(k))

+FD(φm+1,(k+1)
AD ) − FD(φm+1,(k))

]
+ Im+1

m

[
F (φ(k))

]
,

(15)

φm+1,(k+1) = φm,(k+1) + �tm
[
FA(φm,(k+1)) − FA(φm,(k))

+FD(φm+1,(k+1)
AD ) − FD(φm+1,(k))

+ FR(φm+1,(k+1)) − FR(φm+1,(k))
]+ Im+1

m

[
F (φ(k))

]
.

(16)

The second integrals in (13) and (14) have been replaced with numerical quadrature integrals
over the substep, denoted Im+1

m . We note that in [5] it was demonstrated that integration
errors can be reduced by further subdividing the M subintervals into additional nested
subintervals to treat fast-scale processes, such as diffusion and/or reactions. Here, we
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Combustion Theory and Modelling 7

choose not to further subdivide beyond the original M subintervals, so that we stay faithful
to the iterative scheme described by (15) and (16). Our results demonstrate that we can
simulate complex flames using an advective CFL of σ ∼ 0.25 without substepping diffusion
or reactions. Also, we note that for an evolution equation containing only advection (such
as density), it is sufficient to use only (12) to correct the solution iteratively, with associated
discretisation,

φm+1,(k+1) = φm,(k+1) + �tm
[
FA(φm,(k+1)) − FA(φm,(k))

]+ Im+1
m

[
F (φ(k))

]
. (17)

In [2], we developed a hybrid MISDC/classical deferred correction scheme to solve
the low Mach number equations. The departure from the MISDC formulation as originally
proposed in [5] occurred when taking the time-derivative of the reaction correction equation,
given by (14) in this paper and Equation (24) in [2], assuming that the iteratively-lagged
reaction terms cancelled, and opting to solve the ODE in Equation (25) in [2] instead
of Equation (16) in this paper. We then posited that higher-order temporal integration
could be achieved by using higher-order polynomial representations of advection and
diffusion during the reaction ODE step. In practice, we observed instability whenever
polynomials of degree greater than zero were used, so we used a piecewise constant, time-
centred representation of advection and diffusion. In Appendix A we present an analysis
of the convergence of the numerical method in [2], and demonstrate that the generalisation
to higher-order polynomial representations of advection and diffusion results in highly
unfavourable stability properties. In light of this, the MISDC approach in this paper stays
true to the MISDC approach in [5]. In the next section, we analyse the new method,
demonstrating convergence in the fourth-order case.

3.1. Convergence analysis of fourth-order MISDC

The weakly coupled set of Equations (12), (13), and (14) are chosen such that successive
iterations are intended to converge to a fixed-point solution by sending the splitting error
to zero. In order for the iterations to converge, we must clearly have∣∣φm,(k+1) − φm,(k)

∣∣→ 0 as k → ∞. (18)

In order to study this convergence condition, we consider the linear ODE

φt = aφ + dφ + rφ ≡ F (φ). (19)

The scalar quantities a, d, and r will be proxies for our treatment of advection, diffusion,
and reaction in the full low Mach number code. We can solve this differential equation
with fourth-order accuracy, according to the prescription described above. We choose three
Gauss–Lobatto nodes,

tn,0 = tn, tn,1 = tn + �t/2, tn,2 = tn+1 = tn + �t. (20)

As before, we denote tn, m = tm. The quadrature Im+1
m can then be computed by means of

integrating the interpolating quadratic, obtaining the following formulas:

I 1
0 (F ) = �t

24

(
5F
(
t0
)+ 8F

(
t1
)− F
(
t2
))

, (21)
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8 W.E. Pazner et al.

I 2
1 (F ) = �t

24

(−F
(
t0
)+ 8F

(
t1
)+ 5F

(
t2
))

. (22)

Given the solution at the beginning of a timestep, φn, we compute the approximate solution
at t = tn + �t as follows. Initialising φm, (0) = φn for all m and φ0, (k) = φn for all k, we
compute each successive iterate using Equations (15) and (16):

φ
m+1,(k+1)
AD = φm,(k+1) + �tm

[
aφm,(k+1) − aφm,(k) + dφ

m+1,(k+1)
AD − dφm+1,(k)

]
+Im+1

m

[
F (φ(k))

]
, (23)

φm+1,(k+1) = φm,(k+1) + �tm
[
aφm,(k+1) − aφm,(k) + dφ

m+1,(k+1)
AD − dφm+1,(k)

+ rφm+1,(k+1) − rφm+1,(k)
]+ Im+1

m

[
F (φ(k))

]
, (24)

at each temporal node tm. Expanding these expressions, we can write

φ2,(k+1) − φ2,(k) = c1
(
φ1,(k) − φ1,(k−1)

)+ c2
(
φ2,(k) − φ2,(k−1)

)
, (25)

where

c1 = 8�t(�t(a2 − d2 + dr − r2) + a + d + r)

3(d�t − 2)2(r�t − 2)2
, (26)

c2 = �t(−16(d+r)−a2�t+a(8−6(d+r)�t+3dr�t2)+�t(7r2+dr(26−9r�t)+d2(7+3r�t(r�t−3)))
3(d�t−2)2(r�t−2)2 . (27)

Similar expressions can be derived for the difference φ1, (k + 1) −φ1, (k). We can therefore
conclude that∣∣φ1,(k+1) − φ1,(k)

∣∣ ≤ α
∣∣φ1,(k) − φ1,(k−1)

∣∣+ β
∣∣φ2,(k) − φ2,(k−1)

∣∣ ,∣∣φ2,(k+1) − φ2,(k)
∣∣ ≤ γ
∣∣φ1,(k) − φ1,(k−1)

∣∣+ δ
∣∣φ2,(k) − φ2,(k−1)

∣∣ ,
where α, β, γ , and δ are algebraic expressions in terms of a, d, r, and �t. We see that a
sufficient condition for successive iterations to converge is the condition α, β, γ , δ < 1. In
other words, we define

θ (a, d, r,�t) = max{α, β, γ, δ},

and require θ < 1.
It is possible to compare the sets of parameters a, d, r, and �t that result in θ < 1. For

the sake of comparison, we set a = 0, and plot the regions (d�t, r�t) ∈ R
2 such that θ

< 1 in Figure 1. Comparing the current method to that proposed in [2] and analysed in
Appendix A, we observe that the region of convergence of the current method encompasses
a much larger range of parameters.

The parameters a, d are chosen to represent the eigenvalues of the advection and
diffusion operators, respectively. Therefore, a can be considered to scale like 1/�x, and d
to scale like 1/�x2. We also make the ansatz of a linear CFL, i.e. �t = λ�x for some λ.
The reaction parameter, r, is independent of �x.
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Combustion Theory and Modelling 9

Figure 1. Convergence regions (d�t, r�t) ∈ R
2.

We therefore write a = ã/�x, and d = d̃/�x2, where ã and d̃ are given parameters.
A sufficient condition for the iterative scheme to converge as we send �x to zero is

lim
�x→0

θ (ã/�x, d̃/�x2, r, λ�x) < 1.

Calculating the limits explicitly, we see that

lim
�x→0

α = 1

12
, lim

�x→0
β = 1

3
,

lim
�x→0

γ = 2

3
, lim

�x→0
δ = 7

12
,

and therefore lim�x → 0θ = 2/3. We can conclude that the fourth-order MISDC method
described above is convergent in the limit as �x tends to zero. This is in contrast to the
method described in [2], for which the convergence analysis is performed in Appendix A.
We verify the fourth-order accuracy for this approach using a test problem described in
Section 5.1.

4. Numerical methodology

For the full low Mach number system we consider a one-dimensional finite volume for-
mulation with constant grid spacing �x. We describe the fourth-order MISDC temporal
integration strategy in detail in Section 4.2. We describe the fourth-order spatial discretisa-
tion in detail in Section 4.3.

4.1. A new approach for constrained evolution

A major hurdle in the development of low Mach number methodologies for complex flows
is the issue that the mass and energy fields updated with conservation equations will, in
general, fail to satisfy the equation of state. We define pEOS as the thermodynamic pressure,
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10 W.E. Pazner et al.

computed directly with the equation of state using variables updated from the conservation
equations (i.e. the right-hand side of Equation 4), and p0 as the (constant) ambient pressure.
Our approach of recasting the equation of state as a divergence constraint on the velocity
field is designed to constrain the evolution of the thermodynamic state such that pEOS

remains approximately p0. However, our formulation represents a linearisation, or tangent-
plane approximation, to the dynamics of the system. Since the equation of state is nonlinear,
a small drift between pEOS and p0 will be observed, and indeed will grow over time.

One standard approach to resolving this issue [15,16] is to evolve all the thermodynamic
variables but one (typically the energy or total density field) with conservation equations,
and then use the equation of state to compute the remaining variable so that pEOS = p0

identically. A serious disadvantage of this approach is that it fails to conserve mass, energy,
or both. In previous works [2,8,9], we introduced an alternative ‘volume discrepancy’
approach that drives pEOS toward p0 in a way that is conservative while maintaining the drift
below a few per cent. In this paper, we exploit the iterative nature of the MISDC advance
in order to develop an improved volume discrepancy correction.

Similar to our previous volume discrepancy approach, the constraint equation is mod-
ified to allow additional expansion of the fluid, accounting for the thermodynamic drift.
However, here the increment is adjusted at each MISDC iteration, allowing us to adjust
the driving terms iteratively so that the drift effectively becomes zero at the end of each
timestep. In order to construct this iteration, we return to the derivation of the velocity
constraint. First, the equation of state, p = p(ρ, T, Y), is differentiated in the Lagrangian
frame of the moving fluid,

Dp

Dt
= pρ

Dρ

Dt
+ pT

DT

Dt
+
∑

j

pYj

DYj

Dt
, (28)

where the following partial derivatives are defined:

pρ = ∂p

∂ρ

∣∣∣∣
T ,Y

, pT = ∂p

∂T

∣∣∣∣
ρ,Y

, pYj
= ∂p

∂Yj

∣∣∣∣
ρ,T ,Yk,k �=j

. (29)

Using continuity, Dρ/Dt = −ρ∇ · U , we rewrite (28) as

∇ · U = 1

ρpρ

⎛⎝−Dp

Dt
+ pT

DT

Dt
+
∑

j

pYj

DYj

Dt

⎞⎠ . (30)

Note that Equation (30) is analytically equivalent to Equation (6) if Dp/Dt = δχ = 0.
Next, rather than setting Dp/Dt = 0, we approximate at each cell the time derivative, δχ ,
necessary to drive the drift to zero over �t, based on current estimates of the advanced
state:

δχ = 1

ρpρ

Dp

Dt
= 1

p0

(
p0 − pEOS

�t

)
. (31)

This field is initialised to zero on the first MISDC iteration. After each iteration,
Equation (31) is used to estimate a new correction (increment to δχ ) required to drive the
drift computed at that iteration to zero, and this is then used in subsequent evaluations of
Equation (30) for Dp/Dt .
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Combustion Theory and Modelling 11

The net effect of this iteration is to adjust the advection velocities such that the conser-
vative updates for mass and energy are both rigorously conservative and consistent with the
equation of state. For sufficiently resolved flows, this adjustment is small and the overall
algorithm exhibits fourth-order accuracy, as demonstrated in the examples that follow.

4.2. Temporal discretisation

In our fourth-order approach, we use M = 2 substeps (3 Gauss–Lobatto temporal nodes)
and K ≥ 4 MISDC iterations, but the steps below have been generalised for any number of
temporal nodes and MISDC iterations. The steps required to advance the solution from tn

to tn + 1 are as follows.

Set (ρh, ρY)0, (k) = (ρh, ρY)n for all k ∈ [0, K], i.e. the solution at temporal node
m = 0 is a copy of the solution at tn for all MISDC iterations.

Set (ρh, ρY)m, (0) = (ρh, ρY)n for all m ∈ [1, M], i.e. the solution for MISDC
iteration k = 0 is a copy of the solution at tn for all temporal nodes.

We use a sequence of δχ correction terms, one associated with each subinterval
denoted δχm − 1: m, (k). Each of these terms modifies the divergence constraint at
temporal node m to drive the variables to thermodynamic equilibrium in the next
MISDC iteration. We initialise δχm − 1: m, (0) = 0 for all m ∈ [1, M].

We compute face-averaged velocities at tn by integrating the constraint

∇ · Un = Sn. (32)

We set U0, (k) = Un for all k ∈ [0, K].

Next, we explicitly evaluate the right-hand sides of the species equations (2) and
enthalpy equation (3) from the k = 0 state for all m ∈ [0, M], noting that these states
are all identical at the beginning of the timestep. These terms are used to evaluate
Im+1
m [F (φ(k))] in the steps below during the first MISDC iteration.

Now we loop over MISDC iterations (in k) over each temporal node (in m):

for k = 0 to K − 1 do
for m = 0 to M − 1 do

If m > 0, correct to the divergence constraint to account for the fact that the
pEOS does not match p0 in the most recent solution,

δχm−1:m,(k+1) = δχm−1:m,(k) + 2

p0

(
p

m,(k+1)
EOS − p0

�tm−1

)
, (33)

where, again, pEOS is a function of ρ, Y, T given by the right-hand side of
Equation (4). Note that the factor 2 in (33) reflects that our correction is
applied piecewise linearly over the time interval from tm to tm + 1, with a zero
increment of δχ at tm. We then compute face-averaged velocities, Um, (k + 1),
by integrating the constraint,

∇ · Um,(k+1) = Sm,(k+1) + δχm−1:m,(k+1). (34)
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12 W.E. Pazner et al.

(For all m) Compute ρm + 1, (k + 1) by discretising the continuity equation (5)
with the MISDC correction equation for PDEs containing only advection
terms (17),

ρm+1,(k+1) = ρm,(k+1) + �tm
[−∇ · (Uρ)m,(k+1) + ∇ · (Uρ)m,(k)

]
+ Im+1

m

[−∇ · (Uρ)(k)
]
. (35)

Compute updated mass fractions, Y
m+1,(k+1)
j,AD , by discretising the species equa-

tions (2) with the MISDC advection–diffusion correction equation (15). This
amounts to solving the implicit system,

ρm+1,(k+1)Y
m+1,(k+1)
j,AD

= (ρYj )m,(k+1) + �tm
[

− ∇ · (UρYj )m,(k+1) + ∇ · (UρYj )m,(k)

+∇ · ρm+1,(k)Dm+1,(k)
j ∇Y

m+1,(k+1)
j,AD − ∇ · �m+1,(k)

j

]
+ Im+1

m

[−∇ · (UρYj ) + ∇ · �j + ω̇
](k)

. (36)

Define �
m+1,(k+1)
j,AD = ρm+1,(k)Dm+1,(k)

j ∇Y
m+1,(k+1)
j,AD .

Compute the updated enthalpy, hm+1,(k+1)
AD , by discretising the enthalpy equation

(3) with the MISDC advection–diffusion correction equation (15). We remark
that the differential diffusion terms are treated explicitly in order to avoid a
more complicated linear system. This amounts to solving the implicit system,

ρm+1,(k+1)h
m+1,(k+1)
AD = (ρh)m,(k+1)

+�tm

[
− ∇ · (Uρh)m,(k+1) + ∇ · (Uρh)m,(k)

+∇ · λm+1,(k)

c
m+1,(k)
p

∇h
m+1,(k+1)
AD − ∇ · λm+1,(k)

c
m+1,(k)
p

∇hm+1,(k)

+
∑

j

∇ · h
m,(k+1)
j

(
�

m,(k+1)
j − λm,(k+1)

c
m,(k+1)
p

∇Y
m,(k+1)
j

)

−
∑

j

∇ · h
m,(k)
j

(
�

m,(k)
j − λm,(k)

c
m,(k)
p

∇Y
m,(k)
j

)]

+ Im+1
m

⎡⎣−∇ · (Uρh) + ∇ · λ

cp

∇h +
∑

j

∇ · hj

(
�j − λ

cp

∇Yj

)⎤⎦(k)

.(37)

Note that since there is no contribution due to reactions in the enthalpy update,
we can say

(ρh)m+1,(k+1) = ρm+1,(k+1)h
m+1,(k+1)
AD . (38)
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Combustion Theory and Modelling 13

Next, we solve the reaction correction equation for (ρYj)m + 1, (k + 1) using the
MISDC advection–diffusion–reaction correction equation (16),

(ρYj )m+1,(k+1) = (ρYj )m,(k+1)

+�tm
[

− ∇ · (UρYj )m,(k+1) − ∇ · (UρYj )m,(k)

+∇ · �
m+1,(k+1)
j,AD − ∇ · �m+1,(k)

j

+ ω̇m+1,(k+1) − ω̇m+1,(k)
]

+ Im+1
m

[−∇ · (UρYj ) + ∇ · �j + ω̇
](k)

. (39)

See Section 4.2.1 for our solution technique for these nonlinear implicit equa-
tions.

end for (end loop over temporal nodes m)

Since in general, pEOS at the final temporal node (the ‘M, (k + 1)’ state) is not in
thermodynamic equilibrium with p0, we correct the divergence constraint. We do
this by incrementing δχM − 1: M, (k + 1) using

δχM−1:M,(k+1) = δχM−1:M,(k) + 2

p0

(
p

M,(k+1)
EOS − p0

�tM−1

)
. (40)

Compute UM, (k + 1) by integrating the constraint,

∇ · UM,(k+1) = SM,(k+1) + δχM−1:M,(k+1), (41)

and evaluate the right-hand sides of the species equations (2) and enthalpy equation
(3) from the ‘M, (k + 1)’ state.

end for (end loop over MISDC iterates k)

Advance the solution by setting (ρh, ρY)n + 1 = (ρh, ρY)M, (K).

4.2.1. Solving the reaction correction equations

To solve the reaction correction equations (39) for (ρYm)m + 1, (k + 1), we use Newton’s
method for this implicit system. Note that since there is no reaction contribution to the
enthalpy equation, (ρh)m + 1, (k + 1) is already known from (38). Likewise, the density
ρm + 1, (k + 1) is known from Equation (35). The production rates are a function of Y and h.
Writing out the mass fractions Y ≡ (Y1, . . ., YN), and the production rates ω̇ ≡ (ω̇1, . . . , ω̇N ),
Equation (39) takes the form of a nonlinear backward Euler-type equation for Y:

ρm+1,(k+1)Y − �tmω̇(Y) = b. (42)

We use an analytic Jacobian [17], using the solution from the previous MISDC iterate as an
initial guess. The Newton solution has been observed to converge within tolerance to within
only a few iterations for all k, and in subsequent MISDC iterations the initial guess improves
with each iteration and even fewer Newton iterations are needed. We iterate until the max
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14 W.E. Pazner et al.

norm of the residual is less than 10−14. In our testing, using an even tighter tolerance of
10−16 did not affect the convergence rates in the significant figures we report below.

4.3. Spatial discretisation

We use a finite volume discretisation with n cells, indexed as i = (0, . . ., n − 1). We
distinguish between three types of quantities. A cell-averaged quantity is denoted by angle
brackets,

〈φ〉i ≡ 1

�x

∫ xi+1/2

xi−1/2

φ(x) dx.

A cell-centred quantity is denoted by a hat, φ̂i ≡ φ(xi), and a face-averaged quantity is
denoted by a tilde, φ̃i+1/2 ≡ φ(xi+1/2). Note that, in one dimension, face-averages are
simply point values at the endpoints of a cell.

To convert between these values, as well as to compute fourth-order gradients, products,
and quotients, we rely on standard operations found in the finite volume literature [1,18–20].
The fourth-order formulas to convert from cell-averaged to cell-centred, and vice versa, are

φ̂i = 〈φ〉i − 1

24
(〈φ〉i−1 − 2〈φ〉i + 〈φ〉i+1), (43)

〈φ〉i = φ̂i + 1

24
(φ̂i−1 − 2φ̂i + φ̂i+1). (44)

We can compute a fourth-order approximation of a quantity at cell faces given either
cell-centred values or cell-averaged values using the following stencils:

φ̃i+1/2 = −〈φ〉i−1 + 7〈φ〉i + 7〈φ〉i+1 − 〈φ〉i+2

12
, (45)

φ̃i+1/2 = −φ̂i−1 + 9φ̂i + 9φ̂i+1 − φ̂i+2

16
. (46)

The fourth-order approximation to the gradient at a cell face is

∇̃φi+1/2 = 〈φ〉i−1 − 15〈φ〉i + 15〈φ〉i+1 − 〈φ〉i+2

12�x
. (47)

Given cell-averaged quantities 〈φ〉i and 〈ψ〉i, we can compute a fourth-order approximation
to the cell-average of the product by

〈φψ〉i = 〈φ〉i〈ψ〉i + �x2

12
φG

i ψG
i + O(�x4), (48)

where φG
i and ψG

i are given by the gradient formula, e.g.

φG
i = 5〈φ〉i−2 − 34〈φ〉i−1 + 34〈φ〉i+1 − 5〈φ〉i+2

48�x
. (49)
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Combustion Theory and Modelling 15

Similarly, we can compute a fourth-order approximation to the cell-average of a quotient
by

〈
φ

ψ

〉
i

= 〈φ〉i
〈ψ〉i + �x2

12

(
〈φ〉i
(
ψG

i

)2
〈ψ〉3

i

− φG
i ψG

i

〈ψ〉2
j

)
+ O(�x4). (50)

At inflow and outflow, the strategy is to use the boundary condition and four interior data
values to extrapolate two ghost cell values to fourth-order accuracy, allowing us to use these
same stencils. At inflow, we have the Dirichlet value at the face, φb. Given cell-averaged
data, the ghost cell-averaged values are

〈φ〉−1 = 60φb − 77〈φ〉0 + 43〈φ〉1 − 17〈φ〉2 + 3〈φ〉3

12
(51)

〈φ〉−2 = 300φb − 505〈φ〉0 + 335〈φ〉1 − 145〈φ〉2 + 27〈φ〉3

12
. (52)

Given cell-centred data, the ghost cell-centred values are

φ̂−1 = 128φb − 140φ̂0 + 70φ̂1 − 28φ̂2 + 5φ̂3

35
(53)

φ̂−2 = 128φb − 210φ̂0 + 140φ̂1 − 63φ̂2 + 12φ̂3

7
. (54)

At outflow, we have a homogeneous Neumann condition. Given cell-averaged data, the
ghost cell-averaged values are

〈φ〉n = 5〈φ〉n−1 + 9〈φ〉n−2 − 5〈φ〉n−3 + 〈φ〉n−4

10
(55)

〈φ〉n+1 = −15〈φ〉n−1 + 29〈φ〉n−2 − 15〈φ〉n−3 + 3〈φ〉n−4

2
. (56)

Given cell-centred data, the ghost cell-centred values are

φ̂n = 17φ̂n−1 + 9φ̂n−2 − 5φ̂n−3 + φ̂n−4

22
(57)

φ̂n+1 = −135φ̂n−1 + 265φ̂n−2 − 135φ̂n−3 + 27φ̂n−4

22
. (58)

To compute the advection terms, we use the divergence theorem,

〈∇ · (Uφ)〉i = Ũi+1/2φ̃i+1/2 − Ũi−1/2φ̃i−1/2

�x
, (59)

where φ̃ on faces is computed using formula (45). We use the inflow boundary condition
and integrate the divergence constraint to obtain the velocity,

Ũi+1/2 − Ũi−1/2 = 〈S + δχ〉i�x. (60)
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16 W.E. Pazner et al.

Note that the terms comprising S + δχ are initially computed at cell centres, and then
converted to a cell-average using formula (43).

The diffusion operators from Equations (2) and (3) are ∇ · ρDj∇Yj and ∇ · (λ/cp)∇h.
The implicit linear solution for these operators takes the general form

ρφ − ∇ · D∇φ = b,

where D represents the diffusion coefficient. The finite volume discretisation of this solution
can be written

〈ρφ〉 − 〈∇ · D∇φ〉 = 〈b〉. (61)

Equation (61) can be framed as a linear solution for the cell-average 〈φ〉 as follows. The
first term on the left-hand side is the cell-average of the product of ρ and φ, which we
compute using the product rule (48). The second term is computed as

〈∇ · D∇φ〉 = D̃i+1/2∇̃φi+1/2 − D̃i−1/2∇̃φi−1/2

�x
. (62)

The gradient of φ on faces is computed using formula (47). The diffusion coefficient D
must be computed at faces. We use cell-centred ρ̂, ρ̂h, and ρ̂Yj in order to compute cell-
centred diffusion coefficients D̂j , λ̂, and ĉp. These cell-centred values are then averaged to
faces using (46). Near the boundary, the entries of the matrix must be modified to take into
account the ghost cells, whose values are defined by Equations (51), (52), (55) and (56).
At the inflow boundary, since the inflow value is inhomogeneous, the right-hand side, 〈b〉,
must also be modified to respect the Dirichlet condition. The resulting matrix is banded,
and is pentadiagonal, except in the first and last rows, which include an additional term.
After solving the banded linear system for 〈φ〉, we use the product rule to compute the
solution 〈ρφ〉.

Concerning the the backward-Euler equation for reactions (39), we convert the right-
hand side to cell-centred values using Equation (43). We then perform the nonlinear back-
ward Euler solution detailed in Section 4.2.1. From this solution, we can then obtain the
cell-centred production rates, ̂̇ωj . The production rates are then converted to cell-averaged
values, 〈ω̇j 〉, using Equation (44). This term is then substituted into Equation (39) in order
to update 〈ρYj〉 using a cell-averaged right-hand side.

5. Results

In this section, we present results both for a test problem using the algorithm in Section
3.1 and for the one-dimensional low Mach number combustion algorithm, simulating three
types of premixed laminar flames with detailed kinetics and transport (hydrogen, methane,
and dimethyl ether). We verify fourth-order accuracy in all of these cases.

In the following tests, we perform the simulations at various resolutions, decreasing
�x by a factor of two, while holding the advective CFL number constant. We estimate the
error by comparing the solution at resolution �x with the solution at resolution �x/2. For
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Combustion Theory and Modelling 17

a simulation at a coarse resolution with nc cells, we compute the L1 error using

L1
nc

= 1

nc

nc∑
i=1

∣∣∣φc
i − φ

f →c
i

∣∣∣ , (63)

where φc is the coarse solution and φf → c is a coarsened version of the solution with twice
the resolution (nf = 2nc cells). For the finite-difference test PDE, the coarsening is done by
direct injection, and for our finite volume flame simulations, we average the fine solution
to the coarser grid. We can then define the convergence rate by

rnc/nf = log2

(
L1

nc

L1
nf

)
. (64)

5.1. Test PDE

As a test bed for the MISDC method described in Section 3.1, we consider the initial
boundary value problem⎧⎪⎪⎨⎪⎪⎩

φt (x, t) = aφx + dφxx + rφ(φ − 1)(φ − 1/2) for (x, t) ∈ [0, 20] × [0, T ],
φ(0, t) = 1,

φ(20, t) = 0,

φ(x, 0) = φ0(x).

(65)

We choose the initial condition to be given by

φ0(x) = tanh(10 − 2x) + 1

2
. (66)

We can then solve this equation using the the method of lines. The advection term aφx is
approximated by a fourth-order finite difference operator A(φ). The diffusion term dφxx

is approximated by a fourth-order Laplacian operator, denoted D(φ). Both operators are
chosen to respect the Dirichlet boundary conditions. We denote R(φ) = rφ(φ − 1)(φ −
1/2). Thus, our PDE has the form

φt = A(φ) + D(φ) + R(φ), (67)

which is solved using the MISDC method described in Section 3.1
We begin by setting the solution for the k = 0 iterate at all temporal nodes to the solution

at tn, i.e. φm, (0) = φn for all m ∈ [0, M]. We treat the advective process explicitly, and the
diffusion and reaction processes implicitly. As noted in [5], since advection is treated
explicitly, we do not need to compute a provisional solution for advection, φ

m,(k+1)
A . At

each temporal node tm, we compute a provisional solution φ
m,(k+1)
AD by performing a sparse,

banded linear solution. This provisional solution is then used in the correction equation for
the updated solution, φm, (k + 1). In order to solve the reaction correction equation, we use
Newton’s method. The solution from the previous iterate is chosen to be the initial guess
for the Newton solver.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 1

2:
17

 1
0 

Ju
ne

 2
01

6 



18 W.E. Pazner et al.

Figure 2. Log–log plot of L1 error versus 1/�t for the test PDE (65) using three Gauss–Lobatto
nodes. Solid lines are the numerical results, and dotted lines indicate the expected convergence results.

Using the methods from Section 3.1, we obtain the expected order of accuracy, given
by min {K, Q}, where K is the number of MISDC iterations, and Q is the order of the
quadrature. Using three Gauss–Lobatto nodes, the quadrature is fourth-order accurate.
Therefore, the overall order of accuracy is equal to the number of MISDC iterations, up to
a maximum of four. We set the parameters a = −0.1, d = 1, and r = −10. We start with an
initial discretisation of n = 200 gridpoints, and set �t = �x/2. Simultaneously refining in
space and time, we obtain the results for L1 error shown in Figure 2. Each numerical test
gives the expected order of accuracy, up to fourth order.

5.2. Flame simulations

We now analyse the convergence behaviour of our scheme on a set of more complex
problems: premixed laminar flames burning hydrogen, methane, and dimethyl ether fuels
that propagate through the domain. In all cases here, the diffusive and reactive processes are
well known to be numerically ‘stiff ’ on the advection timescales used to set our numerical
timestep. Because of this, we find that eight MISDC iterations are required per timestep for
robust integration, and we demonstrate in the following section that our strategy with this
setting results in the expected convergence properties.

5.2.1. Hydrogen flame

We study the performance of the MISDC algorithm to propagate a one-dimensional pre-
mixed hydrogen flame. The simulations are based on the GRIMech-3.0 [21] model and
associated databases for thermodynamic relationships and mixture-averaged transport prop-
erties, as given in the CHEMKIN-III library [22] format. Note that we manually stripped
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Combustion Theory and Modelling 19

the carbon-containing species and associated reactions from the model, since they are ir-
relevant for the hydrogen–air case. The resulting model for hydrogen–air mixtures consists
of 9 species and 27 reactions.

The detailed structure of these flames features the prominent role of molecular and
atomic hydrogen, both of which diffuse considerably faster than the other species in the
system. This differential diffusion between species has a significant impact on steady 1D
profiles; H and H2 profiles tend to be considerably broader than the others, and this plays a
key role in the flame stabilisation.

In this configuration, an unstrained one-dimensional flame propagates into a homo-
geneous hydrogen–air mixture. A steady solution consists of thermal and species profiles
co-moving in a frame with the flame propagation. In the frame of the unburned fuel, the
steady solution propagates toward the inlet at the unstrained laminar burning speed, sL,
which is a function of the inlet state. At the chosen conditions, Y(H2: O2: N2) = (0.0107:
0.2304: 0.7589), p = 1 atm, and T = 298 K, sL = 14.9 cm-s−1. For each of our fourth-order
flame simulations, we arbitrarily set the inlet velocity to 5 cm/s. Thus, the hydrogen flame
propagates toward the inlet at 9.9 cm−s−1.

Initial flame profiles are generated for this study in two auxiliary steps. First, a steady
one-dimensional solution is computed using the PREMIX code [23]. PREMIX incorporates
a first-order difference scheme on a non-uniform grid in one dimension. The PREMIX
solution is translated into the frame of the unburned fuel, and interpolated onto a uniform
grid with 8192 cells across a 1.2 cm domain. While this solution exhibits the essential
features of the flame, it is not C2-continuous; higher-order discontinuities will pollute
subsequent convergence analysis. To resolve this issue, we use the second-order low Mach
number code from our previous work [2] to evolve the PREMIX solution for an additional
160 µs using a timestep of �t = 0.8 µs. Finally, the initial data to test our fourth-order
algorithm is generated by averaging this solution to a set of uniform meshes, using n =
128, 256, 512, and 1024 cells.

The initial data at each resolution are evolved for 1.6 ms so that the flame propagates
approximately 16 µm across the mesh at a �t corresponding to an advective CFL of σ

≈ 0.28. The resulting profiles are compared to a reference solution as discussed above.
The error and convergence results are presented in Table 1. Fourth-order convergence is

Table 1. Error and convergence rates for a premixed hydrogen flame using the fourth-order
MISDC method with an advective CFL of σ ≈ 0.28.

Variable L1
128 r128/256 L1

256 r256/512 L1
512

Y(H2) 5.91E-08 4.01 3.67E-09 3.98 2.33E-10
Y(O2) 1.10E-06 4.00 6.83E-08 4.05 4.14E-09
Y(H2O) 1.01E-06 4.01 6.25E-08 4.05 3.76E-09
Y(H) 1.17E-09 3.70 9.00E-11 3.91 5.97E-12
Y(O) 2.70E-08 3.93 1.77E-09 4.01 1.10E-10
Y(OH) 3.17E-08 4.01 1.97E-09 4.06 1.18E-10
Y(HO2) 3.56E-08 3.71 2.72E-09 3.88 1.86E-10
Y(H2O2) 1.41E-08 3.70 1.09E-09 3.84 7.58E-11
Y(N2) 1.77E-07 3.95 1.15E-08 4.07 6.85E-10
ρ 5.00E-09 4.01 3.10E-10 4.09 1.82E-11
T 1.21E-02 4.02 7.44E-04 4.05 4.48E-05
ρh 6.77E+00 3.99 4.26E-01 4.07 2.54E-02

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 1

2:
17

 1
0 

Ju
ne

 2
01

6 



20 W.E. Pazner et al.

Figure 3. Log–log plot of L1 error as a function of resolution (n is the number of cells) for the
intermediate species HO2 in a hydrogen flame using the Strang splitting code [9], second-order
MISDC algorithm [2], and the fourth-order MISDC algorithm presented in this paper. Solid lines are
the numerical results, and dotted lines give first-, second-, and fourth-order reference slopes.

observed in all variables. Note that HO2 and H2O2 have the narrowest profiles of all species,
and are therefore the most demanding to converge.

We now compare the accuracy of our new code to our previous second-order algorithm
[2] and the previous Strang splitting algorithm [9]. In Figure 3, we plot the L1 error for
the intermediate species HO2 using each algorithm. We use the problem setup described in
Section 5.2 of [2], which is the same as described above except that the timestep is 20%
larger than described above at each resolution. Note that not only is our new algorithm
fourth order, but at coarse resolution (n = 128 with a domain length of 1.2 cm) the error
in our fourth-order code is already a factor of 5 smaller than it was with our previous
second-order code. In these simulations, the Strang split algorithm is not in the asymptotic
convergence regime, and exhibits only first-order behaviour, as noted in [2].

We note that performing fewer than eight MISDC iterations in the fourth-order algorithm
causes an observed order reduction in our simulations unless we decrease the timestep size
as well. For the cases analysed when using four MISDC iterations, fourth order is realised
only when the timestep is reduced by an order of magnitude or more. This is not particularly
surprising given the disparity in timescales between the physical processes. In these cases,
we found it more efficient computationally to increase the timestep size, even though more
MISDC iterations are required per step.

Next, we examine the effectiveness of the volume discrepancy algorithm in reducing the
thermodynamic drift. We performed the exact same set of simulations described above, but
disabled the δχ volume discrepancy correction term. In Figure 4, we plot the thermodynamic
pressure, pEOS, as a function of space for the n = 128 simulation with and without the δχ

correction terms. The correction causes the pressure to stay on the equation of state to within
∼ 3 g/(cm−s2), whereas without the correction, the pressure drifts by ∼ 40,000 g/(cm-s2).
The blue temperature plot is included for reference, indicating the location and shape of
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Figure 4. A plot of the thermodynamic pressure, pEOS, as a function of space for the n = 128
simulation at the final time with and without the δχ volume discrepancy correction. The blue
temperature plot is included for reference, indicating the location and shape of the flame.

the flame. Next, in Figure 5 we show a plot of the thermodynamic drift, pEOS − p0, as a
function of space for the n = 128, 256, 512, and 1024 simulations with the δχ correction
term. The δχ correction term clearly drives the pressure drift to zero as spatial resolution
increases, as the magnitude of the drift decreases by roughly a factor of 8 as we increase
resolution by a factor of 2. For the n = 1024 simulation, the maximum value of |pEOS − p0|
is less than 0.01 g/(cm-s2).

5.2.2. Methane flame

We next study the performance of the MISDC algorithm using a one-dimensional premixed
methane flame. The simulations are based on the GRIMech-3.0 [21] model and associated
database, as given in the CHEMKIN-III library [22] format. The GRIMech-3.0 model
consists of 53 species with a 325-step chemical reaction network for premixed methane
combustion. This example is particularly challenging because of the extremely broad range
of chemical timescales, which range from 10−4 to 10−10 seconds.

Similar to the hydrogen flame, the initial conditions are obtained by interpolating from a
frame-shifted, refined steady, one-dimensional solution computed using the PREMIX code.
For this case, the inlet stream at T = 298 K and p = 1 atm has composition Y(O2: CH4: N2) =
(0.2238: 0.0392: 0.7370) so that the unstrained laminar burning speed is sL = 18.9 cm-s−1.
The PREMIX solution is interpolated onto a 1.2 cm domain with 8192 uniform cells, and
evolved with the second-order code from [2] for 80 µs with �t = 0.4 µs. The resulting
solution is averaged down to coarse uniform meshes of n = 128, 256, 512, and 1024 cells to
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Figure 5. A plot of the thermodynamic drift, | pEOS − p0|, as a function of space for the n = 128,
256, 512, and 1024 simulations with the δχ correction term.

Table 2. Error and convergence rates for a premixed methane flame using the fourth-order
MISDC method with an advective CFL of σ ≈ 0.21.

Variable L1
128 r128/256 L1

256 r256/512 L1
512

Y(CH4) 1.11E-06 4.00 6.97E-08 3.98 4.42E-09
Y(O2) 3.77E-06 3.96 2.42E-07 4.07 1.44E-08
Y(H2O) 2.30E-06 4.02 1.42E-07 4.05 8.53E-09
Y(CO2) 1.87E-06 4.02 1.15E-07 4.07 6.87E-09
Y(CH3) 3.11E-08 2.48 5.59E-09 3.75 4.16E-10
Y(CH2(S)) 8.01E-11 4.14 4.54E-12 3.85 3.15E-13
Y(O) 1.05E-07 4.08 6.20E-09 3.90 4.16E-10
Y(H) 3.48E-09 3.83 2.45E-10 3.81 1.75E-11
Y(N2) 3.58E-07 3.74 2.68E-08 4.00 1.67E-09
ρ 1.25E-08 4.03 7.64E-10 4.05 4.61E-11
T 3.52E-02 4.01 2.18E-03 4.06 1.31E-04
ρh 4.09E+01 3.97 2.60E+00 4.00 1.62E-01

provide the initial conditions for testing the fourth-order algorithm. We evolve the system
for 800 µs to allow the solution to propagate ∼ 111 µm across the mesh with σ ≈ 0.21.
The error and convergence results for the primary reactants, products, and key intermediate
species, as well as the remaining thermodynamic variables, are presented in Table 2. We see
fourth-order convergence in all variables, noting that for Y(CH3) the profile is extremely
thin so that higher resolution is required to reach the asymptotic regime.
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Table 3. Error and convergence rates for a dimethyl ether flame using the fourth-order MISDC
method with an advective CFL of σ ≈ 0.25.

Variable L1
128 r128/256 L1

256 r256/512 L1
512

Y(CH3OCH3) 2.29E-06 3.83 1.62E-07 3.93 1.06E-08
Y(O2) 2.99E-06 3.63 2.42E-07 4.02 1.49E-08
Y(CO2) 2.51E-06 3.83 1.76E-07 4.04 1.07E-08
Y(H2O) 1.62E-06 3.51 1.42E-07 4.01 8.85E-09
Y(CH3OCH2O2) 1.55E-10 4.51 6.76E-12 3.88 4.61E-13
Y(OH) 3.24E-07 3.80 2.32E-08 4.02 1.43E-09
Y(HO2) 1.46E-07 3.80 1.05E-08 3.95 6.77E-10
Y(O) 1.70E-07 3.55 1.46E-08 3.92 9.66E-10
Y(H) 8.35E-09 3.68 6.52E-10 3.96 4.20E-11
Y(N2) 1.09E-06 3.76 8.01E-08 3.93 5.25E-09
ρ 9.44E-09 3.67 7.42E-10 4.02 4.58E-11
T 2.54E-02 3.59 2.11E-03 4.01 1.31E-04
ρh 5.89E+01 3.83 4.15E+00 4.02 2.56E-01

5.2.3. Dimethyl ether flame

Finally, we present a one-dimensional simulation of a premixed flame using a 39-species,
175-reaction dimethyl ether (DME) chemistry mechanism [24]. The DME mechanism
used in this test is extremely stiff. It is quite challenging to capture the nonlinear coupling
between diffusion and reaction chemistry, while evolving the system on the much slower
advection scales. The inlet stream at T = 298 K has composition, Y(CH3OCH3: O2: N2)
= (0.0726: 0.2160: 0.7114), and p = 1 atm; the unstrained laminar burning speed is sL =
24.9 cm-s−1. The initial PREMIX-computed profiles are interpolated onto a 0.6 cm domain
with 8192 uniform cells and evolved for 16 µs using the second-order algorithm from [2] at
�t = 0.08 µs. The resulting solution is averaged onto uniform grids of n = 128, 256, 512,
and 1024 cells to provide initial data for testing our fourth-order algorithm. We evolve the
system for 320 µs to allow the solution to propagate 64 µm across the domain at σ ≈ 0.25.
The error and convergence results for the primary reactants, products, and key intermediate
species [24], as well as the remaining thermodynamic variables, are presented in Table 3.
We see fourth-order convergence in all variables.

6. Conclusions and future work

We have developed a fourth-order finite-volume algorithm for low Mach number reacting
flow with detailed kinetics and transport. The approach iteratively couples advection, dif-
fusion, and reaction processes using efficient numerical methods for each step. The method
exhibits much greater accuracy, even at coarse resolution, than our previous second-order
deferred correction strategy [2] and Strang splitting algorithms [9]. We have incorporated
a volume discrepancy scheme that allows us to conserve mass and enthalpy simultaneously
while satisfying the equation of state to a high degree of accuracy. The volume discrepancy
scheme is iterative, and naturally fits within our MISDC framework with negligible com-
putational cost. We have discussed an instability with our previous development path that
did not allow the method to extend to higher order and demonstrated that our approach is
stable and convergent for a much broader range of parameters.

As discussed in Section 5 ‘Results’, a key parameter in our new scheme is the number
of SDC iterations taken on each timestep. Formally, the algorithm requires four iterations
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24 W.E. Pazner et al.

to couple together all processes and achieve fourth-order convergence behaviour. However,
because our difficult demonstration problems feature cases with relatively stiff diffusion and
reaction processes, the inter-process coupling at the advection timescale was not sufficiently
accurate to achieve the design rates. There were at least two remedies to improve the
coupling: reduce the timestep or increase the number of iterations per step – both of which
make the algorithm more costly in different ways. By trial and error, we found that eight
iterations per step was sufficient to achieve fourth-order accuracy for all cases presented. It
is likely that an adaptive procedure can be developed to optimise this choice for the general
case.

The long-term goal of this effort is to extend the method described here to multidi-
mensional, adaptive mesh refinement (AMR) simulations. One issue concerning this goal
is extending the projection method formulation to multiple dimensions, where the velocity
field is no longer uniquely specified by the boundary conditions and the thermodynamic
state. Previous high-order SDC algorithms for incompressible flows (e.g. [1,18]) have been
based on a gauge variable formulation which does not immediately extend to more gen-
eral low Mach number models. One possible path forward is to utilise finite volume Stokes
solvers to allow us to solve the coupled viscous/projection step to arbitrary spatial accuracy,
and incorporate this into a method of lines approach to allow for higher-order temporal
integration. Some work has already been done on efficient projection-preconditioned finite
volume Stokes solvers [25], which fit well in our SDC based algorithms. We would also
like to implement an SDC based AMR algorithm that subcycles in time as in multilevel
SDC methods [26]. Finally, including stratification in our low Mach number reacting flow
models will allow them to be used in atmospheric [27] and astrophysical [28] simulations.
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Appendix A. Convergence analysis of the previous method

Here we examine the convergence properties of MISDC iterations of the method described in [2]. As
in Section 3.1, we consider the linear ODE

φt = aφ + dφ + rφ ≡ F (φ). (A1)

For simplicity we will consider only two temporal nodes, tn, 0 = tn and tn, 1 = tn + 1 = tn + �t.
The corresponding Gauss–Lobatto quadrature rule in this case is the trapezoidal rule. We compute a
provisional solution using the diffusion correction equation using the implicit formula

φ
1,(k+1)
AD = φn + �tm

[
dφ

1,(k+1)
AD − dφ1,(k)

]
+ I
[
(a + d)φ(k)

]+ I
(k)
R . (A2)

The term I
(k)
R is equal to the integral of the reaction term. The reaction correction equation is

differentiated to obtain the ODE

φ
(k+1)
t (t) = rφ(k+1)(t) + dφ

1,(k+1)
AD − dφ1,(k) + A(φ(k), t) + D(φ(k), t). (A3)

Here A and D are polynomials representing the advection and diffusion contributions. We require that
the integrals of A and D are equal to the numerical quadrature. In [2], A and D are chosen to be the
averages at times tn and tn + �t. In order for this method to generalise to higher order, we would
need to represent A and D by higher-degree polynomials. For instance, we can take A and D to be the
linear interpolants given by

A(φ(k), t) = (1 − t/�t)aφ0,(k) + (t/�t)aφ1,(k), (A4)

D(φ(k), t) = (1 − t/�t)dφ0,(k) + (t/�t)dφ1,(k), (A5)

so that their integrals are equal to the quadrature computed using the trapezoid rule. The reaction
integral can then be computed by integrating both sides of (A3), and rearranging:

I
(k+1)
R ≡

∫ tn+�t

tn
rφ(k+1)(τ ) dτ

= φ1,(k+1) − φ0,(k+1) + �t

[
aφ0,(k) + aφ1,(k)

2
+ dφ0,(k) − dφ1,(k)

2
+ dφ

1,(k+1)
AD

]
.

(A6)

We notice that Equation (A3) is an ODE of the form

yt (t) = ry + c1t + c0,

y(0) = 0,

to which the exact solution is given by

y(t) = − 1

r2

(
c1rt − c1e

rt + c0r − c0e
rt + c1
)
. (A7)
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Expanding expressions (A2) and (A3), using the solution given by (A7), we see that the difference
between successive iterates is given by

φ1,(k+1) − φ1,(k) = α
[
φ1,(k) − φ1,(k−1)

]+ β
[
I

(k)
R − I

(k−1)
R

]
,

where, in the case of the linear ODE (A1), α and β are given by

α = − a(2d�t+�tr(d�t−2)+e�tr (d�t(�tr−2)+2)−2)+d(e�tr (d�t2r−2�t(d+r)+2)+d�t(�tr+2)−2)
2�tr2(d�t−1)

β = d(er�t − 1)

r(d�t − 1)
.

We note that a sufficient condition for the iterative scheme to converge is |α|, |β | < 1. For fixed a, we
observe that the set of parameters (d, r) that satisfy this condition (Figure 1) is exceedingly small.

Furthermore, making the ansatz that a = ã/�x, d = d̃/�x2, and �t = λ�x, we can compute
the limits of α and β as �x tends to zero. We see that

lim
�x→0

α = 6 − d̃ r̃λ2

12
, lim

�x→0
β = 1.

We therefore conclude that the sufficient condition for the iterative scheme to converge is met only
for a limited choice of coefficients ã, d̃ , and λ. This is in contrast to the present method, for which
convergence is guaranteed as �x tends to zero, for any choice of coefficients, as demonstrated in
Section 3.1. Indeed, numerical experiments indicate that this method suffers from extremely restrictive
timestep conditions in order to obtain convergence.
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