
Lawrence Berkeley National Laboratory
LBL Publications

Title
The Locus Algorithm III: A Grid Computing system to generate catalogues of optimised
pointings for Differential Photometry

Permalink
https://escholarship.org/uc/item/4tz4m9s2

Authors
Creaner, Oisń
Nolan, Kevin
Walsh, John
et al.

Publication Date
2020-03-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4tz4m9s2
https://escholarship.org/uc/item/4tz4m9s2#author
https://escholarship.org
http://www.cdlib.org/

Astronomy and Computing 00 (2020) 1–12

Astronomy
and

Computing

The Locus Algorithm III: A Grid Computing system to generate catalogues
of optimised pointings for Differential Photometry

Oisı́n Creanera,b,d,∗, Kevin Nolana, John Walshc, Eugene Hickeya

aTechnological University Dublin, Tallaght Campus, Dublin 24, Ireland
bDublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland

cGrid-Ireland, School of Computer Science and Statistics, Trinity College, Dublin 2, Ireland
dLawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, USA

Abstract

This paper discusses the hardware and software components of the Grid Computing system used to implement the Locus Algorithm to identify
optimum pointings for differential photometry of 61,662,376 stars and 23,799 quasars. The scale of the data, together with initial operational
assessments demanded a High Performance Computing (HPC) system to complete the data analysis. Grid computing was chosen as the HPC
solution as the optimum choice available within this project. The physical and logical structure of the National Grid computing Infrastructure
informed the approach that was taken. That approach was one of layered separation of the different project components to enable maximum
flexibility and extensibility.

Keywords: computing, grid, exoplanets, quasars, differential photometry, SDSS

1. Introduction

The Locus Algorithm, first described by Creaner et al. (2010)
and explained in full in Creaner et al. (2020a) is an algorithm
that changes the position of the field of view (FoV) to provide
optimised conditions for differential photometry, given a target
and telescope parameters. It works by translating the FoV on
a North-South/East West basis such that the maximum number
and quality of reference stars are included in the FoV while en-
suring that the target remains in the FoV. A software system
which harnesses this algorithm was developed as shown in Cre-
aner (2016) and detailed in Nolan et al. (2020). This system
was used to develop two catalogues of pointings based on the
Sloan Digital Sky Survey (SDSS) catalogue (Schneider et al.,
2007; Abazajian et al., 2009). The first catalogue started with
40,000 quasars from the as input targets to generate pointings
for 23,779 quasars as discussed in Creaner et al. (2020b) and
with 357,175,411 point sources from SDSS as inputs to pro-
duce pointings for 61,662,376 stars for use as candidates for
exoplanet observation as shown in Creaner et al. (2019). It is
this software system which is described in this paper. The per-

∗Corresponding author
Email addresses: creanero@gmail.com, oocreaner@lbl.gov (Oisı́n

Creaner), kevin.nolan@tudublin.ie (Kevin Nolan),
eugene.hickey@tudublin.ie (Eugene Hickey)

formance metrics of this system are discussed in Creaner et al.
(2020c).

In principle, the analysis of each target can be carried out
independently. Thus, the analysis lends itself well to paralleli-
sation. The strategy for parallelisation of this system is dictated
in part by the hardware system used, but within that framework
there are several considerations which are discussed below.

This paper discusses the conceptual design of this system at
several levels: The need for and choice of a High Performance
Computing (HPC) system; the structure of the Grid system cho-
sen, and the implications that has on the design of the system;
the approach taken in the creation and implementation of Grid
jobs; and finally the design of the software and data structures
used to execute those jobs. A brief discussion of the practical
issues which arose during the implementation of this system is
also given.

This paper forms part of a series of papers. The first pa-
per in this series, Nolan et al. (2020) discusses the design of
the software system used in this project when used on a stan-
dalone system such as the test system and largely ignores the
implications on the design of using grid computing. This paper,
the second, focusses on the grid-specific design considerations
and implementation. The third, Creaner et al. (2020d), provides
an assessment of the performance metrics of the grid system
implemented, and discusses the implications of this for future

1

ar
X

iv
:2

00
3.

04
56

5v
2

 [
as

tr
o-

ph
.I

M
]

 1
1

M
ar

 2
02

0

O. Creaner, K. Nolan, J. Walsh & E. Hickey / Astronomy and Computing 00 (2020) 1–12 2

similar systems.

2. High Performance Computing Considerations and Op-
tions

During initial testing, the software for the main data pipeline
ran for between 0.25-1.0 seconds with an arbitrary sample of
individual test targets on a single computer. Given a potential
maximum of 357,175,411 point sources in SDSS DR7 (Abaza-
jian et al., 2009) for the generation of pointings for exoplanet
candidates, a potential runtime of between 2.8 and 11 years was
predicted for the generation of that catalogue (Creaner et al.,
2019). This showed the necessiy of a High Performance Com-
puting system to enable this analysis to be completed in a prac-
tical timescale. Close inspection of these tests also showed
that data I/O operations dominated the runtime over algorith-
mic processing time.

Figure 1. Spectrum of High Performance Distributed computing. Copied from
Creaner (2016)

A variety of methods exist for increasing the performance
of a computing solution beyond that of a standard device - in
general, these depend on the strategy of parallel computing to
complete the computational challenge (Dongarra and Lastovet-
sky, 2006). By dividing the processing of the data into a num-
ber of processing units, and assigning each of these to a sepa-
rate processor, it becomes possible to complete those analyses
simultaneously, and thus reduce the overall runtime (Dongarra
and Lastovetsky, 2006).

As shown in Figure 1, these solutions range from Classic
Supercomputers: dedicated hardware running specialised, pur-
pose built software with extremely high degree of connectiv-
ity between compute and storage elements (Dimitrijević and
Litovski, 2008); to volunteer computing systems such as SETI@Home
and Folding@home where private users make computing time
available on their standard home or office computer for data
analysis purposes (Beberg et al., 2009). In this project, the
former was determined to be unsuitable due to the highly spe-
cialised requirements, while the latter would require the recruit-
ment of volunteer contributors beyond the scope of the project
(Creaner, 2016). This left Cluster, Grid and Cloud computing
as viable options for a High Performance Computing solution.

Each of these three paradigms incorporates computing ele-
ments which can run software similar or identical to that used
for standard devices with a system to manage the distribution of
data and processing (Dimitrijević and Litovski, 2008; Coghlan
et al., 2005). Due to the available resources, grid computing
was selected as the preferred system for this project.

A grid computing system consists of a collection of sim-
ilar devices known as Worker Nodes (WN) running standard
UNIX operating systems. These WNs can be located at one
or more locations and are connected by a Wide Area Network
(WAN). The grid is managed by middleware referred to as the
Grid Management System (GMS.) The GMS supports interac-
tions between the WN and shared resources such as long term
storage (Coghlan et al., 2005). The National Grid computing
Infrastructure (NGI) managed by Grid-Ireland was the system
used for this project, which used a middleware system known
as gLite (Coghlan et al., 2005).

3. NGI and gLite grid operations

Figure 2. Conceptual structure of NGI from the user perspective. Copied from
Creaner (2016).

As shown in Figure 2, this system conceptually separates
the operation of grid jobs into three elements. The user in-
terface (known as gridUI, see Subsection 3.1); the data stor-
age, known as the Logical File Catalogue (LFC, see 3.2) and the
grid jobs, which are submitted to the Job Submission System
(JSS, see 3.3) which accepts grid jobs and distributes individual
grid jobs among worker nodes (Sciaba et al., 2012). The LFC
and the JSS together with the Workload Management System
(WMS, see 3.4) form the GMS.

3.1. gridui

Access to the grid was provided by means of a dedicated
computer called gridUI (grid user interface), which acted as a
gateway to the grid, located at ITTD. This computer used the
same operating system and shell, and had the same access to
the grid as a grid node and as such was ideal for testing and
debugging grid software. In addition, it was on gridUI that grid
jobs were generated, and from which jobs were submitted and
monitored, and finally to which results were downloaded when
needed.

2

O. Creaner, K. Nolan, J. Walsh & E. Hickey / Astronomy and Computing 00 (2020) 1–12 3

3.2. LFC
The long-term, large-scale distributed file stoage system used

in NGI is the LFC (Coghlan et al., 2005). The LFC system con-
sists of three structural components (Sciaba et al., 2012).

The first component is a catalogue of Logical File Names
(LFN) linked to their corresponding Globally Unique Identifiers
(GUID) and Storage Universal Resource Locator (SURL) (Kunik,
2006). LFNs are designed to be human-readable and are struc-
tured to mimic a standard UNIX File System (UFS). GUIDs are
a unique string of the form guid uniquestring and are used as
a primary key for each file in the catalogue. SURLs refer to the
location where the file is physically stored.

The physical storage referred to by the SURL is the second
element of the LFC suite (Kunik, 2006; Sciaba et al., 2012).
Unless the user specifies otherwise, the physical location of files
is assigned automatically by the GMS and is distributed across
the various locations of the grid system.

Data in the LFC cannot be directly accessed, but rather must
be accessed by means of the final element of the LFC the set
of gLite middleware commands used to interact with the data
in the LFC (Sciaba et al., 2012). These commands are designed
to mimic the UNIX shell commands. For example, the gLite
command lfc-ls will list the contents of a directory specified
by its LFN in the same way that the ls UNIX command will
list the contents of a directory in the UNIX file system (Sciaba
et al., 2012).

3.3. JSS
Similarly, the user does not interact with the grid nodes di-

rectly. Work is instead assigned to the nodes by the JSS (Sciaba
et al., 2012). Users submit individual tasks to the JSS by means
of grid jobs. Grid jobs are each defined by a single file written
in the Job Description Language (JDL). .jdl files consist of a
series of name-value pairs which fully define the task assigned
to the grid and specify any requirements that that task may have
such as available storage, memory or permitted job time (Sciaba
et al., 2012).

A .jdl file must include the path to an executable file which
will be copied from gridUI to the WN and executed on the
WN (Sciaba et al., 2012). Additional requirements may include
data files that are required for the job (Sciaba et al., 2012). Un-
less the user specifies otherwise in the job, the physical location
of the worker node is selected automatically by the Workload
Management System (WMS). The WMS is designed to handle
load balancing and job scheduling and thus ensure that WNs
are never left idle.

Jobs are submitted to the GMS using gLite commands.
When these commands are executed, the JDL file is sent to the
JSS, and the executable file, together with any data files spec-
ified in the job, are uploaded to the GMS (Sciaba et al., 2012;
Kunik, 2006). These files are then downloaded to the working
directory of the WN to which the job is assigned. This is an es-
sential consideration for the design of the executable software.

Further gLite commands exist for the monitoring and man-
agement of grid jobs (Sciaba et al., 2012; Kunik, 2006). Grid
jobs, once submitted to the WMS are given a status to indi-
cate their progress from “submitted” to “cleared” which may

be monitored by the user manually, or automatically as used in
this project and discussed in Section 5 (Sciaba et al., 2012).

Grid jobs may fail to complete for a variety of reasons, in-
cluding grid problems, such as node crashes or software prob-
lems such as memory leaks or missing data. The GMS does
not automatically resubmit failed jobs, instead requiring that the
user monitor the progress of jobs, and resubmit them if appro-
priate. Checkpointing may be implemented by the user using
the LFC and suitable scripting techniques if desired, but is not
part of the default system (Sciaba et al., 2012).

3.4. WMS

The NGI was a system physically distributed at several widely
separated sites connected via WAN. The Workload Manage-
ment System monitored the storage and compute elements at
these locations, and distributed the workload appropriately. Un-
less the use of specific locations was specified by the the user ei-
ther directly or by specifying distinctive attributes of the nodes,
the WMS would automatically select a location for LFC storage
or jobs submitted through JSS. Users did not need to specify lo-
cations.

4. System Design

The system as implemented used these structural elements
as shown in Figure 3. First the SDSS file catalogue was down-
loaded to the LFC from the SDSS Data Archive Server (DAS)
(Alfred P. Sloan Foundation, 2007). SQL queries to the SDSS
Catalogue Archive Server (CAS) (Alfred P. Sloan Foundation,
2017) were used together with user parameters to parameterise
and submit grid jobs through GridUI. There were two main el-
ements, the SDSS API and the Main Data Pipeline, each of
which would be completed by submitting many grid jobs.

The SDSS API accessed the SDSS Catalogue and separated
out a catalogue that met the “clean sample of point sources”
criteria provided by SDSS (Alfred P. Sloan Foundation, 2006).
These sources were stored in the Local Catalogue on the LFC
for use as references for all targets and as candidate targets
in the generation of the Exoplanet Catalogue (Creaner et al.,
2019).

Figure 3. Conceptual structure of grid jobs as used in this project. Copied
from Creaner (2016).

3

O. Creaner, K. Nolan, J. Walsh & E. Hickey / Astronomy and Computing 00 (2020) 1–12 4

The main data pipeline implemented the Locus Algorithm,
and when provided with target lists of targets from the CAS,
was used to produce catalogues of outputs of the optimum point-
ing for differential photometry of quasars and exoplanet host
candidates.

Each of these grid elements was constrained by parameters
input by the user, and managed by a suite of bespoke grid man-
agement scripts written in Bash, as shown in Figure 3. These
scripts received their parameters from the command line, and
based on this input divided the data into appropriately sized
units. These units were designed to be processed on a sin-
gle node within the time limits set by the grid provider: each
such unit constituted one grid job. The management system,
illustrated in Figure 4 would then submit those jobs in a con-
trolled manner to allow the job submission system to handle
the data throughput, up to a maximum number of simultaneous
jobs again defined by the grid provider.

5. Job Management

As shown in Figure 4, each grid job, defined in JDL (the
Job Description Language) consisted of a Bash script to execute
and a set of parameters to apply to that script which allowed
each job to access a different unit of data. The scripts called
appropriate gLite commands to retrieve the required data from
the LFC, then ran the Locus Algorithm software (written in C)
to generate the output for that task, which was again copied to
the LFC for storage by gLite commands included in the grid job
script.

Figure 4. The management of a grid job. Copied from Creaner (2016)

In practice, this system was tested and evaluated using an
evolutionary software development model, and a number of
metrics were observed regarding performance of the system on
the grid. Note that a slow response cycle for grid jobs (min-
imum 5 minutes, maximum 3 days) meant that grid job test-
ing emphasised factors impacting scalability below, while most
testing was carried out in a serial computing environment. See
Creaner et al. (2020c) for more information on test results and
other performance metrics of the system.

This project used grid computing for three phases of oper-
ation: Parameterisation, discussed in Subsection 5.1, the API,

discussed in Subsection 6.1 and the Pipeline, discussed in Sub-
section 6.2.

5.1. Grid Job Parameterisation

The Parameterisation software is part of the job manage-
ment system responsible for partitioning an overall task into
jobs, each of which consists of a number of work units. These
work units are the smallest unit of work which can be carried
out by a given element of the software: they are different for
each mode of operation. For the API, which is responsible for
extracting data from the Source Format into the Local Format,
the work unit is a Source Catalogue file. For the Pipeline, which
determines the optimum pointing for a list of targets, the work
unit is a single target when operating in Target List mode and
a Local Catalogue file when operating in Catalogue traversal
mode as detailed in in Subsection 6.2. A job is a collection of
work units bundled together such that they can be passed to the
appropriate program and it will be able to carry out its task. The
number of work units per job is selected by the user when run-
ning the parameterisation software and is optimised to ensure
the task will fit the processing requirements of the grid system
as discussed in Creaner et al. (2020c).

The Parameterisation software is designed to provide flexi-
ble input to the API and Pipeline programs. Early prototyping
on these programs revealed that they would become heavily de-
pendent upon SDSS file and directory structures without a layer
of data abstraction to allow this information to be passed in by
means of a parameter file. The parameterisation software gen-
erates two types of binary parameter file, PRM files for the API,
and PPR files for the Pipeline. These files contain explicit file
paths, target lists and control variables for the API and Pipeline
programs. Because of this, the software can be applied to other
catalogues with changes to the parameterisation software, but
minimal changes to the other programs.

When developing the bash shell scripts used for grid man-
agement, it was determined that the PPR and PRM formats can-
not easily be interpreted by the shell. As a pragmatic solution
to this problem, text files containing the file paths were imple-
mented which are accessed by the shell scripts, as a supplement
to the binary files used by the C programs. These files, though
stored with the file extension .txt, are referred to as Parameter
Text (PRT) files in this paper to distinguish them from ordinary
plain text files.

The primary component of this system is a program called
parameterisation. This program takes as input a combina-
tion of command line arguments and data stored in CSV files of
various structures . The output of this program is a number of
parameter files, the size and structure of which is determined by
command line arguments which designate which mode of op-
eration the program employs. It operates in three modes: API,
Target List Pipeline and Catalogue Traversal Pipeline as illus-
trated in Figure 5. Based on the input command line parameters
and the contents of the CSV file, the program automatically de-
termines which mode it will operate in.

In all modes, parameterisation takes the following com-
mon arguments: the number of work units to include in each

4

O. Creaner, K. Nolan, J. Walsh & E. Hickey / Astronomy and Computing 00 (2020) 1–12 5

Figure 5. Parameterisation Modes. User input, together with the data contained
in the CSV file from the CAS determines which mode parameterisation em-
ploys. Target List and API parameterisation run on and store their output on
gridUI, while Catalogue Parameterisation mode is a grid job, managed by its
own suite of GMS, storing the parameter files generated on the LFC. Copied
from Creaner (2016)

grid job and three paths in which to: (1) store output parame-
ter files (2) find the CSV file containing data to parameterise
(3) find the FITS files the parameter file will refer to. For
both pipeline modes, the user must supply observational pa-
rameters regarding the telescope the output is intended for use
with. These parameters are FoV size (in degrees), Resolution
(in degrees), Maximum magnitude difference (in magnitudes)
and Maximum colour index difference (in magnitudes). Finally,
to operate in Catalogue Traversal mode parameterisation

requires a PRM file which contains the paths to the files for
each of the target fields. These parameters are summarised on
Table 1.

Argument API Pipeline
Target List

Pipeline
Catalogue

Work Units X X X
Output Path X X X

CSV Path X X X
FITS Path X X X
FoV Size × X X

Resolution × X X
∆magmax × X X
∆colmax × X X

PRM Path × × X

Table 1. List of the arguments to parameterisation and which modes each
is used with.

5.1.1. Parameterisation in API mode
Input for the API mode has no additional arguments and

the CSV file contains the four field identifiers used in SDSS
to identify fields which correspond to files in the catalogue:
run, rerun, camcol and field. When parameterise is called
with the four arguments indicated on Table 1, it operates in API
mode.

Naming Convention
R/r/calibChunks/C/tsObj-RRRRRR-C-r-FFFF.fit

Example
1458/40/calibChunks/4/tsObj-001458-4-40-0352.fit

Table 2. SDSS DAS File naming convention (Alfred P. Sloan Foundation,
2007). Given Run (R), Rerun (r), Camcol (C) and Field (F). Rerun and Field in
the filename are padded with leading zeroes to the length illustrated, but lead-
ing zeroes are not used in the directory names, nor are they used for Rerun or
Camcol in either the filename or the directory. An arbitrarily selected example
is shown. Copied from Creaner (2016)

In API mode, parameterisation parses a list of field iden-
tifiers from SDSS into file names and paths according to the
SDSS DAS directory stucture as shown on Table 2 and stores
these paths into PRM files which contain the full paths to each
of those files. The internal structure of PRM files is duscussed
in Nolan et al. (2020).

5.1.2. Parameterisation in Target List Pipeline mode
In Target List mode, information about the targets is passed

in through a CSV file which contains the position and magni-
tutes of the targets, and the SDSS parameters as above which
identify the fields in which stars may be found which can be in-
cluded in a FoV with the target. To operate in Target List mode,
parameterisation must be passed 8 parameters as shown on
Table 1.

In this mode, parameterisation generates PPR files. In
target list mode, each target has an individual set of fields around
it, referred to as a mosaic from the tiling pattern used to gen-
erate it. For each mosaic, parameterise parses the list of field
parameters given in the CSV file into filenames in the Local
Catalogue which follow the same pattern as the Source Cata-
logue shown in Table 2. It also stores the Target position and
magnitude so they can be used in the pipeline and associated
with the correct mosaic. The internal structure of PPR files is
duscussed in Nolan et al. (2020)

5.1.3. Parameterisation in Catalogue Traversal Pipeline mode
In Catalogue Traversal mode, the CSV file contains a two

lists of fields. Firstly, it contains a list of fields in the catalogue
such that the targets in those fields can be used as targets for the
pipeline. These are referred to as “target fields.” For each such
target field, the CSV file also includes a list of fields in which
any star in that field can be included in a FoV with any star in the
target field. These fields are referred to as reference fields. Prior
to running in Catalogue Traversal mode, the target fields must
be passed to parameterisation in API mode to generate PPR
files containing the paths to the files for the target fields. This
PRM file is then passed as a parameter to parameterisation

as illustrated in Table 1.
In order to traverse an entire catalogue, and generate point-

ings and scores for every target in the catalogue, every file in
the catalogue must be used as a target field. Therefore, the scale
of the Catalogue traversal mode is much greater than the other
two modes and thus, it has to be operated as a grid task in its
own right. As a result, the CSV file generated as output from

5

O. Creaner, K. Nolan, J. Walsh & E. Hickey / Astronomy and Computing 00 (2020) 1–12 6

the CAS is subdivided by the grid management software into
a number of smaller CSV files. These smaller CSV files are
used as input to each of the parameterise grid jobs in turn as
described in Subsection 5.2.

Each grid parameterisation job takes many files from the
LFC, and generates PPR files containing target lists and the
paths corresponding to the reference field for each set of tar-
gets. These PPR files are then copied to the LFC for use in the
pipeline when it is operating in catalogue traversal mode as dis-
cussed in brief in Subsection 6.2 and in more detail in Nolan
et al. (2020).

5.2. Grid Job Scripts
The grid was used for four operations within the scope of

the project. Extracting data from the source Catalogue to the
Local Catalogue through the API, calculating pointings for a
list of quasar targets to generate the quasar catalogue as shown
in Creaner et al. (2020b), generating PPR files for catalogue
traversal as discussed in Subsection 5.1.3 and calculating point-
ings for all targets in the Local Catalogue as required for Cre-
aner et al. (2019).

Figure 6. Schematic structure of grid managment scripts. Copied from Creaner
(2016)

All grid operations require grid management software, writ-
ten in Bash to operate. For each of these operations, the same
four components of the Grid Management Software (GMS) ex-
ist: job generation (see Subsection 5.2.1), job submission (see
Subsection 5.2.2), job calling (see Subsection 5.2.3) and job
monitoring (see Subsection 5.2.4). The design of these compo-
nents is largely identical across each of the four operations. The
differences are treated here as minor variations to the design and
highlighted where significant.

5.2.1. job generation
The generate jobs scripts operate on gridUI. They use

existing Parameter files generated by the parameterise pro-
gram in one of its modes to create a series of JDL files, each of
which is submitted as a grid job. Parameter files are stored on
gridUI except in the case of the Pipeline in Catalogue Traversal
Mode, in which case the Parameter files are on the LFC. These
files are listed (using ls or lfc-ls commands depending on

the location of the parameter files) and the output of that list is
piped by script into a template using scripting variables. The
output of these scripts is a directory containing a set of JDL
files which were later submitted by submit jobs.

5.2.2. job submission
The submit jobs scripts run on gridUI and submit a set

of JDL files from a location specified by the user to the JSS
in a controlled manner. submit jobs takes, as an argument,
the user-defined limit to how many grid jobs NGI permitted
that user to have running simultaneously. It then submits jobs
in batches of 10 at a time from gridUI, waiting to ensure that
all jobs previously submitted have started running before sub-
mitting any more. It also monitors how many jobs are run-
ning at a time, stored as the variable running job count. If
(running job count + 10) is greater than the limit of simul-
taneous jobs, submission is halted until running job count

is low enough that submitting a batch of new jobs would not
cause it to exceed the limit. The output from this set of scripts
is a text file containing a set of job identifiers which were used
by check jobs to monitor the progress of those grid jobs.

5.2.3. job calling
The job calling scripts are specified in the JDL files and

when the JSS assigns a WN to carry out a grid job, these are the
scripts that are called. The arguments to the scripts are spec-
ified in the JDL file which is what determines the difference
between each individual grid job. The job may also be supplied
with some files from gridUI which may or may not be com-
pressed, depending on the particular operation. The call job

scripts are more different between the different operations than
the other grid jobs scripts, but each of these scripts has the fol-
lowing common features.

Firstly, the script extracts any compressed files provided by
the JSS from gridUI into the working directory of the WN. It
then creates a directory structure that will hold the executable
files which will carry out the main task. Next, the script copies
the main program from the LFC to the WN and makes it exe-
cutable. If it was not supplied through the JSS, the parameter
file is then copied from the LFC to the WN. Finally, by iterating
through the lines of the text parameter file, the script creates the
directory structure required and copies the listed fits files from
the LFC to the WN into that location.

With the programs and data now located on the WN, the
main task of the grid job is executed by calling the main pro-
gram or programs with appropriate arguments (supplied in the
JDL file to the JSS). These programs are typically called in low-
verbosity modes or with their output redirected to /dev/null

as grid jobs are run non-interactively and in NGI there was
limited space for text diagnostic output from grid jobs. These
programs generate output in pre-determined directories in the
working directory of the WN.

For later use (in the case of the API and parameterisation
tasks) and for output and publication (in the case of pipeline
tasks) the data must be moved from the WN to the LFC. This
task is accomplished by creating the appropriate directory struc-

6

O. Creaner, K. Nolan, J. Walsh & E. Hickey / Astronomy and Computing 00 (2020) 1–12 7

ture on the LFC, then copying the output file(s) from the WN to
the LFC.

5.2.4. job monitoring
Finally, check jobs runs on gridUI and interfaces with

the GMS to track the status of on-going grid jobs. The job lists
output from submit jobs is used as an input to check jobs.
It generates a list of job statuses which can be piped to a file
or displayed on std.out as determined by the user. These sta-
tuses can also be piped through standard Unix tools such as
grep and wc to isolate individual jobs or particular groups of
job statuses.

6. Core Programs

The programs that form the core of this system are the API
(which extracts data from the SDSS format to a reduced format
known as the Local Catalogue format) and the Pipeline (which
calculates optimal pointings for a set of targets). These pro-
grams are designed to work independent of their environment
and are thus portable between different implementations of the
system. Thus, the programs are not grid-native and they require
the wrapper of the grid scripts as outlined in Subsection 5.2.
The details of the design of these systems is discussed in Nolan
et al. (2020), together with the design requirements, constraints
and implementation of the system in isolation from the grid.

In the scope of this paper, it is essential to know how the re-
quirements for this software impact the grid system design, and
how the required inputs and outputs of the core system influ-
ence the design of the grid system. These programs, which are
written in C, and make extensive use of the CFITSIO Library
by Pence (1999) are described in brief below.

6.1. SDSS data ingestion API

The Locus Algorithm is designed to be flexible with regards
to source data. By extracting data from a Source Catalogue
into a Local Catalogue, the data required for the algorithm is
retained, while other data is discarded. The Local Catalogue
format was designed such that data from any catalogue con-
taining position (RA, Dec) and magnitude information could be
extracted into that format and used with the Locus Algorithm.

The source catalogue for this project was the SDSS Cata-
logue of Calibrated Objects. This catalogue was held on the
SDSS Data Archive Server (DAS) (Alfred P. Sloan Foundation,
2007) in a collection of many Calibrated Objects files (tsObj
files). This catalogue was downloaded to the LFC and stored
there for processing. These files each contain 146 columns, and
each row refers to an observation of an object by an SDSS cam-
era. Only a few of the attributes recorded in those 146 columns
are required for the software system presented here. Many of
these records are of non-stellar objects not suitable for use as
reference stars. In addition, due to the observation pattern used
by SDSS, many of these records are not “primary” observations
as defined in the SDSS Image processing flags (Alfred P. Sloan
Foundation, 2006).

Figure 7. Structure of the SDSS Data ingestion API. Copied from Creaner
(2016)

The SDSS Data Access API is designed to extract data from
the SDSS catalogue in such a way as to minimise the data vol-
ume that is accessed in the pipeline by both projection and se-
lection operations on the source catalogue files. The selection
operation is carried out by filtering to only those records which
meet the SDSS clean sample of stars criteria, which discards
non-stellar and non-primary sources (Alfred P. Sloan Founda-
tion, 2006). The projection operation consists of selecting only
the position (RA, Dec) and magnitude (ugriz) columns from the
data as the other columns are not required for the operation of
the Locus Algorithm (Creaner et al., 2020a).

The API is split into three conceptual blocks as illustrated
in Figure 7: work carried out on gridUI, work carried out on
the WN, and interactions with the LFC.

The first block consists of parameterisation as described in
Subsection 5.1.1, where user input is given to the parameteri-
sation system to determine how many work units (SDSS fields)
to assign to each grid job, which are then listed and stored in
paramter files on gridUI. For each of these parameter files, a
JDL file is generated by the generate jobs api script which
creates a series of .jdl files. These files are submitted to the
JSS, which assigns each job to a WN.

call api operates on a WN, and takes two parameter files
as inputs from gridUI. One is in PRT text format and one is in
PRM binary format. The PRT file specifies the LFN paths in the
LFC to a set of input SDSS fits files which are to be processed
by the API to create the corresponding local catalogue files and
is used by the shell script. A for loop iterates through this file,
and uses the lcg-cp command to copy the listed files from the
LFC to the WN.

Two programs, Diagnose and Extract, are then copied from
the LFC to the WN. These programs use the PRM parameter
file as an input to access the fits files. The Diagnose pro-
gram accesses and analyses the data contained within the input
files, and identifies the columns in the data table. The column
names together with information regarding their structure are
then stored in a file. Next, the Extract program carries out the
substantive work of the API. Taking the columns identified by
Diagnose, it identifies the columns containing only the relevant
data: Right Ascension, Declination and Magnitude (itself an ar-
ray of 5 double values). It then applies the SDSS clean sample
of stars algorithm to exclude entries which are not primary en-

7

O. Creaner, K. Nolan, J. Walsh & E. Hickey / Astronomy and Computing 00 (2020) 1–12 8

tries for stars(Alfred P. Sloan Foundation, 2006). The data for
the remaining entries in those three relevant columns for this
project are then written to a file which forms part of the local
catalogue.

Finally, call api then uses lcg-cr to copy all of the Local
Catalogue files to the LFC for storage. These files are then used
as the inputs to the Pipeline

6.2. Pipeline

The Data Pipeline applies the Locus Algorithm as defined in
Creaner et al. (2020a) to a set of targets to produce output files
which form the Output Catalogue(s). It operates in two modes:
Target List and Catalogue Traversal. Target list mode is used
when a set of one or more targets are selected in advance by
the user and are submitted to the pipeline for processing. This
mode was used to produce the Quasar Catalogue as discussed in
Creaner et al. (2020b). Catalogue traversal mode uses an exist-
ing catalogue or subset of a catalogue to produce the target list.
This target list is then submitted to the pipeline in a similar way
to the Target list mode discussed above. This mode was used to
produce the Exoplanet Catalogue as presented in Creaner et al.
(2019). The structure of these modes is outlined in Figure 8.

Figure 8. Structure of the SDSS Data ingestion API. Copied from Creaner
(2016)

Much of the software is designed to ignore the distinction
between these two modes, for example, by treating a single tar-
get as a list of length one. Distinctions between operational
modes are therefore discussed only as needed, as shown in Fig-
ure 8, where dashed boxes are used to indicate modules that
differ between the two modes.

In Target List mode, a target list consisting of the positions
(RA, Dec) of a set of specific targets (e.g. quasars) is submit-
ted through an SQL script to the CAS (Alfred P. Sloan Foun-
dation, 2017) together with FoV size. For each target in the
list, the script identifies which fields include any objects which
are inside the Candidate Zone (CZ) as defined in Creaner et al.
(2020a). The CAS returns a list of field identifiers as required
for parameterisation as described in Subsection 5.1.2. This list
of identifiers is combined with observational parameters and
passed through the parameterisation and generate jobs

scripts as defined in Subsections 5.1.2 and 5.2.1 to generate a
set of grid jobs.

In Catalogue Traversal mode, a field list, consisting of the
field identifiers for all fields in the catalogue is submitted to
the CAS instead of a target list. The SQL script identifies, for
each target field, the neighbouring fields which have at least
one object within the CZ for any target in the target field. The
target fields and reference fields are then passed through the
parameterisation and generate jobs scripts as above.

Each grid job calls a script named call pipeline which
uses the parameter files to identify the necessary local catalogue
files and generates the output catalogue based on the listed tar-
gets. Two versions of the Call Pipeline script execute the pipeline,
one in each of the two modes. The primary distinction between
these modes is that when run in Target List mode, the Parameter
files are stored on gridUI, while in Catalogue Traversal mode
those files are stored in the LFC. This means that in the first
case, the job submission process submits the PPR files as part
of the grid job, while in the second, they have to be copied out
of the LFC using gLite commands. The two versions are other-
wise identical as shown in Figure 8.

For each Local Catalogue file listed in the PRT file, call pipeline

checks to see if the file is already present on the WN, and if not,
copies it from the LFC to the WN. Note that each file is likely
to be used by more than one target in the target list, especially
in Catalogue Traversal mode.

Call pipeline then executes the C program locus algorithm,
defined in greater detail in Nolan et al. (2020). This program
with the colour argument provided in the JDL file, redirecting
its output to /dev/null unless operating in verbose mode for de-
bugging purposes. This program implements the Locus Algo-
rithm and generates an output file.

Finally, the output file is copied and registered to the LFC
and any errors are reported to the Grid Management Software.

7. Data Structures and Management

Data concerns are central to the design of this system. Any
implementation of the system would require the manipulation
of large volumes of data from a catalogue. Since data transfer
operations are generally much slower than data processing op-
erations, a design constraint was to minimise these operations
wherever possible. In addition, a design goal for this project
was to develop software that could be flexible as to the source
catalogue that it operates with, such that the system can be used
with future catalogues such as Gaia or LSST as and when they
become available. As a result of both of these constraints, the
system was designed with data abstraction as discussed in Sub-
section 7.1.

The system was required to be flexible enough to handle in-
put data from multiple sources, and produce output date in such
a way as to be accessible by users with different requirements.
The mandated the use of several internally and externally de-
signed data types. The design requirements and constraints for
these data types are discussed in detail in Nolan et al. (2020)
and summarised in Subsection 7.2.

8

O. Creaner, K. Nolan, J. Walsh & E. Hickey / Astronomy and Computing 00 (2020) 1–12 9

The physical and logical structure of the grid influenced the
data storage structure and the means used to transfer data be-
tween them. This is detailed in Subsection 7.3.

7.1. Data Abstraction

While the system was implemented with the SDSS Cata-
logue, it was developed with flexibility as to the source of the
data. This flexibility was enabled by the use of the Data extrac-
tion API described in Subsection 6.1. This system extracted the
data that was required for the algorithm from the source cat-
alogue and processed it into a new structure called the Local
Catalogue. The Local Catalogue consisted of a series of FITS
files which could be read by the main data pipeline.

In future iterations of this system, it is envisaged that a new
API could be developed to read data from the structure of other
catalogues (e.g. Gaia) and write it to the Local Catalogue for-
mat. This abstraction provides a layer of source-independence
for the processing pipeline

As a practical matter, the directory structure of the local
catalogue mimicked the structure of the source catalogue. How-
ever, the local catalogue directory structure was abstracted from
the pipeline software through the parametrisation software as
shown in Subsection 5.1. This software queried the CAS to
identify targets (or target fields) and the reference fields that
would be needed, and provided the pipeline with the paths to
those fields. This parameterisation software can be updated in
a modular fashion to allow it to work with new catalogues.

Because of these abstractions, the core software of the pipeline
is independent of the structure of the source catalogue, depend-
ing instead only on the local catalogue.

7.2. Data Types

Data in this project was stored in a variety of formats to fit
with the requirements of the sources and the systems that were
employed. These are summarised in Table 3, and discussed in
greater detail in Nolan et al. (2020).

Data in the Source Catalogue was in the Flexible Image
Transport System (FITS) format, a widely used format in the
astronomical community. To minimise the number of depen-
dencies of the software system, it was decided that the Local
Catalogue and the Output Catalogue would also be stored in
FITS format.

Data Type Used in Novel
FITS Source Catalogue, Local Catalogue

& Output Catalogue
×

CSV Parameterisation & Output Cata-
logues

×

JDL Grid Jobs ×

CIT API X
PRM API & Pipeline X
PPR Pipeline X
PRT Grid Jobs X

Table 3. Table of the data types used in this project, in which project compo-
nents they are used and whether they were developed for this project or not.

The parameterisation software which formed part of the job
management and data abstraction elements produced data in
two novel formats developed for this project. PRM files were
used to identify files in the source or local catalogue without
structure for grouping. PPR files were used to identify targets
for processing in the pipeline, grouped together with files to be
used in groups to form mosaics around those target(s). PRM
and PPR files are binary format files which are interpreted by
the core software. PRT files are text files including the lists of
target files from PPR or PRM files which can be interpreted by
the shell scripts used for grid job management as discussed in
Subsection 5.

CTI (Catalogue information) is a file format which was built
for this project to enable information about the structure of cat-
alogue files to be stored in a lightweight, accessible format as
part of the API as discussed in Nolan et al. (2020).

The Job Description Language (JDL) is used to define grid
jobs as part of the glite system (Sciaba et al., 2012). JDL files
are automatically created by the generate jobs scripts which
access the list of parameter files for a given grid operation and
create new JDL files which can be submitted to the JSS as dis-
cussed in Subsection 5.

Comma Separated Value (CSV) files are used in two ways
in the project. First the outputs from the CAS are delivered in
this format. The CAS supplies the lists of fields in the source
catalogue which are used in the parameterisation software to
define the paths to the files used in the API. The CAS also sup-
plies lists of targets and their associated fields which are used
by the parameterisation software to generate the jobs for the
pipeline. In addition, the output catalogues, which were cre-
ated in FITS file format, have also been converted into CSV
format for publication, for the benefit of users who do not use
FITS.

7.3. Data Storage Systems

Over the course of this project, data was created, stored and
used on a variety of different storage elements, some of which
were volatile and others were persistent relative to the timeline
of the project. Data transfer between these elements was a key
design consideration, as network data transfer operations are
slow by comparison to local file I/O operations. A schematic of
these data storage elements is presented in Figure 9

All user interaction in the project was carried out on the De-
velopment Environment (DE). This was a local Windows-based
system with virtual environments configured to reflect WNs.
This allowed for rapid development and testing of software in-
dependent of grid operations. This system was connected to
gridUI through Secure SHell (SSH) which allowed both file
transfer (for software) and user input to be communicated to
the grid.

As described in Subsection 3.1, gridUI was the gateway to
the grid and had access similar to that of a WN. Programs, pa-
rameter files and grid jobs were staged here for submission to
the grid. The glite system was used to submit these elements.
Programs were transferred to the LFC through the GMS by sub-
mitting lfc-cr commands. JDL files were created on gridUI

9

O. Creaner, K. Nolan, J. Walsh & E. Hickey / Astronomy and Computing 00 (2020) 1–12 10

Figure 9. Overall layout of the grid data storage structure. The software
was developed in the Development Environment (DE). Programs and user input
were copied from the DE to gridUI through Secure SHell (SSH). The GMS
handled data and software transfer between gridUI, the LFC and the WNs
using the lfc-* commands of the glite system. Copied from Creaner (2016)

and submitted to the JSS. The JSS would then assign the job
described in the JDL file to an available WN and monitor its
progress. The user could submit requests to the JSS using the
job monitoring software described in Subsection 5.2.4 to track
the progress of a grid operation.

As described in Subsection 5.2.3, grid jobs typically in-
cluded lfc-cp commands to transfer programs and the required
data from the LFC to the WN to allow a job to begin, and
lfc-cr commands to transfer output data to the LFC when the
job was complete. The data abstraction described in 7.1 above
greatly reduced the volume of data to be copied from the LFC
to the WN.

8. Practical Implementation

In practice, a number of issues arose with this project which
impacted its performance on the grid. The I/O dominated nature
of this project meant that it had different performance character-
istics to many previous tasks which were processed using grid
computing.

As a matter of policy by the grid managers, jobs on NGI
were restricted to a maximum of three days runtime, after which
point they would be automatically terminated. As a result, when
allocating work to a grid job, it was necessary to ensure that the
amount of data selected was such that the job would be com-
pleted within this limit.

Different uses of the software required different work units,
each of which had different requirements and run times. A
work unit is defined as the smallest element of the data that
can be processed in a grid job. Local unit testing, combined
with small-scale grid testing was used to establish the runtime
for each work unit. When grid jobs were generated using the
parameterisation software, the number of work units was input
as a command line option as shown in Figure 3. The number
of work units was chosen by the user and submitted to the Grid
Managment software (Figure 4) such that the run time was well
within the limits. Extended discussion of the performance met-
rics of this system are available at Creaner et al. (2020c)

9. Discussion

Completion of this project highlighted a number of issues
with the use of distributed computing systems, specifically gLite,
for astronomical operations. In addition, the metrics created
during the project highlight distinct use cases for systems of
this nature which should be considered in future projects. These
issues and use cases are discussed below.

One major issue which arose during this project was the
suitability of the gLite LFC system to large volumes of simul-
taneous access requests. Because the gLite system is designed
with data security in mind, it activates separate authentication
processes for each file accessed from the LFC (Sciaba et al.,
2012). This means that each file takes of the order of one sec-
ond to access and download. For typical grid problems where
the data is contained in few large files, this issue is not signif-
icant. In this case, where each job may access thousands of
small files, this access time can become dominant. The solu-
tion to this problem was to provide storage space at a shared
network drive (NFS) which lacked the thorough security and
authentication process of the LFC. This allowed for faster data
access for grid jobs using that system.

It is typical for grid job to produce log files which include
the standard outputs. These log files are typically small, of the
order of kilobytes. In this project, development versions of the
system had produced verbose outputs to the screen containing
much of the data from input files and the final resulting file. If
stored, this output would be comparable to or larger than the
input data, amounting to many megabytes per grid job. Log
file storage systems were unable to manage this data volume
and velocity, and as a result a silent mode was developed for
the software which discarded much of the data which would
otherwise have been sent to std.out and thus to log files.

While the software for this project was structurally divided
into two components: the API and the Pipeline, these compo-
nents are not fundamentally different in terms of how they used
the grid: each read in the data from the LFC (Input), processed
the data through some software (processing) and produced the
output to the LFC (Output). These steps are present in each of
these and many other applications. A distinct use case emerges
however between the generation of the Local Catalogue and
Quasar Catalogue on one side, and the Exoplanet Catalogue on
the other.

The former case is dominated by Data I/O operations espe-
cially when the gLite LFC is accessed and requires authentica-
tion for each file accessed. The latter case is balanced between
Data I/O and Processing. Finally, one can imagine a case where
Processing is dominant, as is commonly the case with HPC ap-
plications. Since the same system (the pipeline) demonstrates
different characteristics dependent upon the inputs it is provided
with, it follows that a simple examination of the code or algo-
rithm design may not always be indicative of the characteristics
of the system overall.

In future applications of this or related systems, therefore, it
becomes important to distinguish not only the characteristics of
the system, for example by analysis of algorithmic complexity,
but also to test those system characteristics when applied to data

10

O. Creaner, K. Nolan, J. Walsh & E. Hickey / Astronomy and Computing 00 (2020) 1–12 11

of the type that is to be processed.

10. Conclusions

The objective of this project was to generate a system to
analyse and identify optimal pointings for differential photom-
etry for two sets of targets: Quasars (from SDSS Quasar Data
Release 4) and stars which might be potential candidates to host
exoplanets. In both cases, optimal conditions for differential
photometry were defined such that the target had a maximum
number and quality of reference stars as defined in Creaner et al.
(2020a)

To achieve this objective, two major software components
were developed, and used to generate three catalogues, the Lo-
cal Catalogue, the Quasar Catalogue and the Exoplanet Cata-
logue. The Local Catalogue was used as an intermediate step
in the generation of the two Output Catalogues. Generation of
these catalogues was completed using the gLite system of NGI.
Operational metrics on these systems showed a disparity in per-
formance not between the software systems but rather between
the application of the systems to different datasets.

This project further demonstrates a the practical application
of High Performance Computing to an astronomical data ana-
lytics problem. From the metrics and practical observations, it
is apparent that simple calculations of algorithmic complexity
may not be sufficient to identify the dominant component in a
project. Rather, this system demonstrates the value of exper-
imental assessment of system performance under operational
conditions.

The software used in this project is available at on Github
at Creaner et al. (2007) and a paper describing the performance
of this system is available at Creaner et al. (2020c).

Acknowledgements

Funding for this work: This publication has received fund-
ing from Higher Education Authority Technological Sector Re-
search Fund and the Institute of Technology, Tallaght, Dublin
Continuation Fund (now Tallaght Campus, Technological Uni-
versity Dublin).

SDSS Acknowledgement: This paper makes use of data
from the Sloan Digital Sky Survey (SDSS). Funding for the
SDSS and SDSS-II has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science
Foundation, the U.S. Department of Energy, the National Aero-
nautics and Space Administration, the Japanese Monbukagakusho,
the Max Planck Society, and the Higher Education Funding
Council for England. The SDSS Web Site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Con-
sortium for the Participating Institutions. The Participating In-
stitutions are the American Museum of Natural History, As-
trophysical Institute Potsdam, University of Basel, University
of Cambridge, Case Western Reserve University, University
of Chicago, Drexel University, Fermilab, the Institute for Ad-
vanced Study, the Japan Participation Group, Johns Hopkins
University, the Joint Institute for Nuclear Astrophysics, the Kavli

Institute for Particle Astrophysics and Cosmology, the Korean
Scientist Group, the Chinese Academy of Sciences (LAMOST),
Los Alamos National Laboratory, the Max-Planck-Institute for
Astronomy (MPIA), the Max-Planck-Institute for Astrophysics
(MPA), New Mexico State University, Ohio State University,
University of Pittsburgh, University of Portsmouth, Princeton
University, the United States Naval Observatory, and the Uni-
versity of Washington.

This paper makes use of CFITSIO: A FITS File Subroutine
Library by Pence (1999)

References

Abazajian, K.N., Adelman-McCarthy, J.K., Agüeros, M.A., Allam, S.S., Prieto,
C.A., An, D., Anderson, K.S., Anderson, S.F., Annis, J., Bahcall, N.A.,
et al., 2009. The seventh data release of the sloan digital sky survey. The
Astrophysical Journal Supplement Series 182, 543.

Alfred P. Sloan Foundation, 2006. Understanding the image processing flags.
URL: http://classic.sdss.org/dr7/products/catalogs/flags.
html.

Alfred P. Sloan Foundation, 2007. Sdss data archive server. URL: http:
//das.sdss.org.

Alfred P. Sloan Foundation, 2017. Sdss catalog archive server. URL: http:
//cas.sdss.org.

Beberg, A.L., Ensign, D.L., Jayachandran, G., Khaliq, S., Pande, V.S., 2009.
Folding@ home: Lessons from eight years of volunteer distributed com-
puting, in: 2009 IEEE International Symposium on Parallel & Distributed
Processing, IEEE. pp. 1–8.

Coghlan, B., Walsh, J., O’Callaghan, D., 2005. The grid-ireland deployment
architecture, in: European Grid Conference, Springer. pp. 354–363.

Creaner, O., 2016. Data Mining by Grid Computing in the Search for Extrasolar
Planets. Ph.D. thesis. Institute of Technology, Tallaght, Dublin.

Creaner, O., Hickey, E., Nolan, K., 2007. Locus algorithm github repo. www.
github.com/creanero/locus.

Creaner, O., Hickey, E., Nolan, K., 2019. The Locus Algorithm Exoplanet-
Search Pointings Catalogue. https://doi.org/10.5281/zenodo.

3462025. doi:10.5281/zenodo.3462025.
Creaner, O., Hickey, E., Nolan, K., Briain, T., Smith, N., 2010. Large-catalogue

optimisation of quasar differential photometry fields by grid computing, in:
Astronomical Data Analysis Software and Systems XIX, Astronomical So-
ciety of the Pacific. p. 505.

Creaner, O., Hickey, E., Nolan, K., Smith, N., 2020a. The locus algorithm i:
A technique for identifying optimised pointings for differential photometry.
https://arxiv.org/abs/2003.04582. Preprint.

Creaner, O., Nolan, K., Smith, N., Grennan, D., Hickey, E., 2020b. A catalogue
of locus algorithm pointings for optimal differential photometry for 23,779
quasars. https://arxiv.org/abs/2003.04590. Preprint.

Creaner, O., Nolan, K., Walsh, J., Hickey, E., 2020c. The locus algorithm iii: A
grid computing system to generate catalogues of optimised pointings for dif-
ferential photometry. https://arxiv.org/abs/2003.04565. Preprint.

Creaner, O., Walsh, J., Nolan, K., Hickey, E., 2020d. Locus algorithm iv:
Performance metrics of a grid computing system used to create catalogues of
optimised pointings. https://arxiv.org/abs/2003.04570. Preprint.

Dimitrijević, M., Litovski, V., 2008. Virtual machine technology in grid com-
puting.

Dongarra, J., Lastovetsky, A., 2006. An overview of heterogeneous high per-
formance and grid computing. Engineering the Grid: Status and Perspective
, 1–25.

Kunik, V., 2006. Grid data management.
Nolan, K., Hickey, E., Creaner, O., 2020. The locus algorithm ii: A robust

software system to maximise the quality of fields of view for differential
photometry. https://arxiv.org/abs/2003.04574. Preprint.

Pence, W., 1999. Cfitsio, v2. 0: a new full-featured data interface, in: Astro-
nomical Data Analysis Software and Systems VIII, p. 487.

Schneider, D.P., Hall, P.B., Richards, G.T., Strauss, M.A., Berk, D.E.V., An-
derson, S.F., Brandt, W., Fan, X., Jester, S., Gray, J., et al., 2007. The sloan
digital sky survey quasar catalog. iv. fifth data release. The Astronomical
Journal 134, 102.

11

http://www.sdss.org/
http://classic.sdss.org/dr7/products/catalogs/flags.html
http://classic.sdss.org/dr7/products/catalogs/flags.html
http://das.sdss.org
http://das.sdss.org
http://cas.sdss.org
http://cas.sdss.org
www.github.com/creanero/locus
www.github.com/creanero/locus
https://doi.org/10.5281/zenodo.3462025
https://doi.org/10.5281/zenodo.3462025
http://dx.doi.org/10.5281/zenodo.3462025
https://arxiv.org/abs/2003.04582
https://arxiv.org/abs/2003.04590
https://arxiv.org/abs/2003.04565
https://arxiv.org/abs/2003.04570
https://arxiv.org/abs/2003.04574

O. Creaner, K. Nolan, J. Walsh & E. Hickey / Astronomy and Computing 00 (2020) 1–12 12

Sciaba, S., Burke, S., Campana, E., Lanciotti, M., Litmaath, P., Lorenzo, V.,
Miccio, C., Nater, R., Santinelli, 2012. gLite User Guide. CERN.

12

	1 Introduction
	2 High Performance Computing Considerations and Options
	3 NGI and gLite grid operations
	3.1 gridui
	3.2 LFC
	3.3 JSS
	3.4 WMS

	4 System Design
	5 Job Management
	5.1 Grid Job Parameterisation
	5.1.1 Parameterisation in API mode
	5.1.2 Parameterisation in Target List Pipeline mode
	5.1.3 Parameterisation in Catalogue Traversal Pipeline mode

	5.2 Grid Job Scripts
	5.2.1 job generation
	5.2.2 job submission
	5.2.3 job calling
	5.2.4 job monitoring

	6 Core Programs
	6.1 SDSS data ingestion API
	6.2 Pipeline

	7 Data Structures and Management
	7.1 Data Abstraction
	7.2 Data Types
	7.3 Data Storage Systems

	8 Practical Implementation
	9 Discussion
	10 Conclusions

