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Abstract 

Many students fail to develop adequate understanding of 
mathematical equivalence in early grades, with detrimental 
consequences for later algebra learning. The change 
resistance account (McNeil, 2014) proposes that students 
struggle with equivalence because traditional arithmetic 
practice overexposes students to mathematical expressions 
where all the operators are on the left of the equal sign. 
Students erroneously believe the equal sign means to “do 
something” or “give the answer” – and fail to see equations as 
relations between two expressions. These operations-based 
misconceptions affect how they perceive, conceptualize, and 
approach math problems and interfere with developing 
correct understandings of equivalence. The current paper 
explores 1) are these misconceptions evident as encoding 
errors in second graders? 2) do item properties make specific 
error types more or less likely? 3) do misconceptions in 
encoding impact solving performance? and 4) can targeted 
training mitigate the effects of prior misconceptions on both 
equation encoding and solving? We identify a category of 
misconception-based encoding errors that negatively impacts 
equation solving and replicate findings that a conceptually 
rich research-based intervention program is maximally 
effective in training students to overcome problematic 
misconceptions. 

 

Keywords: Mathematical representations; relational 
reasoning; mathematics education; randomized control trial 

Introduction 
How do early conceptions about equivalence impact 

children's ability to correctly encode, and later solve, 
arithmetic equations? Research suggests that understanding 
mathematical equivalence is a critical component of 
algebraic reasoning (Carpenter, Franke, & Levi, 2003; 
Charles, 2005; Knuth, Stephens, McNeil, & Alibali, 2006). 
However, the majority of US students fail to reason with 
and apply concepts of equivalence (McNeil & Alibali, 
2005), making encoding errors when reconstructing 
mathematical equations (e.g., McNeil & Alibali, 2004), and 
interpreting the equal sign to mean “calculate the total” 
rather than “two amounts are the same” (e.g., Behr, 
Erlwanger, & Nichols, 1980).  

McNeil and Alibali (2005; McNeil 2014) proposed a 
change-resistance account of children’s difficulty with 
mathematical equivalence. Traditional arithmetic 
instruction, which focuses on procedures (i.e., solving 
problems such as 7 + 2 = _), reinforces a misconception of 

the equal sign as a request for an answer, which, in turn, 
interferes with the development of relational concepts. Most 
arithmetic problems in early elementary math curricula 
show operations (e.g., addition and subtraction) on the left 
of the equal sign and the “answer” on the right (Seo & 
Ginsburg, 2003; McNeil, 2008). Children detect and extract 
patterns from these examples and ultimately construct long-
term memory representations. McNeil and Alibali 
characterize these representations as “operational patterns” 
as they reflect an understanding of arithmetic that focuses 
on the operators (e.g., +, -, ×, ÷) rather than the relational 
nature of mathematical expressions. Although default 
representations typically speed computation in the problem-
solving contexts that children encounter most frequently, 
these representations may lead to difficulties when 
operational patterns are mistakenly transferred to similar, 
but non-applicable, problem types (e.g., Bruner, 1957). 
Alibali and colleagues (Crooks & Alibali, 2013; McNeil & 
Alibali, 2004, 2005) have identified three different sub-
patterns, described below, that reflect a distorted view of 
arithmetic and hinder conceptual understanding of 
equivalence and underlying mathematics. Once entrenched, 
children rely on these potentially misleading patterns when 
encoding, interpreting, and solving novel mathematics 
problems. In the current study, we group these three types of 
errors as “misconception errors” (see Table 2) to 
differentiate them from errors believed to stem from 
working memory constraints or performance demands.  
 
Perceptual pattern errors. Through over-exposure to 
traditional arithmetic problems, children learn to expect 
math problems to have all operations on the left side of 
the equal sign, with the equal sign immediately before the 
answer blank on the right, an “operations = answer” 
problem format (McNeil & Alibali, 2004, Carpenter et al., 
2003). Students who expect all problems to have operations 
on the left fail to correctly encode the problem before them. 
For instance, after briefly viewing the problem “7 + 4 + 5 = 
7 + __” children who rely on their representations of the 
“operations = answer” problem format erroneously 
remember the problem as “7 + 4 + 5 + 7 = __” (McNeil & 
Alibali, 2004).  
 
Conceptual pattern errors. Children learn to interpret the 
equal sign operationally as a symbol to do something 
(Baroody & Ginsburg, 1983; Behr et al., 1980). When asked 
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to define the equal sign—even in the context of a 
mathematical equivalence problem—many children treat it 
like an arithmetic operator (like + or -) that means they 
should calculate the total of everything on the left side of 
the equal sign (McNeil & Alibali, 2005). 
 
Procedural pattern errors. Through early practice with 
traditional problems (e.g., all operations on the left of ‘=’ ), 
children learn to perform all of the listed operations on all 
given numbers in a math problem (e.g., add up all the 
numbers in an addition problem, McNeil & Alibali, 2004, 
2005). This incorrect representation of equations misleads 
students to solve the problem “7 + 4 + 5 = 7 + __” by 
performing all given operations on all given numbers and 
put 23 (instead of 9) in the blank (McNeil, 2007; Rittle-
Johnson, 2006, Falkner et al., 1999).  
 
A history of findings supports the hypothesis that children’s 
difficulties with mathematical equivalence are partially due 
to inappropriate knowledge of the perceptual structure, 
conceptual meaning, and procedural routine associated with 
encoding and solving equations. The change-resistance 
account further suggests that these faulty representations are 
derived from overly narrow experience with traditional 
arithmetic. Recent studies have documented the effects of 
incorrect representations of equivalence in fourth-graders 
(McNeil & Alibali, 2004) and have induced similar error 
patterns in adults (Crooks and Alibali, 2013). We build on 
the work of McNeil, Fyfe, and Dunwiddie (2015), who 
examined the impact of an early intervention on second-
graders multi-faceted understanding of equivalence, 
replicate and extending these findings to more closely 
examine the nature of early equivalence encoding and its 
relationship to equation solving in a large representative 
sample of students. 

In the current study, we sought to more deeply examine 
the nature of second-grade students’ encoding responses, 
looking for evidence of the misconception-based (i.e., 
perceptual, conceptual, and procedural) error patterns that 
have been theorized in past work from McNeil, Alibali, and 
others (McNeil et al., 2019, McNeil & Alibali, 2005), and 
induced in adults by Crooks and Alibali (2013).  

We further explore the relationship between encoding and 
solving of equivalence problems, asking whether the 
specific misconceptions identified through encoding errors 
are predictive of equation solving performance. We then 
examine the impacts of research-based equivalence training 
activities on encoding and solving accuracy. Specifically, 
we randomly assigned classrooms to training using an 
intensive treatment intervention or an active control 
condition consisting solely of non-traditional mathematical 
practice and measured the training impact on students’ 
ability to encode equations and solve equivalence problems 
post-training. We organize our findings to explore four 
related questions:  

 

Do second-grade students make encoding errors 
consistent with overgeneralizing patterns from early 
arithmetic?  
 
Do encoding errors systematically vary across items 
with different structure and length? How does the 
frequency of different types of encoding errors 
change with targeted training? 
 
How do misconception-based errors in students’ 
equation encoding predict equation solving?  

 
Does targeted, conceptually rich equivalence training 
impact encoding and equation solving?  

 
Measuring Equation Encoding and Solving. We 

assessed second-grade students’ ability to correctly encode 
and solve non-traditional equivalence problems before and 
after the intervention training using the same measures of 
equation encoding, equation solving sign used in previous 
work by McNeil and colleagues (Johannes et al., 2017; 
McNeil et al., 2012; McNeil & Alibali, 2005b). 

 
Equation encoding. The equation encoding measure 

consisted of recalling four math expressions (e.g., 2 + 6 =2 
+ _) presented one at a time. Each expression was visible for 
five seconds and students were instructed to remember and 
write down exactly what they saw. Responses were coded as 
correct if the student wrote the equation exactly as shown 
(i.e., the correct numbers and symbols in the correct order). 
We discuss the coding of relevant erroneous response types 
in the results. 

 
Equation solving. The equation solving measure consisted 

of eight equations with operations on both sides of the equal 
sign (e.g., 3 + 5 + 6 = 3 + __). For a response to be coded as 
correct, a student needed to write the value that would make 
the equivalence relation hold.   

 
Our sample of encoding and solving items is listed in 

Table 1. All items included one addend and a blank on the 
right side of the equal sign. The items varied on two 
dimensions: the number of addends (two or three) on the left 
side of the equal sign, and the position of the blank (at the 
end of the equation or directly after the equal sign).  
 
Table 1. Equation encoding and solving items administered 

pre- and post-intervention 
 

Addends Position 
of blank 

Encoding 
items 

Solving  
items 

Two 

End of 
equation 4+5=3+_ 3+7=3+_ 

2+7=6+_ 

After ‘=’ 7+1=_+6 5+3=_+3 
8+2=_+6 

Three 

End of 
equation 2+3+6=2+_ 3+5+6=3+_ 

6+2+8=4+_ 

After ‘=’ 3+5+4=_+4 7+2+4=_+4 
7+4+6=_+3 
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ICUE: Improving Children’s Understanding of 
Equivalence Intervention 

As current math practice seems to promote the 
development of faulty representations, the change resistance 
account of “operational patterns” offers design principles for 
instruction to improve students’ understanding of 
equivalence. Initially, researchers hypothesized that greater 
exposure to “non-traditional arithmetic” problems (e.g., 
presenting operations on the right side of the equation,  
“_ = 2 + 4” and using relational phrases such as “is equal 
to” instead of the equal sign in practice problems) may 
prevent students from developing operational patterns 
(McNeil et al., 2011). Though practice with non-traditional 
arithmetic led to improved outcomes over traditional 
instruction, a number of students failed to reach proficiency 
(McNeil, Fyfe, & Dunwiddle, 2015). 

To further promote mastery of equivalence, McNeil and 
colleagues added additional design features beyond non-
traditional arithmetic practice. The current version of the 
materials, dubbed Improving Children’s Understanding of 
Equivalence (ICUE), consists of second grade student 
activities that reduce reliance on operational patterns and 
promote deep understanding of mathematical equivalence 
through four key components, outlined below, that have 
independently been shown to be effective. Multiple pilot 
studies have since found that the ICUE treatment 
intervention is successful in improving student 
understanding of mathematical equivalence (Byrd et al., 
2015; Johannes et al. 2017). 

  
1. Nontraditional arithmetic practice (McNeil, Fyfe, & 

Dunwiddle, 2015, Chesney et al., 2012), 
2. Lessons that first introduce the equal sign outside of 

arithmetic contexts (e.g., “28 = 28”) before 
introducing arithmetic expressions (e.g., Baroody & 
Ginsburg, 1983). 

3. Concreteness fading exercises in which concrete, 
real-world, relational contexts (e.g., sharing stickers, 
balancing a scale) are gradually faded into the 
corresponding abstract mathematical symbols (e.g., 
Fyfe, McNeil, Son, & Goldstone, 2014), and 

4. Activities that require students to compare and 
explain different problem formats and problem-
solving strategies (e.g., Carpenter, Franke, & Levi, L. 
2003). 

Methods 

Design 
We used a cluster-randomized control trial design to 
examine the impacts of the ICUE intervention training 
relative to an active control program. Teachers were 
randomly assigned to use the either the ICUE Treatment 
intervention or Active Control materials. The Active 
Control consisted of workbook activities to control for time 
on task and contained non-traditional arithmetic practice but 

not the additional components present in the Treatment 
ICUE condition, described above. 
 
Participants. 44 second-grade teachers (24 treatment, 20 
control) used the activities in their classrooms in California. 
Class sizes ranged from 18 to 25, and we analyzed data 
from 482 students who completed the Treatment activities 
and 406 students who completed the Control activities and 
measures.  

Procedure and Materials 
The procedure for ICUE Treatment and Active Control 

conditions were identical, differing only in the content of 
the materials used by teachers and students. Each teacher 
received training on the study purpose, features of the 
activities, and strategies for integrating the activities into 
their typical mathematics curriculum.  

Prior to starting the study, participating teachers 
completed online surveys assessing their mathematics 
teaching experience and classroom structure and dynamics.  

After administering a pre-test, teachers used the study 
materials for approximately 15 minutes twice each week for 
16 weeks. In both conditions, teachers were asked to use the 
study materials to supplement, rather than replace current 
math instruction, and to limit the duration of the activities to 
20 minutes per session.  

After completing the 32 sessions, teachers administered 
the same pre-intervention measure of mathematical 
equivalence understanding, which included the equation 
encoding and solving items reported here, along with an 
item prompting children to name and define the “=” symbol, 
not reported. Teachers administered additional post-
intervention measures of transfer and computation fluency, 
we do not report these here. 

 
Active Control. Teachers in the Active Control condition 
received a set of student workbooks and a teacher guide. 

 
ICUE Treatment. Teachers in the ICUE Treatment 
condition received a set of student workbooks, a teacher 
guide, a set of classroom manipulatives including balance 
scales and flashcards. 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 1. Sample workbook page from the Active Control 
(left) and ICUE Treatment (right) condition materials. 
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Results 

Do second graders make misconception-based 
encoding errors?  

Crooks and Alibali (2013) identified three categories of 
errors in encoding and solving, reviewed above, which stem 
from different types of knowledge and misconceptions. We 
asked whether, after only one year of formal mathematics 
instruction, second graders produced erroneous encoding 
responses that align with these any of these three related 
facets of misunderstanding, grouping them together as 
“misconception errors”. We examined the frequency with 
which theoretically-relevant types of encoding errors, which 
can be induced in adults (Crooks & Alibali, 2013) naturally 
occur in young students. We differentiated these 
misconception-based errors from other types of errors, 
including performance errors, which we hypothesize stem 
from memory-based constraints in this population. 

We assessed students’ accuracy in encoding four different 
equivalence problems (see Table 1 for items) and examined 
the frequency with which they made different types of 
errors. Student in both the Control and Treatment groups 
produced a range of responses for each encoding item and 
made multiple types of errors, including misconception-
based errors, with different frequency. Examples and overall 
frequency of response types are listed in Table 2. 

Students produced the misconception-based errors of 
interest in approximately 20% of their responses overall.  
The majority of misconception-based errors produced in 
both conditions aligned with the perceptual error type 
identified by Crooks and Alibali (2013); conceptual and 
procedural errors types were produced relatively 
infrequently.   
 

Table 2. Response types and examples for encoding item 
2+3+6=2+_, with overall frequency of response pre- and 

post-training. 
 
Response type Examples Control  

Pre/Post 
Treatment  
Pre / Post 

Correct 2+3+6=2+_ 0.25/0.47 0.35/0.56 

Misconception 
errors 

2+3+6+2=_ 
2+3+6=11+2 
2+3+6=2+13 

0.23/0.21 0.24/0.17 

Memory error 2+3+6 0.06 / 0.08 0.06/ 0.15 
Other errors 2+3+7=6 0.39 / 0.21 0.28/ 0.09 
No response no response 0.07 / 0.02 0.05/ 0.03 

How does the equation structure influence 
encoding errors?  

We chose to focus on misconception-based and memory-
based encoding error patterns and explored variation in error 
rates across the four encoding items that varied in A. the 
number of addends, and B. the position of the blank in the 
equation (see Table 1 for items). The larger number of 
addends was predicted to increase the working memory 
demands of the problem.  The position of the blank at the 

end of the equation (e.g., 4+5=3+_) was predicted to 
increase the likelihood of perceptual pattern errors as these 
items are most perceptually similar to traditional arithmetic 
problems (e.g., 4+5+3=__), and may trigger operational, 
instead of relational, interpretations of the equal sign (e.g., 
as a symbol that means give the answer’) that give rise to 
erroneous arithmetic procedures (e.g., add up all numbers 
and write the sum in the blank; see Crooks & Alibali, 2013; 
McNeil et al., 2011).  

Students’ pre-intervention encoding error frequency is 
displayed by item in Figure 2. The frequency of 
misconception- and memory-based errors varied based on 
both the position of blank (at the end of the equation – first 
and third items - or directly after the ‘=’ sign – second and 
fourth items in Table 1) and the number of addends on the 
left side of the equation (two – first two items - or three – 
last two items in Table 1).  

In line with our predictions, regression models confirmed 
that students in both conditions produced a reliably greater 
number of perception-based errors for items with the blank 
at the end of the equation (β=0.852, SE =0.12, p<.01), and 
this interacted with the number addends, such that students 
produced the greatest number of misconception errors for 
the three-addend item with the blank at the end: 
“2+3+6=2+_” (β=0.534, SE =0.09, p<.05).  

Finally, students made a reliable number of memory-
based errors, but only for items with three addends 
(β=0.472, SE =0.11, p<.05). 

 
 

 
 

Figure 2. Pre-intervention patterns of misconception- and 
memory-based error responses for Treatment and Control 

students. Misconception errors were greatest for items with 
a blank space at the end of the equation (first and third 

items); memory errors were greatest for items with three 
addends (second and fourth items). 
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How does conceptually rich equivalence training 
change students’ encoding responses? 

We next examined the impact of the ICUE Treatment and 
Active Control training on misconception- and memory-
based encoding errors. We asked whether exposure to non-
traditional arithmetic, through the Active Control condition, 
was sufficient to maximally reduce these encoding errors, or 
whether more conceptually rich training, found in the ICUE 
Treatment intervention, would lead to greater error 
reduction. The change in students’ encoding errors from 
pre- to post-intervention is displayed in Figure 3. Students 
in the Treatment condition showed a greater reduction, post-
intervention, in misconception-based errors compared to 
students in the Control condition (β=0.921, SE =0.10, 
p<.01), and this reduction was greatest for items with a 
blank space at the end of the expression (β=0.633, SE 
=0.09, p<.05). Thus, for encoding, we find that conceptually 
rich training leads to greater reduction misconception-based 
errors. Training type did not significantly impact the 
frequency of memory errors for three-addend encoding 
items.  
 

 
 

Figure 3. Pre- to post-intervention changes in error 
responses for Treatment and Control students. Students in 

the Treatment condition showed a greater reduction in 
misconception-based errors (solid red bars), which was 
greatest for items with a blank space at the end of the 

equation. 
 
How do misconception-based errors in students’ 
equation encoding impact equation solving?  

Turning to equation solving, we tested whether 
perceptual errors in equation encoding reliably predicted 
students’ equation solving performance before students had 
received any training through the Treatment or Control 
interventions. For each item type, students completed one 
encoding item and two solving items (see Table 1). Thus, 
for each type of item, a student could solve both solving 
items correct, one correct, or zero correct. We used ordinal 
regression models to capture this ordering and tested 
encoding performance (i.e., whether a student encoded that 
type of item correctly), error types (misconception- and 
memory-based), and item properties (number of addends 
and location of blank space) as predictors. 

Pre-intervention solving performance was predicted by 
multiple aspects of encoding responses: students were more 
likely to solve an equivalence problem correctly if they had 
accurately encoded the same type of item correctly 
(β=0.778, SE=0.121, p<.05), and students were less likely 
to solve a problem correctly if they had produced a 
misconception-based error for that type of item on the 
encoding measure (β= -0.420, SE =0.097, p<.01).   

Performance was also predicted by properties of the 
items: items with two addends were more likely to be solved 
correctly than those with three addends (β=0.360, SE 
=0.079, p<.01) and items with a blank space directly after 
“=” were more likely to be solved correctly than those with 
a blank at the end of the equation (β=0.226, SE =0.079, 
p<.05). However, pre-intervention solving performance was 
not reliably predicted by memory-based errors, or assigned 
condition (β=-0.061, SE =0.078, ns).  

How does equivalence training impact equation 
solving? 

We used a similar ordinal regression model to test the 
effect of training condition on students’ post-intervention 
solving performance. Performance was best predicted by a 
combination of intervention condition and encoding 
responses; item properties (position of blank, number of 
addends) were not reliable predictors in the best-fitting 
model of solving performance.  The strongest single 
predictor of post-intervention solving performance was 
training condition: students in the Treatment condition were 
more likely to correctly solve items post-intervention, 
compared to students in the Active Control condition 
(Figure 4; (β= 1.267, SE =0.074, p<.01)). As in the case of 
encoding, we found that conceptually richer training led to 
more accurate solving performance. 

Students were also more likely to solve one or both 
equation solving problem correctly on the post-intervention 
measure if they had solved one correctly on the pre-
intervention measure (β=0.636, SE =0.12, p<.01) and were 
increasingly likely to solve both items correctly if they had 
solved both items correctly pre-intervention (β=1.053, SE 
=0.15, p<.01).  

Finally, as in the pre-intervention model, post-
intervention solving performance was predicted by encoding 
responses: students were more likely to solve an 
equivalence problem correctly post-intervention if they had 
accurately encoded the same type of item correctly post-
intervention (β=1.493, SE =0.08, p<.01), and students were 
less likely to solve a problem correctly if they had produced 
a misconception-based error for that type of item on the 
encoding measure (β= -0.749, SE =0.06, p<.05).  
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Figure 4. Treatment and Control students’ post-intervention 
solving performance broken down by frequency of correct 

and misconception-based encoding responses. Conceptually 
rich training in the Treatment condition led to the greatest 
improvement in solving performance; students from both 
conditions were more likely to solve an item correctly if 

they had encoded the same type of item correctly, and less 
likely if they had made a misconception-based error in 

encoding.  
 

Considering both our encoding and solving results, we 
found that, while manipulated item properties impacted 
students’ ability to correctly encode and solve non-
traditional equations pre-intervention, the magnitude of this 
impact was reduced, for encoding, and eliminated, for 
solving, by targeted conceptually rich training in 
mathematical equivalence. Specifically, students in the 
Treatment condition showed a greater reduction, post-
intervention in misconception-based encoding errors 
compared to Control students, and this reduction was 
greatest for items with a blank space at the end of the 
equation (i.e., items that are perceptually most similar to 
traditional arithmetic problems). Treatment students were 
also more accurate on a post-intervention equation solving 
task (with no reliable condition differences pre-intervention) 
and, while encoding responses were predictive of solving 
performance, manipulated item properties (number of 
addends and position of blank space) were not.  

Conclusions   
Understanding equivalence is key for later mathematical 

understandings. The change-resistance account suggests that 
students fail to develop appropriate representations of 
equations and equivalence because instruction with 
traditional arithmetic problems encourages students to 
develop ineffective representations of problems.  

In the current study, we explored the relationship between 
problematic representations and students’ ability to 
accurately encode and later solve non-traditional 
equivalence problems. We examined encoding and solving 
abilities in second-grade students and found that a single 
year of formal instruction (i.e., first grade) with traditional 
arithmetic practice was sufficient to reliably lead to 

misconception-based errors at encoding, which 
predominantly consisted of perceptual pattern errors, in the 
framework of Crooks and Alibali (2013). Baseline 
performance on both tasks worsened when target problems 
perceptually resembled traditional arithmetic problems (i.e., 
when a blank was at the end of an equation), and when 
working memory load (number of addends) was increased.  
Misconception errors at encoding were predictive of solving 
performance, both at baseline (pre-intervention) and at post-
intervention, suggesting that students who make these 
misconception-based errors at encoding may be activating 
similar faulty representations during the solving task. 
Finally, training improved both encoding and solving 
performance, demonstrating that erroneous response 
patterns can be overcome with intervention. However, 
students in the Treatment condition showed greatest 
improvements on both tasks, suggesting that deeper 
conceptual learning is required to resolve what, at first 
glance, might be thought of as a perceptual bias towards 
traditional arithmetic problem structure.  

Interestingly, while manipulated properties of the 
encoding and solving items (see Table 1) predicted students’ 
errors in the encoding task, these properties were only 
predictive of pre-intervention solving performance. 
Students’ post-intervention solving performance was 
predicted by their post-intervention encoding responses, but 
not directly predicted by item properties, suggesting that any 
relationship between these manipulated item properties, 
such as the number of addends and position of blank space, 
and solving performance is potentially mediated by 
encoding. This is consistent with a mediation analysis 
performed by Crooks and Alibali (2013), in which the 
authors demonstrated that the impact of priming incorrect 
representations on adults’ equation solving performance was 
mediated by problem reconstruction (or encoding). Future 
work will explore this relationship in more depth by using a 
greater number of items and possible combination of 
manipulated item properties. 

Even after training, students in both conditions did not 
reach ceiling performance in either encoding or solving non-
traditional equations. On the one hand, the equation 
encoding and solving assessment items were chosen to leave 
room for improvement and to avoid ceiling effects. 
However, in future work, we plan to explore how individual 
students resolve or persist in error patterns with training. We 
further plan to test whether different encoding errors give 
rise to specific solving responses, or whether any error 
simply creates noise in students’ equation solving processes. 
Our preliminary findings suggest that misconception-based 
errors in encoding lead to greater error rates in solving, but a 
larger sample of items and responses may be required to 
support fine-grained conclusions about the nature of this 
relationship and, specifically, how perceptual, conceptual, 
and procedural misconceptions individually and 
collaboratively impact equation encoding and solving.  
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