
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
MATE, a Unified Model for Communication-Tolerant Scientific Applications

Permalink
https://escholarship.org/uc/item/4tz5v6r6

Author
Martin, Sergio Miguel

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4tz5v6r6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

MATE, a Unified Model for Communication-Tolerant Scientific Applications

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Sergio Miguel Martin

Committee in charge:

Professor Scott Baden, Chair

Professor George Porter, Co-Chair

Professor Tajana Rosing

Professor Sutanu Sarkar

Professor John Weare

2018

Copyright

Sergio Miguel Martin, 2018

All rights reserved.

The dissertation of Sergio Miguel Martin is approved, and it

is acceptable in quality and form for publication on micro-

film and electronically:

Co-Chair

Chair

University of California San Diego

2018

iii

EPIGRAPH

Science! true daughter of Old Time thou art!

Who alterest all things with thy peering eyes.

—Edgar Allan Poe

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . ix

List of Tables . xiii

Acknowledgements . xiv

Vita . xvii

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1

Chapter 2 Background and Motivation . 5

2.1 Overview . 5

2.2 Anatomy of a Supercomputer . 5

2.2.1 Node Architecture . 6

2.2.2 Interconnect Design . 7

2.3 Costs of Communication . 8

2.3.1 Intra-Node Communication 8

2.3.2 Network Communication 10

2.4 Distributed Programming Paradigms 12

2.4.1 SPMD . 12

2.4.2 PGAS . 15

2.4.3 Asynchronous PGAS . 16

2.4.4 Dataflow . 18

2.5 Communication Tolerant-Programming 20

2.5.1 Communication/Computation Overlap 21

2.5.2 Data Motion Reduction . 23

2.6 Future Outlook . 26

Chapter 3 The MATE Model . 29

3.1 Overview . 29

3.1.1 Motivating Example . 30

3.2 Communication-Reducing Mechanisms 33

3.2.1 Mechanism I: Domain Overdecomposition 34

3.2.2 Mechanism II: Hierarchical Rank Distribution 35

v

3.2.3 Mechanism III: Code Region Scheduling 38

3.3 Communication Reducing Effects 48

3.4 Related Work . 51

3.4.1 MPI+KLT Model . 51

3.4.2 MPI+MPI Model . 51

3.4.3 MPI+ULT Model . 52

3.4.4 Latency-Hiding Models 54

3.5 Summary . 57

Chapter 4 Design and Implementation . 58

4.1 Overview . 58

4.2 Translation Process . 59

4.2.1 Step I: MPI to MATE Call Replacement 60

4.2.2 Step II: Parsing Graph Directives 61

4.2.3 Step III: Parsing For Loop Graphs 63

4.2.4 Step IV: Replacing The Main Function 64

4.3 Runtime Support . 66

4.3.1 Runtime System Design 66

4.3.2 Execution Model . 68

4.4 Communication Backend . 75

4.4.1 Point-To-Point Communication 76

4.4.2 Barriers . 79

4.4.3 Collective Communication 81

Chapter 5 Test Case I: Jacobi3D . 83

5.1 Overview . 83

5.1.1 Computation . 84

5.1.2 Verification . 85

5.2 Strong Scaling Studies . 86

5.2.1 Cori Phase I (Haswell) . 88

5.2.2 Cori Phase II (KNL) . 94

5.3 Summary . 96

Chapter 6 Test Case II: Cannon’s Algorithm . 98

6.1 Overview . 98

6.2 Code Variants . 99

6.2.1 Base MPI Algorithm . 99

6.2.2 Overlapping MPI Algorithm 102

6.2.3 MATE Variant . 104

6.3 Size Scaling Study . 107

6.4 Weak Scaling Studies . 110

6.4.1 Cori Phase I (Haswell) . 111

6.4.2 Cori Phase II (KNL) . 112

vi

6.5 Summary . 114

Chapter 7 Test Case III: Cloverleaf3D . 116

7.1 Overview . 116

7.2 Code Variants . 117

7.2.1 Base MPI Algorithm . 117

7.2.2 MATE Variant . 120

7.3 Strong Scaling Studies . 124

7.3.1 Cori Phase I (Haswell) . 124

7.3.2 Cori Phase II (KNL) . 126

7.4 Summary . 128

Chapter 8 Load Balancing . 129

8.1 Overview . 129

8.2 Example: Mpix flowCart . 132

8.3 Rebalancing with MATE . 133

8.3.1 Mechanism I: Hierarchical Overdecomposition 133

8.3.2 Mechanism II: Inter-Node Balancing 135

8.3.3 Mechanism III: Intra-Node Balancing 138

8.4 Experimental Results . 139

8.5 Concurrency Limitations . 141

8.6 Related Work . 143

8.7 Summary . 144

Chapter 9 Conclusions and Future Work . 145

9.1 Research Contributions . 145

9.2 Limitations and Future Work . 146

9.2.1 Improve Thread Concurrency 146

9.2.2 UPC++ Integration . 147

9.2.3 CUDA Integration . 147

9.2.4 Global Variables Handling 147

9.2.5 Lightweight Translation 148

9.2.6 Support Fortran Annotations 148

9.2.7 Support for Collective Communication Overlap 149

9.2.8 Automate Graph Generation 149

Appendix A Experimental Environment . 150

A.1 Hardware Configuration . 150

A.2 Software Configuration . 151

Appendix B Code Optimizations . 153

B.1 Cache Blocking . 153

B.2 Vectorization . 154

B.3 Cubic Mapping . 155

vii

Appendix C MPI Concurrency Limitation . 158

C.1 Problem 1: Thread Serialization 158

C.2 Problem 2: Bandwidth Saturation 160

C.3 Experimental Tests . 163

C.3.1 Possible Solution . 165

Appendix D Load Balancing Algorithms . 166

D.1 Consecutive Rebalancer . 166

D.2 Shuffling Rebalancer . 167

Appendix E MATE Application Programming Interface 169

E.1 MATE Model Interface . 169

E.2 Runtime System Interface . 172

E.3 Supported MPI Functions . 173

Bibliography . 174

viii

LIST OF FIGURES

Figure 2.1: Configuration of a 32-core NERSC Cori Phase I (Haswell) Node. 6

Figure 2.2: Example roofline diagram that compares two applications. Application A,

limited by memory bandwidth, and Application B, limited by the peak CPU

performance. 9

Figure 2.3: Execution timeline of an SPMD application. 13

Figure 2.4: Two-sided Communication Protocol. 13

Figure 2.5: One-sided Communication Protocol operations: put and get. 14

Figure 2.6: Partitioning of a shared array in UPC and examples of language-enabled

communication. 15

Figure 2.7: Execution timeline of an asynchronous application. 16

Figure 2.8: Example DAG in a Dataflow application. 19

Figure 2.9: Core usage timeline of a process under the bulk-synchronous model. 21

Figure 2.10: Core usage timeline of a split-phase application that employs separate com-

munication dependent and independent computation to achieve communica-

tion / computation overlap. 23

Figure 2.11: A typical deployment of an example MPI application with processes mapped

to a single core. 24

Figure 2.12: A typical deployment of a hybrid MPI+KLT application where each MPI

process spans a group of kernel-level threads, each mapped to a single core. 25

Figure 2.13: Memory/Performance ratio of supercomputers since 2001. Data source: [114] 27

Figure 3.1: Stencil solver on a 2D Grid. 31

Figure 3.2: SPMD Decomposition of a 2D grid into 4 MPI Ranks. 32

Figure 3.3: MPI pseudo-code of a structured 2D grid stencil solver. 33

Figure 3.4: Traditional Decomposition vs Overdecomposed 2D grid. 34

Figure 3.5: Traditional Decomposition vs MATE Hierarchical overdecomposition. . . . 36

Figure 3.6: Simplified pseudo-code of the 13-point stencil solver. 37

Figure 3.7: Simple example of a MATE-annotated program. 39

Figure 3.8: Dependency graph of the MATE-annotated for loop in Fig. 3.8. 39

Figure 3.9: Pseudo-code example of (top) an incorrect description, and (bottom) a cor-

rect description of a MATE dependency graph. 41

Figure 3.10: Example use of MATE’s inter-rank dependencies. 42

Figure 3.11: Inter-rank dependencies for rank (0,11). 43

Figure 3.12: Example of a MATE-annotated for loop. 44

Figure 3.13: Dependency graph of the MATE-annotated for loop in Fig. 3.12. IR = Inter-

rank dependency. 44

Figure 3.14: Simple example of a MATE-annotated program. 45

Figure 3.15: Solver section of the code from 3.6, enhanced with a MATE dependency graph 47

Figure 3.16: Dependency graph generated by the code in Fig. 3.15. IR = Inter-rank

dependency. 47

Figure 3.17: Hypothetical core usage timelines. 49

ix

Figure 3.18: Example deployment of a hybrid MPI+SHM application where node co-

located MPI processes can communicate through shared memory. 52

Figure 3.19: Example deployment of a hybrid MPI+ULT application where each MPI

process is assigned a single core, but spans multiple MPI ranks, imple-

mented as ULTs. 53

Figure 4.1: Annotation and compilation flowchart of a MATE application. 58

Figure 4.2: Annotated section of the code in 3.15. 60

Figure 4.3: Step 1 of translation replaces MPI calls with its equivalent MATE call. 61

Figure 4.4: Step 2 of translation creates scheduling structures for a region-level execution. 62

Figure 4.5: Step 3 of translation creates the structures to support for-loop based graphs. 64

Figure 4.6: The final step of translation creates a surrogate main function and defines

the dependency graphs. 65

Figure 4.7: Decomposition model and implementation of a MATE process. 66

Figure 4.8: Lifetime of a MATE worker. 69

Figure 4.9: Lifetime of a MATE Rank. 71

Figure 4.10: Flowchart of the findNextRegion method. 74

Figure 4.11: Structure of an MPI request. 77

Figure 4.12: Structure of a MATE/MPI request, including local rank identifiers in the tag

field. 78

Figure 4.13: Flowchart of MATE barrier mechanisms. 80

Figure 4.14: Flowchart of MATE collecive communication operations. 81

Figure 5.1: 13-Point Stencil on a three-dimensional grid. 83

Figure 5.2: Pseudo-code of the solver kernel of Jacobi3D. 84

Figure 5.3: Verification code for Jacobi3D. 85

Figure 5.4: Pseudo-code of the manually overlapping variant of Jacobi3D. 87

Figure 5.5: Strong Scaling results for Jacobi3D on 4k to 32k Cori Phase I cores. The

number above each bar represents the total speedup compared to Basic-MPI. 89

Figure 5.6: Time spent on different phases of our solver on 32k Cori Phase I cores. . . 90

Figure 5.7: Core Timelines. (Top) Basic MPI (8 Ranks), (Bottom) MATE (64 Ranks). . 93

Figure 5.8: Timeline of local rank 0 transitioning across the 8 cores in the MATE process. 93

Figure 5.9: Strong Scaling results for Jacobi3D on 8k to 64k Cori Phase II cores. . . . 94

Figure 5.10: Time spent on different phases our solver on 64k Cori Phase II cores. . . . 94

Figure 6.1: Baseline Cannon2D algorithm where ranks shift the A and B submatrices

along rows and columns of the processor geometry, in a ring topology. . . . 100

Figure 6.2: MPI pseudo-code of Cannon2D’s solver. 101

Figure 6.3: A rank achieves overlap by receiving Ai+1 and Bi+1 submatrices for the next

step while updating the value of C with Ai×Bi in the current step. 103

Figure 6.4: MPI pseudo-code of overlapping Cannon2D’s solver. 103

x

Figure 6.5: Communication in the MATE variant of the Cannon’s solver using a hierar-

chical decomposition. We simplified this figure to show MPI messages only

across boundary ranks. However, every rank exchanges MPI messages with

neighboring processes. 104

Figure 6.6: Pseudo-code of Cannon’s algorithm enhanced with MATE annotations and

calls. 105

Figure 6.7: Rank (0,11) declares inter-rank dependencies only along its same column/row.106

Figure 6.8: Matrix Size Scaling of our three Cannon2D variants on 4k Cori Phase I nodes.108

Figure 6.9: Execution breakdown for Cannon2D on 4096 Haswell cores with matrix

sizes (top) n=12288, (middle) n=24576, and (bottom) n=40960. 109

Figure 6.10: Weak Scaling results for Cannon2D on 4k to 16k Cori Phase I cores. 111

Figure 6.11: Execution breakdown on 16k Cori Phase I cores. 111

Figure 6.12: Weak Scaling results for Cannon2D on 64, 256, and 1024 Cori Phase II nodes.112

Figure 6.13: Execution breakdown on 64k Cori Phase II cores. 113

Figure 7.1: CloverLeaf3D’s staggered grid with cell and node centric variables. 116

Figure 7.2: CloverLeaf’s main solver’s kernel and exchange operations. 118

Figure 7.3: CloverLeaf3D’s update halo() 3-stage boundary exchange procedure. . . . 119

Figure 7.4: MPI pseudo-code of Cloverleaf3D’s update halo() routine (simplified). . . 120

Figure 7.5: MPI pseudo-code of Cloverleaf3D’s exchange faces() routine (simplified). 120

Figure 7.6: MATE hierarchical variant of Cloverleaf3D’s halo exchange, represented

in 2D for simplicity. Local ranks exchange boundary field information by

direct copy while inter-process communication requires buffer packing/un-

packing. 121

Figure 7.7: MATE’s pseudo-code of Cloverleaf3D’s exchange faces() routine (simplified).122

Figure 7.8: Graph derived from MATE annotations on the exchange faces() routine. . . 122

Figure 7.9: Strong Scaling results for Cloverleaf3D on 4k to 16k Cori Phase I cores. . . 125

Figure 7.10: Execution breakdown on 16k Cori Phase I cores. 125

Figure 7.11: Strong Scaling results for Cloverleaf3D on 8k to 32k Cori Phase II cores. . 126

Figure 7.12: Execution breakdown at 512 Cori Phase II nodes. 127

Figure 8.1: Execution timeline of an imbalanced application. 130

Figure 8.2: Workload distribution of applications A and A′. 131

Figure 8.3: Computation time distribution of nodes 26, 27 and 28 on a 2048 Haswell

core-run. 132

Figure 8.4: Computation time distribution of the 32 cores on node 27, (top) without

overdecomposition, (middle) using an overdecomposition factor of 4, and

(bottom) using a hierarchical decomposition with 4 workers per MATE pro-

cess. 134

Figure 8.5: Workload imbalance across three nodes. 135

Figure 8.6: Rank-to-Rank communication distribution in mpix flowCart. Darker spots

indicate a higher communication volume; clearer spots indicate zero or little

communication. 136

xi

Figure 8.7: Workload distribution from 8.5 after inter-node rebalancing. Node 26 do-

nated one rank to node 27 which, in turn, donated six ranks to Node 28,

moving rank distribution (thick gray lines) to the left. 137

Figure 8.8: Computation time distributions of 16 MATE processes after rank re-shuffling.138

Figure 8.9: Running time breakdown of 2048 Cori Phase I cores for (top) the baseline

variant, and (bottom) the MATE rebalanced variant. 140

Figure 8.10: Execution breakdown for different multi-threading levels on Cori Phase I. . . 141

Figure 8.11: Message size histogram for mpix flowCart. 142

Figure B.1: Cache-blocking Jacobi3D Pseudo-code. 154

Figure B.2: Vectorized and cache-blocking Jacobi3D Pseudo-code. 155

Figure B.3: Linear rank mapping across nodes. 156

Figure B.4: Cubic rank mapping across nodes in Jacobi3D. 156

Figure C.1: Different level of multi-threading in MPI. 159

Figure C.2: Rendezvous (BTE protocol) and Eager (FMA protocol) strategies employed

by the MPI library. 162

Figure C.3: Performance of the baseline Flat-MPI compared to multi-threaded MATE

variants, as message sizes decrease and total message count increase. . . . 163

Figure C.4: Multi-threaded UPC++ can own different personas to avoid the need for

process-wide mutual exclusion mechanisms. 165

Figure D.1: Consecutive Balancing Algorithm. 167

Figure D.2: Shuffling Balancing Algorithm. 168

xii

LIST OF TABLES

Table 2.1: Comparison between programming languages and libraries. 28

Table 3.1: Comparison of the distributed programming models analyzed in this chapter. 56

Table 5.1: Comparison of computation times and L2 cache misses on 2k cores. 91

Table 5.2: Ratio of computation, buffering, and communication costs on 1024 nodes of

Cori Phase I (32k cores) vs Cori Phase II (64k cores) for the Basic-MPI variant. 95

Table 5.3: Ratio of computation, buffering, and communication costs on 1024 nodes of

Cori Phase I (32k cores) vs Cori Phase II (64k cores) for the MATE variant. 95

Table 6.1: Ratio of computation and communication on 64, 256, and 1024 nodes for the

Basic-MPI and MATE variants. 113

Table 7.1: Ratio of computation, buffering, and network communication operations on

128, 256, and 512 nodes for the Basic-MPI and MATE variants on Cori Phase

II. 127

Table A.1: Side by side description of our three computational testbeds. 150

xiii

ACKNOWLEDGEMENTS

I owe a debt of gratitude to my Ph.D. advisor, Prof. Scott Baden. He taught me to think

like a scientist, write like an academic, and behave like a professional. In times of complacency,

he was stern and demanding; in times of self-doubt, he was kind and encouraging. He gave me

enough leeway to develop my ideas but always made sure I stayed on track. He has generously

dedicated countless hours to reviewing, discussing, and providing me with feedback. I am ever

thankful for his guidance and friendship, and I aspire to become a scholar of his stature someday.

I am grateful to Prof. George Porter for kindly agreeing to serve as my committee’s Co-

Chair, and giving me valuable advice on my research and qualifying examinations. I am also

thankful to my committee members, Profs. Tajana Rosing, Sutanu Sarkar, and John Weare for

reviewing this dissertation and ensuring it meets the highest scientific standards.

I have been blessed with the opportunity to be part of the Computer Languages and

Systems Software (CLaSS) Group at the Lawrence Berkeley National Laboratory, under the

direction of Prof. Baden. At Berkeley, I worked alongside world-class scientists and researchers

in the high-performance computing area. I am especially grateful to Dr. Tan Nguyen, Dr. Dan

Bonachea, Dr. Paul Hargrove, Dr. Hadia Ahmed, Dr. Costin Iancu, and John Bachan who gave

me invaluable feedback on my research and parts of this dissertation. I am also happy to have

spent a summer with the ROSE Group at the Lawrence Livermore National Laboratory, under

the supervision of Dr. Dan Quinlan.

Throughout this journey, I met a multitude of amazing people, a handful of whom I now

consider my friends. My colleagues in arms from UCSD’s CSE Department, Rami Kıcı whose

invaluable friendship I could always count on; John Sarracino and Marc Andrysco with whom

I shared many beers, conversations, and chess games; and Marc’s wife-to-be, Suzanne Dunai,

whose positive spirit and support I cherish. I am also lucky to have met my friends from the

MAE department, Prakrit Dhillon and Aekaansh Verma (now in Stanford) with whom I shared

many adventures, including carrying a mini-fridge for miles at night.

xiv

I want to thank Prof. Alex Orailoglu for giving me the opportunity to serve as his teaching

assistant for CSE240A (Computer Architecture) during the Fall ’16 quarter. I learned many

valuable lessons from Prof. Orailoglu both personally and through his teaching methodology

and had a fantastic experience guiding students through the course’s material.

I received the support of amazing professionals: Dr. Maiken Gale, in La Jolla, and Dr.

Arlene Marcus, in Berkeley, that helped me find a work/life balance while keeping my sights on

the goal. I am also thankful to Dr. Rhonda Hackshaw from UCSD’s CAPS office and to Prof.

Victor Vianu for their continuous care and concern for my success in the Ph.D. program.

I am in debt to my first mentors, Profs. Graciela de Luca and Pepe Casas. Ever since I

was an undergrad student at the Universidad Nacional de La Matanza, they have given me every

opportunity to grow as a scientist and encouragement to pursue my academic goals.

Lastly, I could not have gotten this far without support from my family, friends, and

girlfriend (now wife) in Argentina. Even from afar, their love and encouragement gave me a

reason to stay motivated, pulled me through difficult moments, and reminded me why and who

am I doing this for. They have my unconditional love.

Chapters 3, 4, 5, 6, and 7 are, in part, a reprint of the material contained in the article:

“MATE, a Unified Model for Communication-Tolerant Scientific Applications”, by Sergio M.

Martin and Scott B. Baden, which appears in the Proceedings of 31st International Workshop

on Languages and Compilers for Parallel Computing (LCPC 2018), Salt Lake City, UT, USA,

October 2018. This dissertation’s author was the primary investigator and author of this paper.

Chapter 4 is, in part, a reprint of the material contained in the article: “Toucan - A Transla-

tor for Communication Tolerant MPI Applications”, by Sergio M. Martin, Marsha J. Berger, and

Scott B. Baden, which appears in the Proceedings of 1st International Parallel and Distributed

Processing Symposium (IPDPS 2017), Orlando, FL, USA, June 2017. This dissertation’s author

was the primary investigator and author of this paper.

This research was supported by the Advanced Scientific Computing Research office

xv

of the U.S. Department of Energy under contract No. DE-FC02-12ER26118 and DE-FG02-

88ER25053. This research was also supported in part by the Fulbright Foreign Student Program

grant from the U.S. Department of State.

This research used resources of the National Energy Research Scientific Computing Cen-

ter (NERSC), located at the Lawrence Berkeley National Laboratory and supported by the Office

of Science of the U.S. Department of Energy.

xvi

VITA

2010 B. Eng. in Informatics, Universidad Nacional de La Matanza

2010-2014 Teaching Assistant, Universidad Nacional de La Matanza

2013 M. Eng. in Informatics, Universidad Nacional de La Matanza

2018 Ph. D. in Computer Science, University of California San Diego

PUBLICATIONS

S. Martin, S. B. Baden, “MATE, a Unified Model for Communication-Tolerant Scientific Ap-

plications”, 31st International Workshop on Languages and Compilers for Parallel Computing

(LCPC 2018), Salt Lake City, UT, United States. October 2018.

S. Martin, M. J. Berger, S. B. Baden, “Toucan - A Translator for Communication Tolerant MPI

Applications”, 31st International Parallel and Distributed Processing Symposium (IPDPS 2017),

Orlando, FL, United States. June 2017.

F. Tinetti, S. Martin, “Optimizing a GPU Algorithm through Hardware Profiling Analysis”, 2014

International Conference on Computational Science and Computational Intelligence (CSCI 2014),

Las Vegas, United States. March 2014.

S. Martin , F. Tinetti, N. Casas, G. De Luca, D. Giulianelli, “N-Body Simulation Using GP-GPU:

Evaluating Host/Device Memory Transference Overhead”, XIX Congreso Argentino de Ciencia

de la Computación (CACIC 2013), Buenos Aires, Argentina. October 2013

xvii

ABSTRACT OF THE DISSERTATION

MATE, a Unified Model for Communication-Tolerant Scientific Applications

by

Sergio Miguel Martin

Doctor of Philosophy in Computer Science

University of California San Diego, 2018

Professor Scott Baden, Chair

Professor George Porter, Co-Chair

We present MATE, a new model for developing communication-tolerant scientific appli-

cations. MATE employs a combination of mechanisms to reduce or hide the cost of network and

intra-node communication. While previous approaches have been proposed to either source of

communication overhead separately, the contribution of MATE is demonstrating the symbiotic

effect of reducing both forms of data movement taken together in a single unified model. We

explain the rationale behind our model and show its effectiveness in three scientific computing

motifs on up to 64k cores of the NERSC Cori supercomputer. Lastly, we show how MATE can

improve the workload balance of an irregular multigrid solver.

xviii

Chapter 1

Introduction

Supercomputers play a fundamental role in a wide range of scientific fields such as

weather forecasting [72], medicine [39], computer-aided design [45], military [74], and simu-

lation of natural disasters [29]. As scientific applications become larger and more sophisticated,

however, so does their need for increasingly powerful supercomputers.

Fortunately, continual developments in both computer architecture and interconnects

have led to an exponential growth in the performance of top supercomputers, increasing by

an order of magnitude roughly every decade [114]. Currently, the most powerful computer, Oak

Ridge National Laboratory’s Summit, delivers a staggering peak performance of 187 petaflops

(1.87×1017 floating point operations per second). The upcoming milestone, the first Exascale

(1018 flops) supercomputer is on the horizon.

Exascale supercomputers will enable new breakthroughs in science and industry [38, 9].

However, due to their unprecedented number of processing elements and the complexity of

memory hierarchies and interconnect, these computers will demand extraordinary efforts from

system designers, network architects, and application programmers alike [28]. Of the many

hurdles involved, coping with the ever-growing costs of communication is, perhaps, one of the

most daunting, especially on applications that are memory-bound or sensitive to network latency.

1

The goal of our research is to facilitate the reduction of Intra-Node and Network com-

munication costs on large-scale scientific applications. These costs have a notable impact in the

performance at large scales (e.g., communication cost makes up to 68% of the running time in

non-optimized De Novo Genome assembly codes [43]).

Traditional programming models and libraries, such as MPI [103], have provided intu-

itive and scalable ways to develop distributed memory scientific applications for decades. How-

ever, these models have become increasingly incapable of providing mechanisms for tolerating

the large communication overheads in modern supercomputers. Although several new models

have been proposed to help reduce either (intra-node or network) source of communication cost,

none of them have established a way to tackle both costs taken together. As a consequence,

communication-tolerant applications require the use of hybrid strategies that combine multiple

models, making them difficult for domain-area experts to develop.

To address these shortcomings, we have developed MATE, a programming model that

reduces all sources of communication overhead in scientific applications. MATE provides hier-

archical decomposition and dependency-driven semantics that support communication reducing

performance programming within a single unified model. MATE’s unified model enhances its

communication-reducing benefits while avoiding the complexity of mixing two programming

models. We have implemented MATE as a programming framework comprising an annotation

model, a source code translator, and a runtime system library.

In this dissertation, we explain the rationale behind MATE’s mechanisms and show its

benefits on three scientific computing motifs on up to 32k cores of the NERSC Phase I and

64k cores of the NERSC Cori Phase II supercomputers. Additionally, we show that MATE can

improve the workload balance of an irregular multigrid-based solver.

2

Research Contributions

• We introduce MATE, a new approach to developing distributed scientific applications that

integrates communication-reducing mechanisms into a single programming model, pro-

viding a benefit that is greater than the sum of the parts.

• We show how our model supports hierarchical decomposition and locality models that

enhances the ability of overdecomposition to deliver communication/computation over-

lap, while managing the growth in intra-node data motion without the need for a hybrid

programming model.

• A programming framework comprising of a source-to-source translator, annotation syntax,

and runtime system that exposes MATE’s communication-reducing mechanisms while

requiring modest change to an MPI application source code.

• We show that MATE can realize a noticeable reduction in communication cost in three

large-scale application motifs, exceeding the performance of other communication-tolerant

models.

• We show how MATE’s mechanisms can reduce the cost of communication of complex

applications, such as Cloverleaf3D, in which a manual refactoring for overlapping com-

munication and computation would be impractical.

• A new approach to reducing load imbalance in irregular applications that combines the

benefits of static and dynamic load balancing approaches.

Dissertation Outline

Chapter 2 introduces the background and motivation for our work, including the chal-

lenges and main approaches to developing communication-tolerant applications and the need

for a unified model for communication-tolerant programming.

3

Chapter 3 describes the MATE model and its communication-reducing mechanisms and

explains how MATE improves over prior work on communication-tolerant models. Chapter 4

details the implementation and design of MATE’s programming framework.

Chapters 5, 6, and 7 provide experimental results on three scientific application motifs

on up to 64k cores of the Cori Phase II supercomputer. The first test case, Jacobi3D represents

a Jacobi-based stencil solver for the Poisson equation, the second test case, Cannon’s Algorithm

represents a dense matrix-matrix multiplication algorithm, and the third case Cloverleaf3D, rep-

resents a Fortran-based hydrodynamics benchmark.

Chapter 8 introduces the cost of work imbalance and how MATE can reduce its impact.

Chapter 9 enumerates the current limitations of the MATE model, discusses future re-

search directions, and provides concluding statements.

4

Chapter 2

Background and Motivation

2.1 Overview

In this chapter, we describe the anatomy of modern supercomputers and introduce the

most widely used programming paradigms for developing scientific applications. Second, we

discuss the sources of communication cost in large-scale computing and how to measure them.

Third, we describe the challenges and proposed solutions for developing communication-tolerant

applications. Lastly, we provide a future outlook on the costs of communication and how they

motivate our work.

2.2 Anatomy of a Supercomputer

Today’s largest Petascale supercomputers comprise O(107) processor cores, and studies

estimate that future Exascale supercomputers will require O(108) cores [7]. To achieve this

degree of concurrency, supercomputers need to grow in two ways. First, they need to increase

the number of nodes connected through a high-speed interconnect. Second, they need to increase

the number and efficiency of the processor cores inside each node.

5

2.2.1 Node Architecture

A node is the main computing component of a supercomputer. Nodes are server-grade

computers that contain: (a) one or more multi-core processors and/or many-core devices, (b) a

memory hierarchy, and (c) a network interface controller (NIC). Fig. 2.1 shows a representative

example of the processor topology and memory hierarchy of a computing node from Cori Phase

I [107], a Cray XC40 system located at the National Energy Research Scientific Computing

Center (NERSC).

Figure 2.1: Configuration of a 32-core NERSC Cori Phase I (Haswell) Node.

In Cori Phase I, each node contains two 16-core Intel “Haswell” processors, identified

as packages P#0 and P#1 in the figure. A package or socket corresponds to a processor chipset

on the node’s motherboard that provides connectivity to other components of the node (e.g.,

RAM, PCI-e channels, NIC). Some supercomputers also employ massively parallel many-core

processors (e.g., NVIDIA Volta [108] and Intel Xeon Phi [100] architectures) as part of their

compute nodes. These devices base their potential in implementing processors with large number

of lightweight cores that excel at vector operations.

Similar to conventional computers, supercomputer nodes expose a memory hierarchy

6

comprised, at its top level, by a node-wide RAM accessible by all the cores in the node. This

memory is distributed into different segments, called Non Uniform Memory Access (NUMA)

domains. The organization of NUMA domains mirrors physical constraints. For example, in

the case of Cori Phase I nodes, each of its two sockets is directly connected to an array of

memory modules (totaling 63GB each, for a 126GB total), representing a NUMA domain, while

a fast data bus bridge connects the two NUMA domains. Consequently, cores accessing memory

residing in a different NUMA domain will suffer from a higher latency, hence the non-uniformity.

At the lowest level, each Haswell processor contains core-specific L1 instructions and data and

L2 cache structures (32kb and 256kb, respectively) and an L3 cache structure (40MB) shared

between all cores.

2.2.2 Interconnect Design

Unlike conventional workstations or personal computers, large-scale supercomputers do

not provide a cache-coherent global memory address space. Instead, the total available system

memory comprises the interconnected union of the disjointed memories of its constituent nodes.

This configuration requires the use of an efficient network interconnect that allows for a fast

exchange of data among any two nodes. To enable this connectivity, network architects design

and employ network topologies. These topologies describe the way in which to organize nodes,

routers1, and cabling. The job of a network architect is to design topologies that minimize the

cost of communication while keeping power and money budgets constrained.

Traditional network topologies, such as the Folded Clos (fat-tree) [62], proven to be ef-

ficient in smaller scales, incur a prohibitive cost for exascale supercomputers because of the

number of routers and cabling complexity required. Such a network would dominate the costs

of a supercomputer, both in budget and energy costs [55]. On the other hand, highly-scalable

topologies for Petascale and Exascale supercomputers have been proposed to reduce the com-

1Network devices that forward data packets between nodes.

7

plexity of their interconnect. The Flattened Butterfly [56] and Dragonfly [57] topologies have

proven to be less costly in the number of nodes thanks to the use of optical cables in global

channels which have been proved to achieve high-bandwidth connectivity with reduced router

and cabling costs.

The Aries interconnect [106] in Cray XC40 supercomputers, for example, uses a dragon-

fly topology that is organized in a four-level hierarchy. Level 0 consists of four nodes allocated

inside one custom-designed integrated circuit (blade). Communication inside a blade is driven

through a high-speed router that serves as the main gateway for all four nodes. Level 1 consists of

16 blades allocated inside one chassis. Communication is routed through high-bandwidth wires

across a circuit board that connects all blade routers. Level 2 consists of 3 chassis allocated

inside one cabinet. Communication is managed by a blade router connected by copper cables.

Finally, level 3 represents the entire supercomputer and uses high-bandwidth optical cables and

routers. This configuration guarantees a maximum of four hops2 required to communicate a

message from one node to another.

2.3 Costs of Communication

In this section, we analyze the two primary sources of the cost of communication in a

distributed memory scientific application: Intra-Node, and Network communication.

2.3.1 Intra-Node Communication

We define intra-node communication as data transfers between cores within the same

node. This operation brings a negative impact on performance as processor cores spend time

producing and waiting for data that could otherwise be spent in performing useful computation.

The cost of intra-node data motion has been growing steadily over time due to tech-

2The re-transmission of a data packet between intermediate routers connecting any two nodes.

8

nologic factors. Until about a decade and a half ago, increasing computational performance

depended almost exclusively on single core processors to deliver higher clock speeds. However,

after the Intel Pentium’s 4 Tejas processor was canceled in 2004 [40], it became evident that

increasing the complexity and power of single-core processors to meet the growing demands

was no longer possible; we had hit the infamous power wall [84], the point at which heat output

and energy consumption made it impossible to keep increasing the clock frequency of CPUs.

This limitation motivated the development of multi-core and many-core processors architectures

where multiple, yet simpler, cores collaborate under the same memory space.

However, as multi and many-core processors become a staple in modern supercomput-

ers, increasing their computational power, this progress has not been accompanied by a similar

increase in main memory performance. The asymmetry between computational and memory

performance is known as the memory wall problem [118] and still represents a limiting factor

for many large-scale scientific applications.

Figure 2.2: Example roofline diagram that compares two applications. Application A, limited

by memory bandwidth, and Application B, limited by the peak CPU performance.

The relationship between processor and memory performance on a scientific application

can be measured using the Roofline Performance Model [116]. This model uses three inputs: (1)

the arithmetic intensity of an application (i.e. the number of floating point operations computed

9

per byte of data transmitted from/to memory, measured in flops/byte), (2) the peak CPU perfor-

mance, and (3) the peak memory bandwidth. The output, a roofline diagram as shown in Fig.

2.2, offers an intuitive way to visualize the maximum attainable performance of an application

executing in a multi-core system.

The point at which arithmetic intensity meets the roofline function - delimited by the max-

imum memory bandwidth and CPU peak performance - indicates the application’s maximum

attainable performance (measured in flop/s). The example in Fig. 2.2 represents the estimated

performance of two applications. Application B has a higher arithmetic intensity (right side of

the diagram) and is only limited by the peak CPU performance. On the left, application A has a

lower arithmetic intensity (requires a higher transfer rate from/to memory) and its performance

is therefore limited by memory bandwidth.

The negative impact of the memory wall problem in scientific application grows as the

performance gap between processors and main memory keeps widening [46]. This phenomenon

has a severe impact when on performance, especially on applications that are limited by memory

bandwidth. The ever-increasing core per node counts exacerbate this problem as each core puts

additional pressure on main memory. Current multi- and many-core systems are particularly

affected by this problem, forecasting a performance bottleneck in Exascale systems as well.

2.3.2 Network Communication

The cost of network communication comes from the time spent on data transfers among

processes residing in different nodes across the network. As supercomputers grow larger in

the number of nodes and the size of their interconnects, this cost overhead becomes a more

significant part of an application’s running time. On distributed memory applications, processes

residing in different physical address spaces need to move data explicitly over the network. Since

these operations transcend the boundaries of a node’s memory, their cost typically exceeds that

of intra-node communication. For this reason, reducing the impact of network communication

10

on large-scale applications will be crucial to achieving Exascale performance.

The LogP model [30] offers a general approach to estimate the impact of network com-

munication in a distributed application. The name of the model, LogP, is formed by the four

arguments that it takes as input: L represents an upper bound on the latency incurred in com-

municating a message containing word from one node to the other; o represents the overhead,

defined as the time a processor is busy in the transmission or reception of the message; g repre-

sents the gap, defined as the interval between consecutive message transmissions or receptions

at a processor, and; P represents the number of processors or nodes in execution.

LogP provides an in-depth analysis of the impact of network communication, even in

complex applications such a distributed FFT algorithm [27]. A simpler model for estimating this

cost, the αβ model [87], however, provides enough insights to support our explanation. The αβ

model represents the cost of network communication as the time taken (T) for any data transfer to

be transmitted from one node a to another node b as described by the formula: Ta,b = α+β×n.

Where: α = La,b, and β = 1/Bmax. The value of La,b represents the latency between

two nodes a and b, n represents the size of the message, and Bmax represents the maximum

bandwidth capacity of the interconnect. The latency factor can be estimated from the number of

routing hops (Ha,b) required to connect both nodes multiplied by an estimated cost per hop (h),

plus a fixed overhead per message (s), as shown in Eq. 2.1. The fixed per-message overhead (s)

is caused by both software (e.g., a communication library can require filling a software buffer

before sending) and hardware factors (e.g., network interface start-up time)

La,b = Ha,b×h+ s (2.1)

One observation we can draw from the αβ model is that, for small message sizes, the

cost of latency dominates the overall cost of communication. It follows that a large per-message

overhead can significantly impact performance on algorithms that require sending many small-

sized messages. Indeed, we have observed this phenomenon in some of our test cases (see

11

chapter 8). We have also observed that contention for access to the communication library or

the network interface in multi-threaded applications can also increase per-message overheads,

causing an adverse effect on performance. We analyze this phenomenon in further detail in

Appendix C.

2.4 Distributed Programming Paradigms

To muster the computational power of a supercomputer, developers design their appli-

cations guided by a distributed programming paradigm. These paradigms describe the way in

which a distributed memory parallel application computes a solution, how it distributes its work-

load among system’s resources, and prescribes the logic for communication and synchronization.

Several of these paradigms have been proposed, each with their own set of advantages and dis-

advantages. A careful choice of programming paradigm plays an essential role in attaining the

maximum performance for a given application.

2.4.1 SPMD

Single (Same) Program, Multiple Data (SPMD) [10, 33] is one of the most used paradigms

in scientific computing. The fundamental characteristic of an SPMD application is that it dis-

tributes its workload among smaller partitions that can be solved in parallel by multiple pro-

cesses executing the same program. Thanks to this principle -assuming no bugs or semantic

errors–, an SPMD application that executes correctly on a multicore processor can also execute

correctly on the millions of cores of a supercomputer [13].

A typical SPMD application decomposes its workload evenly3 among the system’s com-

putational resources. The workload is split into a set of n partitions, each solved by one of n

3Even distribution is a preferable condition rather than a prescription of the SPMD paradigm. Indeed, some

problem domains cannot be evenly divided due to their irregular topologies. In those cases, the problem of load

imbalance occurs, where some nodes or cores perform more work than others and causing an overall decrease in

performance. We discuss this phenomenon in Chapter 8.

12

Figure 2.3: Execution model of an SPMD application.

processes, as shown in Fig. 2.3. Each process is presumed to use a different computational

resource (e.g. a processor core) and live in its own address space in which its partition is stored.

During the lifetime the application, processes regularly exchange data through message passing.

An SPMD application finishes its execution when all processes have finished their part of the

workload, contributing to the final result.

The Message Passing Model, expressed through its community-based standard Message

Passing Interface (MPI) [103], is the most widely used model for writing SPMD applications.

Most implementations of the MPI interface (e.g. MPICH [104], MVAPICH [105], openMPI

[110], Intel MPI [99], Cray MPI [97]) instantiate each MPI rank as a separate operating system

process, providing a support for address space isolation.

Figure 2.4: Two-sided Communication Protocol.

Since MPI applications run across separate memory spaces, processes exchange data

using a two-sided (a.k.a., Message Passing) communication protocol, which provides a way to

13

exchange messages between two processes while also providing a synchronization mechanism.

In the Two-Sided Communication protocol, two processes, sender and receiver, explicitly agree

to participate in the exchange of a message. The protocol requires that every send request issued

by a sender process matches a receive request in the receiver process, as illustrated in Fig. 2.4.

The synchronization aspect of this protocol comes from guaranteeing that the receiver process is

ready before copying the data into the destination buffer4.

Figure 2.5: One-sided Communication Protocol operations: put and get.

Later specifications of MPI (now at MPI-4.0 [102]) expose globally-shared allocations,

called windows that enable one-sided communication (a.k.a., Remote Memory Access) opera-

tions. These operations allow a process to perform read or write operations on the memory space

of another, typically by specifying a global pointer, without the need of a reciprocal request from

the remote process. A process can perform two operations, put and get, that communicate data

to/from private and global pointers. A put operation copies data from a private array in the issu-

ing process onto a global array in the receiving process. A get operation pulls data from a global

array in another process into the private space of the issuing process. Both operations require

the use of global pointers to indicate the remote memory position they access.

4Under certain conditions, MPI allows the sender to issue a message earlier, storing it in an intermediate buffer

until the receiver is ready. Although this approach allows the process to continue earlier, it also incurs in additional

data motion, which is one of the primary costs of communication (see section 2.3.1).

14

2.4.2 PGAS

The Partitioned Global Address Space (PGAS) model [31] provides a framework for

global memory that is meant to execute in multiple disjoint physical memory spaces. The PGAS

model seeks to integrate the simplicity and scalability of the SPMD paradigm with the benefits of

a shared memory communication model by introducing the concept of a global address space. A

global address space allows a PGAS program to make a distinction between memory allocations

which are private (i.e., only accessible by a given process) and those which are global (i.e,

accessible by all tasks in the execution).

A global allocation may be located either within the address space of a single process or

partitioned across multiple address spaces. A process accesses a global allocation by obtaining

its global pointer plus an offset. The global pointer encapsulates the information of the allo-

cation, required to resolve the owner process and local pointer of the referenced element. The

actual location of a partition (i.e., the process that contains it) does not affect the correctness of

a PGAS program since global pointers are equally accessible by all processes.

Unified Parallel C (UPC) [12], is a PGAS extensions to the C language (similar exten-

sions have been developed for other languages as well, such as: Coarray Fortran [53], and

Titanium [74] for Java]). UPC allows the creation of global arrays that are split into partitions,

each belonging to a particular process, specified through its affinity.

Figure 2.6: Partitioning of a shared array in UPC and examples of communication.

UPC’s model takes advantage of language structures to define communication. Instead

15

of having the programmer insert explicit calls to communication routines, UPC performs a one-

sided communication operation implicitly every time the code reaches an expression or assign-

ment statement involving a remote partition. Fig. 2.6 shows an example of a UPC application

that partitions a globally accessible allocation containing 100 integer elements among four pro-

cesses, each containing 25 elements in their private address space. For large messages, however,

individual accesses can produce large overheads. To address this issue, UPC also provides sup-

port for one-sided communication that only requires a single operations.

2.4.3 Asynchronous PGAS

The Asynchronous Partitioned Global Address Space (APGAS) model extends the PGAS

model with ideas from task-based asynchronous execution model [83], which describes the se-

mantics of an application as a hierarchy of tasks that are dynamically created and scheduled

during the execution time.

A task-asynchronous application starts its execution as a set of initial tasks. At certain

points of execution, tasks reach a bifurcation point in which sub-tasks are created. Sub-tasks

execute a specific function or subroutine and can be instantiated in either the same process as

their parent task or in a remote process. A programmer can specify the parent tasks to suspended

until every generation of successive subtask finish. This behavior can be nested so that each

subtask themselves can extend the execution hierarchy.

Figure 2.7: Execution timeline of an asynchronous application.

16

Fig. 2.7 shows an execution graph of a task-based asynchronous program with multiple

levels of descendant tasks. Parent tasks suspend their execution only to resume after all their

descendant task finish. For example, Task 0,1 resumes immediately after Tasks 0,0,1 and 0,0,0

finish execution. The same happens with Task 0, after Task 0,0 and 0,1 finish.

X10 [23] is an task-based object-oriented PGAS language that introduces the notion of

an async function. Async represents a Remote Procedure Call (RPC)5, operations that execute

a function at a local or remote process. X10 also defines a finish function in which a parent task

can then be set to wait for one or multiple children tasks. The finish function represents an RPC

incoming from a remote process to signal the completion of a previously instantiated task. X10

expresses locality through the notion of places, logical abstractions that identify the physical

resource where a task is executing. By specifying a place, allocations can be performed locally

(same place as calling task), or remotely (in a different place).

The Habanero [21] project implements the concepts derived from X10 into standard

languages such as Java, C, and C++. Habanero also serves as a platform to test the performance

of task-based asynchronous paradigm on new communication libraries [60].

UPC++ [121] is a C++ library to that abstracts the complexity of the underlying PGAS

communication layer by providing an intuitive programming interface. In UPC++, processes

exchange data only through one-sided communication operations. To verify that a one-sided

operation has finished, UPC++ returns every rput and rget operation as a future object that

stores the status of the operation. The underlying communication layer updates the completion

status of a future as soon as the operation finished, while the future exposes methods to verify

its completion.

Charm++ [53] is a parallel programming framework that extends the standard C++ syn-

tax with language artifacts based on the Charm programming language [78]. Charm++ provides

an object-based API that defines tasks as chares, programmer-defined C++ classes that inherit

5RPCs are similar enough in concept to other terms coined in the literature such as Active Messages [91] and

Remote Method Invocation (RMI) [53], and we consider them as synonyms in the context of our work.

17

a set of base chare methods. Chares evaluate locality by residing in a processing element (PE).

PEs indicate the physical node or processor that is in charge of executing the chare. Communica-

tion occurs during the remote invocation (RPC) of a chare. When the invocation passes a global

pointer as a parameter, the Charm++ runtime system will make sure the data referenced by the

pointer is available to the remote chare’s processing element (PE) before invoking the procedure

at the receiving end.

2.4.4 Dataflow

The Dataflow paradigm defines the semantics of a program as a producer/consumer re-

lationship. This paradigm has been adopted from the design of out-of-order processors (the

earliest instances of such processors were the IBM System/360, implementing Tomasulo’s Algo-

rithm [89], and the CDC 6600, implementing the Scoreboard algorithm [88].) and then proposed

for high-level parallel and distributed applications.

A Dataflow program runs as a set of tasks. A task represents a section of the code

(statements, regions, or entire procedures) that produces data elements as a result of its execution

upon which other tasks depend. Tasks do not execute until all their data dependencies become

available [1, 36]. A Dataflow program provides a static description of a directed acyclic graph

(DAG), where tasks represent nodes and edges represent data dependencies. The DAG prescribes

the execution order and concurrency of the tasks, rather than their placement order in the code.

Fig. 2.8 shows an example application that describes an iterative loop with three tasks

(t0, t1, and t2), and four data elements (A, B, C, and D). The initial t0 produces A and B, which

are consumed by tasks t1 and t2, respectively. In turn, tasks t1 and t2 produce the data elements

required by t0 to execute again. The termination of a program can be prescribed as a condition

inside the code of any such tasks.

Most Dataflow models handle communication implicitly, without the intervention of the

programmer. That is, the compiler or the runtime system decides the flow of data and which

18

Figure 2.8: Example DAG in a Dataflow application.

communication mechanisms to use. This high-level description of a distributed application fa-

cilitates the programmer’s job, since it only requires a description semantics of the program and

its data dependencies, without the need for communication semantics. On the other hand, since

Dataflow applications typically resolve their communication strategy in real-time, this may re-

sult in lower performance when compared to an application that uses explicit communication

operations.

Swift [117] is a C-like language and compiler that constructs the underlying DAG of a pro-

gram through a fine-grained analysis of its statements. These statements will not execute in the

order they are placed but instead scheduled to execute based entirely on their inter-dependencies.

During execution, Swift’s runtime system creates one task for each statement in the program and

manages their data dependencies in real-time, while optimizing data and task locality.

The Legion [16] programming language schedules entire tasks based on data availability.

A Legion program makes a distinction between data and task semantics. The program groups

data elements into regions with different privilege levels (exclusive, simultaneous, among others)

that determine whether data can be freely accessed by multiple tasks simultaneously or in strict

order. The order in which data objects are processed is defined by the dependency graph as

described statically by the programmer in the code.

SMPSs [76] is a task-based dependency model now used in OpenMP Tasking [73]. The

19

SPMSs model describes the semantics of a program as a set of functions that can be executed as

soon as (and only if) their input dependencies are satisfied. Programmers specify dependencies

by prepending #pragma to the definition of a function. Each function may have input, output,

or input/output dependencies. An input dependency is satisfied when a function with an output

dependency of the same name finishes execution.

The Tarragon model [26] uses a coarse-grain dataflow model [11] where tasks represent

entire atomically-executed procedures, instead of single statements. The DAG in Tarragon con-

nects different tasks (nodes) with directed edges among them. Each edge specifies a message to

be sent or received by a set of two tasks. The set of incoming edges comprise a task’s firing rule.

When the firing rule is triggered (i.e. all messages have arrived), Tarragon’s runtime enables

the task to execute. Research with the Tarragon model shows that, by describing data dependen-

cies as incoming/outgoing network communication, a Dataflow application can hide the cost of

latency communication [25].

2.5 Communication Tolerant-Programming

Although several programming models and paradigms have been proposed for develop-

ing distributed memory applications, the SPMD paradigm (and more specifically, MPI) contin-

ues to be the most widely used. The appeal of the SPMD paradigm it that it prescribes a way

to distribute the workload that is independent of the way the solution is computed. In this chap-

ter, however, we explain why this traditional approach is becoming mostly unable to handle the

ever-increasing costs of communication in Peta- and Exascale applications. We discuss these

limitations and the difficulties of developing communication-tolerant scientific applications.

20

2.5.1 Communication/Computation Overlap

Many SPMD applications use the Bulk-Synchronous model [92] to specify the way in

which these processes communicate and execute. This model represents a powerful tool to de-

scribe the iterative nature of the majority of scientific application motifs. Its main contribution is

the idea that an application can perform computation and communication in separate, indepen-

dent steps. This abstraction between communication from computation logic makes it easy to

develop new distributed applications as well as adapting legacy/sequential codes to distributed

execution.

In a bulk-synchronous application, the behavior of each process is defined in supersteps.

At each superstep, every process performs one, or a combination of two substeps: (1) compute,

and (2) exchange partial results. The data required for the next superstep will not be available

until all processes finish their current superstep. This behavior implies a barrier at the end of

each superstep where all processes synchronize.

Figure 2.9: Core usage timeline of a process under the bulk-synchronous model.

Fig. 2.9 illustrates a hypothetical execution timeline of n processes under the bulk-

synchronous model. The figure shows the effective core usage (i.e., the time spent performing

actual computation) solid blocks. The diagonally hatched blocks represent communication oper-

ations. An upwards arrow indicates the start of a message exchange request, and a downwards

arrow represents its completion. Since all computation in this iterative solver is presumed to

depend upon the arrival of data, the core remains idle during the communication phase.

21

The problem with this traditional approach is that, during communication operations, the

computational resource (core) remains idle in wait for the arrival of data. Fig. 2.9 shows that

none of the processes perform any useful work during the communication phase. This situation

represents a waste of computational power since, hypothetically, cores could be instead used

to perform useful computation during that time. Therefore, an application naively programmed

under the bulk-synchronous model suffers from the full cost of network latency. The impact in

performance due to core under-usage during the communication phase can be estimated with the

formula in Eq. 2.1.

Some computational motifs are particularly susceptible to the cost of latency. Spectral

methods (FFT) [18], for instance, require all-to-all communication patterns where all nodes need

to communicate with each other regularly, making these algorithms difficult to scale efficiently.

Therefore, it will be necessary for large-scale scientific applications to employ techniques or

models that reduce or hide the cost of network communication as much as possible.

One way to reduce the impact of network latency is to manually restructure a program to

enable communication/computation overlap by splitting the computing sections of the program

into distinct communication dependent and independent sections, e.g. via split-phase coding

[59]. This approach improves CPU usage and reduces the impact of communication and delays

by keeping cores performing useful computation while data is being transmitted without the

need for overdecomposition, resulting in a decrease in running time. Fig. 2.10 shows the effect

of these transformations where data-independent computation is performed during the commu-

nication phase, resulting in better core usage and performance.

Although reducing the cost of network communication data motion involves primar-

ily overlapping computation with communication, other approaches include communication re-

ordering [61], concurrency optimizations [22], and communication avoiding algorithms [15, 44].

The main hurdle in implementing these approaches is, however, that they require significant

domain-specific refactoring of the source code that may prove to be impractical in large ap-

22

Figure 2.10: Core usage timeline of a split-phase application that employs separate communi-

cation dependent and independent computation to achieve communication / computation over-

lap.

plications. Furthermore, these approaches entangle application logic with implementation pol-

icy, refuting the main appeal of the bulk-synchronous model. As a consequence, implementing

communication-tolerant applications by hand requires a painstaking amount of effort by the pro-

grammers.

2.5.2 Data Motion Reduction

The growing gap between the computational performance of multi/many-core processors

and memory hierarchies demands scientific application developers to develop new solutions that

reduce the impact and volume of data motion to improve intra-node performance. There are two

ways in which a memory-bound application can improve its intra-node performance.

First, by making better use of the memory hierarchy. Many well-known techniques im-

prove an algorithm’s memory access patterns to reuse data in cache lines as much as possible

[58], enabling them to reach cache bandwidth-bound performance (In Fig. 2.2, this means that

application A extends upwards). These techniques often require refactoring (e.g. cache blocking)

of the computational parts of the application.

Second, by reducing the volume of intra-node data motion. Unnecessary or excessive

transference of data inside a node’s physical memory space decreases an application’s arithmetic

intensity (moving application A leftwards, an adverse effect), especially on those that are already

23

memory bound. Reducing this cost represents a challenge since it requires refactoring both

communication and computation aspects of the application.

Most implementations of the MPI interface instantiate each rank as a separate operating

system process. The benefit of this configuration is that not only simplifies implementation but

also guarantees that every process will operate in a private address space. Fig. 2.11 illustrates

how k×m MPI ranks assigned to their own OS process across k nodes containing m cores and

connected through a network.

Figure 2.11: A typical deployment of an example MPI application with processes mapped to

a single core.

The problem with process-isolation is, however, that it does not provide an intuitive

way for MPI applications to make use of shared memory structures. MPI processes typically

exchange messages involve in a series of steps: (1) the sender process packs data into a buffer,

(2) sends the buffered message to the receiver’s memory space, and (3) the receiver unpacks the

message into its memory space. All these steps are necessary for communicating data between

disjoint memory spaces, but impose unnecessary memory bandwidth pressure when performed

inside a node, where data is already available in physical memory space, resulting in a loss of

arithmetic intensity.

Threading libraries, such as OpenMP [73] and POSIX Threads [112], have been pro-

posed and widely used to develop parallel applications for multicore architectures. These li-

braries operate by instantiating kernel-level threads (KLT), OS-scheduled structures that contain

the execution state of a processor and lives inside the scope of an OS process. KLTs share the

24

same program and memory space with other KLTs living in the same process. Instantiating mul-

tiple KLTs that execute in parallel allows processes to make use of multiple cores collaboratively.

The OpenMP interface provides a simple means to instantiate and synchronize the execution of

threads, making it easy for a programmer to create a multi-threaded parallel application.

The motivation behind threaded models is that they enable the use of shared memory

for communication. When two threads execute on the same node, they can operate on the same

address space allowing neighboring threads to access data directly by without the need for buffer-

ing or explicit communication. KLT-based libraries are, however, limited to express parallelism

within a single node and are thus unable to extend across distributed memory. Moreover, multi-

threaded applications require synchronization mechanisms to prevent data hazards.

Figure 2.12: A typical deployment of a hybrid MPI+KLT application where each MPI process

spans a group of kernel-level threads, each mapped to a single core.

Hybrid (aka MPI+X) models, such as the MPI + Kernel Level Threads (MPI+KLT)

model [35], have been proposed as a way to address the intra-node data duplication problem

while enabling a distributed execution. These models employ two levels of communication in

which MPI manages inter-node communication while a threading model manages shared mem-

ory among threads inside each node, as shown in Fig. 2.12.

The MPI+KLT approach reduces the cost of intra-node data motion by having fewer

MPI processes per node (typically, one per NUMA domain) which, in turn, instantiate as many

threads as cores in the node. Threads belonging to the same process communicate through shared

memory without the need for message passing. Some work has also been proposed to instantiate

25

MPI ranks themselves as kernel-level threads, also providing native shared memory access [85].

The disadvantage of the hybrid approach is that it requires combining a threading model

with a messaging model for communication across a network, which poses two problems. First,

it requires the design of data exchange and synchronization logic for both levels of commu-

nication, complicating the design of the application. Second, it may expose inefficiencies in

the interaction between the two communication models (e.g., require all threads to synchronize

before issuing MPI calls and forcing serialization of communication operations).

2.6 Future Outlook

Across the last two decades, supercomputers have seen a steady increase in computa-

tional power due to a combination of more powerful multi-core/many-core processors and a

scaling in node performance. However, as we reach the end of Moore’s Law [69] era, this trend

can no longer be supported by increments in the power of conventional processors [82]. This

prospect suggests that, other than investing in alternative technologies, there will be an increased

dependency in the node scaling of supercomputers to reach Exascale performance.

As the size of supercomputers grows, however, it becomes more likely that any two

communicating nodes will be separated enough to require communication through global links.

Therefore, messages will require, on average, a higher number of routing hops (H) to reach

their destination, resulting in an increased overall cost of latency. As a consequence, the cost

of network latency is expected to become a significant component of an application’s running

time. We can, therefore, infer that the separation between computation and communication

phases during execution in the bulk-synchronous model will represent a critical constraint to the

performance of Exascale applications.

Another trend in supercomputers is that their memory capacity fails to scale at the same

pace as computing capacity. According to the Top500 supercomputer list [114], the current

26

#1 in the world, Oak Ridge National Laboratory’s Summit supercomputer [109] provides 0.015

byte/flops ratio, whereas 2001’s #1 supercomputer, Lawrence Livermore National Laboratory’s

ASCI White supercomputer, provided a 0.5 bytes/flop ratio. Fig. 2.13 shows the ratio for the top

#1 supercomputers since 2001. The trend shown in the figure carries two consequences:

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year

0.01

0.02

0.04

0.08

0.16

0.32

0.5

B
yt

es
/F

lo
p/

s

Top#1 Supercomputer Memory Capacity / Node Performance Ratio

Figure 2.13: Memory/Performance ratio of supercomputers since 2001. Data source: [114]

First, future supercomputers will have steeper memory-bound rooflines due to the in-

creased difference between peak CPU performance and peak memory bandwidth, making Exas-

cale applications more likely to be memory-bound. Therefore, any loss in arithmetic intensity

due to inefficient or redundant intra-node data motion will have a more detrimental impact.

Second, since the memory capacity of a node is decreasing relative to peak performance,

distributed applications will compute their workload in shorter bursts, requiring a higher fre-

quency and volume of inter-node communication. Therefore, the cost of latency will represent a

more significant part of their running time. In conclusion, Exascale applications will suffer from

both intra-node and network communication costs, forcing developers to tackle both overheads.

Several programming paradigms and communication models have been proposed to de-

scribe distributed memory applications that enable scientists to take advantage of the power of

modern supercomputers. Table 2.1 shows a comparison of the features of the most widely used

programming models for scientific applications. A wide range of distributed scientific applica-

27

Table 2.1: Comparison between programming languages and libraries.

Communication

Model Paradigm RPC One-Sided Two-Sided Language-Driven Implicit

MPI SPMD ✓ ✓

UPC PGAS ✓ ✓

Coarray Fortran PGAS ✓ ✓

Titanium PGAS ✓ ✓

UPC++ APGAS ✓ ✓

X10 APGAS ✓ ✓

Habanero APGAS ✓ ✓

Charm++ APGAS ✓ ✓

Swift Dataflow ✓

Legion Dataflow ✓

SMPSs Dataflow ✓

Tarragon Dataflow ✓

tions (both legacy and current) remain developed under the SPMD paradigm (MPI). Despite their

success traditional SPMD applications will fall short in addressing communication demands.

Reducing network communication costs requires distributed applications to implement

communication/computation overlap or communication avoiding mechanisms to reduce the cost

of network latency. Although prior work has proposed ways to reduce the impact of either source

of communication cost have been proposed, some questions remain unanswered:

1. How to combine both shared memory and latency-hiding mechanisms.

2. What is the combined effect of those mechanisms on large-scale performance?

3. How to provide these benefits via an intuitive, unified model.

The contribution of this work is to answer those questions by introducing MATE, a new

model that integrates multiple mechanisms to tackle all sources of communication overhead

simultaneously. We describe the MATE model’s rationale in detail in the next chapter.

28

Chapter 3

The MATE Model

3.1 Overview

We introduce MATE1, a new programming model that reduces the cost of communication

of large-scale scientific applications both within and across node boundaries. MATE provides

a simple interface that allows domain area scientists to develop new distributed applications

that benefit from the communication-tolerance benefits of our model. Similarly, scientists can

enhance an existing application to benefit from MATE’s potential while requiring minimal inter-

vention on its source code.

MATE integrates a combination of useful mechanisms that work synergistically. First,

MATE provides overdecomposition, a well-known partitioning technique for hiding the latency

of network communication by overlapping communication with computation. Second, it dis-

tributes the application’s workload using a hierarchical rank decomposition, which enables the

use of shared memory. This is a novelty of our model that helps reducing the additional intra-

node data motion costs associated with overdecomposition. Third, it provides a light-weight

synchronization mechanism, another novelty, that prevents serialization of local operations. This

1Named after Mate (pronounced ‘mah-tay’), a popular South American infusion.

29

mechanism is essential to maximizing concurrency while benefiting from shared memory use.

Finally, it supports a code scheduling model that further partitions a program’s execution to

expose additional potential for communication/computation overlap.

These mechanisms are orthogonal to domain-specific communication-avoiding techniques

that can be manually implemented on a given application. Indeed, a developer could apply

MATE to a manually optimized application to further enhance its tolerance to communication

costs.

In this chapter, we first introduce an example application upon which we will apply our

model. Second, we explain the rationale behind MATE’s mechanisms. Third, we describe the

effects of each mechanism in the performance of our example application. Finally, we analyze

prior work in communication-reducing models.

3.1.1 Motivating Example

Throughout this chapter, we use an example structured grid solver code that computes

the solution to a partial differential question on an n-dimensional grid. This solver uses a Jacobi

[68] finite difference method to iteratively compute a solution that satisfies a set of equations

within a specified error margin. The solver uses a stencil operator to calculate the new value of

every cells in the grid as the weighted function of neighboring cell values (Fig. 3.1).

The strategy for this solver is to divide the grid into smaller partitions that can be calcu-

lated simultaneously by multiple processes. Fig. 3.2 illustrates the problem decomposition using,

for example, four processes to solve a 2D grid. In this case, the grid is decomposed equally into

sub-grids of size N/2×N/2 that are distributed evenly among the processes. The solver approx-

imates the solution iteratively in a bulk-synchronous fashion. At every iteration, each process

applies the sequential solver to all the elements of its sub-grid and then communicates boundary

cells to/from neighboring processes, required by the stencil in the next iteration.

Fig. 3.3 shows the MPI pseudo-code for the algorithm that solves Poisson’s equation on

30

Figure 3.1: 5-Point stencil update on a 2D Grid.

a 2D grid using the Jacobi method. N, the number of elements per side of the global solution

is provided as input. At the beginning of execution, each rank obtains its unique rank identifier

and the total number of ranks (lines 3-4). This information is required to calculate the proces-

sor geometry. For simplicity, this example assumes a square processor geometry P that equals

√
nRanks, the linear dimension of the geometry (line 6). Each rank calculates its own (x,y) coor-

dinates (line 7-8) to determine which subdomain it owns, and determines its neighboring ranks

based on axial proximity.

Ranks create and initialize a list of immediate neighboring ranks (Neighbors) to exchange

boundary data with (line 10). The number of neighboring ranks to insert into the Neighbors

list depends on the placement of the rank (lines 11-14). If a rank’s subdomain has no faces

coinciding with the outer domain’s boundary, then we add four neighbors (left, right, up and

down). If one of the rank’s faces coincides with a physical boundary, then the rank will have

three neighbors, and so on for more faces.

After determining its coordinate and neighbors, each rank calculates the number of ele-

ments per side of its subgrid (n) by dividing the original grid size (N) by the number of processes

31

Figure 3.2: SPMD Decomposition of a 2D grid into 4 MPI Ranks.

per grid side (P) (line 16). Since this example uses a Jacobi solver, it requires the allocation of

two arrays to store the state of their subgrid on the current and previous (uNew and uOld) loop

iteration (lines 17-18). The algorithm initializes the values of its current subgrid (line 19).

The iterative solver part of the algorithm starts with the for loop (line 21). At the be-

ginning of every iteration (line 23), the solver updates the its solution by sweeping the current

subgrid (uNew) using the stencil and then swaps its pointer with that of the previous subgrid

(uOld). After computing, the solver enters its communication phase and issues receive requests

for boundary cells2 (line 24). We illustrate these operations using an incoming arrow from the

neighbor x to the receive buffer corresponding to x. Ranks issue as many receive requests as

neighbors in the Neighbors list.

Ranks pack their boundary cells into neighbor-specific buffers (line 25) and issue asyn-

chronous send requests to transmit the buffered boundary data to their neighbors (line 26). After

issuing these requests, ranks suspend, waiting for communication requests to finish (line 27).

2Receive requests are often placed before the computation part to inform MPI of the receive buffer address as

soon as possible to avoid the need for intermediate message storage. However, we assume that the initial ghost

cells have been set up during grid initialization. In doing so, we can put all communication operations together to

simplify the discussion.

32

1 Solver(N)

2 {

3 MPI_Comm_size(MPI_COMM_WORLD , &nRanks);

4 MPI_Comm_rank(MPI_COMM_WORLD , &myRank);

5

6 P = sqrt(nRanks); // Assumes a square 2D decomposition

7 myRankX = myRank % P;

8 myRankY = myRank / P;

9

10 Neighbors = new List();

11 if(myRankX > 0) Neighbors.Add({myRankY, myRankX -1}); // Left

12 if(myRankX < P) Neighbors.Add({myRankY, myRankX +1}); // Right

13 if(myRankY > 0) Neighbors.Add({myRankY-1, myRankX}); // Up

14 if(myRankY < P) Neighbors.Add({myRankY+1, myRankX}); // Down

15

16 nP = N / P;

17 uNew = malloc(nP*nP);

18 uOld = malloc(nP*nP);

19 initialize (uNew , nP);

20

21 for(int i = 0; i < Iterations ; i++)

22 {

23 ApplyStencil(nP, uNew , uOld); Swap(&uNew , &uOld);

24 for(x in Neighbors) MPI_Irecv(recvBuf(x)←x);

25 for(x in Neighbors) MPI_Pack(uNew→sendBuf(x));

26 for(x in Neighbors) MPI_Isend(sendBuf(x)→x);

27 MPI_Waitall ();

28 for(x in Neighbors) MPI_Unpack (uNew←recvBuf(x));

29 }

30 }

Figure 3.3: MPI pseudo-code of a structured 2D grid stencil solver.

After all the request complete, ranks unpack the incoming neighboring boundary cells into ghost

cell positions (line 28) required by the computation phase in the next iteration.

3.2 Communication-Reducing Mechanisms

The MATE model re-interprets an application via three mechanisms (1) a domain overde-

composition, (2) a hierarchical rank decomposition, (3) a code scheduling logic that exposes

additional concurrency and provides efficient inter-rank synchronization. Together, these mech-

anisms enable the programmer to alter program semantics to reduce the cost of communication.

In these section, we provide the rationale for these mechanisms.

33

3.2.1 Mechanism I: Domain Overdecomposition

Domain overdecomposition [50] or virtualization [52] is a technique for overlapping

communication with communication operations that pipelines the execution of multiple ranks.

An overdecomposed application splits its workload into a number of ranks larger than the number

processor cores, preempting a rank when it is waiting for communication to permit another to

execute in its place, maximizing core usage.

The main hurdle in enabling overdecomposition on traditional MPI libraries is that they

delegate the responsibility of scheduling MPI processes to the operating system’s kernel, which

is unaware of message/data dependencies. Applied naively, overdecomposition will cause de-

structive interference of core usage. For this reason, the optimal configuration for MPI appli-

cations requires that the number of ranks (t) be not larger than to the number of cores (c) in

the system3. Instantiating t > c may cause MPI processes to destructively compete for a core,

continually preempting one another from execution and causing cache/TLB thrashing.

Figure 3.4: Traditional Decomposition vs Overdecomposed 2D grid.

Contrary to MPI, MATE schedules ranks entirely through its user-level runtime system

(see Chapter 4). A user-level scheduler enables MATE to preempt a rank so that it can wait for

3Although exceptions exist where it is more convenient to use fewer MPI processes than available cores. For

example, applications that change their workload during runtime may choose to operate with lesser cores to reduce

the volume of communication. Also, MPI+X models may use fewer MPI ranks per node to enable multi-threading.

34

the arrival of data, allowing another rank to execute instead. This can be accomplshied without

the intervention of the OS kernel. Consequently, MATE applications can instantiate more ranks

than cores without destructive interference. Furthermore, the context switch overhead for user-

level threads is typically much lower than that of OS processes, since it involves no system calls

or interrupts (e.g., INT 0x80 or CPU clock interrupts).

Fig. 3.4 compares the optimal decomposition of a traditional MPI application to an

overdecomposed execution under MATE. The traditional MPI application will divide the grid

into four subgrids, each processed by its MPI process, assuming four cores. On the other hand,

a MATE application can divide the grid even further into, for example, 16 smaller subdomains.

Although effective in reducing the cost of inter-node communication, overdecomposition

leads to an increase in intra-node data motion overhead due to a higher surface-to-volume ratio

in exchange buffers. Indeed, Fig. 3.4 (right) shows that the internal faces of overdecomposed

ranks require additional boundary exchanges. As a consequence of the increase in boundary

surface, ranks need to perform additional buffer packing and transferring overheads. This effect

can significantly offset the benefits obtained from overlap. In the next section, we explain how

the MATE model deals with this problem using a hierarchical rank distribution.

3.2.2 Mechanism II: Hierarchical Rank Distribution

One way to reduce the cost of intra-node data motion is to enable ranks located in the

same node to communicate via shared memory. Co-located ranks can either exchange their

boundary information directly without the need for packing/unpacking or messaging operations

or, better yet, operate on the same subdomain so that their boundary information is directly

accessible by their neighboring ranks.

MATE supports shared memory by exposing a 2-level memory hierarchy-aware rank

decomposition. At the top level, a MATE application distributes the workload onto a set of

processes. A MATE Process represents a logical entity that contains its own virtual address

35

space. At the second level, each process is further distributed among multiple local MATE Ranks.

Unlike overdecomposed MPI ranks, local MATE ranks assigned to the same MATE process live

in the same virtual address space.

Figure 3.5: Traditional Decomposition vs MATE Hierarchical overdecomposition.

Fig. 3.5 shows how local ranks belonging to the same process can work collaboratively

on the same process-wide grid. The process allocates its subgrid as a single segment of memory

and subdivides it logically (dotted line) among process-local ranks. Since local MATE ranks

work in the same address space, their updates to local boundary cells will be immediately visible

by its local neighbors, without the need of messaging or explicit data movement. In contrast,

ranks transmit boundaries that cross the process subdomain (solid line) to remote ranks via

message passing (arrows). This approach keeps the volume of boundary data to be transmitted

across nodes fixed, even when using overdecomposition.

To implement a hierarchical decomposition, a programmer needs to add calls to the

MATE API (see appendix E) to the source code. The first step is to obtain each MATE rank’s

process-level and local-level identifier pair. The purpose is to identify a MATE rank by combin-

ing its parent MATE process identifier, and its unique local identifier within the process. Fig. 3.5

shows ranks can query (line 3) their local id, their containing process id (line 4), the number of

local ranks (line 5), and the number of MATE processes (line 6).

36

To determine each rank’s part of the subgrid, the solver determines the number of MATE

processes per side P (line 8), and the process’ x and y coordinates (lines 9 and 10). Subsequently,

the solver calculates the number of local ranks per side within the process L (line 12) and each

rank’s local x and y coordinates (lines 13 and 14) within the process domain.

1 Solver(N)

2 {

3 Mate_local_rank_id(&myLocalId);

4 Mate_global_process_id(&myProcessId);

5 Mate_local_rank_count(&localCount);

6 Mate_global_process_count(&processCount);

7

8 int P = sqrt(processCount); // Assumes a square 2D global decomposition

9 gRankX = myProcessId % P; // Global Rank X

10 gRankY = myProcessId / P; // Global Rank Y

11

12 int L = sqrt(localCount); // Assumes a square 2D local decomposition

13 lRankX = myLocalId % L; // Local Rank X

14 lRankY = myLocalId / l; // Local Rank Y

15

16 Neighbors = new List();

17 if(gRankX > 0 && lRankX == 0) Neighbors.Add({gRankY , gRankX -1}, {lRankY , L-1}); // Left

18 if(gRankX < P && lRankX == L-1) Neighbors.Add({gRankY , gRankX+1}, {lRankY , 0 }); // Right

19 if(gRankY > 0 && lRankY == 0) Neighbors.Add({gRankY -1, gRankX}, {L-1, lRankX}); // Up

20 if(gRankY < P && lRankY == L-1) Neighbors.Add({gRankY+1, gRankX}, {0, lRankX}); // Down

21

22 int nP = N / P;

23 if (myLocalId == 0) uNewProcess = malloc(nP*nP);

24 if (myLocalId == 0) uOldProcess = malloc(nP*nP);

25 Mate_LocalBcast(&uNewProcess , 0);

26 Mate_LocalBcast(&uOldProcess , 0);

27

28 int nL = nP / L;

29 uNew = &uNewProcess [lRankY*nL*nL + lRankX*nL];

30 uOld = &uOldProcess [lRankY*nL*nL + lRankX*nL];

31 initialize (uNew , nL);

32

33 for (int i = 0; i < Iterations ; i++)

34 {

35 ApplyStencil(nL, uNew , uOld); Swap(&uNew , &uOld);

36 Mate_LocalBarrier(); // Required to prevent RAW Hazards

37

38 for (x in Neighbors) MPI_Irecv(recvBuf(x)←x);

39 for (x in Neighbors) MPI_Pack(uNew→sendBuf(x));

40 for (x in Neighbors) MPI_Isend(sendBuf(x)→x);

41 MPI_Waitall ();

42 for (x in Neighbors) MPI_Unpack (uNew←recvBuf(x));

43 }

44 }

Figure 3.6: Pseudocode of the MATE hierarchically decomposed grid stencil solver.

MATE ranks exchange ghost cells explicitly if, and only if, two conditions apply: (1)

the ranks are not local to the same process, and (2) the boundary does not coincide with the

37

physical boundary. If condition (1) fails, then the rank neighbors to a local rank and can access

boundary information via shared memory. If condition (2) fails, then there are no ghost cells

to communicate since the boundary is part of the physical boundary. Only if both conditions

apply, then the neighboring rank belongs in a different MATE process and thus requires message

passing communication. In this case, the rank identifies its remote neighbors (i.e., neighbor

ranks that live in a different MATE process) by their process/local id pair and registers them into

its list of neighbors (lines 16-19).

At this point, we have not changed the solver code, except by adding a process-wide bar-

rier to synchronize all the local ranks just after they finish computing (line 36). This synchroniza-

tion is necessary to prevent neighboring ranks from advancing to the next iteration prematurely,

accessing old boundary values and exposing read-after-write hazards.

The consequence of using a barrier is that all local ranks are forced to synchronize before

they can communicate. This operation serializes computation and greatly reduces opportunities

for overlapping communication with computation since it encompasses all the ranks/threads in

the process, even those that are not neighbors nor mutually dependent (e.g., ranks 0,1 and 0,2

in Fig. 3.5), forcing some ranks to wait even if all their boundary data is ready to be used.

In the next section, we see how the MATE model provides a way to subdivide the execution of

ranks and enable lightweight synchronization mechanism that avoids local rank serialization and

maximizes parallelism.

3.2.3 Mechanism III: Code Region Scheduling

MATE supports a third level of decomposition that is orthogonal to the process-rank orga-

nization. This feature allows programmers split a program into a logical grouping of contiguous

code statements that are scheduled independently, guided by a dependency graph. The effect is

to subdivide the execution of a rank into smaller steps, exposing further opportunities for over-

lapping communication with communication, via improved pipelining. This principle is similar

38

to that used in instruction-level-parallel (ILP) processors [89], in which instructions break into

smaller sub-instructions with a subset of dependencies that expose further parallelism.

1 int main(int argc , char** argv)

2 { // --------------

3 printf("a"); // | Sequential |

4 printf("b"); // | Block |

5 // --------------

6 #pragma mate graph

7 { // --------

8 #pragma mate region(D) depends(C) // | |

9 printf("d"); // | |

10 // | MATE |

11 #pragma mate region(E) depends(C) // | |

12 printf("e"); // | Graph |

13 // | |

14 #pragma mate region(C) // | Block |

15 printf("c"); // | |

16 } // --------

17

18 // -------------

19 printf("f"); // | Sequential |

20 printf("g"); // | Block |

21 } // -------------

Figure 3.7: Simple example of a MATE-annotated program.

Figure 3.8: Dependency graph of the MATE-annotated for loop in Fig. 3.8.

To take advantage of this feature, programmers enhance the source program with MATE

annotations. Fig. 3.7 shows a simple example of a valid MATE-annotated program. A pro-

grammer defines MATE dependency graphs by enclosing a part of the program within a block

preceded by a #pragma mate graph directive (line 6). Within the dependency graph, the pro-

grammer defines MATE regions, sections of code that MATE can schedule individually.

A programmer defines regions statically, by annotating the source code with the #pragma

39

mate region(name) directive (lines 8, 11, 14), where name serves as a user-defined region iden-

tifier. The statements enclosed by a region directive execute in-order but will not be scheduled

until the regions identified inside the depends clause have themselves finished.

Programmers define the dependency graph by appending a depends(region1, region2,...)

clause to each region directive. Every region name included in the depends clause will create

a new region-to-region dependency. Fig. 3.8 shows the dependency graph generated by the

code in Fig. 3.7. Upon reaching the graph block, the only region that can execute (has no

dependencies) in this example is ’C’. After ’C’ finishes, the two other regions will have satisfied

all their dependencies, and thus both could execute in any order. The outcome of this program

is, therefore, nondeterministic4 and may print either: “abcdefg”, or “abcedfg”.

MATE supports incremental development by allowing a programmer to annotate only

parts of the application. That is, a MATE application may contain blocks of code that execute

sequentially. To execute un-annotated code, MATE implicitly introduces a root region that rep-

resents the whole program outside user-defined regions. Upon finding a #pragma mate graph

directive, the root region yields execution until all regions inside the graph finish, and then re-

sumes execution. The MATE model ensures that the generated code is semantically equivalent

to the source code (it is possible that some arithmetic may be re-ordered), as long as the region

dependencies introduced by the programmer do not violate the original program’s semantics.

As in traditional dataflow [36, 8, 25] models, the flow of data in MATE’s dependency

graph determines in part the order in which regions execute. To ensure the availability of data,

MATE guarantees that all communication requests (e.g. MPI Irecv, MPI Isend) that a region

issues during execution will have completed before dependent regions can execute. For this

reason, regions within a graph block require no explicit calls to waiting operations and MATE

will remove any calls to MPI Wait() MPI Waitall(). However, code outside a MATE graph

block will suspend upon finding such blocking operations. This is to guarantee that normal MPI

4By its implementation, MATE resolves nondeterminism by executing regions in the order that reside in the

code. However, this is not part of the model and the programmer should assume no particular ordering.

40

semantics remain unaltered in non-annotated sections of the program.

1 #pragma mate graph

2 {

3 #pragma mate region (A)

4 {

5 MPI_Irecv(data_x);

6 p = use(data_x); // Incorrect : data_x has not arrived yet.

7 }

8

9 #pragma mate region (B) depends (A)

10 printf(p); // Will print an incorrect result

11 }

1 #pragma mate graph

2 {

3 #pragma mate region (A)

4 MPI_Irecv(data_x);

5

6 #pragma mate region (B) depends (A)

7 {

8 p = use(data_x); // Correct: data_x has arrived

9 printf(p); // Will print a correct result

10 }

11 }

Figure 3.9: Pseudo-code example of (top) an incorrect description, and (bottom) a correct

description of a MATE dependency graph.

Because MATE enables the programmer to reorder code blocks, the programmer is re-

sponsible for ensuring that their annotations preserve correctness. Fig. 3.9 (top) represents an

example of an incorrect dependency graph. This code declares two regions, A (line 3) and B (line

9. Region A contains a request for incoming data to be stored in the data x buffer (line 5), and

a call to use() that accesses the buffer to produce a result p (line 6). The result is that, since use

will execute immediately after issuing the receive request, possibly accessing the buffer before

data has arrived. Region B will, therefore, print a possibly incorrect value of p (line 10).

Fig. 3.9 (bottom), represents correct description of the example code’s dependency graph.

In this case, region A only produces a receive request for data x, while B uses data x and prints

the value of p. Since MATE will not execute region B until the request generated during the

execution of A has finished, the use function will always access relevant data and produce a

correct result.

41

Inter-rank Dependencies

Because neighboring local ranks work on a mesh in a single address space, classic shared

memory correctness issues arise that were not present in the original MPI program. MPI couples

explicit data motion and synchronization through reciprocal send/recv requests, avoiding the

issue. As mentioned previously, the use of process-wide barriers prevents ranks from advancing

independently, reducing the potential for communication-computation overlap. To address this

issue, MATE introduces provides support for inter-rank dependencies.

Inter-rank dependencies are lightweight synchronization mechanisms that allows pro-

grammers to specify dependencies between regions among local ranks. These dependencies are

essential to maximize performance in applications programmed under the MATE model since

they guarantee correctness while preserving concurrency exposed by the dependency graph.

1 int main(int argc , char** argv)

2 {

3 if (myLocalId > 0) Mate_AddLocalNeighbor(myLocalId -1);

4

5 #pragma mate graph

6 {

7 #pragma mate region(A) depends(A@)

8 print(myLocalId);

9 }

10 }

Figure 3.10: Example use of MATE’s inter-rank dependencies.

Fig. 3.10 shows a simple example of a MATE application that uses inter-rank depen-

dencies. Programmers define inter-rank dependencies by (1) calling Mate AddLocalNeighbor(),

which indicates to the runtime system which local ranks represent neighbors that share data with

the current rank, and (2) then appending the ‘@’ modifier to any region in the depends clause

(line 7). This application declares a single region A that prints the local identifier of the rank, and

depends on the execution of same region (A) from its neighbor ranks. All local ranks (except

local rank 0) declare a single neighbor representing the local rank with a preceding identifier

(line 3). The output of this application is the ordered ids of all the local ranks (“0 1 2 3 4...”).

42

Figure 3.11: Inter-rank dependencies for rank (0,11).

Fig. 3.11 shows the local neighbors for rank (0,11) inside a MATE process that uses a

4x4 local rank distribution for our example 2D solver with stencil points on 1-deep manhattan

directions, where ranks specify their local left/right/up/down neighbors.

For Loop Graphs

Since iterative solvers are an important target of the MATE model, we enable program-

mers to expose additional concurrency from for loops through Previous-iteration dependencies.

Programmers specify these dependencies appending the ‘*’ modifier to regions in the depends

clause. This modifier tells the scheduler that the dependency will be satisfied if the region has

executed in the previous iteration5. As an exception to avoid deadlocks, MATE ignores depen-

dencies with the ‘*’ modifier in the first iteration. Wherever the ‘*’ is not specified, then the

dependency refers to the current iteration.

Our model allows the combined use of the ‘*’ and ‘@’ modifiers in the depends clause.

This notation will define a previous-iteration inter-rank dependency, instructing the runtime sys-

tem to only schedule the current region after all the neighboring local ranks have finished exe-

5Although our model could support dependencies than span across more than one iteration, we have not yet

found an example that requires this flexibility. Algorithms that employ wave-front parallelism [65], however, may

benefit from this mechanism. This case would require us to re-formulate our syntax to allow constant (e.g, *3) or

variable (e.g, *n) numerical values.

43

cuting the depended region on the previous iteration.

1 int main(int argc , char** argv)

2 { // --------------

3 printf("a"); // | |

4 printf("b"); // | Sequential |

5 // | Block |

6 Mate_AddLocalNeighbor(myLocalId +1); // | |

7 Mate_AddLocalNeighbor(myLocalId -l); // | |

8 // --------------

9 #pragma mate graph

10 for (int i = 0; i < n; i++)

11 { // --------

12 #pragma mate region(D) depends(C) // | |

13 printf("d"); // | MATE |

14 // | |

15 #pragma mate region(E) depends(C, D@) // | For |

16 printf("e"); // | Loop |

17 // | Graph |

18 #pragma mate region(C) depends (D*, C*@) // | Block |

19 printf("c"); // | |

20 } // --------

21

22 // -------------

23 printf("f"); // | Sequential |

24 printf("g"); // | Block |

25 } // -------------

Figure 3.12: Example of a MATE-annotated for loop.

Figure 3.13: Dependency graph of the MATE-annotated for loop in Fig. 3.12.

IR = Inter-rank dependency.

Fig. 3.12 shows an example of a valid MATE program with an annotated for loop. Fig.

3.13 shows the dependency graph generated by the MATE annotations in Fig. 3.12. In this

example, each rank first registers its nearest neighbor ranks as local neighbors (lines 6-7). The

graph pragma before the for loop (line 9) instructs MATE to interpret the loop as an iterative

graph block. In this case, region E (line 15) not only depends on region C (line 18), but also

44

on the execution of region D (line 12) of its neighbor local ranks. Region C depends on the

execution of its region D from the previous iteration, and its neighbor local ranks’ region C from

the previous iteration.

The execution of this generated code will repeatedly produce the same output as the code

in Fig. 3.7, with the following added constraints: (1) ranks cannot print “C” before they print

“D” in the previous iteration (due to the use of the * modifier), (2) ranks cannot print “E” before

its neighbors have printed “D” during the same iteration (due to the use of the @ modifier), and

(3) no ranks can print “C” until all its neighbor ranks have printed “C” in the previous iteration

(due to the combined use of the *@ modifiers).

Semantic Considerations

One semantic limitation with a MATE-annotated for loop is that its induction variable

should not be modified or accessed within a region’s body since these changes invisible to other

regions. This limitation is a consequence of the way MATE translates the source to allow regions

to advance independently from the others in the for loop. For example, the code in Fig. 3.14 will

exhibit unpredictable behavior since it modifies the iterator (i) variable (line 5). Furthermore,

even read-only accesses (line 8) to the iterator in the region’s body may also cause conflicts

since regions may execute in different iterations at any given point. On the other hand, the code

in Fig. 3.12 is acceptable because none of statements within its for loop modify or access the

iteration variable.

1 #pragma mate graph

2 for (int i = 0; i < n;)

3 {

4 #pragma mate region(A) depends(B)

5 i++; // Not visible to other regions

6

7 #pragma mate region(B) depends(A*)

8 printf("%d", i); // Possible out-of-order conflict

9 }

Figure 3.14: Simple example of an invalid MATE-annotated for loop.

45

Structured Grid Example

Fig. 3.15 shows how MATE regions and dependencies can be used to expose the under-

lying dependency graph of the hierarchically decomposed variant of our structured grid solver

from Fig. 3.6. This variant defines a single graph block (line 39) which spans the iterative part

of the solver (line 40-56), where the application spends most of its running time. We leave the

rest of the code un-annotated.

These annotations turn the for loop into a dependency-graph comprised of 5 MATE re-

gions: the compute region (line 42) contains calls to ApplyStencil and Swap functions; the receive

region (line 45) contains calls to MPI Irecv; the pack region (line 48) contains calls to MPI Pack;

the send region (line 51) contains calls to MPI Isend, and; the unpack region (line 54) contains

calls to MPI Unpack.

The semantics of this solver requires that ranks synchronize their computation phase with

their neighbors in the grid with calls to Mate AddLocalNeighbor() (lines 34-37). As mentioned

before, Fig. 3.11 shows the local neighbors for rank (0,11) for a MATE process with 4x4 local

ranks running this code.

Fig. 3.16 represents the dependency graph generated by the MATE annotated program in

Fig. 3.15. We can see that, during the first iteration, both receive and compute regions can begin

executing, and in no particular order, since no data hazards exist between them (computation

modifies the grid, and receive requests modify message buffers). The pack region can start only

after the compute region has finished producing new boundary data to be sent to its neighbors.

The send region can issue MPI Isend operations once the pack region has finished packing the

buffers. Finally, the unpack region cannot unpack data from the receive buffers into the grid until

(1) all the MPI Irecv requests instantiated during the execution of request region have finished,

and (2) the compute region has finished using the ghost cell data from the last iteration.

After the first for loop iteration (i.e., upon reaching steady state), previous-iteration de-

pendencies are activated. This means, for example, that the compute region will not execute until

46

32 ...

33

34 if(lRankX > 0) Mate_AddLocalNeighbor(myLocalId -1); // Local Left

35 if(lRankX < L) Mate_AddLocalNeighbor(myLocalId +1); // Local Right

36 if(lRankY > 0) Mate_AddLocalNeighbor(myLocalId -L); // Local Up

37 if(lRankY < L) Mate_AddLocalNeighbor(myLocalId+L); // Local Down

38

39 #pragma mate graph

40 for (int i = 0; i < Iterations ; i++)

41 {

42 #pragma mate region(compute) depends(pack*, unpack*, compute*@)

43 ApplyStencil(nL, uNew , uOld); Swap(&uNew , &uOld);

44

45 #pragma mate region(receive) depends(unpack*)

46 for (x in Neighbors) MPI_Irecv(recvBuf(x)←x);

47

48 #pragma mate region(pack) depends(compute, send*)

49 for (x in Neighbors) MPI_Pack(uNew→sendBuf(x));

50

51 #pragma mate region(send) depends(pack)

52 for (x in Neighbors) MPI_Isend(sendBuf(x)→x);

53

54 #pragma mate region(unpack) depends(compute, receive)

55 for (x in Neighbors) MPI_Unpack (uNew←recvBuf(x));

56 }

57 }

Figure 3.15: Solver section of the code from 3.6, enhanced with a MATE dependency graph

Figure 3.16: Dependency graph generated by the code in Fig. 3.15.

IR = Inter-rank dependency.

47

(1) the unpack region from the previous iteration has finished unpack ghost cell data into the grid,

(2) the pack region has packed boundary data into the send buffers, and (3) local neighbor tasks

have finished their compute region from the last iteration. The latter inter-rank dependency

allows us to remove the Mate LocalBarrier synchronization from Fig. 3.6, exposing all the po-

tential parallelism in the solver. Finally, the pack region cannot overwrite the send buffers until

the MPI Isend operations from the send in the previous iteration signal that it is safe to reuse the

buffers.

3.3 Communication Reducing Effects

To understand the effect of each of MATE’s optimizations on core utilization, we employ

a core usage diagram. We created these diagrams, shown in Fig. 3.17, to illustrate a possible

timeline of a single core performing four iterations of the structured grid example. Solid blocks

(containing the rank number) indicate segments of time in which the core is performing useful

computation, unnumbered (hatched) blocks indicate intra-node data motion, while the dotted

line indicates that the core is idle, waiting for data to arrive. Additionally, this diagram shows

whenever a rank initiates inter-node communication requests (upwards arrow) and how long they

take to finish (dotted line blocks with the word Network).

Fig. 3.17 (A) shows the execution of the original MPI structured grid solver described in

Fig. 3.3 that does not attempt to overlap communication and computation. This variant suffers

from two communication costs. First, since it operates in separate phases, it does not overlap

communication and computation and thus suffers from the full cost of network communication.

Second, since MPI processes living in the same node communicate through message passing,

they incur additional overheads from copying data between ranks in the same node. This timeline

shows that the core efficiency can potentially be very low given these costs.

Fig. 3.17 (B) shows the effect of executing the same code using overdecomposition.

48

Figure 3.17: Hypothetical core usage timelines.

49

This case instantiates four ranks per original rank in (A), and assigns them to a specific core6.

In this case, whenever a rank (e.g. R0) suspends to wait on network communication, another

(e.g. R1) can be scheduled for execution. Having multiple ranks executing enables communi-

cation/computation overlap, hiding most of the inter-node communication cost. However, since

overdecomposed ranks need to exchange additional internal boundaries, the cost of intra-node

communication increases compared to the original application.

Fig. 3.17 (C) shows the effect of using overdecomposition in a hierarchically decom-

posed application while still using a process-wide synchronization mechanism. In this case,

since all overdecomposed ranks need to wait until the others finish computing before they can

issue communication, they cannot achieve any communication/computation overlap. Therefore,

this variant yields a similar execution as the (A) timeline, minus the overheads from data motion.

Fig. 3.17 (D) shows the effect of inter-rank dependencies on a hierarchically overdecom-

posed execution. In contrast to (C), this variant does not serialize computation, and so it can

benefit from the combined benefits of communication/computation overlap and reduced intra-

node data motion.

Finally, Fig. 3.17 (E) shows the effect of applying the full MATE model. This variant

benefits from the combination of mechanisms employed in (D). In addition, the execution of

each rank is split into smaller regions that can be scheduled independently by the MATE run-

time system. Using the full scope of MATE’s mechanisms exposes more concurrency that can

be extracted by the underlying dependency graph and maximizes the opportunities for overlap.

Furthermore, this figure shows that the MATE model enables cores to execute regions from any

rank in the process (hence the additional colors), yielding higher core usage.

6In reality, a MATE process can migrate among different cores to improve overlap. See Chapter 4.

50

3.4 Related Work

Several programming models and libraries have been proposed to cope with the over-

heads of communication in large-scale scientific applications. However, none of them propose a

way to integrate all the mechanisms described in this chapter into a single unified model. Their

experiences and limitations have, nevertheless, influenced our work in the MATE model.

3.4.1 MPI+KLT Model

As mentioned earlier, the MPI + Kernel Level Thread (MPI+KLT) model provides a way

to reduce intra-node data motion while enabling a distributed execution, by combining a commu-

nication model with a threading (shared memory) model. However, we have also seen that the

two interfaces do not compose well as they are unaware of each other. MATE eliminates these

complications by providing a single, unified interface to developing a distributed application that

generates a hybrid execution model that is similar to MPI+KLT. Furthermore, MATE provides

support for overdecomposition and light-weight synchronization. Integrating these mechanisms

manually into an MPI+X application would entail a painstaking effort.

3.4.2 MPI+MPI Model

Another hybrid approach, MPI+MPI [48], proposes the use of MPI windows to enable

shared memory communication within a node. This model preserves portability since only the

MPI interface is required. An MPI+MPI application instantiates as many MPI processes as

cores as the traditional model. However, while the application uses message passing for inter-

node communication, processes within the same node communicate through the locally-mapped

shared memory windows, as illustrated in Fig. 3.18.

Although MPI+MPI succeeds in reducing intra-node data motion by avoiding the need

for messaging, it has limitations. First, it does not provide any mechanisms for overlapping com-

51

Figure 3.18: Example deployment of a hybrid MPI+SHM application where node co-located

MPI processes can communicate through shared memory.

munication with computation. Second, MPI processes have non-symmetric heaps that do not

guarantee that the shared memory segment will map to the same virtual address in every other

process. Therefore, programmers need to derive a global pointer or index+offset logic to refer-

ence memory in another process. As a consequence, this solution entails a higher complexity

than MPI+KLT approaches.

3.4.3 MPI+ULT Model

The MPI + User Level Threads (MPI+ULT) [63] model, also called Fine-Grained MPI

[54] has been proposed to enable overdecomposition in MPI applications without destructive

interference. This model instantiates MPI ranks as user-level threads (ULT), re-entrant functions

that can be suspended and resumed at any point of their execution. Since ULTs are created

and scheduled by the underlying library, a single OS process can contain more than one ULT.

The execution of ULTs inside a process is concurrent, yet not parallel. An MPI+ULT process,

assigned to a single core, will execute only one ULT for execution at a time, while other ULTs

remain suspended.

Since multiple ULTs can live in a process without destructive interference, the MPI+ULT

model relaxes the limitation on the granularity of traditional MPI applications, and therefore

52

Figure 3.19: Example deployment of a hybrid MPI+ULT application where each MPI process

is assigned a single core, but spans multiple MPI ranks, implemented as ULTs.

provides support for efficient overdecomposition. Fig. 3.19 shows an application that instantiates

two ULTs per process, executing a total of 2× k×m MPI ranks.

AMPI [49] also supports overdecomposition through virtualization. AMPI is an imple-

mentation of MPI that supports dynamic load balancing and fault tolerance for MPI applications.

An AMPI-virtualized rank runs as a stream of Charm++ objects (chares) that execute, perform

communication, and suspend, guided by the MPI communication and synchronization requests

in the source code.

Although MPI+ULT models and AMPI enable an efficient overdecomposition of MPI

ranks in the same way as MATE, they do not implement any mechanisms to reduce the cost of

intra-node data motion. As a consequence, enabling overdecomposition through these models

will cause the application to suffer from additional overheads that may offset the benefits ob-

tained from overlapping communication and computation. Indeed, our experiments with AMPI

and overdecomposition-only approaches revealed that, although they can succeed in hiding the

cost of network communication, they are unable to obtain any significant speedups. MATE, on

the other hand, implements a hierarchical overdecomposition strategy that reduces both sources

of communication overhead, obtaining a net performance gain.

53

3.4.4 Latency-Hiding Models

Latency-Hiding programming models define the semantics of a program as a collection

of statements (or groups thereof) that are scheduled in part by data-dependencies with the pur-

pose of hiding the cost of network communication costs. Like MATE, these models schedule

sections of a program (either a function or a region of code) out-of-order, based on data depen-

dencies. These sections execute non-preemptively (atomically), and the statements contained

therein execute in-order.

Latency-Hiding models interpret and analyze the content of code regions, as well as

programmer-introduced annotations, to rearrange program execution, either statically (at compi-

lation time) or dynamically (at runtime), to execute out-of-order based on their data dependen-

cies. The intended effect is to maximize computation/communication overlap, thus reducing the

impact of network communication latency.

MPI/SMPSs [66] integrates the MPI model with SMPss. MATE provides a similar inter-

face to MPI/SMPSs: in both models, programmers use annotations to build a valid MPI program

that executes based on data/execution dependencies. However, MATE provides three main dis-

tinctive improvements: (1) because it employs source-to-source translation, MATE can break in-

dividual functions into code regions without the need for programmers to split and outline code

into functions manually, as is the case in SMPSs (2) unlike MATE, MPI/SMPSs provides no inte-

grated support for overdecomposition, delegating the burden of implementing this mechanism to

the programmer, and (3) MPI/SMPSs provides no mechanisms for a hierarchical decomposition

or use of shared memory to reduce the cost of intra-node data motion.

Bamboo [71] is a source-to-source translator that reinterprets C/C++ MPI applications to

execute as a dataflow program. In Bamboo, the description of the dependency graph is implicit

[70]. Bamboo provides a fixed set of region names, with fixed (implicit) rules for expressing

dependencies. There are four region names: (i) Overlap regions indicate the sections of the

code that contain communication, (ii) Send/Receive regions enclose MPI send/receive operations,

54

respectively, and (iii) Compute regions enclose the section of computation that depends on the

data arriving from the requests in the receive region, while producing data for the send region.

To enable communication/computation overlap, Bamboo performs a static analysis of

programmer-introduced annotations that describe regions of code and the MPI calls therein to

generate a data dependency graph. Bamboo uses this graph to perform transformations in the

source code that enable regions to execute based on their dependencies. The output code pro-

duced by Bamboo targets the Tarragon task-driven runtime [25], where each MPI rank executes

a set of Tarragon tasks. Tarragon provides a user-level runtime system that allows Bamboo to ex-

ecute and schedule ranks independently from the operating system scheduler, enabling efficient

overdecomposition.

One of the main limitations of Bamboo is, however, that its translation process requires

extensive function inlining and static code relocation, which can bloat (in some cases up to 10x

the number of lines) the translated code, making it harder to debug and requiring extended trans-

lation times. The rationale behind these transformations is that, in order to convert regions of

C/C++ code containing MPI code into a dependency graph that can be executed by the Tarragon,

functions need to be broken down and replicated (inlined) up to the main scope of the program.

For this reason, Bamboo is unable to translate recursive code, since function inlining would gen-

erate an infinite loop. Finally, all communication in Bamboo requires annotation, which does

not allow an incremental adaptation of an existing application to its latency-hiding form.

Our previous project, the Toucan translator [67], overcomes some of Bamboo’s limita-

tions. Toucan avoids static code transformations by employing a co-designed runtime system/-

translator team that encapsulate most of the task-scheduling. The runtime system keeps track

of code regions and their dependencies and automatically resolves when a region is ready to

execute based on the arrival of MPI messages. Toucan simplifies the translation of MPI appli-

cations by inserting a modest number of calls to its runtime system’s API, dynamically creating

the dependency graph during execution, as opposed to restructuring the code statically. This

55

improvement allows Toucan to translate recursive code and enable an incremental development

of Toucan applications.

One of the key contributions of the Toucan is showing the possibility of decomposing the

execution of a rank into code regions without the need of outlining code into separate functions

during translation. The Toucan translator transforms dependency graphs into switch statements

enclosed in a while loop. Inside the switch statement, each region, as annotated in the source

code, represents a different case. The while loop will run until all regions have finished while

the switch statement will choose which case (region) to execute, based on a call to the runtime

system’s scheduler. We adopted these contributions into MATE as a successor to Toucan.

MATE introduces three significant improvements over Toucan. First, it generalizes Tou-

can’s dependence model. Whereas Toucan provides a fixed set of region types, MATE admits

user-defined region types. Second, it adds a the hierarchical locality-based decomposition model,

which substantially enhances the benefit of overdecomposition. Third, MATE adds inter-rank de-

pendencies, which enable efficient local synchronization without serializing effects.

Table 3.1: Comparison of the distributed programming models analyzed in this chapter.

Mechanisms

Model
Shared

Memory
Over

Decomposition

Dependency

Graph

Graph

Scheduling
Inter-Rank

Dependencies

MPI+KLT ✓

MPI+MPI ✓

MPI+ULT ✓

AMPI ✓

MPI/SMPSs ✓ Dynamic

Bamboo ✓ ✓ Static

Toucan ✓ ✓ Dynamic

MATE ✓ ✓ ✓ Dynamic ✓

56

3.5 Summary

We introduced MATE, a new programming model to develop communication-tolerant ap-

plications. The novelty in our model is that it integrates multiple mechanisms to reduce the costs

of intra-node and network communication simultaneously, providing a single unified interface.

In this chapter we examined MATE’s syntax and rationale in applying it to a common

structured grid solver motif. We analyzed the effects of each mechanism on the performance of

the solver, and how they produce a synergistic effect that maximizes the potential for communi-

cation/computation overlap.

Finally, we have seen that although prior approaches and programming models for com-

munication tolerance provide subsets of MATE’s functionality (except for inter-rank dependen-

cies which is a novelty of our model), none of them target both the overheads of intra-node data

motion and network communication taken together. Table 3.1 compares the features of these

models with those provided by the MATE model.

Acknowledgements

This chapter is, in part, a reprint of the material contained in the article: “MATE, a

Unified Model for Communication-Tolerant Scientific Applications”, by Sergio M. Martin and

Scott B. Baden, which appears in the Proceedings of 31st International Workshop on Languages

and Compilers for Parallel Computing (LCPC 2018), Salt Lake City, UT, USA, October 2018.

This dissertation’s author was the primary investigator and author of this paper.

57

Chapter 4

Design and Implementation

4.1 Overview

Figure 4.1: Annotation and compilation flowchart of a MATE application.

We have developed a programming framework comprised of a source-to-source transla-

tor and a runtime system to aid programmers in developing applications under the MATE model.

We co-designed the components of our framework to minimize the effort required from program-

mers to either enhance an existing MPI program or develop a new MATE application.

Fig. 4.1 shows the steps required in building a MATE application, starting from a valid

C/C++ MPI program1. The first step is to augment the application’s source files with MATE

1Although we only currently support C++ code, our model could also support other languages (e.g., Fortran).

58

annotations2, as explained in Chapter 3.

The next step is to translate the MATE-annotated MPI program using MATE’s translator.

The translator will interpret annotations in the source code to produce a C++ program that con-

tains a handful of calls to our runtime system’s API that can be compiled with a conventional

C++ compiler. Our translator makes modest transformations to the source code since the runtime

system encapsulates most of the logic required for rank/region/dependency scheduling.

The final step involves linking the object files obtained from compiling the MATE pro-

gram with the MATE runtime system library. This step will produce an executable binary file

that runs as a regular MPI application.

4.2 Translation Process

We built our translator using the ROSE compiler infrastructure [51]. ROSE relies on

the Edison Design Group front-end [98] to parse and generate the abstract syntax tree (AST) of

an MPI C/C++ program. ROSE stores the AST in memory during the translation process and

provides the tools to build a translator capable of analyzing and modifying input source code

and producing modified source files.

One of the primary goals in designing our programming framework was to facilitate

incremental development. For this reason, MATE applications can contain a combination of

annotated and non-annotated source code. The only requirement is that MATE translates all

source files containing calls to MPI, #pragma mate directives, or the main function. Source files

without any references to MPI or MATE can be passed directly to the C++ compiler, as with

conventional C/C++ source, and require no translation with MATE.

MATE does not support separate translation but instead requires that all annotated source

files be translated together along with the file containing the main function. This design was

2For the purpose of brevity, when we refer to annotations, we include not only pragma directives, but also calls

to the MATE API.

59

made in the interest of reducing runtime overheads. The effect is to describe MATE graphs only

once at the beginning of execution (main), rather than at every graph block. With this rationale,

we move scheduling overheads out of the application’s critical path. Although this means longer

translation times, we decided to prioritize runtime efficiency.

Translation produces one output C++ file per input C/C++ source file. These files can

be compiled in parallel using the mate-cxx command, which redirects to the C++ compiler and

provides flags required for compilation and linkage of MATE translated files.

Our translator processes input files in a series of steps. We will use the example code

from Fig. 4.2, which represents the MATE-annotated portion of the example in Fig. 3.15, to

illustrate the effects of each step.

1 #pragma mate graph

2 for (int i = 0; i < Iterations ; i++)

3 {

4 #pragma mate region(compute) depends(pack*, unpack*, compute*@)

5 ApplyStencil(nL, uNew , uOld); Swap(&uNew , &uOld);

6

7 #pragma mate region(receive) depends(unpack*)

8 for (x in Neighbors) MPI_Irecv(recvBuf(x)←x);

9

10 #pragma mate region(pack) depends(compute, send*)

11 for (x in Neighbors) MPI_Pack(uNew→sendBuf(x));

12

13 #pragma mate region(send) depends(pack)

14 for (x in Neighbors) MPI_Isend(sendBuf(x)→x);

15

16 #pragma mate region(unpack) depends(compute, receive)

17 for (x in Neighbors) MPI_Unpack (uNew←recvBuf(x));

18 }

Figure 4.2: Annotated section of the code in 3.15.

4.2.1 Step I: MPI to MATE Call Replacement

MATE operates by ‘intercepting’ calls to the MPI library and redirecting them to its

runtime system. This behavior is necessary to keep track of the execution of MATE regions,

which will not advance until all the communication operations instantiated therein have finished.

It is also required to support multiple local ranks since MPI blocking waits can suspend the

60

whole MATE process or result in deadlock, even if other ranks are ready to execute.

1 #pragma mate graph

2 for (int i = 0; i < Iterations ; i++)

3 {

4 #pragma mate region(compute) depends(pack*, unpack*, compute*@)

5 { ApplyStencil(nL, uGrid , bGrid); Swap(&uGrid , &bGrid); }

6

7 #pragma mate region(receive) depends(unpack*)

8 { for (x in Neighbors) Mate Irecv(recvBuf(x)←x); }

9

10 #pragma mate region(pack) depends(compute, send*)

11 { for (x in Neighbors) Mate Pack(uGrid→sendBuf(x)); }

12

13 #pragma mate region(send) depends(pack)

14 { for (x in Neighbors) Mate Isend(sendBuf(x)→x); }

15

16 #pragma mate region(unpack) depends(compute, receive)

17 { for (x in Neighbors) Mate Unpack(uGrid←recvBuf(x)); }

18 }

19 }

Figure 4.3: Step 1 of translation replaces MPI calls with its equivalent MATE call.

Our translator traverses the AST of every source file in search for any function call with

the ‘MPI ’ prefix. Upon finding one such call, it validates whether MATE supports it. If that is

the case, MATE replaces the call for its equivalent ‘MATE ’ prefixed function call. Otherwise,

it exits translation with an error. Fig. 4.3 shows the result of applying this step in the example

code from Fig. 3.15. The translator replaces MPI calls (appendix E contains a detailed list of

supported MPI functions) with their equivalent MATE call (lines 8, 11, 14, 17). We explain the

semantics of these calls in section 4.3.

4.2.2 Step II: Parsing Graph Directives

The next step in the translation process parses all #pragma mate graph directives in the

code. MATE’s syntax requires that these directives be followed by either a basic block (i.e.: a

single statement, or a group of statements enclosed within brackets) or a for loop statement3. If

that is not the case (e.g., the translator finds two or more non-enclosed statements), the translator

3We currently only support regular loops with a single monotonically increasing/decreasing accumulator. We

have not yet encountered a test case that requires relaxing this requirement, although we could allow this feature in

future developments.

61

will output an error message and exit. The translator stores the details of each graph block in

memory to to preserve all the region and dependency information contained within.

1 Mate_EnableRegions({0, 1, 2, 3, 4});

2 int _nextRegionID;

3

4 // for (int i = 0; i < Iterations ; i++)

5 while((_nextRegionID = Mate_GetNextRegionID()) 6= ROOT_REGION)

6 switch(_nextRegionID)

7 {

8 case 0: // Compute Region

9 ApplyStencil(nL, uGrid , bGrid); Swap(&uGrid , &bGrid);

10 Mate_DisableRegion(); break;

11

12 case 1: // Receive Region

13 for (x in Neighbors) Mate_Irecv (recvBuf(x)←x);

14 Mate_DisableRegion(); break;

15

16 case 2: // Pack Region

17 for (x in Neighbors) Mate_Pack(uGrid→sendBuf(x));

18 Mate_DisableRegion(); break;

19

20 case 3: // Send Region

21 for (x in Neighbors) Mate_Isend (sendBuf(x)→x);

22 Mate_DisableRegion(); break;

23

24 case 4: // Unpack Region

25 for (x in Neighbors) Mate_Unpack (uGrid←recvBuf(x));

26 Mate_DisableRegion(); break;

27

28 default: Mate_ExitWithError(‘Invalid Region ID‘); break;

29 }

Figure 4.4: Step 2 of translation creates scheduling structures for a region-level execution.

Fig. 4.4 shows the state of the code as a result from the transformations involved in this

step. Our translator performs these transformations to the code surrounding each graph block

to enable out-of-order execution. First, it replaces the #pragma graph directive with a while

loop (line 5) to execute the enclosed partially ordered regions until all have finalized. It also

inserts a call to Mate GetNextRegionID() inside the while’s conditional to poll for identifier of

an available region to execute (stored in the nextRegionID variable declared at line 2). A distin-

guished ROOT REGION value indicates that all regions have completed, causing the program to

continue onto the following statement after the while loop. Second, it inserts a switch statement

inside the while loop (line 6). This statement takes the value of nextRegionID to ‘jump’ to the

corresponding case statement, as defined in the next step.

62

Next, MATE parses the AST within each graph block in search of mate region direc-

tives. If it finds any stray statements located outside a MATE region, it will exit with an error.

Otherwise, it inserts one case statement for each region within the graph block into the switch

statement. It also inserts a default case, whose purpose is to catch any errors that may occur (e.g.,

an unlikely exception in MATE’s runtime system).

MATE assigns each region a unique identifier incrementally, corresponding to the order

in which it finds them while traversing the AST. The translator prepends calls to Mate Enable

Regions() (line 1) that, when executed, inform the runtime system that (1) this is the beginning

of a graph block, and (2) which regions are contained in this graph.

MATE inserts the original statements from each region that it encounters in the source

code inside their corresponding case statement with an appended call to Mate DisableRegion()

(lines 10, 14, 18, 22, and 26), which prevents the region from executing again during the current

instance of the graph block. Finally, a break statement is added to prevent other regions from

executing.

4.2.3 Step III: Parsing For Loop Graphs

In case the graph directive annotates a for loop, we perform an additional step to support

independent advancement of regions inside the loop, as shown in Fig. 4.5. This step entails

replicating the original for induction variable, once for each region (lines 10, 14, 18, 22, 26),

and initializing them with the same expression as that of the source code’s for loop initializer.

To avoid memory conflicts, region-specific induction variables are formed by append-

ing the region’s id to the variable’s name (line 2). Just like in a C/C++ for loop, MATE uses

each region’s iterator to apply the for increment and evaluate the loop conditional. However, un-

like a C or C++ for loop, region-specific induction variables advance independently from each

other, allowing one region to progress onto the next iteration while others remain in the current

iteration.

63

1 Mate_EnableRegions({0, 1, 2, 3, 4});

2 int _i0 = 0, _i1 = 0, _i2 = 0, _i3 = 0, _i4 = 0;

3

4 int _nextRegionID;

5 while((_nextRegionID = Mate_GetNextRegionID()) 6= MATE_ROOT_REGION)

6 switch(_nextRegionID)

7 {

8 case 0: // Compute Region

9 ApplyStencil(nL, uGrid , bGrid); Swap(&uGrid , &bGrid);

10 _i0++; if (_i0 < Iterations == false) Mate_DisableRegion(); break;

11

12 case 1: // Receive Region

13 for (x in Neighbors) Mate_Irecv (recvBuf(x)←x);

14 _i1++; if (_i1 < Iterations == false) Mate_DisableRegion(); break;

15

16 case 2: // Pack Region

17 for (x in Neighbors) Mate_Pack(uGrid→sendBuf(x));

18 _i2++; if (_i2 < Iterations == false) Mate_DisableRegion(); break;

19

20 case 3: // Send Region

21 for (x in Neighbors) Mate_Isend (sendBuf(x)→x);

22 _i3++; if (_i3 < Iterations == false) Mate_DisableRegion(); break;

23

24 case 4: // Unpack Region

25 for (x in Neighbors) Mate_Unpack (uGrid←recvBuf(x));

26 _i4++; if (_i4 < Iterations == false) Mate_DisableRegion(); break;

27

28 default: Mate_ExitWithError(‘Invalid Region ID‘); break;

29 }

Figure 4.5: Step 3 of translation creates the structures to support for-loop based graphs.

MATE inserts the iterator conditional test at the end of every case statement. If the

conditional results false, the for loop execution has ended for that particular region and MATE

inserts a call to Mate DisableRegion()4.

4.2.4 Step IV: Replacing The Main Function

To initialize the MATE runtime system before the application starts, we intercept the

initial call to the main function. Fig. 4.6 shows the two modifications involved in this step. First,

the translator renames the original main function to mate execute, which accepts and returns

the same arguments as main. Second, it creates a surrogate main function.

The surrogate main function’s purpose is to instantiate and initialize the runtime system.

MATE prepends calls to the runtime system’s API at the beginning of mate execute (former

4MATE also performs this verification at the beginning of the region for the special case in which the conditional

proves false in the first iteration. We omit this detail to simplify the explanation and the code.

64

1 #include <mate_process.h>

2

3 int main(int argc , char* argv[])

4 {

5 MATEProcess mate;

6 return mate.initialize (argc, argv);

7 }

8

9 int __execute_mate(int argc, char* argv[]) // The original main before translation

10 {

11 Mate_AddRegion(0); // Compute Region

12 Mate_AddRegion(1); // Receive Region

13 Mate_AddRegion(2); // Pack Region

14 Mate_AddRegion(3); // Send Region

15 Mate_AddRegion(4); // Unpack Region

16

17 Mate_AddDependency(0, 2, true);

18 Mate_AddDependency(0, 4, true);

19 Mate_AddDependency(1, 4, true);

20 Mate_AddDependency(2, 0, false);

21 Mate_AddDependency(2, 2, true);

22 Mate_AddDependency(3, 2, false);

23 Mate_AddDependency(4, 0, false);

24 Mate_AddDependency(4, 1, false);

25 Mate_AddInterRank(0, 0, true);

26

27 ...

28 Solver(N);

29 ...

30 Mate_Finalize();

31 }

Figure 4.6: The final step of translation creates a surrogate main function and defines the

dependency graphs.

main function) to describe all the MATE graphs in the program. Since MATE graphs are user-

defined and do not change during runtime, they only require to be defined once here.

To describe MATE graphs, we call Mate AddRegion() (lines 11-15) passing the identifier

of the region to add as argument. The Mate AddDependency() and Mate AddInterRank() func-

tions (lines 17-24) accept three arguments: (1) the identifier of the source (dependent) region,

(2) the identifier of the destination (depended) region, and (3) a boolean to indicate whether this

is dependency on the previous iteration. We describe the semantics of these function calls in

further detail in section 4.3.

Finally, any calls to MPI Finalize are translated to Mate Finalize to register the final-

ization of the current rank and yield execution. MATE will also perform this operation upon

reaching the end of mate execute or upon reaching a return statement.

65

4.3 Runtime Support

Figure 4.7: Decomposition model and implementation of a MATE process.

4.3.1 Runtime System Design

MATE applications execute as a set of k processes distributed across the system. Each

such process contains a pool of m local MATE ranks, and a pool of n MATE workers, as shown

in Fig. 4.7. The user specifies the number of MATE processes to instantiate and the number of

workers and ranks per process at launch time using command-line arguments.

A user launches a MATE application using the same command for running MPI applica-

tions (e.g., srun, mpirun, aprun). The total number of ranks across the system will be equal to the

number of local ranks times the number of MATE processes (i.e., k×m). A user achieves overde-

composition by instantiating more ranks than available cores (c) in the system (i.e.: k×m > c).

To achieve optimal performance in a MATE application, a user should instantiate exactly as

many MATE workers as available cores (or processing units) in the node.

The runtime system maintains all its scheduling metadata in memory as C++ objects.

During initialization, the runtime creates a singleton (i.e., a single instance of a class that is

globally accessible) of the MATEProcess class that contains all the ranks, regions, and workers

66

in execution.

Ranks contain a set of user-defined regions (Fig. 4.7). The root region, created by default,

represents all un-annotated code and executes sequentially. At the beginning of execution, all

regions (except for root) start as disabled, meaning that they are not scheduled by the runtime

system since the execution has not reached their containing graph block. Once execution reaches

a MATE graph block, all the regions contained therein are enabled, meaning that they are now

scheduled by the runtime system.

A region may exist in one of three states: ready, when all its dependencies are satisfied;

waiting, when at least one of its dependencies are pending, or; executing, when it is currently

executing. To determine whether a dependency has been satisfied, MATE keeps track of region’s

step, i.e., the number of times that a region has executed. Every region’s step starts at zero and

increases by one every time the region executes. Additionally, we keep track of every MPI

request produced by a region. A region does not advance (i.e, its step does not increase) until all

its MPI requests have finished, even if it has yielded execution.

MATE Ranks may exist in one of five states: finished, when it has finished its execu-

tion; ready, when at least one of its regions is ready to execute; barrier, when it is suspended

at a MATE Barrier (see section 4.4); waiting, when it is suspended for the completion of com-

munication requests, and; execute, when it is being executed by one of the worker threads. At

the beginning of a MATE application, all ranks start in a ready state since the root region (i.e.,

unannotated code) starts ready by default.

MATE executes local ranks through the use of user-level threads (ULTs)5. ULTs are

essential to our runtime system’s design since they enable MATE ranks to suspend at different

points of execution without the need to restructure code. A rank suspends its execution by calling

5We use the BOOST C++ Symmetric Coroutine library [94] to provide the yield/call semantics required to

suspend and resume the execution of a MATE rank. Coroutines contain a pointer to a private stack allocation and

the execution state of the processor at the moment of suspension. When resumed, the execution state moves back

into the processor. This context switch is a low-latency operation (∼50 CPU cycles [111]) that does not require a

system call.

67

the ULT’s yield() method, which preserves its current state of execution.

MATE workers are kernel-level threads6 whose purpose is to continuously look for ranks

owned by the process that are ready to execute. When it finds a ready rank, the worker will

resume its user-level thread and execute until no more ready regions remain. Whenever a worker

is not executing a rank, it will check for the completion of the pending MPI requests produced

by each of the rank’s regions and re-evaluate their readiness.

4.3.2 Execution Model

Worker Execution

At the beginning of a MATE application, each MATE process executes a single (master)

thread. This thread is in charge of runtime initialization and the creation of MATE workers. Fig.

4.8 shows the lifetime of a MATE worker.

MATE workers start executing their execute() method as soon as their kernel-level thread

is instantiated by the master thread with a call to pthread create() (1). The first order of business

is to set core affinity by calling pthread setaffinity() (2) and yielding the execution of the current

core (via pthread yield()) to ensure the new affinity takes effect (3). Concurrently, the master

thread calls MPI Barrier() (4) to guarantee a consistent start across all MATE processes for the

purposes of timing measurements. In the final step of its initialization, the worker synchronizes

with the master thread (5a) and the rest of the workers (5b) by calling pthread barrier wait().

After passing the barrier, the worker will scan for unfinished ranks and execute them

(7), until all have finished (6). Since workers share a common pool of local ranks, they use a

rank-specific mutex lock (8) to ensure unique assignment of ranks to workers. A worker will

operate on the rank only if it takes ownership of its lock (9). No other worker can perform any

operations on the rank’s object or execute its ULT until the worker thread releases its lock.

6These are threads scheduled by the operating system and mapped to different cores to achieve parallelism.

68

Figure 4.8: Lifetime of a MATE worker.

Once a worker takes ownership of a rank, it will query whether the rank has finished or

is waiting at a barrier by determining if the rank is in the barrier state (10). If either of these

conditions fails, then the worker continues to the next rank (7). Otherwise, the worker checks

whether the rank is ready to execute a region (11).

If the rank is ready, the worker will resume the rank’s execution (12). If the rank is not

ready to execute, it skips this step (15). When a worker calls the rank’s ULT resume() method,

69

the execution context will switch from that of the MATE worker to that of the MATE rank (13).

The inverse switch will occur when the rank calls its own ULT’s yield() method (14).

An important fact in our implementation is that different workers (cores) can resume the

execution of any given rank during its lifetime (although one at a time). This flexibility in mi-

grating ranks onto idle workers as soon as possible maximizes MATE’s potential for overlapping

computation and communication.

Regardless of whether the rank was ready to execute or not, the worker thread’s next goal

is to query the rank’s pending MPI operations (15), by evaluating every of its regions’ pending

MPI requests (16). In case a region does not have pending requests, the worker will continue

onto the next region (15). Whenever the worker finds a region with at least one pending request,

it will call MPI Testall() (17) to poll for completion. This function will return true if, and only

if, all of the region’s requests have finished. In that case, the worker thread clears the region’s

pending requests (18) and advances its step counter by one (19), meaning that the region has

finally finished their previous stint. If MPI Testall returns false, it means that at least one of the

requests have not yet and that the region cannot advance yet.

The worker will continue polling for available regions (20). When all regions have been

polled, it surrenders the rank’s ownership by releasing its lock (21) and looks for the next rank

(7). If all ranks in the process have finished, the worker thread exits (via pthread exit()), remov-

ing the KLT from the OS scheduler (22) and signaling the pthread join() (23) operation in the

master thread to indicate the current thread has finished. Once all threads exit (i.e., every call

to pthread join meets a reciprocal pthread exit call from each worker thread), the master thread

finalizes the process execution (24). A MATE application finishes when all MATE processes

finalize.

70

F
ig

u
re

4
.9

:
L

if
et

im
e

o
f

a
M

A
T

E
R

an
k
.

71

Rank Execution

Fig. 4.9 illustrates the lifetime of a MATE rank. The figure distinguishes between the

execution context of a MATE worker (top), and that of a MATE rank while it is executing

un-annotated code (bottom-right), and while it is executing annotated code (bottom-left). We

identify each step with a number for easy reference.

MATE defines execute mate() as the initial entry point for every rank’s ULT. The first

time a worker executes a rank (1), it will first execute the graph initialization calls contained

therein. Each call to Mate AddRegion() (2) creates a new region; Mate AddDependency (3)

adds a new region dependency, and; Mate AddInterRank() (3) creates a new inter-rank pre-

dependency. Inter-rank pre-dependencies are not actual dependency yet since the rank has not

declared any local neighbor ranks. They will become actual dependencies when a rank executes

the Mate AddLocalNeighbor (11) function. This function declares a new local neighbor which

will inherit all the inter-rank pre-dependencies declared in (3).

After creating the description of the program’s graphs blocks, the rank continues to exe-

cute what formerly was the main function of the program. That is, the rank will start executing

its root region (4). At this point, the rank executes un-annotated code.

Executing Un-Annotated Code

Calls to Mate Isend and Mate Irecv (9) will generate new MPI requests that the rank

appends to the root region’s (10). Since the root region executes under the same semantics as

a normal MPI program, the only way to verify the completion of its request vector is via calls

to Mate Wait() or Mate Waitall(). These calls will suspend the execution of the root region by

calling the rank’s ULT yield() method and returning to the worker’s execution context. The

rank will only resume after one of the worker threads tests the completion (8) of all of the MPI

requests in the root region.

Calling Mate Finalize(), executing a return statement in the scope of execute mate(),

72

or simply reaching its closing bracket will prompt the runtime system to finalize the rank. At this

point, the rank sets its state to finished (5), and increases the process’s finished rank counter by

one (6). This counter determines whether the application has finished. Finally, it yields execution

back to the worker’s context (7). After finalization, the rank will not be resumed again.

Other MATE API calls, such as the ones used to identify the rank, do not produce major

changes in the execution of the rank and thus are not shown in the diagram. We also exclude

collective calls, such as Mate LocalBarrier, Mate Barrier, Mate LocalBcast, Mate Bcast, from

the diagram as we explain them in detail in section 4.4.

Upon finding a MATE-annotated graph block, the root region will call Mate Enable

Regions(n), with n being a list of regions to enable (see Fig. 4.5, line 1). Upon calling this

function, the rank disables its root region (12) by setting it as inactive, enables each one of the

regions passed by argument (13), and increases the rank’s activeRegions counter with as many

regions contained in the graph. If this is a for loop graph block, the rank will also initialize the

region-specific induction variables (14) (see Fig. 4.5, line 2). At this point, the rank enters the

graph block’s while loop.

Executing Annotated Code

At the beginning of the block’s while loop, and every time a region finishes execution, the

rank calls Mate GetNextRegionID() (see Fig. 4.5, line 5) to determine the next region to execute

or determine the termination of the while loop (15). This function performs three operations:

1. It checks whether the currently executing region (i.e., the one that has just finished execut-

ing) has no pending MPI requests (16). If that is the case, then it advances the region by

increasing its step counter by one (17), meaning that the region has completely finished

executing this iteration. Otherwise, it skips this step.

2. It checks whether the rank has any active regions by evaluating ActiveRegions > 0 (18). If

73

this is false, then it means that the rank is ready to exit the graph block, and thus the rank

reactivates its root region (19). Otherwise, it performs no action.

3. It calls the rank’s findNextRegion() to define the next region to execute (20).

Figure 4.10: Flowchart of the findNextRegion method.

Fig. 4.10 shows the operation of a rank’s findNextRegion() method. This method iterates

over all the regions in the rank. If a region is inactive or has pending MPI requests, then it

skips it and continues onto the next region. Otherwise, it evaluates whether all the region’s

dependencies are satisfied. A dependency is satisfied if and only if the region’s step is smaller or

equal than the depended region’s step7. If false, the depended region has not executed recently

enough to enable this region and the method falls back to evaluate the next region. If true for all

dependencies, it means that the region is ready to execute.

findNextRegion() succeeds as soon as it finds a region that is ready to execute. If that’s the

case, it sets the rank to ready state and assigns the ready region as the next in line for execution.

If it fails to find a ready region, it sets the rank’s to the waiting state and returns.

If the rank is in waiting state, it means that one or more regions have pending MPI

requests to complete before becoming ready again (22). If this is the case, the rank yields

execution by calling its ULT’s yield method. The rank will resume execution later when one or

7If this is a previous-iteration dependency we relax this requirement by one step.

74

more of its regions become ready. On the other hand, if the rank is in the ready state, it will not

yield execution. Regardless of the case, the rank returns from its call to Mate GetNextRegionID()

with the region identifier to execute next (23).

The translated MATE application uses the region identifier regionId to determine the

next region to execute (24). If this identifier corresponds to the root region (regionId ==

ROOT REGION) then the rank exits the graph block while loop and continues to execute non-

annotated code (4). Otherwise, it switches to the corresponding region’s case statement (25).

During the execution of a graph block region, the MATE runtime system will accept calls to

Mate Isend and Mate Irecv. These functions will create new MPI requests (27) and append

them to the currently executing region (28). Calls to collective communication or barrier opera-

tions will execute as ordinary MPI code. However, since these operations require process-wide

synchronization, they may induce a deadlock if the dependency graph is not carefully specified.

After a region has finished executing, the rank evaluates its for loop conditional (29). If

this condition evaluates to false, meaning that the loop must finish, it calls Mate Disable Region()

(30). This function decreases the number of active regions in the rank by one and disables the

current region. If the conditional evaluates to true, meaning that the region is still active, then it

performs no action and iterates back to evaluate the while loop conditional (15). In case this is

not a for loop graph block, the rank will call Mate DisableRegion unconditionally (30).

4.4 Communication Backend

Our current implementation of MATE supports a subset of the operations specified in

the MPI interface (See Appendix E for a list of currently supported MPI functions). MATE pro-

vides partial support for MPI two-sided operations (limited to Send/Recv and Isend/Irecv) and

integrates them into the model for computation/communication overlap. We also provide sup-

port for contiguous and non-contiguous datatypes. On the other hand, MATE does not currently

75

support dynamic process creation, one-sided communication, nor user-defined MPI groups and

communicators besides MPI COMM WORLD. However, our model does not rule out their im-

plementation. Next, we describe the implementation of point-to-point, barrier, and collective

communication operations in MATE.

4.4.1 Point-To-Point Communication

The main way in which two ranks exchange data in a conventional MPI application is by

performing a point-to-point message exchange operation. The sender rank initiates a message by

executing MPI Isend()8. Similarly, the receiver rank will make a reciprocal call to MPI Irecv()

to announce its readiness to receive the message. This protocol requires that both ranks agree on

the exchange of the message.

Based on the arguments passed in the function call, both MPI Isend and MPI Irecv will

generate a new MPI request which stores all the information required by MPI to perform the

exchange. Fig. 4.11 shows the fields that make up an MPI request. The Count field indicates

how many elements (not bytes) to exchange. The Datatype field indicates the data type of the

element, expressed in MPI format (e.g. MPI INT, MPI DOUBLE) and not native size format

(e.g. sizeof(double)) to guarantee compatibility across different platforms. The Buffer Pointer

field indicates either the source buffer (in case of the sender rank) or destination buffer (in case

of the receiver rank) pointer. The Communicator field indicates which MPI subgroup of ranks to

use in the exchange (typically, MPI COMM WORLD, which includes all ranks in the execution).

The Source field indicates the rank of the process sending the message. MPI does not require this

field as a function call argument in MPI Isend since MPI fills it with the sender’s rank. Similarly

for the Destination field which indicates the receiver rank and is not required when issuing an

MPI Irecv request. Finally, the Tag field is a user-defined numerical identifier.

The only conditions required for MPI to complete a message exchange is that the Source,

8Also with MPI Send(), which is equivalent to MPI Isend() followed by an immediate call to MPI Wait().

76

Figure 4.11: Structure of an MPI request.

Destination, and Tag fields coincide9in both send and receive requests. The tag field allows

a programmer to individually identify different messages exchanged between the same pair of

ranks. Although the MPI Irecv and MPI Isend function calls accept an 8-byte (64 bits) integer

argument for the tag field, each particular MPI library implementation restricts its actual value

range. Indeed, MPI libraries reserve part of the tag to store other information (possibly source

and destination rank ids) to save on the size of the metadata portion of the packets sent through

the network. In all of our experiments, we used the Cray-MPICH 7.7.0 library which reserves

43 of the 64 bits in the tag field. In this case, a programmer can specify a tag value ranging from

0 to 2,097,151.

One of the first and most difficult challenges we faced in developing our model was to

find a way to identify local ranks individually in the exchange of MPI messages. Since we use

MPI as our backend communication library, we can only use the source and destination fields to

identify which MATE processes are involved in the exchange. However, these fields only specify

MPI processes, and not local MATE ranks that arise from overdecomposition.

The simplest way to overcome this problem is to ‘wrap’ the message payload with an

additional MATE metadata header containing the local identifier of the sender and receiver ranks.

The receiver MATE process would then ‘unwrap’ the header and copy the data payload onto the

9A notable exception is the use of wildcards (e.g., MPI ANY SOURCE, MPI ANY TAG) which are not cur-

rently supported in MATE.

77

actual rank’s buffer. We immediately disregarded this solution due to its many drawbacks. First,

the sender process needs to create a new internal buffer to store the payload plus the metadata

before issuing the MPI Isend request. Not only this required additional per-message memory

allocations but also an additional memcpy of the message’s payload. Second, we would have to

design complex MATE-to-MPI bookkeeping to keep track of local request completion.

Figure 4.12: Structure of a MATE/MPI request, including local rank identifiers in the tag field.

We came to a much more efficient solution after realizing we could ‘steal’ bits from

the tag field to identify the local identifiers of the sender and receiver ranks. Fig. 4.12 shows

the format of a MATE/MPI message request. We reserved 16 out of the 21 bits in the user-

definable portion of the tag field to indicate the local sender/receiver ids, using 8 bits for each

one. Thus, a full MATE rank id is the concatenation of the MPI (process) rank and the local rank

within the process. Since MPI will complete the exchange when the source, destination, and tag

fields coincide, this approach entirely delegates MPI the responsibility of completing the request

without the need for metadata headers or additional memcpys.

The MATE/MPI request format we designed restricts the actual range of values of the tag

field to 5 bits. This new range means that MATE applications over Cray-MPICH can only differ-

entiate among 32 different messages exchange by the same sender/receiver pair. This restriction

has not impacted any of our test cases, but it might be a limitation in a large application. In such

78

cases, it may be necessary to define additional communicators. as we only needed to ‘reduce’

the larger-than-32 tag identifiers in their original codes to smaller numbers. Additionally, using

8 bits for identifying local rank ids means that we currently support 256 local ranks per MATE

process. This maximum will allow, for example, instantiating MATE process with eight MATE

workers and with eight ranks per core each. We did not exceed this limit in our experiments.

4.4.2 Barriers

MATE provides two barrier mechanisms, Mate GlobalBarrier() and Mate LocalBarrier()

for ranks to synchronize with each other during execution. Mate GlobalBarrier() has the same

semantics as MPI Barrier(MPI COMM WORLD) in that all ranks in execution will wait for each

other at that point. In fact, our translator automatically renames every instance of MPI Barrier

to Mate GlobalBarrier. The second mechanism, Mate LocalBarrier() synchronizes all the local

ranks within the scope of a single MATE process. MATE ranks may call these mechanisms at

any point of execution, even when executing a region within a graph block.

Both barrier mechanisms are aliases to a common Mate Barrier(bool isGlobal) function.

That is, they perform the same operations but only differ in the value of the isGlobal argument

they pass. Fig. 4.13 shows the steps that a rank follows in executing Mate Barrier().

1. Obtain the rank’s own pointer by calling getCurrentRank().

2. Increase the MATEProcess counter barrier counter by one.

3. Evaluate whether the barrier counter equals the number of local ranks. If this is false, it

means that not all local ranks have arrived at the barrier yet. In that case, the rank sets its

isBarrier flag to true so that it will not be scheduled for execution again until all the other

ranks have met the barrier, and then yields execution. If counter equals the number of

local ranks, it means that all other ranks have arrived at the barrier. Therefore, the current

rank becomes the ‘root rank’ of the barrier and executes the rest of the steps.

79

Figure 4.13: Flowchart of MATE barrier mechanisms.

4. In case the isGlobal flag is true, then the root rank calls MPI Barrier() to synchronize all

ranks across MATE processes. Otherwise, it omits this step.

5. The root rank re-initializes the barrier counter to zero for the next time a barrier executes.

6. The root rank grabs the lock of every other rank in the local process. Taking ownership of

every rank is an important step to avoid concurrency problems with ranks that may still be

in execution by other MATE workers. After obtaining the locks, it will set their barrier

flag to false and release their lock. The root rank then returns from the call.

7. All non-root ranks resume execution and return from the call as well.

80

4.4.3 Collective Communication

MATE supports several MPI collective communication functions, including Mate Bcast,

Mate Reduce, Mate Scatter, Mate Gather, Mate Allgather, Mate Allgatherv, and Mate Allreduce.

In our test applications, collective communication did not contribute a significant cost. Therefore,

this support is designed with simplicity in mind rather than efficiency. Integration of collective

operations into the MATE model remains a future work. We designed a general strategy for

collective communication that meets our goals. Fig. 4.14 shows the steps of our algorithm.

Figure 4.14: Flowchart of MATE collecive communication operations.

81

1. The rank determines whether it is the root rank (i.e., it’s local rank is 0).

2. The root rank allocates process-wide send and receive buffers for the collective operations

(although most collective operations require only one buffer).

3. Every rank copies their local send buffer onto the process-wide send buffer.

4. The root rank performs the MPI equivalent of the collective in representation of the whole

MATE process using the process-wide recv and send buffers.

5. Every rank copies their part of the process-wide buffer onto their local receive buffer.

6. The root rank deallocates the process-wide send and receive buffers.

7. Every rank returns from the call.

Acknowledgements

This chapter is, in part, a reprint of the material contained in the article: “MATE, a

Unified Model for Communication-Tolerant Scientific Applications”, by Sergio M. Martin and

Scott B. Baden, which appears in the Proceedings of 31st International Workshop on Languages

and Compilers for Parallel Computing (LCPC 2018), Salt Lake City, UT, USA, October 2018.

This dissertation’s author was the primary investigator and author of this paper.

This chapter is also, in part, a reprint of the material contained in the article: “Toucan

- A Translator for Communication Tolerant MPI Applications”, by Sergio M. Martin, Marsha

J. Berger, and Scott B. Baden, which appears in the Proceedings of 1st International Parallel

and Distributed Processing Symposium (IPDPS 2017), Orlando, FL, USA, June 2017. This

dissertation’s author was the primary investigator and author of this paper.

82

Chapter 5

Test Case I: Jacobi3D

5.1 Overview

Figure 5.1: 13-Point Stencil on a three-dimensional grid.

Our first test case is Jacobi3D, a solver for the 3D Poisson equation subject to Dirich-

let boundary conditions which uses a finite-different method. The computation applies Jacobi

updates over all the elements of the grid using a 13-point central difference [119] stencil that

updates each element with the average of its a central point and four nearby points per axis in

a 2-point deep straight line, as illustrated in Fig. 5.1. This test case is a proxy for single level

structured grid applications. Although structured and multi-grid solver are more complex [2],

Jacobi3D represents a typical hotspot (i.e. time-consuming section) of a single mesh sweep.

83

5.1.1 Computation

The iteration logic of Jacobi3D’s solver is similar to that of the pseudocode presented in

Section 3.1.1 (Fig. 3.3), but extended to three dimensions. This code solves the equation ∆U = f

equation in a box with f = 0 on ∂Ω, the boundary of the box. The computational kernel of this

code appears in Fig. 5.21. Ranks define a boundary box that defines the starting and ending

(x,y,z) indexes they use to iterate over all the elements of a 3D subgrid.

1 for (int z = start.z; z < end.z; z++)

2 for (int y = start.y; y < end.y; y++)

3 for (int x = start.x; x < end.x; x++)

4 {

5 // C0: Coefficient for the central element

6 Unew[x,y,z] = C0 * Uold[x,y,z];

7 // C1: Coefficient for 1-deep nearby elements

8 Unew[x,y,z] += C1 * (Uold[x+1,y,z] + Uold[x-1,y,z] + Uold[x,y,z];

9 Uold[x,y+1,z] + Uold[x,y-1,z] +

10 Uold[x,y,z-1] + Uold[x,y,z+1]);

11 // C2: Coefficient for 2-deep nearby elements

12 Unew[x,y,z] += C2 * (Uold[x+2,y,z] + Uold[x-2,y,z] +

13 Uold[x,y+2,z] + Uold[x,y-2,z] +

14 Uold[x,y,z-2] + Uold[x,y,z+2]);

15 }

Figure 5.2: Pseudo-code of the solver kernel of Jacobi3D.

The solver uses two grids: the current iteration’s grid (Unew), and the previous itera-

tion’s grid (Uold). Each stencil update to the current grid element (Unew[x,y,z]) is a function

of the values of the previous iteration’s grid (Uold) elements, starting from the central point

(Uold[x,y,z]), multiplied by the central element coefficient (C0). Added to this update, it uses

the sum of the values of the neighboring points in the stencil at a Manhattan distance of one (e.g.,

Uold[x+1,y,z] and Uold[x-1,y,z]), weighted by the 1-deep coefficient (C1) plus the sum of the

points at a Manhattan distance of two (e.g., Uold[x+2,y,z] and Uold[x-2,y,z]) weighted by C2.

We employ the cache-blocking and node-mapping optimizations described in Appendix

B to maximize the performance of the solver and use the computational and memory resources

to the best of their capacities. Having an optimal baseline is essential not only to represent

1In the original code from Fig. 3.3, this part is contained in ApplyStencil().

84

highly optimized real-world applications but also to highlight the benefits of communication-

reducing models. Any communication overheads that our model can reduce or hide will have

more substantial effects in the absolute performance of the application if the base algorithm

yields a maximum efficiency during its computational phase.

5.1.2 Verification

Our example verificaties the result’s correctness with the routine shown in Fig. 5.3. The

code calculates the local L2 residual of its subgrid, i.e., the sum across all the elements in the

subgrid of the squared difference between their calculated solution and their theoretical solution.

In our example, the calculated solution is the value of Uold subgrid after executing the iterative

solver, and the expected solution is a zero-valued grid.

1 double res;

2 double GlobalResidual = 0.0;

3 double LocalResidual = 0.0;

4 for (int z = start.z; z < end.z; z++)

5 for (int y = start.y; y < end.y; y++)

6 for (int x = start.x; x < end.x; x++)

7 LocalResidual += Uold[x,y,z] * Uold[x,y,z];

8 MPI_Reduce (&LocalResidual , &res, 1, MPI_DOUBLE , MPI_SUM, 0, MPI_COMM_WORLD);

9 GlobalResidual = sqrt(res/(N*N*N));

Figure 5.3: Verification code for Jacobi3D.

The solver computes the local contribution to the residual across all ranks and uses

MPI Reduce to sum these values, storing the result in a temporary variable (res). The global

L2 residual is computed by taking the square root of the average residual across all the elements

in the grid (res/N3). To ensure that all our experiments produce a correct result, we compare the

value of the global L2 residual and verify that they are equal.

85

5.2 Strong Scaling Studies

To evaluate the performance of Jacobi3D, we conducted a strong scaling study on our

two computational testbeds (appendix A). In a strong scaling study, we keep the grid size con-

stant while increasing the number of cores/nodes. The purpose of this study is to evaluate the

effectiveness of MATE under varying amounts of communication overheads, which grow with

the number of cores.

On a small scale (e.g., 64 nodes), the cost of computation is higher than the cost of

communication since the amount of work overwhelms communication requirements. However,

as we scale up the number of cores in execution, the size of per-core subgrid decreases. The

effect of decreasing per-core subgrid sizes is threefold. First, the amount of computational work

that each core needs to perform decreases relative to the cost of communication. Second, the

cost of network latency is intensified at larger scales since the average distance between any two

nodes also increases.

We designed our study so that, at the largest scale, the size per subgrid variable requires

approximately 1% of the total node memory in each computational testbed. This size is represen-

tative of a structured adaptive mesh solver for solving combustion problems [122] that employ

up to a hundred variables. We compare the performance of six variants of the solver:

1. Basic MPI establishes the performance baseline upon which we compare the benefit from

our other variants. Although this variant implements all the optimizations mentioned ear-

lier, it does not attempt to overlap communication with computation.

2. Over-MPI employs overdecomposition as the only mechanism for hiding the cost of net-

work communication and does not use MATE’s hierarchical decomposition. This variant

uses the identical code to Basic-MPI. To enable overdecomposition, we translate and run

this variant using MATE’s runtime system.

3. The Olap-MPI variant improves the baseline code from Basic-MPI with a split-phase

86

strategy that divides the rank’s grid into smaller 3D tiles, each computed separately. This

subdivision produces a similar effect as overdecomposition in MATE, as each tile requires

separate communication and computation operations.

Fig. 5.4 shows the simplified pseudo-code of the manually overlapping variant. This

variant divides each iteration into three distinct phases. First, it traverses over the 3D

distribution of nTilesX × nTilesY × nTilesZ tiles to initialize the receive requests for the

boundaries of every tile (tx,ty,tz) (lines 3-4). Second, it performs the same traversal again

to compute, initiate packing, and send requests for each tile (lines 6-11). The effect of

this phase is to initialize send operations as soon as each tile’s computation has finished,

overlapping computation with computation. Lastly, it waits for the receive requests to

finish and unpacks their buffers (lines 13-17).

1 for (int i = 0; i < Iterations ; i++)

2 {

3 for (tx = 1:nTilesX, ty = 1:nTilesY, tz = 1:nTilesZ)

4 // Issue MPI_Irecvs for tile(tx,ty,tz);

5

6 for (tx = 1:nTilesX, ty = 1:nTilesY, tz = 1:nTilesZ)

7 {

8 // Compute tile(tx,ty,tz);

9 // Pack tile(tx,ty,tz) boundaries ;

10 // Issue MPI_Isends for tile(tx,ty,tz);

11 }

12

13 for (tx = 1:nTilesX, ty = 1:nTilesY, tz = 1:nTilesZ)

14 {

15 // MPI_Waitall (requests for tile(tx,ty,tz));

16 // Unpack tile(tx,ty,tz) neighbor boundaries ;

17 }

18 }

Figure 5.4: Pseudo-code of the manually overlapping variant of Jacobi3D.

4. The Toucan variant employs hierarchical overdecomposition but annotates the code with

the fixed 3-region syntax prescribed in the Toucan Model [67], instead of MATE’s gen-

eralized annotation model. The result is that the Toucan variant requires process-wide

barriers to prevent data hazards among overdecomposed ranks whereas the MATE avoids

this problem by utilizing inter-rank dependencies.

87

5. MPI+OpenMP combines MPI and OpenMP to provide a 2-level decomposition (similar to

MATE’s) in which multiple OpenMP threads share the work assigned to a single process

(as described in Fig. 2.12), and thus do not explicitly move data on-node. This variant,

however, does not employ overdecomposition nor any mechanism for overlapping com-

munication with computation.

6. MATE applies all the optimizations of the MATE model as described in chapter 3. We use

the same graph configuration as the one described in Fig. 3.16, including inter-rank depen-

dencies among ranks located in the same MATE process. We employ overdecomposition

in all our experiments to hide the cost of inter-node communication.

5.2.1 Cori Phase I (Haswell)

We ran our six variants over a range of 128 to 1024 nodes (4096 to 32768 Haswell cores),

doubling the number of nodes at each scaling step. We performed 200 solver iterations on a grid

of n = 40963 cells. We used 4096 cells per side since this number is divisible by 32, the per-side

distribution of processes used in the Basic-MPI variant on 32768 cores. At 512 nodes, the grid

consumes 1.56% of the total system’s memory.

We ran the MPI variants using one MPI process per core, and an on-node rank distribu-

tion of 4× 4× 2. The highest performing configuration for the MPI+OpenMP variant was 4

MPI processes × 8 OpenMP threads on each node with a local thread distribution of 1×4×2

within each MPI process. For the MATE variant, we determined that the best configuration uses

4 MATE processes × 8 threads per node, with 32 MATE ranks per process with a local rank

distribution of 1×8×4. This configuration corresponds to an overdecomposition factor2 of 4.

Fig. 5.5 shows the results of our study, plotting performance (TFlop/s). We performed

three runs of each (variant, node count) combination and found less than ≤1% variation in

wallclock time between runs. We report the best run for each combination. Results show that

2We define overdecomposition factor as the ratio of MATE ranks per core.

88

S
pe

ed
up

:

1.
00

1.
00

1.
00

1.
00

0.
89

0.
94

0.
88

0.
90

1.
05

1.
03

1.
01

1.
01

1.
06

1.
04

1.
01

1.
03

1.
02

1.
04

1.
03

1.
02

1.
08

1.
12

1.
09

1.
17

40
96

81
92

16
38

4
32

76
8

N
E

R
S

C
 C

or
i P

ha
se

 I
C

or
es

081624324048566472 Performance (TFlop/s)
B

as
ic

-M
P

I
O

ve
r-

M
P

I
O

la
p-

M
P

I
T

ou
ca

n
M

P
I+

O
pe

nM
P

M
A

T
E

 M
od

el

S
pe

ed
up

:

1.
00

1.
00

1.
00

1.
00

0.
89

0.
94

0.
88

0.
90

1.
05

1.
03

1.
01

1.
01

1.
06

1.
04

1.
01

1.
03

1.
02

1.
04

1.
03

1.
02

1.
08

1.
12

1.
09

1.
17

40
96

81
92

16
38

4
32

76
8

N
E

R
S

C
 C

or
i P

ha
se

 I
C

or
es

081624324048566472 Performance (TFlop/s)
B

as
ic

-M
P

I
O

ve
r-

M
P

I
O

la
p-

M
P

I
T

ou
ca

n
M

P
I+

O
pe

nM
P

M
A

T
E

 M
od

el

S
pe

ed
up

:

1.
00

1.
00

1.
00

1.
00

0.
89

0.
94

0.
88

0.
90

1.
05

1.
03

1.
01

1.
01

1.
06

1.
04

1.
01

1.
03

1.
02

1.
04

1.
03

1.
02

1.
08

1.
12

1.
09

1.
17

40
96

81
92

16
38

4
32

76
8

N
E

R
S

C
 C

or
i P

ha
se

 I
C

or
es

081624324048566472 Performance (TFlop/s)
B

as
ic

-M
P

I
O

ve
r-

M
P

I
O

la
p-

M
P

I
T

ou
ca

n
M

P
I+

O
pe

nM
P

M
A

T
E

 M
od

el

S
pe

ed
up

:

1.
00

1.
00

1.
00

1.
00

0.
89

0.
94

0.
88

0.
90

1.
05

1.
03

1.
01

1.
01

1.
06

1.
04

1.
01

1.
03

1.
02

1.
04

1.
03

1.
02

1.
08

1.
12

1.
09

1.
17

40
96

81
92

16
38

4
32

76
8

N
E

R
S

C
 C

or
i P

ha
se

 I
C

or
es

081624324048566472 Performance (TFlop/s)
B

as
ic

-M
P

I
O

ve
r-

M
P

I
O

la
p-

M
P

I
T

ou
ca

n
M

P
I+

O
pe

nM
P

M
A

T
E

 M
od

el

S
pe

ed
up

:

1.
00

1.
00

1.
00

1.
00

0.
89

0.
94

0.
88

0.
90

1.
05

1.
03

1.
01

1.
01

1.
06

1.
04

1.
01

1.
03

1.
02

1.
04

1.
03

1.
02

1.
08

1.
12

1.
09

1.
17

40
96

81
92

16
38

4
32

76
8

N
E

R
S

C
 C

or
i P

ha
se

 I
C

or
es

081624324048566472 Performance (TFlop/s)
B

as
ic

-M
P

I
O

ve
r-

M
P

I
O

la
p-

M
P

I
T

ou
ca

n
M

P
I+

O
pe

nM
P

M
A

T
E

 M
od

el

S
pe

ed
up

:

1.
00

1.
00

1.
00

1.
00

0.
89

0.
94

0.
88

0.
90

1.
05

1.
03

1.
01

1.
01

1.
06

1.
04

1.
01

1.
03

1.
02

1.
04

1.
03

1.
02

1.
08

1.
12

1.
09

1.
17

40
96

81
92

16
38

4
32

76
8

N
E

R
S

C
 C

or
i P

ha
se

 I
C

or
es

081624324048566472 Performance (TFlop/s)
B

as
ic

-M
P

I
O

ve
r-

M
P

I
O

la
p-

M
P

I
T

ou
ca

n
M

P
I+

O
pe

nM
P

M
A

T
E

 M
od

el

S
pe

ed
up

:

1.
00

1.
00

1.
00

1.
00

0.
89

0.
94

0.
88

0.
90

1.
05

1.
03

1.
01

1.
01

1.
06

1.
04

1.
01

1.
03

1.
02

1.
04

1.
03

1.
02

1.
08

1.
12

1.
09

1.
17

40
96

81
92

16
38

4
32

76
8

N
E

R
S

C
 C

or
i P

ha
se

 I
C

or
es

081624324048566472 Performance (TFlop/s)
B

as
ic

-M
P

I
O

ve
r-

M
P

I
O

la
p-

M
P

I
T

ou
ca

n
M

P
I+

O
pe

nM
P

M
A

T
E

 M
od

el

S
pe

ed
up

:

1.
00

1.
00

1.
00

1.
00

0.
89

0.
94

0.
88

0.
90

1.
05

1.
03

1.
01

1.
01

1.
06

1.
04

1.
01

1.
03

1.
02

1.
04

1.
03

1.
02

1.
08

1.
12

1.
09

1.
17

40
96

81
92

16
38

4
32

76
8

N
E

R
S

C
 C

or
i P

ha
se

 I
C

or
es

081624324048566472 Performance (TFlop/s)
B

as
ic

-M
P

I
O

ve
r-

M
P

I
O

la
p-

M
P

I
T

ou
ca

n
M

P
I+

O
pe

nM
P

M
A

T
E

 M
od

el

S
pe

ed
up

:

1.
00

1.
00

1.
00

1.
00

0.
89

0.
94

0.
88

0.
90

1.
05

1.
03

1.
01

1.
01

1.
06

1.
04

1.
01

1.
03

1.
02

1.
04

1.
03

1.
02

1.
08

1.
12

1.
09

1.
17

40
96

81
92

16
38

4
32

76
8

N
E

R
S

C
 C

or
i P

ha
se

 I
C

or
es

081624324048566472 Performance (TFlop/s)
B

as
ic

-M
P

I
O

ve
r-

M
P

I
O

la
p-

M
P

I
T

ou
ca

n
M

P
I+

O
pe

nM
P

M
A

T
E

 M
od

el F
ig

u
re

5
.5

:
S

tr
o
n
g

S
ca

li
n
g

re
su

lt
s

fo
r

Ja
co

b
i3

D
o
n

4
k

to
3
2
k

C
o
ri

P
h
as

e
I

co
re

s.

T
h
e

n
u
m

b
er

ab
o
v
e

ea
ch

b
ar

re
p
re

se
n
ts

th
e

to
ta

l
sp

ee
d
u
p

co
m

p
ar

ed
to

B
a
si

c-
M

P
I.

89

2.177s 0.695s 1.204s<< Less is Better

+21%

+12%

+12%

+13%

+16%

-39%

-64%

-25%

+12%

+48%

-74%

+5%

-25%

-44%

-55%

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
Running Time (s)

MATE Model

MPI+OpenMP

Toucan

Olap-MPI

Over-MPI

Basic-MPI

Computation
MPI Calls
Buffering
Waiting

Figure 5.6: Time spent on different phases of our solver on 32k Cori Phase I cores.

MATE obtained outperformed all the other variants at all scales, yielding a 1.17x speedup at

32768 cores, compared to Basic-MPI. We observed similar results also at smaller scales.

To evaluate the particular effects on performance of each variant, we analyzed the time

spent by each variant on the different operations of the solver on 1024 Cori Phase I nodes (32768

cores). Fig. 5.6 shows these results where: Computation represents the solver kernel time

only; MPI Calls is the time spent issuing MPI Irecv/MPI Isend requests; Buffering is the time

spent packing and unpacking message buffers and Waiting is the time spent waiting on network

communication to complete. We report the wallclock time (seconds) taken per operation for the

Basic-MPI variant, and the % of time change of each operation for the other variants.

Results show that MATE was able to reduce a large amount of the network communi-

cation (74%) on 32768 cores, compared with Basic-MPI. We observed similar communication

reductions at smaller scales. We also see that, while the overdecomposition only (Over-MPI)

variant reduces 55% of network communication time, its benefits diminish due to a notable

increase (48%) in buffering costs and thus fails to produce any speedup. On the other hand,

Olap-MPI reduced the communication time without a significant impact in its packing costs.

All the variants suffered an increase in computation time over the baseline. We hypoth-

esize this increase comes from a loss in cache efficiency due to lack of prefetching. In the

90

Basic-MPI variant, the side effect of buffer unpacking is to prefetch grid data before executing

the kernel, which will help speed it up. In turn, the kernel smoother will improve cache locality

of buffer packing. To test this hypothesis, we developed a variant of Basic-MPI in which we

remove its buffering operations (this variant does not produce a correct result).

We used the Performance Application Programming Interface (PAPI) [86] to activate

hardware counters in the Haswell processor during the main loop of the solver. Table 5.1 com-

pares the computation time of the Basic-MPI variant (with and without buffering operations),

along with their absolute number of L2 cache misses and miss rate on a 100-iteration 128-node

Cori Haswell I run. We also include results for the MPI+OpenMP and MATE variants.

The table shows that, by removing the buffering operation from Basic-MPI, we observe

an increase in computation time (1.12x) that can be attributed to higher cache miss counts (1.10x).

A slightly smaller increase in L2 cache miss count (1.09x) can be observed on MPI+OpenMP,

which correlates with its slightly lesser impact on computational time (1.08x). The MATE vari-

ant suffers the highest L2 miss count (1.26x), which explains why it achieves the worse compu-

tation time of all (1.17x). We attribute this effect to a disruption of cache locality from the use

of overdecomposition, where ranks switch more often, reloading their data back into cache lines

and producing an excess in cache misses.

These results support our hypothesis that increased cache misses produced the slower

computation times. Notably, the excess cache miss count did not come from an increased cache

miss ratio, as all variants achieved relatively similar results, but from an increase in the total

Table 5.1: Comparison of computation times and L2 cache misses on 2k cores.

Variant Compute Time L2-D Misses L2-D Accesses Miss Rate

Basic-MPI 3.95s (1.00x) 2.98×1011 (1.00x) 8.37×1011 35.6%

Basic-MPI (No Buf.) 4.35s (1.10x) 3.33×1011 (1.12x) 8.68×1011 38.3%

MPI+OpenMP 4.28s (1.08x) 3.25×1011 (1.09x) 10.57×1011 30.7%

MATE 4.65s (1.17x) 3.76×1011 (1.26x) 11.34×1011 33.1%

91

number of L2 accesses.

Threading variants suffer from an additional cost of MPI call overheads. In MATE,

workers serialize the injection of MPI messages due to threading concurrency limitations in

the Cray-MPI library (Appendix C), producing periods of busy-waiting that extend the rank’s

occupancy in the core. The MPI+OpenMP variant suffers from this limitation as well as it also

relies on multi-threading but to a lesser extent since it does not employ overdecomposition and

thus exchanges fewer messages than MATE.

We observed that buffer packing cost in MPI+OpenMP shrinks by a more significant

amount than in MATE: 64% vs. 39%. However, as noted above, this variant cannot to reduce

communication costs as the overlapping variants did and so obtained little improvement in per-

formance. These results demonstrate that MATE can improve performance by hiding communi-

cation, even though there is a loss of cache locality in computation and message serialization.

To gain insight into why the MATE variant was able to hide a large portion of the cost

of network communication, we plotted the activity of 8 cores during execution of a short (30

iteration) run on 1024 nodes (32768 Haswell cores) of the Cori Phase I platform. Fig. 5.7 shows

core usage timelines of the (top) Basic MPI and (bottom) MATE variants. These timelines show

how cores fluctuate between busy time3 (dark blue) and idle time (white).

Basic-MPI assigns every MPI rank to its MPI process, mapped to a single core. This

variant cannot perform any useful work while ranks are waiting, and thus it suffers from the full

cost of communication. On the other hand, the MATE variant keeps cores busy by executing

ranks while others communicate. Since a MATE process manages a pool of 64 ranks running

on 8 threads, it maximizes opportunities for overlap by allowing ranks to execute on any core.

Fig. 5.8 shows half a second of execution of local rank 0, exclusively. We can see how the rank

migrates (dashed line) across all the threads in the MATE process, starting execution as soon as

it becomes ready.

3This includes time spent in computation, packing, and unpacking operations.

92

Figure 5.7: Core Timelines. (Top) Basic MPI (8 Ranks), (Bottom) MATE (64 Ranks).

Figure 5.8: Timeline of local rank 0 transitioning across the 8 cores in the MATE process.

93

5.2.2 Cori Phase II (KNL)

Jacobi3d - Strong Scaling Study (n=4096 3)

Speedup:

1.00

1.00

1.00

1.00

1.01

1.05

1.05

1.08

1.06

1.12

1.17

1.17

8192 16384 32768 65536
NERSC Cori Phase II Cores

0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

an
ce

 (
T

F
lo

p/
s)

Basic-MPI
MPI+OpenMP
MATE Model

Figure 5.9: Strong Scaling results for Jacobi3D on 8k to 64k Cori Phase II cores.

1.721s 0.610s 0.752s

+6%

+5%

-52%

-56%

-52%

-12%

65536 C
ores

0 0.5 1 1.5 2 2.5 3
Running Time (s)

MATE Model

MPI+OpenMP

Basic-MPI
Computation
MPI Calls
Buffering
Waiting

Figure 5.10: Time spent on different phases our solver on 64k Cori Phase II cores.

For the Cori Phase II platform, we ran three variants: Basic-MPI, MPI+OpenMP, and

MATE. The purpose of this experiment is to demonstrate that our model can benefit performance

on different computing platforms and, therefore, we donot include as many variants as on Cori

PhaseI. Besides MPI and MATE, we also include MPI+OpenMP to give a comparison point for

intra-node data motion reduction potential.

We performed a strong scaling study over a range of 128 to 1024 nodes (8192 to 65536

KNL cores), duplicating the number of nodes at each scaling step. We performed 200 solver

iterations on a grid of n = 40963 cells. As we did for Cori Phase I, we used 4096 cells per side

94

since this number is divisible by 64, the per-side distribution of processes used in the Basic-MPI

variant on 32768 cores. On 1024 nodes, the grid occupies 1.04% of the total system’s memory.

We run the Basic-MPI variant using one MPI process per core and an on-node rank distri-

bution of 4×4×4. We determined that the best performing configuration for the MPI+OpenMP

variant was 8 MPI processes × 8 OpenMP threads on each node with a local thread distribution

of 1×4×2 on each MPI process. For the MATE variant, we determined that the best configu-

ration uses 16 MATE processes × 4 threads per node, with 16 MATE ranks per process with a

local rank distribution of 1×4×4, corresponding to an overdecomposition factor of 4.

Fig. 5.9 shows the results of our study. We performed five runs of each (variant, node

count) combination and found less than ≤1% variation in wallclock time between runs. We

report the best run for each combination. Fig. 5.10 shows the per-operation running time break-

down for the largest run on Cori Phase II (65536 cores).

Table 5.2: Ratio of computation, buffering, and communication costs on 1024 nodes of Cori

Phase I (32k cores) vs Cori Phase II (64k cores) for the Basic-MPI variant.

Basic-MPI

System Compute % Buffering % Network %

Cori Phase I 53% 17% 30%

Cori Phase II 55% 21% 24%

Table 5.3: Ratio of computation, buffering, and communication costs on 1024 nodes of Cori

Phase I (32k cores) vs Cori Phase II (64k cores) for the MATE variant.

MATE

System Compute % Buffering % Network %

Cori Phase I 79% 12% 9%

Cori Phase II 75% 11% 14%

Table 5.2 shows a comparison of the running times of Basic-MPI on 1024 nodes of

both Cori Phase I and Phase II systems. In this comparison, we solve the same problem (n =

40963, 200 iterations) in both systems and use the same number of nodes. We observe that both

95

systems have a similar computation ratio (53 ∼ 55%), although they differ in their sources of

communication cost. The Phase I system suffers from a higher communication cost (30%) than

Phase II (24%), which can be explained by their significant difference in global peak bisection

bandwidth (5.65 Tb/s, in Phase I vs. 45Tb/s in Phase II) in their interconnects. On the other

hand, Phase II suffers from a higher (21%) component of buffering, compared to Phase I (17%).

This difference can be explained by the fact that Phase II exchanges more internal boundaries

in each node contains an Intel ‘Knights Landing’ processor with 64 cores vs. two 16-core Intel

‘Haswell’ processors in Phase I.

Table 5.3 shows a similar comparison for the MATE variant. As we observed before,

MATE achieved better performance in both systems compared to Basic-MPI. On both systems,

MATE achieves a much higher (75 ∼ 79%) computation ratio (i.e., effective core usage), re-

ducing the buffering cost ratio to (11 ∼ 12%), even on Cori Phase II, which contains a higher

internal-node boundary than Phase I. MATE also reduced the network communication ratio to

a single digit in Phase I, demonstrating that MATE’s mechanisms can significantly reduce this

cost, even in interconnects with a with relatively low peak bandwidth.

5.3 Summary

Our results show that MATE was able to reduce a significant amount of the intra-node

and network communication overheads of a single-level structured grid method. At the largest

scale experiment on Cori Phase I (32768 cores), MATE was able to reduce 38% of the intra-

node data motion and 75% of the network communication costs. These savings yielded a total

1.17x speedup, compared to Basic-MPI and a 1.15x speedup, compared to MPI+OpenMP. We

observed similar benefits from MATE at smaller scale experiments as well.

We have also shown that MATE was effective in reducing a large portion of the cost

of communication on Cori Phase II. On this system, we observed a reduction of 52% in both

96

buffering and network communication costs, yielding a speedup of 1.17x, compared to Basic-

MPI, and 1.08x speedup, compared to MPI+OpenMP.

These results demonstrate that, by reordering communication and computation, MATE

obtains a better performance than a hand-overlapped MPI variant, even though there is a loss

of cache locality in computation and message serialization. Additionally, our results with Cori

Phase I serve to show that MATE can significantly reduce the cost of network communication

in low-bandwidth interconnects, while our results with Cori Phase II show that MATE can re-

duce the cost of intra-node data motion in highly-threaded processors, such as Intel ‘Knights-

Landing’.

Acknowledgements

This chapter is, in part, a reprint of the material contained in the article: “MATE, a

Unified Model for Communication-Tolerant Scientific Applications”, by Sergio M. Martin and

Scott B. Baden, which appears in the Proceedings of 31st International Workshop on Languages

and Compilers for Parallel Computing (LCPC 2018), Salt Lake City, UT, USA, October 2018.

This dissertation’s author was the primary investigator and author of this paper.

97

Chapter 6

Test Case II: Cannon’s Algorithm

6.1 Overview

Linear algebra algorithms play an important role in scientific computing as they are part

of a wide range of applications. High-performance scientific distributed math libraries such as

ScaLAPACK [24] and PETSc [14], contain highly optimized implementations of these algo-

rithms.

Here we focus on dense matrix multiplication which requires O(n3) arithmetic opera-

tions1. Since well-optimized algorithms load O(n2) elements from memory, they tend to be

computationally-bound.

For our next study, we use Cannon’s algorithm [19] (Cannon2D), a parallel algorithm

for computing the product of two dense square matrices C = A×B. We introduce the baseline

algorithm and a manually overlapping variant and describe our results using the MATE model.

Finally, we evaluate performance on our two computational testbeds.

1Although algorithms with lower complexity have been proposed [41, 80].

98

6.2 Code Variants

To evaluate the benefits of applying MATE to Cannon2D, we test three variants:

1. Basic-MPI is the baseline for measuring the communication-reduction potential of the

other variants. This variant implements Cannon’s algorithm but makes no effort in reduc-

ing the costs of communication through overlap.

2. Olap-MPI is a latency-tolerant variant of the baseline MPI algorithm that employs a hand-

coded communication/computation overlap strategy to reduce the cost of network commu-

nication.

3. The MATE variant employs all the mechanisms described in chapter 3 to reduce the cost

of network and intra-node communication.

6.2.1 Base MPI Algorithm

Cannon’s algorithm computes the product of two square N×N matrices. The baseline

MPI implementation (Basic-MPI) divides the input A and B matrices into smaller square ma-

trices and distributes them among a square number of ranks across the system. The algorithm

computes C = A×B in a series of p steps, where p2 is the number of ranks. The algorithm

requires that p divides N evenly. Each rank owns a square sub-block of C and also holds local

sub-blocks of A and B. At each step, ranks shift sub-blocks A and B along rows and columns of

a 2D processor geometry and compute a partial matrix product to update the local portion of C

(C += A×B). Fig. 6.1 shows how the baseline algorithm performs submatrix shifts.

Fig. 6.2 shows the pseudocode of the baseline MPI algorithm. The code obtains the rank

identifier myRank and the total number of ranks nRanks (lines 3-4) and calculates the number of

ranks per side as p =
√

nRanks (line 6). Next, it calculates the position of its submatrices along

99

Figure 6.1: Baseline Cannon2D algorithm where ranks shift the A and B submatrices along

rows and columns of the processor geometry, in a ring topology.

the Y axis by dividing its rank identifier by the number of ranks per side (p) (line 7). Ranks

calculate their position on the X axis using the remainder function (line 8).

We use a mapping optimization similar to the one described in Appendix B.3. This

optimization reduces the volume of network communication by assigning a rectangular rank-to-

core mapping2 maximizing locality among the cores of a node and optimizing row and column

shifts, as opposed to linear mapping which only benefits from row shifts. This mapping is crucial

for optimizing the communication performance of the baseline algorithm.

Each rank sends its current step’s A submatrix to the nearest neighbor located in the row

below within the same column, and communication wraps around to the top row if the current

rank is in the bottom row. Similarly, each rank sends its B submatrix to its left neighbor and, if in

the leftmost column, communication wraps around to the rightmost rank. The modulo operation3

is used to determine the id of its (left and up) neighbors (lines 10-13).

Ranks determine the number of elements per side of their submatrices (n) by dividing the

number of global elements per side (N) by the number of ranks per side (p) (line 15). The rank’s

2To simplify our description of the code, we do not include this optimization in Fig. 6.2.
3A better approach is to use row/column specific MPI groups to define the geometry. Our current implementation

of MATE, however, does not yet support this feature. Nevertheless, this choice of implementation does not affect

performance, and is purely a programming issue.

100

1 Cannon2D(N)

2 {

3 MPI_Comm_rank(MPI_COMM_WORLD , &myRank);

4 MPI_Comm_size(MPI_COMM_WORLD , &nRanks);

5

6 int p = sqrt(nRanks); // Uses a square 2D decomposition

7 myRow = myRank / p;

8 myCol = myRank % p;

9

10 int rA = mod(myCol + myRow , p); // Rank to receive Ai from

11 int rB = mod(myRow + myCol , p); // Rank to receive Bi from

12 int sA = mod(myCol - myRow , p); // Rank to send Ai−1 to

13 int sB = mod(myRow - myCol , p); // Rank to send Bi−1 to

14

15 int n = N/p; // Elements per submatrix side

16 initialize (A0, B0, C, n*n);

17

18 for(int i = 1; i <= p; i++)

19 {

20 MPI_Isend(n*n, Ai−1→ sA); MPI_Irecv (n*n, Ai← rA);

21 MPI_Isend(n*n, Bi−1→ sB); MPI_Irecv (n*n, Bi← rB);

22 MPI_Waitall (requests);

23 dgemm(C += Ai×Bi);

24 }

25

26 verify(C);

27 }

Figure 6.2: MPI pseudo-code of Cannon2D’s solver.

A0 and B0 submatrices (where 0 indicates the first iteration) are initialized using a predetermined

formula that provide a fast way to verify the correctness of the result, while the C is initialized

to zero (line 16).

Within the outer loop (lines 18-23), each rank initiates submatrix shifts, sending n2 el-

ements that contain the current values of its Ai and Bi matrices (i.e: Ai−1, Bi−1) and receiving

the new values (i.e: Ai and Bi) from its neighbors, and waiting until the exchanges finish (line

22). Once the incoming submatrices arrive, the local C submatrix is updated with the product

of the local Ai×Bi submatrices via dgemm4, a heavily optimized double-precision single-core

dense matrix multiplication library function. The complete product of the rank’s C is obtained

after performing p steps; that is, after the A and B submatrices have fully circulated around their

respective communication rings.

4We use the implementation of dgemm provided in the Intel’s Math Kernel Library [93].

101

To verify that the algorithm produces a correct result, we use a fast verification algorithm

(line 26). This algorithm requires input matrices A and B for which the product can be readily

computed in closed form. These matrices are described by the formula Eq. 6.1, and the product

is calculated by the formula in Eq. 6.2.

Ai, j = Bi, j =
1

i+ j
∀ i = 1..n, j = 1..n (6.1)

Ci, j =
n

∑
k=1

1

(i+ k)× (j+ k)
∀ i = 1..n, j = 1..n (6.2)

If at least one value in the matrix C differs from the value calculated by this formula

by more than 10−12, the program will output an error message and exit. Since every rank can

perform this calculation for their particular submatrices, verification can be carried on in parallel.

However, since this operation also has a O(n3) complexity, it may still take a long time for large

matrices. We performed this verification once for all our variants at all scales to make sure the

optimizations we applied did not affect the final result.

6.2.2 Overlapping MPI Algorithm

The communication/computation overlapping variant (Olap-MPI) re-structures the main

solver to pipeline the work, computing the current partial product of C while advancing the com-

munication for the next step. Fig. 6.3 shows how a rank sends the current Ai and Bi submatrices

to its down and left neighbors, while receiving the next iteration’s Ai+1 and Bi+1 from its up-

/right neighbors. While these exchanges take place, the partial product of C is updated with the

result of Ai×Bi. Once the exchanges finish, the rank swaps the pointers of the current and next

iteration’s submatrices for the next iteration.

Fig. 6.4 shows the pseudo-code for Olap-MPI. Each rank receives the values of A1

and B1 submatrices from its neighbors (lines 4-6) and will not move on until the exchange has

102

Figure 6.3: A rank achieves overlap by receiving Ai+1 and Bi+1 submatrices for the next step

while updating the value of C with Ai×Bi in the current step.

1 for(int i = 1; i <= p; i++)

2 {

3 if (i == 1)

4 { MPI_Isend(n*n, A0→ sA); MPI_Irecv(n*n, A1← rA);

5 MPI_Isend(n*n, B0→ sB); MPI_Irecv(n*n, B1← rB);

6 MPI_Waitall (requests); }

7

8 if (i < p)

9 { MPI_Isend(n*n, Ai→ sA); MPI_Irecv(n*n, Ai+1← rA);

10 MPI_Isend(n*n, Bi→ sB); MPI_Irecv(n*n, Bi+1← rB); }

11

12 dgemm(C += Ai×Bi);

13 if (i < p) MPI_Waitall (requests);

14 swap(&Ai↔&Ai+1); swap(&Bi↔&Bi+1);

15 }

Figure 6.4: MPI pseudo-code of overlapping Cannon2D’s solver.

finished. This operation is only performed during the first iteration to obtain the initial values for

the A and B submatrices. Next, the code initiates communication requests to obtain the values

of the next step’s Ai+1 and Bi+1 submatrices (lines 9-10) and updates the current value of C (line

12), overlapping communication and computation. Once it finishes updating C, it waits for the

completion of the communication requests (line 13). After the communication exchange has

finished, the current and next iteration pointers to A and B are swapped (line 14). Since the rank

already obtained its Ai and Bi submatrices, it requires no communication in the last iteration

(i == p).

103

6.2.3 MATE Variant

The MATE variant introduces a hierarchical approach by applying Cannon’s algorithm at

two levels at every iteration, once across MATE processes and once among the local ranks within

each process. Each process divides the input matrices into p0 level 0 submatrices, and then

subdivides these submatrices into p1 level 1 submatrices, where p0 is the number of processes

per side and p1 is the number of local ranks per side. Each local rank calculates a level 1 matrix

multiplication, then rotates shared pointers among local neighboring ranks residing in the same

level 0 submatrix, avoiding intra-process data movement. This step is repeated p1 times until the

current iteration’s value of C at a process-level completes.

Figure 6.5: Communication in the MATE variant of the Cannon’s solver using a hierarchical

decomposition. We simplified this figure to show MPI messages only across boundary ranks.

However, every rank exchanges MPI messages with neighboring processes.

For each iteration i, every level 1 rank sends its part of the current iteration’s Ai
1 and Bi

1

submatrices, while receiving the next iteration’s level 1 Ai+1
1 and Bi+1

1 submatrices from neigh-

boring processes, as shown in Fig.6.5. This approach uses a similar communication/computation

overlapping strategy as Olap-MPI as it receives the matrices for the next iteration while comput-

ing the current iteration.

Fig. 6.6 shows the pseudo-code of our MATE implementation. Ranks obtain their pro-

cess and local identifier and counts at lines 3-6. Next, they determine the row (pRow) and column

(pCol) position of their containing MATE process’s submatrix in the 2D process topology (lines

104

1 Cannon2D_MATE(N)

2 {

3 Mate_local_rank_id(&myLocalId);

4 Mate_global_process_id(&myProcessId);

5 Mate_local_rank_count(&localCount);

6 Mate_global_process_count(&processCount);

7

8 int p0 = sqrt(nRanks); // Uses a square 2D decomposition

9 pRow = myProcessId / p0; // MATE Process’ Row

10 pCol = myProcessId % p0; // MATE Process’ Column

11 int p1 = sqrt(p0); // Uses a square 2D local decomposition

12 y = myLocalId / p1; // Local Rank’s Row

13 x = myLocalId % p1; // Local Rank’s Column

14

15 rA = mod(x + y, p0); // Remote rank to receive Ai+1
1 from

16 rB = mod(y + x, p0); // Remote rank to receive Bi+1
1 from

17 sA = mod(y - x, p0); // Remote rank to send Ai
1 to

18 sB = mod(x - y, p0); // Remote rank to send Bi
1 to

19

20 for (int i = 0; i < p1; i++) Mate_AddLocalNeighbor(y*p1 + i); // Neighbor in same row

21 for (int i = 0; i < p1; i++) Mate_AddLocalNeighbor(p1*i + z); // Neighbor in same col

22

23 n = N/p0; // Elements per process-wide submatrix side

24 nl = n/p1; // Elements per local sub-submatrix side

25 k = (x+y)%p1; // Initial submatrix pointer position for local multiplication

26 if (myLocalId == 0) initialize (A0
0, B0

0, C_{0}, n); // Initializing Level 0 Submatrix

27 Mate_LocalBcast(&A); Mate_LocalBcast(&B); Mate_LocalBcast(&C);

28

29 #pragma mate graph

30 for(int i = 0; i < p0; i++)

31 {

32 #pragma mate region(communicate) depends (update*@)

33 {

34 MPI_Isend(nl*nl, Ai
1→ sA); MPI_Irecv (nl*nl, Ai+1

1 ← rA);

35 MPI_Isend(nl*nl, Bi
1→ sB); MPI_Irecv (nl*nl, Bi+1

1 ← rB);

36 }

37

38 #pragma mate region(compute) depends (update*@)

39 for(int j = 0; j < p1; j++)

40 {

41 dgemm(C1 += Ai
1×Bi

1);

42 k++; if (k == p1) k = 0; // Rotating Local Submatrix Pointer Positions

43 }

44

45 #pragma mate region(update) depends (compute@, communicate)

46 swap(&Ai
1↔&Ai+1

1); swap(&Bi
1↔&Bi+1

1); // Local Pointer swap

47 }

48

49 verify(C);

50 }

Figure 6.6: Pseudo-code of Cannon’s algorithm enhanced with MATE annotations and calls.

105

8-10). Since local ranks apply Cannon’s algorithm at a local level as well, they also calculate

the number of local ranks per side (p1) and the row (y) and column (x) position of their local

submatrix (lines 11-13) and determine the ids of their send/receive remote neighbors for their A1

and B1 submatrices (sA, rA, sB, rB, respectively)

Figure 6.7: Rank (0,11) declares inter-rank dependencies only along its same column/row.

Each ranks declares inter-rank dependencies with all the local ranks in the same row or

column (lines 20-21). These dependencies guarantee that a local rank will have all the necessary

local submatrices ready for access when performing the current step’s update. Local ranks that

do not reside in the same row or column need not synchronize since they will not exchange

submatrix pointers among each other. Fig. 6.7 shows an example of the inter-ranks dependencies

declared by rank 11, belonging to a process 0 which contains 16 ranks. Rank 11 only waits for

ranks 3, 7, 11, 15, 9, 10, 12 (and itself) to finish updating their pointers in the current iteration

before initiating communication and computation operations in the next iteration.

Lines 23 and 24 compute the number of elements per side for the level 0 and level 1

submatrices and establish the k starting row/column in the level 1 Cannon’s algorithm execution

(line 25). Only local rank 0 allocates and initializes the process-wide A, B, and C submatrices

and then distributes their pointers to the other local ranks (line 26). Each local rank computes

only their part of the process-wide C submatrix.

106

The main loop of the solver (lines 29-47) defines three regions. In the communicate

region (lines 32-36), ranks initiate the exchange of their part of A and B with remote neighbors.

Each remote message contains nl2 elements, corresponding to the rank’s level 1 section of the

process-wide submatrix.

The compute region (lines 38-43), updates the C submatrix. This update applies Can-

non’s algorithm at a local level by updating the value of Cx,y, p1 times. At the first step, each

rank calculates the value of the product of A(x,k)×B(k,y) (lines 41). Then, ranks increment the

value of k, setting it back to 0 if it reaches p1. Every time ranks change the value of k, they

change their local values of the A and B pointers to those owned by neighbor local ranks in the

same row (for A) and column (for B). At the end of this procedure, C contains the product of

A0×B0 consistent with the conventional Cannon’s algorithm operation.

The update region (lines 45-46), updates the local pointers of A and B to contain the val-

ues of the incoming submatrices for the next iteration. This region executes after completing the

exchange of remote submatrices, and all the local ranks in the same row and column (including

itself) have finished computing the current iteration.

6.3 Size Scaling Study

We performed a size scaling study to show that MATE’s realizes communication and

computation overlap over a wide range of matrix sizes. We evaluate the performance of our

three variants on increasing values of N while keeping the number of cores fixed. For this

experiment, we used 128 Cori Phase I nodes (4096 Haswell cores) and matrix sizes starting

from N = 12288 to N = 40960. We employed a 4× 4 rank-node mapping for all our variants.

We run the Basic-MPI and Olap-MPI variants using one MPI process per core. For the MATE

variant, we determined that the best configuration uses 8 MATE processes × 4 threads per node,

with 64 MATE ranks per process. This configuration represents an overdecomposition factor of

107

4. We performed three, 40 iteration-runs of the main solver to reduce noise and variation in our

results.

12
28

8

13
31

2

14
33

6

15
36

0

16
38

4

17
40

8

18
43

2

19
45

6

20
48

0

21
50

4

22
52

8

23
55

2

24
57

6

25
60

0

26
62

4

27
64

8

28
67

2

29
69

6

30
72

0

31
74

4

32
76

8

33
79

2

34
81

6

35
84

0

36
86

4

37
88

8

38
91

2

39
93

6

40
96

0

Matrix Size (N)

50

55

60

65

70

75

80

85

P
er

fo
rm

an
ce

 (
T

F
lo

p/
s)

Cannon2D n=(12288:40960) - 128 Cori Phase I Nodes (4096 cores)

Basic-MPI
Olap-MPI
MATE Model

Figure 6.8: Matrix Size Scaling of our three Cannon2D variants on 4k Cori Phase I nodes.

Fig. 6.8 shows the results of our study. The MATE variant consistently outperforms

the Olap-MPI variant. We attribute this result to to two factors. First, MATE does not perform

communication among ranks in the same process, but instead exchanges pointers which reduce,

in part, the cost of in-node communication. Second, besides the overlapping strategy employed

by Olap-MPI, MATE also employs overdecomposition which increases potential for communi-

cation with computation overlap.

We also observe that the computational performance of all variants increases with the

size of the matrices. This increase is to be expected since, as we scale the size of the matrix,

each core has more floating point operations to perform (this scales with O(n3)) than data to

communicate (this scales with O(n2)). The relative cost of communication, then, decreases lin-

early with increasing matrix sizes. This relation explains why the potential benefit of overlapping

variants also grow smaller as we approach the largest matrix sizes.

Both communication-reducing variants achieve their peak speedups, compared with Basic-

108

n=12288
1.214s 1.607s

+39%

+2%

-25%

-0%

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

MATE Model

Olap-MPI

Basic-MPI

Computation
MPI Calls

n=24576

9.261s 6.721s

+11%

+3%

-51%

-31%

0 4 8 12 16

MATE Model

Olap-MPI

Basic-MPI

Computation
Waiting

n=40960

50.160s 19.952s

-1%

-1%

-35%

-28%

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
Running Time (s)

MATE Model

Olap-MPI

Basic-MPI

Computation
Waiting

Figure 6.9: Execution breakdown for Cannon2D on 4096 Haswell cores with matrix sizes

(top) n=12288, (middle) n=24576, and (bottom) n=40960.

MPI, at matrix sizes in the of the middle range of N. On the other hand, their performance

approaches that of Basic-MPI for small and large matrices. To investigate the cause of this

phenomenon, we measured the wallclock time spent on computation and communication opera-

tions at n = 12288,24576,40960 for Basic-MPI variant, and show the % of time change of each

operation for the other variants. Fig. 6.9 plots the results.

For n = 12288 elements per side, overlapping variants fail to improve the performance

of the baseline algorithm. First, the Olap-MPI variant has a similar performance to that of the

baseline algorithm, which indicates that the overlapping approach does not affect very small

matrices. Second, although the MATE variant reduces the cost of communication by a quarter,

it also introduces additional overhead that offsets the benefit. This overhead comes from issuing

4-times the number of messages since we use an overdecomposition factor of 4. This overhead

does not affect the running time for N = 24576,40960 matrices, since its impact is relatively

109

insignificant.

For N = 40960 elements per side, MATE achieves a 35% reduction in network communi-

cation with no loss in computational performance. However, we can see that, for the reasons we

exposed above, the component of computation in the baseline is higher at this scale. Therefore,

communication reduction efforts have less of an impact on performance than in lower ranges.

The middle scale, N = 24576, corresponds to a point at which the communication cost

is significant enough that its reduction yields a reward, while MATE’s mechanisms have a less

impactful (11%) effect on computational performance. We can conclude that communication/-

computation overlapping strategies are most efficient within a range of matrix sizes large enough

not to be dominated by the fixed costs of communication, and small enough not do be dominated

by computation costs.

6.4 Weak Scaling Studies

We performed a set of weak scaling experiments to verify that MATE reduces the cost

of communication at different scales and on different platforms. In a weak scaling study, we

keep the amount of work per core fixed as we increase the number of nodes. We have chosen

middle-sized matrices as initial inputs in our study to showcase the potential of overlapping

approaches5.

We increase the size of the input matrices as we scale up the number of cores using the

formula: n(2p) ≃ 3
√

2n(p), where n is the linear dimension of the matrix, and p2 is the number of

cores. We round this value to the nearest square number that is also divisible by the number of

cores on the node to distribute submatrices evenly across all ranks.

5We do not employ a strong scaling study since the per-core computational decreases by 8x every time we

double the number of cores, which brings matrix sizes to either extremes of the range in which we have determined

that overlapping strategies have little effect.

110

6.4.1 Cori Phase I (Haswell)

Speedup:

1.00

1.00

1.13

1.07

1.18

1.13

4096 8192 16384
NERSC Cori Phase I Cores

0

28

56

84

112

140

168

196

224

252

280

P
er

fo
rm

an
ce

 (
T

F
lo

p/
s)

Basic-MPI
Olap-MPI
MATE Model

Figure 6.10: Weak Scaling results for Cannon2D on 4k to 16k Cori Phase I cores.

5.423s 4.758s

+18%

+3%

-45%

-18%

0 1.05 2.1 3.15 4.2 5.25 6.3 7.35 8.4 9.45 10.5
Running Time (s)

MATE Model

Olap-MPI

Flat-MPI

Computation
Waiting

Figure 6.11: Execution breakdown on 16k Cori Phase I cores.

For Cori Phase I, we use an initial matrix size N = 24576 and run the multiplication ker-

nel 40 times to reduce system noise. We use the same testbed configuration as in our matrix size

scaling experiments. Since Cannon’s algorithm requires that the number of ranks be a perfect

square, we tested the MPI variants on 4096 and 16384 cores. Running on 8192 cores is not

possible with MPI variants since this number is not a perfect square. MATE, on the other hand,

is able to run in 8192 nodes as it provides the flexibility of using a different overdecomposition

factor as on the other experiments. We use 2 MATE ranks per core on 8192 nodes, and 4 ranks

per core on 4096 and 16384 cores. Fig. 6.10 shows the results of our study.

Fig. 6.11 shows the execution breakdown at 512 Cori Phase I nodes. The Olap-MPI

111

variant was able to reduce 18% of the cost of communication while suffering almost no compu-

tation time overheads, and thus obtaining a total 1.07x speedup. On the other hand, the MATE

variant was able to reduce 45%, of the communication cost a net improvement of 27% over the

manual overlapping variant. MATE, however, suffered from a 18% increase in the computation

time. Despite this added cost, MATE was able to obtain a higher speedup of 1.13x, compared to

Basic-MPI.

6.4.2 Cori Phase II (KNL)

For Cori Phase II, we conducted a weak scaling study on 4096, 16384, and 65536 cores

using an initial matrix size n = 24576 and 20 multiplication iterations per run to reduce system

noise. We ran the Basic-MPI and Olap-MPI variants using one MPI process per core and a

square rank-node mapping of 8× 8. The best configuration for MATE uses 4 processes × 8

threads per node, with 64 MATE ranks per process and a rank-node mapping of 4× 4. This

configuration corresponds to an overdecomposition factor of 4.

Speedup:

1.00

1.00

1.00

1.00

1.02

1.02

1.04

1.08

1.18

4096 16384 65536
NERSC Cori Phase II Cores

0

58

116

174

232

290

348

406

464

522

580

P
er

fo
rm

an
ce

 (
T

F
lo

p/
s)

Basic-MPI
Olap-MPI
MATE Model

Figure 6.12: Weak Scaling results for Cannon2D on 64, 256, and 1024 Cori Phase II nodes.

Fig. 6.12 shows the results of our study. We can see that the manually overlapping

112

variant could not improve the performance of the baseline algorithm, while MATE was able to

significantly overperform the baseline algorithm on 1024 nodes. To explain the performance

disparity between the Olap-MPI and MATE variants, we measured the wallclock time spent in

communication and computation operations for all variants on 1024 nodes. Fig. 6.13 shows the

result of this analysis. The Olap-MPI variant was able to reduce 11% of the cost of communica-

tion. However, it also suffered from a 6% computation time increase, offsetting its benefits and

obtaining only a 2% improvement in running time. MATE was able to reduce a significant part

(48%) of the communication cost, while suffering a 14% computation time increase, obtaining a

total 1.18x speedup.

5.192s 4.603s

+14%

+6%

-48%

-11%

0 1 2 3 4 5 6 7 8 9 10
Running Time (s)

MATE Model

Olap-MPI

Basic-MPI

Computation
Waiting

Figure 6.13: Execution breakdown on 64k Cori Phase II cores.

Table 6.1: Ratio of computation and communication on 64, 256, and 1024 nodes for the

Basic-MPI and MATE variants.

Basic-MPI MATE

Scale Compute % Network Comm. % Compute % Network Comm.%

64 Nodes 69% 31% 71% 29%

256 Nodes 65% 35% 72% 28%

1024 Nodes 53% 47% 71% 29%

We also observe that the improvements for the MATE variant increase as we doubled the

number of nodes, starting at 4% on 64 nodes, 8% on 256 nodes, and then 18% on 1024 nodes.

To understand this effect, Table 6.1 shows the communication and computation ratios of the

Basic-MPI and MATE variants on 64, 256, and 1024 nodes. We can see that the MATE variant

113

achieves a constant ratio of ∼ 71% computation across all scales. If we interpret this ratio as

MATE’s upper bound for core usage, we see that its speedup is related to the difference of this

bound and the computation ratio of the Basic-MPI variant.

At smaller scales (64 and 256 nodes), the Basic-MPI variant achieves a relatively good

computation ratio (69% and 65%, respectively), which offers little improvement potential to-

wards MATE’s upper bound. On 1024 nodes, however, Basic-MPI’s computation time decreases

to 53%, allowing MATE to obtain a more significant improvement. We attribute this decrease

to a communication cost jump that occurs between 256 and 1024 nodes. Since each cabinet in

Cori Phase II contains 192 nodes (appendix A), it is more likely that, on 1024 nodes, many more

messages are crossing cabinet boundaries through optical links, causing a noticeable increase in

network communication costs.

6.5 Summary

We have shown that the MATE model can improve the performance of dense matrix

multiplication on our two supercomputing testbeds. Our matrix size scaling experiment shows

that overlapping strategies can obtain speedups over a broad range of matrix sizes, only failing

to obtain speedups over the baseline algorithm at small matrix scales, in which the fixed cost of

communication dominates the running time, and on large matrix sizes, where the computation

costs are the primary cost. Furthermore, this experiment shows that MATE outperforms the

manually-overlapping variant at every matrix size.

Through our weak scaling studies, we determined that MATE can reduce almost half of

the communication costs at large scales and obtain significant speedups. On 16k cores of the

Cori Phase I testbed, MATE was able to reduce 45% of communication costs, yielding a 13%

improvement over the baseline algorithm. On 64k cores of the Cori Phase II testbed, MATE

reduced 48% of communication costs, yielding a 18% improvement over the baseline algorithm.

114

Finally, we have shown that overdecomposition enables restrictive algorithms that re-

quire a number of ranks that is a perfect square, to run with a non-square number of cores, which

is not possible with traditional MPI approaches without underusing the system’s resources.

Acknowledgements

This chapter is, in part, a reprint of the material contained in the article: “MATE, a

Unified Model for Communication-Tolerant Scientific Applications”, by Sergio M. Martin and

Scott B. Baden, which appears in the Proceedings of 31st International Workshop on Languages

and Compilers for Parallel Computing (LCPC 2018), Salt Lake City, UT, USA, October 2018.

This dissertation’s author was the primary investigator and author of this paper.

115

Chapter 7

Test Case III: Cloverleaf3D

7.1 Overview

Figure 7.1: CloverLeaf3D’s staggered grid with cell and node centric variables.

Cloverleaf3D [96] is the 3D implementation of Cloverleaf [64], a Lagrangian-Eulerian

hydrodynamics benchmark. Cloverleaf3D solves the compressible Euler equations with a second-

order degree of accuracy using an explicit finite-volume method. The solver uses a 3-dimensional

staggered grid that divides the space into a set of cells of equal volume and stores multiple field

variables at a cell and node-levels, as shown in Fig. 7.1. CloverLeaf3D grids store 14 fields in

total: cell density, cell energy, cell pressure, cell viscosity, speed of sound, node velocities (x, y

and z), volume flux (x, y and z), and mass flux (x, y and z).

116

Given the complexity of this code, it is not reasonable to recode it to employ an over-

lapping strategy and therefore represents an important test case for MATE. This case shows

that MATE can be gainfully applied in applications where it is believed that communication/-

computation overlapping will benefit performance at large scales but the user has no means of

implementing this strategy themselves.

7.2 Code Variants

7.2.1 Base MPI Algorithm

Cloverleaf3D breaks down computation into six different kernels that sweep over the

entire grid and update one or multiple grid field variables, and each kernel uses a different sten-

cil. The IdealGas kernel updates the pressure and sound speed of the cell; the Viscosity kernel

updates the viscosity in each cell’s volume; the PdV kernel calculates the integral of the pres-

sure with respect to the cell’s volume differential and updates the cell’s energy and density; the

Flux kernel calculates the change in volume flux, and; the Advection kernel restores the cells to

their original position and calculates the mass differential. Cloverleaf3D advances the solution

iteratively until it reaches a user-defined end time or desired convergence.

Fig 7.2 shows the stencils and grid fields that each of the kernels read and update dur-

ing their execution. In between kernel executions, Cloverleaf3D ranks communicate the updated

boundary information (update halo()) to their neighbor grids. In total, the solver executes six dif-

ferent kernel calls and boundary exchanges per iteration1. Cloverleaf exchanges boundary cells

among all the neighbors reachable in 3 Manhattan distances on the 3D grid. In total, each cell

exchanges data among its 26 immediate neighbors (six faces, twelve edges, and eight corners).

To exchange boundary information, Cloverleaf3D uses MPI Fortran bindings which have

the same input arguments as the C++ bindings. Fig. 7.3 shows how update halo() exchanges

1Cloverleaf3D executes some of these kernels repeatedly, performing more than six exchanges per iteration.

117

Figure 7.2: CloverLeaf’s main solver’s kernel and exchange operations.

boundary data in a 3-stage process, allowing ranks to reach their 26 neighbors across 3 dimen-

sions. First, each subgrid communicates boundary faces across the x-axis. After this stage

completes, boundary faces across the y-axis are exchanged. Since this second stage includes

ghost cells of the x-faces, the exchange of y-faces will include x-edges originally belonging to

its neighbors in the x-axis. Finally, ranks exchange faces across the z-axis, which will include

the edges in the y-axis from the second step, and the x-corners from the first step. At the end of

this procedure, all ranks receive information from neighbors up to a 3-deep Manhattan distance.

Fig. 7.4 shows the pseudocode for update halo()2. This routine receives one argument,

2Although Cloverleaf is programmed in Fortran, we use a C-like pseudocode to simplify the explanation.

118

Figure 7.3: CloverLeaf3D’s update halo() 3-stage boundary exchange procedure.

fields (line 1), an array of boolean values that indicate which of the 14 fields of the grid will

be exchanged in this operation, as indicated in Fig. 7.2. Then, update halo() invokes the ex-

change faces() routine three times, one per each dimension in a x→ y→ z order (lines 3-5), as

described in the previous paragraph.

Fig. 7.5 shows the pseudocode of exchange faces(). This routine exchanges boundary

face data with two neighboring ranks (Nd−1 and Nd+1) in the specified d dimension (e.g, Nx−1

and Nx+1 are the neighbors in the x direction). Note that exchange faces() will only exchange

faces if the given rank subgrid does not abut the physical boundary along the specified d di-

mension. We use the isBoundary() routine to determine whether a given face abuts a physical

boundary.

While executing exchange faces(), a rank first initializes two receive requests, one for

each neighbor (lines 3-4), and then packs the two send buffers with boundary face information

(lines 5-6). The pack routine stores the grid’s (non-contiguous) fields specified in the fields

argument into a contiguous buffer. Next, exchange faces() initializes the send requests (lines

119

7-8) and waits until the exchanges finish (line 9). After the exchange completes, the rank calls

unpack (lines 10-11) which moves the incoming contiguous data into the corresponding grid

fields.

1 update_halo (fields)

2 {

3 exchange_faces(x, fields);

4 exchange_faces(y, fields);

5 exchange_faces(z, fields);

6 }

Figure 7.4: MPI pseudo-code of Cloverleaf3D’s update halo() routine (simplified).

1 exchange_faces(d, fields)

2 {

3 if (!isBoundary (Nd−1)) MPI_Irecv (recvBuffer d−1 ← Nd−1);

4 if (!isBoundary (Nd+1)) MPI_Irecv (recvBuffer d+1 ← Nd+1);

5 if (!isBoundary (Nd−1)) pack(Grid(fields) → sendBuffer d−1);

6 if (!isBoundary (Nd+1)) pack(Grid(fields) → sendBuffer d+1);

7 if (!isBoundary (Nd−1)) MPI_Isend (recvBuffer d−1 → Nd−1);

8 if (!isBoundary (Nd+1)) MPI_Isend (recvBuffer d+1 → Nd+1);

9 MPI_Waitall ();

10 if (!isBoundary (Nd−1)) unpack(Grid(fields) ← recvBuffer d−1);

11 if (!isBoundary (Nd+1)) unpack(Grid(fields) ← recvBuffer d+1);

12 }

Figure 7.5: MPI pseudo-code of Cloverleaf3D’s exchange faces() routine (simplified).

7.2.2 MATE Variant

Although Cloverleaf3D was written in Fortran, we were able to apply the MATE model

by manually introducing calls to the MATE runtime, instead of using an annotation-guided trans-

lation. To this end, we built a Fortran interface to MATE’s API (appendix E.2) that allow us to

achieve the effect of translation. To simplify our explanation, we will explain our transforma-

tions using annotations as if we operated on C/C++ source code.

We implemented a 2-level hierarchical decomposition in Cloverfield3D that allows local

ranks to exchange boundary information without the need for MPI messages. However, unlike

our Jacobi3D test case (Chapter 5), we did not implement a dotted line strategy, i.e., a single

allocation per MATE process and a logical division of work among local ranks. Instead, we

120

Figure 7.6: MATE hierarchical variant of Cloverleaf3D’s halo exchange, represented in 2D

for simplicity. Local ranks exchange boundary field information by direct copy while

inter-process communication requires buffer packing/unpacking.

opted to allocate separate subgrids for each rank, and then broadcast their pointers locally for

direct read/write access. The reasons for this decision are twofold:

1. The nature of pointer and array accessing in Fortran hinders the implementation of a dotted

line strategy. To support this feature, we would need to introduce significant changes to

each of the six solver kernels.

2. It is uncertain whether allocating process-wide grids would preserve cache-locality, given

that the grid stores 14 different fields. It is possible that traversing the grid would cause

cache-misses at every row, a problem that using a separate subgrid allocation per rank

would otherwise avoid.

Despite using separate subgrid allocations, local ranks in our MATE variant avoid most of

the cost of intra-node data motion by copying non-contiguous boundary information directly via

memcopy, without the need to serialize data and exchange messages. Fig. 7.6 shows how MATE

ranks exchange boundary information both locally, and across MATE processes. Although this

approach does not avoid explicit intra-node copying entirely, it reduces the data motion costs

considerably and vastly simplifies the implementation of the MATE model on Fortran applica-

tions.

121

1 exchange_faces(d, fields)

2 {

3 #pragma mate graph

4 {

5 #pragma mate region(receive) depends (unpack*)

6 {

7 if (!isBoundary (Nd−1) && !isMATELocal (Nd−1)) MPI_Irecv(recvBuffer d−1 ← Nd−1);

8 if (!isBoundary (Nd+1) && !isMATELocal (Nd+1)) MPI_Irecv(recvBuffer d+1 ← Nd+1);

9 }

10

11 #pragma mate region(pack) depends (unpack*, localExchange*@, send*)

12 {

13 if (!isBoundary (Nd−1) && !isMATELocal (Nd−1)) pack(Grid(fields) → sendBuffer d−1);

14 if (!isBoundary (Nd+1) && !isMATELocal (Nd+1)) pack(Grid(fields) → sendBuffer d+1);

15 }

16

17 #pragma mate region(send) depends (pack)

18 {

19 if (!isBoundary (Nd−1) && !isMATELocal (Nd−1)) MPI_Isend(recvBuffer d−1 → Nd−1);

20 if (!isBoundary (Nd+1) && !isMATELocal (Nd+1)) MPI_Isend(recvBuffer d+1 → Nd+1);

21 }

22

23 #pragma mate region(localExchange) depends (pack@)

24 {

25 if (!isBoundary (Nd−1) && isMATELocal (Nd−1)) localExchange(Grid(fields) → Nd−1);

26 if (!isBoundary (Nd+1) && isMATELocal (Nd+1)) localExchange(Grid(fields) → Nd+1);

27 }

28

29 #pragma mate region(unpack) depends (receive)

30 {

31 if (!isBoundary (Nd−1) && !isMATELocal (Nd−1)) unpack(Grid(fields) ← recvBuffer d−1);

32 if (!isBoundary (Nd+1) && !isMATELocal (Nd+1)) unpack(Grid(fields) ← recvBuffer d+1);

33 }

34 }

Figure 7.7: MATE’s pseudo-code of Cloverleaf3D’s exchange faces() routine (simplified).

Figure 7.8: Graph derived from MATE annotations on the exchange faces() routine.

122

In the MATE variant, ranks declare up to seven inter-rank dependencies: itself, and up to

two local ranks per axis (if they exist in the same MATE process). We use the same logic as in

Fig. 3.15, making calls to the Mate AddLocalNeighbor() routine. Fig. 7.7 shows the annotated

version of exchange faces() we used in Cloverleaf3D’s MATE variant. We declare a MATE

graph with five regions: receive, pack, send, localExchange, and unpack. Fig. 7.8 shows the

dependency graph described by the region annotations and their dependencies.

The receive region (lines 7-8) exchanges requests for boundary data from neighboring

ranks, only if they reside in a different MATE process. That is, if the current rank’s subgrid

belongs in the MATE process’ boundary but not the physical boundary. The isMATELocal() call

verifies rank locality conditions and returns true if the neighbor rank belongs to the same MATE

process. The receive region depends on the execution in the previous iteration (indicated by the

‘*’ modifier) of the unpack region. This dependency guarantees that no incoming messages will

overwrite the remote receive buffers before the ranks have unpacked them into grid fields.

The pack region (lines 13-14), copies boundary data from the subset of fields, indicated

by the fields argument, into a contiguous send buffer. Similar to the receive region, the pack

region only fills a send buffer if the neighboring rank belongs in a different MATE process. This

region depends on the execution of the unpack region in the previous iteration. This dependency

ensures that the incoming data from the previous iteration’s face(s) are unpacked onto the grid’s

fields before sending the face(s) for the current iteration. This region also depends on the pre-

vious execution of the localExchange region by its neighboring local ranks (and by itself), to

guarantee all previous local face(s) have arrived before sending the current face. Finally, there is

a dependence on the previous iteration of the send region. This dependency guarantees that the

send buffers used in the previous faces have been released from the previous send operations.

The send region (lines 19-20) produces send requests for boundary data only if the neigh-

bor resides in a different MATE process. This region depends only on the pack region in the cur-

rent iteration, ensuring that send buffers are ready and packed before issuing the send requests.

123

The localExchange region (lines 25-26) copies boundary data directly to their local neigh-

bor’s fields without packing, unpacking, or messaging. We developed localExchange() by com-

bining the logic from the original pack and unpack procedures while removing their buffering

component. In this way, field information is copied into the corresponding grid positions on the

receiving local neighbor rank. This region depends on the execution of the current face’s pack

region from neighboring local ranks (and itself). This dependency acts as a local barrier that

defers boundary exchange until all the neighbors have reached the current face.

Finally, the unpack region (lines 31-32) will copy the contiguous boundary information

received from remote ranks into the corresponding fields of the rank’s grid. This region only

depends on the receive region to guarantee that data has arrived in the receive buffers before

unpacking them into the grid. Note that, if a MATE rank does abut a boundary in the MATE

process in the current dimension, then the receive, pack, send, and unpack regions will not

perform any actions.

7.3 Strong Scaling Studies

7.3.1 Cori Phase I (Haswell)

We ran the Basic-MPI and MATE variants on 128, 256, and 512 nodes (4096, 8192,

and 16384 Haswell cores) of the Cori Phase I system, with a 10243 element grid. We ran the

MPI variant using one MPI process per core, using the 3D mapping geometry provided in the

original source code. For the MATE variant, we determined that the best configuration uses 16

MATE processes × 2 threads per node, with 4 MATE ranks per process. This configuration

corresponds to an overdecomposition factor of 2. We report performance in terms of the number

of cells processed per second (inverse of the time per cell metric reported by the source code).

To verify correctness, we check that the remaining solution energy is equal for both the baseline

and MATE variants.

124

Speedup:

1.11

1.14

1.19

4096 8192 16384
NERSC Cori Phase I Cores

0

2

4

6

8

10

12
G

C
el

ls
/s

Basic-MPI
MATE Model

Figure 7.9: Strong Scaling results for Cloverleaf3D on 4k to 16k Cori Phase I cores.

Fig. 7.9 shows the results of our strong scaling study. MATE was able to outperform the

baseline MPI algorithm at all scales. Furthermore, we observe increasing speedups as we double

the number of nodes, from 1.11x on 4k cores to 1.14x on 8k cores, and 1.19x on 16k cores.

2.013s 0.802s 2.349s

-16% +14% -34%

0 0.52 1.04 1.56 2.08 2.6 3.12 3.64 4.16 4.68 5.2
Running Time (s)

MATE Model

Basic-MPI
Computation
Buffering
Waiting

Figure 7.10: Execution breakdown on 16k Cori Phase I cores.

Fig. 7.10 shows the wallclock time spent by computation, buffering, and communication

operations for the Basic-MPI variant on 16k Cori Phase I cores, and how much these times differ

for the MATE variant. The MATE variant was able to hide 34% of the communication cost and

achieved a 1.19x speedup compared to the baseline variant. However, it also suffered from a 14%

increase in the cost of buffer serialization. We attribute this increase to the use of overdecompo-

sition since, even if it does implement a local exchange mechanism, our variant does not entirely

eliminate the cost of additional intra-node data motion introduced by overdecomposition. We

125

also observe a 16% decrease in computation time. It is possible that the reduced per-rank sub-

grid size that comes from overdecomposition produced a cache-blocking effect, similar to that

described in chapter B, that decreased the number of cache fails during kernel executions.

7.3.2 Cori Phase II (KNL)

For the Cori Phase II system, we ran our two variants on 128, 256, and 512 nodes (8192,

16384, and 32768 KNL cores), keeping the grid size fixed at 12803. We ran the MPI variant

using one MPI process per core and, for the MATE variant, we determined that the best config-

uration uses 8 MATE processes × 8 threads per node, with 16 MATE ranks per process. This

configuration represents an overdecomposition factor of 2.

Speedup:

1.28

1.24

1.19

8192 16384 32768
NERSC Cori Phase II Cores

0

2

4

6

8

10

12

14

16

G
C

el
ls

/s

Basic-MPI
MATE Model

Figure 7.11: Strong Scaling results for Cloverleaf3D on 8k to 32k Cori Phase II cores.

Fig. 7.11 shows the results of our strong scaling study. MATE was able to outperform

the baseline MPI algorithm at all scales. Contrary to our Phase I results, we observe decreasing

speedups as we double the number of nodes, from 1.28x on 8k cores to 1.24x on 16k cores, and

1.19x on 32k cores. To understand this effect, we calculated the ratio of computation, buffering,

and communication costs on the running of both variants at different scales.

126

Table 7.1: Ratio of computation, buffering, and network communication operations on 128,

256, and 512 nodes for the Basic-MPI and MATE variants on Cori Phase II.

Basic-MPI MATE

Scale Compute% Buffer% Network% Compute% Buffer% Network%

128 Nodes 46% 16% 31% 62% 16% 22%

256 Nodes 40% 16% 44% 56% 16% 28%

512 Nodes 34% 16% 50% 42% 24% 34%

Table 7.1 shows that MATE achieves a 62% effective core usage on 8k cores, only drop-

ping to 56% on 16k cores, which explains the slight loss of speedup. However, the main differ-

ence occurs at 512 nodes, where MATE suffers a higher buffering cost (24%) than in all the other

runs (16%). This increase in intra-node data motion accounts for the higher loss of speedup on

32k cores (1.19x) when compared to the speedup at 16k cores (1.24x). To figure out the cause,

we measured wallclock time spent by computation, buffering, and communication operations

for the Basic-MPI variant on 512 Cori Phase II nodes, and how much they differ for the MATE

variant as shown in Fig. 7.12.

1.028s 0.482s 1.538s

+3% +28% -43%

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
Running Time (s)

MATE Model

Basic-MPI
Computation
Buffering
Waiting

Figure 7.12: Execution breakdown at 512 Cori Phase II nodes.

Although MATE was able to 43% of the communication cost, we also observe a 28%

increase in packing time. This could be explained as a consequence of excessive buffering

serialization costs at small per-core subgrid sizes which is exacerbated by overdecomposition.

These costs are much higher than those in Cori Phase I, which contains half the number of

cores per node (and therefore fewer boundaries to exchange), where MATE only suffers an 14%

increase in packing time.

127

7.4 Summary

We have shown that the MATE model can improve the performance by overlapping com-

munication and computation and improving locality of a finite volume solver that uses a multi-

variable staggered grid at large scales and on multiple supercomputing platforms. Our results in

all three platforms show that MATE was able to reduce a significant amount of communication

overheads obtaining performance speedups of 1.19x at the largest scales on both testbeds. These

results also show that MATE can improve the performance of complex applications, when a

manual re-factoring is difficult or impractical.

Even if it does not entirely remove the cost of intra-node communication, MATE en-

ables the use of efficient overdecomposition that reduces the total cost of communication sig-

nificantly by overlapping it with computation. Furthermore, inter-rank dependencies have once

again proven to be essential in enabling a MATE application to execute with an efficient syn-

chronization and communication logic between local ranks.

Acknowledgements

This chapter is, in part, a reprint of the material contained in the article: “MATE, a

Unified Model for Communication-Tolerant Scientific Applications”, by Sergio M. Martin and

Scott B. Baden, which appears in the Proceedings of 31st International Workshop on Languages

and Compilers for Parallel Computing (LCPC 2018), Salt Lake City, UT, USA, October 2018.

This dissertation’s author was the primary investigator and author of this paper.

128

Chapter 8

Load Balancing

8.1 Overview

Workload distribution represents an essential aspect of the performance of scientific ap-

plications. In a properly balanced application, every core in the system performs an equal amount

of computation before reaching the communication phase. However, for some applications, es-

pecially those with irregular domain decompositions, achieving proper workload balance could

be infeasible or could negatively affect other aspects of application performance. These applica-

tions suffer from Load Imbalance.

Load imbalance occurs when an application’s computational workload decomposes un-

evenly among its ranks (cores), delegating more computational work to some ranks than others.

This phenomenon will –assuming homogeneous hardware– cause some ranks to finish their part

of the workload significantly before others, delaying the exchange of messages, and wasting

computational resources due to extended wait times.

Fig. 8.1 shows the effect of load imbalance on an application programmed under the

Bulk-Synchronous model. In this example, process 0 computes a smaller workload compared

to that of process k. As a consequence, process 0 will finish its computation stage and issue

129

Figure 8.1: Execution timeline of an imbalanced application.

message exchange requests much before process k does. These requests cannot progress1 until

process k issues reciprocal requests. Therefore, process 0 will spend additional idle time (shown

as red/wait segments) waiting for process k to complete its communication phase.

The additional waiting time that comes from load imbalance delays process 0 until pro-

cess k finishes its computation phase. Therefore, in an imbalanced application, the time spent

in the computation phase for every rank becomes equal to the cost of that with the maximal

workload. Since this additional cost manifests itself during communication waits (e.g., during

MPI Waitall), it could lead to the incorrect conclusion that irregular applications suffer from

excessive network or intra-node communication overheads.

We can estimate the component of the total running time that comes from load imbal-

anced with the Formula in Eq. 8.1, where TCmax is maximum time spent in computation time

by any given rank, TCmean is the mean computation time across all ranks, and Ttotal is the total

running time of the application.

%ImbalanceCost =
TCmax−TCmean

Ttotal

(8.1)

We use the mean computation time –and not the minimum computation time– because, in

a perfectly balanced application, all ranks would finish computation precisely at the mean time.

Hence, we say that the difference between the maximum and mean computation times is the cost

1Although asynchronous send operations can begin during this waiting period, this progress does not help in

reducing the total waiting time from receive operations.

130

of opportunity lost from load imbalance. Fig. 8.2 illustrates this cost by showing two variants of

the same application: A and A′. Although variants have the same total workload, variant A has

an irregular distribution of workload while the workload in variant A′ is evenly distributed.

Application A

Lo
ad

 Im
ba

la
nc

e

1 2 3 4 5 6 7 8

Rank

0

10

20

30

40

50

60

70

W
or

kl
oa

d

Application A'

Mean Workload

1 2 3 4 5 6 7 8

Rank

Figure 8.2: Workload distribution of applications A and A′.

Though steps can be taken to avoid load imbalance can certainly be caused by poor

programming, some scientific applications motifs contain inherent irregularities that cannot be

avoided. Such is the case of unstructured multi-grid (e.g., [3][95] an aerodynamics design solver)

or adaptive mesh refinement (e.g., CASTRO [5], an astrophysical hydrodynamics solver) appli-

cations.

In these applications, spatial locality represents a stronger factor for performance than

attaining a perfect distribution of work. Therefore, they require a careful tuning between two

parameters: (1) the spatial distance and connectivity between subgrids, and (2) workload distri-

bution. In this section, we use one of such applications, Mpix flowCart, to analyze the potential

benefits of the MATE model in mitigating the effects of load imbalance while preserving rank

locality.

131

8.2 Example: Mpix flowCart

Mpix flowCart is a high-fidelity inviscid analysis package for conceptual and aerody-

namic design. This code is developed by scientists at the NASA Ames Research Center and the

Courant Institute at New York University and has many users in the aerospace design industry.

Mpix flowcart uses a Cartesian multi-level embedded boundary mesh with cut cells lo-

cated where the mesh intersects the geometry (e.g., a wing’s surface). It partitions the mesh hier-

archy into one subdomain per rank at run-time, using a space-filling curve to order the meshes.

Space-filling curves [47, 75] work by partitioning an irregular grid in way that maximizes

both spatial locality and workload balance. Spatial locality ensures that ranks to be more likely to

communicate with their immediate neighbors, reducing network communication. Mpix flowcart

employs a multigrid scheme that iterates over coarser meshes which are also ordered with a

space-filling curve.

One of the lessons we learned with mpix flowcart is that the cost of load imbalance

can disguise itself as communication overhead. Indeed, our initial analysis showed that the

MPI Waitall operation consumed a significant part of the application’s running time. How-

ever, from analyzing the behavior of individual ranks, we found that most of the time spent

on MPI Waitall came from ranks waiting for others to finish their computation phase.

Figure 8.3: Computation time distribution of nodes 26, 27 and 28 on a 2048 Haswell core-run.

132

To visualize the extent of workload imbalance in mpix flowcart, we performed a test run

on 1024 Cori Phase I nodes (32768 cores) in which we stored the computation times of each rank.

Fig. 8.3 shows the results of our study, zoomed in to nodes 26, 27, and 28. Each bar indicates

the computation time for an individual rank. We observed that peak computation time occurs

on 918 (7.27s), while the mean computation time across these three nodes is 5.35s and the total

running time is 8.83s. Therefore, using our formula in Eq. 8.1 we were able to determine that

its load imbalance amounts to ∼ 22% among these three nodes. The observation that workload

imbalance is a dominant component of the running time of mpix FlowCart motivated us to

ponder whether we can use MATE to improve its balance.

8.3 Rebalancing with MATE

We realized that the number of partitions (i.e., number of ranks) that the Mpix FlowCart’s

partitioner creates is fixed by the number of cores in the baseline MPI execution. This config-

uration limits the granularity on which the space-filling curve can distribute work among cores,

and thus its ability to achieve a better workload balance. Fig. 8.4 (top) shows the computation

times for 32 cores in node 27, each executing a single rank. To overcome this limitation, we

implemented a set of mechanisms provided by our MATE runtime system.

8.3.1 Mechanism I: Hierarchical Overdecomposition

First, we implemented overdecomposition to increase the number of partitions per core.

Fig. 8.4 (middle) shows the effect of applying an overdecomposition factor of 4. This figure

indicates the total computational time spent by each core (thick blue bars). In turn, each core

executes four ranks (red thin bars) that take each roughly a fourth of the time to compute. We

can see that, by using overdecomposition, Mpix FlowCart’s space-filling curve has a higher

degree of freedom in refining the partitions that represent a better fit for the input mesh. As a

133

consequence, we observe a slight smoothing effect on the redistribution of work. The busiest

core is now 21 with 7.059s, yielding a 19% imbalance ratio among the cores in the node.

Figure 8.4: Computation time distribution of the 32 cores on node 27, (top) without

overdecomposition, (middle) using an overdecomposition factor of 4, and (bottom) using a

hierarchical decomposition with 4 workers per MATE process.

Second, we applied MATE’s hierarchical decomposition. In a hierarchically decomposed

execution, ranks are no longer bound to a single core nor do they execute out of private memory,

134

but are instead shared among all the cores in a MATE process (defined in chapter 4). This

configuration smooths the computation times within the process. We illustrate this effect in

Fig. 8.4 (bottom), where we execute 8 MATE processes per node, each spanning four cores.

This effect allows us to consider workload distribution at a MATE process-level, instead of a

core-level. In this case, the 16 ranks in MATE process 5 sums up to 25.743s out of a 22.849s

per-process mean, yielding an 11% imbalance at a MATE-process level.

8.3.2 Mechanism II: Inter-Node Balancing

Although we can flatten the workload distribution of cores within a given node, we still

face the challenge of improving inter-node balance, that is, balancing the workload among nodes.

Inter-node imbalance occurs when the space filling curve assigns more work to one node than the

average across all nodes, even if rank workload within each node is perfectly balanced. When

this imbalance occurs, the ranks in one node finish later than in other nodes, incurring a cost that

cannot be addressed by intra-node balancing only.

Fig. 8.5 shows the execution times of 24 MATE processes spanning three consecutive

nodes (nodes 26 to 28). We can see a disparity between the total load of each node, with node

27 spending 183s in computation whereas the mean among the three nodes is 175s, thus causing

a 4% imbalance.

21
.9

36
s

21
.3

07
s

21
.6

32
s

21
.2

53
s

21
.2

89
s

22
.6

19
s

22
.2

03
s

22
.2

89
s

23
.0

01
s

22
.2

49
s

25
.4

22
s

21
.1

46
s

22
.6

24
s

25
.7

43
s

21
.3

41
s

21
.2

71
s

21
.4

93
s

21
.2

87
s

21
.0

66
s

20
.6

08
s

20
.5

76
s

20
.8

17
s

20
.5

02
s

21
.0

63
s

Node 26 (128 Ranks)
Total: 175s

Node 27 (128 Ranks)
Total: 183s

Node 28 (128 Ranks)
Total: 167s

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

MATE Process #

0

4

8

12

16

20

24

28

C
om

pu
ta

tio
n

T
im

e

Figure 8.5: Workload imbalance across three nodes.

135

To solve this problem, we extended MATE’s functionality to allow rank migration across

node boundaries. That is, we can enable nodes with a higher workload to yield costly ranks

to less occupied nodes. To enable this re-distribution, a MATE overdecomposed application in-

structs processes in one node to ‘donate’ ranks to processes in neighboring nodes while retaining

enough ranks to keep cores busy2. To enable rank migration, we created the Mate TaskMapping()

MATE Runtime API call (see: Appendix E.2) that allows users to assign a custom number of

MATE ranks per process.

0 32 64 96 128 160 192 224 256

Rank #

0

32

64

96

128

160

192

224

256

R
an

k
#

Figure 8.6: Rank-to-Rank communication distribution in mpix flowCart. Darker spots

indicate a higher communication volume; clearer spots indicate zero or little communication.

From our analysis of mpix flowCart’s, we learned that its space-filling curve optimizes

locality to maximize communication among consecutive ranks while minimizing communica-

tion across non-consecutive ranks. Fig 8.6 illustrates mpix flowCart’s locality by showing the

density of rank-rank communication in a 256 rank execution (each 32x32 square represents a

node). We can see in the figure that communication volume is higher among neighboring ranks.

2Note that it is not possible to assign an uneven number of ranks per node in flat MPI variants, where ranks

execute as processes mapped 1:1 to a core, since assigning fewer ranks to a node will cause some of its cores to

remain idle, wasting computational resources.

136

Indeed, we observed that we cannot change the order or ranks across node boundaries with-

out a costly impact in performance (∼ 20% slowdown, per our experiments), even if inter-node

balancing improves.

To improve inter-node balancing, we faced the problem of defining the best distribution

of ranks among nodes, without changing their ordering. We discovered that this problem is anal-

ogous to the well-defined Painter’s Partitioning Problem [101] also known as the Fair Workload

Problem [115], both of which have a polynomial O(nlog∑r
i=1Ci) solution, where n is the num-

ber of nodes, r is the number of ranks, and Ci is the communication time of rank i. We adapted

the solution provided in [101] to mpix flowCart (the rationale and MATLAB code can be found

in appendix D.1) by using the individual computation times of each rank as input. We obtained

these values by running a short execution (10 iterations) of the solver3.

Figure 8.7: Workload distribution from 8.5 after inter-node rebalancing. Node 26 donated one

rank to node 27 which, in turn, donated six ranks to Node 28, moving rank distribution

(thick gray lines) to the left.

Fig. 8.7 shows the result of applying our solution. First, we can see that workload

distribution at a node-level has improved slightly. Second, we can see that the number of ranks

per MATE process is not uniform. Indeed, some processes contain fewer (down to 14, for

node 27 / process 2) ranks, while others contain more (up to 17, for multiple processes) ranks.

3Other applications may provide workload metrics (e.g., how many cells to compute per rank) without the need

of sampling runs.

137

Furthermore, this redistribution produces a smoothing effect that reduces the maximum process

load down to 22.5s (node 27, process 2).

8.3.3 Mechanism III: Intra-Node Balancing

We established that a balancing algorithm should not alter the ordering of ranks across

nodes since that would increase the cost of inter-node communication. This constraint, however,

does not hold in the case of intra-node balancing. Since intra-node communication is mostly

homogeneous4, we can freely change the order of ranks among MATE processes inside a node.

21
.6

17
s

21
.6

16
s

21
.6

17
s

21
.6

17
s

21
.6

16
s

21
.6

17
s

21
.6

17
s

21
.6

17
s

22
.0

43
s

22
.0

43
s

22
.0

44
s

22
.0

43
s

22
.0

43
s

22
.0

42
s

22
.0

42
s

22
.0

43
s

21
.9

33
s

21
.9

33
s

21
.9

33
s

21
.9

33
s

21
.9

33
s

21
.9

33
s

21
.9

33
s

21
.9

33
s

Node 26
Total: 173s

Node 27
Total: 176s

Node 28
Total: 175s

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

MATE Process #

0

4

8

12

16

20

24

28

C
om

pu
ta

tio
n

T
im

e

Figure 8.8: Computation time distributions of 16 MATE processes after rank re-shuffling.

Without the restriction of conserving rank ordering, we have are n! possible combina-

tions that, making an exhaustive search unfeasible. Nevertheless, we developed an algorithm

(we detail its rationale and MATLAB code in Appendix D.2) that iteratively smoothens peak

process workloads by re-distributing their ranks among the other processes in the node. Our

algorithm has a O(kn2) complexity, where k is the number of processes, and n is the number of

ranks per process. We have confirmed through experimental testing that our solution achieves a

satisfactory balance5 after 50-100 smoothing iterations, which require negligible time.

4Although re-shuffling the order of ranks can increase communication across NUMA domains and L2/L3 cache

structures, we determined these factors do not hinder performance enough to enforce a consecutive ordering.
5Since there is no polynomial-time way to find an optimal solution, we cannot define a precise upper bound.

138

Fig. 8.8 shows the result of applying our intra-node balancing algorithm. We observe that

the workload distribution at a node-level has mostly flattened. Although there is still a minimal

inter-node imbalance, the algorithm eliminates computation time peaks among MATE processes

within the node.

8.4 Experimental Results

To evaluate the effects of workload balancing through the mechanisms provided by

the MATE model, we conducted experiments on the Cori Phase I and II testbeds. We used

mpix flowCart to model the flow for the OneraM6 wing [79, 42], a well-known standard test

case for aerodynamic simulation. Every experiment solves a 75Mcell mesh for 20 iterations and

four multigrid levels with a CFL number of 1.2. We report performance in total running time

(less is better). To verify correctness, we check that the remaining solution energy is equal for

both the baseline and MATE variants.

We ran the baseline Flat-MPI and MATE variants on 64 nodes (2048 Haswell cores)

of the Cori Phase I system. We ran the MPI variant using one MPI process per core and the

MATE variant with 16 MATE processes × 2 threads per node, with 8 ranks per process. This

configuration represents an overdecomposition factor of 4.

Fig. 8.9 shows the results of our study on Cori Phase I. The (dark blue) bars at the bottom

indicate the computation time, the (light green) bars at the middle estimate the imbalance cost,

and the (lighter green) bars at the top indicate actual communication time. The horizontal (dotted

red) line represents the mean computation time across all ranks.

Our results show that, for the baseline variant (top), computation time comprises 60%

of the total running time, while waiting periods accounted for the remaining 40% of the time.

However, by zooming in, we observed that peak computation times occur on ranks 0 (7.28) and

918 (7.20s), while the mean computation time across all nodes is 5.34s. Therefore, using our

139

Computation Time: 60.53%

Imbalance Cost: ~21.97%

Communication Cost: ~17.50%
0 32 64 96 12
8

16
0

19
2

22
4

25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

51
2

54
4

57
6

60
8

64
0

67
2

70
4

73
6

76
8

80
0

83
2

86
4

89
6

92
8

96
0

99
2

10
24

10
56

10
88

11
20

11
52

11
84

12
16

12
48

12
80

13
12

13
44

13
76

14
08

14
40

14
72

15
04

15
36

15
68

16
00

16
32

16
64

16
96

17
28

17
60

17
92

18
24

18
56

18
88

19
20

19
52

19
84

20
16

20
48

Rank #

0

1.5

3

4.5

6

7.5

9
R

un
ni

ng
 T

im
e

Computation Time: 71.19%

Imbalance Cost: ~4.67%
Communication Cost: ~24.14%

0 32 64 96 12
8

16
0

19
2

22
4

25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

51
2

54
4

57
6

60
8

64
0

67
2

70
4

73
6

76
8

80
0

83
2

86
4

89
6

92
8

96
0

99
2

10
24

10
56

10
88

11
20

11
52

11
84

12
16

12
48

12
80

13
12

13
44

13
76

14
08

14
40

14
72

15
04

15
36

15
68

16
00

16
32

16
64

16
96

17
28

17
60

17
92

18
24

18
56

18
88

19
20

19
52

19
84

20
16

20
48

Rank #

0

1.5

3

4.5

6

7.5

9

R
un

ni
ng

 T
im

e

Figure 8.9: Running time breakdown of 2048 Cori Phase I cores for (top) the baseline variant,

and (bottom) the MATE rebalanced variant.

formula in Eq. 8.1 we were able to determine that load imbalance was a more significant cost

(∼ 22%) than intra-node and network communication (∼ 18%).

For the MATE variant (bottom), we observed a much smoother distribution of compu-

tation times with a maximum of 6.703s out of an average of 6.290s, producing a workload

imbalance cost that comprises only 4.67% of the running time. On the other hand, we observe

that the average computation time across all cores has increased by (from 5.34s, in the baseline

variant to 6.290s). We attribute this excess cost to a loss of cache efficiency from overdecompo-

sition. Although the ratio of communication increased from 17.5% to 24.1%, MATE did achieve

a reduction of 13% in the absolute communication time when we adjust for the decrease in total

running time. Overall, the MATE variant obtained a 1.11x speedup over the baseline variant.

140

8.5 Concurrency Limitations

Our re-balancing strategy provides the highest benefits for mpix flowCart when we in-

stantiate multiple ranks per core. Ideally, imbalance reduction would maximize when using a

single MATE process that spans all the cores and ranks in a node or NUMA domain. However,

we have found that we obtained the best results when using two threads per MATE process.

Using a larger number of threads yields slower performance, even worse than the base variant.

8.487s 1.251s 1.499s

6.817s 0.700s 1.136s

6.291s 0.413s 1.263s

5.992s 1.423s 1.313s

5.349s 1.942s 1.546s

0 1 2 3 4 5 6 7 8 9 10 11
Running Time (s)

MATE (8 Threads)

MATE (4 Threads)

MATE (2 Threads)

MATE (1 Thread)

Flat MPI

Computation
Imbalance
Waiting

Figure 8.10: Execution breakdown for different multi-threading levels on Cori Phase I.

Fig. 8.10 shows our results for the Cori Phase I system. We employ the same configura-

tion for the baseline variant, but run the MATE variant using different levels of multi-threading,

from 1 thread per process to 8 threads per process. These results show that the MATE (1 Thread)

variant achieves a small reduction of load imbalance thanks to the use of overdecomposition and

inter-process balancing, but cannot benefit from shuffling ranks among different cores since each

process runs a single thread.

The MATE (2 Threads) variant is the one that achieves the best results, reducing a large

part of the load imbalance cost. However, it suffered from a larger cost computation. This

trend in increasing costs of computation continues increasing towards the MATE (4 Threads)

and MATE (8 Threads), with the latter suffering a noticeable slowdown.

Through the use of profiling tools, we ruled out the possibility of cache-locality loss

141

as the primary source of overheads, although they certainly contributed to a small degree. We

traced the increased costs to thread stalls during the creation and completion test of MPI requests.

Since we have not observed such a dramatic slowdowns in our other experiments, we focused

mpix flowCart’s communication patterns to determine what made them different.

mpix_flowCart Message Size Distribution - 75Mcell Grid, 8192 Ranks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Message Size (kbytes)

0

10

20

30

40

50

60

70

80

90

100

M
es

sa
ge

 C
ou

nt
 %

Figure 8.11: Message size histogram for mpix flowCart.

We found that, unlike our other test cases, mpix flowCart exchanges a large number of

very small messages due to its use of coarsening grids. Fig. 8.11 shows the distribution of

message sizes in a 64 node-run of mpix flowCart, solving a 75Mcell using four multi-grid levels

and an overdecomposition factor of 4. We observe that 90% of messages are smaller than 8kb,

while 75% are below 4kb.

In C we describe the adverse effects that multi-threaded applications suffer when they

that rely mostly on small messages. In mpix flowCart case, 98% of the messages exchanged

fall well beneath MPI’s eager limit. As a consequence, threads within MATE will destructively

compete for the use for access to the network, suffering noticeable stalls. For small number

of threads (e.g., 2), this overhead’s impact is not enough to offset the benefits of re-balancing.

However, we have seen that higher threading levels severely punish performance.

This limitation in the MPI library prevents us from attaining better results that may come

from higher levels of multi-threading. Furthermore, these limitations also prevents us from

142

applying the full MATE model and enabling communication overlapping on mpix flowCart. Fu-

ture work may include adapting mpix flowCart to use alternative communication libraries better

suited for multi-threading.

8.6 Related Work

Prior work in workload balancing can be categorized into static and dynamic approaches.

Static balancing requires pre-calculated information about either the application’s behavior (e.g.,

auto-tuning techniques [34]) or the network topology [90] to determine the best distribution of

work and improve locality. Since static balancing defines these parameters at launch time, this

approach works best in applications that do not change workload distribution or communication

patterns during execution.

Dynamic balancing libraries, such as AMPI [12, 17], enable applications to migrate

ranks across nodes during execution, based on core usage information generated during run-

time. AMPI allows a programmer to instantiate overdecomposed MPI applications and specify

a re-balancing policy that uses real-time metrics to determine when and how to migrate ranks.

This approach typically provides better results in irregular applications whose workload change

during runtime6. The downside of dynamic balancing is that migrating ranks has a large associ-

ated cost that is only justified in cases of severe load imbalance.

The novelty of our approach is that it implements elements from both static and dynamic

re-balancing techniques. We employ pre-calculated computation times to determine the best

distribution of ranks that minimizes inter and intra-node workload imbalance statically at launch

time. On the other hand, a hierarchically overdecomposed MATE process dynamically assigns

ranks to workers to maximize core usage opportunistically. Although our dynamic strategy is

6We have found through testing, however, that executing mpix flowCart with AMPI ran much slower than the

baseline MPI algorithm, even when not employing overdecomposition nor rank migration. This slowdown could be

a result of an implementation issue, causing the current version of AMPI to perform poorly on our testing platforms

or the Aries network.

143

restricted to the ranks inside each process, it has little to no associated cost. We have indeed

achieved the best results for mpix flowCart by combining static and dynamic mechanisms.

8.7 Summary

We have shown that MATE can improve the workload balance in mpix flowCart. First,

overdecomposition gives its space filling curve additional degrees of freedom to create smaller

partitions that can migrate across different cores. Second, hierarchical decomposition allows us

to smooth the workload of multiple cores within a MATE process. Finally, we modified our

runtime system to allow a re-ordering of ranks across MATE processes.

Our experience shows that consecutive re-balancing improves workload balance at a

node-level without increasing the volume of intra-node communication. Furthermore, we show

that an optimal solution for this mapping can be found in polynomial time. We have also demon-

strated that intra-node mapping can withstand rank reordering across MATE processes without a

penalty to performance. We show that these mechanisms allow us to benefit from a combination

of static and dynamic balancing effects.

Our results show that MATE was able to improve the performance of mpix flowCart

across multiple platforms, without the need for optimizing or altering its original space-filling

curve. By applying MATE mechanisms, we obtained a 1.11x performance speedups on 64 Cori

Haswell I nodes. We plan to explore a broader array of irregular applications so we can further

generalize our approach.

144

Chapter 9

Conclusions and Future Work

9.1 Research Contributions

Traditional programming models and libraries, such as MPI, have been widely used to

develop large-scale scientific applications for decades. However, these models have grown in-

creasingly incapable of providing appropriate support for tolerating the ever-increasing costs of

communication in both current Petascale and future Exascale supercomputers.

In this dissertation, we introduced MATE, a new programming model that supports

the development of communication-tolerant scientific applications. MATE integrates multiple

communication-reducing mechanisms into a single programming model, providing a benefit

that is greater than the sum of the parts. Unlike prior work, our model reduces the two primary

sources of communication cost –network and intra-node communication– simultaneously via a

unified interface.

MATE introduces new mechanisms for developing communication-tolerant applications.

First, it exposes a hierarchical decomposition and locality model that enables efficient overde-

composition, a technique that enhances communication/computation overlap, avoiding an in-

crease in (and even reducing) explicit intra-node data motion. Second, it enables the programmer

145

to partially order computation via a dependency graph that exposes additional parallelism and

supports efficient local synchronization. We have developed a programming framework com-

prised of a source-to-source translator, annotation syntax, and runtime system that supports the

MATE model and requires only modest changes to existing MPI application source.

We showed that MATE realized a noticeable reduction in communication cost on large-

scale experiments in three scientific applications. MATE’s ability to hide network communica-

tion with the help of overdecomposition, while managing intra-node data motion costs, provides

a novel way to manage the growth of communication costs on future Exascale systems. We

showed that MATE improves the performance of a structured grid and a dense matrix multi-

plication algorithms. Additionally, in the case of Cloverleaf3D, we demonstrate that MATE

can reduce the cost of communication of complex applications in which manual refactoring for

overlap would be difficult or impractical.

Finally, we described how MATE could reduce load imbalance in an irregular multi-

grid solver using overdecomposition and rank-reordering heuristics. Our approach combines

the benefits of static and dynamic load balancing techniques incurring a reasonable amount of

modifications to the source code.

9.2 Limitations and Future Work

9.2.1 Improve Thread Concurrency

As discussed in Appendix C, we are still facing concurrency issues in our MPI-based

communication backend due to the use of multi-threading and overdecomposition. Some effort

has been dedicated to avoiding thread serialization in the latest versions of Cray-MPICH. The

craympich-mt flag permits an application to link to a variant of the Cray-MPICH that employs a

per-object lock, instead of a process-wide lock, allowing the simultaneous access and creation of

different MPI requests. However, we observed only a small reduction in the serialization costs

146

and no improvement in network communication times.

We are currently contemplating using UPC++ as communication backend instead of MPI

which may provide better concurrency for MATE threads. Another possibility is to interpret

MPI applications through a UPC++ backend to improve network saturation. However, early

experiments with this approach indicate that emulating two-sided operations on top of a one-

sided+RPC backend requires additional bookkeeping overheads that may offset any benefits.

9.2.2 UPC++ Integration

We are working on a prototype to integrate the UPC++ communication library into the

MATE model. Our preliminary results show that a MATE annotated UPC++ program can pro-

duce the same results as the baseline program, indicating that it will be possible, as part of future

developments, to build communication-tolerant UPC++ applications that take full advantage of

the MATE model.

9.2.3 CUDA Integration

MATE could be used to manage dependencies in GPU kernel execution and data move-

ment between host and device memories. This functionality could be particularly useful in

heterogeneous applications, where both the CPU and GPU resources are employed together.

Furthermore, a programmer can integrate these GPU operations with UPC++ and MPI com-

munication operations to develop a distributed heterogeneous application entirely scheduled by

MATE.

9.2.4 Global Variables Handling

An outstanding problem with thread-based approaches is that static and global variables

become shared among threads or ranks living in the same process. In standard MPI libraries,

147

each rank executes in a separate memory space and has exclusive access of its global and static

variables. However, in thread-based models, these variables are accessible by all the ranks in

the process, causing incorrect behavior due to unintended data sharing. Prior work has explored

automated solutions [120, 20] to solve this problem. Each of these solutions has their pros and

cons. Thus, a general purpose solution may be unfeasible.

9.2.5 Lightweight Translation

We currently use the ROSE compiler framework to parse MATE annotations and perform

the translation steps (see Chapter 4) required by the model. However, our annotation syntax is

relatively simple, requiring only a handful of modifications to the source code. Therefore, a

robust framework like ROSE may not be necessary. ROSE can take several minutes to translate

the source code for some complex codes, such as mpix flowcart, deterring developers from using

our model.

We are currently considering develping a custom text-based parser. MATE annotations

only require a stack-based parser that can identify basic blocks and pragma annotations. We

expect that this approach will simplify MATE’s installation process and will significantly reduce

translation times.

9.2.6 Support Fortran Annotations

Although the MATE Runtime System’s API provides bindings for function calls from

C/C++/Fortran code, our current translator can only process user-defined directives from C/C++

source. This limitation is imposed by the ROSE compiler framework –ROSE support Fortran

code–, nor our annotation model (which is language-netural), but instead from the lack of support

in the MATE translator. To support Fortran/MATE applications, we can either adapt our existing

translator to integrate pragma parsing from Fortran code.

148

9.2.7 Support for Collective Communication Overlap

Although MATE supports MPI collective communication, we did not dedicate effort into

optimizing these operations for performance. Collective communication did not represent a

significant portion of running time in any of our test cases. However, other applications may

require these optimizations. Prior work has proposed sophisticated algorithms for collective

communication that employ minimal communication volume and overheads in MPI applications

[77, 4, 87, 32]. Integrating these mechanisms into our hierarchically decomposed model is one

of the main steps to consider in the future development of MATE.

9.2.8 Automate Graph Generation

The current annotation model requires that the programmer make sure that MATE direc-

tives define a correct and efficient dependency graph, which otherwise may result in deadlocks

or incorrect results. Prior research gives systematic ways (e.g., the MPI-CFG method [81]) to

extract the underlying graph of an MPI application. We hope to integrate this approach into the

MATE framework as a means to building an initial MATE graph that maintains the semantics of

the MPI program while giving an initial graph from which the developer can refine parallelism.

149

Appendix A

Experimental Environment

A.1 Hardware Configuration

Table A.1 shows a side by side description of our two computational testbeds: Cori Phase

I, and Cori Phase II.

Table A.1: Side by side description of our three computational testbeds.

Cori Phase I [107] Cori Phase II

Computer

+ Architecture Cray XC40 Cray XC40

+ Location NERSC NERSC

+ Node Count 2,388 9,688

+ Nodes/Cabinet 192 192

+ Node Performance 1.2 TFlops 3.0 TFlops

Processor

+ Family Intel ‘Haswell’ Intel ‘Knights Landing’

+ Count 2 1

150

+ Cores/Processor 16 64

+ Hyperthreads 2 4

+ Vector Units 2x256-bit 2x512-bit

+ Frequency 2.3Ghz 1.4 Ghz

+ Core Performance 36.8 GFlops 44.8 GFlop/s

Memory

+ Technology DDR4 DDR4

+ Node DIMMs 2x4x16GB 1x6x16GB

+ Node Capacity 128GB 96GB

+ L1 Cache 64 Kb 64Kb

+ L2 Cache 256Kb 1Mb (four-shared)

+ L3 Cache 40Mb/Socket 16GB MCDRAM*

Interconnect

+ Architecture Cray Aries[106] Cray Aries

+ Topology Dragonfly Dragonfly

+ Global Peak Bandwidth 5.625 TB/s 45.0 TB/s

*The KNL processor on Cori Phase II provides two types of computing modes: cache

mode employs MCDRAM as a last-level cache structure shared by all cores; flat mode, MC-

DRAM is available as addressable memory. We have used the cache mode for all our experi-

ments.

A.2 Software Configuration

We configured the compilation environment with the following list of modules:

151

• modules/3.2.10.6

• nsg/1.2.0

• intel/18.0.1.163

• craype-network-aries

• craype/2.5.14

• pmi/5.0.13

• atp/2.1.1

• PrgEnv-intel/6.0.4

• craype-haswell (only on Cori Phase I)

• craype-mic-knl (only on Cori Phase II)

• cray-mpich/7.7.0

• craype-hugepages2M

• gcc/7.3.0

• upcxx/2018.9.0

• altd/2.0

For compiling our test cases, we use the following base set of flags:

• UPCXX THREADMODE=par (Only for UPC++ variants)

• UPCXX CODEMODE=O3 (Only for UPC++ variants)

• CFLAGS = -O3 -qopt-report=5 (performs and reports on auto-vectorization optimizations)

• CFLAGS += -mkl=sequential (To use mkl dgemm in Cannon’s algorithm)

• CFLAGS += -restrict -fno-alias -fp-model strict -fp-model source (only for Cloverleaf3D)

• CFLAGS += -prec-div -prec-sqrt (only for Cloverleaf3D)

152

Appendix B

Code Optimizations

B.1 Cache Blocking

The solver kernel in Fig. 5.2 traverses the subgrid across its contiguous dimension (x)

entirely before continuing to the next column on its non-contiguous y dimension. Similarly, it tra-

verses across its y dimension before continuing to the next z-plane. The side-effect of traversing

the grid in this fashion is that cache structures will fill cache lines with data to be read/written

once and then immediately evicted. These evictions represent a loss of opportunity since el-

ements in the y and z dimensions (required by the stencil) contained in cache-lines previously

loaded will be required later when traversing neighboring columns/planes, and thus need to be re-

loaded into cache every at every access, incurring frequent cache misses. The constant eviction

and re-loading of data produces a detrimental effect on the performance of the solver.

One way to improve cache locality is to employ a blocking strategy across the non-

contiguous x and y dimensions. Fig. B.1 shows the pseudo-code of the solver kernel from

Fig. B.1 modified with two additional for loops that iterate over the subgrid in increases of size

BSIZE. The inner y and z loops only iterate within the BSIZE range with start points defined by

the outer loops.

153

1 #define BSIZE 64

2 for (int zb = start.z; zb < end.z; zb += BSIZE)

3 for (int yb = start.y; yb < end.y; yb += BSIZE)

4 for (int z = zb; z < zb + BSIZE; z++)

5 for (int y = yb; y < yb + BSIZE; y++)

6 for (int x = start.x; x < end.x; x++)

7 {

8 Un[x,y,z] = C0 * U[x,y,z];

9 Un[x,y,z] += C1 * (U[x+1,y,z] + U[x-1,y,z] +

10 U[x,y+1,z] + U[x,y-1,z] +

11 U[x,y,z-1] + U[x,y,z+1]);

12 Un[x,y,z] += C2 * (U[x+2,y,z] + U[x-2,y,z] +

13 U[x,y+2,z] + U[x,y-2,z] +

14 U[x,y,z-2] + U[x,y,z+2]);

15 }

Figure B.1: Cache-blocking Jacobi3D Pseudo-code.

Blocking the outer for loops enables the solver to store and iterate over a relatively small

box of subgrid elements that fits entirely in the L2/L3 cache structures. The effect is that the

elements loaded in the box persist in cache during their traversal and, therefore, enable the solver

to reuse them before eviction. This reduction in cache-misses vastly improves the computational

performance of the solver. We define the value of BSIZE empirically, tuning it to the size of each

processor’s cache capacity. We have found that the optimal size for BSIZE is 64 in all of our

computational testbeds.

B.2 Vectorization

We compiled our test cases using the -O3 flag which instructs the Intel compiler to enable

auto-vectorization. A vectorized application uses floating-point vector instructions that apply an

operation on multiple contiguous data elements simultaneously, instead of one element at a time.

To apply auto-vectorization, the compiler imposes two conditions:

1. In the case of a for loop, none of the elements of the vector may depend on the execution of

either the previous or next iteration. If that were the case, the vector operation could incur

a RAW or WAR data hazard. Since we use pointer accesses inside our solver, the compiler

cannot possibly determine whether or not there will be a violation, and therefore desists

154

from converting the kernel’s arithmetic operations into their vectorized variants. However,

since we read and write from/to different arrays (U and Un, respectively), we know that

no violations will occur and therefore can inform the compiler that no data hazards exists

by adding the #pragma ivdep directive.

2. The initial address to the elements in the vector needs to be aligned to a 64 bit bound-

ary. Although this is the default alignment in our system’s glibc malloc routine, we need

to indicate the compiler that this indeed the case by adding the #pragma vector aligned

directive.

Fig. B.2 shows the pseudo-code of the solver kernel with added vectorization-enabling

directives.

1 #define BSIZE 64

2 for (int zb = start.z; zb < end.z; zb += BSIZE)

3 for (int yb = start.y; yb < end.y; yb += BSIZE)

4 for (int z = zb; z < zb + BSIZE; z++)

5 for (int y = yb; y < yb + BSIZE; y++)

6 #pragma vector aligned

7 #pragma ivdep

8 for (int x = start.x; x < end.x; x++)

9 {

10 Un[x,y,z] = C0 * U[x,y,z];

11 Un[x,y,z] += C1 * (U[x+1,y,z] + U[x-1,y,z] +

12 U[x,y+1,z] + U[x,y-1,z] +

13 U[x,y,z-1] + U[x,y,z+1]);

14 Un[x,y,z] += C2 * (U[x+2,y,z] + U[x-2,y,z] +

15 U[x,y+2,z] + U[x,y-2,z] +

16 U[x,y,z-2] + U[x,y,z+2]);

17 }

Figure B.2: Vectorized and cache-blocking Jacobi3D Pseudo-code.

B.3 Cubic Mapping

By default, MPI identifies ranks within a node with a contiguous range of identifiers.

For example, in a 32-core system, node 0 executes MPI ranks 0 to 31, and node 1 executes

MPI ranks 32 to 63. In distributing the workload of an algorithm, we could use this default

155

mapping to assign subgrids in a node assigning them across the x dimension, and advancing to

the next y-dimension column or z-dimension plane when reaching the end of the row. Fig. B.3

illustrates this strategy across a single z-plane. Each of the eight cubes in a given node represents

a different rank and its subgrid, and each arrow represents a message exchange over the network

interconnect.

Figure B.3: Linear rank mapping across nodes.

The problem with a linear workload distribution is that processes located in the same

node will only have local neighbors across the contiguous x dimension. Such a distribution im-

plies that neighbors in the y and z dimensions will forcibly reside in a different node. Fig. B.3

shows that, with this distribution, each rank has six faces with only two of them neighboring

with node co-located processes. As a consequence, every process in the node requires exchang-

ing messages with different nodes on four of its faces. Therefore, this strategy maximizes the

overhead of network inter-node communication.

Figure B.4: Cubic rank mapping across nodes in Jacobi3D.

To reduce the volume of inter-node communication, we implement a cubic (or rectan-

gular, in the case of Cannon’s algorithm) mapping strategy that maximizes rank locality. We

156

allocate subgrids across the ranks of a node so that the configuration forms a 3D box that max-

imizes the number of sides faces neighboring local processes. These faces will communicate

boundary data internally, reducing intra-node communication.

Fig. B.4 shows the effect of applying a cubic mapping. This mapping reduces the number

of outgoing faces in each rank to three, instead of four. In general, larger boxes (i.e. the number

of cores in a node) reduce even more of the volume of inter-node communication. For example,

in a 4x4x4 grouping, ranks located in the center have all their faces neighboring node-local

ranks.

157

Appendix C

MPI Concurrency Limitation

One of the main features of the MATE model is its ability to benefit from multi-threading

to maximize opportunities for overlapping communication with computation. Ideally, a MATE

application would instantiate a minimal number of MATE processes to span all the cores in a

node or NUMA domain. However, there are certain limitations to the number of threads and

ranks a single MATE process can span. One of them is cache efficiency; constantly migrating

ranks may cause a loss in the locality of data. However, we have found that the major liming

factors in taking advantage of multi-threading lays in the implementation of the MPI commu-

nication backend. In this appendix, we explore two main problems: thread serialization, and

bandwidth saturation.

C.1 Problem 1: Thread Serialization

The first problem is that the current implementation of the Cray-MPICH library (and

others available in NERSC supercomputers) are unable to handle concurrent communication

operations efficiently. Conventional MPI libraries allocate a single process-wide set of struc-

tures to manage send/recv requests and monitor their progress. While this configuration works

well for flat MPI applications (i.e, those running a single thread per process, one process per

158

core), it does not allow multiple threads to perform communication operations simultaneously.

Instead, threads need to serialize their execution when creating or polling for send/recv re-

quests. Fig. C.1 shows multiple levels that a programmer can specify during initialization (via:

MPI Init thread(level)) to enable multi-threading in an MPI application:

Figure C.1: Different level of multi-threading in MPI.

• MPI THREAD SINGLE instructs the MPI backend that there will only be a single thread

in execution in the current process. Providing this level equates to a normal MPI Init()

initialization.

• MPI THREAD FUNNELED instructs the MPI backend that, although multiple threads

may be created during runtime, only the main thread will perform MPI operations..

• MPI THREAD SERIALIZED instructs the MPI backend that multiple threads will be cre-

ated, all of them will perform concurrent MPI operations. This mode, however, requires

that only a single thread can operate on the MPI library at a time. Therefore, it requires

the use of a mutual exclusion mechanism (e.g., mutex) on the application’s side to prevent

159

concurrent access. Performing concurrent accesses may result in unpredictable/erroneous

behavior.

• MPI THREAD MULTIPLE instructs the MPI backend that multiple threads will be cre-

ated, all of them will perform concurrent MPI operations. Although this mode allows

applications threads to access the MPI backend simultaneously, current implementations

of MPI implement a process-wide lock1 in the library’s side to prevent concurrent access

to communication structures. This mode is similar in practice as MPI THREAD SERIAL-

IZED, except that it does not require the use of mutual exclusion locks on the application

side.

We can see that, although MPI libraries support multi-threading applications, they still

enforce serialized access to communication resources, causing significant computational over-

heads. The adverse effect of serialization in multi-threaded MATE applications is threefold.

First, it reduces core usage efficiency since cores are stalled for longer times just waiting to

gain access to MPI’s process-wide lock, whereas they could be performing useful computation

instead. These stalls occur each time they need to issue a new send/recv operation. Second, se-

rialization forces us to limit the number of threads and ranks per process which in turn, reduces

opportunities for communication/computation overlap. Third, the additional per-message wait-

ing time causes an increase in their latency, spreading the delay across both sender and receiver

ranks. This overhead especially affects overdecomposed MATE applications since they require

issuing a larger number of MPI messages.

C.2 Problem 2: Bandwidth Saturation

The second problem with MPI’s concurrency limitation is that it does not provide a suf-

ficient number of channels for cores to saturate the bandwidth of the Network Interface Card

1Various efforts are underway to provide smarter implementations that do not rely on process-wide locks.

160

(NIC). The Cray XC Series (Aries) networks, which are employed in our three testbeds (see

chapter: A), provides two main data transfer protocols [6]: the Block Transfer Engine (BTE)

protocol, and the Fast Memory Access protocol.

BTE uses an asynchronous protocol for transfering data between local and remote mem-

ory. A communication library accesses BTE channels by pushing a put/get communication

request onto the NIC’s BTE queue, specifying the size and address of the local/remote buffers.

After submitting the request, execution control returns immediately to the calling application.

The NIC will poll the BTE queue to feed its four concurrent channels, which are shared among

all the processes in the node. Due to its asynchronous operation, BTE does not require CPU

intervention, thus providing a high-latency/high-bandwidth data transfers, which is better suited

to large messages.

The FMA protocol, on the other hand, is mediated entirely by the CPU through I/O

operations into the NIC. These operations start immediately, yielding a very low per-message

latency. However, since the CPU is in charge of actively moving data from RAM to the NIC,

the FMA protocol occupies the core and has a lower bandwidth than the BTE protocol. For this

reason, the FMA is better suited for small messages. Fig. C.2 shows how the MPI backend

automatically selects which channel to use when sending a message, based on a message-size

threshold, called the eager limit (by default set to around 30kb, although users can define this

value through an environment variable)2

When the message size is lower than the eager limit threshold, MPI employs an eager

communication strategy. This strategy uses the FMA protocol to copy the data to the remote

process, even if no reciprocal recv request has arrived yet. The receiving process will store the

incoming data in an intermediate buffer until the recv request is posted. Eager communication

reduces per-message latency at the cost of low bandwidth and a potential extra copy at the receiv-

ing end. This cost is affordable for small messages, but can be punishing for larger messages.

2This is a representation of how the current version of Cray-MPICH works under the Cray Aries network. Other

MPI libraries may use different thresholds and configurations on different networks.

161

Figure C.2: Rendezvous (BTE protocol) and Eager (FMA protocol) strategies employed by

the MPI library.

In the case of larger messages, MPI uses a rendesvous strategy. This strategy queues

send requests and holds them at the source until a reciprocal recv request has been posted. At

the destination, MPI pushes the message into the NIC’s BTE protocol queue (which will occupy

one of the four channels) as soon as it becomes ready. This approach has a higher latency due

to waiting for reciprocal requests and the use of the high-latency BTE protocol. However, the

higher bandwidth of this channel compensates for its latency cost with larger messages.

The fundamental characteristics of these protocols have different implications for multi-

threaded applications. Since the NIC provides four BTE channels at each node, and application

needs to perform at least four concurrent operations simultaneously to saturate the NIC’s band-

width capacity. FMA channels, however, are not as easy to saturate. Since MPI serializes access

to its backend via mutual exclusion locks, only one thread can access the FMA channel at a

time. For conventional MPI applications, where each core has its dedicated channel, this is not

a problem since all of them (at most four) can potential supply the NIC. For MATE applications,

however, only one core per process can feed the FMA channel at a time, failing to saturate the

NIC’s bandwidth. The consequence of serializing FMA operations is hugely punishing, espe-

cially for applications exchanging mostly small messages, such as mpix flowCart (chapter 8).

162

C.3 Experimental Tests

To verify the adverse effects of concurrency in MATE, we developed a benchmark based

on our Jacobi3D test case (see chapter: 5). In this benchmark, we added a multiplier argument

(m) to split boundary exchange messages into multiple, smaller messages. For example, by

specifying m = 2, each rank will send twice as many messages of half the size each to their

neighbors. Defining m = 1 will result in a base case execution where each message contains a

full boundary. Regardless of the value of the multiplier argument, the benchmark will produce

the same correct result as the base case.

6.
4k

b
6.

8k
b

7.
3k

b
7.

8k
b

8.
5k

b

9.
3k

b

10
kb

11
kb

12
kb

14
kb

17
kb

20
kb

25
kb

34
kb

Message Size

800

850

900

950

1000

1050

1100

1150

1200

P
er

fo
rm

an
ce

 (
G

F
lo

p/
s)

Jacobi3D (n=2048) - 16 Cori Phase I Nodes
64x 60x 56x 52x 48x 44x 40x 36x 32x 28x 24x 20x 16x 12xMultiplier:

Flat-MPI
MATE (2 Threads)
MATE (4 Threads)
MATE (8 Threads)

Figure C.3: Performance of the baseline Flat-MPI compared to multi-threaded MATE

variants, as message sizes decrease and total message count increase.

The goal of this experiment is to measure the performance degradation in both MPI and

multiple levels of threading in MATE. We ran our tests on 16 nodes (512 cores) of the Cori Phase

I platform to solve a 3D grid of n = 2048 elements per side. Fig. C.3 shows the best performance

of Flat-MPI and MATE (2, 4, and 8 threads), using a range of m = 64 (6.4kb) to m = 12 (34kb).

Since we observed a stable performance of every variant between the range of m = 1 to m = 12,

we omitted those results from the figure.

163

We see that the performance of Flat-MPI (32 processes per node) is stable throughout

the ranges of m, with only a small degradation towards the large values of m. We attribute this

effect to increased overheads in handling more numerous messages. On the other hand, the best

performing variant of all, MATE (8 Threads), suffers from a quick degradation starting around

∼ 30kb and towards smaller sizes. This threshold coincides with the 28kb threshold in which we

measured MPI switch from the rendezvous strategy (BTE protocol) to the eager strategy (FMA

protocol).

MATE (8 Threads) provides more opportunities for communication/computation over-

lap than the other variants since it contains the highest worker and rank counts, and therefore

reduces the amount of intra-node communication, improving performance. However, only four

processes are created, suffering from a steeper degradation since eight core per process serialize

their access to the FMA channel. As the number of messages increase, this variant is increas-

ingly unable to saturate the bandwidth of the FMA channel fully. The serialization effect is less

destructive with 8 MATE processes they only instantiate 4 threads each and have more channels

to saturate the NIC’s bandwidth. Finally, the MATE (2 Threads) variant suffers a much slower

degradation, performing slower than MPI only as message sizes reach 6.4kb.

Our results show that an MPI-based application requires as many concurrently commu-

nicating processes as possible to keep a high bandwidth saturation. Similar results have been

presented in a study by Doerfler et al. [37]. The authors use the Sandia MPI Micro-benchmark

(msgrate) [113] on Cori Phase II (Cray Aries) to measure the network bandwidth saturation

between any two nodes by continuously issuing simultaneous messages send and receive opera-

tions of varying sizes (from 64 bytes to 1Mb). The study shows experiment results when using

1, 2, 4, 8, 16, 32, and 64 MPI processes per node. Their results show a stable saturation from

1MB down to 32kb for all variants, with 64 MPI processes achieving the best saturation. Below

32kb, saturation levels suffer a steep drop for the smaller rank-per-node experiments due to their

incapability to saturate the FMA channel. On the other hand, experiments with larger process

164

count have a slower degradation. These results closely match our observations.

C.3.1 Possible Solution

Figure C.4: Multi-threaded UPC++ can own different personas to avoid the need for

process-wide mutual exclusion mechanisms.

A solution for our threading concurrency problems could be to use UPC++ as communi-

cation backend. UPC++ provides support for multiple personae (see Fig. C.4), allowing multiple

threads to operate concurrently without the need of a process-wide lock. Each persona represents

a separate collection of communication operations that can be assigned to any thread, one thread

at a time. While owning a persona, a thread is less likely to suffer concurrency issues and can

access the communication backend without any process-wide mutual exclusion. Since multiple

threads can access the backend, multi-threaded UPC++ applications could saturate the NIC’s

FMA channels just as optimally as a non-threaded UPC++ or MPI application.

165

Appendix D

Load Balancing Algorithms

D.1 Consecutive Rebalancer

The consecutive balancing algorithm1 distributes workload by moving partition bound-

aries without changing their relative order of the partition. Fig. D.1 shows the MATLAB pseudo-

code for this algorithm. The input argument MateProcessCount indicates the number of MATE

processes, while the ComputeTimes argument is an array with the per-rank execution times. This

algorithm assumes that every process executes the same number of ranks. The output argument

ProcessRankMapping is an array indicating the new number of ranks for each process.

This algorithm divides into two phases. In phase I, the algorithm finds the maximum

optimal workload that can be assigned to each process. This phase starts defining a lower and an

upper bound for the maximum load. The lower bound is initialized as the largest computation

time among all ranks, which defines the minimum possible load for any given MATE process.

The upper bound is initialized as the sum of all ranks, which is the maximum possible load.

The solver will approach the optimal solution logarithmically by halving the upper bound (or

increasing the lower bound). The optimal solution is the minimum load for every process that

1This algorithm is an adaptation of the solution to the Painter’s Partitioning Problem provided in [101].

166

requires a minimum number of process equal to MateProcessCount and allocates every rank.

During Phase II, the algorithm assigns ranks to processes in consecutive order, stopping only

before exceeding the maximum load determined in Phase I.

1 function [ProcessRankMapping] = consecutiveBalancer(MateProcessCount , ComputeTimes)

2 % Phase I: Find Maximum Process Workload

3 rankCount = size(ComputeTimes ,1);

4 [lowerBound , maxIdx] = max(ComputeTimes);

5 upperBound = sum(ComputeTimes);

6

7 while lowerBound < upperBound

8 midPoint = (lowerBound + upperBound)/2;

9 minProcessCount = 1;

10 total = 0;

11 for i = 1:rankCount

12 total = total + ComputeTimes(i);

13 if total > midPoint

14 total = ComputeTimes(i);

15 minProcessCount = minProcessCount + 1;

16 end

17 end

18 if minProcessCount <= MateProcessCount

19 upperBound = midPoint;

20 else

21 lowerBound = midPoint +0.001;

22 end;

23 end

24

25 maxLoad = lowerBound ;

26

27 % Phase II: Find the optimal consecutive Rank->Process Mapping

28 currentRank = 1;

29 ProcessRankMapping = zeros(MateProcessCount ,1);

30 for i = 1:MateProcessCount

31 processSum = 0;

32 while currentRank <= rankCount && processSum + ComputeTimes(currentRank) <= maxLoad

33 processSum = processSum + ComputeTimes(currentRank);

34 currentRank = currentRank + 1;

35 ProcessRankMapping(i) = ProcessRankMapping(i) + 1;

36 end; end; end

Figure D.1: Consecutive Balancing Algorithm.

D.2 Shuffling Rebalancer

We developed a shuffling balancing algorithm that works by smoothing peak workloads

inside each node, exchanging and shuffling ranks among each MATE processes. Fig. D.2 shows

the MATLAB pseudo-code of this algorithm. The input argument ProcessRankMap is a matrix

that contains a row for each MATE process inside a node, a column for every rank (up to the

167

maximum number of ranks), and each entry contains the id of the rank. Processes with less than

the maximum number of ranks, pad their row with zero entries. The ComputeTimes argument

represents an array with the per-rank execution times. This algorithm assumes that every process

executes the same number of ranks. The output argument newMap is a re-balanced mapping of

the one provided in ProcessRankMap.

This algorithm iteratively improves the input rank-process distribution through reshuf-

fling transformations. First, it calculates the initial per-process workload into the processCost

variable. Next, it iteratively improves the workload distribution by swapping a rank in the most

heavily loaded process with a rank in another process, such that the swap reduces the maximum

workload over all processes. Each iteration costs O(P2r2), where P is the number of processes,

and r is the number of ranks.

1 function [newMap] = shufflingBalancer(ProcessRankMap , ComputeTimes)

2 processCount = size(ProcessRankMap ,1); maxRankIdx = size(ProcessRankMap ,2);

3 processCost = zeros(processCount ,1); newMap = ProcessRankMap;

4 for i = 1:processCount; for j = 1:maxRankIdx ; if newMap(i,j) ˜= 0

5 processCost (i) = processCost (i) + ComputeTimes(newMap(i,j));

6 end; end; end

7

8 % Start Intra -Node Shuffling

9 for iters = 1:50; for j = 1:processCount; for k = 1:processCount; if j < k

10 maxProcCost = max(processCost (j), processCost (k));

11 exchanged = false;

12 for m = 1:maxRankIdx

13 if exchanged == true || newMap(j,m) == 0; break; end

14 for n = 1:maxRankIdx

15 if exchanged == true || newMap(k,n) == 0; break; end

16 newProcJCost = processCost (j)-ComputeTimes(newMap(j,m))+ComputeTimes(newMap(k,n));

17 newProcKCost = processCost (k)-ComputeTimes(newMap(k,n))+ComputeTimes(newMap(j,m));

18 if (newProcJCost < maxProcCost)

19 if (newProcKCost < maxProcCost)

20 tmp = newMap(k,n); newMap(k,n) = newMap(j,m); newMap(j,m) = tmp;

21 processCost (j) = newProcJCost; processCost (k) = newProcKCost;

22 exchanged = true;

23 end; end; end; end; end; end; end; end

Figure D.2: Shuffling Balancing Algorithm.

168

Appendix E

MATE Application Programming Interface

The MATE API (Application Programming Interface) comprises a set of functions that

can be called from a MATE-translated application. We expose three interfaces: The MATE

Model interface, the Runtime System interface, and the supported MPI functions interface.

E.1 MATE Model Interface

The MATE Model Interface is a set of function that guide the execution of ranks un-

der MATE’s 2-level hierarchical decomposition model, synchronize and exchange information

among local ranks, and measure the performance of MATE ranks and workers. A MATE-

application inserts these calls into the code directly before translation.

• void Mate local rank id(int* localRankId)

Output: localRankId, local identifier of the calling rank.

• void Mate local rank count(int* localRankCount)

Output: localRankCount, number of ranks in the process.

• void Mate global process id(int* globalProcessId)

Output: globalProcessId, process identifier of the calling rank.

169

• void Mate global process count(int* globalProcessCount)

Output: globalProcessCount, number of MATE processes.

• void Mate LocalBcast(void* ptr, size t size, int local root)

Broadcast a message among all the local ranks in the current MATE process.

Input: ptr, source pointer (for local root rank); size, number of bytes to exchange; lo-

cal root, local id of the root rank.

Output: ptr, destination pointer (for non-local root ranks).

• int Mate LocalBarrier())

Blocks local ranks in the MATE process until all of them have reached this function.

Output: (return value), always returns MPI SUCCESS.

• void Mate SetFirstLocalTime()

Registers the clock time of the first local rank to reach this point. This is useful for process-

wide time measurements.

• void Mate SetLastLocalTime()

Registers the clock time of the last local rank to reach this point. This is useful for process-

wide time measurements.

• double Mate GetProcessTime()

Returns the clock time difference between local ranks reaching the designated first and

last time functions.

Output: (return value), a time lapse in seconds.

• void Mate AddLocalNeighbor(int localRankId)

Registers all inter-rank dependencies to the specified local rank id.

Input: localRankId, the local identifier of the new rank neighbor.

• void Mate local thread count(int* localThreadCount)

Output: localThreadCount, number of local worker threads.

• void Mate global thread count(int* globalThreadCount)

170

Output: globalThreadCount, number of global worker threads.

• Mate StartTimers()

Starts all MATE internal clocks for time measurements.

• Mate StopTimers()

Stops all MATE internal clocks.

• Mate ResetTimers()

Resets all MATE internal clocks.

• void Mate GetGlobalThreadScheduleTime(double* scheduleTimes)

Determines the total time that each MATE worker spent waiting for communication across

all MATE processes.

Output: scheduleTimes, an array of size equal to the number of all the MATE workers in

execution.

• void Mate GetGlobalThreadExecuteTime(double* computeTimes)

Determines the total time that each MATE worker spent executing ranks across all MATE

processes.

Output: computeTimes, an array of size equal to the number of all the MATE workers in

execution.

• vector<double>* Mate GetLocalThreadTimeLapses(int threadId)

Returns the duration of every separate operation (execute, wait) that a local thread went

through during execution.

Input: threadId, the id of a local MATE worker.

Output: computeTimes, the pointer to an array of doubles containing the duration of each

operation.

• vector<int>* Mate GetLocalThreadTimeTaskIds(int threadId)

Returns the operation type per each time lapse executed by the thread.

Input: threadId, the id of a local MATE worker.

171

Output: computeTimes, the pointer to an array of ints containing an operation type. A -1

value, indicates a waiting operation, while a > 0 value indicates an rank execution with

the number indicating the rank’s id.

E.2 Runtime System Interface

The Runtime System Interface is a set of functions that describe and guide the execution

of graph block regions. This interface is exposed to the MATE Translator and is required to

interpret MATE graph and region directives. We have also implemented a Fortran 90 binding

for each of these calls. MATE-application programmers do not need to add calls to any of these

functions, unless translation is not possible (e.g. working with a fortran application).

• void Mate AddRegion(int regionId)

Input: regionId, the position in the rank’s regions array to allocate the new region.

Fortran hook: void mate addregion (INTEGER)

• void Mate EnableRegion(int regionId) Input: regionId, the position in the rank’s regions

array to enable.

Fortran hook: void mate enableregion (INTEGER)

• void Mate DisableRegion(int regionId)

Input: regionId, the position in the rank’s regions array to disable.

Fortran hook: void mate disableregion (INTEGER)

• Mate InterRank(int srcRegionId, int depRegionId, int delay)

Input: srcRegionId, the id of the dependent region. depRegionId, the id of the depended

region. delay, the step number of the dependent region in which the dependency becomes

active.

Fortran hook: void mate interrank (INTEGER, INTEGER, INTEGER)

• Mate AddDependency(int srcRegionId, int depRegionId, int delay)

172

Input: srcRegionId, the id of the dependent region. depRegionId, the id of the depended

region. delay, the step number of the dependent region in which the dependency becomes

active.

Fortran hook: void mate adddependency (INTEGER, INTEGER, INTEGER)

• int Mate GetNextRegionID()

Output: (return value), the id of the region to execute.

Fortran hook: void mate getregionid ()

• void Mate TaskMapping(int* nTasksPerProcess, int **taskMapping)

Remaps the assignment of ranks to each MATE process with a custom number and global

Ids of MATE ranks.

Input: nTasksPerProcess, an integer array of size equal to the number of MATE process in

execution indicating how many ranks each process will contain.

taskMapping, an array of integer arrays of size indicated by nTasksPerProcess that contain

the global ids of the ranks for each MATE process.

E.3 Supported MPI Functions

Our current implementation of the MATE runtime system supports the following MPI

functions: MPI Init, MPI Finalize, MPI Barrier, MPI Scatter, MPI Gather, MPI Allgather,

MPI Allgatherv, MPI Allreduce, MPI Reduce, MPI Bcast, MPI Isend, MPI Send, MPI Irecv,

MPI Recv, MPI Wait, MPI Waitall, MPI Comm size, MPI Comm rank, MPI Abort, MPI Wtime,

MPI Address, MPI Get count, MPI Op create, MPI Type contiguous, MPI Type vector,

MPI Type struct, MPI Type create struct, MPI Type commit, MPI Type indexed, MPI Type free,

MPI Type size, MPI Pack, and MPI Unpack

173

Bibliography

[1] ADAMS, D. A. A Computation Model with Data Flow Sequencing. PhD thesis, Stanford,

CA, USA, 1969. AAI6913919.

[2] ADAMS, M., BROWN, J., SHALF, J., STRAALEN, B. V., STROHMAIER, E., AND

WILLIAMS, S. HPGMG 1.0: a benchmark for ranking high performance computing

systems.

[3] AFTOSMIS, M., BERGER, M., AND ADOMAVICIUS, G. A parallel multilevel method

for adaptively refined Cartesian grids with embedded boundaries. In AIAA’00.

[4] ALMÁSI, G., HEIDELBERGER, P., ARCHER, C. J., MARTORELL, X., ERWAY, C. C.,

MOREIRA, J. E., STEINMACHER-BUROW, B., AND ZHENG, Y. Optimization of MPI

collective communication on BlueGene/L systems. In Proceedings of the 19th annual

international conference on Supercomputing (2005), ACM, pp. 253–262.

[5] ALMGREN, A., BECKNER, V., ET AL. CASTRO: A new compressible astrophysical

solver. I. Hydrodynamics and self-gravity. The Astrophysical Journal 715, 2 (2010), 1221.

[6] ALVERSON, B., FROESE, E., KAPLAN, L., AND ROWETH, D. Cray XC series network.

Cray Inc., White Paper WP-Aries01-1112 (2012).

[7] AMARASINGHE, S., CAMPBELL, D., ET AL. Exascale software study: Software chal-

lenges in extreme scale systems. DARPA IPTO, Air Force Research Labs, Tech. Rep

(2009), 1–153.

[8] ARVIND, AND NIKHIL, R. S. Executing a program on the MIT tagged-token dataflow

architecture. IEEE Transactions on Computers 39, 3 (Mar 1990), 300–318.

[9] ASHBY, S., BECKMAN, P., CHEN, J., COLELLA, P., COLLINS, B., CRAWFORD, D.,

DONGARRA, J., KOTHE, D., LUSK, R., MESSINA, P., ET AL. The opportunities and

challenges of exascale computing. Summary Report of the Advanced Scientific Computing

Advisory Committee (ASCAC) Subcommittee (2010), 1–77.

[10] AUGUIN, M., AND LARBEY, F. OPSILA: an advanced SIMD for numerical analysis and

signal processing. In Microcomputers: developments in industry, business, and education,

174

Ninth EUROMICRO Symposium on Microprocessing and Microprogramming, Madrid,

September 13 (1983), vol. 16, pp. 311–318.

[11] BABB, R.G., I. Parallel Processing With Large-Grain Data Flow Technique. Computer

17, 7 (July 1984), 55–61.

[12] BAK, S., MENON, H., WHITE, S., DIENER, M., AND KALÉ, L. V. Multi-Level Load

Balancing with an Integrated Runtime Approach. In 18th IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing, CCGRID 2018, Washington, DC, USA,

May 1-4, 2018 (2018), pp. 31–40.

[13] BALAJI, P., BUNTINAS, D., GOODELL, D., GROPP, W., KUMAR, S., LUSK, E.,

THAKUR, R., AND TRÄFF, J. L. MPI on a Million Processors. In Recent Advances

in Parallel Virtual Machine and Message Passing Interface (Berlin, Heidelberg, 2009),

M. Ropo, J. Westerholm, and J. Dongarra, Eds., Springer Berlin Heidelberg, pp. 20–30.

[14] BALAY, S., GROPP, W. D., MCINNES, L. C., AND SMITH, B. F. Efficient Management

of Parallelism in Object Oriented Numerical Software Libraries. In Modern Software

Tools in Scientific Computing (1997), E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds.,

Birkhäuser Press, pp. 163–202.

[15] BALLARD, G., CARSON, E., DEMMEL, J., HOEMMEN, M., KNIGHT, N., AND

SCHWARTZ, O. Communication lower bounds and optimal algorithms for numerical

linear algebra. 1–155.

[16] BAUER, M., TREICHLER, S., SLAUGHTER, E., AND AIKEN, A. Legion: Expressing

Locality and Independence with Logical Regions. In Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis (Los

Alamitos, CA, USA, 2012), SC ’12, IEEE Computer Society Press, pp. 66:1–66:11.

[17] BHANDARKAR, M., KALE, L. V., DE STURLER, E., AND HOEFLINGER, J. Object-

Based Adaptive Load Balancing for MPI Programs. In Proceedings of the International

Conference on Computational Science, San Francisco, CA, LNCS 2074 (May 2001),

pp. 108–117.

[18] CALVIN, C. Implementation of parallel FFT algorithms on distributed memory machines

with a minimum overhead of communication. Parallel Computing 22, 9 (1996), 1255 –

1279.

[19] CANNON, L. E. A Cellular Computer to Implement the Kalman Filter Algorithm. PhD

thesis, Bozeman, MT, USA, 1969. AAI7010025.

[20] CARRIBAULT, P., PÉRACHE, M., AND JOURDREN, H. Thread-local storage extension to

support thread-based MPI/openMP applications. In International Workshop on OpenMP

(2011), Springer, pp. 80–93.

175

[21] CAVÉ, V., ZHAO, J., SHIRAKO, J., AND SARKAR, V. Habanero-Java: the new adven-

tures of old X10. In Proceedings of the 9th International Conference on Principles and

Practice of Programming in Java (2011), ACM, pp. 51–61.

[22] CHAIMOV, N., IBRAHIM, K. Z., WILLIAMS, S., AND IANCU, C. Exploiting Commu-

nication Concurrency on High Performance Computing Systems. In Proceedings of the

Sixth International Workshop on Programming Models and Applications for Multicores

and Manycores (New York, NY, USA, 2015), PMAM ’15, ACM, pp. 132–143.

[23] CHARLES, P., GROTHOFF, C., SARASWAT, V., DONAWA, C., KIELSTRA, A.,

EBCIOGLU, K., VON PRAUN, C., AND SARKAR, V. X10: An Object-oriented Approach

to Non-uniform Cluster Computing. SIGPLAN Not. 40, 10 (Oct. 2005), 519–538.

[24] CHOI, J., DONGARRA, J. J., POZO, R., AND WALKER, D. W. ScaLAPACK: A scalable

linear algebra library for distributed memory concurrent computers. In Frontiers of Mas-

sively Parallel Computation, 1992., Fourth Symposium on the (1992), IEEE, pp. 120–127.

[25] CICOTTI, P. Tarragon: A Programming Model for Latency-hiding Scientific Computa-

tions. PhD thesis, University of California at San Diego, CA, USA, 2011. AAI3449479.

[26] CICOTTI, P., AND BADEN, S. B. Asynchronous Programming with Tarragon. In Pro-

ceedings of the 2006 ACM/IEEE Conference on Supercomputing (New York, NY, USA,

2006), SC ’06, ACM.

[27] COOLEY, J. W., AND TUKEY, J. W. An Algorithm for the Machine Calculation of

Complex Fourier Series. Mathematics of Computation 19, 90 (1965), 297–301.

[28] COSTA, G. D., FAHRINGER, T., ET AL. Exascale Machines Require New Programming

Paradigms and Runtimes. Supercomputing Frontiers and Innovations 2, 2 (2015).

[29] CUI, Y., OLSEN, K. B., ET AL. Scalable earthquake simulation on petascale supercom-

puters. In Proceedings of the 2010 ACM/IEEE International Conference for High Per-

formance Computing, Networking, Storage and Analysis (2010), IEEE Computer Society,

pp. 1–20.

[30] CULLER, D., KARP, R., PATTERSON, D., SAHAY, A., SCHAUSER, K. E., SANTOS, E.,

SUBRAMONIAN, R., AND VON EICKEN, T. LogP: Towards a realistic model of parallel

computation. In ACM Sigplan Notices (1993), vol. 28, ACM, pp. 1–12.

[31] CULLER, D. E., KRISHNAMURTHY, A., DUSSEAU, A., GOLDSTEIN, S. C., LUMETTA,

S., VON EICKEN, T., AND YELICK, K. Parallel Programming in Split-C. In Proceedings

of the 1993 ACM/IEEE Conference on Supercomputing (New York, NY, USA, 1993),

Supercomputing ’93, ACM, pp. 262–273.

[32] DANALIS, A., KIM, K.-Y., POLLOCK, L., AND SWANY, M. Transformations to Parallel

Codes for Communication-Computation Overlap. In SC ’05: Proceedings of the 2005

ACM/IEEE Conference on Supercomputing (Nov 2005), pp. 58–58.

176

[33] DAREMA, F. The SPMD Model: Past, Present and Future. In Recent Advances in Parallel

Virtual Machine and Message Passing Interface (Berlin, Heidelberg, 2001), Y. Cotronis

and J. Dongarra, Eds., Springer Berlin Heidelberg, pp. 1–1.

[34] DATTA, K., MURPHY, M., VOLKOV, V., WILLIAMS, S., CARTER, J., OLIKER, L., PAT-

TERSON, D., SHALF, J., AND YELICK, K. Stencil computation optimization and auto-

tuning on state-of-the-art multicore architectures. In Proceedings of the 2008 ACM/IEEE

conference on Supercomputing (2008), IEEE Press, p. 4.

[35] DEBUDAJ-GRABYSZ, A., AND RABENSEIFNER, R. Nesting OpenMP in MPI to Imple-

ment a Hybrid Communication Method of Parallel Simulated Annealing on a Cluster of

SMP Nodes. In Recent Advances in Parallel Virtual Machine and Message Passing Inter-

face (Berlin, Heidelberg, 2005), B. Di Martino, D. Kranzlmüller, and J. Dongarra, Eds.,

Springer Berlin Heidelberg, pp. 18–27.

[36] DENNIS, J. Data Flow Supercomputers. IEEE Computer 13, 11 (1980), 48–56.

[37] DOERFLER, D., AUSTIN, B., COOK, B., DESLIPPE, J., KANDALLA, K., AND MENDY-

GRAL, P. Evaluating the networking characteristics of the Cray XC-40 Intel Knights

Landing-based Cori supercomputer at NERSC.

[38] DONGARRA, J., BECKMAN, P., MOORE, T., AERTS, P., ALOISIO, G., ANDRE, J.-C.,

ET AL. The International Exascale Software Project Roadmap. Int. J. High Perform.

Comput. Appl. 25, 1 (Feb. 2011), 3–60.

[39] DUBROW, A. Supercomputers Assist in Search for New, Better Cancer Drugs.

https://www.tacc.utexas.edu/-/supercomputers-assist-in-search-for-new-better-cancer-

drugs (2017).

[40] FLYNN, L. J. Intel halts development of 2 new microprocessors. The New York Times 8

(2004).

[41] FÜRER, M. Faster integer multiplication. SIAM Journal on Computing 39, 3 (2009),

979–1005.

[42] GAULTIER, S. ONERA-M6 Wing, Star of CFD. https://www.onera.fr/ en/news/onera-

m6-wing-star-of-cfd (2013).

[43] GEORGANAS, E., BULU, A., CHAPMAN, J., HOFMEYR, S., ALURU, C., EGAN, R.,

OLIKER, L., ROKHSAR, D., AND YELICK, K. HipMer: an extreme-scale de novo

genome assembler. In SC ’15: Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (Nov 2015), pp. 1–11.

[44] GEORGANAS, E., GONZÁLEZ-DOMÍNGUEZ, J., SOLOMONIK, E., ZHENG, Y.,

TOURIÑO, J., AND YELICK, K. Communication Avoiding and Overlapping for Numeri-

cal Linear Algebra. In Proceedings of the International Conference on High Performance

177

Computing, Networking, Storage and Analysis (Los Alamitos, CA, USA, 2012), SC ’12,

IEEE Computer Society Press, pp. 100:1–100:11.

[45] HEMSOTH, N. The Supercomputing Strategy That Makes Airbus Soar.

https://www.nextplatform.com/2015/07/22/the-supercomputing-strategy-that-makes-

airbus-soar/ (2015).

[46] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture, Fifth Edition: A

Quantitative Approach, 5th ed. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2011.

[47] HILBERT, D. Über die stetige Abbildung einer Linie auf ein Flächenstück. In Drit-

ter Band: Analysis· Grundlagen der Mathematik· Physik Verschiedenes. Springer, 1935,

pp. 1–2.

[48] HOEFLER, T., DINAN, J., BUNTINAS, D., BALAJI, P., BARRETT, B., BRIGHTWELL,

R., GROPP, W. D., KALE, V., AND THAKUR, R. MPI + MPI: A New Hybrid Approach

to Parallel Programming with MPI Plus Shared Memory. Computing 95 (2013), 1121–

1136.

[49] HUANG, C., LAWLOR, O., AND KALÉ, L. V. Adaptive MPI. In Proceedings of the

16th International Workshop on Languages and Compilers for Parallel Computing (LCPC

2003), LNCS 2958 (College Station, Texas, October 2003), pp. 306–322.

[50] IANCU, C., HOFMEYR, S., BLAGOJEVI, F., AND ZHENG, Y. Oversubscription on multi-

core processors. In 2010 IEEE International Symposium on Parallel Distributed Process-

ing (IPDPS) (April 2010), pp. 1–11.

[51] J. QUINLAN, D. ROSE: Compiler Support for Object-Oriented Frameworks. 215–226.

[52] KALÉ, L. V. The virtualization approach to parallel programming: Runtime optimiza-

tions and the state of the art. In Los Alamos Computer Science Institute Symposium-LACSI

(2002).

[53] KALE, L. V., AND KRISHNAN, S. CHARM++: A Portable Concurrent Object Oriented

System Based on C++. In Proceedings of the Eighth Annual Conference on Object-

oriented Programming Systems, Languages, and Applications (New York, NY, USA,

1993), OOPSLA ’93, ACM, pp. 91–108.

[54] KAMAL, H., AND WAGNER, A. FG-MPI: Fine-grain MPI for multicore and clusters. In

2010 IEEE International Symposium on Parallel Distributed Processing, Workshops and

Phd Forum (IPDPSW) (April 2010), pp. 1–8.

[55] KAMIL, S., OLIKER, L., PINAR, A., AND SHALF, J. Communication requirements

and interconnect optimization for high-end scientific applications. IEEE Transactions on

Parallel and Distributed Systems 21, 2 (2010), 188–202.

178

[56] KIM, J., BALFOUR, J., AND DALLY, W. Flattened Butterfly Topology for On-Chip

Networks. In 40th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO 2007) (Dec 2007), pp. 172–182.

[57] KIM, J., DALLY, W. J., SCOTT, S., AND ABTS, D. Technology-Driven, Highly-Scalable

Dragonfly Topology. In 2008 International Symposium on Computer Architecture (June

2008), pp. 77–88.

[58] KOWARSCHIK, M., AND WEISS, C. An overview of cache optimization techniques

and cache-aware numerical algorithms. In Algorithms for Memory Hierarchies. Springer,

2003, pp. 213–232.

[59] KRISHNAMURTHY, A., CULLER, D. E., DUSSEAU, A., GOLDSTEIN, S. C., LUMETTA,

S., VON EICKEN, T., AND YELICK, K. Parallel Programming in Split-C. In Proceedings

of the 1993 ACM/IEEE Conference on Supercomputing (New York, NY, USA, 1993),

Supercomputing ’93, ACM, pp. 262–273.

[60] KUMAR, V., ZHENG, Y., CAVÉ, V., BUDIMLIĆ, Z., AND SARKAR, V. Habaneroupc++:

A compiler-free pgas library. In Proceedings of the 8th International Conference on

Partitioned Global Address Space Programming Models (2014), ACM, p. 5.

[61] LAVRIJSEN, W., AND IANCU, C. Application Level Reordering of Remote Direct Mem-

ory Access Operations. In 2017 IEEE International Parallel and Distributed Processing

Symposium (IPDPS) (May 2017), pp. 988–997.

[62] LEISERSON, C. E. Fat-trees: universal networks for hardware-efficient supercomputing.

IEEE transactions on Computers 100, 10 (1985), 892–901.

[63] LU, H., SEO, S., AND BALAJI, P. MPI+ULT: Overlapping Communication and Com-

putation with User-Level Threads. In 2015 IEEE 17th International Conference on High

Performance Computing and Communications, 2015 IEEE 7th International Symposium

on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on

Embedded Software and Systems (Aug 2015), pp. 444–454.

[64] MALLINSON, A. C., BECKINGSALE, D. A., GAUDIN, W. P., HERDMAN, J. A.,

LEVESQUE, J. M., AND JARVIS, S. A. Cloverleaf : preparing hydrodynamics codes

for exascale. In A New Vintage of Computing : CUG2013 (2013), Cray User Group, Inc.

[65] MANJIKIAN, N., AND ABDELRAHMAN, T. S. (R) Scheduling of Wavefront Parallelism

on Scalable Shared-memory Multiprocessors. In icpp (1996), IEEE, p. 0122.

[66] MARJANOVIĆ, V., LABARTA, J., AYGUADÉ, E., AND VALERO, M. Overlapping Com-

munication and Computation by Using a Hybrid MPI/SMPSs Approach. In Proceedings

of the 24th ACM International Conference on Supercomputing (New York, NY, USA,

2010), ICS ’10, ACM, pp. 5–16.

179

[67] MARTIN, S. M., BERGER, M. J., AND BADEN, S. B. Toucan - A Translator for Commu-

nication Tolerant MPI Applications. In 2017 IEEE International Parallel and Distributed

Processing Symposium (IPDPS) (May 2017), pp. 998–1007.

[68] MOIN, P. Fundamentals of engineering numerical analysis. Cambridge University Press,

2010.

[69] MOORE, G. E. Cramming more components onto integrated circuits. Electronics 38, 8

(April 1965).

[70] NGUYEN, T., CICOTTI, P., BYLASKA, E., QUINLAN, D., AND BADEN, S. Automatic

translation of MPI source into a latency-tolerant, data-driven form. Journal of Parallel

and Distributed Computing 106 (2017), 1 – 13.

[71] NGUYEN, T., CICOTTI, P., BYLASKA, E., QUINLAN, D., AND BADEN, S. B. Bamboo –

Translating MPI applications to a latency-tolerant, data-driven form. In High Performance

Computing, Networking, Storage and Analysis (SC), 2012 International Conference for

(Nov 2012), pp. 1–11.

[72] NYBERG, P. The Critical Role of Supercomputers in Weather Forecasting.

www.cray.com/blog/the-critical-role-of-supercomputers-in-weather-forecasting/ (2013).

[73] OPENMP, A. OpenMP 4.0 specification, 2013.

[74] PATRIZIO, A. U.S. Army plans for a 100 petaflop supercomputer.

itworld.com/article/2889072/u-s-army-plans-for-a-100-petaflop-supercomputer.html.

[75] PEANO, G. Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen 36,

1 (Mar 1890), 157–160.

[76] PEREZ, J. M., BADIA, R. M., AND LABARTA, J. A dependency-aware task-based pro-

gramming environment for multi-core architectures. In 2008 IEEE International Confer-

ence on Cluster Computing (Sept 2008), pp. 142–151.

[77] PJEŠIVAC-GRBOVIĆ, J., ANGSKUN, T., BOSILCA, G., FAGG, G. E., GABRIEL, E.,

AND DONGARRA, J. J. Performance analysis of MPI collective operations. Cluster

Computing 10, 2 (2007), 127–143.

[78] RAMKUMAR, B., SINHA, A., SALETORE, V., AND KALE, L. The CHARM parallel

programming language and system: Part I - Description of Language Features. IEEE

Transactions on Parallel and Distributed Systems (1994).

[79] SCHMITT, V., AND CHARPIN, F. Pressure Distributions on the ONERA-M6 Wing at

Transonic Mach Number. Tech. Rep. AGARD AR 138, 1979.

[80] SCHÖNHAGE, A., AND STRASSEN, V. Schnelle multiplikation grosser zahlen. Comput-

ing 7, 3-4 (1971), 281–292.

180

[81] SHIRES, D. R., POLLOCK, L. L., AND SPRENKLE, S. Program Flow Graph Construc-

tion For Static Analysis of MPI Programs. In PDPTA (1999).

[82] SNIR, M., GROPP, W. D., AND KOGGE, P. Exascale research: preparing for the post-

Moore era.

[83] STEELE, JR., G. L. Making Asynchronous Parallelism Safe for the World. In Pro-

ceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (New York, NY, USA, 1990), POPL ’90, ACM, pp. 218–231.

[84] SUTTER, H. The free lunch is over: A fundamental turn toward concurrency in software.

Dr. Dobbs journal 30, 3 (2005), 202–210.

[85] TANG, H., AND YANG, T. Optimizing Threaded MPI Execution on SMP Clusters. In

Proceedings of the 15th International Conference on Supercomputing (New York, NY,

USA, 2001), ICS ’01, ACM, pp. 381–392.

[86] TERPSTRA, D., JAGODE, H., YOU, H., AND DONGARRA, J. Collecting performance

data with papi-c. In Tools for High Performance Computing 2009 (Berlin, Heidelberg,

2010), M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds., Springer Berlin

Heidelberg, pp. 157–173.

[87] THAKUR, R., RABENSEIFNER, R., AND GROPP, W. Optimization of collective commu-

nication operations in MPICH. The International Journal of High Performance Comput-

ing Applications 19, 1 (2005), 49–66.

[88] THORNTON, J. E. Parallel Operation in the Control Data 6600. In Proceedings of the Oc-

tober 27-29, 1964, Fall Joint Computer Conference, Part II: Very High Speed Computer

Systems (New York, NY, USA, 1965), AFIPS ’64 (Fall, part II), ACM, pp. 33–40.

[89] TOMASULO, R. M. An Efficient Algorithm for Exploiting Multiple Arithmetic Units.

IBM J. Res. Dev. 11, 1 (Jan. 1967), 25–33.

[90] TRAFF, J. L. Implementing the MPI process topology mechanism. In Supercomputing,

ACM/IEEE 2002 Conference (2002), IEEE, pp. 28–28.

[91] V. EICKEN, T., CULLER, D. E., GOLDSTEIN, S. C., AND SCHAUSER, K. E. Active

Messages: A Mechanism for Integrated Communication and Computation. In [1992]

Proceedings the 19th Annual International Symposium on Computer Architecture (May

1992), pp. 256–266.

[92] VALIANT, L. G. A Bridging Model for Parallel Computation. Commun. ACM 33, 8 (Aug.

1990), 103–111.

[93] WANG, E., ZHANG, Q., ET AL. Intel math kernel library. In High-Performance Comput-

ing on the Intel R© Xeon Phi. Springer, 2014, pp. 167–188.

181

[94] [WEB]. Boost C++ Coroutine Library.

https://www.boost.org/doc/libs/release/libs/coroutine/ .

[95] [WEB]. Cart3D Documentation, NASA Advanced Supercomputing Division.

https://www.nas.nasa.gov/publications/software/docs/cart3d/ .

[96] [WEB]. Cloverleaf3D - A 3D Lagrangian-Eulerian hydrodynamics benchmark.

http://uk-mac.github.io/CloverLeaf3D/ .

[97] [WEB]. Cray MPI Library. https://pubs.cray.com/ .

[98] [WEB]. Edison Design Group, Inc. - C++ Front End.

https://www.edg.com/docs/edg cpp.pdf .

[99] [WEB]. Intel MPI Library. https://software.intel.com/en-us/intel-mpi-library.

[100] [WEB]. Intel Xeon Phi processor family.

https://www.intel.com/content/www/us/en/products/processors/xeon-phi.html.

[101] [WEB]. Leetcode.com - The Painters Partition Problem.

https://articles.leetcode.com/the-painters-partition-problem/ .

[102] [WEB]. MPI 4.0 Standard. https://www.mpi-forum.org/mpi-40/ .

[103] [WEB]. MPI Standardization Forum. https://www.mpi-forum.org/ .

[104] [WEB]. MPICH Library. http://www.mpich.org/ .

[105] [WEB]. MVAPICH Library. http://mvapich.cse.ohio-state.edu/ .

[106] [WEB]. NERSC Cori Interconnect.

http://www.nersc.gov/users/computational-systems/cori/configuration/interconnect/ .

[107] [WEB]. NERSC Cori Supercomputer Configuration.

http://www.nersc.gov/users/computational-systems/cori/configuration/ .

[108] [WEB]. NVIDIA Volta Tensor Core GPU Architecture.

https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/ .

[109] [WEB]. Oak Ridge National Laboratory, Summit Supercomputer.

https://www.olcf.ornl.gov/summit/ .

[110] [WEB]. OpenMPI Library. https://www.open-mpi.org/ .

[111] [WEB]. Performance Evaluation of the Boost C++ Coroutine Library.

https://boost.org/doc/libs/1 68 0/libs/coroutine/doc/html/coroutine/performance.html.

[112] [WEB]. Portable Operating System Interface (POSIX) Standard.

http://standards.ieee.org/develop/wg/POSIX.html.

182

[113] [WEB]. Sandia MPI Micro-Benchmark Suite (SMB). Version 1.0-1.

http://www.cs.sandia.gov/smb/ .

[114] [WEB]. Top500.org Supercomputer List (Jun/18).

https://www.top500.org/lists/2018/06/ .

[115] [WEB]. Topcoder.com - The Fair Workload Problem.

https://community.topcoder.com/stat?c=problem statement&pm=1901&rd=4650.

[116] WILLIAMS, S., WATERMAN, A., AND PATTERSON, D. Roofline: An Insightful Visual

Performance Model for Multicore Architectures. Commun. ACM 52, 4 (Apr. 2009), 65–

76.

[117] WOZNIAK, J. M., ARMSTRONG, T. G., WILDE, M., KATZ, D. S., LUSK, E., AND

FOSTER, I. T. Swift/T: Large-Scale Application Composition via Distributed-Memory

Dataflow Processing. In 2013 13th IEEE/ACM International Symposium on Cluster,

Cloud, and Grid Computing (May 2013), pp. 95–102.

[118] WULF, W. A., AND MCKEE, S. A. Hitting the memory wall: implications of the obvious.

ACM SIGARCH computer architecture news 23, 1 (1995), 20–24.

[119] ZHANG, Q., JOHANSEN, H., AND COLELLA, P. A Fourth-Order Accurate Finite-

Volume Method with Structured Adaptive Mesh Refinement for Solving the Advection-

Diffusion Equation. SIAM Journal on Scientific Computing 34, 2 (2012), B179–B201.

[120] ZHENG, G., NEGARA, S., MENDES, C. L., KALE, L. V., AND RODRIGUES, E. R.

Automatic Handling of Global Variables for Multi-threaded MPI Programs. In 2011 IEEE

17th International Conference on Parallel and Distributed Systems (Dec 2011), pp. 220–

227.

[121] ZHENG, Y., KAMIL, A., DRISCOLL, M. B., SHAN, H., AND YELICK, K. UPC++:

A PGAS Extension for C++. In 2014 IEEE 28th International Parallel and Distributed

Processing Symposium (May 2014), pp. 1105–1114.

[122] ZINGALE, M., ALMGREN, A., ET AL. Meeting the Challenges of Modeling Astrophysi-

cal Thermonuclear Explosions: Castro, Maestro, and the AMReX Astrophysics Suite. In

Journal of Physics: Conference Series (2018), vol. 1031, IOP Publishing, p. 012024.

183

