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SUMMARY

Angiogenesis, the development of new blood vessels, is a key process in disease. We reported that

insulin promotes translocation of transforming growth factor b (TGF-b) receptors to the plasma

membrane of epithelial and fibroblast cells, thus enhancing TGF-b responsiveness. Since insulin pro-

motes angiogenesis, we addressed whether increased autocrine TGF-b signaling participates in

endothelial cell responses to insulin. We show that insulin enhances TGF-b responsiveness and auto-

crine TGF-b signaling in primary human endothelial cells, by inducing a rapid increase in cell surface

TGF-b receptor levels. Autocrine TGF-b/Smad signaling contributed substantially to insulin-induced

gene expression associated with angiogenesis, including TGF-b target genes encoding angiogenic

mediators; was essential for endothelial cell migration; and participated in endothelial cell invasion

and network formation. Blocking TGF-b signaling impaired insulin-induced microvessel outgrowth

from neonatal aortic rings and modified insulin-stimulated blood vessel formation in zebrafish.

We conclude that enhanced autocrine TGF-b signaling is integral to endothelial cell and angiogenic

responses to insulin.

INTRODUCTION

Endothelial cells have indispensable roles in the control of vascular function, the formation and extension of

new blood vessels during angiogenesis, and the repair of damaged vessels (Carmeliet, 2000; Kolluru et al.,

2012; Michiels, 2003). In addition to their essential roles in vascular homeostasis and wound healing, they

also promote the pathogenesis of various diseases (Carmeliet and Jain, 2000; Cheng and Ma, 2015; Escu-

dero et al., 2017; Kolka and Bergman, 2013; Kolluru et al., 2012; Tahergorabi and Khazaei, 2012). Integral to

physiological or pathological processes, such as development, reproduction, wound repair, and tumor

growth, angiogenesis involves conversion of resting endothelial cells into activated cells that loose

some endothelial characteristics, acquire the capacity to elongate and migrate, and organize themselves

into endothelial tube-like structures and networks (Carmeliet, 2000). These changes are initiated and

directed by extracellular growth and differentiation factors, as well as hormones that activate cell surface

receptor signaling in endothelial cells that lead to changes in cell differentiation and behavior. Several of

the strongly angiogenic factors, such as fibroblast growth factors and vascular endothelial growth factors

(VEGFs), act through tyrosine kinase receptors (Cross and Claesson-Welsh, 2001).

Insulin, a secreted hormone, plays essential roles in regulating glucose homeostasis, cell metabolism, as

well as angiogenesis and is used as standard treatment of patients with type 1 and type 2 diabetes (Escu-

dero et al., 2017). Functional insulin receptors are expressed on endothelial cells, enabling intracellular

signaling responses to hormone (Escudero et al., 2017). Insulin acts through cell surface receptor tyrosine

kinases, which, following receptor autophosphorylation, induce kinase pathways, most notably the MEK1/

2-Erk MAPK pathway and the PI3K-Akt-mTOR pathway (Taniguchi et al., 2006). Among many responses,

insulin generally promotes cell proliferation and survival and enhances protein synthesis and cell size

(Taniguchi et al., 2006). Depending on the concentration and time of exposure, insulin also induces

changes in the expression of a variety of genes that are therefore seen as insulin-responsive genes

(Sano et al., 2016). Consistent with the endocrine activity of insulin, endothelial cells represent a major

cell population that is directly exposed to and responsive to insulin (Escudero et al., 2017; Kolka and

Bergman, 2013). Insulin also induces angiogenic gene and cell responses and promotes angiogenesis in

cell culture, ex vivo and in vivo (Escudero et al., 2017). Enhanced angiogenesis contributes to diabetes-

associated complications, including diabetic retinopathy and nephropathy (Escudero et al., 2017), and

impaired wound healing, a common problem in diabetics.
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We previously documented that insulin induces a rapid increase in cell surface transforming growth factor b

(TGF-b) receptors in fibroblasts and epithelial cells, through mobilization of receptors from intracellular

vesicles in response to insulin-induced Akt activation (Budi et al., 2015). Increased cell surface presentation

of TGF-b receptors confers increased sensitivity to TGF-b, thus enhancing autocrine TGF-b signaling re-

sponses (Budi et al., 2015), raising the possibility that the insulin-induced increase in autocrine TGF-b

signaling participates in the cellular and gene expression response to insulin. Indeed, we showed that

blocking TGF-b signaling attenuates or inhibits the insulin-induced expression of some genes in fibroblasts

or epithelial cells (Budi et al., 2015).

TGF-b, a secreted dimeric protein, stands as the prototype of a family of cytokines and differentiation fac-

tors that act through cell surface receptors that are distinct in nature from the growth-factor-activated tyro-

sine kinase receptors, and, accordingly, signal differently (Hata and Chen, 2016; Robertson and Rifkin,

2016). Specifically, TGF-b binds to and activates tetrameric cell surface complexes of two pairs of structur-

ally related dual-specificity kinases, named the type II (TbRII) and type I (TbRI) receptors. Upon ligand bind-

ing, the activated type I receptors C-terminally phosphorylate and thus activate Smad2 and Smad3 as

signaling mediators that, following translocation into the nucleus, combine with DNA binding,

sequence-specific transcription factors, and other coregulators to activate or repress target genes. Conse-

quently, these Smads directly control gene expression and reprogramming in response to TGF-b, depend-

ing on the physiological context and nature of target genes (Hata and Chen, 2016; Morikawa et al., 2016).

This underlying mechanism is at the basis of a plethora of biological activities of TGF-b, including growth

inhibition of epithelial and endothelial cells (Goumans et al., 2002; Morikawa et al., 2016) and effects on cell

differentiation of many cell types, including epithelial- and endothelial-mesenchymal transitions (Goumans

et al., 2008; Lamouille et al., 2014; van Meeteren and ten Dijke, 2012). TGF-b is also essential for embryonic

vascular development (Dickson et al., 1995) and induces angiogenic responses in several assays (Choi and

Ballermann, 1995; Yang andMoses, 1990; Zhao et al., 2017), possibly in association with the TGF-b-induced,

Smad3-mediated expression of the gene encoding VEGF-A (Goumans et al., 2002). TGF-b, however, has

also been seen to inhibit angiogenesis, likely related to its growth inhibitory effects on endothelial cells

(Heimark et al., 1986). Both TGF-b receptor types are required for embryonic vascular development (Lars-

son et al., 2001; Oshima et al., 1996).

In the present study, we examined whether insulin enhances autocrine TGF-b signaling in primary human

endothelial cells and evaluated whether insulin-induced angiogenic responses incorporate increased

autocrine TGF-b signaling in response to insulin. To assess the contribution of TGF-b signaling, we used

primarily two inhibitors of TGF-b signaling with different mechanism of actions. The small molecule TbRI

kinase inhibitor SB431542 blocks TGF-b-induced Smad2 and Smad3 activation that directs changes in

gene expression, whereas a neutralizing anti-TGF-b antibody prevents all three TGF-bs from binding to

their receptors, thus inhibiting all TGF-b signaling. Using primary human umbilical vein endothelial cells

(HUVECs) as a model, we found that insulin treatment increases TGF-b receptor levels at the cell surface,

consequently enhancing autocrine TGF-b signaling, which is required for insulin-induced endothelial cell

migration and contributes to invasion and tube formation. Similar observations were also made in lung

microvascular endothelial cells. Transcriptome and single gene analyses revealed that elevated autocrine

TGF-b signaling also contributes to insulin-induced gene responses that have been associated with the

angiogenic response. Finally, elevated autocrine TGF-b signaling in response to insulin contributed to in-

sulin-induced angiogenic responses in cell culture, ex vivo and in vivo. These results strengthen our appre-

ciation that one endocrine stimulus, i.e., insulin, which is commonly used to treat diabetes, engages TGF-b/

Smad signaling in its outcome. Our evidence that TGF-b signaling is integrated into cell responses to in-

sulin may have substantial implications for our understanding of and therapeutic approaches to dia-

betes-associated pathologies.
RESULTS

Insulin Induces Increased TGF-b Receptor Levels at the Cell Surface and Enhances Autocrine

TGF-b/Smad Signaling in Primary Endothelial Cells

Since insulin induces a rapid increase in cell surface presentation of both the TbRI and TbRII receptors in

NMuMG epithelial cells and mouse embryonic fibroblasts (Budi et al., 2015), we evaluated the effect of

this hormone on primary HUVECs. These cells express insulin receptors, as assessed by qRT-PCR and

immunoblotting, and insulin treatment did not affect its expression levels (Figure S1A). Treatment of these

cells with insulin, without addition of TGF-b, induced rapid increases in TbRI and TbRII levels at the plasma
iScience 11, 474–491, January 25, 2019 475
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Figure 1. Insulin Enhances TGF-b Receptor Abundance at the Plasma Membrane and Induces Smad2 and Smad3

Activation through Autocrine TGF-b Signaling

(A and B) Immunoblot analyses of the TbRI and TbRII receptors in human umbilical vein endothelial cells (HUVECs),

treated with 100 nM insulin, in the absence (A) or presence (B) of the Akt inhibitor AktVIII. The top two panels show the cell

surface TbRI and TbRII receptors, affinity labeled by cell surface protein biotinylation, isolated by affinity adsorption to

Neutravidin, and visualized by SDS-PAGE and immunoblotting. The lower panels show TbRI and TbRII in total cell lysates,

with GAPDH as loading control. Inhibition of Akt activation prevents the insulin-induced increase in TbRI or TbRII

abundance at the cell surface. Immunoblots are representative of three independent experiments. Control group (0) was

without insulin for 540 min in starvation media.

(C) HUVECs were treated with 100 nM insulin, with or without SB431542, for the indicated times, and Smad2 and Smad3

activation was assessed by immunoblotting for C-terminally phosphorylated Smad2 (pSmad2) or Smad3 (pSmad3).

Control group (0) was without insulin for 360 min in starvation media. The changes in Smad2 or Smad3 phosphorylation

are densitometrically shown on the right.

(D) qRT-PCR of SMAD7 and SERPINE1 mRNA expressed by cells treated with or without insulin (Ins) in the presence or

absence of SB431542 (SB) for 90 min and normalized against RPL19 mRNA.

Error bars indicate standard error of means, based on four independent experiments. *p < 0.05. In panels A, B, and C: AP,

affinity purification, IB, immunoblot.
membrane without changes in their total abundance, as assessed by cell surface protein biotinylation (Fig-

ure 1A). Consistent with the notion that insulin-induced Akt signaling drives TGF-b receptor translocation

to the cell surface, Akt VIII, a selective inhibitor of Akt1 and Akt2 activation (Calleja et al., 2009; Lindsley

et al., 2005; Zhao et al., 2005), prevented the insulin-induced increase of cell surface TbRI and TbRII in
476 iScience 11, 474–491, January 25, 2019



endothelial cells (Figure 1B). As shown before in fibroblasts (Budi et al., 2015), insulin induced Akt-mediated

phosphorylation of the Rab GTPase-activating protein AS160, which controls cell surface transport of

TGF-b receptors (Figure S1B). Similar to the effects of insulin on HUVECs, insulin treatment of humanmicro-

vascular lung endothelial cells (HMVEC-L), which also express the insulin receptor (Figure S1A), also re-

sulted in increased cell surface abundance of TbRI and TbRII (Figure S1C).

Most cells in culture express low TGF-b receptor levels at the cell surface (Massague and Kelly, 1986; Wu

and Derynck, 2009), and their cell surface concentration determines the cell sensitivity to TGF-b and,

thus, the level of TGF-b-induced Smad activation (Budi et al., 2015; Liu et al., 2009a; Wu and Derynck,

2009). Consequently, autocrine TGF-b signaling, commonly observed in cultured cells, is enhanced

when the cell surface receptor levels are increased (Budi et al., 2015; Wu and Derynck, 2009). We therefore

evaluated whether insulin induces activation of Smad2 and Smad3 without addition of exogenous TGF-b,

by immunoblotting for C-terminally phosphorylated Smad2 or Smad3. This was indeed the case in both

HUVECs and microvascular endothelial cells (Figures 1C and S1D). Smad2 and Smad3 activation in

response to insulin was prevented by SB431542, a TbRI kinase inhibitor that blocks the activation of

Smad2 and Smad3 (Callahan et al., 2002; Laping et al., 2002), as well as by LY2157299 (galunisertib), another

inhibitor of the TbRI kinase, and to a lesser extent of the TbRII kinase, which also prevents TGF-b-induced

Smad2 and Smad3 activation (Bueno et al., 2008) (Figure S1E). These results indicate that insulin-induced

activation of Smad2 and Smad3 depend on autocrine TGF-b signaling (Figures 1C and S1D). The modest

Smad activation suggested that insulin treatment might mildly activate TGF-b target genes. In agreement

with this, insulin mildly but significantly induced the expression of SMAD7 and SERPINE1, direct TGF-b/

Smad3 target genes (Figures 1D and S1F), and their induction was prevented by SB431542 (Figures 1D

and S1F) or LY2157299 (Figure S1G).

Autocrine TGF-b Signaling Participates in the Insulin-Induced Angiogenic Gene Expression

Program

To examine whether the increased autocrine TGF-b responses participate in the insulin-induced gene

expression program, we performed RNA sequencing (RNA-seq) analysis of HUVECs treated with or without

insulin for 90 min in the absence or presence of SB431542. Changes in gene expression with a p < 0.05 cut-

off were assessed using GO-ELITE (Tables S1, S2, and S3). We focused our attention on angiogenesis- and

blood-vessel-associated gene responses.

The RNA-seq data showed that insulin induced an overall increase in the expression of genes associated

with angiogenesis (GO: 0001525 with an average of 1.16-fold change, adjusted p = 0.045), vasculogenesis

(GO: 0001570 with an average of 1.26-fold change, adjusted p = 0.110), and tube morphogenesis (GO:

0035239 with an average of 1.7 fold change, adjusted p = 0.045) (Table S1). Enrichment analysis of the

SB431542-treated group, in the absence of insulin, when compared with untreated cells, did not show

enrichment for angiogenesis (GO: 0001525) but showed enrichment for genes associated with blood vessel

development (GO: 0001568) and blood vessel morphogenesis (GO: 0048514) (Table S2). Inhibition of

TGF-b signaling using SB431542 resulted in overall decreases in the expression of genes associated with

blood vessel development and morphogenesis of 0.58-fold (adjusted p = 0.032) and 0.63-fold (adjusted

p = 0.01), respectively. Enrichment analysis, comparing the gene expression in response to insulin +

SB431542 versus insulin, showed that addition of SB431542 to insulin conferred an overall 0.62-fold

decrease in the expression of genes associated with blood vessel development (GO: 0001568, adjusted

p = 0.014) (Table S3). Furthermore, treatment with SB431542 resulted in an overall 0.54-fold decrease

in the expression of the gene set associated with cell migration (GO:0016477, adjusted p = 0.014)

(Table S2), a process that is integral to angiogenesis and blood vessel development. Insulin also induced

an overall 1.65-fold increase in gene expression associated with actin cytoskeleton organization (GO:

0030036, adjusted p = 0.022) (Table S1), which is consistent with increased cytoskeleton remodeling

during cell migration. Addition of SB431542 to insulin resulted in an overall decrease of 0.62-fold with

adjusted p = 0.014, when compared with insulin treatment (Table S3). These transcriptome analyses sug-

gest that autocrine TGF-b/Smad signaling contributes to and integrates into insulin-induced angiogenic

and blood vessel development gene responses.

TGF-b Signaling Participates in the Insulin-Induced Response of Target Genes

Based on the enrichment analyses (Tables S1, S2, and S3), we next quantified the contribution of autocrine

TGF-b signaling to the insulin-induced expression of several individual genes associated with angiogenesis
iScience 11, 474–491, January 25, 2019 477



A

B

Figure 2. Relative mRNA Levels of Selected Genes, Encoding Transcription Factors, Enzymes, Membrane Proteins, and Ligands or Secreted

Proteins, Known to be Involved in Angiogenesis

(A) mRNA expression of the indicated genes was measured using qRT-PCR, and values were normalized to RPL19mRNA. Error bars indicate standard error

of the means, based on three independent experiments. Inhibition of TGF-b signaling using SB431542 (SB) repressed the insulin-induced changes of the

mRNA expression of many but not all genes. The statistical significance was determined by Wilcoxon test; *p < 0.05, **p < 0.0083.

(B) Selected disease and Bio function analysis using IPA comparing different treatment groups. Values are activation Z scores. Z score represents the IPA

regulation trend (Z score > 0: up-regulation [blue]; Z score < 0: down-regulation [red]).
(Figures 2A and S2A). For this purpose, we evaluated the mRNA levels by qRT-PCR after 90 min and 6 h of

insulin treatment, in the absence or presence of SB431542. The selected genes comprised genes encoding

transcription factors, enzymes, and transmembrane receptors and secreted growth factors with relevance

to angiogenesis. We observed different temporal patterns of induction among the genes analyzed. Some

showed moderate induction in response to insulin that persisted or increased by 6 h, such as SRF, RUNX1,

PTGS2, HMOX1, TNFRSF12A, andGJA5 (Figure 2A). Other genes, however, showed transient induction at

90 min that diminished by 6 h. This is most apparent for the ANGPTL4 and PDGFA genes (Figure 2A). Most
478 iScience 11, 474–491, January 25, 2019



genes examined showed a contribution of autocrine TGF-b signaling to the insulin response. In most cases,

the insulin-inducedmRNA expression was inhibited or attenuated when TGF-b signaling was blocked, indi-

cating dependence on the elevated autocrine TGF-b signaling. In contrast, SB431542 enhanced the

expression of HMOX1 and ANGPT2, indicating that autocrine TGF-b signaling represses the induction

of these two genes. These results are largely consistent with the RNA-seq data for both insulin-induced

changes and the effect of TGF-b inhibition at 90 min and further illustrate that the induction of autocrine

TGF-b signaling promotes or controls the insulin-induced gene responses.

The identities of insulin-responsive genes regulated by autocrine TGF-b signaling are informative in assess-

ing the role of TGF-b in insulin-induced angiogenic gene responses. Among the intracellular signaling

effectors, the induction of cyclooxygenase-2 expression (Howe, 2007; Tsujii et al., 1998), encoded by

PTGS2, fully depended on TGF-b signaling, whereas the expression of heme-oxygenase 1 from the

HMOX1 gene (Loboda et al., 2008) was repressed by autocrine TGF-b signaling. Remarkably, the insulin-

induced expression of transcription factors known to contribute to angiogenic responses, namely, SRF

and RUNX1 (Franco et al., 2008, 2013; Franco and Li, 2009; Iwatsuki et al., 2005; Lam et al., 2017; Sangpairoj

et al., 2017), depended on autocrine TGF-b signaling (Figure 2A). Equally if not more striking is the substan-

tial role of the increased autocrine TGF-b signaling in the induction by insulin of genes encoding secreted

cytokines that promote angiogenesis and vasculogenesis (Babapoor-Farrokhran et al., 2015; Carmeliet

et al., 1996; Leung et al., 1989; Okochi-Takada et al., 2014; Perdiguero et al., 2011; Risau et al., 1992). Spe-

cifically, the insulin-induced expression of angiopoietin-like 4 (ANGPTL4) and PDGFA depended on TGF-b

signaling, whereas autocrine TGF-b signaling repressed the expression of the secreted angiogenic factor

angiopoietin-2 (ANGPT2) and the VEGF-related placental growth factor (Figure 2A). Finally, insulin-

induced expression of the ‘‘TNF receptor-related weak inducer of apoptosis’’ (TWEAKR, encoded by

TNFRSF12A), which also promotes angiogenesis (Wiley et al., 2001), also depended on TGF-b signaling.

We also observed transcripts with little to no change in response to insulin or SB431542. FLT1, which en-

codes a VEGF receptor, and MMP2 encoding matrix metalloprotease 2 and ADAM15, which associate

with extracellular matrix remodeling, were some genes that showed little to no changes (Figure S2A).

Although our data of differential VEGFA expression did not pass our p < 0.05 cutoff in the enrichment anal-

ysis, insulin has been reported to increase VEGFA expression in certain cells (Hale et al., 2013; Jiang et al.,

2003; Lu et al., 1999; Miele et al., 2000). Quantified using qRT-PCR, VEGFA mRNA was not increased by

90 min and was modestly increased by 6 h in response to 100 nM insulin (Figure S2A). Increasing the insulin

concentration, however, revealed a concentration-dependent increase of VEGFAmRNA expression by 6 h,

which fully depended on autocrine TGF-b/Smad signaling, as it was prevented by SB431542 (Figure S2A

and S2B). Addition of the pan-TGF-b neutralizing 1D11 antibody, which prevents ligand binding to its re-

ceptors, confirmed the participation of autocrine TGF-b signaling in insulin-induced expression changes of

select target genes, similar to the addition of SB431542 but often less pronounced (Figure S2C). Together,

these data further support the contribution and roles of TGF-b signaling in insulin-induced angiogenesis

gene responses.

Ingenuity pathway analysis (IPA) of the RNA-seq data revealed activation as well as inhibition of states of

‘‘associated diseases and biological functions’’ (Table S4). We focused our attention on five IPA-based bio-

logical functions that are altered in response to insulin and relevant to angiogenesis (Figure 2B). Insulin-

activated transcripts included those associated with ‘‘cell migration,’’ ‘‘cell movement,’’ ‘‘invasion,’’ as

well as ‘‘angiogenesis’’ and ‘‘vasculogenesis.’’ SB431542 in the absence of insulin inhibited gene responses

associated with cell migration, movement, and invasion but activated those associated with angiogenesis

and vasculogenesis, strongly suggesting that autocrine TGF-b signaling promotes cell migration and

invasion and has an inhibitory effect on some genes associated with angiogenesis and vasculogenesis in

HUVECs (Table S4). Combining SB431542 with insulin resulted in repression of all five insulin-induced

response groups, thus reflecting contributions of autocrine TGF-b signaling to the insulin responses of

these functional groups of genes (Figure 2B).
Autocrine TGF-b Signaling Promotes Insulin-Induced Cell Migration

Insulin has been shown to stimulate cell migration (Budi et al., 2015; Jin et al., 2014; Liu et al., 2009c; Shanley

et al., 2004), which is now also supported by our transcriptome analyses of insulin-treated endothelial cells

(Figure 2B). Since endothelial cell migration is integral to the angiogenic response, we asked whether in-

sulin promotesmigration of primary HUVECs and whether the increased autocrine TGF-b signaling contrib-

utes to the insulin-induced migration response. Serum-starved cell monolayers were ‘‘wounded’’ by
iScience 11, 474–491, January 25, 2019 479
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Figure 3. Contribution of TGF-b Signaling to Insulin-Induced Cell Migration and Invasion

(A–C) Migration of HUVECs measured in a monolayer wounding assay. Confluent monolayers were scratched with a pipette tip at time 0 and cells were

allowed to migrate into the wounded area for 8 h, in the presence or absence of insulin with or without SB431542 (A and B) or the neutralizing anti-TGF-b

antibody 1D11 (C). The migration distance is graphically presented. Error bars indicate standard error of the means of three experiments. The statistical

significance was determined by Wilcoxon test; *p < 0.05, **p < 0.0083.

(D and E) mRNA expression of RHOB, encoding a Rho-related GTP-binding protein, SNAI1 and SNAI2 (D), as well as CDH5, encoding VE-cadherin and FN,

encoding fibronectin (E), after 90 min or 6 h insulin treatment, in the presence or absence of SB431542, determined by qRT-PCR and normalized against

RPL19 mRNA. Statistical significance was determined by Wilcoxon test; *p < 0.05, **p < 0.0083. Ab, antibody.

(F) Immunoblots of extracted HUVEC lysates treated for 48 h in the presence or absence of insulin with or without SB431542. Protein expression changes were

assessed by immunoblotting for Snail2, N-cadherin, VE-cadherin, and fibronectin, with GAPDH as loading control. IB, immunoblot.

(G) Invasion of HUVECs in Transwell assays in the presence or absence of insulin, with or without SB431542 or 1D11 antibody. HUVECs were treated with

insulin with or without SB431542 or the anti-TGF-b neutralizing antibody 1D11 for 8 h, and the invaded cells at the bottom filter surface were DAPI-stained

and counted. The microscopic fields show cells that invaded through the filter as black dots against a white background. The results, shown graphically, are

averages of five random microscopic fields of three separate experiments, each conducted in duplicate.

Scale bar, 100 mM. Statistical significance was determined by Wilcoxon test; *p < 0.05, **p < 0.0083. ns, non-significant. SB, SB431542. Ins, insulin.
scratching and stimulated for 8 h with insulin in the presence or absence of SB431542 or the TGF-b neutral-

izing antibody 1D11. Insulin promoted endothelial cell migration, scored by measuring the width of the

cell-free wound before and after treatment (Figure 3A). The TbRI kinase inhibitors SB431542 and

LY2157299 and the 1D11 anti-TGF-b antibody prevented the insulin-induced cell migration (Figures 3A,

3B, and S3A). No differences in cell number were apparent after the 8 h time interval used to score cell

migration (Figure S3B). As in HUVECs, LY2157299, SB431542, and the 1D11 antibody also blocked the in-

sulin-induced migratory response of microvascular endothelial cells (Figures S3A and S3C).

We also observed concomitant increases in the expression of several genes that might contribute to the

increased cell migration. qRT-PCR analyses showed that insulin enhanced the expression of RHOB, a

gene implicated in activation of cell migration (Howe and Addison, 2012) after 6 h, albeit not yet at

90 min, and this increase was prevented when TGF-b signaling was blocked using SB431542 (Figure 3D).

Insulin also induced the expression of SNAI1 and SNAI2 (Figures 3D and 3F), which are known to drive

the process of endothelial-mesenchymal transition that enables the cells to acquire a migratory and inva-

sive phenotype (Lamouille et al., 2014). We also observed an increased fibronectin mRNA expression,

consistent with initiation of endothelial-mesenchymal transition, although decreased VE-cadherin mRNA

expression was not yet apparent after 6 h of insulin (Figure 3E). That the cells undergo at least a partial

endothelial-mesenchymal transition is more apparent after 48 h of insulin treatment, which resulted in

increased fibronectin and N-cadherin expression and decreased VE-cadherin expression (Figure 3F).

The insulin-induced increase in RhoB expression and changes in the expression of genes that characterize

endothelial-mesenchymal transition were prevented in the presence of SB431542 (Figures 3D–3F), indi-

cating contributions of autocrine TGF-b signaling. These data strongly suggest that insulin-stimulated

cell migration requires autocrine TGF-b signaling and is facilitated by changes in gene expression that

mark endothelial-mesenchymal transition and are induced by the insulin-induced increase in autocrine

TGF-b signaling.

We also evaluated whether TGF-b signaling plays a role in insulin-induced invasion of HUVECs using Trans-

well assays that quantify the number of cells that invade through extracellular matrix (�Matrigel)

(Figure 3G). Cells were treated for 8 h with or without insulin in the absence or presence of SB431542 or

the 1D11 antibody, and in the presence of mitomycin C, which was added to inhibit cell proliferation

(Coomber, 1992; Wu et al., 2015). Addition of mitomycin C did not affect TGF-b-induced Smad activation

and gene expression (Figure S3D). In the presence of insulin, the number of invading cells increased about

2-fold compared with control treatment (Figure 3G). Both the 1D11 antibody and SB431542 prevented in-

sulin to enhance cell invasion, although SB431542 treatment resulted in an increased number of invading

cells (Figure 3G). As with SB431542, inhibiting TGF-b signaling using LY2157299 also prevented an insulin-

induced increase in cell invasion and induced a higher basal cell invasion (Figure S3E). These data suggest

that insulin-induced autocrine TGF-b signaling participates in insulin-induced endothelial cell invasion,

consistent with its role in cell migration and the insulin-induced cell plasticity response.

In endothelial cells, the type I receptor ALK1, also known as ACVRL1, has been shown to contribute to cell

migration (David et al., 2007; Lamouille et al., 2002) and to also be activated by TGF-b (Goumans et al.,

2003). We therefore evaluated the contribution of ALK1 to the insulin response. Insulin induces a mild in-

crease of ALK1 at the cell surface with no change in mRNA expression (Figures S3F and S3G). However, this
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increase did not result in increased expression of ID1, a TGF-b-inducible ALK1 target gene (Figure S3G).

Inhibition of ALK1 and related BMP-responsive type I receptors using LDN-193189 enhanced the basal

level of cell migration and invasion and allowed insulin to decrease endothelial cell migration, without a

significant effect on cell invasion (Figure S3H). These data suggest that ALK1 might participate in the insu-

lin-induced cell migration response.

TGF-b Signaling Participates in Insulin-Induced Endothelial Network Formation in Culture

The ability of extracellular factors to control angiogenesis is often scored using a cell culture assay for endo-

thelial network formation. In this assay, HUVECs, cultured on Matrigel, differentiate gradually with forma-

tion of cell adhesion junction complexes and form tube-like structures that connect to each other through

node- and mesh-like structures (Arnaoutova and Kleinman, 2010; DeCicco-Skinner et al., 2014). Insulin has

been shown to promote the formation of such an endothelial network when the endothelial cells are

cultured in Matrigel. To examine whether autocrine TGF-b signaling contributes to the insulin-induced

network formation, we performed these assays using HUVECs in the presence or absence of the TbRI kinase

inhibitor SB431542 or the 1D11 antibody (Figure 4).

Besides visible changes in appearance, the formation of the network can be quantified using several pa-

rameters, most notably the number of nodes andmeshes formed (Figure 4A). Insulin significantly enhanced

the total number of nodes andmeshes (Figures 4B and 4C), thus promoting network formation. Addition of

SB431542 or the 1D11 antibody augmented these parameters of network formation, both in the absence or

presence of insulin, although the antibody was less effective (Figures 4B and 4C). These results strongly

suggest that autocrine TGF-b signaling dampens the basal and insulin-induced network formation and

further illustrate the functional cross talk between the insulin-induced increase in autocrine TGF-b signaling

and a response to insulin that is not secondary to TGF-b signaling.

Insulin and SB431542 Control Intersomitic Vessel Development in Zebrafish Embryos

Since insulin and inhibition of TGF-b signaling both enhanced the formation of endothelial tube-like struc-

tures in culture, we evaluated the effects of insulin and SB431542 on the development of the vasculature in

transgenic fli:gfp zebrafish embryos (Lawson and Weinstein, 2002), in which endothelial cells express GFP

and therefore are readily visible in the transparent embryos (Figure 5A). This in vivomodel allows easy visu-

alization of vascular patterning defects, especially since the vasculature of the trunk has an extremely reg-

ular pattern. Incubation of zebrafish embryos with high glucose results in the development of an additional

vessel arising from the intersegmental vessel (ISV), and inhibiting Akt activation prevents this hyperbranch-

ing effect (Jorgens et al., 2015). To follow changes in glucose levels and effects of insulin, we analyzed the

expression of phosphoenol-pyruvate carboxykinase 1 (PCK1), which is transcriptionally repressed in

response to insulin and therefore a sensitive marker of blood glucose levels (Elo et al., 2007). This surrogate

marker approach was necessary since the small amount of larval blood available precludes accurate anal-

ysis of insulin-induced changes in blood glucose levels. Adding insulin inhibited PCK1 expression (Fig-

ure 5B), illustrating the response to insulin.

In this system, insulin treatment for 96 h induced hyper-branching of blood vessels, which appear as small

vessel structures that sprout from the intersomitic vessels and grow horizontally toward neighboring inter-

somitic vessels (Figure 5C). This effect was similar to that of high glucose treatment (Jorgens et al., 2015).

Inhibiting TGF-b signaling for 96 h using SB431542 induced the formation of misdirected small vessels that

emerged from the upper part of the intersomitic vessels, whereas combining insulin with SB431542 resulted

in both extra branching and misdirected vessels (Figures 5C and 5D). Even though our data support an

angiogenic response to insulin, we could not dissect the direct contribution of TGF-b signaling to the in-

sulin-induced intersomitic vessel sprouting. The changes in the vascular pattern when TGF-b signaling is

inhibited suggest a role of TGF-b signaling during early embryo vessel formation that is independent of

insulin-induced blood vessel hyper-branching.

Blocking TGF-b Signaling Inhibits Insulin-Induced Microvessel Outgrowth from Neonatal

Aortic Rings

In addition to analysis in the zebrafish model, we evaluated the contribution of TGF-b signaling to insulin-

induced microvessel outgrowth ex vivo, following tissue explant of neonatal mouse aortae, using an aortic

ring assay (Bellacen and Lewis, 2009) (Figure 6A). This assay relies on the capacity of the aortic explants to

form new endothelial microvessels, whose outgrowth involves interactions of different cell types, including
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Figure 4. Effects of Inhibiting TGF-b Signaling in Insulin-Induced Endothelial Network Formation

(A) HUVECs were plated onto Matrigel with or without insulin in the absence or presence of SB431542. Representative

images are shown after 6 h of treatment.

(B and C) Quantitative analyses of numbers of nodes (red) and meshes (blue), relative to untreated controls, in

experiments with or without SB431542 (B) or 1D11 antibody (C).

Error bars represent mean G SEM of three independent experiments. Statistical significance was determined by

Wilcoxon test; *p < 0.05, **p < 0.0083, ***p < 0.0001. Scale bar, 500 mM.
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Figure 5. Effects of Insulin and SB431542 on Intersomitic Vessels in Zebrafish Embryos

(A) Scheme representing the treatment protocol. Tg(fli:gfp) zebrafish embryos were treated for 72 h.

(B) Expression of pck1mRNA was quantified by qRT-PCR. RNA was extracted from pool of larvae that had received insulin

with DMSO or DMSO control for 48 h.

(C) Altered blood vessels in insulin- and SB431542-treated embryos. Representative images show the trunk vasculature of

96 hpf tg(fli:EGFP) zebrafish larvae. The boxes mark the region shown at higher magnification in the lower right corner of

the panel.

(D) Branching quantification of zebrafish blood vessels at 96 hpf, as seen in C in control solution DMSO, SB431542, insulin,

and insulin + SB431542. Bars represent mean G SD. Zf, zebrafish. Ctrl, control.
endothelial cells, pericytes, fibroblasts, macrophages, and dendritic cells (Nicosia, 2009). In this assay,

1 mm transverse sections of aortae of 6-day-old mice are incubated in Matrigel for 96 h, allowing outgrowth

of endothelial cells from the intimal layer. Consistent with its angiogenic effects, insulin stimulated micro-

vessel sprouting from aortic rings that was more extensive than sprouting seen from control-treated aortae

(Figures 6B and 6C). The insulin-promoted new microvessels were endothelial in nature, apparent by

mTomato expression from the Cdh5 promoter (Figure S4), and their outgrowth was strongly attenuated

in the presence of SB431542. Basal microvessel sprouting was minimal without addition of insulin, and

SB431542 had no significant effect in reducing it (Figures 6B and 6C). A pan-neutralizing anti-TGF-b anti-

body that prevents receptor binding of all three TGF-b ligands also decreased insulin-induced microvessel

outgrowth from aortic rings, whereas non-immune IgG had no effect (Figures 6B and 6C). These findings

indicate that autocrine TGF-b/Smad signaling participates in and contributes to the angiogenic activity

of insulin in the microvessel outgrowth assay.
DISCUSSION

We previously reported that, in fibroblasts and epithelial cells, insulin induces, through Akt activation, the

rapid mobilization of the TbRI and TbRII receptors from intracellular stores to the plasma membrane, thus

enhancing TGF-b responsiveness and autocrine TGF-b signaling (Budi et al., 2015). This raised the possi-

bility that insulin-induced autocrine TGF-b signaling through Smad2 or Smad3 participates in insulin-

induced gene responses, which was confirmed for a few selected genes in immortalized epithelial and

fibroblast cell lines (Budi et al., 2015). To evaluate the extent to which autocrine TGF-b signaling is inte-

grated in the cellular response to insulin, we now studied the response of primary endothelial cells, a
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Figure 6. Contribution of TGF-b Signaling in Insulin-Induced Mouse Aortic Ring Microvessel Sprouting

(A) Scheme of themouse aorta ring experiments. Segments of aorta ring from 6-day-old mice were embedded inMatrigel

and incubated with insulin and/or SB431542 or a neutralizing anti-TGF-b antibody or control IgG for 96 h.

(B) Microvessel sprouting from aortic ring segments cultured ex vivo for 96 h with or without insulin in the presence or

absence of SB431542 or anti-TGF-b antibody or control IgG. The microvessel growth in response to insulin is blocked by

SB431542 or anti-TGF-b antibody in a mouse aorta ring assay. Representative images are shown.

(C) Quantitative analysis of the ex vivomicrovessel growth, measured as surface area to which vessels are extended. Error

bars show GSD. The experiments were repeated twice. Ctrl, control.
cell population that is directly exposed to insulin in circulation and whose angiogenic activation promotes

the progression of a variety of diseases, including heart disease, diabetes-associated complications, fibro-

ses, and cancer (Aoki et al., 2006; Escudero et al., 2017; Kizu et al., 2009; Pardali et al., 2017; Rajendran et al.,

2013). Our results allowed us to make conclusions of physiological relevance. (1) Insulin increases the cell

surface levels of the TGF-b receptors, TbRI and TbRII, through Akt activation in human primary endothelial

cells, thus enhancing autocrine TGF-b signaling. (2) Insulin-induced autocrine TGF-b signaling participates

in the insulin-induced transcriptional response of human endothelial cells, including gene responses asso-

ciated with angiogenesis. (3) Insulin-induced autocrine TGF-b signaling participates in insulin-induced

angiogenic responses, including cell migration and endothelial network formation in culture and angio-

genesis ex vivo. In summary, we report that enhanced autocrine TGF-b signaling in response to insulin is

integral to insulin-induced angiogenesis.

Our analyses of the transcriptome andmRNA expression of individual genes in response to insulin supports

the notion that autocrine TGF-b signaling through TbRI and Smads integrates into the overall endothelial

gene expression response to insulin and the expression of some genes that are known to function in

angiogenesis. Indeed, many insulin-induced gene responses were inhibited or attenuated when TGF-

b-induced Smad activation was blocked. Among these genes, several encode transcription factors that

contribute to the angiogenic response, e.g., SRF and RUNX1 (Franco et al., 2008, 2013; Franco and Li,

2009; Iwatsuki et al., 2005; Lam et al., 2017), and their induction in response to insulin depended on auto-

crine TGF-b signaling. Even more striking is the contribution of autocrine TGF-b signaling to the activation
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of insulin-induced genes encoding secreted, pro-angiogenic cytokines. Specifically, the insulin-induced

expression of angiopoietin-like 4, PDGF-A, and VEGF-A, all of which have been individually linked to induc-

tion of angiogenesis (Andrae et al., 2008; Babapoor-Farrokhran et al., 2015; Carmeliet et al., 1996; Heldin,

2013; Hu et al., 2016; Leung et al., 1989; Okochi-Takada et al., 2014; Perdiguero et al., 2011; Risau et al.,

1992), depended on TGF-b signaling. The induction of an angiogenic response to insulin has been func-

tionally linked to activation of VEGF-A expression (Liu et al., 2009b; Lu et al., 1999; Yamagishi et al.,

1999), whereas the VEGFA gene is known to be directly induced by Smad3 in response to TGF-b (Kobayashi

et al., 2005; Shi et al., 2014). Moreover, increased ANGPTL4 expression is commonly seen in diabetic reti-

nopathy (Babapoor-Farrokhran et al., 2015). Additionally, consistent with the notion that developing nerves

and blood vessels use similar guidance mechanisms (Arese et al., 2011; Carmeliet, 2003), insulin induced

changes in the expression of genes that participate in axon development and guidance (Inoue et al.,

2008; Wickramasinghe et al., 2008; Yoshikawa et al., 2007), such as RHOB, SRF, RUNX1, and also their in-

duction was inhibited by blocking TGF-b signaling. This suggests that TGF-b signaling may also participate

in insulin-induced changes in neurogenesis and neuronal guidance.

Insulin has been shown to stimulate angiogenesis, as assessed by cell culture and ex vivo and in vivo assays

(Escudero et al., 2017). Subcutaneous injection of insulin in mice induces the development of new and

extensively branched microvessels (Dhall et al., 2016; Liu et al., 2009b), and topic insulin injection into

foot ulcer wounds of diabetic patients promotes increased microvessel density that helps improve wound

healing (Zhang and Lv, 2016). To define the contribution of autocrine TGF-b signaling in insulin-induced

angiogenic responses, we used the pharmacological inhibitor SB431542 to block the TbRI kinase activity,

and, consequently, TGF-b-induced Smad activation, and verified key results using another TbRI kinase in-

hibitor, LY2157299 (galunisertib), and/or specific pan-neutralizing anti-TGF-b monoclonal antibodies that

prevent all TGF-b signaling. Generating primary HUVECs that stably and quantitatively lack TbRII or TbRI

expression by small interfering RNA-mediated silencing was not feasible, and their silencing appears to

be detrimental to these endothelial cells in culture. We used several assays that mimic major aspects of

angiogenesis to assess the contribution of TGF-b signaling. Endothelial cell migration is essential to angio-

genesis (Lamalice et al., 2007), and migration in many different cell lines is known to be induced by insulin

(Budi et al., 2015; Jin et al., 2014; Liu et al., 2009c; Shanley et al., 2004). Our results indicate that insulin does

not induce endothelial cell motility when TGF-b signaling is blocked and therefore that insulin-induced cell

migration depends on autocrine TGF-b signaling. Furthermore, neutralizing anti-TGF-b antibody,

SB431542, and LY2157299 prevented the insulin-induced increase of invasiveness, assessed in Transwell

assays, although blocking TGF-b signaling enhanced the basal level of cell invasion. These results strongly

suggest that TGF-b signaling participates in insulin-induced invasion. Since both kinase inhibitors block the

TbRI kinase and thus prevent Smad2 and Smad3 activation, and the neutralizing 1D11 antibody prevents

ligand binding to the receptors, and thus all ligand-induced TGF-b signaling pathways, differences in their

effects may be anticipated and may highlight contributions of non-Smad signaling, e.g., of TGF-b-induced

Akt-mTOR activation, which does not depend on the TbRI kinase activity (Hamidi et al., 2017). Additionally,

TGF-b1-induced ALK1 activation, which is not prevented by SB431542, may contribute to cell invasion,

although insulin did not induce ID1 expression in HUVECs (Figures S3G and S3H), and inhibition of other

kinases by SB431542, such as the ALK4 or ALK7 receptors, may also affect the outcome.

Based on our data, we surmise that TGF-b-induced Smad3 activation may participate in insulin-induced

endothelial cell migration and invasion, in part through the induction of a mild or partial endothelial-

mesenchymal transition (EndoMT) response. Indeed, insulin mildly induced the expression of SNAI1

and SNAI2, which are known to drive EndoMT, are activated by Smad3 in response to TGF-b, and are

required for endothelial cell invasion (Lamouille et al., 2014). Insulin also induced increased fibronectin

and N-cadherin expression and decreased VE-cadherin expression, which also mark EndoMT (Goumans

et al., 2008; Piera-Velazquez et al., 2011). These EndoMT-defining responses were blocked when TGF-b

signaling was blocked, highlighting the contribution of TGF-b signaling.

The endothelial network formation that we observed in vitro and in the mouse aortic ring assay provides

strong evidence for participation of TGF-b signaling in the angiogenic responses to insulin. However,

we did not see a repression of insulin-induced endothelial network formation when TGF-b signaling was

inhibited using either SB431542 or the 1D11 antibody but instead observed an increase in basal and insu-

lin-induced mesh and node formation. The enhanced formation of nodes and mesh-like structures, when

TGF-b signaling is inhibited, is reminiscent of the SB431542-induced increase in VEGF-induced capillary
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sprouting by HUVECs in a spheroid angiogenesis assay (Liu et al., 2009d). Inhibition of TGF-b signaling

strongly attenuated the ability of insulin to induce microvessel outgrowth from aortic ring segments

ex vivo. This effect, similar to the requirement of TGF-b signaling for insulin-induced endothelial cell migra-

tion, highlights the contribution of autocrine TGF-b signaling to the insulin-induced angiogenic response.

These observations are in line with the pro-angiogenic effects of TGF-b in the same microvessel outgrowth

assay (Zhao et al., 2017) as well as in corneal and chicken chorioallantoic membrane angiogenesis assays

(Phillips et al., 1994; Yang andMoses, 1990) and the requirement for TGF-b in murine vascular development

(Dickson et al., 1995). Altogether, our data provide strong support for the participation of the insulin-

induced increase in TGF-b responsiveness and autocrine TGF-b signaling in insulin-induced angiogenic

responses.

We recognize that both ALK1 and TbRI/ALK5 signaling mediate TGF-b responses in endothelial cells and

angiogenesis (Goumans et al., 2002; Lamouille et al., 2002; Liu et al., 2009d; Mallet et al., 2006; Oh et al.,

2000; Rochon et al., 2016), and it has been proposed that the activities from both type I receptors may bal-

ance each other in the control of angiogenesis (Goumans et al., 2002; Oh et al., 2000). Our results using the

kinase inhibitors SB431542 and LY2157299 (galunisertib) and neutralizing anti-TGF-b antibodies revealed

that TGF-b signaling, and specifically TGF-b signaling through TbRI/ALK5, contributes to insulin-induced

angiogenic response and target gene expression. They are, however, not informative about a possible

role of ALK1 in insulin-induced angiogenic responses. Such role may be suggested by the effect of the

small molecule inhibitor LDN-193189, which targets ALK1 as well as related BMP type I receptors, on insu-

lin-induced cell migration and invasion, although LDN-193189 did not affect insulin-induced ID1 expres-

sion, a Smad1/5-directed target of activated ALK1 and other BMP type 1 receptors. Further research is

required to address possible contributions of ALK1 or related BMP type I receptors in insulin-induced

angiogenesis.

Although the insulin levels used in this study were higher than the normal insulin levels in blood, our

findings may have substantial implications for the understanding of diabetes-associated complications

in patients treated with insulin. Excessive formation of immature blood vessels is seen in association

with tissue fibrosis, e.g., in the retina or kidney, in diabetic patients (Forbes and Cooper, 2013; Martin

et al., 2003; Nakagawa et al., 2009), and, based on our findings, may result in part from the increased

TGF-b responsiveness and the integration of enhanced autocrine TGF-b signaling in response to insulin.

Furthermore, many diabetes-associated complications are associated with fibrosis (Ban and Twigg,

2008), which is driven by increased TGF-b signaling (Hills and Squires, 2011; Lamouille et al., 2014; Van

Geest et al., 2010). Accordingly, these fibrotic lesions show increased Smad3 activation (Inazaki et al.,

2004; Kim et al., 2003). As we reported before, the increased TGF-b signaling may be initiated by high

glucose- or insulin-induced increases in TGF-b responsiveness (Budi et al., 2015; Wu and Derynck, 2009).

Our findings may also be relevant in the context of cancer progression, since carcinomas depend on tumor

angiogenesis. Higher rates of certain cancer types have been associated with type 2 and type 1 diabetes

and insulin plasma levels (Belfiore, 2007; Frasca et al., 2008; Giovannucci et al., 2010; Huang et al., 2011;

Kalla Singh et al., 2011). Additionally, tumor cells themselves often show an increased expression of insu-

lin-related growth factor (IGF) 1 (Pollak, 2008), which acts through insulin and IGF-1 receptors, similar to

insulin (Varewijck and Janssen, 2012). The extent to which the insulin-induced upregulation of TGF-b

responsiveness contributes to diabetes- or cancer-associated angiogenesis is worth consideration.
Limitations of the Study

We showed that insulin-induced autocrine TGF-b signaling contributes to many aspects of angiogenesis, in

cell culture, ex vivo, and in zebrafish. Owing to technical limitations and, in the case of humans, to ethical

considerations, the importance of insulin-induced autocrine TGF-b signaling in these same aspects of

angiogenesis may not be defined in the whole organism in vivo, i.e., in mice or humans. Our RNA-seq study

showed integration of TGF-b signaling in the insulin-regulated expression of many genes that are associ-

ated with angiogenesis. Levels of RNA may serve as useful indication of their regulation but are not neces-

sarily predictive of the protein levels. Further study is needed to examine the abundance of the proteins

expressed by genes associated with angiogenesis in endothelial cells. In vertebrates, the integrity and

functions of endothelial cells that line the vessel wall are defined through functional contacts with many

cells, including pericytes, smooth muscle cells, and blood cells. Our study focuses on the endothelial cells,

with less focus on these other cells that provide additional signals to the endothelial cells. Lastly, consistent
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with most if not all studies in cell culture, insulin used in this study was used at higher levels than those that

are seen as normal physiological levels in circulation.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, four figures, and five tables and can be found

with this article online at https://doi.org/10.1016/j.isci.2018.12.038.
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Supplemental Figure S1, Related to Figure 1 (A) INSR mRNA and protein expression in HUVECs and human lung microvascular 
endothelial cells isolated from lung (HMVEC-L), shown by qRT PCR and immunoblotting. qRT-PCR of INSR mRNA expressed by 
HUVECs (left panel) and HMVEC-L (right panel) with or without insulin treatment in the presence or absence of SB431542 (SB) or 
1D11 anti-TGF-� antibody for 6 h and normalized against RPL19 mRNA. Immunoblot analyses of INSR � chain, and GAPDH as 
loading control of cells treated with insulin, for the indicated times. Control groups (0) were without insulin for 360 min in starvation 
media. (B) Increased phosphorylation of AS160 in response to insulin (Ins). HUVECs were treated with 100 nM insulin for 30 min. 
Insulin-induced Akt activation and AS160 phosphorylation were assessed by immunoblotting for phosphorylated Akt (pAkt S473) or 
phosphorylated AS160 (pAS160).  (C) Insulin enhances TβRI and TβRII receptor abundance at the plasma membrane of human lung 
microvacular endothelial cells (HMVEC-L). Biotinylated cell surface TβRI and TβRII are shown in the upper panels, while total Tβ
RI and TβRII, as well as GAPDH as loading control, are shown in the lower panels. Control group (0) was without insulin for 360 
min in starvation media. (D) HMVEC-L cells were treated with 100 nM insulin with or without SB431542, for the indicated times, 
and Smad3 and Akt activation were assessed by immunoblotting for C-terminally phosphorylated Smad3 (pSmad3) and phosphory-
lated Akt (pAktS473). Control group (0) was without insulin for 360 min in starvation media. (E) Effects of LY2157299 versus 
SB431542 during insulin treatment. HUVECs were treated with 100 nM insulin with or without LY2157299,for the indicated times, 
and Smad3 activation were assessed by immunoblotting for C-terminally phosphorylated Smad3 (pSmad3). Control groups (0) were 
without insulin for 360 min in starvation media. (F, G) qRT-PCR analysis of SMAD7 mRNA expressed by HMVEC-L cells treated 
with or without insulin in the absence or presence of SB431542 (F), or by HUVECs treated with or without insulin in the absence or 
presence of LY2157299 (G) for 90 min. mRNA expression was normalized against RPL19 mRNA. * p < 0.05.
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Supplemental Figure S2, Related to Figure 2. (A) Relative mRNA levels of selected genes, encoding membrane proteins, 
enzymes and ligands or secreted proteins known to be involved in angiogenesis. HUVECs were treated with or without 100 nM 
insulin in the presence or absence of SB431542. mRNA expression of the indicated genes was measured using qRT-PCR, and 
values were normalized to RPL19 mRNA levels. Error bars indicate standard error of the means of three experiments, based on 
three independent experiments. Inhibition of TGF-β signaling using SB431542 repressed the insulin-induced changes of the 
mRNA expression of many, but not all genes. (B) Induction of VEGFA expression in insulin-stimulated HUVECs. qRT-PCR 
analysis of VEGFA mRNA of cells treated for 90 min (left) or 6 h (right) with increasing concentrations of insulin. qRT-PCR 
reveals that insulin induced VEGFA mRNA expression in a time- and dose-dependent manner. mRNA expression was normalized 
to RPL19 mRNA. The values are the mean ± SD of triplicate wells. (C) Relative mRNA levels of RUNX1, PDGF, and GJA5A 
mRNA.  HUVECs were treated with insulin in the presence of absence of 1D11 antibody for 90 min or 6 h. mRNA expression 
was measured using qRT-PCR, and normalized to RPL19 mRNA. Error bars indicate standard error of the means. * p < 0.05.
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Supplemental Figure 3, Related to Figure 3. (A) Migration of HUVECs (left panel) and HMVEC-L cells (right panel), in the presence or 
absence of LY2157299 with or without insulin, measured in a monolayer wounding assay. The results are graphically presented. Error 
bars indicate standard errors. * p<0.05.  (B) HUVECs cell number following scratch assay, after 8 h of treatment. Error bars indicate 
standard errors. * p <0.05.  (C) Relative migration rate of HMVEC-L cells in the presence of 1D11 antibody (1D11) or SB431542 (SB), 
with or without insulin. Confluent monolayers were scratched with a pipette tip at time 0, and cells were allowed to migrate into the 
wounded area for 8 h. Error bars indicate standard error of means.  *p <0.05 (D) Effects of mitomycin C on insulin-induced Smad3 and 
Akt activation (left), and SMAD7 expression (right). HUVECs were treated with mitomycin C for 2 h prior and during insulin treatment. 
(Left) Smad3 and Akt activation were assessed by immunoblotting for C-terminally phosphorylated Smad3 (pSmad3) and phosphory-
lated Akt (pAkt S473). GAPDH was used as loading control. (Right) Induction of SMAD7 mRNA expression in response to insulin in 
the presence of mitomycin C (5 μg/ml) was assessed by qRT PCR and normalized to RPL19 mRNA. Error bars indicate standard error of 
means.  *p <0.05  (E) Invasion of HUVECs in Transwell assay in the presence or absence of insulin, with or without LY2157299. The 
invaded cells at the bottom filter surface were stained and counted after 8 h, and their numbers were normalized to control. The results 
are averaged of five randomly chosen microscopic fields from two separate experiments, each conducted in duplicate. Error bars indicate 
SEMs. (F) Immunoblot analyses of the ALK1 and insulin receptor (INSRβ) in HUVECs, treated with insulin. The top two panels show 
the cell surface levels of the INSRβ and ALK1 receptors, affinity labeled by cell surface protein biotinylation, isolated by affinity adsorp-
tion to Neutravidin, and visualized by SDS-PAGE and immunoblotting. The lower panels show ALK1 and INSRβ in total cell lysates, 
with GAPDH as loading control. (G) ALK1 and ID1 mRNA expression, assessed by qRT-PCR after treatment with 100 nM insulin for 90 
min (left) or 6 h (right) in the presence or absence of SB431542. (H) Effects of inhibiting ALK1 kinase signaling in insulin-induced 
migration (left) and invasion (right) of HMVEC-L cells, in the presence or absence of LDN-193189 (LDN) with or without insulin, 
measured in a monolayer wounding assay (left) or transwell assay (right). Error bars indicate standard errors. * p < 0.05.
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Supplemental Figure S4, Related to Figure 6. Representative images of aorta segments prepared from Tg(Cdh5-cre)1Spe mice 
crossed to Gt(ROSA)26Sortm14(CAG-tdTomato)Hze mice The segments were treated with insulin or insulin with anti-TGF-� 
antibody for 96 h, as in Fig. 6. Scale bar: 200 μM.



TRANSPARENT METHODS 

Cell culture 

Primary human umbilical vein ECs (HUVECs) were obtained from Gibco. Cells were cultured in 

Medium 200 (Invitrogen) with 10% fetal bovine serum (FBS) from HyClone, and low serum growth 

supplement (LSGS) from Invitrogen.  Lung microvascular endothelial cells (HMVEC-L) were obtained 

from PromoCell. Cells were grown in endothelial cell growth medium MV2 (PromoCell) with 

supplements added. Experiments were carried out using cells between 3rd and 7th passage. All cells were 

maintained in a humidified 5% CO2 incubator at 37°C, and the medium was replaced every 2 days until 

the cells reached 80-90 % confluence. Insulin (Sigma) was used at 100 nM (Budi et al., 2015), a 

concentration that is routinely used to evaluate insulin-induced Glut4 translocation and other insulin 

signalings in cell culture (Batumalaie et al., 2016; Hill et al., 1999), including in endothelial cells (Li et 

al., 2005; Mammi et al., 2011; Montagnani et al., 2002). The TβRI kinase inhibitor SB4315242 (Sigma) 

was used at 5 µM and added 45 min before treatment (Budi et al., 2015). The anti-TGF-β1, -β2, -β3 

neutralizing antibody 1D11 (R&D Systems, MAB1835-SP) was used at 1 μg/ml. LY2157299 

(Galunisertib) and LDN-193189 (LDN) were from SelleckChem. LY2157299 was used at 10 μM, and 

LDN-193189 was used at 1 μM. 

 

Immunoblotting 

Cell lysis, protein extraction, and immunoblotting were performed as described (Wu and Derynck, 2009). 

Protein concentrations were quantified using Bradford assays (Bio-Rad) with bovine serum albumin 

(BSA) as standard, and a SpectraMax M5 microplate reader. Samples were resolved by SDS-PAGE on 4-

12% gradient polyacrylamide gel. Proteins were transferred to a nitrocellulose membrane and detected by 

immunoblotting. As primary antibodies, we used rabbit monoclonal antibodies to Smad2, phospho-

Smad2 (Ser465/467), Smad3 (Ser465/467), E- cadherin, insulin receptor β chain(INSR), Akt, and 

phosphorylated Akt (p-AktS473), and p44/42 Erk MAPK and phosphorylated p44/42 (pp44/42) Erk 



MAPK, AS160, and phosphorylated AS160 from Cell Signaling. Antibodies against glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) or fibronectin were from Sigma. Rabbit polyclonal anti-TβRI and 

anti-phospho-Smad3 (Ser423/425) antibodies were from Abcam, and rabbit polyclonal anti-TβRII was from 

Santa Cruz Biotechnology. ALK1 polyclonal goat antibody (AF370) and N-cadherin antibody were from 

R&D Systems, while Snail2 rabbit polyclonal antibody was from Proteintech.  For immunoblotting, 

immunoreactive bands were visualized using Western Lighting Plus ECL (Perkin Elmer). 

 

Cell surface protein biotinylation 

Cell surface proteins were isolated as described (Wu and Derynck, 2009).  Cells were grown to 80 to 90% 

confluence and starved in Medium 200 with 1% FBS for 6-15 h before treatment. The non-treated 

(control) group was collected at the end of the insulin experiment, i.e. after 360 or 540 min, as shown in 

the figure legends. After treatment, cells were washed with ice-cold phosphate buffered saline (PBS), and 

incubated for 30 min with EZ-Link Sulfo- NHS-LC-Biotin (Thermo Scientific). After blocking the non-

reacted biotin with 0.1 mM glycine for 20 min, the cells were lysed in mild lysis buffer (MLB; 20 mM 

Tris-Cl, 200 mM NaCl, 10 mM NaF, 1 mM Na3VO4, 1%NP-40, and cOmplete protease inhibitor from 

Roche), and the lysates were removed from the plates by scraping, then incubated on ice for 10 min, and 

centrifuged for 15 min (13,000 rcf, 4°C) to remove the pelleted insoluble material. Supernatant proteins 

were incubated for 6-15 h with NeutrAvidin beads (Thermo Scientific). Beads were washed three times 

with MLB with 1% glycerol, eluted with LDS sample buffer (Invitrogen), and subjected to SDS-PAGE, 

followed by immunoblotting. 

 

RNAseq analyses 

Primary HUVECs were seeded onto six well plates at a density of 2x105 per well and cultured as 

described above. On the second day, cells were starved overnight with Medium 200 without growth 

factors. The cells were treated with 100 nM insulin for 90 min with or without 5 μM SB431542. The 



quality of total RNA after extraction using Qiagen RNAeasy Plus mini kit was checked by NanoDrop 

spectrophotometric readings at 260/280/230 nm and an Agilent 2100 bioanalyzer. cDNA libraries were 

made using Encore Complete RNA-seq Library Systems kit from NUGEN following the manufacturer 

protocol. The quality of the library was checked using DNA1000. All 16 samples of barcoded library 

(four from each group) were sequenced in two lanes using a single read 50 bp protocol on the Illumina 

HiSeq 2000 at the UCSF Genomics Core Facilities. Sequence quality control was assessed using the 

program FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Data analyses were done 

by the Gladstone Bioinformatics Core. Differential expression was calculated using edgeR (Robinson et 

al., 2010), an R package available through Bioconductor. Only genes where there were at least two 

samples with a CPM (counts per million) between 0.5 and 5000 were calculated for differential 

expression. Gene set enrichment analysis were also done by the Gladstone Bioinformatics Core using 

GO- ELITE (http://www.genmapp.org/) (Zambon et al., 2012). Only genes that are differentially 

expressed with p-value <0.05 were analyzed using the GO-ELITE program. RNAseq data can be found in 

ArrayExpress under accession number E-MTAB-6841. 

 

Quantitative RT-PCR analysis  

Total RNA was prepared using the Qiagen RNAeasy mini kit with an added DNAse treatment. 1 µg of 

total RNA was reverse-transcribed using an iScript cDNA synthesis Kit (Bio-Rad), according to the 

manufacturer’s protocol. Quantitative PCR analysis was then carried out using Syber Green (Biorad). 

Primer sequences are presented in Supplemental Table 5. Statistical analyses were performed using 

JMP10. 

 

Cell migration assay  

Confluent monolayers of primary HUVECs were starved in Medium 200 with 1% FBS for 6-15 h, then 

wounded by scratching and treated with either insulin (100 nM), with or without 5 μM SB431542 or 1 

μg/ml 1D11 antibody, or medium alone (control) for 8 h. Images of cells migrating into the open wound 

http://www.genmapp.org/


were taken immediately after and again at 8 h after wounding the cells using a Leica DMI 4000 B 

microscope.  For quantification, three measurements of each monolayer sample were taken in three 

independent wounds. The migration rate was analyzed using Photoshop CS5 and quantified by 

calculating the distance before and after the scratch, and divided over the duration of the experiment.  

 

Cell invasion assay 

The in vitro invasive potential of primary HUVECs was determined using BioCoat Matrigel Invasion 

Chambers (Becton Dickinson). Cells were grown to 80-90% confluence and starved in Medium 200 with 

1% FBS for 6-15 h before starting the invasion assays. After detaching the cells with 0.25% trypsin and 

counting, the cells were diluted to 1.0 × 105 cells/ml in Medium 200 containing 1% FBS and 5 µg/ml 

mitomycin C (Sigma). 5 × 104 cells per well were placed in the top chamber in the absence or presence of 

100 nM insulin with or without 5 μM SB431542 or 1 μg/ml 1D11 antibody. After incubation for 7-8 h 

under a humidified atmosphere of 5% CO2, the cells on the upper surface of the membrane were removed 

with a cotton swab and the cells that migrated to the lower side of the membrane were fixed and stained 

using ProLong Gold Antifade reagent with DAPI (Invitrogen). The cells were quantified by averaging the 

number of DAPI-stained nuclei counted in five fields per chamber at 10x magnification.  

 

In vitro Matrigel tube formation assay 

Cells were grown to 80-90% confluence, starved in Medium 200 with 1% FBS for 4 h before prestaining 

with Calcein AM (Thermo Fisher Scientific) for 40 min at 37˚C, and then trypsinized. Matrigel (BD 

Biosciences) was added to the wells of a 24-well plate in a volume of 225 μl and allowed to solidify at 

37°C for 30 min. After the Matrigel solidified, 7.5 x104 cells prestained with Calcein AM were added in 

300 μl media containing 1mM sodium pyruvate with treatment. After incubation at 37°C for 7-8 h, the 

endothelial networks were observed using a Leica DMI 4000 B fluorescence microscope. Three 

microscope fields were selected at random and photographed. Networks were quantified using Image J 

with the Angiogenesis Analyzer plugin.  



 

Zebrafish embryo intersegmental vessel angiogenesis assay 

The zebrafish were maintained in a constant aeration and flow water systems under a 14 h light/10 h dark 

photoperiod. Maintenance and experimental operations were conducted in accordance with the NIH 

guidelines for the use and care of experimental animals and approved by the IACUC. Zebrafish embryos 

were collected from natural pair-wise matings. At 30-36 h post-fertilization (hpf) embryos were manually 

dechorionated and incubated with buffered 10 µM insulin (Sigma) with or without 5 μM of SB431542 

(Sigma) both in 1% DMSO in E3 media (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4). 

Larvae were collected at 96 hpf, and fixed with 4% paraformaldehyde. The morphology of the 

intersegmental vessel (ISV) region was visually assessed using a Zeiss florescence microscope.  

 

Mouse neonatal aortic ring angiogenesis assay 

All mouse experiments were performed after protocol approval by the UCSF IACUC.  Mouse aortic ring 

assays were performed with modifications from a reported method (Bellacen and Lewis, 2009). Most 

experiments used freshly dissected thoracic aortae of six day-old wild type FVB mice. Additional 

experiments were undertaken using Cdh5-Cre transgenic mice that express Cre recombinase under the 

control of the Cdh5 promoter and regulatory sequences, which drive the endothelial VE-cadherin 

expression. These Tg(Cdh5-cre)1Spe mice (MGI:3836418) were crossed to Gt(ROSA)26Sortm14(CAG-

tdTomato)Hze (MGI:3809524) mice to generate offspring expressing mTomato reporter from the Cdh5 

promoter, enabling visualization of EC versus non-endothelial cell types (Chen et al., 2009). Aorta 

segments of 1 mm in length were plated on a 48 well plate coated with BD Matrigel™ Basement 

Membrane Matrix. 100 μl Matrigel™  diluted 1:1 in EGM-2 growth media (Lonza) was added to each 

well and the plate was incubated for 30 min at 37°C. Wells containing the aortic rings were incubated in 

200 μl growth media EGM-2 mixed with 1x MVGS (Microvascular Growth Supplement, GIBCO) with 

or without 100 nM insulin in the presence or absence of 5 μM SB431542 or 10 µg/ml control IgG 



antibody or 10 µg/ml anti-TGF-β antibody generated by Lake Pharma . This pan-TGFβ antibody 

comprised the following human IgG sequences (Bedinger et al., 2016): Heavy Chain: 

QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNTGGTNYA

QKFQGRVTMTRDTSIS TAYMELSRLRSDDTAVYYCARSFLWLVPSDAFDIWGQGTMVTVSS 

Light Chain: 

SYVLTQPPSVSVAPGKTARITCGGNNIGFRSVHWYQQKSGQAPVLVIYFDRARPSGIPERFSASNS

ENTATLTIRRVEAGD EADYYCQVWDSDSDDLVFGGGTQLTVL. The antibody coding sequence 

was cloned into LakePharma’s high expression mammalian vector system and scaled up for transfection 

into HEK293 cells. The proteins were purified by Protein A purification with endotoxin measurement 

confirmed at <0.1 EU/mg. Images of aortic rings were taken using a Zeiss Spinning Disc confocal 

microscope after 96 h at 10x magnification.  

 

Data availability statement 

The accession number for the RNAseq reported in this paper is ArrayExpress: E-MTAB-6841. 

 



SUPPLEMENTAL REFERENCES 
 
Bedinger, D., Lao, L., Khan, S., Lee, S., Takeuchi, T., and Mirza, A.M. (2016). Development and 

characterization of human monoclonal antibodies that neutralize multiple multiple TGF-β isoforms. 
mAbs 8, 389-404. 

Bellacen, K., and Lewis, E.C. (2009). Aortic ring assay. Journal of visualized experiments : JoVE. 
Budi, E.H., Muthusamy, B.P., and Derynck, R. (2015). The insulin response integrates increased TGF-β 

signaling through Akt-induced enhancement of cell surface delivery of TGF-beta receptors. Sci 
Signal 8, ra96.  

Batumalaie, K., Amin, M.A., Murugan, D.D., Sattar, M.Z., and Abdullah, N.A. (2016). Withaferin A 
protects against palmitic acid-induced endothelial insulin resistance and dysfunction through 
suppression of oxidative stress and inflammation. Sci Rep 6, 27236. 

Hill, M.M., Clark, S.F., Tucker, D.F., Birnbaum, M.J., James, D.E., and Macaulay, S.L. (1999). A role for 
protein kinase Bbeta/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 
19, 7771-7781. 

Li, G., Barrett, E.J., Wang, H., Chai, W., and Liu, Z. (2005). Insulin at physiological concentrations 
selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid 
receptors in endothelial cells. Endocrinology 146, 4690-4696. 

Mammi, C., Pastore, D., Lombardo, M.F., Ferrelli, F., Caprio, M., Consoli, C., Tesauro, M., Gatta, L., 
Fini, M., Federici, M., Sbraccia, P., Donadel, G., Bellia, A., Rosano, G.M., Fabbri, A., and Lauro, D. 
(2011). Sildenafil reduces insulin-resistance in human endothelial cells. PloS one 6, e14542. 

Montagnani, M., Golovchenko, I., Kim, I., Koh, G.Y., Goalstone, M.L., Mundhekar, A.N., Johansen, M., 
Kucik, D.F., Quon, M.J., and Draznin, B. (2002). Inhibition of phosphatidylinositol 3-kinase 
enhances mitogenic actions of insulin in endothelial cells. J Biol Chem 277, 1794-1799. 

Robinson M.D., McCarthy D.J. and Smyth G.K., edgeR: a bioconductor package for differential 
expression analysis of digital gene expression data, Bioinformatics 26, 2010, 139–140. 

Wu, L., and Derynck, R. (2009). Essential role of TGF-beta signaling in glucose-induced cell 
hypertrophy. Dev Cell 17, 35-48. 

Zambon A.C., Gaj S., Ho I., Hanspers K., Vranizan K., Evelo C.T., Conklin B.R., Pico A.R. and 
Salomonis N., GO-Elite: a flexible solution for pathway and ontology over-representation, 
Bioinformatics 28, 2012, 2209–2210. 

 


	Enhanced TGF-β Signaling Contributes to the Insulin-Induced Angiogenic Responses of Endothelial Cells
	Introduction
	Results
	Insulin Induces Increased TGF-β Receptor Levels at the Cell Surface and Enhances Autocrine TGF-β/Smad Signaling in Primary  ...
	Autocrine TGF-β Signaling Participates in the Insulin-Induced Angiogenic Gene Expression Program
	TGF-β Signaling Participates in the Insulin-Induced Response of Target Genes
	Autocrine TGF-β Signaling Promotes Insulin-Induced Cell Migration
	TGF-β Signaling Participates in Insulin-Induced Endothelial Network Formation in Culture
	Insulin and SB431542 Control Intersomitic Vessel Development in Zebrafish Embryos
	Blocking TGF-β Signaling Inhibits Insulin-Induced Microvessel Outgrowth from Neonatal Aortic Rings

	Discussion
	Limitations of the Study

	Methods
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References




