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Behavioral/Cognitive

Novel Electrophysiological Signatures of Learning and
Forgetting in Human Rapid Eye Movement Sleep

Alessandra E. Shuster,1 Pin-Chun Chen,2 Hamid Niknazar,1 Elizabeth A. McDevitt,3 Beth Lopour,1 and
Sara C. Mednick1
1Sleep and Cognition Lab, University of California, Irvine, California 92697, 2University of Pennsylvania, Philadelphia, Pennsylvania 19104,
and 3Princeton University, Princeton, New Jersey 08544

Despite the known behavioral benefits of rapid eye movement (REM) sleep, discrete neural oscillatory events in human scalp
electroencephalography (EEG) linked with behavior have not been discovered. This knowledge gap hinders mechanistic understand-
ing of the function of sleep, as well as the development of biophysical models and REM-based causal interventions. We designed a
detection algorithm to identify bursts of activity in high-density, scalp EEG within theta (4–8 Hz) and alpha (8–13 Hz) bands during
REM sleep. Across 38 nights of sleep, we characterized the burst events (i.e., count, duration, density, peak frequency, amplitude) in
healthy, young male and female human participants (38; 21F) and investigated burst activity in relation to sleep-dependent memory
tasks: hippocampal-dependent episodic verbal memory and nonhippocampal visual perceptual learning. We found greater burst
count during the more REM-intensive second half of the night (p < 0.05), longer burst duration during the first half of the night
(p < 0.05), but no differences across the night in density or power (p > 0.05). Moreover, increased alpha burst power was associated
with increased overnight forgetting for episodic memory (p < 0.05). Furthermore, we show that increased REM theta burst activity in
retinotopically specific regions was associated with better visual perceptual performance. Our work provides a critical bridge between
discrete REM sleep events in human scalp EEG that support cognitive processes and the identification of similar activity patterns in
animal models that allow for further mechanistic characterization.
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Significance Statement

Current understanding of sleep and its role in cognitive processes is incomplete due to a lack of discrete electrophysiological
events in human rapid eye movement (REM) sleep detectable via scalp EEG. Our work remedies this gap in knowledge by
designing an open-source, computational approach to identify electrophysiological alpha and theta burst events in REM sleep.
Additionally, we provide evidence that these burst events are functionally important for learning and memory. Defining burst
events in human REM will contribute to the development of a comprehensive mechanistic model of how sleep as a whole, and
REM specifically, facilitate cognitive processes and provide a deeper understanding of the fundamental electrophysiological
properties of REM sleep that are distinct from non-REM sleep.

Introduction
Rapid eye movement (REM) sleep, first identified in the 1950s
(Aserinsky and Kleitman, 1953), is conserved across most species
(Peever and Fuller, 2017) and is significant for developmental

and cognitive processes (Mirmiran, 1986; Graven and Browne,
2008; Cai et al., 2009; Blumberg et al., 2013; Goldstein and
Walker, 2014; Boyce et al., 2017; Park and Weber, 2020). Yet,
beyond minutes in REM and general spectral power in specific
bands, no discrete events in the human scalp electroencephalo-
gram (EEG) have been linked to cognition. This gap in knowl-
edge has hindered understanding of the function of REM, as
well as sleep more generally, since REM comprises up to 20%
of total sleep (Carskadon and Dement, 2011). The potential
impact of this missing link is illustrated by robust findings in
non-REM (NREM) sleep where several physiologically relevant
events have been identified in both humans and animals, which
cover a range of brain regions, spectral frequencies, and time
scales: e.g., cortical slow oscillations (SOs, 0.5–1 Hz),
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corticothalamic spindles (12–15 Hz), and hippocampal sharp
wave ripples (SWRs, 80–120 Hz; Steriade et al., 1993; Gais et
al., 2002; De Gennaro and Ferrara, 2003; Mednick et al., 2013;
Ngo et al., 2013; Staresina et al., 2015; Latchoumane et al.,
2017; Klinzing et al., 2019). Studies have demonstrated causal
associations between memory improvement and NREM events
individually, as well as the coordination of these rhythms, where
faster rhythms (spindles and ripples) are nested in slower
rhythms (SOs; Mednick et al., 2013; Ngo et al., 2013; Staresina
et al., 2015; Latchoumane et al., 2017; Klinzing et al., 2019).
These findings have been highly generative for mechanistic mod-
els of systems consolidation (Tononi and Cirelli, 2003;
Diekelmann and Born, 2010; Lewis and Durrant, 2011;
Mednick et al., 2011). No such biophysical models exist for
REM sleep, or sleep as a whole, due to a lack of electrophysiolog-
ical events tied to function.

REM sleep is characterized as a distinct state from NREM,
consisting of wake-like EEG along with REMs, vivid dreaming,
and muscle atonia (Aserinsky and Kleitman, 1953; Dement and
Kleitman, 1957; Jouvet and Michel, 1959). Early work by
Carlyle Smith and colleagues demonstrated an association
between REM and memory in humans and animal models
(Smith, 1995). Following these behavioral findings, animal mod-
els linked specific REM events to behavior, such as
Ponto-Geniculo-Occipital (PGO) waves (Jouvet and Michel,
1959; Brooks and Bizzi, 1963; Kaufman and Morrison, 1981;
Datta, 1997; Datta et al., 1998, 2008; Datta and O’Malley,
2013). However, there is no evidence of PGO waves in human
scalp EEG, and similar waves in humans have only been detected
with more invasive intracranial EEG (Lim et al., 2007;
Fernández-Mendoza et al., 2009; Andrillon et al., 2015), reducing
their translatability to systems level modeling in relation to
human cognitive processes. Other REM events, such as muscle
twitches and REMs, have been implicated in motor learning
and sensorimotor development (Blumberg et al., 2013; Sokoloff
et al., 2015; Brooks and Peever, 2016), and auditory targeted
memory reactivation cues time locked to REMs showed greater
memory improvement than cues not locked to REMs (Smith
and Weeden, 1990). Additionally, learning increased the density
of REMs, and the direction and amplitude of REMs may be
related to the internal representation of header direction in ani-
mal navigation (De Koninck et al., 1989; Smith and Lapp, 1991;
Senzai and Scanziani, 2022). Yet there is still limited understand-
ing of underlying neural correlates of REMs and how they are
functionally tied to sleep-dependent memory processes (e.g.,
whether they drive or merely reflect cognitive processing;
Peigneux et al., 2003; van den Berg et al., 2023).

Studies on scalp EEG signals during human REM sleep have
examined spectral power in relation to cognitive processes.
Increased theta power is associated with sleep-dependent
improvement in emotional memory processing (Nishida et al.,
2009), although this relationship has not been found across a
majority of studies (Davidson and Pace-Schott, 2021).
Potentially these mixed findings are due to the fact that total theta
power was examined, rather than a more specific measure of
power within a burst event. Additionally, theta power during
REM sleep has been associated with visual perceptual learning
(VPL), where VPL is marked by long-term improved perfor-
mance in a visual task and is thought to be a marker of brain plas-
ticity (Sasaki et al., 2010). Specifically, increased theta power in
posterior regions is associated with increased resilience to VPL
interference (Tamaki et al., 2020), with time in REM sleep also
associated with VPL (Karni et al., 1994; Stickgold et al., 2000;

Mednick et al., 2003, 2013). To date, REM sleep alpha bursts
and theta bursts in human scalp EEG have been previously iden-
tified, but their functional relation to learning and memory
remains unknown (Cantero and Atienza, 2000; Cantero et al.,
2002; Harrington et al., 2021). While one study did successfully
manipulate theta bursts during REM sleep via auditory stimula-
tion, theta manipulation was not significantly predictive of mem-
ory improvement (Harrington et al., 2021). Thus, while prior
studies suggest a critical role of REM sleep in human VPL pro-
cessing (nonhippocampal) and recent findings from animal stud-
ies have demonstrated mechanistic shaping of hippocampal
memories at the synaptic and systems level during REM sleep
(Li et al., 2017; Izawa et al., 2019; Zhou et al., 2020), no human
studies have tied distinct REM sleep events in human scalp
EEG to cognitive processes.

Identifying such events provides a metric superior to total
power metrics for several reasons. First, identifying a physiolog-
ical burst gives temporal and spatial markers of a neural event
that can be then used for further processing, such as the analysis
of spatiotemporal patterns of burst activity across the EEG man-
ifold and identification of similar activity patterns in animal
models that allow for further mechanistic characterization.
Additionally, burst events can help in the development of neural
network models that attempt to understand how different brain
regions communicate and lead to specific functional outcomes.
Furthermore, burst activity allows for the development of inter-
ventions that target specific events and potentially lead to break-
through treatments for disorders of memory or REM-related
neurological (e.g., Parkinson’s Disease) and mental (e.g.,
Depression) disorders (Berger and Riemann, 1993; Boeve,
2013; Jozwiak et al., 2017).

The present study’s goals were (1) to characterize burst events
in human EEG during overnight REM sleep and (2) to examine
their relation to hippocampal and nonhippocampal memory per-
formance and sleep-dependent change in performance. We
designed an algorithm to detect burst events in human scalp
EEG during REM sleep. We examine burst events in the theta
(4–8 Hz) and alpha (8–12 Hz) bands based on a priori hypothe-
ses. Given prior work showing REM sleep total theta power in
posterior brain regions is involved in VPL, we hypothesized
that REM sleep theta bursts in those regions would be related
to the VPL task performance. We also examined the relation
between REM sleep theta and alpha bursts and episodic (hippo-
campal) word pair consolidation, given animal literature demon-
strating a role for REM sleep in hippocampal forgetting
mechanisms (Izawa et al., 2019; Zhou et al., 2020).

Materials and Methods
Participants
Participant data for this study consisted of the placebo group of a larger
pharmacological study (original study: Byrne et al., 2020). The present
study’s participants comprised 38 healthy, young adults (ages 18–35
years; 21F) who completed prescreening assessments to determine their
sleep and general health status. Participants had no current or history of
visual impairments, major psychological or medical conditions, or sleep
disorders and additionally were not taking any medications that would
affect cognitive function, vision, or sleep. All participants included in
the study self-reported consistent sleep habits, with a typical sleep time
between 11 P.M. and 1 A.M. and wake time between 6 and 8 A.M. All
participants completed an orientation session at the beginning of the
study where they reviewed study processes. During this session, partici-
pants provided informed consent and upon completion, were enrolled in
the study. Participants were instructed to continue with their regular
sleep schedule for the week leading up to their experimental visit in
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lab and were monitored by a daily sleep diary. For the 24 h period before
and through the experimental visit, participants were instructed not to
consume any caffeine or alcohol, and to get at least 7 h of sleep the night
prior to the study. This study and procedures were approved by the
Institutional Review Board at University of Riverside.

Procedure and assessment measures
Participants engaged in learning and memory tasks before and after
overnight sleep in the lab with 64-channel EEG recorded during sleep.
All participants reported to the lab at 9 A.M. on Day 1 to complete the
presleep tasks (Test 1), including the VPL Texture Discrimination
Task (TDT) and episodic memory Word Pair Association (WPA) task
described below. Participants left the lab and then returned later the
same evening to sleep in lab monitored by polysomnography (EEG
details below). In the morning participants engaged in Test 2 where
they completed the same tasks postsleep (Fig. 1a).

TDT
For the TDT (Fig. 1b), visual stimuli were generated using the
Psychtoolbox in Matlab (MathWorks). At each trial, participants saw a
screen with a central fixation cross for 600 ms and were instructed that
this indicated the beginning of each trial. Following the fixation cross,
participants saw a blank screen for 300 ms, a texture target screen that
contained a central and peripheral target for 17 ms, a blank screen of
varying duration between 50–400 ms, and then a mask screen for
100 ms. The central target could be either the letter “L” or “T” in random
orientations and the peripheral target contained three slanted bars in
either horizontal or vertical array. Subjects were trained in one of two
potential peripheral target positions (i.e., Upper Left or Upper Right)
that were randomized across participants. The background for this
peripheral texture stimulus consisted of either horizontal or vertical ele-
ments that contrasted with the slanted lines such that there was a differ-
ence between peripheral target and background.

Following the mask screen participants were presented with a
response screen for 2 s, where they used the keyboard keys 1 and 2 to
indicate both the central and peripheral targets. For instance, if a partic-
ipant saw a target stimulus with the letter “L” in the middle and a periph-
eral target in the vertical position, they would indicate this by typing the
letter “1” twice on the keyboard. Typing the first “1” indicated the “L”
(where a 2 would indicate “T”) and typing the second “1” indicated
the vertical orientation of the peripheral target (typing a “2” would indi-
cate horizontal orientation). After the response screen, participants were
presented a feedback screen for 250 ms which consisted of a fixation
cross that turned green if the participant’s response was correct and
turned red if incorrect. The interstimulus interval (ISI) is the time
between the Target and Mask screen excluding the stimulus presentation
itself. Participants completed 10 blocks each with 15 trials. Across blocks,
the ISI became progressively shorter: 400, 300, 250, 200, 167, 150, 134,
117, 100, and 50 ms.

Word pair association task
Participants also completed the episodic memory WPA task (Fig. 1c) in
the morning of their overnight in lab (Encoding and Test 1) and the
morning directly after sleeping in lab (Test 2). At Encoding, participants
were shown 200 word pairs on the screen and instructed that they would
be tested on the association between these words. At each test, partici-
pants were shown 150 pairs, of which one-third of the word pairs were
paired together exactly as they had been during encoding (intact),
another third were words participants saw during encoding (rearranged),
but were paired together incorrectly, and the remaining third were new
words paired together (new). Participants responded to each word pair
indicating whether they thought the test word pairs were intact, rear-
ranged, or new. The words shown at Test 1 and Test 2 were different
such that 100 of the 200 word pairs shown at encoding were shown at
Test 1, and then the other 100 of the 200 encoded pairs were used for
Test 2. The additional 50 novel word pairs also differed between test

Figure 1. a, Timeline of experimental protocol. b, Texture Discrimination Task: First, participants are presented with a fixation screen with a plus in the center to remind them to focus on the
middle of the screen. Next the target screen briefly flashes, containing an array of bars with a fixation letter in the center of the screen (either an L as shown in this example, or a T) and a
peripheral target composed of three slanted bars in either a vertical, as shown in the image, or horizontal array (labeled in the image key as H or V, for horizontal or vertical). Following this,
participants see a blank screen, then a mask screen, and finally a response screen. At the response screen, participants used the keyboard to report both the central (T or L) and peripheral
(horizontal or vertical) targets. The ISI, i.e., the time between the Target and Mask screen (excluding the stimulus presentation itself), is varied (400–50 ms). c, WPA task: At encoding, par-
ticipants are presented with 200 word pairs presented one after the other and instructed to remember the pair. During testing, subjects determine whether word pairs are correctly or incorrectly
paired or completely new words.
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sessions. Word pairs were not repeated at Test 1 and Test 2 to avoid rein-
troducing a rehearsal of word pairs at Test 1 that would inflate recall and
represent a false baseline, consistent with methods of Zhang and col-
leagues (Zhang et al., 2022). As each set of words presented at Test 1
and Test 2 were randomized, a participant’s performance on each half
of the word pairs is representative of their encoding of the overall
word pair list.

Polysomnography
Participants were fitted with a 64-channel EASYCAP with electrodes
placed according to the 10–20 system. Out of these 64 channels, 56
were neural electrodes, with the remaining consisting of two electrocar-
diogram (ECG), two electromyogram (EMG), two mastoid, one ground,
and one common reference channel located at FCz. EEG was recorded at
1,000 Hz sampling rate. EEG data were preprocessed using BrainVision
Analyzer 2.0 (Brain Products) and were downsampled to 256 Hz and IIR
filtered with 0.5 to 35 Hz. EEG data were then contralaterally referenced
to the mastoid channels, and each channel was mean centered. To clas-
sify sleep stages, the whole-night sleep data were visually scored in 30 s
epochs per Rechtschaffen and Kale’s manual (Kales and Rechtschaffen,
1968). Per this scoring method, the overnight sleep recordings are iden-
tified into seven stages: Wake, Stage 1, Stage 2, Stage 3, Stage 4, REM, and
movement time. Wake is classified as high background alpha activity
with continued alpha activity in occipital regions with closed eyes, as
well as presence of eye movements and blinks when eyes are open.
Stage 1 is defined as low-amplitude mixed frequency activity with vertex
waves, as well as if sleep spindles and REMs are absent for >3 min after a
period of other sleep. Stage 2 is marked by K-complexes and sleep spin-
dles, while Stages 3 and 4 are marked by delta band activity. REM sleep is
characterized by low-amplitude mixed frequency similar to Stage 1,
except that vertex waves are not present, and REM is additionally iden-
tified by lowmuscle tone and eye movements along with absence of spin-
dles and k-complexes. As alpha band activity may be prominent during
Wake, Stage 1, or REM, we distinguished REM when the epoch con-
tained low muscle tone as well as the absence of vertex waves. During
scoring, noisy epochs or segments of arousals were scored as such and
the entire epoch was removed from further analysis.

Burst detection
Bursts were identified during REM sleep epochs using the following detec-
tionmethods. All neural channels were bandpassfiltered to isolate the theta
(4–8 Hz) and alpha (8–13 Hz) bands using aHammingwindowed sinc FIR

filter. The Hilbert transform was then used to extract the phase and ampli-
tude of each filtered signal. Mean and standard deviation of the amplitude
signal were calculated across time using a 30 s sliding window. Bursts were
detected using an amplitude threshold, with bursts defined as EEG ampli-
tude above 2 standard deviations from the mean within a given window.
The threshold of 2 standard deviations (SD) was selected using Otsu’s
method for parameter selection (Otsu, 1979; Djonlagic et al., 2020).
Theta and alpha thresholds were determined independently. For each,
between-class variance was calculated according to Otsu’s methods for
the following potential thresholds: 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5
SDs. For both theta and alpha, between-class variance peaked at 2 SDs
(Fig. 2) indicating this is a suitable threshold which maximizes between-
class variance between burst and nonburst activity. Burst detection also
included a threshold of 2 for the minimum number of cycles needed to
define a burst, where a full cycle was defined based on the number of times
the phase intersected 0, with two consecutive intersections indicating one
full cycle. To ensure the bursts identified by the sliding window did not
overlap, we merged overlapping bursts such that if Burst A and Burst B
overlapped, we defined a new Burst C in their place which consisted of
the start point of Burst A and end point of Burst B. Additionally, only theta
bursts whose duration ranged from 0.5 to 3 s and alpha bursts whose dura-
tion ranged from 0.5 to 2 s were included in analysis. The lower cutoff of
0.5 s was selected based on the minimum amount of time needed to
observe two cycles of the slowest oscillation the algorithm is designed to
detect. The upper cutoff was then identified by examining the distribution
of burst durations. For theta bursts, over 95% of identified bursts fell within
3 s, while for alpha, over 95% of bursts fell within 2 s (Fig. 2). Going for-
ward, the terminology of “REM bursts” refers to burst events during
REM sleep identified by the algorithm.

Data analysis
Burst characteristics. REM theta and alpha bursts were identified as

detailed in the Burst Detection section. As the second half of the night is
more REM sleep intensive (Carskadon and Dement, 2011), REM bursts
were categorized by halves of the night. The night was separated into
halves based on total sleep duration (for sleep architecture, see
Fig. 3a), and the following burst characteristics were calculated per
half: duration, count, density, peak frequency, and power. Duration of
bursts across each half of the night was calculated as the sum of all burst
time across the respective half of the night. Count for bursts was mea-
sured as the number of individual bursts identified. Density for bursts
was measured as the number of bursts per minute. Peak frequency was

Figure 2. a, Between-class variance (y-axis) for theta and alpha across standard deviation thresholds (x-axis), each showing a peak at 2 standard deviations. b, Histograms showing the
distribution of theta and alpha burst durations in seconds (x-axis). The vertical line at each indicates the 95% threshold. c, Electrodes groupings (per Malerba et al., 2019).
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calculated within each individual burst event. Power was calculated as the
sum of amplitude squared for all points identified in a burst divided by
the number of points making up the burst. t tests were conducted for
each metric between first and second half of the night to examine
whether these burst characteristics changed across the night.

TDT analysis. TDT performance was measured as percent of correct
trials as a function of ISI, using aWeibull function to calculate the thresh-
old ISI interval which yielded 80% performance accuracy. These scores
were calculated for presleep and postsleep performance. Note that a
higher score indicates lower performance, as this indicates the ISI thresh-
old for 80% performance. As such, a score of 200 would indicate that an
ISI of 200 ms is needed to achieve 80% performance, while a score of 100
would indicate that only an ISI of 100 ms is needed to achieve 80% per-
formance, indicating the participant performs better at faster intervals.
Two participants did not reach a performance level of 80% accuracy at
any trial and thus were excluded from further TDT analyses, leaving a
total of n= 36.

The 80% ISImetric was calculated separately for Test 1 (presleep) and
Test 2 (postsleep), and a t test was used to examine whether participants
performance significantly better or worse postsleep compared with pre-
sleep. Additionally, we were interested in how performance changed over
sleep. To assess performance change over sleep, we calculated the differ-
ence score between test sessions by subtracting Test 1 (presleep) from
Test 2 (postsleep). As lower scores indicate better performance, a nega-
tive difference score indicates that the participant had a lower threshold
postsleep compared with presleep. Conversely, if the difference score was
positive, this means that the participant had a higher threshold postsleep
compared with presleep, indicating that their performance declined over
sleep.

Since visual information is processed in the contralateral hemisphere,
the trained hemisphere is considered the hemisphere contralateral to the
visual field where the peripheral target was presented, while the
untrained is ipsilateral to the peripheral target. As such, for peripheral
targets that were presented in the Upper Left visual field, the trained
brain hemisphere would correspond to the EEG electrodes on the right
side of the brain and vice versa for targets presented in the Upper
Right. We followed a standard analysis method to examine brain activity
during sleep in relation to TDT performance by subtracting the activity
in the untrained hemisphere from activity in the trained hemisphere
(Tamaki et al., 2020; Tamaki and Sasaki, 2022). Prior research indicates
that during sleep, power in the trained region reflects nontask-related
baseline activity and learning-related activity, while power in the
untrained region reflects solely baseline activity, thus a trained–
untrained metric is preferable to examining raw power in the trained
region alone (Tamaki and Sasaki, 2022). As prior research indicated
that total theta power in certain posterior regions was related to VPL
(Tamaki et al., 2020), we specifically examined electrodes O1, O2,
PO3, PO4, P3, and P4, and the trained–untrained metric was created
from these pairs. For example, if a participant were trained in the
Upper Right quadrant, then the trained hemisphere would correspond
with left side electrodes (i.e., O1, PO3, and P3), the untrained hemi-
sphere would correspond with right side electrodes (i.e., O2, PO4,
and P4), and the trained–untrained metric would consist of the differ-
ence between left and right electrodes (i.e., O1-O2, PO3-PO4, and
P3-P4, respectively).

WPA analysis. WPA performance was measured by an accuracy
score calculated as the ratio of correctly identified word pairs (intact,
rearranged, and novel) compared with the total number of word pairs
presented at test. This metric was calculated separately at Test 1 (pre-
sleep) and Test 2 (postsleep). Similar to TDT, we also examined the
difference in performance over sleep for WPA. This was calculated in
a similar manner, with Test 1 subtracted from Test 2 to yield a difference
score. As a higher accuracy score indicates better performance, a positive
difference score on this task indicates that the participant improved over
sleep, while a negative difference score indicates that their performance
declined over sleep. Since we did not have a priori expectations for
regions of interest, burst activity was examined across the electrode

manifold in relation to this task. Finally, one participant did not complete
this task leaving n= 37 for this task.

Correlational analyses between task performance and burst activity. As
described above, three performancemetrics were calculated per task: Test 1
(presleep), Test 2 (postsleep), and the difference score (Test 2–Test 1).
To examine task performance in relation to burst activity, we ran
correlations between each performance metric and burst activity. For
burst activity, we utilized median burst power to assess the central
tendency of burst activity. Correlations were run for metrics in the
REM-dominant second half of the night. The following describes specific
steps per task.

For TDT correlations, burst activity was measured as trained–
untrained median burst power for the electrodes of interests, with three
pairings of posterior electrodes of interest (O1-O2, PO3-PO4, and
P3-P4). Correlations were run separately between each electrode pair
and task performance at Test 1, Test 2, and the difference score (i.e.,
power at O1-O2, P03-P04, and P3-P4 and each task performance met-
ric). For WPA analysis, we did not have a priori expectations about
which regions may relate to task performance, thus we averaged elec-
trodes in frontal, central, parietal, and occipital regions (based on
Malerba et al., 2019; Fig. 2). Correlations were then run between regional
burst power and WPA performance metrics.

To assess if burst power may explain more variance in task perfor-
mance than total band power, we additionally examined REM sleep total
band power in relation to task performance. The same analyses were run
as described in the preceding section, but with total band power instead
of burst activity. Total band power included all activity within the alpha
or theta band, respectively, including high-amplitude activity defined as
bursts, as well as remaining low-amplitude activity that did not meet the
criteria for burst detection. For the WPA analysis, an additional compar-
ison with nonburst power was included in response to the burst and total
power results (detailed in Results, Episodic memory and REM burst
power). Nonbursts comprised all activities during REM outside of burst
time points including low-amplitude band activity. As no significant
results were found between total theta power and TDT performance
(detailed in Results, VPL and REM burst power), nonburst power was
not examined separately in the main analysis and thus is not accounted
for in the multiple corrections described below for TDT. However, for
thoroughness, a supplemental correlational analysis was conducted
which determined theta nonburst activity did not significantly predict
TDT performance (ps > 0.05).

To account for multiple comparisons, the p values for both TDT and
WPA correlations were adjusted by false discovery rate (Storey, 2002) to
account for number of regions (TDT, three electrode pairs; WPA, four
regional electrode groupings), number of bands (TDT, theta; WPA, theta
and alpha), number of power metrics (TDT, burst and total; WPA, burst,
total, and nonburst), and the three performance metrics (Test 1, Test 2,
and the difference score).

Results
REM burst characteristics
First, we visually examined REM bursts, which denote burst
activity identified by our automated detection method during
REM sleep (see Materials and Methods, Burst detection).
Figure 3b shows examples of REM theta burst events identified
by the detection algorithm and Figure 3c shows examples of
REM alpha burst events identified by the detection algorithm.
NREM and REM sleep are unevenly distributed across a night
of sleep, with the majority of NREM sleep occurring in the first
half of the night and the majority of REM sleep occurring in
the second half of the night (Carskadon and Dement, 2011).
Therefore, we examined REM burst characteristics of count,
duration, density, and power across the first and second half of
the night separately. Figure 2, d and e, shows descriptive statistics
for these burst metrics. For burst count, both theta and alpha
bursts had greater burst count in the second half of the night
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Figure 3. a, Sleep architecture. b, Examples of REM theta bursts identified by our burst detection algorithm. c, Examples of REM alpha bursts identified by our burst detection algorithm.
d, e, Burst characteristics in the first (d) and second (e) halves of the night.

Figure 4. a, For burst count, both theta and alpha bursts had greater burst count in the second half of the night compared with the first (theta: t(37) = 11.99, p< 0.0001, Cohen’s d= 2.56;
alpha: t(37) = 11.83, p< 0.0001, Cohen’s d= 2.39). b, For burst duration (seconds), both theta and alpha bursts had longer burst duration in the first half of the night (theta: t(37) = 5.7,
p < 0.0001, Cohen’s d= 0.90; alpha: t(37) = 6.81, p < 0.0001, Cohen’s d= 1.26).

6 • J. Neurosci., June 12, 2024 • 44(24):e1517232024 Shuster et al. • Signatures of Learning and Forgetting in REM Sleep



compared with the first (theta: t(37) = 11.99, p < 0.0001, Cohen’s
d= 2.56; alpha: t(37) = 11.89, p < 0.0001, Cohen’s d= 2.41;
Fig. 4a). For burst duration, both theta and alpha bursts had lon-
ger burst duration in the first half of the night (theta: t(37) = 5.7,
p < 0.0001, Cohen’s d= 0.90; alpha: t(37) = 6.82, p < 0.0001,
Cohen’s d= 1.26; Fig. 4b). For peak frequency, both theta and
alpha bursts had greater peak frequency in the first half of the
night (theta: t(37) = 19.33, p < 0.0001, Cohen’s d= 9.20; alpha:
t(37) = 7.40, p < 0.0001, Cohen’s d= 2.67). There were no signifi-
cant differences in density across night halves in either theta or
alpha bursts (theta: t(37) = 0.40, p > 0.05, Cohen’s d= 0.04; alpha:
t(37) = 1.36, p > 0.05, Cohen’s d= 0.11). There were also no sign-
ificant differences in power across halves of the night in either
theta or alpha bursts (theta: t(37) = 0.7, p > 0.05, Cohen’s
d = 0.16; alpha: t(37) = 2.02, p > 0.05, Cohen’s d= 0.19).

Burst associations with learning and memory
Next, we examined task performance before and after sleep on a
VPL task and an episodic memory (see Fig. 1 for protocol and
tasks and the methods section for specifications of each task).
All p values reported in the Results are adjusted for multiple
corrections as described in the Materials and Methods. For
VPL, we found that participants had better visual perceptual per-
formance (lower 80% ISI) at Test 2 (t(35) =−3.54, p < 0.01,
Cohen’s d=−0.57; Fig. 5a). For the episodic memory task, we
found that participants displayed forgetting over sleep, with
greater performance presleep compared with postsleep (t(36) =
7.00; p < 0.0001; Cohen’s d= 0.89; Fig. 5b). These results replicate
previous findings examining VPL via the TDT task and episodic
memory via the WPA task presleep and postsleep (Stickgold
et al., 2000; Mednick et al., 2003; Zhang et al., 2022).

Figure 5. a, TDT performance: Participants showed better visual perceptual performance (lower 80% ISI) postsleep compared with presleep. b, WPA performance: Participants displayed
forgetting over sleep, with greater performance presleep compared with postsleep. c, d, Theta burst power significantly correlated with TDT task performance at Test 1 (c) and trending toward
significance at Test 2 (d), with higher power associated with better task performance (lower ISI). e, There was no significant relation with the difference in performance over sleep. f–h, Theta
total power was not significantly related to task performance at Test 1, Test 2, or the difference score.
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VPL and REM burst power
We next examined our hypothesis that power in the REM sleep
theta bursts would be associated with VPL (TDT) performance.
As explained in the analysis section, we utilized a trained–untrained
metric of burst power in posterior regions (Tamaki and Sasaki,
2022) and examined burst power in relation to VPL task perfor-
mance presleep, postsleep, and the difference score over sleep. We
found a significant correlation between theta burst power in the sec-
ond half of the night and task performance in electrodes P3-P4 pre-
sleep and trending toward significance postsleep, but not for the
difference in performance over sleep (Test 1: r =−0.51, p= 0.04;
Test 2: r =−0.45, p= 0.06; difference score: r = −0.21, p> 0.05;
Fig. 5c–e). Total theta power in this electrode pairing was not sign-
ificantly related toVPL task performance (Fig. 5f–h), suggesting that
our finding is specific to theta burst activity. We additionally con-
ducted a z test comparison for correlations fromdependent samples
(Lenhard and Lenhard, 2014), which determined that the magni-
tude of the correlation between burst power and task performance
was significantly different than that of total power at both Test 1 and
Test 2 (Test 1: z = −4.15, p<0.01; Test 2: z=−2.24, p<0.05). This
indicates that burst power is a significantly stronger predictor of
VPL than total power. Neither burst nor total power in the other
electrode pairings were significantly related to VPL (ps > 0.05).
Together, this suggests that highly local, retinotopically specific
REM theta burst power during REM-rich sleep may be a marker
of greater perceptual performance but may not be involved in
sleep-dependent perceptual learning.

Episodic memory and REM burst power
Next, we conducted analyses to examine the extent to which
power in the theta and alpha bursts could predict episodic task

(WPA) performance and examined total power in both bands
to examine if burst power was a better predictor of performance
than total power. As we did not have a priori hypotheses for
regional specificity of REM sleep burst activity and episodic
memory, we examined burst activity across all regional groupings
described in the Materials and Methods.

Alpha burst power in the second half of the night was signifi-
cantly correlated with episodic memory performance at Test 1
(presleep) for parietal and occipital regions (parietal: r= 0.55,
p = 0.01; occipital: r= 0.53, p= 0.01; Fig. 6), while correlations
with alpha total power only reached significance in the occipital
region (r = 0.54; p= 0.01; Fig. 6). For Test 2 (postsleep) perfor-
mance, neither burst power nor total power in any region was
significantly related to task performance (ps > 0.05; Fig. 6).
Burst power was significantly negatively correlated with the
difference score in central, parietal, and occipital regions (central:
r =−0.47, p= 0.04; parietal: r=−0.57, p= 0.01; occipital:
r = −0.56, p= 0.01; Fig. 6), while total power metrics only
reached significance in the occipital and central regions (occipi-
tal: r=−0.55, p= 0.01; central: p= 0.05, r=−0.46; Fig. 6). Finally,
no alpha metrics for Test 2 (ps > 0.05; Fig. 6) nor theta metrics in
relation to any task performance (ps> 0.05) were significantly
related to episodic memory performance.

As some regions reached significance for both alpha burst
power as well as total power, we additionally analyzed alpha non-
burst power (see Materials and Methods for definition of non-
burst activity) in relation to task performance to examine if
significance in the alpha total power band was due to burst or
nonburst activity. All p values reported above in this section
were already adjusted for this inclusion of nonburst activity in
analyses as detailed in theMethods. In examining alpha nonburst

Figure 6. a, p values for each region defined in the methods for the correlations between power metrics (alpha burst power, alpha nonburst power, and alpha total power) and WPA task
performance at Test 1, Test 2, and the difference score. Figures are separated by burst, total, and nonburst alpha power metrics. b, R values for each region defined in the methods for the
correlations between power metrics (alpha burst power, alpha nonburst power, and alpha total power) and WPA task performance at Test 1, Test 2, and the difference score. c, Representative
scatterplots from the central region for the correlations between alpha burst, nonburst, and total power and task performance difference over sleep.
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activity, we found no significant correlation with task perfor-
mance Test 1, Test 2, or for the difference score (ps > 0.05;
Fig. 6), indicating that the significance in the total power band
is driven by burst activity. Finally, we examined whether alpha
burst activity potentially reflected microarousals by measuring
if alpha bursts coincided with a general increase in power across
all frequencies. Power across all bands was calculated during
burst time points and nonburst time points and averaged per
subject. A t test between all power bands during bursts compared
with power outside of bursts showed no significant difference
(t(37) = 0.43; p > 0.05; Cohen’s d= 0.08), suggesting that alpha
bursts do not reflect microarousals.

Given that greater alpha burst power was associated with bet-
ter baseline memory performance as well as greater forgetting
over sleep, this provides the first evidence that REM alpha burst
power identified in human scalp EEG is involved in episodic
memory and forgetting processes over sleep. Moreover, while
both alpha burst and total power were associated with task per-
formance at Test 1 and the Difference score, total power failed
to reach significance in certain regions where burst power did
(Fig. 6a,b), suggesting that alpha burst power during REM sleep
is a more robust metric to examine in relation to episodic
memory.

Discussion
The present study elucidates novel electrophysiological signatures
of learning and memory in human REM sleep. We first validated
and used our burst detection method to identify bursts along the
theta and alpha frequency bands during REM sleep. Then, we
characterize burst activity between NREM-dominant sleep in the
first half of the night and REM-rich sleep in the second half.
Additionally, we provide evidence that implicates REM bursts in
cognitive processes by showing that (1) retinotopically specific
theta burst activity is associated with perceptual processing, but
not with perceptual learning, (2) alpha bursts are involved in base-
line memory and sleep-dependent forgetting of episodic memo-
ries, and (3) these behavioral associations were not consistently
present in total power of alpha and theta, suggesting specificity
of these findings to scalp EEG burst activity. Our results provide
a technique to examine specific EEG burst events during REM
sleep and implicate these REM bursts in cognition across hippo-
campal and nonhippocampal memory domains.

While techniques to elucidate EEG events during sleep have
been well established, these techniques have remained largely
confined to NREM sleep (Steriade et al., 1993; Rasch and Born,
2013). Though identifying electrophysiological burst events in
human REM is not common, the concept of burst detection dur-
ing sleep has been well documented particularly for spindle
events in NREM (Schimicek et al., 1994; Huupponen et al.,
2007; Nonclercq et al., 2013; Adamantidis et al., 2019). With
these approaches in mind, we built a computational method
for REM sleep based in signal processing to identify EEG burst
events. We next examined burst characteristics of count, density,
duration, and power across the first and second half of the night.
As the second half of the night is more REM intensive, it is unsur-
prising that both theta and alpha bursts have greater count dur-
ing second half of the night. However, burst density in either
theta or alpha band did not differ between first and second halves
of the night, suggesting that their rates of occurrence remain
somewhat consistent across the night. Interestingly, we also
found that theta and alpha bursts had a significantly longer dura-
tion on average during the first half of the night. Additionally, we
found greater peak frequency for both alpha and theta bursts in

the first half of the night. However, no differences in power in
either alpha or theta bursts were found between the
NREM-dominant first half and REM-rich second half. More
work is needed to understand characteristic differences of burst
activity across the night, and whether shorter versus longer burst
events have different functional significance in relation to cogni-
tion. Future work is also needed to examine spatiotemporal fea-
tures of REM bursts across the electrode manifold as well as
individual differences in REM burst expression. This will allow
for comparison and identification of similar activity in animal
models which contributes to greater mechanistic understanding
of REM sleep.

After characterizing REM burst events, we examined our
hypothesis that theta burst activity during REM sleep would
relate to VPL. We found evidence that REM theta burst activity
in posterior regions is a marker of generally greater perceptual
performance, yet not an indicator of sleep-dependent VPL gains.
While previous work indicates that time spent in REM predicts
sleep-dependent VPL performance gains (Mednick et al., 2003,
2013), we did not find evidence that REM burst activity is related
to these gains. Similarly, Tamaki and colleagues showed that
increased total theta power during REM was significantly related
to better resilience to interference for VPL due to more stable
perceptual performance, but not to VPL improvement (Tamaki
et al., 2020). This study had participants complete a VPL task
before and after a nap monitored by EEG alongside magnetic
resonance spectroscopy to measure excitatory/inhibitory (E/I)
balance, with higher E/I ratios indicating greater plasticity.
They found that decreased E/I balance during REM was corre-
lated with greater total theta power in posterior brain regions,
which was associated with more stable perceptual performance
that was less vulnerable to future interference. This suggests
that total theta power during REM is related to reduced plasticity
which is thought to stabilize learning and reduce retrograde
interference. Our results are consistent with this finding, as
greater theta burst power was associated with better perceptual
performance, which would likely make the perceptual represen-
tation more stable. Future research should examine REM theta
burst activity in the context of resilience to interference.

We additionally examined how REM burst activity related to
hippocampal-dependent episodic memory. We found evidence
that REM alpha bursts are implicated in forgetting processes
for episodic memory, with increased alpha burst power during
REM associated with more forgetting over sleep. Previous work
in animal models has identified mechanisms of forgetting for
hippocampal-dependent memory in REM, finding that enhanc-
ing activity of REM-active neurons projecting to the
hippocampus-induced greater forgetting (Izawa et al., 2019).
Studies have also demonstrated that REM sleep may be critical
for experience-dependent dendritic spine pruning with func-
tional implications to memory (Zhou et al., 2020). This study
demonstrated that REM deprivation specifically was associated
with decreased spine elimination after both monocular depriva-
tion and cued fear conditioning paradigms. Synaptic pruning is
a key feature of experience-dependent synaptic plasticity,
eliminating unneeded synapses; thus it is hypothesized that
REM-dependent pruning may play a role in reducing plasticity
to weaken memories tagged as not critical and to secure more
space for salient memory storage (Gaarder, 1966; Crick and
Mitchison, 1995; Li et al., 2017). Recent research examining
aperiodic activity during REM sleep, a potential proxy for E/I
balance, suggests that REM sleep is linked to experience-
dependent plasticity and provides support for the idea that
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REM sleep downregulates aperiodic activity, which may play a role
in sleep-dependent episodic memory consolidation (Lendner et al.,
2023). Our finding of an association between alpha bursts and epi-
sodic forgetting is intriguing and identifies a potential target for
future research to elucidate whether alpha bursts events play a
role in synaptic downscaling during REM sleep and how this
may work in conjunction with processes of neural recalibration
during NREM and REM sleep. Potentially there are complemen-
tary, sequential processes during NREM and REM which support
both the strengthening of information tagged as salient followed
by downscaling of weaker information later forgotten. More work
is needed to fully understand the role and mechanisms of REM
burst events in relation to NREM burst events (e.g., sharp wave rip-
ples, sleep spindles, slow oscillations) and episodic memory.

Our results are consistent with the hypothesis that downscaling
processes during REM impact sleep-dependent forgetting for
hippocampal-dependent memory (Crick and Mitchison, 1983).
We suggest that REM alpha bursts are potentially a mechanism
in human REM involved in the forgetting process. Wake alpha
has been shown to be involved in intentional forgetting, with suc-
cessful active forgetting correlated with an increase in alpha power
that is associated with a downregulation of to-be-forgotten mem-
ory traces (Klimesch et al., 1994; Jensen and Mazaheri, 2010; Park
et al., 2014; Scholz et al., 2021). REM alpha burst powermay there-
fore be tied to synaptic downregulation processes during REM,
such as synaptic pruning, which facilitates forgetting. Prior animal
research reported that spontaneous reactivation of hippocampal
neurons during REM sleep occurs in a theta-specific pattern con-
cordant with the induction of both LTP andwith its reversal, depo-
tentiation, during the REM sleep state (Poe et al., 2000). However,
we did not find significance for theta metrics in relation to episodic
memory; this may be due to a lack of concordance between theta
bursts derived from scalp EEG and hippocampal theta. As the pre-
sent study provides correlational, but not causal, evidence for REM
alpha bursts and forgetting, further experimental interventions are
needed to determinemechanisms and processes that are critical for
episodic memory and forgetting.

Limitations
This experiment measured cognitive performance in two domains,
VPL, and episodic memory. Theta is also implicated in other
domains, such as emotional memory, during REM-dependent pro-
cessing (Nishida et al., 2009; Hutchison and Rathore, 2015). Future
studies should examine if REM burst activity is involved in other
memory domains such as emotional memory. Additionally, our
episodic memory task separated encoded material into two lists,
half tested at immediate retrieval and half at delayed retrieval to
avoid practice effects. This procedure prioritizes attaining an accu-
rate baseline but does not allow for assessment of forgetting of item-
specific information. Future studies should consider how REM
alpha bursts may affect item-specific episodic memories. Also, we
did not include an interference paradigm with our VPL task so
we were not able to assess burst events in relation to resilience to
interference. Previous work provides evidence that total theta
power duringREMsleep is associatedwith resilience to interference
and lower E/I balance (Tamaki et al., 2020). Further work should
examine theta REM burst activity compared with nonburst activity
in relation to resilience to interference and E/I to further examine
functional differences between burst and nonburst activity.

Summary
In conclusion, we define a computational approach to identify
and characterize electrophysiological events in REM sleep, which

current research lacks. Additionally, we provide evidence that
these burst events are functionally important for learning and
memory. We provide evidence that retinotopically specific theta
burst power during REM sleep is a marker of perceptual process-
ing but not perceptual learning. Participants with greater poste-
rior theta burst power during REM sleep showed superior
perceptual performance both before and after sleep. As the over-
night change in performance was not significant, we suggest that
more theta burst power during REM is a marker of perceptual
processing. Additionally, we provide support for the hypothesis
that alpha bursts during REM are mechanistically involved in
episodic memory and sleep-dependent forgetting of hippocam-
pal-dependent memories. Defining burst events in REM contrib-
utes to the development of a comprehensive mechanistic model
of how REM and NREM sleep work in conjunction to facilitate
memory formation, as well as provide deeper understanding of
the fundamental electrophysiological properties of REM sleep
that are distinct from NREM sleep.
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