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The connection between resonances and bound
states in the presence of a Coulomb potential
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†Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
‡Department of Chemistry, University of California, Davis, CA 95616 USA

E-mail: rlucchese@lbl.gov

Abstract

The connection between resonant metastable
states and bound states with changing poten-
tial strength in the presence of a Coulomb po-
tential is fundamentally different from the case
of short-range potentials. This phenomenon is
central to the physics of dissociative recombina-
tion of electrons with molecular cations. Here,
it is verified computationally that there is no di-
rect connection between the resonance pole of
the S-matrix and any pole in the bound state
spectrum. A detailed analysis is presented of
the analytic structure of the scattering matrix
in which the resonance pole remains distinct in
the complex k-plane while a new state appears
in the bound state spectrum. A formulation
of quantum defect theory is developed based
on the scattering matrix which nonetheless ex-
poses a close analytic relation between the reso-
nant and bound state poles, and thereby reveals
the connection between quantum defect theory
and analytic S-matrix theory in the complex
energy and momentum planes. One-channel
and multi-channel versions of the expressions
with numerical examples for simple models are
given and the formalism is applied to give a
unified picture of ab initio electronic structure
and scattering calculations for e-O+

2 and e-H+
2

scattering.

1 Introduction

A central concept of collision theory is idea
that bound states can become metastable states
with finite lifetimes (scattering resonances) and
vice versa as the strength of the interaction
potential is varied, and this is the subject
of classic textbook discussions of scattering
theory.1,2 This phenomenon is well known in
electron-molecule scattering, where it provides
the mechanism for dissociative attachment of
electrons to molecules and dissociative recom-
bination (DR) of electrons to molecular cations,

AB+ + e− → AB∗ → A+B. (1)

This process has of course been the subject
of many theoretical studies.3–10 In these treat-
ments a recurring theme is the connection of
the lifetime of the relevant autoionizing elec-
tronic states to the spectrum of the electronic
Hamiltonian at molecular geometries where the
corresponding bound states of the molecule ap-
pear.

The idea that the two states are continuously
connected is almost always implicit in these
treatments, even though Domcke11 noted that
no such continuous connection exists in a beau-
tiful study in 1983 that seems to have received
little attention. At the time of that study it had
been known at least since 1977 that the width,
and therefore the lifetime, of an autoionizing
state is finite even when the real part of its en-
ergy is zero, as Miller and Morgner12 showed on
the basis of a semiclassical analysis.
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Not withstanding this context, remarkable
progress has been made in decades of work on
the treatment of dissociative recombination by
the application of quantum defect theory13–15

in many studies and calculations of dissocia-
tive recombination cross sections,4,6,9,10,16 which
owe a great deal to the foundational work of
Giusti3 in 1980. In these applications quan-
tum defect theory makes a powerful and use-
ful connection between the Rydberg states of a
neutral molecule and electron-ion scattering de-
scribed by the S-matrix at (real-valued) low en-
ergies. However, Domcke’s analysis11 suggests
that in general there is no direct analytical con-
nection between the the poles of the S-matrix
corresponding to autoionizing states and those
corresponding to the appearance of new bound
states with which they might be associated, and
therefore raises the question of how to reconcile
quantum defect theory with the formal theory
of the analytic structure of the S-matrix.

Here we analyze the connection between res-
onance states in the presence of Coulomb po-
tentials, and provide a formulation of quantum
defect theory for both one-channel and multi-
channel cases that unifies it with analytic S-
matrix theory. The working equations of the
present formulation are somewhat different, in
particular for the multichannel case, from those
of the traditional formulation, but they give the
same physical states at real values of the en-
ergy while offering a complete analytic continu-
ation into the complex energy and momentum
planes. We demonstrate this form of the the-
ory for exactly solvable one- and three-channel
models. We also exploit the complex pole struc-
ture of this theory to give a unified picture of
the results of ab initio electronic structure cal-
culations of the quantum defects as a function
of internuclear distance and the S-matrices cal-
culated in ab initio electron scattering calcula-
tions for the cases of electron scattering from
the O+

2 and H+
2 ions.

In a separate, but related, context, several
methods17–20 have been proposed for computing
the lifetimes of resonances in electron scatter-
ing from neutral molecules by converting them
into bound states by the addition of an attrac-
tive Coulomb potential, and then analytically
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Figure 1: Sketch of the classic behavior in the
momentum plane of resonance and bound state
poles and the corresponding zeros of the S-
matrix with varying potential strength in scat-
tering from a short range potential with non-
zero angular momentum. The red lines corre-
spond to the trajectories of the poles and the
blue lines correspond to the trajectories of the
zeros.

continuing the resulting bound state energies
as functions of the effective charge back to zero
charge. These procedures have had apparent
success by treating the resonance and bound
pole trajectories explicitly as though they were
related to one another as in the classic case
of scattering from short range potential. In
that case resonance and bound state poles in-
terconvert as the potential strength is varied
in the way sketched in Fig. 1, where there
are two resonances or two bound states (for
nonzero angular momentum) that interconvert
as a function of potential strength, λ, with a
characteristic square root branch behavior,1,2

kpole ≈ ±i a(λ−λ0)1/2 . It has been pointed out
recently that this procedure is not well founded
because the pole corresponding to a resonance
in the presence of a Coulomb potential can-
not move continuously to become a bound state
pole.21 However no answer has been given to the
question of why such an analytic continuation
procedure involving the addition of Coulomb
potentials can ever be apparently successful.

In this paper we seek to shed some light on
these questions. We begin in Section 2 with
an analytically solvable model problem that we
analyze in detail without making the approxi-
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mations specific to small values of the scattering
momentum, k, that Domcke used in his original
study. That analysis allows us to construct a
somewhat more explicit mathematical and nu-
merical picture of the properties and motion of
the poles of the S-matrix that we suggest re-
flects the more general physical situation. In
Section 3 we develop an explicit connection of
the poles of the S-matrix to quantum defect
theory for single-channel problems. We discuss
how to parameterize the pole and zero structure
and fit computed data. We then give an exam-
ple which can be solved exactly in the complex
k-plane as well as a real molecular example, the
1Σ+

u resonance in e-O+
2 , where we parameterize

the resonance based on bound state and scat-
tering calculations at real energies. In Sec. 4 we
give the analogous expressions for multichannel
systems and consider both an exactly solvable
model problem and an ab initio treatment of
the 1Σ+

g resonance in e-H+
2 . Finally, in Sec. 5

we give some concluding remarks.

2 Interplay of resonances

and bound states in the

presence of a Coulomb

potential

We will begin by analyzing bound states and
resonance poles of the S-matrix for a square-
well plus attractive Coulomb potential with the
product of the projectile and target charges be-
ing Z = −1,

V (r) =

{
−V0 + Z/r r ≤ r0

Z/r r > r0.
(2)

The plot of this potential in Fig. 2 reveals im-
mediately why a resonance trapped behind the
barrier will have a finite width as the well is
deepened by increasing V0 to the point where
it has zero energy. Unlike the case of any short
range potential, where the centrifugal barrier
will be of infinite range at zero energy, the bar-
rier in this case is of finite width at E = 0.

This is a simple example of the class of “short
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Figure 2: Potential for the radial square well
plus an attractive Coulomb potential as defined
in Eq. (2) with l = 4, Z = −1, r0 = 3 for V0 =
2.1984. The energy levels of the Rydberg states
are given by the green horizontal line and the
red line indicates the energy of a near threshold
scattering resonance illustrating that the width
of the tunneling barrier is finite as the resonance
energy approaches zero due to the presence of
the strong Coulomb potential outside the range
of the attractive square-well potential.

range plus Coulomb” problems that are familiar
from standard textbook discussions of Coulomb
scattering. The partial wave S-matrix for the
complete scattering problem can be written1 in
terms of the Coulomb phase shift, ηl = arg Γ(l+
1 + in) with n ≡ Z/k,

Sl = e2i(ηl+δl) =
Γ(l + 1 + in)

Γ(l + 1− in)
SSR
l . (3)

The phase shift due to the addition of the short-
range potential determines the short-range S-
matrix, SSR

l = exp(2iδl), and it has poles at
the bound states and resonances of the system.
The properties of the Γ function in the complex
plane result in the Coulomb factor, exp(2iηl),
having no poles except at the bound states of
the pure Coulomb potential.

The short-range S-matrix is determined by
matching the solutions of the radial Schrödinger
equation (atomic units throughout unless oth-
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erwise indicated),[
−1

2

d2

dr2
+ V (r) +

l(l + 1)

2r2

]
ψ(r) = Eψ(r)

(4)
for r < r0 and r > r0 in terms of the Coulomb
functions given in Appendix A,

ψ =


AFl(K, r) r ≤ r0

H−l (k, r)e−ilπ/2

−SSR
l (k)H+

l (k, r)e+ilπ/2
r > r0

(5)
with

K ≡
(
k2 + 2V0

)1/2
. (6)

We find the short-range S-matrix

SSR
l (k) = e−ilπ

Wr0 [Fl(K, r), H
−
l (k, r)]

Wr0 [Fl(K, r), H
+
l (k, r)]

(7)

where Wr0 [f, g] is the Wronskian,

Wr0 [f, g] =

(
df

dr
g − dg

dr
f

) ∣∣∣∣∣
r0

. (8)

This expression can be simplfied and written in
terms of Whittaker functions22 as

SSR
l (k) =

Dl(−k)

Dl(k)
(9)

with the denominator function,

Dl(k) = e−i(l+1)π/2 Γ(l + 1 + in)

×Wr0

[
M+iZ/K,l+1/2(+2iKr),W−in,l+1/2(−2ikr)

]
,

(10)

The Wronskian in Eq.(10) can be evaluated an-
alytically in terms of Whittaker functions with
different arguments.

Some aspects of the analytic structure of the
S-matrix in Eq.(9) are apparent on inspection.
The Whittaker function Mκ,µ(z) is a single val-
ued function, but W−in,l+1/2(−2ikr) is many-
valued because it has a logarithmic singularity
at k = 0 and an associated branch cut which
we will take to lie on the negative imaginary k
axis. With that convention the numerator and
denominator of SSR

l (k) satisfy a reflection rela-
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Figure 3: Resonance pole trajectory (red) and
zeros of S-matrix (green) for square-well plus
Coulomb potential with l = 4, Z = −1, r0 = 3
for V0 =1.35 to 2.22. The labels next to some
selected points indicate the well depth at that
point. The dashed lines (black) indicate where
Re(E) = 0.

tion
Dl(−k∗) = Dl(k)∗ . (11)

This is the reflection relation satisfied in gen-
eral by the Jost function,1,2 but here there is an
important subtlety. This relation arises explic-
itly in Eq.(10) because of (1) the analytic con-
tinuation relation22 satisfied by the Whittaker
function, Mκ,µ(ze±iπ) = ±ie±iπµM−κ,µ(z), and
(2) the fact that W−in,l+1/2(−2ikr) satisfies
the same reflection relation with our choice of
branch cut convention. The branch cut in Dl(k)
on the negative imaginary k-axis is a branch cut
of SSR

l (k), which also has a branch cut on the
positive imaginary axis associated with its nu-
merator, Dl(−k). These branch cuts of the S-
matrix on both the positive and negative imag-
inary k-axes will be seen below to play an im-
portant role in the trajectories of the resonance
poles of SSR

l (k).
The second observation we can make immedi-

ately about the S-matrix is that it has a set of
zeros and poles that are fixed and do not move
as functions of the potential strength, V0. The Γ
function prefactor Γ(l+1−in) in the numerator
of SSR

l (k) has poles at k = iZ/(m+ l+1) for in-
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Figure 4: Resonance energy (green) and width
(red) as a function of V0 for square-well plus
Coulomb potential with l = 4, Z = −1, r0 = 3.

teger m ≥ 0, while the factor in the denomina-
tor Γ(l+1+in) has poles at k = −iZ/(m+l+1).
For Z < 0 that means that the numerator has
poles on the negative imaginary k-axes that do
not move with changing V0 or r0. It also has
fixed zeros at the mirror images of those loca-
tions on the positive imaginary k axis.

The Gamma function factor Γ(l + 1 + in) in
Dl(k) has no zeros in the complex k-plane, so it
does not produce any poles of S. So the zeros
of the Wronskian in Eq.(10) are the physically
relevant poles and zeros of S(k), and we now
turn our attention to them.

In Fig. 3 we show the trajectory of the ze-
ros and poles of SSR in the complex k-plane as
a function of the well depth, V0, for the one-
dimensional problem defined by Eqs. (2) and
(4), with l = 4, Z = −1, and r0 = 3. This fig-
ure does not include the poles due to the bound
Coulomb states which are on the positive imag-
inary k-axis. We can see that as the well is
made deeper, the pole approaches the origin,
but then it moves further away from the real
axis and does not become a bound state. The
corresponding zero of the S-matrix moves up-
wards near the positive imaginary k axis where
it can perturb the positions of the poles in the
S matrix which occur on the positive imaginary
k-axis.

In Fig. 4 we can see that in this problem,
with high angular momentum, the width of the

resonance changes rapidly as the resonance ap-
proaches zero energy. The real part of the res-
onance energy is nearly a linear function of the
potential strength V0 and goes through zero at
V0 = 2.1894, while the width remains finite at
that point.
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Figure 5: Value of |Q| as defined in Eq. (21) for
Z = −1. Upper panel is in the complex k-plane
and the lower panel is in the complex E-plane.
Note that, in the plots of various functions in
the E-plane, for a given E we select the cor-
responding k needed to compute Q by taking
the branch cut along the negative imaginary E-
axis so that in quadrants one through three we
will use k in the physical upper-half plane and
in quadrant four of the E-plane we will take k
from the unphysical half-plane.

3 Relation of the poles

and zeros of the single-

channel S-matrix to

quantum defect theory

There are important examples in dissociative
electron attachment, like attachment to O+

2 via
the 1Σ+

u resonance, that can be treated with
single-channel quantum defect theory. For that
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Figure 6: Plots of |SSR
l | (left panel) and |Ml| in the complex k-plane for the one channel model

described in Eqs. (2) and (4) with l = 4, Z = −1, r0 = 3, and V0 = 2.2. The plotted |Ml| has been
smoothed in the region of the complex k-plane where |Q| is growing exponentially, as indicated in
Fig. 5.

reason, and to develop the general ideas that
we will apply to the multichannel case, we turn
now to the formal connection between the poles
of the S-matrix and the quantum defects for a
single channel problem. Once we have estab-
lished that connection and developed a com-
pact and accurate parametrization of it in terms
of the motion of the poles and zeros of the S-
matrix, we can turn to its application to the
case of electron attachment to the O+

2 ion. The
result, presented in Section 3.4 below, is a uni-
fied representation of the results of ab initio
bound state and scattering calculations not pre-
viously achieved.

3.1 General single-channel ex-
pressions

The asymptotic form of the f±l Coulomb func-
tions given in Appendix A are

f+
l (k, r) → e+iρc (12)

f−l (k, r) → e−iρc (13)

where ρc = kr − n ln 2kr. In this section, we
will only consider the case where the scattering
potential is spherically symmetric, so that the
different partial waves are decoupled. Then we
can write the asymptotic form of the scattering
states in terms of the partial-wave S-matrix, Sl,
as

ψ(k, r)→ i

2

[
eiπl/2f−l (k, r)− Sl(k)e−iπl/2f+

l (k, r)
]
.

(14)
This can be equivalently written in tems of the
quantum defect, µl(k), as pointed out in the
clear analysis of Chernov et al.,15

ψ(k, r)→ (k/i)−(l+1) sin(2πl)

sin π(2l − µl(k))

×

[
e−

iπν
2

Γ(1 + l + ν)

sin π(µl(k)− ν − l)
sin π(−ν − l)

f−l (k, r)

−e−iπ(ν+l−µl(k)) e+
iπν
2

Γ(1 + l − ν)
f+
l (k, r)

]
(15)
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with ν = iZ/k. Now if we define the short-
range S-matrix, SSR, by

Sl(k) = SSR
l (k)ei2ηl(k) (16)

so that, in terms of the short range scattering
phase shift, we have

SSR
l (k) = ei2δl(k). (17)

The short-range S-matrix can be written in
terms of the quantum defect as

SSR(k) =
eiπµ sin π(ν + l)

sin π(ν + l − µ)
. (18)

On the positive imaginary k-axis, where ν and
µ are real numbers, this clearly leads to zeros
in SSR at the hydrogenic energies, i.e ν + l = p
where p is an integer, and poles at the bound
states, i.e. where ν + l − µ = p. Now, by anal-
ogy to the relationship between the scattering
phase-shift δl(k) which is related to the short-
range S-matrix, we can define an M -matrix re-
lated to the quantum defect by

Ml(k) = ei2πµl(k). (19)

Then the relationship between the SSR and M
is given by

1

Ml(k)
=

1

SSR
l (k)

[1−Q] +Q, (20)

where
Q = e

2πZ
k . (21)

or in terms of quantum defects and short-range
scattering phase shifts we have

e−i2πµl(k) = e−i2δl(k) [1−Q] +Q. (22)

Note that Eq. (22) is identical to Eq. (33) in
the paper by Chernov et al.15

While SSR
l (k) has both poles and zeros on the

positive imaginary k-axis, the analytic struc-
ture ofMl(k) is much simpler there. The central
idea of quantum defect theory is to construct
quantities determined entirely by the S-matrix
for which a more straight-forward and function-
ally smooth connection can be made between
real energies corresponding to the bound region

(positive imaginary k) and real energies in the
continuum (positive real k). Here we examine
the analytic continuation of such expressions to
the entirety of the complex k-plane, which ex-
poses their connection to the poles of the S-
matrix and provides a parametrization in terms
of them.

From Eq.(22) we can easily see that M ≈ SSR

when |Q| << 1 or Re(−2πZ/k) >> 1. In Fig. 5
we show |Q| in both the k and E planes which
indicate the range of momenta and energies over
which one can approximate SSR by M . We
also indicate the region of the k and E planes
where Q is growing exponentially. In that re-
gion, Eq. (20) cannot be evaluated accurately
using finite precision arithmetic since when Q
is large the value of Ml depends on the differ-
ence between Sl and 1, which is a small number
on the order of 1/|Q|. Also when SSR

l = 0 we
have Ml = 0 except at the hydrogenic ener-
gies where 2πZ/k = ip2π. Note that the zeros
in SSR

l at positive imaginary value of k are in-
troduced in the transformation from the full S
matrix as given in Eq. (16) and are not present
in Sl whereas the poles in SSR

l and Sl are at
the same values of k. It is also clear from this
equation that

lim
k→0+

exp (−2iδl(k)) = lim
κ→0+

exp (−2iπµl(iκ))

(23)
when Z < 0, which is the well-known result
from Seaton.23

3.2 Parameterization of res-
onances with the single-
channel quantum defect Ml

In the presence of a narrow resonance, the usual
approach to characterizing the SSR

l matrix in
the region of a resonance is using a single-pole
single-zero form2

SSR
l ≈ e2iδbg

k − k∗res
k − kres

(24)

where δbg is the background phase shift and kres
is the complex momentum at the location of the
pole in SSR

l . This approximation enforces the
unitarity on SSR

l for real values of k. Note that

7
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Figure 7: Scattering phase, δ(E) and quan-
tum defects, πµ(E) computed using arg(M)/2
for the square well + Coulomb model given in
Eqs. (2) and (4) with l = 4, Z = −1, r0 = 3 for
different strengths with V0 =2.15 to 2.21 for real
energies. The simple one-pole-one-zero approx-
imation obtained using Eq. (25) and an energy
independent background phase shift are indi-
cated with the crosses. The value k∗res used for
each potential strength was that obtained by
finding the zeros of Ml in the first quadrant
of the complex k-plane. Note the SSR

l has the
same zeros as Ml.

in this form there is a corresponding zero in SSR
l

at k∗res. In a similar fashion we can parameterize
Ml using

Ml(k) ≈ e2iπµbg
(k − k∗res) (k + k∗res)

(k − kres) (k + kres)
. (25)

This approximation to Ml enforces unitarity for
both purely real and purely imaginary values
of k. The unitarity of Ml for purely imaginary
values of k guarantees that the quantum defect
will be real as needed for bound states to occur
at real energies. The unitarity of SSR

l at real
values of k guarantees that Ml will be unitary
when the real part of k is not too large. This
expression for Ml can be rewritten in terms of
energy to give

Ml(E) ≈ e2iπµbg
E − E∗res
E − Eres

. (26)

Then the scattering phase shift or quantum de-
fect at real energy can be extracted using the
usual Breit-Wigner form24

πµl(E) = πµbg + tan−1
Γ

2 [Re(Eres)− E]
(27)

where Γ = −2 Im(Eres).

3.3 Simple one-channel square-
well model

We have computed the Ml function using
Eq. (20) for the one-channel model described in
Sec. 2 by Eqs. (2) and (4) with l = 4, Z = −1,
r0 = 3, and V0 varying from 2.15 to 2.21. In
Fig. 6 we show the absolute value of Sl and Ml

in the upper half of the complex k-plane with
V0 = 2.20. We can see that, along the positive
Im(k) axis, SSR

l has a series of poles and zeros
which correspond to the poles of the actual Ry-
dberg states and the zeros at the hydrogenic en-
ergies caused by the Γ(l+1−in) function in the
denominator of Eq. (3), as discussed above. Ml,
in contrast to Sl, is a smooth function with only
one zero in the first quadrant of the complex k-
plane, with k = 0.001778 + i0.1198 or, in terms
of the energy, at E = −0.007171 + i0.0001065
and a corresponding pole in the second quad-
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rant of the complex k-plane. As seen in Fig. 3,
the real part of the energy of this zero, also
found in SSR

l , will move to higher energy as the
value of V0 is decreased.

In Fig. 7, we plot the quantum defects and
scattering phases computed from Ml for this
problem for a series of potential strengths. We
can see that for this model, the width of the
resonance increases as the potential is made
weaker. Additionally, we plot the results of us-
ing Eq. (25) to model the behavior of Ml at
real energies. The values of kres used in the ex-
pression were those shown in Fig. 3, which were
obtained by solving for the zeros and poles of
Sl and Ml as a function of V0. Additionally,
a small energy-independent background phase
was added to obtain a good fit. This result
shows that Eq. (25) provides a good description
of how the poles and zeros in Sl and Ml deter-
mine the behavior of the eigenphases and quan-
tum defects at real energies. This also suggests
that Eq. (25) could be used to take scattering
phases and quantum defects at real energies an
infer the location of the resonance poles and ze-
ros.

It is instructive to note that the behavior
of the poles and zeros of the one-channel M -
matrix in the complex k-plane is similar to the
behavior of the poles and zeros of an S-matrix
in multichannel scattering with short-range po-
tentials as described by Newton25 where a k-
plane diagram appears similar to the lower half
of Fig. 3. While that subject is in general quite
complicated, we can see an analogy with the
single-channel Coulomb scattering case by con-
sidering a three channel case with only short-
range potentials and three different thresholds,
E1 < E2 < E3 in the context of Newton’s analy-
sis. Assume that there is a resonance caused by
a nearly bound state in channel 3 but through
coupling to the open channels 1 and 2 has a fi-
nite lifetime such that a pole in the S matrix
occurs between the second and third thresh-
olds at Eres and that E2 < Re(Eres) < E3

and Im(Eres) < 0. In that case, the position
of the resonance will be described with k1 and
k2 being on the unphysical lower half of the
complex k-plane, i.e. with Im(k1) < 0 and
Im(k2) < 0, while k3 is on the physical upper

half plane with Im(k3) > 0. Now if the poten-
tial is made more attractive without shifting the
thresholds, the energy of the resonant state can
be lowered so that E1 < Re(Eres) < E2 so that
the resonance lies between the first two thresh-
olds. Now the only open channel is channel 1.
The pole that corresponds to this resonance will
then have Im(k1) < 0 but both Im(k2) > 0 and
Im(k3) > 0. The width of the resonance does
not go through zero as channel 2 is closed so
that the trajectory of the pole in the k2-plane
cannot go through the origin. Thus the pole in
the complex k2-plane when channel 2 is closed
does not connect to the pole in the k2-plane
when channel 2 is open.

In a similar fashion for the Coulomb plus
short range problem, the width of the resonant
state, which causes the pole in the M -matrix,
does not go to zero as the energy of the reso-
nance goes below the last threshold. Thus the
trajectory of the pole in the complex k-plane
cannot go through the origin. However there is
a new pole in the M matrix which appears in
the second quadrant, i.e. the physical part of
the of the complex k-plane which then moves
close to the positive imaginary k-axis as the
short range potential becomes more attractive.
Note that this behavior is only seen in the M -
matrix and not in SSR.

3.4 One-channel treatment of
e-O+

2 scattering

Here we apply the one-channel M -matrix anal-
ysis of Section 3.1 to the 1Σ+

u resonance in
e-O+

2 scattering. The direct dissociative recom-
bination in e-O+

2 scattering is believed to be
proceed through a doubly-excited (Feshbach)
resonance of 1Σ+

u symmetry which is formed
in the collision of a low-energy electron with
the O+

2 molecule in its X2Πg ground state.4

The main electronic configuration in the ion is
. . . 3σ2

g1π
4
u1πg while that of the resonant 1Σ+

u

state is . . . 3σ2
g1π

3
u1π

3
g .

26 In this case we can
use the parametrization of Section 3.2 to ex-
tract the trajectory of the pole and zero in the
S-matrix, and the corresponding M -matrix, to
illustrate how the scattering resonance is con-
verted into a pole and zero combination in the
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Figure 8: Computed quantum defects and scat-
tering phase shifts for the l = 1 one-electron
continuum functions in the e-O+

2 system with
total symmetry of 1Σ+

u . The lines are the one-
pole-one zero model fits using Eq. (27) com-
pared to computed quantum defects and phases
for the geometries ranging from RO-O = 2.2
Bohr to 2.45 Bohr.

M -matrix below threshold. This structure in
the M -matrix causes a resonance structure in
the quantum defect which is reflected in shifts
in the Rydberg energies as a function of molec-
ular geometry.

Both the scattering and the bound state cal-
culations of this process were performed with a
one-electron basis that contained a triple-zeta
with polarization basis on the oxygen atoms27

plus 16 additional p functions at the bond cen-
ter, chosen with exponents in a geometric se-
ries ranging from α = 0.12 to 0.000056. The
molecular orbitals were obtained from a multi-
configuration self consistent field calculation on
O+

2 (2Πg). Ten target orbitals were included:
three σg, three σu, one πux, one πuy, one πgx
and one πgy. The MCSCF wave function only
contained configurations in which the three σg
and two of the σu orbitals were doubly occu-
pied. The bound Rydberg and scattering states
of overall 1Σ+

u symmetry were then constructed
by doubly occupying the first five ion orbitals
and allowing the remaining six electrons to oc-
cupy the remaining active and virtual orbitals,
with the restriction that no more than one elec-
tron occupy a virtual orbital. The scattering
calculations were performed using the complex

Kohn method.28

In Fig. 8 we plot the l = 1 partial-wave scat-
tering phases and quantum defects from l = 1
Rydberg state energies of 1Σ+

u symmetry near
the resonance in e-O+

2 on a grid of geometries
with RO-O = 2.2 Bohr to 2.45 Bohr. The lines
presented there are Breit-Wigner forms given
in Eq. (27) that have been fit to the computed
data. The results for each geometry were fit
separately with the background scattering rep-
resented as a quadratic function of E. The re-
sulting real parts of the resonance energies rel-
ative to the ionization potential of O2 and the
widths are plotted as a function of R in Fig. 9.
The results are compared to the computed re-
sults of Guberman and Giusti-Suzor.4 We see
that the position of our computed resonances
are at a slightly higher energy for a given ge-
ometry and our computed widths are close to
those obtained by Guberman and Giusti-Suzor.
However, in the present calculations we see that
there is some structure near the geometry where
resonance is at threshold, which however is not
fully resolved here. These extracted energy pa-
rameters are replotted as trajectories of zeros
and poles in the complex k-plane in Fig. 10.
The zero and pole trajectories found here are
very close to those extracted from the previ-
ously published data. The results presented
here indicate that we have achieved a combined
bound state and scattering calculation unlike
any previous study.

4 Relation of the poles

and zeros of the multi-

channel S-matrix to

quantum defect theory

With the analysis of the analytic structure of
single-channel quantum defect theory in the
complex momentum and energy planes in hand,
we proceed to apply the same ideas to the mul-
tichannel case. The resulting working equations
depart from the traditional formulation of mul-
tichannel quantum defect theory, and, while be-
ing functionally equivalent for real values of the
energy, they expose the connection to the mo-
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Figure 9: Resonance energies and widths for the
1Σ+

u resonance in the e-O+
2 system. The present

results are compared to the computed results of
Guberman and Giusti-Suzor.4

tion of the poles and zeros of the multichannel
S-matrix. Dissociative electron attachment to
the H+

2 ion via the 1Σg resonance that is dom-
inated by the 1σ2

u configuration can be treated
as a three-channel problem. Application of this
formulation in Section 4.4 below allows us to
construct a unified description of ab initio elec-
tronic structure and scattering calculations that
reveals the motion of the relevant pole and zero
of the S-matrix.

4.1 Multichannel expressions

The single-channel expressions given in the pre-
ceding section can be generalized to the case
of multiple coupled channels where the addi-
tional coupled channels can correspond to dif-
ferent asymptotic angular momenta of the Ry-
dberg or scattered electrons with the same core
electronic state or with different core electronic
states. First we define energy-normalized F±i
functions which are closely related to the f±l
functions used in the previous section but are
now indexed by the channel, i,

F+
i (~r) =

(
2

πki

) 1
2

e−i
π
2
lieiηli (ki)f+

li
(ki, r)Ylimi(r̂)

(28)
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Figure 10: Trajectories of the zeros and poles
of the M -matrix for the 1Σ+

u resonance in the
e-O+

2 system. The value ofR in Bohr at selected
points is indicated on the graph. The present
results are compared to zero and pole trajec-
tories extracted from the computed results of
Guberman and Giusti-Suzor.4

F−i (~r) =

(
2

πki

) 1
2

ei
π
2
lie−iηli (ki)f−li (ki, r)Ylimi(r̂),

(29)
where ki =

√
2(E − Ei) is the asymptotic mo-

mentum in channel i, Ei is the threshold for
channel i, and (li,mi) are the asymptotic angu-
lar momentum quantum numbers of the elec-
tron in channel i. Using these functions, the
asymptotic form of the multichannel partial-
wave scattering state, ψSj (~r), can be written in
terms of the short-range SSR-matrix, and will

11



have the form

ψSj (~r)→
∑
i

i

2

[
F−i (~r)δi,j −F+

i (~r)SSR
i,j

]
. (30)

where j is the index of the channel containing
the homogeneous solution of the Schrodinger
equation.

To construct a multichannel quantum-defect
matrix we define an alternative pair of linearly
independent Coulomb functions

F̃+
i (~r) = F+

i (~r)(1− Q̃i)
1
2

+F−i (~r)Q̃i(1− Q̃i)
− 1

2 (31)

F̃−i (~r) = F−i (~r)(1− Q̃i)
− 1

2 , (32)

where, for real energies, Q̃i is defined as

Q̃i =

{
0 E > Ei
e−i2π(νi+li) E < Ei

, (33)

where, as in the one channel case, νi = iZ/ki.
We can now define the multi-channel version of
the quantum defect M -matrix in terms of the
asymptotic form of the wave function using

ψMj (~r)→
∑
i

i

2

[
F̃−i (~r)δi,j − F̃+

i (~r)Mi,j

]
.

(34)
Matching asymptotic forms given in Eq. (30),
we can see that the relationship between SSR

and M̃ is(
SSR
)−1

=
(
1− Q̃

)− 1
2
(
M̃−1 − 1

)(
1− Q̃

)− 1
2
+1

(35)
where the Q̃ matrices are diagonal, with ele-
ments given above, i.e. Q̃i,j = δi,jQ̃i. Note that

the square-root terms in Eq. (35),
(
1− Q̃

)− 1
2
,

do not introduce any sign ambiguity as long as
both such factors take the same branch of the
square-root function. The relationship can be
inverted to give

M̃−1 =
(
1− Q̃

) 1
2 (

SSR
)−1 (

1− Q̃
) 1

2
+ Q̃.

(36)
By construction, we see that the complex sym-
metric SSR-matrix will always lead to a complex
symmetric M̃-matrix.

In general, when all channels are closed, the
condition for a bound state is that asymptot-
ically the wave function only contains expo-
nentially decaying radial functions. On the
physical upper-half of the complex k-plane, i.e.
where Im(ki) ≥ 0, bound states occur at real
energies when the wave functions do not contain
any asymptotic contribution from the F− func-
tions, which are exponentially growing. From
Eq. (30), we can see that bound states will then

occur when det
[(
SSR
)−1]

= 0. Similarly, in

terms of the M̃-matrix, the bound states will
occur when

det
(
1− Q̃M̃

)
= 0. (37)

In addition to the solutions of Eq. (37) which
occur at the correct bound states, there are also
solutions which occur at unphysical hydrogenic
energies in each channel, i.e. where

E − Ei = − 1

2n2
, (38)

where n is an integer and n ≤ li. These oc-
cur because of the definition of Q which causes
Qi = 1 both at the energy of true hydrogenic
energies and at the unphysical energies where
n ≤ li. At the energies of the true hydrogenic
states, the corresponding zeros on the diagonals
of 1− Q̃ just cancel out the zeros that occur in
SSR. Then at the unphysical hydrogenic ener-
gies (n ≤ li) this definition of Q leads to un-
physical solutions of Eq. (37). The unphysical
solutions of Eq. (37) can be avoided by search-
ing for solutions of the modified equation

0 =
det
(
1− Q̃M̃

)
∏N

i=1 z
2
i

(39)

where

zi(E) =

[
li∏

ni=1

(
E − Ei +

1

2n2
i

)] 1
2

. (40)

If all channels are open, then we have Q̃ = 0 so
that from Eq. (36) we see that M̃ = SSR

The definition of Q̃i given in Eq. (33) is only

12



appropriate at real energies. However the ob-
jective of the present study is to consider the
analytic continuation of the S matrix into the
complex E-plane near channel thresholds. For
this purpose we define a modified Q with diag-
onal elements given by

Qi = e−i2π(νi+li) for all channels i. (41)

Then we can define an alternate quantum defect
matrix M, in analogy to Eq. (36), as

M−1 = (1−Q)
1
2
(
SSR
)−1

(1−Q)
1
2 + Q, (42)

where the inverse relationship between M and
SSR is(
SSR
)−1

= (1−Q)−
1
2
(
M−1 − 1

)
(1−Q)−

1
2 +1
(43)

which is obtained from Eq. (35) by removing
the tildes. Note that, when there is only one
channel, M is the same as Ml given in Eq. (20).
If all of the channels are closed, the definition
of Q is exactly the same at real energies as Q̃
from Eq. (33) so that at real energies M = M̃.
Then the condition for the bound states found
in Eq. (39) can be rewritten as

0 =
det (1−QM)∏N

i=1 z
2
i

. (44)

Furthermore, if any of the channels are
open and the open-channel momenta satisfy
Re(−2πZ/ki) >> 1 we have M ≈ M̃. In gen-
eral, if an open channel momentum has a large
positive real part one can take Qi = 0 for that
channel as long as one does not try to extend
the analysis to energies where that channel
becomes closed.

4.2 Parameterization of the mul-
tichannel quantum defect M

The M-matrix has many properties of a scat-
tering SSR matrix. It is complex symmetric,
and at real energies its eigenvalues have unit
norm. Thus we can parameterize M using a
real-symmetric K-matrix where

M = (1 + iK̃)(1− iK̃)−1 (45)

where we have explicitly included the source of
the unphysical roots found in Eq. (37) using

K̃i,j = zizjKi,j (46)

where, for real energies, K is a real symmetric
matrix that varies slowly with energy.

In general for a system where a set of quan-
tum defects and scattering matrices have been
computed, we will then want to extract the val-
ues of the K matrix by fitting the computed
data. For the bound part of the spectrum we
can fit the solutions of Eq. (44) for assumed
values of K and for purely open channel ener-
gies we can extract the Ki,j using M ≈ SSR.
To extract the values of the Ki,j when there are
both open and closed channels, one can still use
Eqs. (43), (45), and (46) to obtain a model SSR

matrix from the assumed values of K. Then
only the resulting open-channel SSR

o should be
fit to scattering data. Computing the SSR

o from
the full M matrix is the same as “elimination”
of the closed channels found in the standard K-
matrix quantum defect theory.29

4.3 The M-matrix for a simple
three-channel model

To illustrate the multi-channel version of
the M -matrix theory of quantum defects we
will first consider an exactly-solvable simple
model constructed from square-wells where the
coupled-channel Schrodinger is

−1

2

d2ψi(r)

dr2
+
∑
j

Vi,jψj(r) = Eψi(r) (47)

and using a potential of the form

Vi,j(r) =

{
V SR
i,j r ≤ r0

δi,j

[
Z
r

+ li(li+1)
2r2

+ Ei

]
r > r0

,

(48)
where in this study we will take l1 = 0, l2 = 2,
l3 = 1, Z = −1, E1 = E2 = 0, E3 = 0.7, and
r0 = 3. The short-range potential was param-
eterized with V SR

1,1 = −0.6, V SR
1,2 = V SR

2,1 = 0,
V SR
1,3 = V SR

3,1 = 0.2,V SR
2,2 = 0.35 with V SR

3,3 be-
ing varied, with a typical vallue being -0.7. In
this model, all three channels are closed with
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E < 0, the l = 0 and l = 2 channels are open
and the l = 1 channel is closed for 0 < E < 0.7.
For a range of V3,3 values there is a resonance
which occurs for just above E > 0 in addition
to the Rydberg resonances which occur just be-
low the last threshold at E3 = 0.7. As V3,3 be-
comes more negative the lowest resonance from
the l = 1 channel moves below E = 0 and
perturbs the Rydberg states in the other two
channels. This model is similar to the e-H+

2

problem considered below in Sec. 4.4 with the
same number of channels and the same asymp-
totic partial waves and with variations in V3,3
shifting the energy of the resonance in analogy
to changing the bond length in the molecular
case.

With a multi-channel S-matrix, the behav-
ior of individual matrix elements does not gen-
erally provide a basis for the analysis of the
bound states and resonances. Instead we will
use det(SSR) and det(M). First, in Fig. 11 we
show the three-dimensional plots of

∣∣det
(
SSR
)∣∣

and |det (M)| in the energy plane for V3,3 =
−0.7. In these calculations we have chosen the
branch-cut in the complex energy plane to be
on the negative imaginary energy axis, as indi-
cated in the lower panel of Fig. 5. With this
choice, the S and M functions smoothly con-
nect in the region of the real energy axis but can
have discontinuities across the negative imagi-
nary energy axis. We can see that | det

(
SSR
)
|,

which uses the full 3× 3 matrix including both
open and closed channels, contains a pole at an
energy above zero but below E3. Additionally,
the | det

(
SSR
o

)
| determined from the 2×2 open

channel sub-matrix has the same pole structure
and additionally there is a corresponding zero in
the first quadrant of the complex E-plane. Note
that with closed channels, SSR is no longer uni-
tary at real energies. However, at positive real
energies with 0 < E < 0.7 the open channel SSR

o

is unitary so that a pole at Eres− iΓ/2 must be
paired with a zero at Eres + iΓ/2, as seen in the
lower-left panel of Fig. 11.

On the right hand side of Fig. 11 we show
the corresponding plots for |det (M)| and
|det (Mo)|, obtained from Eq. (42) with SSR

o

replacing SSR . |det (M)| has no structure and
is smoothly varying over the range of energies

presented. This is what one would expect from
a quantum-defect treatment where all of the
structure due to interactions with closed chan-
nels has been removed with the transformation
given in Eq. (42). In the lower right panel of the
figure we show |det (Mo)| which is computed
from the open channel S-matrix. We can see
here that, above the threshold for the open
channels at E = 0, |det (Mo)| is the same as
| det

(
SSR
o

)
|. Then below that energy, the poles

and zeros have been removed in the M -matrix.
Thus the three-channel problem can be ana-
lyzed using M in which all of the resonances
and bound states due to the interaction of Ry-
dberg states found in SSR have been removed
in the transformation to M. Alternatively, the
isolated resonance in the third channel above
the E = 0 threshold can be treated using Mo

where the resonance will appear as a pole-zero
combination which will then move as a function
of the parameters of the problem. The fact that
Mo contains the zero and pole structure com-
ing from an isolated closed-channel resonance
is the reason that we could successfully model
the e-O+

2 resonance problem in Sec. 3.4, which
is inherently at least a two channel problem
with one open and one closed channel, as a
one-channel problem.

Just as we did in the case of the single chan-
nel model considered in Sec. 3.3, we can follow
the behavior of the prominent resonance seen in
Fig. 11 as a function of the potential strength
parameter V3,3 using the Mo representation. In
Fig. 12 we see the trajectory of the resonance
in the complex k-plane, where k is the momen-
tum in the two channels that have thresholds
at E = 0. As in the one-channel case the
trajectory of this isolated resonance does not
pass through the origin but has the pole moving
to larger negative imaginary parts of k as the
zero moves towards larger positive imaginary k
where it interacts with the Rydberg states be-
low the E = 0 threshold. In Fig. 13 we plot
the real part of the resonance energy and the
width of the resonance as a function of V3,3. We
see that the real part of the resonance energy
becomes negative at V3,3 = −0.804. The reso-
nance width at the threshold of this Feshbach
resonance is fairly broad but becomes narrower
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Figure 11: Plots of | det
(
SSR
)
| (upper left panel), | det

(
SSR
o

)
| (lower left panel), | det (M) | (upper

right panel) and | det (Mo) | (lower right panel) in the complex E-plane for the three-channel model
described in Eqs. (48) and (47) with the parameters defined in the text and with V3,3 = −0.7.
For both | det (M) | and | det (Mo) |, in the region of the complex E-plane where |Q| is growing
exponentially, as indicated in Fig. (5), the plotted results have been interpolated from regions
where the numerical calculations were stable.
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Figure 12: Trajectories of the zeros and poles of
the three-channel model from Mo as a function
of V3,3.

as the energy of the zero moves to more nega-
tive values with the value of V3,3 becoming more
negative.

4.4 Three-channel analysis of e-
H+

2 scattering

A molecular system that can be represented as a
three-channel probelm is the resonance in 1Σ+

g

symmetry in e-H+
2 scattering.30–32 This is the

smallest molecular system which can exhibit
Feshbach type resonances and can be accurately
treated using ab initio methods. In this prob-
lem, both above and below the threshold for
ionization of H2, the 1Σ+

g resonance, which is
dominated by the 1σ2

u configuration, couples
strongly with the l = 0 and l = 2 continua
above the ionization threshold and the corre-
sponding l = 0 and l = 2 Rydberg states be-
low threshold. Thus the description of the 1Σ+

g

resonance is dominated by the three channels
with configurations (1σg)(ksσg), (1σg)(kdσg),
and (1σu)(kpσu).

32 At H2 bond distances less
than 2.7 Bohr the resonance appears in the scat-
tering and at longer bond lengths the resonance
appears as a perturbation of the ns and nd Ry-
dberg series.

In all bound states computed for this sys-
tem we used a one-electron basis that con-

 !"#

 !"$

 !"%

 !"&

!"!

!"&

!"%

'
(
)
*+

,

 &"%  &"!  !"-  !".

 $/$

!"!-

!"!.

!"!#

!"!%

!"!!

0
12

34

5'()*+,
501234

Figure 13: Resonance energies and widths for
the three-channel model from Mo as a function
of V3,3.

tained an aug-cc-pVTZ basis set on the hydro-
gen atoms33,34 plus additional s, p, and d ba-
sis functions at the bond center, optimized to
represent Rydberg states,35 with nine functions
with exponents ranging from α = 0.01125 to
0.0003318 for l = 0, ten functions with expo-
nents ranging from α = 0.06054 to 0.0007901
for l = 2, and two diffuse l = 1 functions with
α = 0.04234 and 0.01925. The scattering was
computed using a coupled channel representa-
tion of the wave function36,37 with the targets
being the lowest seven eigenstates of H+

2 includ-
ing three 2Σ+

g states, two 2Σ+
u states, one 2Πu

state, and one 2Πg state. The bound state cal-
culation of the Rydberg states of 1Σ+

g symme-
try had up to two electrons in the seven target
states and up to one electron in the virtual or-
bitals.

The scattering and bound states of 1Σ+
g sym-

metry were computed at a range of RH-H dis-
tances from 2.0 to 3.2 Bohr which spans the
range of bond distance where the resonance
transitions from being a scattering resonance to
a perturbation of the Rydberg series. At each
value of RH-H the scattering SSR

o was computed
for energies from the threshold for ionization
leading to the ground state of H+

2 up to 3.25
eV below the threshold leading to the 2Σ+

u ion
state. Below the ionization threshold the s and
d Rydberg series were computed up to n = 6.
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Figure 14: Energy and width of the 1Σ+
g res-

onant state of the e-H+
2 system from Mo as a

function RH-H. R-matrix results are from Ref.30

and the ECS results are from Ref.31

Although the computed SSR
o at each RH-H

could have been fit to a multichannel extension
of the Breit-Wigner form24,38 we found that, to
parameterize both bound and continuum ener-
gies, fitting the 3× 3 K-matrix as defined in
Eqs. (45) and (46) led to fewer parameters and
a consistent treatment of the data. For each
value of RH-H, a 3× 3 K-matrix was fit using
energy-independent values of K1,2, K2,2, K3,3

and using K1,1, K1,3, K2,3 which were assumed
to depend linearly on E. For the scattering en-
ergies, the assumed K-matrix was then used to
compute M using Eqs. (45) and (46), which
was then used to compute SSR using Eq. (43)
from which SSR

o was extracted. Additionally,
the positions of the bound states were found by
solving Eq (44). The nine parameters used to
define K at a given RH-H were optimized to ob-
tain the best least-squares agreement between
the computed and model SSR

o and bound state
energies.

In Fig. 14 we show the computed resonance
positions and resonance widths as a function
of RH-H and compare our values to previously
published results for the energy of the scatter-
ing resonance30 and the width.30,31 Note that
in Ref.31 the width, estimated from an exte-
rior complex scaling (ECS) calculation, is given
for a geometry where the resonance has gone
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Figure 15: Trajectories of the zeros and poles
of the 1Σ+

g resonant state of the e−H+
2 system

from Mo as a function of RH-H. The value of
R in Bohr at selected points is indicated on the
graph.

below the threshold. The agreement between
our computed resonance positions and those ob-
tained from R-matrix scattering calculations is
very good30 although our computed widths be-
tween R = 2.3 and 2.6 Bohr increase linearly
while those from the R-matrix calculations in-
crease somewhat less rapidly. The qualitative
behavior of widths from Ref.31 is similar to
what is found here, i.e. the total width rises
as the bond get longer until the resonance goes
below threshold at which point the width of the
resonance becomes narrower. Our computed
resonance widths and energies have been plot-
ted in Fig. 15 as the trajectory of the zeros and
poles of the M matrix.

Using the computed Mo at the series of R val-
ues considered here, we then extracted partial
widths for the resonance for decaying into the
sσg and dσg channels using the multichannel ex-
tension of the Breit-Wigner form.24,38 Morales
et al.31 also calculated partial widths using a
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Figure 16: Partial widths of the 1Σ+
g resonant

state of the e-H+
2 system extracted from Mo as

a function RH-H. Both the widths for decay into
the sσg and dσg channels are given. Our results
are compared to the partial widths computed
using Feshbach projection from Ref.31

Feshbach projection operator method and in
Fig. 16 our computed partial widths are pre-
sented and are compared to those of.31 In these
fits to extract the partial widths, the total
width was not constrained to exactly match the
width obtained from the zeros and poles of the
Mo matrix. We found that the total width from
the Breit-Wigner fits differed from the width
from the zeros and poles in Mo with a root-
mean-square error of 0.1 eV. The present results
exhibit the same behavior as was found in the
Feshbach projection results, with the sσg being
much smaller than the dσg width for positive
energies. Using the Mo matrix continuation to
the bound spectrum, we find that the sσg width
approaches the dσg at negative energy.

5 Conclusion

We have seen that in the case of a scattering
problem with a long-range Coulomb potential,
the widths of resonances in the scattering do
not go to zero as the resonance moves below the
scattering threshold. In the complex k-plane
the poles in the S-matrix, which correspond to
scattering resonances, do not smoothly connect

with poles that correspond to bound states. In
analogy with the standard quantum-defect the-
ory, we have defined an M -matrix from which
the bound state energies can be extracted and
which smoothly connects with the S-matrix
above threshold. This M -matrix is obtained
using an alternative pair of linearly indepen-
dent pair of Coulomb functions. An analysis
of the behavior of the M matrix shows that it
agrees with the S matrix above threshold and
has the same pole and zero structure at positive
energies. Below threshold the poles and zeros
in SSR have been removed in the definition of
the M -matrix and the resulting quantum de-
fects are seen to have a Breit-Wigner like be-
havior in the presence of a resonant state. We
have also presented a multichannel extension of
the one-channel M -matrix which has analytic
properties very similar to the one channel ver-
sion.

Although the procedures, discussed in the In-
troduction, for obtaining resonance resonances
parameters for neutral molecules using partial
charges may give useful results ,17–20 there is no
analytic connection between any bound states
poles in the presence of a long-range Coulomb
potential and resonant states above threshold.

The introduction of the M -matrix provides a
way to parameterize the behavior of the Ry-
dberg energy levels at negative energies and
scattering S-matrices at positive energies us-
ing the same functional form. Considering two
prototypical examples, we have seen how com-
bined fits of scattering and bound state data
can be performed in both single channel and
multichannel cases. The same ideas in princi-
ple allow the practical reconstruction via ana-
lytic continuation of the motion of the poles of
the S-matrix from the behavior of quantum de-
fects alone, at least near the relevant scattering
thresholds.
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A Coulomb functions

The regular Coulomb function we use here is
defined as in references,2,39,40 and in terms of
the Whittaker function,22 Mκ,µ(z), it is

Fl(k, r) =

e−πn/2|Γ(l + 1 + in)|
2(2l + 1)!

(∓i)l+1M±in,l+1/2(±2ikr)

→ sin(kr − n ln 2kr − lπ/2 + ηl)

(49)

where the Coulomb phase shift is

ηl = arg Γ(l + 1 + in) (50)

and

n ≡ Z

k
, (51)

where Z = Z1Z2, where Z1 and Z2 are the
charges in units of e of the two interacting par-
ticles so that for an electron and an atom with
charge of +1, Z = −1.

One pair of linearly-independent outgoing
and incoming Coulomb functions, which we will
use, are H±l (n, kr) and are defined40 in terms
of Whittaker W function22 as

H±l (k, r) = (∓i)le(πn/2)±iηlW∓in,l+1/2(∓2ikr)

→ exp[±(kr − n ln 2kr − lπ/2 + ηl)].

(52)

Note that Wκ,µ(z) has a term that depends on
ln(z) so that it is a many-valued function. As
a consequence, care must by exercized when
considering the analytic continuation of these
functions, in particular in choosing the correct
branch when crossing the branch cuts in the
definition of W .

A related pair of linearly-independent
Coulomb functions, f±l (k, r),39 are defined as

f±l (k, r) = (±)l exp(∓ηl(k))H±l (Z/k, kr) (53)

so that f±l (k, r) can be written

f+
l (k, r) = e

πn
2 W−in,l+ 1

2
(−2ikr) (54)

f−l (k, r) = e
πn
2 W+in,l+ 1

2
(+2ikr). (55)

These Coulomb functions can be analytically
continued to complex values of k as discussed
by Thompson and Barnett.41
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Graphical TOC Entry

Resonance pole and zero in the analytically continued quantum defect
matrix with their trajectories.
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