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Conservative discretization of the Landau collision integral
E. Hirvijoki1, a) and M. Adams2
1)Princeton Plasma Physics Laboratory, Princeton, NJ, USA
2)Lawrence Berkeley National Laboratory, Berkeley, CA, USA

(Dated: 27 February 2017)

We describe a density, momentum, and energy conserving discretization of the nonlinear Landau collision
integral. Our algorithm is suitable for both the finite-element and discontinuous Galerkin methods and does
not require structured meshes. The conservation laws for the discretization are proven algebraically and
demonstrated numerically for an axially symmetric nonlinear relaxation problem.

I. INTRODUCTION

Development of state-of-the-art numerical methods
in plasma physics is set firmly on a course towards
structure-preserving algorithms, and for an important
reason. It is well known that integration of Hamil-
tonian systems with non-structure-preserving methods
leads to numerical dissipation and, possibly, to false in-
terpretation of the simulation results. For example, non-
structure-preserving discretization of ideal MHD can lead
to solutions that display reconnection, and tracing the
full Larmor motion of charged particles with standard
Runge-Kutta methods can lead to false changes in the or-
bit topologies. Naturally, one would prefer the discretiza-
tions to preserve the properties the continuous systems
posses.

For many of the purely Hamiltonian or variational
systems in plasma physics, recent research has indeed
provided structure-preserving discretization methods1–7.
Yet dissipative effects reside on a largely uncharted ter-
ritory: the structure, as it is understood for Hamilto-
nian or variational systems, is not that well understood
for general dissipative systems. Exceptions do exist and,
considering Coulomb collisions, the Landau collision in-
tegral8 can, in fact, be described in terms of a symmetric
metric bracket9. Unfortunately, it is not clear yet how
this specific bracket should be discretized to preserve the
underlying structural properties.

Until an appropriate discretization of the metriplec-
tic formulation is discovered, one could consider using
a discrete version of the Lagrange-d’Alembert principle
to embed a discrete Landau collision integral into struc-
ture preserving discretizations of the Vlasov-Maxwell sys-
tem. Furthermore, as finite-element and discontinuous
Galerkin methods are receiving increasing attention for
addressing the Vlasov-Maxwell part of the kinetic sys-
tem, we find it appealing to study how these two methods
would adapt to the Landau collision integral.

The result we provide in this paper is a proof that
discretization of the nonlinear Landau collision integral,
either with the standard finite-element or discontinuous
Galerkin method, indeed guarantees exact discreet con-
servation laws for density, momentum, and energy. As
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we shall show, the only requirement is to retain the
Landau’s original integral formulation and not resort
to the Rosenbluth-MacDonald-Judd potential formula-
tion10: while the potential formulation is efficient in de-
creasing the numerical burden of evaluating the collision
integral from O(N2) down to O(N logN), it simulate-
nously destroys numerical conservation laws so that arti-
ficial modification of the collision integral is necessary11.

Although we focus purely on formulating an algo-
rithm that delivers machine-precision conservation laws,
we also note that the O(N2) part of the algorithm be-
longs to the class of embarassingly parallel problems. We
thus expect our algorithm to scale well on highly vector-
ized platforms and, indeed, the feasibility of a (different)
O(N2)-algorithm has already been demonstrated12,13.

The rest of the paper is following: The Landau colli-
sion integral and its properties are reviewed in Section II.
The discretization, together with an algebraic proof of
the related conservation laws, is detailed in Section III.
In Section IV, the claimed properties are demonstrated
numerically for an axially symmetric relaxation problem,
and a summary of the results is given in Section V.

II. THE LANDAU COLLISION INTEGRAL

For clarity, we consider the like-species collisions, while
the results generalize for multi-species collisions as well.
Next, we review the explicit form of the collision integral,
normalize it to dimensionless variables, and discuss the
collisional invariants.

A. Single species collision operator

Under small-angle dominated Coulomb collisions, the
evolution of the distribution function f(t,u) in velocity
space u ∈ R3 is determined by the integro-differential
equation8

∂f

∂t
=

Γ

2m2

∂

∂u
·
∫
R3

dū U(u, ū) ·
(
f̄
∂f

∂u
− f ∂f̄

∂ū

)
. (1)

Here Γ = e4 ln Λ/(4πε2
0) can be considered a reference

collision frequency, ln Λ is the Coulomb logarithm, e
and m are the charge and mass, and u = p/m is the
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momentum-per-rest-mass. The quantities with an over-
bar are evaluated at ū.

The Landau tensor U(u, ū), valid at non-relativistic
energies, is a scaled projection matrix of the relative ve-
locity u− ū between the colliding particles:

U =
1

|u− ū|3
(
|u− ū|2I− (u− ū)(u− ū)

)
. (2)

In the relativistic case, the correct expression for the ten-
sor U(u, ū) was derived by Beliaev and Budker14

UBB =
r2

γ̄γw3

(
w2I− uu− ūū+ r(uū+ ūu)

)
, (3)

where r = γγ̄−u · ū/c2, w = c
√
r2 − 1, γ =

√
1 + u2/c2,

γ̄ =
√

1 + ū2/c2, and c is the speed of light. In the limit
c→∞, the Beliaev-Budker tensor UBB reduces to Lan-
dau tensor and the relativistic momenta, normalized to
the rest mass, reduce to the non-relativistic expressions
for velocities.

Although the focus of this paper is the nonrelativistic
limit, we will show that standard finite-element or discon-
tinuous Galerkin discretization of the relativistic collision
integral will lead to exact density and momentum con-
servation while exact energy conservation would require
development of a completely new set of basis functions.

B. Normalization

In numerical applications, one should always work in
dimensionless variables to prevent accumulation of float-
ing point errors. This is achieved by defining x = u/c
and x̄ = ū/c with c some positive constant denoting a
reference velocity. In the relativistic case c would natu-
rally denote the speed of light but for the nonrelativistic
case, it can be considered arbitrary, e.g., the thermal ve-
locity. Obviously, x, x̄ are not to be misunderstood as
the configuration space variables.

The velocity-space gradients and differential volume
elements transfrom according to

∂/∂u = c−1∇, ∂/∂ū = c−1∇̄, (4)

du = c3dx, dū = c3dx̄, (5)

while the tensor U transforms according to

U(u, ū) = c−1U(x, x̄). (6)

Further, we normalize time according to

t =
8πε2

0m
2

e4 ln Λ
τ, (7)

so that the normalized Landau integral equation becomes

∂f

∂τ
= ∇ ·

∫
R3

dx̄ U(x, x̄) ·
(
f̄∇f − f∇̄f̄

)
. (8)

C. Conservation laws

Without loss of generality, we define a domain Ω and
require that f vanishes at the boundary ∂Ω. Addition-
ally, the normal component of the velocity-space flux

J(x) ≡
∫

Ω

dx̄ U(x, x̄) ·
(
f̄∇f − f∇̄f̄

)
, (9)

is required to vanish at the boundary ∂Ω, to satisfy den-
sity conservation. Obviously, both these conditions are
true if Ω is chosen to be R3. In numerical implementa-
tions the domain Ω must, however, be finite and, thus,
we use Ω as an arbitrary domain for now.

If we now multiply Eq.(8) with a function φ, and inte-
grate over the domain Ω and apply the boundary condi-
tions, we find∫

dx φ
∂f

∂τ
=

∫
Ω

dx ∇φ·
∫

Ω

dx̄ U·
(
f∇̄f̄ − f̄∇f

)
. (10)

Upon rearranging the integration order, one obtains∫
dx φ

∂f

∂τ
=

1

2

∫
Ω

dx

∫
Ω

dx̄
(
∇φ− ∇̄φ̄

)
·U·
(
f∇̄f̄ − f̄∇f

)
.

(11)
For φ(x) ∈ {1,x}, the above expression obviously van-
ishes. Further, (∇E(x) − ∇̄E(x̄)) ·U(x, x̄) vanishes for
both the non-relativistic energy E(x) = x2 (with U
the Landau tensor) and the relativistic energy E(x) =√

1 + x2 (with U the Beliaev-Budker tensor UBB), due
to the properties of the tensor U. Thus, the quantities∫

Ω
dx φ f for φ(x) ∈ {1,x, E(x)} are referred to as colli-

sional invariants.

III. DISCRETIZATION

One of the challenges in discretizing the Landau oper-
ator is to preserve the collisional invariants that exist for
the continuous operator. Here we prove that discretiza-
tion of the weak formulation∫

Ω

dx φ
∂f

∂τ
=

∫
Ω

dx ∇φ · J ,

J =

∫
Ω

dx̄ U ·
(
f∇̄f̄ − f̄∇f

)
f(x) = 0, ∀x ∈ ∂Ω (12)

with either finite-element or discontinuous Galerkin
methods succeeds in this feat. While we provide the ex-
plicit proof for the full three-dimensional velocity-space
operator, the result holds true also for the axisymmetric
or spherically symmetric cases. We also note that weak
discretization of the multispecies collision operator simi-
larly satisfies the related conservation laws.
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A. Time-continuous equation for the degrees-of-freedom

Choose a finite-dimensional vector space Vh spanned
by the set {λ`(x)}` and approximate (f, φ) ≈ (fh, φh)
according to

fh(x, τ) =
∑
`

F`(τ)λ`(x), (13)

φh(x) =
∑
`

φ`λ`(x). (14)

Denote also F = {F`}` for convenience. Define the
vector- and tensor-valued functionals

K[F ](τ,x) =
∑
`

F`(τ)K`(x), (15)

D[F ](τ,x) =
∑
`

F`(τ)D`(x) (16)

in terms of the vectors K` and the tensors D`

K`(x) =

∫
Ω

dx̄ U(x, x̄) · ∇̄λ̄`(x̄), (17)

D`(x) =

∫
Ω

dx̄ U(x, x̄) λ̄`(x̄) (18)

Substitute fh and φh into Eq. (12) to obtain the dis-
cretized time-continuous weak formulation∑

ij

φiMij
∂Fj
∂τ

=
∑
ij

φiCij [F ] Fj , (19)

where the coefficients matrices are defined

Mij =

∫
Ω

dx λiλj , (20)

Cij [F ] =

∫
Ω

dx ∇λi · (K[F ] λj −D[F ] · ∇λj) , (21)

Since the discrete weak form (19) is to hold for arbi-
trary functions φ ∈ Vh, we obtain the following nonlinear
system of ordinary differential equations for the degrees-
of-freedom F∑

j

Mij
∂Fj
∂τ

=
∑
j

Cij [F ] Fj , ∀i. (22)

B. Discrete conservation laws

If the vector space Vh is chosen so that the func-
tions φ(x) = {1,x, E(x)} are included in Vh exactly, i.e.,
φ(x) ≡

∑
i φiλi(x), the weak discretization will auto-

matically satisfy the conservation laws.
Consider the time rate of change of φ-moment of the

numerical distribution function fh. As long as φ belongs
to Vh exactly, we can write∫

dx φ
∂fh
∂τ

=
∑
ij

φiMij
∂Fj
∂t

=
∑
ij

φiCij [F ] Fj . (23)

Let us then assume that a quadrature rule is used to
approximate integrals over the domain Ω, with weights
wq and points ξq. The vector

∑
j Cij [F ]Fj can then be

evaluated as∑
j

Cij [F ]Fj =
∑
j,q

wqFj∇λi(ξq) ·
(
K[F ](ξq)λj(ξq)

−D[F ](ξq) · ∇λj(ξq)
)
. (24)

The expressions for K[F ] and D[F ] at the points ξq are
obtained using the same quadrature rule

K[F ](ξq) =
∑
`,p

wp U(ξq, ξp) · ∇λ`(ξp)F`, (25)

D[F ](ξq) =
∑
`,p

wp U(ξq, ξp)λ`(ξp)F`, (26)

and, when substituted to the expression for
∑
j Cij [F ]Fj ,

we find∑
j

Cij [F (k)]F
(k)
j

=
∑
j`,pq

wpwqF`Fj∇λi(ξq) ·U(ξq, ξp)

·
(
∇λ`(ξp)λj(ξq)− λ`(ξp)∇λj(ξq)

)
. (27)

Since this expression is antisymmetric with respect to
changing j ↔ ` and p↔ q, we obtain∑

ij

φiCij [F (k)]F
(k)
j

=
1

2

∑
ij`,pq

wpwqF`Fjφi

(
∇λi(ξq)−∇λi(ξp)

)
·U(ξq, ξp) ·

(
∇λ`(ξp)λj(ξq)− λ`(ξp)∇λj(ξq)

)
.

(28)

The exact conservation laws then follow trivially since∑
i

φi

(
∇λi(ξq)−∇λi(ξp)

)
·U(ξq, ξp), (29)

vanishes identically for
∑
i φiλi(x) ≡ {1,x, E(x)}.

Here we wish to note that, in the nonrelativistic limit,
the energy E(x) = x2 is a polynomial, and can be ex-
actly expressed with piecewise polynomials of order 2.
Thus a standard finite-element or discontinuous Galerkin
method will have no trouble satisfying the conservation
laws. In the relativistic case, the energy E(x) =

√
1 + x2

is, however, not a polynomial and cannot be exactly pre-
sented by piecewise polynomials of any order. Thus, stan-
dard finite-element or discontinuous Galerkin method
will not achieve exact energy conservation in the rela-
tivistic case, although one could still expect the error to
converge at the order of the basis functions.
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C. A note on discretizing time

Although our purpose is not to focus on the time dis-
cretization – it should be chosen consistently with the
discretization of the Vlasov-Maxwell part – the ordinary
differential equation for the degrees-of-freedom will be
nonlinear and stiff due to the presence of both advec-
tive and diffusive components, necessitating implicit time
discretization and iterative methods. Here we comment
on the importance of solving the nonlinear time-discrete
equation exactly.

Consider Eq. (22) and assume we solve it using implicit
Euler. Denote F`(τk) = F

(k)
` so that

∂F`
∂τ

(τk) ≈
F

(k)
` − F (k−1)

`

δτ
(30)

The time discrete equation for the degrees-of-freedom
then becomes∑
j

Mij

(
F

(k)
j − F (k−1)

j

)
= δτ

∑
j

Cij [F (k)] F
(k)
j , ∀i.

(31)
Assume then that the iterative method provides us with
a solution vector F̃ that satisfies∑

j

Mij

(
F̃j − F (k−1)

j

)
= δτ

∑
j

Cij [F̃ ]F̃j + εi, ∀i

(32)
where ε = {εi}i is the residual from the iteration. For the
collisional invariants φ(x) ∈ {1,x, E(x)}, we then have∑

ij

φiMij

(
F̃j − F (k−1)

j

)
=
∑
i

φiεi ≤ |ε|∞|φ|∞. (33)

The exactness of the conservation properties for the dis-
cretized collision operator thus depends only on the ac-
curacy of the nonlinear solve.

IV. NUMERICAL EXAMPLE

For demonstration purposes we consider the relaxation
of a nonrelativistic axially symmetric bi-Maxwellian dis-
tribution function

f(x) =
1

2

(
πσ2

)−3/2

[
exp

(
−r

2 + z2

σ2

)

+ exp

(
−r

2 + (z − 0.5)2

σ2

)]
, (34)

using cylindrical coordinates x = (r, θ, z) that re-
late to cartesian coordinates according to (x, y, z) =
(r cos θ, r sin θ, z). For the computational domain we
choose Ω = {(r, z) | 0 ≤ r ≤ L,−L ≤ z ≤ L} with
L = 2. The parameter σ = 1/

√
20 is chosen so that the

initial distribution f can be considered negligible at the
Dirichlet boundary ∂ΩD = {(r, z) | z = ±L ∨ r = L}.

For the velocity-space discretization, we choose
quadratic P2-Lagrange elements, while time is discretized
with the Crank-Nicolson method. The resulting nonlin-
ear system is solved with Newton iteration, using a nu-
merical estimate for the system Jacobian matrix. Be-
cause we do not have an exact linearization of the Jaco-
bian we only observe linear convergence in the Newton
iteration, with a residual reduction rate of 0.16 for this
specific problem. The mesh is generated with the open-
source GMSH15 software, and the rest of the implemen-
tation is carried out within the PETSc16,17 framework,
using PETSc PLEX for the finite-element operations and
PETCs SNES for the nonlinear solver. The axially sym-
metric weak formulation is detailed in the Appendix and
the source code for the test problem, written in C, will
be made available online through git.

The time evolution of the distribution function is il-
lustrated in Fig. 1, for six different time instances, while
the evolution of momentum and energy are quantified in
tables I and II for different nonlinear solver tolerances.
The bi-Maxwellian distribution relaxes towards an equi-
librium state in a qualitatively correct manner and, if the
tolerance for the nonlinear solve is set to machine preci-
sion, energy and momentum are conserved to machine
precision. Otherwise the errors in energy and momen-
tum accumulate through time with a rate that correlates
with the nonlinear solver tolerance.

V. SUMMARY

We have presented an algorithm for conservative dis-
cretization of the nonlinear Landau collision integral.
We have provided both algebraic and numerical proof
for achieving exact numerical conservation laws using ei-
ther discontinuous Galerkin or standard finite-element
method. Our method is not constrained by details of the
discretization, admitting the use of structurized as well as
unstructurized meshes. We have also argued that in the
relativistic case, a polynomial basis of any order is not
able to guarantee exact conservation of energy while den-
sity and momentum would be conserved even with linear
basis functions. Future study will investigate the em-
bedding of our discrete Landau operator to the Vlasov-
Maxwell system using either the concept of Lagrange-
d’Alembert principle or extended Lagrangians18. An-
other future study will focus on performance demonstra-
tions.
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Appendix: Axially symmetric weak formulation

Using cylindrical coordinates x = (r, θ, z), that re-
late to cartesian coordinates according to (x, y, z) =
(r cos θ, r sin θ, z), and assuming axially symmetric vec-
tor space Vh, i.e., ∂f/∂θ = 0 and ∂φ/∂θ = 0, the weak
formulation can be written

2π

∫
Ω

drdz r φ ∂τf =

∫
Ω

drdz r ∂αφ
(
Kαf −Dαβ∂βf

)
(A.1)

where the friction and diffusion coefficients are

Kα =

∫
Ω

dr̄dz̄ r̄ Uαβ̄∂β̄ f̄ (A.2)

Dαβ =

∫
Ω

dr̄dz̄ r̄ Uαβ f̄ , (A.3)

and the coefficients Uαβ and Uαβ̄ are defined

Uαβ =

∫ 2π

0

∫ 2π

0

dθdθ̄ ∇xα ·U · ∇xβ (A.4)

Uαβ̄ =

∫ 2π

0

∫ 2π

0

dθdθ̄ ∇xα ·U · ∇̄x̄β . (A.5)

The expressions ∇xα are the contravariant basis vectors
for the curvilinear coordinate system.

For the nonrelativistic case, the angular integrals of
∇xα ·U ·∇xβ are easily computed. Defining a parameter

s(r, z, r̄, z̄) =
2rr̄

r2 + r̄2 + (z − z̄)2
, (A.6)

the exact expressions are

Urr = 4π
( s

2rr̄

)3/2

(r̄2I1 + (z − z̄)2I2) (A.7)

Urz = 4π
( s

2rr̄

)3/2

(z̄ − z)(rI2 − r̄I3) (A.8)

Uzr = Urz (A.9)

Uzz = 4π
( s

2rr̄

)3/2

((r2 + r̄2)I2 − 2rr̄I3) (A.10)

Urr̄ = 4π
( s

2rr̄

)3/2

((z − z̄)2I3 + rr̄I1) (A.11)

Urz̄ = Urz (A.12)

Uzr̄ = 4π
( s

2rr̄

)3/2

(z̄ − z)(rI3 − r̄I2) (A.13)

Uzz̄ = Uzz (A.14)

where the integrals I(s) are defined

I1(s) =

∫ 1

−1

(1− x2)1/2(1− sx)−3/2dx (A.15)

I2(s) =

∫ 1

−1

(1− x2)−1/2(1− sx)−3/2dx (A.16)

I3(s) =

∫ 1

−1

x(1− x2)−1/2(1− sx)−3/2dx (A.17)

and can be expressed in terms of the complete elliptic
integrals E[s] and K[s] according to

I1(s) =
4

s2
√

1 + s

(
K

[
2s

1 + s

]
− (1 + s)E

[
2s

1 + s

])
,

(A.18)

I2(s) =
2

(1− s)
√

1 + s
E

[
2s

1 + s

]
, (A.19)

I3(s) =
2

(1− s)s
√

1 + s

(
E

[
2s

1 + s

]
− (1− s)K

[
2s

1 + s

])
(A.20)
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(a) τ = 0 (b) τ = δτ (c) τ = 2δτ

(d) τ = 4δτ (e) τ = 10δτ (f) τ = 20δτ

FIG. 1. Time slices of an initially bi-Maxwellian distribution function relaxing towards an equilibrium state.
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TABLE I. Momentum conservation, measured with the innerproduct
∑

ij φ
iMijFj and φ = z for different nonlinear solver

tolerances εtol. The incorrect digits are highlighted with red color.

τ εtol =9.0E-01 εtol =1.0E-06 εtol =1.0E-14
0 3.97797664845241E-02 3.97797664845241E-02 3.97797664845248E-02
1 3.97791615978734E-02 3.97797664781777E-02 3.97797664845248e-02
2 3.97788912692161E-02 3.97797664743008E-02 3.97797664845247E-02
4 3.97786187222186E-02 3.97797664643968E-02 3.97797664845247E-02
10 3.97781761433900E-02 3.97797664423772E-02 3.97797664845247E-02
20 3.97775989653156E-02 3.97797663011934E-02 3.97797664845247E-02

TABLE II. Energy conservation, measured with the innerproduct
∑

ij φ
iMijFj and φ = r2 + z2 for different nonlinear solver

tolerances εtol. The incorrect digits are highlighted with red color.

τ εtol =9.0E-01 εtol =1.0E-06 εtol =1.0E-14
0 3.17986788742740E-02 3.17986788742740E-02 3.17986788742740E-02
1 3.17606259814932E-02 3.17986790469298E-02 3.17986788742740E-02
2 3.17718385841557E-02 3.17986794847238E-02 3.17986788742741E-02
4 3.18140462853466E-02 3.17986808661484E-02 3.17986788742741E-02
10 3.18822521328414E-02 3.17986851426220E-02 3.17986788742741E-02
20 3.19077804661782E-02 3.17986927385047E-02 3.17986788742742E-02
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