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Abstract 
State-of-the-art methods for the safe and efficient design of bicycle facilities are based on 

difficult to collect data and potentially dubious assumptions regarding cyclist behavior. 

Simulation models could offer a way forward, but existing bicycling models in the academic 

literature have not been validated using actual data. This paper attempts to address both of these 

shortcomings simultaneously by conducting a field study to obtain real-world bicycle data and 

implementing a simulation using a multilane and inhomogeneous cellular automata model to 

reproduce the observations. The resulting model is found to emulate field conditions while 

possibly under-predicting bike path capacity. The analysis indicates that the model's potential as 

for planning could be high given additional work on the underlying model specification and the 

collection of additional data. 

 

Given current concerns surrounding regional air pollution, climate change and urban congestion, 

this research is timely. If we begin to see more substantial mode shifting to non-motorized 

modes, this and similar models could become standard tools in the city or regional planner's 

toolkit. 

 

After a discussion of the context in which this research is being conducted, we review the 

relevant literature on bicycle facility design and bicycle traffic operation, before summarizing the 

real-world data collection methods and results. The simulation model is then presented along 

with results and discussion comparing the modeled to observed data. We conclude with 

suggestions for future work in data collection and model development. 
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Introduction 
Traffic engineers typically concern themselves with designing intersections and roads which are 

safe and which provide a sufficient level of service (LOS) to users. For highways, LOS is ranked 

from A to F (best to worst) according to its volume to capacity (v/c) ratio as defined in the 

Highway Capacity Manual (TRB 2000b). The capacity of a highway is the point at which a 

marginal increase in vehicle density results in decreasing traffic flow rates and corresponds to 

LOS E. The relationships between highway traffic flow, density, and speed are well understood 

through observation, models and simulations (see, e.g., Gartner, Messer et al. 2001). The 

understanding of the relationship between these basic traffic quantities and the physical highway 

environment is essential to the traffic engineer in building properly designed highways.  

 

When it comes to designing bicycle facilities, namely shared-use “bicycle”1

Given rising concern over regional air quality and climate change which are both linked to motor 

vehicle use, bicycling may become an increasingly attractive alternative to driving.

 paths and bike lanes, 

comparatively much less is known about the relationships between the basic traffic quantities 

mentioned above. Until fairly recently, most bicycle paths were designed as two lane, two-way 

facilities using some basic and arbitrary assumptions about the width required for safe bicycle 

travel. This approach does not allow for designing bicycle paths based on projected or observed 

bicycle demand, speed or other important factors. Given the lack of knowledge about bicycle 

operation, several studies have been conducted with the goal of quantifying the relationships 

between flow, density and speed, and several methods have been proposed to measure bicycle 

path LOS.  

 

2 The latter 

set of concerns stems from the burning of fossil fuels to provide transportation energy resulting 

in the emission of the greenhouse gas carbon dioxide,3

                                                 
1 Which typically carry at least pedestrian in addition to bicycle flow, although there are shared use paths for 
bicycles and mopeds (not pedestrians) in the Netherlands (Botma and Papendrecht 1991). 
2 There are substantial cultural barriers to overcome before the potential of the bicycle can be fully realized, 
however. The Secretary of Transportation, Mary Peters, in a recent television interview on the Public Broadcasting 
Station stated that, “there's about probably[sic] some 10 percent to 20 percent of the current spending [derived from 
gas tax revenue] that is going to projects that really are not transportation…Some of that money is being spent 
on…bike paths [and] trails” (emphasis mine). See http://tinyurl.com/2mxmzm for the complete transcript. 
3 Other greenhouse gases and air pollutants are also created, but carbon dioxide represents the largest proportion. 

 the primary driver of climate change 

(IPCC 2007) whose magnitude is substantial and growing. The potential to use bicycles and 
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other non-motorized modes for climate change mitigation has long been recognized. In a report 

for the World Bank written in 1992, Replogle (1992) observes that without policy support, 

nonmotorized vehicular travel will decline precipitously in major Asian cities with disastrous 

climate change effects. It appears instead that many countries, but most notably China, have 

pressed ahead with motorization goals according to recent disaggregate international vehicle 

ownership forecasts presented by Dargay et al. (2007). They project an 11 percent annual 

average growth rate for vehicle ownership in China from 2002 to 2030. This is clear evidence 

that Replogle’s (1992) advice was not heeded. 

 

The attractiveness of the bicycle increases further when combining these concerns with urban 

congestion issues. If cycling is to become a significant mode of transportation, it will have to be 

accompanied by an increase in the quality and quantity of bicycle infrastructure. As an example, 

Kingham et al. (2001) surveyed United Kingdom commuters about what factors would drive a 

mode shift to bicycle from automobile. They found that improved infrastructure, security and 

safety combined with residential locations closer to work could effect this change. At least one of 

these components—improved infrastructure—will invariably be measured using some form of 

LOS. If provided at an appropriate level, the desired changes in land use could be achieved as a 

result. 

 

In the near- to medium-term, with mode share dominated by motor vehicles, the focus of most 

construction and transportation funding is likely to remain on highways and related 

infrastructure. Therefore, research into the optimal design and operation of bicycle facilities is a 

timely venture since the bicycle facilities that we operate and design today under limited budgets 

will influence the perception of bicycling as a viable form of transportation tomorrow. Limited 

funding should not be wasted on overbuilt bicycle facilities, nor should that funding go to 

projects which provide such a poor LOS that users are unnecessarily inconvenienced or 

endangered.  

 

In this paper we discuss the relationships and differences between vehicular flow on highways 

and bicycle traffic flow on shared-use paths. We review the historical and current literature 

covering bicycle traffic flow theory and how it is used in determining the LOS and the design 
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widths of bike paths. We find that available data and data collection methods present problems in 

bicycle traffic research caused by the difficulty of observing potentially important bicycle traffic 

parameters (such as the number of passings and delayed passings) and the relative infrequency of 

paths which receive a high volume of bike traffic, thus limiting opportunities to observe the full 

range of traffic conditions. Given these difficulties, we propose the use of a Cellular Automata 

simulation model to study some aspects of bicycle operation on a bike path which are difficult to 

do otherwise. We collect bicycle traffic data from the University of California, Davis (UC Davis) 

campus at three locations with different path widths and traffic characteristics at high flow times 

to compare with simulation results. 

 

Literature Review 
Bicycle traffic theory is not as advanced as highway traffic theory and has not received nearly as 

much attention (Botma and Papendrecht 1991). Further, “significant research is required in 

almost all areas” (Taylor and Davis 1999, p. 108) of bicycle traffic including traffic flow, 

intersection control, capacity and LOS, modeling and geometric design of cycling facilities. 

However, numerous studies on bicycle operation and path design have been conducted over the 

past 40 years. Most of the early studies were conducted in Europe where bicycling as a form of 

transportation (rather than recreation) makes up a larger mode share (Pucher, Komanoff et al. 

1999). In the United States early studies were conducted around college campuses where 

dedicated bicycle facilities exist and bicycles make up a large portion of mode share. 

 

The objective of most early bicycle traffic studies was to determine the optimal bike path or lane 

width, while others were conducted to assess safety, the impact of bicycles on vehicle traffic 

flow, and capacity of intersections (see Taylor and Davis 1999 for a review). However, our 

current research is only interested with operation of dedicated bicycle and pedestrian facilities so 

we will not mention these other studies further, unless they contribute additional information.  

 

An early study of bicycle operation for the City of Davis, California and the University of 

California (Smith 1972) was conducted to determine the adequacy of then-current bicycle 

facilities and to plan for future bicycle facilities. The study begins with an overview of the state 

of knowledge of bicycle traffic theory at the time, which comes entirely from earlier European 
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research. The study reports that based on German design standards, which were the de facto 

standards at the time, a cyclist requires a minimum four foot travel lane due to the fact that a 

bicycle can not travel in a perfectly straight line and that a bicycle path or lane should then be at 

least twice this width to allow for passing. A review of the earlier European studies, summarized 

in a plot, also finds that bike path capacities are approximately 235 bikes/hr/ft, but vary across 

the studies. These two findings were the main pieces of information used to design many of the 

bike paths and lanes which exist in Davis today.  

 

Given the lack of bicycle traffic theory at the time, and the increasing popularity of bicycles in 

the United States, a comprehensive study was conducted by Miller and Ramey (1975) at the 

University of California, Davis for the DeLeuw, Cather and Company (the company was 

previously commissioned by the University and City to conducted the initial bicycle flow study 

mentioned above). The report found that then-current standards for bicycle facility design were 

based on European standards which vary widely across country and study and had not been 

validated for conditions in the United States. Further, they found that the then-current design 

standards did not consider LOS, how the user perceives the quality of the facility. The 

researchers proposed a new approach to bicycle facility analysis based on the LOS paradigm for 

Highways (HRB 1965) which grades a facility from A to F (best to worst) based on v/c ratios. 

The v/c ratios are assumed to be correlated to a user’s perception of the quality of service 

provided by a highway facility which depends on highway conditions including travel time, 

speed, safety and freedom to maneuver. In order to use this approach the relationship between 

flow and density is required. This requires the determination of the fundamental diagram of 

bicycle traffic. 

 

To determine the fundamental diagram of bicycle operation Miller and Ramey (1975) used a 

radar gun to measure speed, and counted bicycle flow on a selection of bicycle paths around 

Davis and the American River path in Sacramento. They then determined density using the well 

known relationship between the three parameters and the path width as shown in equation 1.  

(1) 
widthu
qk

⋅
=  

 where: 
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 q = flow (bikes/hr) 

 u = average speed (mph) 

 k = density (bikes/ft2) 

 width = path width (ft) 

 

A summary of Miller and Ramey’s (1975) findings which were summarized in a report by 

Homburger (1976) are shown in Figure 1. 

 
Figure 1: Fundamental diagram for bicycle flow 

 

The results, as indicated by the plot, contradict the earlier estimate of bicycle path capacity of 

235 bikes/hr/ft and appears to indicate that capacity is somewhere above 700 bikes/hr/ft. The 

authors find, based on fitting a polynomial function to the data, that capacity is reached at 792 

bikes/hr/ft. 

 

An alternative approach to characterize bicycle flow relationships was undertaken by Navin 

(1994) who analyzed cyclists under experimental conditions. Children (aged 11-14) were 

recruited from elementary schools and were filmed while riding on a 2.5 m wide ovular track 

behind a lead cyclist. Different groups were selected, each at a different lead cyclist speed. Data 

collection included speeds of cyclists (compared to the pacesetter to ensure that stability had 

been achieved) and density measured as the sum of bicycles entirely and partially on the 

observed area, divided by the area of the section. Flow was counted as the number of bikes 

passing a point per unit time. Turning radii and grade effects on speed were also observed. Navin 

(1994) concludes that the maximum flow achievable on a 2.5m wide bike path is 10,000 bikes/h, 

Q-K Plot Adapted form Miller and Ramey (1975) and Homburger (1976)
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or 1220 bikes/hr/ft, somewhat higher than the previous estimate likely due to the orderly manner 

in which the experiment was conducted. 

 

For validation of his experimental results, Navin (1994) utilizes data from Botma and 

Papendrecht (1991) who studied bicycle traffic operations on a mixed use bike path (bicycles and 

mopeds) under real-world conditions using a specially designed mat containing detectors capable 

of measuring moments of passage and lateral positions of cycles. No location where capacity 

was reached could be found and mean speed was found to be independent of path width, and 

speed measurements followed a normal distribution.  Using a definition of capacity based on an 

extrapolation of the volume-density ratio, they find an approximate capacity of 6000 bikes/hr on 

a 250cm wide bike lane, or 732 bikes/hr/ft while noting that “this value is only an indication of 

the order of magnitude of bicycle path capacity” (p. 68) since it is not clear that their data 

follows a quadratic relationship, but they still proceed to fit one to it. Alternately, they define 

capacity as reached when all cyclists are “nonfree” or constrained to follow a bike in front of 

them instead of proceeding at their desired speed. Using a decomposition of bikes into free and 

nonfree based on previously defined methods for automobiles, they determined that capacity 

varied between 1170 and 1400 bikes/hr/ft largely in agreement with Navin (1994).  

 

To determine LOS, Miller and Ramey (1975) divided the area under the curve in Figure 1 to the 

left of the critical density (found to be 0.024 bikes/ft2) into six sections and assigned them the 

familiar A – F grades. LOS A was chosen to be the area where free flow speeds were observed, 

with the other grades being assigned based on v/c ratios reported for Highway traffic in the 1965 

Highway Capacity Manual (HRB 1965). Based on this data, and findings that flow-density 

relationships are not linear with path width, minimum path widths can be determined to meet 

each level of service (see Smith 1976, Table 32 for an example of minimum path width 

determination). 

 

Navin (1994) defines LOS to “reflect riding comfort and freedom to move laterally” (p. 34). As 

such, he proposes LOS based on the free area surrounding a bicycle which he breaks into three 

zones representing shrinking distances to the reference cyclist: circulation, comfort and collision. 
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In LOS A, no zones overlap whereas in LOS F, collisions are eminent. The author then 

calculates v/c ratios for each LOS, returning to similar conclusions as above. 

 

The LOS approaches proposed above never caught on, and most paths were constructed based on 

guidelines provided by AASHTO’s “Guide for the Development of Bicycle Facilities,”  the latest 

edition of which was published in 1999 (AASHTO 1999). Earlier editions form the basis of the 

1985 Highway Capacity Manual’s bicycle recommendations (TRB 1985). The AASHTO guide 

recommends a 10 foot wide bike path and under expectations of high usage up to 14 foot wide 

bike paths. These guidelines appear to be based on earlier research indicating that a cyclist 

requires a minimum of four feet per lane, so that a two lane bicycle path (two direction bike 

paths) should be at least eight feet wide. An extra two feet are added to accommodate service 

vehicles and allow some extra room for passing.   

 

Nearly two decades after the first LOS approach was proposed, Botma (1995) and Allen et al. 

(1998) proposed a new LOS approach based on the idea of hindrance. Botma’s (1995) idea was 

that the quality of a bicycle path trip was based on how constrained a cyclist’s movements are. 

This is similar to the ideas of Miller and Ramey (1975) and that of the LOS used for highways in 

the Highway Capacity Manual (TRB 2000b) but differs in that Botma (1995) does not assume 

density is the most important factor in determining hindrance. Instead, he proposes that the 

number of passing and meeting (meeting a cyclist traveling in the opposite direction) events are 

better proxy of hindrance and hence of LOS. This may be a better measure of LOS due to several 

important differences between bicycle facility operation and highway operation. The first is that 

not all cyclists attempt to travel at the same maximum speed. Slow cyclists often impede faster 

cyclists as the faster cyclist must wait for an opportunity to pass. Each acceleration to pass a 

slower cyclist adds to the fatigue and delay of the faster cyclist.  The second is that bicycle paths 

are often in reality “mixed-use” paths which also serve pedestrians and other non-motorized 

vehicles which impede the cyclist. 

 

Both papers (Botma 1995; Allen, Rouphail et al. 1998) provide similar methods for estimating 

the number of passing and meeting events based on some assumptions about bicycle operation 

and the path. The major assumption are that slow cyclists do not impede faster cyclists, the path 



 8 

only contains two lanes, meeting events provide 50 percent less hindrance then passing events 

and that cyclist speed is normally distributed. The first two assumptions severely limit the 

usefulness of the proposed methods since cyclists do not actually travel in lanes and a planner 

may want to design a bicycle path with more than two lanes. The second assumption, that slower 

cyclists do not impede faster cyclists, is plainly unrealistic and likely to be important. 

Additionally, the third assumption is based solely on the opinion of the researchers. However, at 

least one study (Virkler and Balasubramanian 1998) found that the proposed methods did a good 

job at predicting meeting and passing events.  

 

As in previous cases, LOS is assigned a grade from A-F with A being fewer passing and meeting 

events and F being many. The most current Highway Capacity Manual (TRB 2000a) adopts this 

methodology as its recommendation for determining the LOS of a bicycle path. In the 2000 

Highway Capacity Manual, the formulas presented to determine passing and meeting events 

include an additional assumption that the mean speed of bicycle traffic is 11.2 mph with a 

standard deviation of 1.9 mph. No guidance is provided on how to incorporate knowledge of 

different average speeds.  

 

Due to the above mentioned limitations a new study, the most recent available, “Evaluation of 

Safety, Design, and Operation of Shared Use Paths” (Hummer, Rouphail et al. 2006) has 

suggested a new method of determining LOS and bike path width.  The study’s stated goals are 

to produce an objective measure of bicycle facility LOS which is verified with actual field data, 

including cyclist’s opinions, and is easy to implement with readily available or easy to collect 

data. The proposed method extends the methods of Botma (1995) and Allen et al.(1998) to 

account for passive passing events, delayed passing events, and variable path width. Passive 

passing events occur from the point of view of the cyclist being passed. Delayed passing events 

are those that a faster cyclist wishes to make, but must wait for a suitable opportunity.  

 

In order to determine an objective LOS measure, cyclists were surveyed about their opinions of 

the quality of service provided by bike paths of different designs and under different traffic 

conditions. This was accomplished by showing a group of 105 respondents, mostly from local 

bicycle user groups, 36 one minute video clips of bike paths of different designs and traffic 
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conditions and then asking them to rate on a five-point scale their assessment of the adequacy of 

lateral and longitudinal separation, ability to pass and their over all opinion of quality of service. 

The results were then analyzed to obtain a regression equation which relates the respondent 

perceptions of the quality of service to the physical attributes and traffic condition of the 

displayed paths.  

 

The resulting equation is able to determine a LOS score between one and five based on the 

number of weighted events (active and passive passing and meeting), the path width and whether 

or not the path has a center line.  However, the survey instrument was not able to capture user 

perception of delayed passing events because they would be impossible to observe in the 60 

second video clips. Accordingly, a correction factor was added based on the judgment of the 

researchers which reduced the LOS score in proportion to the number of delayed passing events.  

The resulting LOS was assigned the usual A-F grades, with a LOS score of three defining the 

boundary between LOS C and D.  

 

To make practical use of this method, an engineer or planner must know the number of active, 

passive and delayed passing events to determine the LOS or, based on a desired LOS, to 

determine the proper path width. However, these metrics are extremely difficult to measure in 

the field. The study by Hummer et al. (2006) used a floating bicycle observer method, complete 

with onboard video, speed and audio recording devices. Additionally, if a new path is being 

designed, the engineer or planner needs a method to estimate the required variables. Hummer et 

al. (2006) developed a model to estimate the required variables given the path width, whether or 

not there is a center line, flow rate and mode split (ratio of cyclists to pedestrians).  The model 

estimates the number of events that a cyclist traveling at the average speed (12.5 mph) would 

experience.  

 

While the method proposed by Hummer et al. (2006) expands and improves on the earlier 

hindrance methods, it still relies on assumption of average speed and speed distribution, assumes 

a 50/50 directional split in flow and relies on a complicated probabilistic model to estimate the 

required variables. The validity of the survey technique to determine user perception of bicycle 

operational quality is also subject to question—the use of bicycle club members instead of a 
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more representative cyclist or general populations sample has likely biased their results. Slower 

cyclists or cyclists with different objectives may value path attributes differently. A LOS 

measure dependent on such an unrepresentative segment of the population cannot be justified for 

use in a nation wide design standard. 

 

While simulation models cannot tell us anything about a user’s perception of bicycle facility 

quality, they could provide insight into how various parameters, including cyclist behavior, can 

impact facility operation. Field data, especially potentially important variables such as passing 

and delayed passing, can be difficult to observe. Additionally, field observations are limited to 

the conditions that exist today. For example, we rarely observe congested bicycle facilities and 

are limited to studying bike paths that are no more than 20 feet wide. Simulation models can help 

fill in the gaps and explore alterative designs.  For these reasons, we propose a simulation model 

to aid in bicycle facility design. The remainder of this paper describes the bike flow data 

collected on the UC Davis campus and our attempts to reproduce key features of the data using 

simulation modeling. 

 

Methods: UC Davis data collection 
The UC Davis campus provides a good environment for the study of bicycle operation due to a 

large network of shared-use bike paths and dedicated lanes, and the popularity of using bicycles 

for non-recreational purposes. Bicycle traffic data was collected between November 30, 2007 

and December 5, 2007 at three locations on campus during peak traffic conditions. The sites 

were chosen based on the following criteria: 

 

• High bike flows 

• Designated bike paths with minimal pedestrian and motor vehicle cross traffic 

• Far enough from intersections or other obstacles which could impede traffic 

 

The bicycle paths and data collection sites (red boxes) are shown in the images below. 
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Figure 2: Site 1 – Bird’s eye view, Russell 

  

 
Figure 3: Site 1 - Ground level view, Russell 
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Figure 4: Site 2 – Bird’s eye view, Bio 

 
Figure 5: Site 2 - Ground level view, Bio 
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Figure 6: Site 3 – Bird’s eye view, Arc 

 
Figure 7: Site 3 - Ground level view, Arc 
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The Russell and Arc sites typify the larger style bicycle paths around the campus while the Bio 

site typifies a narrower style path. Each of the bicycle paths in this study has a yellow center line 

and a fairly straight sampled section. The Arc path is concrete while the Russell and Bio paths 

are asphalt. The Russell and Arc sites are largely used for traveling from residential areas to the 

campus core, resulting in heavy morning traffic flows and relatively little pedestrian traffic. The 

Bio site is closer to the campus core located near a number of large lecture halls and experiences 

heavy traffic between courses. The Bio site also has a fair number of pedestrians, though many 

choose to walk on a dirt track on the side of the path to avoid bicycles (see Figure 8).  

 

 
Figure 8: Dirt pedestrian track at Bio site 

 

The details of the data collection sites and times are provided in  Table 1 below. The peak flow 

periods were short, lasting only 10 to 15 minutes, and usually occurred just before the hour 

during morning commutes and during class changes. Traffic during other time periods was 

generally much lower. Accordingly, we chose to record during peak periods. 
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Table 1: Data collection site details 

 Data Collection   

Site Date Time Length Path Width Sample Area Length 

Russell 12/5/2007 8:45am 16min 9.6 ft (east) / 7.75 ft (west) 30ft 

Bio 11/30/2007 11:45am 14min 12 ft 19.5 ft 

Bio 12/3/2007 8:40am 24min 12 ft 19.5 ft 

Arc 11/30/2007 8:45am 12min 20 ft 20ft 

 

Bicycle traffic data was collected using a hi-definition digital video camera (Sony HDR-SR1) 

mounted on a tripod along the side of each path providing a perpendicular view of same. At each 

site we moved the camera as far back from the path as possible to maximize observation area. 

This area is shown in Table 1 as the Sample Area Length. Reference lines were placed across 

each path using pink duct tape or ribbon to clearly mark the sample area.  

 

The bicycle traffic videos were then downloaded onto PC workstations and analyzed using 

Media Player Classic v6.4.9.0 video playback software.4

                                                 
4 http://sourceforge.net/projects/guliverkli 

 This software allowed us to set discrete 

time intervals for observation. From the videos, bicycle flow and density and pedestrian flow 

were recorded in each direction. Flow was recorded by counting the number of bicycles or 

pedestrians entering the sample area during 30 second intervals and then dividing by the path 

width. Unlike highway traffic flow which is reported in flow per lane, bicycle paths do not have 

lanes and so flows are reported per unit of path width. For directional flows, the path width was 

assumed to be the distance from the center line to the edge and for combined flows the width of 

the entire path. This assumption was made based on our observations that bicycles generally 

observed the center line, keeping to its right side. The corresponding density was recorded in one 

second time steps by counting the number of bicycles or pedestrians within the sample area at a 

point in time and then dividing by the sample area. Similar to the flow calculation, the area for 

directional density was assumed to be the distance from the centerline to the edge multiplied by 

the sample area length. The average density over 30 seconds was then estimated by averaging 30 

density observations. Speed data was not collected due to the labor intensity involved with hand 

clocking (using a stopwatch to time bicycles cross a known distance) and that our small sample 
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width areas are not ideally suited for such measurements (a larger distance would provide more 

accurate average speed measurement).    

 
Results and discussion: UC Davis data collection 
The plots in Figure 9 show the 30 second counts and cumulative counts of bikes at two of the 

sites. The Russell site is not displayed because it was counted differently. At the Russell site the 

flows moved in platoons due to a signalized intersection upstream of the data collection area. To 

reduce the burden of the bicycle counting and density estimation steps we only took 

measurements of the platoons ignoring the flow in-between them. However, the trends displayed 

in Figure 9 and Figure 10 describe the traffic patterns observed at the Russell site.  

 

 
Figure 9: 30 second bike counts and cumulative bike counts 

 

The plots in Figure 9 show that bicycle flows were variable, most notably at the Arc site were the 

affect of the up stream traffic signal that impacted the Russell site can still be noticed. The plots 

also indicate that peak flows only lasted several minutes and that at each site we observed 

between 250 and 300 bikes. 

 

The flow-density relationships at each site are shown in Figure 10. The blue points indicate 

traffic moving to the right and green points to the left. At each site, for each direction, flow was 

positively correlated to density, indicating that at no time did we observe densities above 

capacity. Fitting a line thought the combined right and left moving traffic observations and 

finding the slope provides an estimate of the average speed and is also displayed in Figure 10. 
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Figure 10: Flow-density plots and average speed estimates 

 

The estimated average speeds are close to those reported in the literature (Miller and Ramey 

1975; Homburger 1976; Smith 1976; Allen, Rouphail et al. 1998) though they vary across the 

three sites and appear to increase with increasing path width.  

 

Methods: simulation modeling 
Cellular automata (CA) models are widely used across many disciplines to explore interactions 

between agents that possess a finite set of changeable characteristics. CA models are discrete 

since the interactions occur on a grid of finite size and number of locations (cells). Such models 

have recently seen increasing academic attention particularly in physics, mathematics and 

computer science.5

                                                 
5 Indeed, a query for “cellular automaton or cellular automata” returns slightly over 6000 results with 54% published 
in 2001 or later. 

 The application of a CA approach to traffic flow was proposed by Nagel and 

Schreckenberg (1992) who modeled a single-lane under free flow and congestion conditions. 
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In a CA model for traffic flow, each cell represents a discrete section of the roadway of a 

specified distance. In any given time step, that cell may either be occupied, or not. An iteration 

of the model begins by updating all speeds in the network. If the speed of a vehicle is less than 

the limit and the distance to the next vehicle is greater than the current speed plus one, it is 

incremented. If the space between the current vehicle and the next is greater than the current 

vehicle’s speed, it decelerates to the distance between vehicles minus one. Since human beings 

do not operate deterministically, and we are attempting to model human behavior, a random 

element is then imposed—if a certain (usually) small probability threshold is exceeded, then the 

current vehicle reduces its speed by one. This property keeps the system from quickly entering a 

deterministic state (Nagel and Schreckenberg 1992). Finally, the positions of all vehicles are 

updated based on their speeds, and the model is iterated again until the desired number of time 

periods has been modeled. 

 

The utility of CA models for traffic flow stems from the shortcomings of existing models. Traffic 

flows can be investigated at a variety of levels ranging from the most aggregate (traditional four 

step travel demand models) to the most disaggregate (microscopic simulation models). However, 

it is difficult, costly and sometimes impossible or meaningless to extract macro-level traffic 

characteristics from micro-level models and vise versa (Benjaafar, Dooley et al. 1997). CA 

methods can explicitly include individual driver behavior, extend to multi-lane cases, and are 

relatively simple and cheap in terms of computing time and effort required (Benjaafar, Dooley et 

al. 1997). The results of many CA model runs can be aggregated to study the macro-level traffic 

characteristics of a given roadway including plots of the fundamental diagram, traffic 

characteristic-time, and space-time (trajectory) plots. 

 

Several parameters must be specified for CA model implementation. For traffic flow these 

include length of roadway, cell length (vehicle length since they must be equal as a cell can 

either be occupied or not), speed limit (in miles/hour or cells/update time), and the time 

increment under study. 

 

Due to the simplicity of the CA model, research on its implementation under various conditions 

has been extensive. Of particular relevance to the present study, recent attempts have included 
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models which are purported to represent bicycle flow (see, e.g., Jiang, Jia et al. 2004; Jia, Li et 

al. 2007). These models are not CA in the strictest sense—they are multi-value CA models in the 

sense that each cell may be occupied by a number of vehicles greater than one. In both example 

papers, the maximum number of bicycles occupying a given cell is four. They also introduce 

inhomogeneous vehicle fleets to account for the differences in speeds observed between cyclists 

of different ability, age and equipment. Two maximum speeds were used: two cells/update for 

fast bicycles, and one cell/update for slow bicycles. Neither model was empirically validated 

using actual bicycle data which makes their relevance to bicycle planning applications highly 

questionable. Additionally, we argue that the additional utility gained by switching to a multi-

value CA model may outweighed by the additional model complexity introduced. For these 

reasons, this paper implements a multi-lane inhomogeneous CA model to investigate bicycle 

flow characteristics on a one mile loop with varying parameter values. We utilized Matlab 

R2006a (The MathWorks Inc. 2006) for model implementation. The model parameters are 

discussed below. 

 

The approach taken here is shown to be computationally simple while providing rich behavioral 

data for comparison to the empirical results described above. It is expected that this tool could be 

used to determine LOS measures for new bike path construction.6

The extension of the single lane CA to the two lane case was originally proposed by Rickert et 

al. (1996). The algorithm described below borrows from their work. It involves much the same 

logic as the single lane case with several exceptions. Before the acceleration step, both lanes are 

examined to evaluate lane changing opportunities. Irrespective of the lane changing rule 

employed,

 

  

7

                                                 
6 Of course, without accurately forecasted bike travel demand, these models will not produce reliable results. The 
travel demand modeling of bicycles is an interesting field substantially overlapping the study of transportation and 
land use interactions. The interested reader is referred to Cervero and Kockelman (1997) for a discussion of how the 
built environment can affect the generation of non-motorized trips and to Porter et al. (1999) for an overview of 
pedestrian and bicycle forecasting issues. 
7 To be discussed further below. 

 the action of changing lanes is taken to be strictly parallel in the sense that every 

vehicle decides simultaneously at the beginning of each time step whether to change lanes. This 

ensures that no vehicles are favored in the lane changing process, and that nothing changes in 

between time steps that would affect the resultant outcome. Unfortunately, this adds to the 
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computational burden, since many operations could be rolled into one if sequential updates were 

instead used. 

 

The actual implementation of the multilane case takes the form of several if statements combined 

with functions which are capable of looking forward and backwards in the opposite lane. The 

case of three or more lanes would require many additional statements and added complexity 

(Daoudia and Moussa 2003). For our initial lane changing rule we implemented the following 

conditions which must all be true in order for a vehicle to change lanes, following Rickert et al. 

(1996): 

 

• The gap in the current lane to the next vehicle is less than or equal to some desired 

threshold, x (nextVeh <= x) 

• The gap ahead in the next lane is greater than or equal to some desired threshold, xo 

which may or may not be equal to x (nextVehO >= xo) 

• Looking backwards, the closest vehicle is sufficiently far away (backDist >= y) 

• A random number is less than the probability of lane change (rand < pLane) 

 

The relevant quantities are illustrated in Figure 11. Rickert et al. (1996) note that the omission of 

the final condition leads to rapid lane changing behavior if all vehicles are initially located in the 

same lane and density is relatively high. This is because of parallel updating. Since they all look 

ahead and see a gap smaller than desirable, they all decide to change lanes. The same thing 

happens in the next time step and the process repeats ad infinitum. However, reducing the 

probability of lane changing to 0.5 from 1.0 reduces the number of these “ping-pong” changes by 

a factor of five (Rickert, Nagel et al. 1996). In any case, the random properties of the CA model 

are what make it interesting from a behavioral perspective; the extension of this idea to lane 

changing behavior is no exception. As an additional mitigation measure, all vehicles were 

initially randomly distributed across the two lanes with speed equal to zero to ensure that no 

steady state patterns would form upon model initialization. 
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Figure 11: Illustration indicating relevant quantities for lane changing rule, adapted from Knopse et al. 
(2002)  
Note: Shaded cells are occupied by vehicles 
i = vehicle for which we are determining lane changing quantities 
backDist = distance from the present vehicle to the closest vehicle opposite the direction of travel in the 
opposite lane 
nextVehO = distance from the present vehicle to the closest vehicle in the direction of travel in the opposite 
lane 
nextVeh = distance from the present vehicle to the closest vehicle in the direction of travel in the same lane 
 

Parameters 
The value of undertaking a modeling exercise in this case lies in the calibration of the model 

results to the observed data. To this end, there are several parameters which were held constant 

across model runs as they reflect more or less physically constant values as observed in the 

literature. These are listed along with their assigned values in Table 2. Above a certain value, the 

length of roadway considered should not affect model results, as long as there is sufficient 

distance for the bicycles to reach a steady state. Preliminary testing revealed that one mile was an 

appropriate length. Using seven feet as the cell length is justified in combination with the 

maximum speeds used for slow and fast vehicles. Average cycling speeds reported in the 

literature, as discussed above all fall around 12 mph which translates approximately to 2.5 cells/s 

given a 7 foot cell length. Similarly, faster bicycles seldom travel faster than 15 mph, or 

approximately 3 cells/s. Given these observations, we choose speeds of 2 (9.5 mph) and 3 cells/s 

for slow and fast cyclists respectively. Our observations also indicated that bicycle speed was 

relatively constant with little probability of random slowdowns, save for the occasional cellular 

phone using bicyclist. 
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Table 2: Constant parameters 
Parameter Value 
Length of road 1 mile 
Length of cell 7 feet 
Max speed 1 3 cells/s 
Max speed 2 2 cells/s 
Slowdown probability 0.1 
Symmetry No 

 

Other model parameters were varied since they were expected to have a significant effect on the 

results. These are listed in Table 3. 
Table 3: Variable parameters 

Parameter Values 
Look back distance 0, 1 
Probability of lane change 0, 0.7, 0.9, 1 
Proportion of slow vehicles 0.25, 0.5, 0.75 

 

The lane changing rule as currently described gives no preference to occupying either lane. That 

is to say that once a vehicle is traveling in either lane, they stay there until another vehicle in that 

lane appears as though it will slow them down. This condition is known as symmetry and is not 

how cyclists behave. Instead, they attempt to overtake slower vehicles and then shift back to a 

position in front of the vehicle just passed. Thus, even though there are no ‘lanes’ per se, cyclists 

behave as if there is one lane for passing, and one lane for through traffic, especially on narrow 

lanes such as that at the Bio site. To implement the asymmetric condition in the model, the first 

lane changing rule is omitted when determining desirability of lane change from the left lane to 

the right hand lane. This means that a vehicle in the left hand lane need not be obstructed by a 

vehicle in front, but will try to get back into the right hand lane at the earliest opportunity. 

 

Following the absence of symmetry from cyclist behavior, the third lane changing rule involving 

the look-back threshold was altered between low values. Since the consequences of obstructing 

another cyclist are low compared to the obstruction of an automobile, the threshold must be set 

much lower than for the vehicle case to emulate actual cycling behavior. 

 

Finally, the proportion of slow vehicles was varied. Since we did not measure speed distributions 

in the field, we have only obtained average values for platoons of flow lasting 30 seconds. It is 

not possible to observe relative proportions from the video recordings.  
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Results and discussion: simulation modeling 
Seven scenarios of the model were run varying over the parameters described in Table 3. Each 

model run is defined in Table 4.  
 

Table 4: Scenario definitions 

Scenario 
Probability of 
Lane Change 

Proportion of 
Slow Bikes Look Back 

Run 1 0.9 0.5 No 
Run 2 0.9 0.25 No 
Run 3 0.9 0.75 No 
Run 4 1 0.5 No 
Run 5 0.7 0.5 No 
Run 6 0 0.5 No 
Run 7 0.9 0.5 Yes (1 cell) 

 

For each run the usual plots were created: flow-density (Q-K), speed-density (U-K) and speed-

flow (U-Q), along with plots of the amount of lane changing across densities.  

 

Flow and speed were calculated for each lane using the boundary method, which is analogous to 

a set of two loop detectors on a highway. In our case the boundary was the interface between two 

neighboring cells. If a vehicle had a velocity of 1 cell/second at cell i and time t, it passed though 

the boundary between cell i and cell i+1 by time t+1 second. Similarly, a vehicle with a velocity 

of 2 cells/second at cell i-1 at time t also passed though the boundary between cell i and cell i+1 

by time t+1second, and a vehicle with no velocity in cell i at time t did not pass though the 

boundary. The traffic simulation was broken into 30 second observation periods (which 

corresponded to the observation periods used in our field data collection) during which boundary 

observations were accumulated and averaged. Average velocities were estimated using a 

harmonic average to generate a space-mean speed.  

 

Density could be estimated using its relationship with the calculated flow and speed above; 

however, since we can not observe bikes with a velocity of zero crossing the boundary these 

bikes would not be reflected in the estimate. This turns out to be an increasingly important 

consideration at high densities when many bikes have velocities of zero. Alternatively, density 

was estimated at the cell to the left of the boundary used above. If a bike was present the density 

was unity, otherwise it was zero. The observed densities over a 30 second period were summed 

and averaged.  
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The flow and density for each lane were then added together to obtain the density for the bike 

path. The average speed of the bike path was computed using a harmonic average of the average 

speed from each lane. The results were than standardized for comparison to our field data and the 

literature. Flow was converted from bikes/hr to bike/hr/ft by dividing by eight feet based on the 

assumption that each “lane” in our CA model was four feet wide. This follows from the 

literature, where bikes lanes are often assumed to be four feet wide. Density was converted from 

bikes/mile to bikes/ft2 by diving by the area of the bike path, again assuming that each lane was 

four feet wide. Speed was reported in miles per hour and is assumed to not be a function of the 

bike path width. 

 

Figures 12-14 show the flow-density (Q-K) and velocity-density (U-K) plots for runs 1 – 3. The 

three scenarios show the effect of increasing the proportion of slow bikes in the CA model. 

There are two noticeable effects. With an increasing number of slow bikes the capacity of the 

bike path is first reached at a higher density (see the Q-K plots) and the average speed is lower at 

low densities under free flow conditions (see the U-K plots). These results make intuitive sense. 

Average free-flow speeds should be lower if there are a greater proportion of slow vehicles and 

capacity should be reached at higher densities given the slower free-flow speed.  

 

 
Figure 12: 25 percent slow bikes 
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Figure 13: 50 percent slow bikes 

 

 
Figure 14: 75 percent slow bikes 

 

Figures 15-17 show the flow-density (Q-K) and velocity-density (U-K) plots for runs 4 – 6. The 

three scenarios show the effect of changing the probability of a lane change in the CA model. 

Again, there are two noticeable effects. Allowing lane changing reduces the capacity of the bike 

path (compare Figure 15 and 17). Without lane changing, capacity is approximately 500 

bikes/hr/ft while with 100 percent lane changing, capacity is about 425 bikes/hr/ft. Furthermore, 

increasing the probability of lane changing reduces capacity. The second effect is that without 

lane changing, the average free flow speed is reduced. Free flow speeds range from 10 mph to 14 

mph with lane changing but only from 8 mph to 11.5 mph without lane changing. These results 

also make sense. Not allowing lane changing reduces slow downs caused by passing vehicles 

“cutting off” vehicles behind them (recall that these scenarios do not have “look-back”). 
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Additionally, by not allowing passing, the speeds of faster vehicles are limited by the slower 

moving vehicles.  

 
Figure 15: 0 percent probability of lane change 

 

 
Figure 16: 70 percent probability of lane change 

 

 
Figure 17: 100 percent probability of lane change 
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The last scenario, examining the effect of look-back, is displayed in Figure 18. The effect of 

allowing cyclists to “look-back” one cell (7 feet) before changing lanes allows both a high flow 

rate (just over 500 bikes/hr/lane) and maintenance of free flow speeds. The higher flow rate and 

speed is achieved since cyclists reduce the amount of slow downs caused by “cutting off” other 

cyclists and may maintain their desired free-flow speeds as long as they have a one cell gap  in 

the left lane to move into. 

  

 
Figure 18: One cell look-back 
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and delayed lane changes occur, a second form of hindrance. While we do not directly observe 

delayed lane changes, we do observe the drop in the amount of lane changing as densities 
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Lane changes are observed from a matrix which records when a lane change is made in the CA 

network matrix.  Lane changes are observed at the cell to the left of the boundary used to 

observed speed and flow. Similar to the method used to observed density the lane change 

observations are summed and averaged over a 30 second time window. The reported number of 

lane changes per hour therefore represents the number of bikes engaged in a lane change at the 

boundary.  

 

The plots of lane changes over density in Figure 19 show the effect of different proportions of 

slow moving vehicles on lane changing frequency.  The plots are basically the same, indicating 

that the proportion of slow moving vehicles does not greatly influence the amount of lane 

changing. The plots in Figure 19 also show that the amount of lane changing increases with 

increasing density until around 0.025 bikes/ft2. At this density, which corresponds to the point at 

which speeds are severely reduced and many vehicles are stopped (see Figure 12), the amount of 

lane changing drops off sharply. This is caused by the inability to switch lanes because of 

occupancy by another vehicle, indicating that traffic conditions are likely to be just as bad in the 

other lane.  

 
Figure 19: Lane changing with 25 (left) and 75 (right) percent slow moving bikes 

 

Figure 20 shows the impact of varying the probability of lane change parameter. As would be 

expected, the amount of lane changing increases when this parameter is increased. With a 100 

percent probability of lane changing (every time a lane change would be beneficial, a lane 

change is made) a maximum lane changing rate of almost 80 lane changes per hour is observed.  
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Figure 20: Lane changing with 100 percent (left) and 70 percent (right) probability of lane change 

 

When a one cell look-back is used, capacity and free-flow speeds are increased due to more 

prudent lane changing. Figure 21 shows that with a one cell look back, far fewer lane changes 

are made. Additionally, the maximum lane changing rate occurs at a much lower density then in 

the zero look-back scenarios—at about 0.008 bikes/ft2 compared to 0.025 bikes/ft2, respectively. 

This is sensible since at higher densities there will be fewer times when the gap is great enough 

to change lanes.  

 
Figure 21: Lane changing with one cell look-back 
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two scenarios from the CA model which produced the two most distinct fundamental diagrams, 

Run 1 and Run 7, with plots of our field data. These are shown in Figure 22. 

 
 

 
Figure 22: Field data and simulation fundamental diagram comparison 

 

The field data closely matches both simulation results, completely falling within the range of 

values produced by the simulation. The Russell and Arc site data appear to more closely match 

the Run 7 scenario while the Bio site data matches more closely to the Run 1 scenario. The 

modeled capacities (maximum flow) also fall within the lower range of bike path capacities 

reported in the literature which were previously mentioned. While these results do support our 

argument that CA models can be used to model cyclist behavior, they do not offer concrete 

proof. To validate and calibrate our model will requires more field data over a larger range of 

densities, and collection of additional types of data such as speed distribution and lane changing 

(or passing). Limitations presented by the time frame of this project and available equipment to 

reduce the labor intensity of the data collection effort precluded us from collecting these data.  
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Given the lack of validation, the CA model with lane changing still appears suited to the task. By 

varying the look-back distance we can observe a change in bike path capacity. We observe from 

the field that many cyclists (at least at UC Davis) do not look back, cutting off other cyclists and 

thus creating slow downs. The model gives us a way to explore how a cyclist education program 

could help improve bike path operation by increasing look-back.  Additionally, by increasing the 

proportion of fast cyclists we can observe that capacity is reached at a lower density. This feature 

is important to model how bicycle paths should be designed for different types of users. These 

are just two examples, but they demonstrate how the model is sensitive to parameters that are 

known to effect bicycle path operation.  

 
Future work 
The CA model presented in this paper has shown good agreement with observed data. However, 

it models a critical density which is at the low end of those observed in the literature (see Allen, 

Rouphail et al. 1998 and above discussion). This is likely due to the model update rules. Recall: 

if the space between the current vehicle and the next is greater than the current vehicle’s speed, it 

decelerates to the distance between vehicles minus one. This means that closely packed vehicles 

all traveling at equal speeds are not possible given the current model configuration. While this 

rule applies to automobile flow, it may not adequately capture bicyclist behavior at high 

densities. Future simulations will include varied update rules allowing for the formation of 

tightly packed, high speed platoons. This will push up the critical density and thus maximum 

flow. It will also lend more confidence to the capacity predictions output by the model which are 

undoubtedly already a vast improvement over fitting a polynomial expression to data with a 

dubious fit. 

 

The effect of lane width will also have to be further investigated. As the model currently 

functions, there is no influence of lane width—in calculating densities on an area basis, we have 

simply assumed that we more closely modeled a narrow path (Bio) since on that path, bicycles 

traveled in mostly a two-lane configuration and could not extend far beyond that. However, the 

model outputs could simply be scaled by an arbitrary lane width. A more realistic approach 

would introduce friction factors that increase as lane width narrows. These would introduce 

lateral interactions in addition to parallel ones within the CA model structure. Under this 
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framework, a passing cyclist could slow down the cyclist that was passed which could have the 

effect of causing slowdowns. 

 

An additional extension closely related to the above would be the addition of multiple lanes to 

allow for the modeling of wider bike paths. As noted above, for the case of automobiles, this has 

been attempted by Daoudia and Moussa (2003) and could be relatively easily applied to the 

present case of bicycles. The influence of cross traffic could also be considered in a bidirectional 

framework such as that proposed for vehicular traffic by Simon and Gutowitz (1998). While they 

only considered the case of a two-lane highway, we would necessarily have to consider more 

complex interactions since bicycle flows necessarily in multiple ‘lanes’ in one direction. 

 

Finally, the technological methods of our empirical data collection could be vastly improved. 

Manually counting vehicles was tedious. Automated detectors similar to those used for 

automobile traffic would be an improvement, as would methods of collecting speeds using a 

radar gun, for example. This would allow validation of the flow and density measurements which 

could be extracted from detectors. 

 
Conclusions 
We have presented the first empirically validated, multilane, inhomogeneous CA model for 

bicycle flow in the literature. It was found to accurately model the fundamental diagram of 

bicycle flow while possibly underestimating bicycle lane capacity due to the CA update rules. 

With additional research, this could become an invaluable planning tool for use by city and 

regional planners in concert with enhanced bicycle trip forecasting methods. With the national 

and global issues of climate change, air pollution and urban congestion combined with crumbling 

national infrastructure, the time for planning for adequate bicycle facilities is now. 
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