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Abstract of the Dissertation

Online Nonnegative CP-Dictionary Learning with Applications to Multimodal

Data

by

Christopher William Strohmeier

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Deanna Needell, Chair

In this thesis, we present a myriad of applications of online matrix and tensor dictionary

learning algorithms to the analysis of time series and image data, as well as a theoretical

analysis of our algorithm, Online CP-Dictionary Learning (OCPDL). First, we present a

method which applies online nonnegative matrix factorization (ONMF), an algorithm which

learns a sparse, nonnegative representation of streaming data, to perform joint dictionary

learning on multivariate COVID-19 time-series data, followed by a certain “restrict and

predict" algorithm to tackle the future time regression problem. Next, we apply ONMF to

meteorological time series data, as well as to video data, and demonstrate the particular

utility of online as opposed to offline algorithms in dealing with said data. In the following

section, we present our extension of ONMF, our OCPDL algorithm, as well as a proof of

some convergence guarantees.
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CHAPTER 1

Introduction

Dictionary learning is a relatively classical field of applied mathematics and signal processing

which consists of uncovering sparse, linear representations of data by learning a set of vectors

which constitute a so-called “dictionary", to efficiently and accurately represent data. A close

relative of matrix factorizaton, dictionary learning differentiates itself in that the learned

dictionary can be used to represent data distinct from its input data.

The two primary components of a dictionary learning algorithm are the coding step,

in which one represents a given minibatch of data as a linear combination of dictionary

elements, often referred to as “atoms," and the dictionary update step, in which one seeks

to modify the atoms in such a way as to optimize their capacity to represent the data. Just

what this means depends heavily on context. At a minimum, the learned dictionary should

be such that the average reconstruction error over the data set is small. To be more concrete,

if we denote our dictionary by D ∈ Rm×r and define for a minibatch of data X ∈ Rm×b the

optimal coding matrix with sparsity regularization parameter λ > 0

Copt(D,X) = argmin
C∈C

1

2
||X −DC||22 + λ||C||1

, then a typical dictionary learning problem would be to obtain

D = argmin
D∈D

EX∼p
1

2
||X −DCopt(D,X)||22

where C,D are the constraint sets for the codes and dictionary, respectively, and p is the

(virtually always unknown) underlying data distribution. Although the choice of loss function

can differ from the standard l2-loss, this is by far the most common.
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There are, however, criteria which one often want to use to evaluate the utility of a learned

dictionary beyond its capacity to minimize reconstruction error. The interpretability of the

representation, which for sufficiently sparse representations reduces the the interpretability

of the learned atoms, is also a chief concern. Indeed, in an age where deep learning has

seen an explosion of interest throughout the computational sciences, an almost universal

complaint among researchers hoping to gain insight into the form of “reasoning" of deep

learning algorithms is the lack of such interpretability of the learned representations. It

is here that structured dictionary learning, i.e. dictionary learning in which one chooses

nontrivial constraints on the codes or dictionaries, is remarkably effective. Among the most

common choice of constraints is that of nonnegativity, in which both the entries of the codes

and dictionary atoms are constraied to be nonnegative. The benefit of this constraint is that

the absence of cancellation implies that once an atom has contributed to reconstructing a

data point, the whole atom must contribute. For many applications, and image and time

series applications in particular, this forces the learned atoms to be well-localized.

Beyond the choice of constraint set, one can glean new insights from data by considering

tensor dictionaries. In the present context, a tensor dictionary is perfectly analogous to

an ordinary dictionary, the chief difference being that the learned atoms are allowed to

be a tensor of arbitrary modality, as opposed to merely vectors (1-mode tensors). This

is an important generalization, as many datasets consist of data which have truly distinct

modalities, e.g. location attributes, pixel intensities, time. In general, one wants to preserve

the tensorial structure, and so the typical practice of vectorizing the data and learning an

ordinary dictionary is often not ideal. It is also computatonally very expensive whenever the

product of the dimensions of the modes is much larger than their sum.

There is yet another consideration when evaluating the use-case of a dictionary learning

algorithm, and that is whether it is “offline" vs “online." To first approximation, and speaking

pragmatically, offline learning algorithms are those for which the entire dataset which they

make use of fit in memory, while online algorithms are those for which the data is too

large to fit in memory, whether that be by virtue of its high-dimensionality or cardinality,

2



so that the full dataset can only be used by streaming in data. Online learning is thus a

form of minibatch learning, however there is one key refinement: in addition to the coding

and dictionary update components, there is an “aggregation" component which modifies the

objective used to update the dictionary without having to store the incoming data.

To address some of the concerns raised above, in the seminal work [MBPS10], the authors

introduce Online Nonnegative Matrix Factorization (ONMF) to address the quintessential

problems associated with the “Big Data regime." By streaming data in batches, one produces

a sequence of so-called “dictionary matrices" which are intended to form successively better

models of the data. This, one can train the model on all of a data set which does not fit in

memory, by streaming said data sets in minibatches which do fit in memory.

In the present work, we present our algorithm, Online CP-Dictionary learning (OCPDL).

We are chiefly concerned with generalizing the original ONMF paper [MBPS10] in two ways.

First, while the original paper only treated data under the i.i.d. assumption, our theoretical

guarantees extend to the more general markovian setting. Second, our algorithm extends

the matrix setting to the setting of tensors with an arbitrary number of modes. We test our

algorithm on a variety of different data sets, and highlight the qualitative distinction between

dictionary atoms (elements) obtained from OCPDL with those obtained by “flattening"

tensor data, applying ONMF, and reshaping as well as the relative computational costs.

The outline of this thesis is as follows. In chapter 2, we apply ONMF to COVID-19

time series data and use the dictionary thus obtained to perform multivariate time-series

regression. In chapter 3, we apply ONMF to meteorological time series, static images, as

well as video data; the emphasis in this section is on the qualitative distinction between

the online vs. offline learned dictionaries. Next in chapter 4, we come to the heart of the

matter, namely the theory and applications of our extension of ONMF to our Online CP-

Dictionary Learning Algorithm (OCPDL). Finally, in chapter 5 we present a hierarchical

generalization of OCPDL, called Online Molecular Dictionary Learning (OMDL), as well as

some applications to multivariate time series data.

3



CHAPTER 2

COVID-19 Time-Series Prediction by Joint Dictionary

Learning and Online NMF

2.1 Attribution

This section is derived from the joint work [LSMN20]. Our application of ONMF to joint dic-

tionary learning for time series forecasting grew out of another of our joint works, [LMNS20],

discussed in the next chapter. I contributed the idea to learn a joint dictionary not only

on cases corresponding to different cities, but also on the case outcomes (confirmed case,

death, recovery), pre-processing the data, hyper-parameter tuning, and early implementa-

tions of the algorithm. Deanna Needell oversaw the project and discussions regarding the

data representation used and interpretations of our predictions, in addition to contributing

much of the introduction which discussed the relative advantages of our model compared to

traditional epidemiological and deep learning models as well as possible extensions of our

work. Hanbaek Lyu and Georg Menz contributed the application of ONMF to time series

forecasting and recursive extrapolation technique. Hanbaek Lyu also created Python code

for the final implementation of the algorithm.

2.2 Introduction

The rapid spread of coronavirus disease (COVID-19) has had devastating effects globally.

The virus first started to grow significantly in China and then in South Korea around January

of 2020, and then had a major outbreak in European countries within the next month, and

4



as of April the US alone has over 400,000 cases with over 12,000 deaths. Predicting the

rapid spread of COVID-19 is a challenge of utmost importance that the broader scientific

community is currently facing.

A conventional approach to this problem is to use compartmental models (see, e.g. [KE05,

Bra08] ), which are mathematical models used to simulate the spread of infectious diseases

governed by stochastic differential equations describing interactions between different com-

partments of the population (e.g. susceptible, infectious, and recovered). Namely, one may

postulate a compartmental model tailored to COVID-19 and find optimal parameters for the

model by fitting it them the available data. An alternative approach is to use data-driven

machine learning techniques, especially deep learning algorithms [DLH+13, Ben13, Den14],

which have had great success in various problems including image classification, computer

vision, and voice recognition [KSH12, BPL10, HCC+14, AAB+16].

In this chapter, we propose an entirely different approach to predicting the spread of

COVID-19 based on dictionary learning (or topic modeling), which is a machine learning

technique that is typically applied to text or image data in order to extract important features

of a complex dataset so that one can represent said dataset in terms of a reduced number

of extracted features, or dictionary atoms [SG07, BCD10]. Although dictionary learning has

seen a wide array of applications in data science, to our best knowledge this work is the first

to apply such an approach to time series data and time series prediction.

Our proposed method has four components:

1. (Minibatch learning) Use online nonnegative matrix factorization (online NMF) to learn

“elemental" dictionary atoms which may be combined to approximate short time evo-

lution patterns of correlated time series data.

2. (Online learning) Further adapt the minibatch-learned dictionary atoms by traversing

the time series data using online NMF.

3. (Partial fitting and one-step prediction) Progressively improve our learned dictionary

5



atoms by online learning while concurrently making one-step predictions by partial

fitting.

4. (Recursive extrapolation) By recursively using the one-step predictions above, extrapo-

late into the future to predict future values of the time series.

Our method enables us to learn dictionary atoms from a diverse collection of correlated

time series data (e.g. new daily cases of COVID-19, number of fatal and recovered cases,

and degree of observance of social distancing measures). The learned dictionary atoms

describe “elemental" short-time evolution patterns from the correlated data which may be

superimposed to recover and even predict the original time series data. Online Nonnegative

Matrix Factorization is at the core of our learning algorithm, which continuously adapts and

improves the learned dictionary atoms to newly arrived time series data sets.

There are a number of advantages of our proposed approach that may complement some of

the shortcomings of the more traditional model-based approach or large-data-based machine

learning approach. First, Our method is completely model-free and has the universality

of data types, as the dictionary atoms directly learned from the data serve as the ‘model’

for prediction. Hence a similar method could be applied to predict not only the spread of

the virus but also other related parameters. These include the spread of COVID-19 media

information, medical and food supply shortages and demands, patient subgroup infections,

immunity and many more. Second, our method does not lose interpretability as some of the

deep-learning-based approaches do, which is particularly important in making predictions

for health-related areas. Third, our method is computationally efficient and can be executed

on a standard personal computer in a short time. This enables our method to be applied in

real-time in online-setting to generate continuously improving prediction. Lastly, our method

has a strong theoretical foundation based on the recent work [LNB19].

In this chapter, we demonstrate our general online NMF-based time series prediction

method on COVID-19 time series data by learning a small number of fundamental time

evolution patterns in joint time series among the six countries in three different cases (con-

6



firmed/death/recovered) concurrently. Our analysis shows that we can indeed extract in-

terpretable dictionary atoms for short-time evolution of such correlated time series and use

them to get accurate short-time predictions with a small variation. This approach could fur-

ther be extended by augmenting various other types of correlated time series data set that

may contain nontrivial information on the spread of COVID-19 (e.g. time series quantifying

commodity, movement, and media data).

This chapter is organized as follows. In Section 2.3, we give a brief overview of dictionary

learning by nonnegative matrix factorization, and provide the full statement of our learning

and prediction algorithms. In Subsection 2.4.1, we give a description of the time series data

set of new COVID-19 cases and discuss a number of pre-processing methods for regularizing

high fluctuations in the data set. Then we discuss our data analysis scheme and simulation

setup in Subsection 2.4.2. In the following subsections 2.4.3-2.4.5, we present our main

simulation results. Finally, we conclude and suggest further directions in Section 2.5.

2.3 Time Series Prediction by Online NMF

2.3.1 Dictionary learning by nonnegative matrix factorization

Matrix factorization provides a powerful mathematical setting for dictionary learning prob-

lems. We first organize n observations of d-dimensional samples a data matrix X ∈ Rd×n,

and then seek a factorization of X into the product WH for some W ∈ Rd×r and H ∈ Rr×n.

This means that each column of the data matrix is approximated by the linear combina-

tion of the columns of the dictionary matrix W with coefficients given by the corresponding

column of the code matrix H (see Figure 2.1). This problem has been extensively stud-

ied under many names, each with different constraints: dictionary learning, factor anal-

ysis, topic modeling, component analysis. It has also found applications in text analy-

sis, image reconstruction, medical imaging, bioinformatics, and many other scientific fields

[SGH02, BB05, BBL+07, CWS+11, TN12, BMB+15, RPZ+18].
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Figure 2.1: Illustration of matrix factorization. Each column of the data matrix is approximated by the linear

combination of the columns of the dictionary matrix with coefficients given by the corresponding column of

the code matrix.

Nonnegative matrix factorization (NMF) is an instance of matrix factorization where

one seeks two nonnegative matrices whose product approximates a given nonnegative data

matrix. Below we give an extension of NMF with an extra sparsity constraint on the code

matrix which is particularly suited for dictionary learning problems [Hoy04]. Given a data

matrix X ∈ Rd×n
≥0 , the goal is to find a nonnegative dictionary W ∈ Rd×r and nonnegative

code matrix H ∈ Rr×n by solving the following optimization problem:

inf
W∈Rd×r

≥0 , H∈Rr×n
≥0

∥X −WH∥2F + λ∥H∥1, (2.1)

where ∥A∥2F =
∑

i,j A
2
ij denotes the matrix Frobenius norm and λ ≥ 0 is the L1-regularization

parameter for the code matrix H.

A consequence of the nonnegativity constraints is that one must represent the data using

the dictionary W without exploiting cancellation. This is a critical mechanism that gives

a parts-based representation of the data (see [LS99]). Many efficient iterative algorithms

for NMF are based on block optimization schemes that have been proposed and studied

following the introduction of the first, and most well-known, multiplicative update method

by Lee and Seung [LS01] (see [Gil14] for a survey).
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2.3.2 Our algorithms

In this section, we provide algorithms for online dictionary learning and prediction for ensem-

bles of correlated time series. At the core of our online dictionary learning algorithm is the

well-known online nonnegative matrix factorization (ONMF) algorithm [MBPS10, LNB19],

which is an online extension of NMF that learns a sequence of dictionary matrices from a

sequence of data matrices.

We first illustrate the key idea in the simplest setting of time series data for a single

entity. Suppose we observe a single numerical value xs ∈ R at each discrete time s. By

adding a suitable constant to all observed values, we may assume without loss of generality

that xs ≥ 0 for all s ≥ 0. Fix integer parameters k,N, r ≥ 0. Suppose we only store N past

data points at any given time, due to memory constraints. So at time t, we hold the vector

Dt = [xt−N+1, xt−N+2, · · · , xt] in our memory. The goal is to learn a dictionary of k-step

evolution patterns from the observed history (xs)0≤s≤t up to time t. A possible approach is

to form a k by N − k+1 Hankel matrix Xt (see, e.g., [Ris73]), whose ith column consists of

the k consecutive values of Dt starting from its ith coordinate. We can then factorize this

into k by r dictionary matrix W and r by t− k code matrices using an NMF algorithm:

Xt =


xt−N+1 xt−N+2 · · · xt−k+1

xt−N+2 xt−N+3 · · · xt−k+2

...
...

...
...

xt−N+k xt−N+k+1 · · · xt

 ≈ WH. (2.2)

This approximate factorization tells us that we can approximately represent any k-step

evolution pattern from our past data (xs)t−N<s≤t by a nonnegative linear combination of the

r columns of W . Hence the columns of W can be regarded as dictionary patterns for all

k-step time evolution patterns in our current data set Dt for each time t.

Below we provide an online mini-batch implementation of the above sketch of dictionary

learning for time series data in an online setting, as well as an online prediction algorithm.

=0
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Algorithm 1 Online dictionary learning for time-series data

Input: Time series (xt)1≤t≤T , xt ∈ Rd×1
≥0

Variables: N ≥ k ∈ N, λ > 0, β > 0,

W0 ∈ Rd×k×r
≥0 , A0 ∈ Rr×r

≥0 , B0 ∈ Rr×dk
≥0

for t = k, · · · , T do

Update sparse code:

Ht = argmin
H∈Rr×(N−k+1)

≥0

||X(3)
t −W

(3)
t−1H||2F + λ||H||1, (2.3)

where X
(3)
t is the mode-3 unfolding of the d × k × (N − k + 1) tensor Xt (similarly for

W
(3)
t−1), whose mode-1 slices Xt(1), · · · ,Xt(d) are given by the following Hankel matrix

Xt(i) =


xt−N+1(i) xt−N+2(i) · · · xt−k+1(i)

xt−N+2(i) xt−N+3(i) · · · xt−k+2(i)
...

... . . . ...

xt−N+k(i) xt−N+k+1(i) · · · xt(i)

 . (2.4)

Aggregate data:

At = (1− t−β)At−1 + t−βHtH
T
t (2.5)

Bt = (1− t−β)Bt−1 + t−βHtX
T
t (2.6)

Update dictionary :

Wt = argmin
W∈Rd×k×r

≥0

tr(W(3)At(W
(3))T )− 2 tr(BtW

(3)) (2.7)

end for
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Algorithm 2 Partial fitting and Prediction

Input: Time-series (xt)t−k+2≤s≤t, xt ∈ Rd×1
≥0

Dictionary tensor Wt ∈ Rd×k×r

Output: Prediction x̂t+1 for xt+1

Variables: λ′ > 0

Do:

Partial fitting:

H∗ = argmin
H∈Rr×1

≥0

||x̃t − W̃tH||2F + λ′||H||1, (2.8)

where x̃t ∈ Rd(k−1)×1
≥0 is obtained by concatenating the columns of the following matrix

xt−k+2(1) · · · xt−k+2(d)
... . . . ...

xt−1(1) · · · xt−1(d)

xt(1) · · · xt(d)

 , (2.9)

and W̃t ∈ Rd(k−1)×r
≥0 is the mode-3 unfolding of the d × (k − 1) × r tensor Wt[:, : (k − 1), :]

that consists of the first (k − 1) entries of W in mode 2.

Prediction:

x̂t+1 = the last row of the k × d matrix obtained by reshaping W
(3)
t H∗, where W

(3)
t is the

mode-3 unfolding of Wt

=0

=0

The dictionary update rule in both Algorithms 1 and 3 are based on the well-known

online NMF algorithm in [MBPS10, LNB19]. Furthermore, in Algorithms 1 and 2, we also

outline how to make predictions using the online-learned dictionary atoms via partial fitting

(Algorithm 2) and extrapolation. Algorithm 3 is useful for initializing the dictionary tensor

W0 in Algorithm 1, especially when the time-series data is limited (small T ) so that one

11



Algorithm 3 Minibatch dictionary learning for time-series data

Input: Time-series (xt)1≤t≤T , xt ∈ Rd×1
≥0

Output: Dictionary tensor WM ∈ Rd×k×r
≥0 and aggregate matrices AM ∈ Rr×r

≥0 , BM ∈ Rr×dk
≥0

Variables: N ≥ k ∈ N, λ > 0, β > 0, M ∈ N

Random initialization:

Randomly initialize the tensors W0 ∈ Rd×k×r, A0 ∈ Rr×r
≥0 , B0 ∈ Rr×dk

≥0 so that the entries

are i.i.d. Uniform([0, 1]) variables.

for j = 1, 2, · · · ,M do

Choose t uniformly at random from {T −N + 1, T −N + 2, · · · , T}

Update Wj ←Wj−1 by using (2.3) - (2.7) in Algorithm 1.

end for

may not expect the online dictionary learning in Algorithm 1 in T steps. Also, we may

use a different time series (yt)1≤t≤T to find a dictionary tensor WM and use it as the initial

dictionary for the given time series (xt)1≤t≤T in Algorithm 1. This “transfer learning" would

be effective when the two time-series share a similar structure.

The sparse coding problems in (2.3) and (2.8) can be solved by LASSO, whereas the

constrained quadratic problem (2.7) can be solved by projected gradient descent algorithms.

See [LNB19] for more details and background. For practical use, we provide a python

implementation of our algorithms in our GihHub repository (see the footnote of the front

page).

We also remark that, using the recent contribution of Lyu, Needell, and Balzano [LNB19]

on online matrix factorization algorithms on dependent data streams, we can give a theo-

retical guarantee of convergence of the sequence of learned dictionary atoms by Algorithm 1

under suitable assumptions. The essential requirement is that the time series data satisfies

a weak “stochastic periodicity" condition. A complete statement of this result and proof will

be provided in our follow-up paper.
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Joint dictionary of 6-day evolution of three COVID_19 cases in six countries  

Confirmed Death Recovered 

 

Figure 2.2: 24 Joint dictionary atoms of 6-day evolution patterns of new daily cases (con-

firmed/death/recovered) in six countries (S. Korea, China, US, Italy, Germany, and France). Each

dictionary atom is a 6∗6∗3 = 108 dimensional vector corresponding to time∗country∗case type.

The corresponding importance metric is shown below each atom. 50 atoms are learned and the

figure shows top 24 with the highest importance metric.

While this is a substantial extension of the usual independence assumption in the stream-

ing data set, unfortunately, most COVID-19 time series do not verify any type of weak pe-

riodicity condition directly, which is one of the biggest challenges in predicting the spread

of COVID-19. In the next section, we describe our experiment setting and how we may

overcome this issue of “lack of periodicity" by combining the minibatch and online learning

algorithms. It is important to note that minibatch learning algorithm (Algorithm 3) con-

verges for fixed T as M →∞, as it is a version of online NMF on a i.i.d. sequence of data,

which satisfies our stochastic periodicity condition.
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2.4 Application to COVID-19 time-series data sets

2.4.1 Data set and pre-processing

To illustrate our dictionary learning and prediction algorithms for time series data, we ana-

lyze the historical daily reports of confirmed/death/recovered COVID-19 cases in six coun-

tries – South Korea, China, US, Italy, Spain, and Germany – from Jan 19, 2020 to Apr. 12,

2020. The input data can be represented as a tensor of shape 6 × 80 × 3 corresponding to

countries, days, and types of cases, respectively1. In order to apply our dictionary learning

algorithms, we first unfold this data tensor into a matrix X of shape (d× T ) = (6× 3)× 80,

whose tth column, which we denote by xt, gives the full 18 dimensional observation in day

t, 0 ≤ t ≤ 80. Also, we find that the fluctuation in the original data set is too large to

yield stable representations, let alone predictions. In order to remedy this, we pre-process

the time series data by taking a 5-day moving average and then entry-wise log-transform

x 7→ log(x + 1). After applying dictionary learning and prediction algorithms, we take the

inverse transform x 7→ exp(x)− 1 and plot the result.

2.4.2 Analysis scheme and experiment setup

As the COVID-19 time series data set we analyze here only consists of T = 80 highly

non-repetitive observations, applying the online dictionary learning algorithm (Algorithm 1)

with random initialization is not sufficient for proper learning and accurate prediction. We

overcome this by using the minibatch learning algorithm (Algorithm 3) for the initialization

for the online learning and prediction. Namely, we use the following scheme:

1. (Minibatch learning) Use minibatch Algorithm 3 for the time series (xt)0≤t≤T to obtain

dictionary tensor WM ∈ Rd×k×r
≥0 and aggregate matrices AM ∈ Rr×r

≥0 , BM ∈ Rr×dk
≥0 .

2. (Online learning and one-step prediction) Use the output in step 1 as the initialization
1Raw data obtain from https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_

19_data

14

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data


 

 

 

 

 

 

 

  

 
Prediction of COVID-19 daily new confirmed cases  Joint dictionary of 6-day evolution  

 
Prediction of COVID-19 daily new deaths  Joint dictionary of 6-day evolution  

 
Prediction of COVID-19 daily new recovered cases  Joint dictionary of 6-day evolution  

Figure 2.3: Joint dictionary learning and prediction for the time series of new daily cases (con-

firmed/death/recovered) in six countries (S. Korea, China, US, Italy, Germany, and France). After

joint dictionary atoms are learned by minibatch learning, they are further adapted to the time

series data by concurrent online learning and predictions. (Right) Joint dictionary atoms of 6-day

evolution patterns of new confirmed cases. The corresponding importance metric is shown below

each atom. (Left) Plot of the original and predicted daily new confirmed cases of the six countries.

The errorbar in the red plot shows standard deviation of 1000 trials.

for Algorithm 1. For each t = 1, · · · , T , iterates the steps in Algorithm 1 as well as

Algorithm 2. This outputs a dictionary tensor WT and a prediction (x̂t)k≤t≤T+1.

3. (Recursive extrapolation) For T < t ≤ T + L, recursively use Algorithm 2

The hyperparameters we used in each steps above are given below:

1. (Minibatch learning)

N = 100 (Memory size)

M = 20 (# of minibatch iterations)

k = 6 (segment length)

λ = 3 (L1-regularizer of sparse coding in (2.3))

r = 50 (Number of dictionary atoms)
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β = 1

learning rate exponent for

minibatch learning


2. (Online learning and one-step prediction)

N = 100 (Memory size)

k = 6 (segment length)

λ′ = 1 (L1-regularizer of sparse coding in (2.8))

r = 50 (Number of dictionary atoms)

β = 4

learning rate exponent for

online learning


λ′ = 0 (L1-regularizer of sparse coding in (2.8))

3. (Recursive extrapolation)

λ′ = 0 (L1-regularizer of sparse coding in (2.8))

L = 30 (Future extrapolation length)

The role of the parameter β becomes clear when examining the equations (2.5) and (2.6).

It weights how much of the past data is used when updating the new dictionary matrix Wt.

For example, in (2.7), in the extreme case β = 0 the present observation at time t is not

used, wherease in the other extreme case β =∞ only the present observation is used.

2.4.3 Simulation results - Minibatch learning

An example of dictionary atoms obtained from the minibatch learning algorithm (Algo-

rithm 3) from the COVID-19 daily new cases time series data set is presented in Figure 2.2.

We note that the time evolution structure in the data set is not used in this minibatch

learning process, as slices of length k evolution are sampled independently and uniformly at

random from the entire history. Each dictionary atom is a 6 ∗ 6 ∗ 3 = 108 dimensional vector

corresponding to time ∗ country ∗ case type.
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Prediction of COVID-19 daily new confirmed cases  Joint dictionary of 6-day evolution  

 
Prediction of COVID-19 daily new deaths  Joint dictionary of 6-day evolution  

 
Prediction of COVID-19 daily new recovered cases  Joint dictionary of 6-day evolution  

Figure 2.4: Joint dictionary learning and prediction for the time series of new daily cases (con-

firmed/death/recovered) in six countries (S. Korea, China, US, Italy, Germany, and France). After

dictionary atoms representing fundamental joint time series patterns are obtained by minibatch

learning, they are further adapted to the time series data by online learning while making pre-

dictions. (Right) Joint dictionary atoms of 6-day evolution patterns of new death cases. The

corresponding importance metric is shown below each atom. (Left) The plot of the original and

predicted daily new death cases of the six countries. The error bar in the red plot shows the stan-

dard deviation of 1000 trials.

To each atom, we associate an “importance metric" first introduced in [LNB19] as a

measure of the total contribution of the atom in representing the original data set. Namely,

the importance metric of each atom is the total sum of its linear coefficients in the sparse

coding problem (2.3) during the entire learning process. This is computed as the row sums

of the sum of all code matrices Ht in (2.3) obtained from the learning process.

For example, the (1, 1) atom (in matrix coordinates) with importance 0.23 in Figure

2.2 indicates that the number of daily new confirmed cases in all six countries are almost

constant and that China has significantly higher values than other countries. Also, the (1, 4)

atom (in matrix coordinates) with importance 0.07 in Figure 2.2 indicates that the number

of daily new confirmed cases are growing rapidly in Korea and Italy, while for the other

four countries the values are almost constant. It is important to note that these dictionary
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Prediction of COVID-19 daily new confirmed cases  Joint dictionary of 6-day evolution  

 
Prediction of COVID-19 daily new deaths  Joint dictionary of 6-day evolution  

 
Prediction of COVID-19 daily new recovered cases  Joint dictionary of 6-day evolution  

Figure 2.5: Joint dictionary learning and prediction for the time series of new daily cases (con-

firmed/death/recovered) in six countries (S. Korea, China, US, Italy, Germany, and France). After

joint dictionary atoms are learned by minibatch learning, they are further adapted to the time se-

ries by online learning while making predictions. (Right) Joint dictionary atoms of 6-day evolution

patterns of new recovered cases. The corresponding importance metric is shown below each atom.

(Left) The plot of the original and predicted daily new recovered cases of the six countries. The

errorbar in the red plot shows the standard deviation of 1000 trials.

atoms are learned by a nonnegative matrix factorization algorithm, so they maintain their

individual interpretation we described before in representing the entire data set. Indeed,

such patterns were dominant in the COVID-19 time-series data during the period of Jan.

21 - Mar. 1, 2020 (see e.g. the blue plot in Figure 2.3). Similarly, a direct interpretation of

other dictionary atoms can be associated with features in the original data set.

2.4.4 Simulation results - Online learning and one-step prediction

The learned dictionary atoms in Figure 2.2 are not only directly interpretable but also provide

a compressed representation of the original data set. Namely, we will be able to approximate

any 6-day evolution pattern in the data set by only using the 24 atoms in Figure 2.2 with

suitable nonnegative linear coefficients found from the sparse coding problem (2.3). Obtain-

18



ing a global approximation of the entire data set based on such local approximations by

dictionary atoms is called reconstruction (see for instance the image reconstruction example

in [LNB19]). Our partial fitting and prediction algorithm (Algorithm 2) extends this recon-

struction procedure by using the learned patterns to make one step predictions adapted to

the time series data.

The main point of our application is to illustrate that we may obtain reasonable predic-

tions on our very limited T = 80 COVID-19 time series data set by learning a small number

of fundamental patterns in joint time evolution among the six countries in three different

cases (confirmed/death/recovered) concurrently. This approach could further be extended

by augmenting various other types of correlated time series which contain nontrivial infor-

mation on the spread of COVID-19 (e.g. time series quantifying commodity, movement, and

media data trends). One can think of learning the highly correlated temporal evolution

patterns across different countries and cases as a model construction process for the joint

time evolution of the data set. There are relatively few hyper-parameters to train in our

algorithm compared to deep neural network-based models, and parameters in our method

are in some sense built-in to the temporal dictionary atoms so that one does not need to

begin by choosing the model to use.

However, recall that the dictionary atoms learned by the minibatch algorithm are not

adapted to the temporal structure of the data set. We find that further adapting them in the

direction of time evolution by using our online learning algorithm (Algorithm 1) according to

the scheme in subsection 2.4.2 significantly improves the prediction accuracy by reducing the

standard deviation of the prediction curves over a number of trials. An example of the result

of this further adaptation of the minibatch-learned dictionary atoms is shown in Figures 2.3,

2.4, and 2.5. In each figure, the online-improved dictionary atoms are shown in the right,

and the original time series data and its prediction computed by Algorithms 1-2 are shown in

blue and red, respectively. Prediction curves also show error bars of one standard deviation

from 1000 trials of the entire scheme (minibatch + online + extrapolation) under the same

hyperparameters in Subsection 2.4.2.
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By comparing the corresponding dictionary atoms in Figures 2.2 and 2.3 for example,

we find that the online learning process does not change the importance metric on the top

24 atoms, and only a few atoms change in their shape significantly (especially the curves for

China in atoms at (1, 1), (1, 2), (1, 3), (2, 1), and (4, 2)). Such new patterns were not able to

be learned by the minibatch learning, but they were picked up by traversing the time series

data from the past to the present with our online learning algorithm. The “correctness" of

the learned dictionary atoms can be verified by the accuracy of the 1-step prediction up to

time T = 80 (the end of blue curve in Figure 2.3) in Figures 2.3, 2.4, and 2.5.

We remark that our one-step predictions up to time T = 80 are not exact predictions,

as our initial dictionary tensor for this step, learned by the minibatch algorithm, uses all

information in the entire time-series data. More precisely, one can think of this as a re-

construction procedure without seeing the last coordinate. This would have been a proper

prediction if our initialization were independent of the data, but we find that online learning

alone without the minibatch initialization gives inferior reconstruction results. We believe

this is due to the fact that the COVID-19 time series data set is too short (and far from pe-

riodic) for the online dictionary learning algorithm to converge in a single run. Nevertheless,

in some sense the mini-batch method is implemented to compensate for the lack of data;

given a sufficient amount of data, we could omit this step.

2.4.5 Simulation results - Recursive extrapolation

Next, we discuss the recursive extrapolation step, which gives the 30-day prediction of the

new daily cases of all three types and all six countries simultaneously, shown as in Figures

2.3, 2.4, and 2.5. For instance, by partially fitting the first five coordinates of the length-

6 dictionary atoms to the last five days of the data, we can use Algorithm 2 to obtain a

prediction of the future values at time T + 1. We can then recursively continue this extrap-

olation step using the predicted data into the future ad infinitum. Our 30-day prediction

results show reasonable variation among trials. However, the variation in prediction grows

in the prediction length, so only a moderate range of predictions would have meaningful
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implications.

We remark that we did not enforce any additional assumption on the prediction curves

(e.g. finite carrying capacity, logistic-like growth for the total, SIR-type structure) that

are standard in many epidemiological models. Instead, we chose our hyperparameters in

subsection 2.4.2 so that the future prediction curves approximately satisfy such assumptions,

highlighting the model-free nature of our approach. This high-level fitting is not without

compromise in the uncertainty of the prediction. For example, choosing large values of the

L1-regularization parameter λ′ used in the recursive extrapolation step reduces the variability

of prediction significantly, but the prediction curve drops to zero very rapidly right after the

end of the current data, which is absurd.

Lastly, we also mention that our recursive extrapolation defines a deterministic dynamical

system in multidimensional space (dimension 18 in this case). The evolution is determined

by the hyperparameters and the set of dictionary atoms at the end of the given time series

data (T = 80 in this case). Even though our dictionary learning algorithms are randomzied,

we find our 30-day predictions over many trials are within a modest standard error. However,

we find that the mean trajectory of the prediction could vary significantly with respect to

changes in the hyperparameters. Developing a more systematic method of choosing these

hyperparameters is a future direction of inquiry.

2.5 Conclusion

With the rapidly changing situation involving COVID-19, it is critical to have accurate

and effective methods for predicting short-term and long-term behavior of many parameters

relating to the virus. In this paper, we proposed a novel approach that uses dictionary

learning to predict time-series data. We then applied this approach to analyze and predict

the new daily reports of COVID-19 cases in multiple countries. Usually, dictionary learning

is used for text and image data; often with impressive results. To our best knowledge, our

work is the first to implement dictionary learning to time-series data.
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There are a number of advantages of our approach that may complement some of the

shortcomings of the more traditional model-based approach or the large-data-based machine

learning approach. First, our method is completely model-free as the dictionary atoms

directly learned from the data serve as the ‘model’ for prediction. Our approach also works

with universal data types. For example, it could be applied to predict not only the spread

of the virus but also other related parameters. These include the spread of COVID-19

media information, medical and food supply shortages and demands, subgroup infections,

immunity and many more. Second, the method works with small data sets. Most machine-

learning methods need either model-specific input or large data sets. Because COVID19 only

appeared recently, there are no large data sets yet available. Third, the method does not

lose interpretability as some of the deep-learning-based approaches do. This is particularly

important when making predictions for health-related areas. The learned dictionary atoms

are not only interpretable but also identify hidden correlations between multiple entities.

Fourth, our approach uses only a few hyperparameters that are model-free and independent

of the data set. Therefore our approach avoids the issue of over-fitting. Furthermore, the

method is computationally efficient and can be executed on a standard personal computer in a

short time. Hence, it could be applied in real-time or online-settings to generate continuously

improving predictions. Lastly, the method has a strong theoretical foundation: Convergence

of the minibatch algorithm is always guaranteed and the convergence of the online learning

algorithm is guaranteed under the assumption of quasi-periodicity. Therefore we expect

our method to be robust i.e. small changes to the data-set or to the parameters should not

destroy the learning outcome.

There are a number of future directions that we are envisioning. First, one could apply

our method to county-level time-series data. One would obtain dictionary atoms describing

county-wise correlation and prediction. This analysis could be critically used in distributing

medical supplies and also in measuring the effect of re-opening the economy successively by

a few counties at a time. Second, as not every individual can be tested, it is valuable to be

able to transfer the knowledge on tested subjects to the ones yet to be tested. This ‘transfer
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learning’ could naturally be done with our method, by learning a dictionary from one subject

group and apply that to make predictions for the unknown group. Lastly, one may extend

the method to a fully tensor-based setting, where a large number of related variables of

different types could be encoded in a single tensor. Then one could use various direct tensor-

factorization methods to learn higher-order dictionary atoms. For example, this might be

useful in identifying a critical subgroup of variables for clinical data and therapeutics.
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CHAPTER 3

Applications of Online Nonnegative Matrix Factorization

to Image and Time-Series Data

3.1 Attribution

This section is based on the joint work [LMNS20]. My primary contributions were to the

image and video applications, in particular the hybrid deep learning-dictionary learning

approach to color restoration, and to the experiment which illustrates ONMF’s capacity to

learn qualitatively distinct dictionary atoms for video data from those learned from offline

NMF. Hanbaek Lyu and Georg Menz contributed the time series forecasting application,

and in particular the “restrict and predict" method below. Deanna Needell suggested the

use of the meterological and video data, in addition to clarifying the results in the paper.

3.2 Introduction

In the last few decades, the quantity of data available and the need to effectively exploit this

data have grown exponentially. At the same time, modern data also presents new challenges

in its analysis for which new techniques and ideas have become necessary. Many of these

techniques may be classified as topic modeling (or dictionary learning), which aim to extract

important features of a complex dataset so that one can represent the dataset in terms of a

reduced number of extracted features, or topics. One of the advantages of topic modeling-

based approaches is that the extracted topics are often directly interpretable, as opposed to

the arbitrary abstractions of deep neural networks.
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Matrix factorization provides a powerful setting for dimensionality reduction and dic-

tionary learning problems. In this setting, we have a data matrix X ∈ Rd×n, and we

seek a factorization of X into the product WH for W ∈ Rd×r and H ∈ Rr×n (see Fig-

ure 2.1). Hence each column of the data matrix is approximated by the linear combi-

nation of the columns of the dictionary matrix W with coefficients given by the corre-

sponding column of the code matrix H. This problem has been extensively studied un-

der many names each with different constraints: dictionary learning, factor analysis, topic

modeling, component analysis. It has also found applications in text analysis, image recon-

struction, medical imaging, bioinformatics, and many other scientific fields more generally

[SGH02, BB05, BBL+07, CWS+11, TN12, BMB+15, RPZ+18].

In today’s data world, large companies, scientific instruments, and healthcare systems

are collecting massive amounts of data every day so that an entire data matrix is hardly

available at any single time. Online matrix factorization is a matrix factorization problem

in the online setting where data are accessed in a streaming fashion and the matrix factors

are updated each time. This enables factor analysis to be performed concurrently with the

arrival of new data samples.

In this article, we demonstrate three application contexts of matrix factorization algo-

rithms, namely, historical temperature data, color images, and video frames. In doing so, we

demonstrate how one can use matrix factorization techniques to learn joint dictionary atoms

from an ensemble of correlated data sets. In the case of historic temperature data, we show

that the online-learned joint dictionaries reveal key features of dependence between temper-

atures of four cities (LA, SD, SF, and NYC), which we use to “in-paint" missing data in one

city by inferring from observed data in other cities. By a suitable matricization, we learn a

small number of dictionary patches from a color image and reconstruct the original image

from this low-rank image basis. The same procedure, used in conjunction with a convolu-

tional neural network for classifying image patches, enables us to restore color to a grayscale

image. Lastly, for video frames, we compare dictionary frames learned from “offline" and

online matrix factorization algorithms and show that they capture different features of the
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video frames. By factorizing along the time dimension, we also demonstrate that one can

detect a significant temporal change in the dataset using matrix factorization algorithms.

3.3 Dictionary learning by online Nonnegative Matrix Factoriza-

tion

In this section, we describe a dictionary learning algorithm based on online nonnegative

matrix factorization.

3.3.1 Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a variant of matrix factorization where one seeks

find two smaller matrices whose product approximates a given nonnegative data matrix.

Below we give an extension of NMF with extra sparsity constraint on the code matrix,

which is often used for dictionary learning problems. Given a data matrix X ∈ Rd×n
≥0 , the

goal is to find nonnegative dictionary W ∈ Rd×r and code matrices H ∈ Rr×n by solving the

following optimization problem:

inf
W∈Rd×r

≥0 , H∈Rr×n
≥0

∥X −WH∥2F + λ∥H∥1, (3.1)

where ∥A∥2F =
∑

i,j A
2
ij denotes the matrix Frobenius norm and λ ≥ 0 is the L1-regularization

parameter for the code matrix H.

A consequence of the nonnegativity constraints is that one must represent the data using

the dictionary W without exploiting cancellation. In practice, this forces the learned atoms

to be “atomic," or localized. A famous comparison was presented in [LS99]. There, the

authors apply PCA and NMF to (vectorized) images of human faces. The (matricized)

learned dictionary atoms from PCA resembled entire faces, while the matricized dictionary

atoms from NMF resembled parts of faces, edges, etc. Furthermore, by enforcing a sparsity

constraint on the code matrix, the learned dictionary elements have to appear sparsely in

approximating each column of the data matrix. To make the dictionary components more

26



localized and reduce the overlaps between them, one can also enforce sparseness on the

dictionary matrix [Hoy04] in the optimization problem for NMF as in (3.1).

Many efficient iterative algorithms for NMF are based on block optimization schemes that

have been proposed and studied, including the well-known multiplicative update method by

Lee and Seung [LS01] (see [Gil14] for a survey).

Algorithm 4 NMF by Multiplicative Updates
Input: W0, H0, K

for k = 1, ..., K do

Update code:

Hk+1
ij ← Hk

ij
((Wk)TX)ij

((Wk)TWkHk)ij

Update dictionary:

W k+1
ij ← W k

ij
(X(Hk+1)T )ij

(WkHk+1((Hk+1)T ))ij

end for

=0

3.3.2 Online Nonnegative Matrix Factorization

Online Matrix Factorization (OMF) is an optimization problem where given a sequence

(Xt)t≥0 of data matrices, one seeks to find sequence of dictionary and code matrices (Wt, Ht)t≥0

which asymptotically minimizes a loss function of choice. If we have the additional nonneg-

ativity constraint on the factors, the resulting problem is called the Online Nonnegative

Matrix Factorization (ONMF).

One of the most fundamental ideas in many algorithms for OMF is empirical loss mini-

mization. Roughly speaking, the idea is to choose Wt−1 be to the minimizer of an empirical

loss function up to time t − 1, and when the new data matrix Xt arrives, we find an im-

proved dictionary Wt in response to the empirical loss up to time t. However, as the empirical

loss function is usually nonconvex and difficult to optimize, many successful algorithms for

OMF exploit techniques such as block optimization, convex relaxation, and majorization-
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minimization. Below we present one of the most well-known OMF algorithms proposed in

[MBPS10]. The superscript of matrices in the algorithm below denotes iterates.

Algorithm 5 Online Nonnegative Matrix Factorization
Input: W0, λ

for t = 1, ..., T do

Update sparse code:

Ht = argmin
H≥0

||Xt −Wt−1H||2F + λ||H||1

Aggregate data:

At =
1
t
((t− 1)At−1 +HtH

T
t )

Bt =
1
t
((t− 1)Bt−1 +HtX

T
t )

Update dictionary:

Wt = argmin
W≥0

1
2
tr(WAtW

T )− tr(BtW )

end for

=0

Rigorous convergence guarantees for online NMF algorithms have been obtained in [MBPS10]

for independent and identically distributed input data. Recently, convergence guarantees of

online NMF algorithms have been established when the data matrices have hidden Markov

dependence [LNB19], ensuring further versatility of NMF based topic modeling from input

sequences generated by Markov Chain Monte Carlo algorithms.

A simple computation reveals that the minimization problem in the update of the dic-

tionary W equivalant to the more intuitive problem,

Wt = argmin
W≥0

1

t

t∑
s=1

||Xs −WHs||2F + λ||Hs||1

where the objective function is a convex upper bounding surrogate of the corresponding em-

pirical loss function. In practice, there is critical difference: the latter optimization problem

requires one to have access to all of the data up to time t in order to obtain Wt, while

the former only needs the “aggregation matrix" of the data and the data sample Xt. This
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property of the formulation of the algorithm is what enables ONTF to deal with the data

size, acquisition, and evolution problems mentioned in the introduction.

We comment on a related important contrast between NMF and ONMF. While the NMF

algorithm in the last subsection was essentially symmetric in the update of the dictionary

and code for λ = 0, this is far from true in the ONMF algorithm. This is intuitive: in

ONMF, one attempts to learn a fixed dictionary that can well-model all data in expectation.

However one particular data sample generally has little to do with another, and so there is

no reason for their respective codes to be similar.

3.4 Time-series application

In this section, we apply ONMF to time-series data for online dictionary learning and online

reconstruction. We will be using the online nature of the dictionary learning algorithm there.

Suppose we observe a single numerical value xs ∈ R at each discrete time s. By adding

a suitable constant to all observed values, we may assume that xs ≥ 0 for all s ≥ 0. Fix

integer parameters k,N, r ≥ 0. Suppose we only store N past data at any given time, due

to a memory constraint. So at time t, we hold the vector Dt = [xt−N+1, xt−N+2, · · · , xt] in

our memory. The goal is to learn dictionary patterns of k-step evolution from the observed

history (xs)0≤s≤t up to time t. A possible approach is to form a k by N−k+1 data matrix Xt,

whose ith column consists of the k consecutive values of Dt starting from its ith coordinate.

We can then factorize this into k by r dictionary matrix W and r by t − k code matrices

using an NMF algorithm:

Xt =


xt−N+1 xt−N+2 · · · xt−k+1

xt−N+2 xt−N+3 · · · xt−k+2

...
...

...
...

xt−N+k xt−N+k+1 · · · xt

 ≈ WH. (3.2)

This approximate factorization tells us that we can represent any k-step evolution from our

past data (xs)t−N<s≤t approximately by a nonnegative linear combination of the r columns
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of W . Hence the columns of W can be regarded as dictionary patterns for all k-step time

evolution patterns in our current dataset Dt at each time t.

In order to extend the above ‘temporal dictionary learning’ scheme into an online setting,

we apply the ONMF algorithm given in Subsection 3.3.2. This only requires us to store

additional aggregate matrices At ∈ Rr×r and Bt ∈ Rr×d. We denote the resulting dictionary

matrix at time t as Wt. Then the r columns of Wt are temporal dictionary for all k-step

evolution in the time series (xs)0≤s≤t up to time t.

Lastly, we can further extend the above online temporal dictionary learning scheme for

a collection of time-series data. We explain this in a concrete context. We analyze the

historical monthly temperature (measured in Fahrenheit) data of four cities – Los Angeles

(LA), San Diego (SD), San Francisco (SF), and New York City (NYC), which is published

as part of the NOAA online weather data (NOWData) [Sta06]. The time period of our data

set spans the years 1944-2020, a total of 869 months. At each time step 0 ≤ t ≤ 868, we

obtain four numerical values for the average monthly temperatures from the four cities, which

we denote as a four-dimensional column vector [LA(t), SD(t), SF (t), NY C(t)]T . Instead of

applying our online temporal dictionary learning scheme separately for each city, we stack

the resulting data matrices from the time series from each city vertically and form a joint

data matrix at each time t. We use the parameters k = 6, N = 50, and r = 16. Then we

can learn a sequence (Wt)t≥0 of 4k by r dictionary matrices using the ONMF algorithm. We

plot the last dictionary W868 after a suitable reshaping, which gives us 16 joint temporal

dictionary elements as shown in Figure 3.1.

The online-learned joint temporal dictionary elements shown in Figure 3.1 reveal an in-

teresting dependency structure between the temperature evolution of the four cities. For

instance, LA and SD (blue and red) evolve almost in synchrony with a small amplitude.

On the other hand, NYC (black) has a larger amplitude and has a mostly positive corre-

lation with LA and SD. Lastly, SF (yellow) has an intermediate amplitude with a negative

correlation between LA and SD.

One way to evaluate the accuracy of learned dictionary patterns is to use them to recon-
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Figure 3.1: 16 joint temporal dictionary elements learned from the average monthly temperature of LA, SD,

SF, and NYC during years 1944-2020. Each element indicates a fundamental pattern in the 6-month joint

evolution of the temperatures in the four cities.

struct the original dataset, as shown in Figure 3.2. Here for each time t, we reconstruct the

6-step (6-month) joint time evolution vector vt during the period [t− 5, t] using the online-

learned joint dictionary Wt from the observe data up to time t. This can be easily done by

obtaining the best coefficient matrix H such that ∥vt−WtH∥+ λ∥H∥1 is minimized, which

is a convex quadratic problem. Then the product WtH gives the reconstruction for vt. We

take the time-t-coordinates from this reconstruction to get the four red curves in Figure 3.2,

plotted on top of the original temperature data in blue.

We emphasize that there is no a priori training. Initial dictionary matrixW0 is completely

random, but we progressively learn better dictionary matrix Wt over time. Also, we remark

that for the three cities SD, SF, and NYC, there are several missing entries, which were coded

as -100 ◦F. For a plotting purpose, we have modified these missing entries to 0 ◦F, which

are shown as horizontal bars in the blue curve at height 0 in Figure 3.2. Our reconstruction

(red) matches the original data (blue) accurately for the observed entires. Furthermore, we

used a modified reconstruction algorithm so that we only approximate observed entries, and

use the resulting linear coefficients to “fill-in" the missing entries using our joint dictionary.
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Figure 3.2: (Blue) Plot of historical average monthly temperature (measured in Fahrenheit) data of four

cities Los Angeles (LA), San Diego (SD), San Francisco (SF), and New York City (NYC). Missing entries

are coded as 0 ◦F. (Red) Online-reconstructed data using online-learned joint temporal dictionary.

The result indicates that we can use our online joint dictionary learning to inferring missing

entries in our dataset, purely based on learning the dependency structure.

3.5 Video Application

In the previous section, we applied ONMF to two important problems in image processing

which did not use any particular advantage of the algorithm, which serves to demonstrate its

utility. In this section, we turn to applications of ONMF to video processing. It is here that

the sequential nature of the ONMF algorithm enforces a qualitatively different structure on

the learned dictionary atoms when compared to standard offline NMF.

We now describe our experiment. Our data consisted of a grayscale video of a candle,

which consisted of 75 time frames. Each time frame was represented by an 80 x 30 matrix

of pixel intensities.

We reshaped our data by vectorizing each time frame and then concatenating these
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Figure 3.3: Candle Video Dictionaries. The first dictionary consists of four elements and was trained by an

alternating least squares-based, offline NMF, the second dictionary below was trained using ONMF, where

each time frame of the video represented a new data point.

vectors to form a single 2400 x 75 data matrix of pixel intensities. We applied an alternating

least squares-based offline NMF to learn four dictionary elements. Next, we applied ONMF

in natural way: each vectorized time frame corresponded to a new data sample. Again we

learned four dictionary elements, which were then matricized and displayed in 3.3.

Additionally, we plotted the dictionaries learned by ONMF up to various time frames and

displayed the results. This reveals an interesting, and intuitive, illustration of how ONMF

uncovers temporal structure in the video. In particular, like the candle in the video moves,

initially trivial atoms one by one become nontrivial, and adopt the shape of a particular

configuration of the candle, e.g. left, center, right. When one plots the full evolution of the

learned dictionaries, once the basic patterns have been established we empirically observe

that when the candle is in a certain configuration at a particular time frame, only the atom

with the corresponding configuration exhibits any significant update. By the end of the

learning process, the final atoms look like superpositions of small perturbations of a single

configuration (e.g. the second atom resembles a superposition of right configurations, the

fourth atom resembles a superposition of left configurations). The results are displayed in

3.4.

Lastly, we apply NMF to the video frame along the temporal dimension to learn the

dictionary for time evolution. This will enable us to detect a temporally significant change
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Figure 3.4: Candle video and learned dictionary at various time frames (time goes from top to bottom).

The left column corresponds to the actual video frame. The remaining four columns each correspond to a

particular dictionary element. The six rows correspond to different time frames, 1, 5, 7, 15, 35, and 75

in the video frame through the learned dictionary elements. To explain our simulation setup,

first recall that the candle video frame is stored as an 80 x 30 x 75 tensor, where the last

dimension corresponds to time. By flattening the first two spatial dimensions, this video

frame can be represented as a 2400 x 75 matrix. In the previous experiments, we have

factorized this data matrix using NMF and ONMF algorithms. Here, we take the transpose

of this data matrix so that the dimension of 75 x 2400 correspond to [time x space]. We

generate another video frame with the same size and length using white noise and concatenate

34



 

Figure 3.5: Learning time evolution dictionary from a video frame using NMF. The first and last 75 frames

of the video are from a candle video and white noise, respectively, as shown below. By an approximate

factorization of shape [time x space] = [time x 5] [5 x space], we learn 150 x 5 dictionary matrix, whose

columns give an approximate basis for the time evolution of each pixel of the video frame. The learned time

evolution dictionaries detect the planted ‘phase transition’ between frames 75 and 76.

with the candle video. Altogether, we form a data matrix X of shape 150 x 2400, where the

first 75 rows are coming from the candle video, and the last 75 are from white noise.

Next, we approximately factorize the data matrix X into WH using an NMF algorithm,

where W is of shape 150 x 5. This factorization tells us that each column of X, which

corresponds to the time evolution of a single pixel for 150 frames, can be approximated by

a nonnegative linear combination of the 5 columns of W . Hence the columns of W give a

dictionary for the time evolution of each of the 2400 pixels in the video frame. Since we have

planted a significant change between times 75 and 76, these five time-evolution dictionary

elements should be able to detect this “phase transition" in our video. Indeed, as in Figure

3.5, all five columns of W (shown as rows) exhibit significant change between frames 75 and

76, as expected. Furthermore, the first halves of the third and last dictionary elements in

Figure 3.5 contains information on the time evolution for the candle video, which disappears

after the phase transition at frame 76. This is also expected since a basis for time evolution

in the candle video should not contain meaningful information for the frames generated by

white noise.
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3.6 ONMF for Color Image Processing

In this section, we describe how ONMF can be applied to the two important image processing

problems.

First, a quick introduction to patch-based image processing. A typical e.g. jpeg grayscale

image may be represented by a matrix of unsigned integers with values between 0 and 255,

representing the intensity. Lower values correspond to black, higher values to white. Color

images may be stored similarly: to each of the three color channels red, blue and green, there

corresponds an analogous matrix of color intensities.

In general, images may contain thousands of pixels, so working with the full image directly

can be computationally infeasible, even when using online algorithms. Thankfully, one can

achieve success on various image processing applications, such as compression, denoising,

and impainting, by taking a “patch-based" approach. The idea is to extract (typically,

overlapping) small patches, usually of size in the range 8 × 8 to 30 × 30 pixels. One may

apply some procedures to each patch and recover the full image by patch averaging.

3.6.1 Color Image Compression

In this subsection, we describe how one can utilize ONMF to implement a patch-based

approach to image compression. These applications do not leverage any particular advan-

tage of ONMF compared to other nonnegative matrix factorization algorithms, but serve

to illustrate its versatility. However, in the video processing application we will have seen

that ONMF can produce qualitatively distinct dictionaries compared to those obtained from

standard offline nonnegative matrix factorization algorithms.

First, we consider the patch-based compression of images. The motivation for the ap-

proach presented here is as follows. A typical image, in its uncompressed form, is very high

dimensional. Indeed, images of moderate size may contain thousands to millions of pixels.

Thankfully, most real-world images are sufficiently regular to enable a substantial reduction

in the effective dimension. For instance, while it is true that an image of a clear sky may
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contain a large number of pixels, there is little variation in this image, and so intuitively one

may expect a representation by an object of dimension far lower than the number of pixels

to be possible (indeed, a single blue image patch ought to suffice).

One of the most popular ways of exploiting the regularity of natural images is through

the use of small image patches. The general scheme is to first learn a collection of relatively

few “atomic image patches" through some dictionary learning algorithms such as KSVD or

NMF. One then may then implement one’s application of choice, e.g. compression, denoising,

inpainting, to some collection of overlapping small image patches that cover the full image.

Finally, one can recover a full-size image through patch averaging.

We now describe in more detail how we used ONMF to compress color images. ONMF

sequentially receives data and updates the learned dictionary to effectively model new data

samples. In our implementation, a single data sample will consist of a matrix whose columns

consist of vectorized color image patches. For instance, we may select 1000 20 x 20 color

image patches so that our data sample is a 1200 x 1000 matrix. The first 400 entries of the

jth column are obtained by extracting the red channel of the jth image patch and vectorizing

along the first axis. The next 400 entries are analogously obtained from the blue channel

and the final 400 from the green channel. We may then apply ONMF as described in section

II with some number of data samples. Figure 3.6 displays the results of ONMF applied to a

famous painting.

We comment that for quality compression, it is often necessary to use the significant

overlap of patches. Too small overlap can lead to a certain “blockiness" of the recovered

image. For more information, consult the references [Juv17], [AES17], [Ela10].

3.6.2 Color Restoration

Next, we describe how ONMF can be used in conjunction with convolutional neural networks

to approach the problem of restoring color to grayscale images.

Color restoration without additional qualification of the term “restoration" is an ill-posed
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Figure 3.6: Image Compression Via ONMF. (Top) uncompressed image of Leonid Afremov’s famous painting

“Rain’s Rustle." (Middle) 25 of the 100 learned dictionary elements, reshaped from their vectorized form to

color image patch form. (Bottom): Painting compressed using a dictionary of 100 vectorized 20 × 20 color

image patches obtained from 30 data samples of ONMF, each consisting of 1000 randomly selected sample

patches. We used an overlap length of 15 in the patch averaging for the construction of the compressed

image.

problem. Indeed, any sensible conversion from color to grayscale images is necessarily lossy.

That said, of primary interest, are real-world images. For the sake of concreteness, one

may have an old black and white photograph of a landscape, and wish to restore color

to this photo. It is reasonable to assume a great degree of similarity between elements of

old and recent photographs. Naturally occurring objects like grass, water, mountains, etc.

look similar regardless of period. Thus the following idea suggests itself: learn a “landscape

dictionary," trained on color images of modern landscapes, and use this dictionary to restore

color to the grayscale landscape image.
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Figure 3.7: Color Restoration. (First) Original image of grass and sand. (Second) Conversion of first

image using Matlab’s default (linear) color to grayscale conversion function, rgb2gray. (Third) Restored

color image, obtained by applying our method to the second (grayscale) image using the dictionary below.

(Fourth) The first row displays the grass dictionary, the second row displays the sand dictionary. Each

dictionary contains five 10 x 10 color image patches. These were trained on our ONMF with 20 batches of

1000 randomly selected sample patches each. We used maximal patch overlap in the restoration process.

One way to attempt the color restoration process is to take the landscape dictionary of

color image patches and convert said patches to grayscale. There are many ways of doing so,

but it is important to choose a linear conversion. With this dictionary of grayscale patches,

one can use nonnegative least squares to approximate the image patches of the black and

white landscape photo we wish to restore. The key idea is to use the coefficients in the

representation by grayscale patches to form a color image patch using the corresponding

color image dictionary elements. The linearity of the conversion from color to grayscale

which produced the grayscale dictionary patches ensures that this procedure is consistent.

For this color restoration algorithm to be successful, it is necessary that in the above

representation of an arbitrary grayscale image patch of the black and white photo, only

(grayscale conversions of) the color landscape dictionary elements associated with this patch

make a significant contribution. For example, if a grayscale image patch to be restored is
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extracted from a grass portion of the image, one would hope that ocean, mountain, cloud,

etc. patches do not contribute. This may seem plausible at first, since the textures of all

of these objects vary significantly, and so one might hope that in general only grayscale

conversions of color grass image patches are used to represent black and white grass image

patches. Unfortunately, this is not the case.

There are many difficulties in using a pure dictionary learning-based approach to color

restoration. On one hand, images may abruptly change from pixel to pixel between different

components of an image, e.g. the transition from mountain to sky. This suggests that one

needs to use relatively small image patches, perhaps of size 10 x 10 or smaller, to avoid

“mountain patches" spilling into the sky portion of the image or vise-versa. On the other

hand, if there is any hope for the necessary condition for the success of color restoration

that different components of the black and white image may be identified despite their

absence of color, one needs e.g. spatial features such as texture to distinguish grass from

other components. For small very image patches, these features are difficult to detect. One

can see from the dictionary atoms in both of our color image patch dictionaries that there

is little textural information. Even larger image patches exhibit this problem: the low-

rank approximation of arbitrary image patches enforces a degree of “generality" in the few

dictionary atoms learned to represent said patches and thus finer details like texture are

obscured.

On the other hand, dictionary learning has its advantages. It takes relatively little data

to learn an effective dictionary for tasks such as compression, and even color restoration of

monochromatic objects. Motivated by this, we approached the color restoration problem

in two stages. The first stage is to classify grayscale image patches of the black and white

image to which we wish to restore color. Once the patch has been classified, we can use

an appropriate dictionary of color image patches to restore color. For example, to restore

color to black and white photos of landscapes, one may train a convolutional neural network

to classify grayscale image patches as derived from grass, cloud, sky, mountain, water, etc.

One can then train separate color image patch dictionaries corresponding to each of these
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elements.

We implemented this approach in a simple example of an image of grass juxtaposed with

sand. The results of our algorithm are displayed in 3.7. We comment that extensions of this

idea like those described above are possible, although they require more effort.

3.7 Conclusion

In this paper, we have presented various applications of ONMF to image and video processing

as well as to the analysis of time-series. Our experiments demonstrate both the utility of

ONMF on applications of general interest as well as the special insights its online nature can

reveal in sequential data.
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CHAPTER 4

Online Nonnegative CP-Dictionary Learning for

Markovian Data

4.1 Attribution

This chapter is based off of the joint work “Online nonnegative CP-dictionary learning for

Markovian data" by Hanbaek Lyu, Christopher Strohmeier, and Deanna Needell [LSN22]

On the theoretical end, my contributions consisted of developing the tensor extension of

ONMF which made use of “intermediate aggregation" steps, which were a key feature of the

algorithm, ultimately enabling the theoretical work in the related paper [LNB20] , as well

as in clarifying some of the technical details and developing appropriate extensions of key

lemmas in the matrix setting to the tensor setting in the proof of our main theorem. On

the applications side, I contributed the image and time series applications below 3.6 and

4.5, where the emphasis was on the contrast in structure between dictionary atoms learned

from different unfoldings of the relevant data tensors. Hanbaek Lyu contributed both the

general strategy of the proof, adapted from [LNB20], as well as many of the technical details.

On the applications side, he contributed 4.4, and the idea to illustrate temporal activation

patterns. Deanna Needell oversaw the project, highlighting weaknesses and errors in the

theoretical component, suggesting interesting applications, and greatly improving the clarity

of the work.
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4.2 Introduction

In modern signal processing applications, there is often a critical need to analyze and

understand data that is high-dimensional (many variables), large-scale (many samples),

and multi-modal (many attributes). For unimodal (vector-valued) data, matrix factor-

ization provides a powerful tool for one to describe data in terms of a linear combina-

tion of factors or atoms. In this setting, we have a data matrix X ∈ Rd×n, and we

seek a factorization of X into the product WH for W ∈ Rd×R and H ∈ RR×n. Includ-

ing two classical matrix factorization algorithms of Principal Component Analysis (PCA)

[WEG87] and Nonnegative Matrix Factorization (NMF) [LS99], this problem has gone by

many names over the decades, each with different constraints: dictionary learning, factor

analysis, topic modeling, component analysis. It has applications in text analysis, image re-

construction, medical imaging, bioinformatics, and many other scientific fields more generally

[SGH02, BB05, BBL+07, CWS+11, TN12, BMB+15, RPZ+18].
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Figure 4.1: Illustration of online MF (top) and online

CP-decomposition (bottom). n-mode tensors arrive

sequentially and past data are not stored. One seeks n

loading matrices that give approximate decomposition

of all past data.

A tensor is a multi-way array that is a nat-

ural generalization of a matrix (which is itself a

2-mode tensor) and is suitable for representing

multi-modal data. As matrix factorization is

for unimodal data, tensor factorization (TF)

provides a powerful and versatile tool that can

extract useful latent information out of multi-

modal data tensors. As a result, tensor fac-

torization methods have witnessed increasing

popularity and adoption in modern data sci-

ence. One of the standard tensor factoriza-

tion paradigms is CANDECOMP/PARAFAC

(CP) decomposition [Tuc66, H+70, CC70]. In

this setting, given a n-mode data tensor X ,
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one seeks n loading matrices U (1), . . . , U (n), each with R columns, such that X is approxi-

mated by the sum of the outer products of the respective columns of Ui’s. In other words,

regarding the n-mode tensor X as the joint probability distribution of n random variables, the

CP-decomposition approximates such a joint distribution as the sum of R product distribu-

tions, where the columns of the loading matrices give one-dimensional marginal distributions

used to form the product distributions. A particular instance of CP-decomposition is when

the data tensor and all of its loading matrices are required to have nonnegative entries. As

pointed out in the seminal work of Lee and Seung [LS99] (in the matrix case), imposing

a nonnegativity constraint in the decomposition problem helps one to learn interpretable

features from multi-modal data.

Besides being multi-modal, another unavoidable characteristic of modern data is its enor-

mous volume and the rate at which new data are generated. Online learning algorithms

permit incremental processing that overcomes the sample complexity bottleneck inherent

to batch processing, which is especially important when storing the entire data set is cum-

bersome. Not only do online algorithms address capacity and accessibility, but they also

have the ability to learn qualitatively different information than offline algorithms for data

that admit such a “sequential" structure (see e.g. [LMNS20]). In the literature, many “on-

line" variants of more classical “offline" algorithms have been extensively studied — NMF

[MBPS10, GTLY12, LNB20], TF [ZVB+16, HNHA15, ZEB18, DZLZ18, SHSK18], and dic-

tionary learning [RLH19, AGMM15, AGM14, KWSR17]. Online Tensor Factorization (OTF)

algorithms with suitable constraints (e.g., nonnegativity) can serve as valuable tools that can

extract interpretable features from multi-modal data.

4.2.1 Contribution

In this work, we develop a novel algorithm and theory for the problem of online CP-

dictionary learning, where the goal is to progressively learn a dictionary of rank-1 tensors

(CP-dictionary) from a stream of tensor data. Namely, given n-mode nonnegative tensors

(Xt)t≥0, we seek to find an adaptively changing sequence of nonnegative CP-dictionaries
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such that the current CP-dictionary can approximate all tensor-valued signals in the past

as a suitable nonnegative linear combination of its CP-dictionary atoms (see Figure 4.1 in

Section 4.1). Our framework is flexible enough to handle general situations of an arbitrary

number of modes in the tensor data, arbitrary convex constraints in place of the nonnega-

tivity constraint, and a sparse representation of the data using the learned rank-1 tensors.

In particular, our problem setting includes online nonnegative CP-decomposition.

Furthermore, we rigorously establish that under mild conditions, our online algorithm

produces a sequence of loading matrices that converge almost surely to the set of stationary

points of the objective function. In particular, our convergence results hold not only when

the sequence of input tensors (Xt)t≥0 are independent and identically distributed (i.i.d.), but

also when they form a Markov chain or functions of some underlying Markov chain. Such

a theoretical convergence guarantee for online NTF algorithms has not been available even

under the i.i.d. assumption on the data sequences. The relaxation to the Markovian setting

is particularly useful in practice since often the signals have to be sampled from some com-

plicated or unknown distribution, and obtaining even approximately independent samples is

difficult. In this case, the Markov Chain Monte Carlo (MCMC) approach provides a pow-

erful sampling technique (e.g., sampling from the posterior in Bayesian methods [VRCB18]

or from the Gibbs measure for Cellular Potts models [VB12], or motif sampling from sparse

graphs [LMS19]), where consecutive signals can be highly correlated.

4.2.2 Approach

Our algorithm combines the Stochastic Majorization-Minimization (SMM) framework [Mai13b],

which has been used for online NMF algorithms [MBPS10, GTLY12, ZTX17, LNB20], and

a recent work on block coordinate descent with diminishing radius (BCD-DR) [Lyu20]. In

SMM, one iteratively minimizes a recursively defined surrogate loss function f̂t that ma-

jorizes the empirical loss function ft. A premise of SMM is that f̂t is convex so that it is easy

to minimize, which is the case for online matrix factorization problems in the aforementioned

references. However, in the setting of factorizing n-mode tensors, f̂t is only convex in each
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of the n loading matrices and nonconvex jointly in all loading matrices. Our main algorithm

(Algorithm 6) only approximately minimizes f̂t by a single round of cyclic block coordinate

descent (BCD) in the n loading matrices. This additional layer of relaxation causes a num-

ber of technical difficulties in convergence analysis. One of our crucial innovations to handle

them is to use a search radius restriction during this process [Lyu20], which is reminiscent

of restricting step sizes in stochastic gradient descent algorithms and is in some sense ‘dual’

to proximal modifications of BCD [GS00, XY13].

Our convergence analysis on dependent data sequences uses the technique of “conditioning

on a distant past", which leverages the fact that while the one-step conditional distribution

of a Markov chain may be a constant distance away from the stationary distribution π,

the N -step conditional distribution is exponentially close to π in N . This technique has

been developed in [LNB20] recently to handle dependence in data streams for online NMF

algorithms.

4.2.3 Related work

We roughly divide the literature on TF into two classes depending on structured or unstruc-

tured TF problems. The structured TF problem concerns recovering exact loading matrices

of a tensor, where a structured tensor decomposition with loading matrices satisfying some

incoherence or sparsity conditions is assumed. A number of works address this problem in

the offline setting [TS15, AGJ15, SV17, SLLC17, BKS15, MSS16, SS17]. Recently, [RLH20]

addresses an online structured TF problem by reducing it to an online MF problem using

sparsity constraints on all but one loading matrices.

On the other hand, in the unstructured TF problem, one does not make any modeling

assumption on the tensor subject to a decomposition so there are no true factors to be

discovered. Instead, given an arbitrary tensor, one tries to find a set of factors (matrices

or tensors) that gives the best fit of a chosen tensor decomposition model. In this case,

convergence to a globally optimal solution cannot be expected, and global convergence to
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stationary points of the objective function is desired. For offline problems, global conver-

gence to stationary points of the block coordinate descent method is known to hold under

some regularity assumptions on the objective function [GS00, GS99, Ber99]. The recent

works [ZVB+16, HNHA15, ZEB18, DZLZ18, SHSK18] on online TF focus on computational

considerations and do not provide a convergence guarantee. For online NMF, almost sure

convergence to stationary points of a stochastic majorization-minimization (SMM) algorithm

under i.i.d. data assumption is well-known [MBPS10], which has been recently extended to

the Markovian case in [LNB20]. Similar global convergence for online TF is not known even

under the i.i.d. assumption. The main difficulty of extending a similar approach to online

TF is that the recursively constructed surrogate loss functions are nonconvex and cannot be

jointly minimized in all n loading matrices when n ≥ 2.

There are several recent works improving standard CP-decomposition algorithms such as

the alternating least squares (ALS) (see, e.g., [KB09]). [BBK18] proposes a randomized ALS

algorithm, that subsamples rows from each factor matrix update, which is an overdetermined

least squares problem. A similar technique of row subsampling was used in the context of

high-dimensional online matrix factorization [MMTV17]. [MYW18] proposed a randomized

algorithm for online CP-decomposition but no theoretical analysis was provided. Also, CP-

decomposition with structured factor matrices has been investigated in [GBB+15]. On the

other hand, [VMV15] considers a more efficient version of gradient descent type algorithms

for CP-decomposition.

In the context of dictionary learning, there is an interesting body of work consider-

ing tensor-dictionary learning based on the Tucker-decomposition [SBS16, GSSB17, SSB18,

GSSB19, SSB+19]. When learning a reconstructive tensor dictionary for tensor-valued data,

one can impose additional structural assumptions on the tensor dictionary in order to bet-

ter exploit the tensor structure of the data and to gain reduced computational complexity.

While in this work we consider the CP-decomposition model for the tensor-dictionary (also

in an online setting), the aforementioned works consider the Tucker-decomposition instead

and obtain various results on sample complexity, identifiability of a Tucker dictionary, and
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local convergence.

While our approach largely belongs to the SMM framework, there are related works using

stochastic gradient descent (SGD). In [ZTX17], an online NMF algorithm based on projected

SGD with general divergence in place of the squared ℓ2-loss is proposed, and convergence to

stationary points to the expected loss function for i.i.d. data samples is shown. In [SSY18],

a similar convergence result for stochastic gradient descent algorithms for unconstrained

nonconvex optimization problems with Markovian data samples is shown. While none of

these results can be directly applied to our setting of online NTF for Markovian data, it may

be possible to develop an SGD based approach for our setting, and it will be interesting to

compare the performance of the algorithms based on SMM and SGD.

4.2.4 Organization

In Section 4.3 we first give a background discussion on NTF and CP-decomposition and then

state the main optimization problem we address in this paper (see (4.13)). In Section 4.4,

we provide the main algorithm (Algorithm 6) and give an overview of the main idea. Section

4.5 states the main convergence result in this paper, Theorem 1, together with a discussion

on necessary assumptions and key lemmas used for the proof. In Section 4.6 we give the

proof of the main result, Theorem 1. In Section 4.7, we compare the performance of our

main algorithm on the offline nonnegative CP-decomposition problem against other baseline

algorithms – Alternating Least Squares and Multiplicative Update. We then illustrate our

approach on a diverse set of applications in Section 4.8; these applications are chosen to

showcase the advantage of being able to flexibly reshape multi-modal tensor data and learn

CP-dictionary atoms for any desired group of modes jointly.

In Appendix 4.9, we provide some additional background on Markov chains and Markov

chain Monter Carlo sampling. Appendix 4.10 contains some auxiliary lemmas. In Appendix

4.11, we provide a memory-efficient implementation (Algorithm 7) of Algorithm 6 that uses

bounded memory regardless of the length of the data stream.
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4.2.5 Notation

For each integer k ≥ 1, denote [k] = {1, 2, . . . , k}. Fix integers n, I1, . . . , In ≥ 1. An n-mode

tensor X of shape I1×· · ·×In is a map (i1, . . . , in) 7→ X(i1, . . . , in) ∈ R from the multi-index

set [I1] × · · · × [In] into the real line R. We identify 2-mode tensors with matrices and 1-

mode tensors with vectors, respectively. We do not distinguish between vectors and columns

of matrices. For two real matrices A and B, we denote their Frobenius inner product as

⟨A,B⟩ := tr(BTA) whenever the sizes match. If we have N n-mode tensors X1, . . . ,XN of

the same shape I1 × · · · × In, we identify the tuple [X1, . . . ,XN ] as the (n+ 1)-mode tensor

X of shape I1 × · · · × In × N , whose the ith slice along the (n + 1)st mode equals Xi. For

given n-mode tensors A and B, denote by A⊙B and A⊗kr B their Hadamard (pointwise)

product and Katri-Rao product, respectively. When B is a matrix, for each 1 ≤ j ≤ n, we

also denote their mode-j product by A×j B. (See [KB09] for an excellent survey of tensor

algorithms, albeit with notation that differs from our own).

4.3 Background and problem formulation

4.3.1 CP-dictionary learning and nonnegative tensor factorization

Assume that we are given N observed vector-valued signals x1, . . . , xN ∈ Rd
≥0. Fix an integer

R ≥ 1 and consider the following approximate factorization problem (see (4.2) for a precise

statement)

[x1, . . . , xN ] ≈ [u1, . . . , uR]×2 H ⇐⇒ X ≈ UH, (4.1)

where ×2 denotes the mode-2 product, X = [x1, . . . , xN ] ∈ Rd×N
≥0 , U = [u1, . . . , uR] ∈ Rd×R

≥0 ,

and H ∈ RR×N
≥0 . The right hand side (4.1) is the well-known nonnegative matrix factorization

(NMF) problem, where the use of nonnegativity constraint is crucial in obtaining a “parts-

based" representation of the input signals [LS99]. Such an approximate factorization learns

R dictionary atoms u1, . . . , uR that together can approximate each observed signal xj by

using the nonnegative linear coefficients in the jth column of H. The factors U and H in
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(4.1) above are called the dictionary and code of the data matrix X, respectively. They can

be learned by solving the following optimization problem

argmin
U ′∈Rd×R

≥0 ,H′∈RR×N
≥0

(
∥X − U ′H ′∥2F + λ∥H ′∥1

)
, (4.2)

where λ ≥ 0 is a regularization parameter that encourages a sparse representation of the

columns of X over the columns of U . Note that (4.2) is also known as a dictionary learning

problem [OF97, EAH99, LS00, EA06, LHK05], especially when R ≥ d.

Next, suppose we have N observed n-mode tensor-valued signals X1, . . . ,XN ∈ RI1×···×In
≥0 .

A direct tensor analogue of the NMF problem (4.1) would be the following:

[X1, . . . ,XN ] ≈ [D1, . . . ,DR]×n+1 H ⇐⇒ X ≈ D ×n+1 H, (4.3)

where X = [X1, . . . ,XN ] ∈ RI1×···×In×N
≥0 , D = [D1, . . . ,DR] ∈ RI1×···×In×R

≥0 , and H ∈ RR×N
≥0 .

As before, we call D and H above the dictionary and code of the data tensor X , respectively.

Note that this problem is equivalent to (4.1) since

∥X − D ×n+1 H∥2F = ∥MAT(X )−MAT(D)×2 H∥2F , (4.4)

where MAT(·) is the matricization operator that vectorizes (using lexicographic ordering

of entries) each slice with respect to the last mode. For instance, MAT([X1, . . . ,XN ]) is a

(I1 · · · In)×N matrix whose ith column is the vectorization of Xi.

Now, consider imposing an additional structural constraint on the dictionary atoms

D1, . . . ,DN in (4.3). Specifically, suppose we want each Di to be the sum of R rank

1 tensors. Equivalently, we assume that there exist loading matrices [U (1), . . . , U (n)] ∈

RI1×R
≥0 × · · · × RIn×R

≥0 such that

[D1, . . . ,DR] = Out(U (1), . . . , U (n)) (4.5)

:=

[
n⊗

k=1

U (k)(:, 1),
n⊗

k=1

U (k)(:, 2), . . . ,
n⊗

k=1

U (k)(:, R)

]
∈ RI1×···×In×R

≥0 , (4.6)

where U (k)(:, j) denotes the ith column of the Ik × R matrix U (k) and ⊗ denotes the outer

product. Note that we are also defining the operator Out(·) here, which will be used through-

out this paper. In this case, the tensor factorization problem in (4.3) becomes (a more precise
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statement is given in (4.13))

[X1, . . . ,XN ] ≈ Out(U (1), . . . , U (n))×n+1 H. (4.7)

When N = 1 and λ = 0, then H ∈ RR×1
≥0 , so by absorbing the ith entry of H into the Di, we

see that the above problem (4.7) reduces to

X ≈
∑

Out(U (1), . . . , U (n)) :=
R∑
i=1

n⊗
k=1

U (k)(:, i), (4.8)

which is the nonnegative CANDECOMP/PARAFAC (CP) decomposition problem [Tuc66,

H+70, CC70]. On the other hand, if n = 1 so that Xi are vector-valued signals, then (4.7)

reduces to the classical dictionary learning problem (4.2). For these reasons, we refer to

(4.7) as the CP-dictionary learning (CPDL) problem. We call the (n + 1)-mode tensor

Out(U (1), . . . , U (n)) = [D1, . . . ,DR] in R(I1×···×In×R) a CP-dictionary and the matrix H ∈

RR×N
≥0 the code of the dataset X = [X1, . . . ,XN ], respectively. Here we call the rank-1

tensors Di the atoms of the CP-dictionary.

4.3.2 Online CP-dictionary learning

Next, we consider an online version of the CPDL problem we considered in (4.7). Given a

continuously arriving sequence of data tensors (Xt)t≥0, can we find an adaptively changing

sequence of CP-dictionaries such that the current CP-dictionary can approximate all tensor-

valued signals in the past as a suitable nonnegative linear combination of its CP-dictionary

atoms (see Figure 4.1 in Section 4.1)? This online problem can be explicitly formulated as

an empirical loss minimization framework, and we will also state an equivalent stochastic

program (under some modeling assumption) that we rigorously address.

Fix constraint sets for code and loading matrices Ccode ⊆ RR×b and C(i) ⊆ RIi×R, i =

1, . . . , n, respectively (generalizing the nonnegativity constraints in Subsection 4.3.1). Write

Cdict := C(1)×· · ·×C(n). For each X ∈ RI1×···×In×b
≥0 , D := [U (1), . . . , U (n)] ∈ RI1×R×· · ·×RIn×R,

H ∈ RR×b, define

ℓ(X ,D, H) := ∥X − Out(D)×n+1 H∥2F + λ∥H∥1, (4.9)
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ℓ(X ,D) := inf
H∈Ccode

ℓ(X ,D, H), (4.10)

where λ ≥ 0 is a regularization parameter. Fix a sequence of non-increasing weights (wt)t≥0

in (0, 1]. Here X denotes a minibatch of b tensors in RI1×···×In , so minimizing ℓ(X ,D) with

respect to D amounts to fitting the CP-dictionary D to the minibatch of b tensors in X .

The online CP-dictionary learning (online CPDL) problem is the following empirical loss

minimization problem:

Upon arrival of Xt: Dt ∈ argmin
D∈Cdict

(
ft(D) := (1− wt)ft−1(D) + wt ℓ(Xt,D)

)
, (4.11)

where ft is the empirical loss function recursively defined by the weighted average in (4.11)

with f0 ≡ 0. One can solve the recursion in (4.11) and obtain the more explicit formula for

the empirical loss:

ft(D) =
t∑

k=1

ℓ(Xk,D)wt
k, wt

k := wk

t∏
i=k+1

(1− wi). (4.12)

The weight wt in (4.11) controls how much we want our new loading matrices in Dt to

deviate from minimizing the previous empirical loss ft−1 to adapting to the newly observed

tensor data Xt. In one extreme case of wt ≡ 1, Dt is a minimizer of the time-t loss ℓ(Xt, ·)

and ignores the past ft−1. If wt ≡ α ∈ (0, 1) then the history is forgotten exponentially

fast, that is, ft(·) =
∑t

s=1 α(1 − α)t−s ℓ(Xs, ·). On the other hand, the ‘balanced weight’

wt = 1/t makes the empirical loss to be the arithmetic mean: ft(·) = 1
t

∑t
s=1 ℓ(Xs, ·), which

is the choice made for the online NMF problem in [MBPS10]. Therefore, one can choose

the sequence of weights (wt)t≥1 in Algorithm 6 in a desired way to control the sensitivity of

the algorithm to the newly observed data. That is, make the weights decay fast for learning

average features and decay slow (or keep it constant) for learning trending features. We

mention that our theoretical convergence analysis covers only the former case.

We note that the online CPDL problem (4.11) involves solving a constrained optimization

problem for each t, which is practically infeasible. Hence we may compute a sub-optimal
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sequence (Dt)t≥0 of tuples of loading matrices (see Algorithm 6) and assess its asymptotic

fitness to the original problem (4.11). We seek to perform some rigorous theoretical analysis

at the expense of some suitable but non-restrictive assumption on the data sequence Xt as

well as the weight sequence (wt)t≥1. A standard modeling assumption in the literature is to

assume the data sequence Xt are independent and identically distributed (i.i.d.) according

to some distribution π [MBPS10, Mai13b, MMTV17, ZTX17]. We consider a more relaxed

setting where Xt is given as a function of some underlying Markov chain (see (A1)) and π is

the stationary distribution of (Xt)t≥1 viewed as a stochastic process. Under this assumption,

consider the following stochastic program

argmin
D∈Cdict

(
f(D) := EX∼π [ℓ(X ,D)]

)
, (4.13)

where the random tensor X is sampled from the distribution π, and we call the function f

defined in (4.13) the expected loss function. The connection between the online (4.11) and

the stochastic (4.13) formulation of the CPDL problem is that, if the parameter space Cdict

is compact and the weights wt satisfy some condition, then supD |ft(D)− f(D)| → 0 almost

surely as t → ∞. (see Lemma 9 in Appendix 4.10). Hence, under this setting, we seek to

find a sequence (Dt)t≥1 that converges to a solution to (4.13). In other words, fitness to the

single expected loss function f is enough to deduce the asymptotic fitness to all empirical

loss functions ft.

Once we find an optimal CP-dictionary D∗ = Out(U (1), . . . , U (n)) for (4.13), then we can

obtain an optimal code matrix H = H(X ) ∈ RR×b for each realization of the random tensor

X by solving the convex problem in (4.10). Demanding optimality of the CP-dictionary D∗

and leaving the code matrix H = H(X ) adjustable in this way is a more flexible framework

for CP-decomposition of a random (as well as online) tensor than seeking a pair of jointly

optimal CP-dictionary D∗ and code matrix H∗, especially when the variation of the random

tensor is large. However, if we have a single deterministic tensor X to be factorized, then

these two formulations are equivalent since minD,H ℓ(X ,D, H) = minD minH ℓ(X ,D, H).
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4.4 The Online CP-Dictionary Learning algorithm

In this section, we state our main algorithm (Algorithm 6). For simplicity, we first give a

preliminary version for the case of n = 2 modes, minibatch size b = 1, with nonnegativity

constraints. Suppose we have learned n = 2 loading matrices Dt−1 := [U
(1)
t−1, U

(2)
t−1] from the

sequence X1, . . . ,Xt−1 of data tensors, Xi ∈ RI1×I2×1. Then we compute the updated loading

matrices Dt = [U
(1)
t , U

(2)
t ] by

Ht ← argmin
H∈RR×1

≥0

ℓ(Xt,Dt−1, H)

f̂t(D) ← (1− wt)f̂t−1(D) + wtℓ(Xt,D, Ht)

U
(1)
t ← argmin

U∈RIi×R

≥0 , ∥U−U
(1)
t−1∥F≤c′wt

f̂t(U,U
(2)
t−1)

U
(2)
t ← argmin

U∈RIi×R

≥0 , ∥U−U
(2)
t−1∥F≤c′wt

f̂t(U
(1)
t , U),

(4.14)

where λ ≥ 0 is an absolute constant and (wt)t≥1 is a non-increasing sequence of weights

in (0, 1]. The recursively defined function f̂t : D = [U (1), . . . , U (n)] 7→ [0,∞) is called the

surrogate loss function, which is quadratic in each factor U (i) but is not jointly convex.

Namely, when the new tensor data Xt arrives, one computes the code Ht ∈ RR×1
≥0 for Xt with

respect to the previous loading matrices in Dt−1, updates the surrogate loss function f̂t, and

then sequentially minimizes it to find updated loading matrices within diminishing search

radius c′wt.

Note that the surrogate loss function f̂t in (4.16) is defined by the same recursion that

defines the empirical loss function in (4.11). However, notice that the loss term ℓ(Xt,D) in

the definition of the empirical loss function ft in (4.13) involves optimizing over the code

matrices H in (4.10), which should be done for every Xs, 1 ≤ s ≤ t, in order to evaluate

ft. On the contrary, in the definition of the surrogate loss function f̂t in (4.16), this term

is replaced with the sub-optimal loss ℓ(Xt,D, Ht), which is sub-optimal since Ht was found

by decomposing Xt using the previous CP-dictionary Out(Dt−1). From this, it is clear that

f̂t ≥ ft for all t ≥ 0. In other words, f̂t is a majorizing surrogate of ft.
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Now we state our algorithm in the general mode case in Algorithm 6.

Algorithm 6 Online CP-Dictionary Learning (online CPDL)

0: Input: (Xt)1≤t≤T (minibatches of data tensors in RI1×···×In×b); [U (1)
0 , . . . , U

(n)
0 ] ∈ RI1×R×

· · · × RIn×R (initial loading matrices); c′ > 0 (search radius constant);

0: Constraints: C(i) ⊆ RIi×R, 1 ≤ i ≤ n, Ccode ⊆ RR×b (e.g., nonnegativity constraints)

0: Parameters: R ∈ N (# of dictionary atoms); λ ≥ 0 (ℓ1-regularization parameter);

(wt)t≥1 (weights in (0, 1]);

0: Initialize surrogate loss f̂0 ≡ 0;

0: For t = 1, . . . , T do:

0: Coding : Compute the optimal code matrix

Ht ← argmin
H∈Ccode⊆RR×b

ℓ(Xt, U
(1)
t−1, . . . , U

(n)
t−1, H); (using Algorithm 9) (4.15)

0: Update surrogate loss function:

f̂t(U
(1), . . . , U (n))← (1− wt)f̂t−1(U

(1), . . . , U (n)) + wt ℓ(Xt, U
(1), . . . , U (n), Ht) (4.16)

0: Update loading matrices by restricted cyclic block coordinate descent:

0: For i = 1, . . . , n do:

0:

C(i)t ←
{
U ∈ C(i)

∣∣∣∣ ∥U − U (i)
t−1∥F ≤ c′wt

}
; (▷ Restrict the search radius by c′wt) (4.17)

U
(i)
t ← argmin

U∈C(i)
t

f̂t

(
U

(1)
t , . . . , U

(i−1)
t , U, U

(i+1)
t−1 , . . . , U

(n)
t−1

)
; (4.18)

(▷Update the ith loading matrix )

0: End for

0: End for

0: Return: [U
(1)
T , . . . , U

(n)
T ] ∈ C(1) × · · · × C(n); =0

Algorithm 6 combines two key elements: stochastic majorization-minimization (SMM)

[Mai13b] and block coordinate descent with diminishing radius (BCD-DR) [Lyu20]. SMM
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amounts to iterating the following steps: sampling new data points, constructing a strongly

convex surrogate loss, and then minimizing the surrogate loss to update the current esti-

mate. This framework has been successfully applied to online matrix factorization problems

[MBPS10, MMTV17]. However, the biggest bottleneck in using a similar approach in the

tensor case is that the surrogate loss function f̂t in (4.16) is only block multi-convex, meaning

that it is convex in each block of coordinates but nonconvex jointly. Hence we cannot find

an exact minimizer for f̂t to update all n loading matrices at the same time.

In order to circumvent this issue, one could try to perform a few rounds of block coordinate

descent (BCD) on the surrogate loss function f̂t, which can be easily done since f̂t is convex in

each loading matrix. However, this results in sub-optimal loading matrices in each iteration,

causing a number of difficulties in convergence analysis. Moreover, global convergence of

BCD to stationary points is not guaranteed in general even for the deterministic tensor CP-

decomposition problems without constraints [KB09], and such a guarantee is known only

with some additional regularity conditions [GS99, GS00, Ber99]. There are other popular

strategies of using proximal [GS00] or prox-linear [XY13] modifications of BCD to improve

convergence properties. While these methods only ensure square-summability
∑∞

t=1∥Dt −

Dt−1∥2F < ∞ of changes (see, e.g., [XY13, Lem 2.2]), we find it crucial for our stochastic

analysis that we are able to control the individual changes ∥Dt − Dt−1∥F of the loading

matrices in each iteration. This motivates to use BCD with diminishing radius in [Lyu20].

More discussions on technical points in convergence analysis are given in Subsection 4.5.2.

The coding step in (4.15) is a convex problem and can be easily solved by a num-

ber of known algorithms (e.g., LARS [EHJ+04], LASSO [Tib96], and feature-sign search

[LBRN07]). As we have noted before, the surrogate loss function f̂t in (4.16) is quadratic

in each block coordinate, so each of the subproblems in the factor matrix update step in

(4.18) is a constrained quadratic problem and can be solved by projected gradient descent

(see [MBPS10, LNB20]).

Notice that implementing Algorithm 6 may seem to require unbounded memory as one

needs to store all past data X1, . . . ,Xt to compute the surrogate loss function f̂t in (4.16).
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However, it turns out that there are certain bounded-sized statistics that aggregates the past

information that are sufficient to parameterize f̂t and also to update the loading matrices.

This bounded memory implementation of Algorithm 6 is given in Algorithm 7, and a detailed

discussion on the memory efficiency is relegated to Appendix 4.11.

4.5 Convergence results

In this section, we state our main convergence result of Algorithm 6. Note that all results

that we state here also apply to Algorithm 7, which is a bounded-memory implementation

of Algorithm 6.

4.5.1 Statement of main results

We first layout all technical assumptions required for our convergence results to hold.

(A1). The observed minibatch of data tensors Xt = [Xt;1, . . . ,Xt;b] are given by Xt = φ(Yt),

where Yt is an irreducible and aperiodic Markov chain defined on a finite state space Ω and

φ : Ω → RI1×···×In×b is a bounded function. Denote the transition matrix and the unique

stationary distribution of Yt by P and π, respectively.

(A2). For each 1 ≤ i ≤ n, the ith loading matrix is constrained to a compact and convex

subset C(i) ⊆ RIi×R that contains at least two points. Furthermore, the code matrices Ht

belong to a compact and convex subset Ccode ⊆ RR×b.

(A3). The sequence of non-increasing weights wt ∈ (0, 1] in Algorithm 6
∑∞

t=1wt =∞, and∑∞
t=1w

2
t

√
t <∞. Furthermore, w−1

t+1 − w−1
t ≤ 1 for all sufficiently large t.

(A4). The expected loss function f defined in (4.13) is continuously differentiable and has

Lipschitz gradient.

It is standard to assume that the sequence of signals is drawn from a data distribution of

compact support in an independent fashion [MBPS10, Mai13a], which enables the processing
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of large data by using i.i.d. subsampling of minibatches. However, when the signals have to

be sampled from some complicated or unknown distribution, obtaining even approximately

independent samples is difficult. In this case, Markov Chain Monte Carlo (MCMC) pro-

vides a powerful sampling technique (e.g., sampling from the posterior in Bayesian methods

[VRCB18] or from the Gibbs measure for Cellular Potts models [VB12], or motif sampling

from sparse graphs [LMS19]), where consecutive signals could be highly correlated. (See

Appendix 4.9 for more background on Markov chains and MCMC.)

An important notion in MCMC sampling is “exponential mixing” of the Markov chain1.

For a simplified discussion, suppose in (A1) that our data tensors Xt themselves form a

Markov chain with unique stationary distribution π. Under the assumption of finite state

space, irreducibility, and aperiodicity in (A1), the Markov chain Xt “mixes” to the stationary

distribution π at an exponential rate. Namely, for any ε > 0, one can find a constant

τ = τ(ε) = O(log ε−1), called the “mixing time” of Xt, such that the conditional distribution

of Xt+τ given Xt is within total variation distance ε from π regardless of the distribution of

Xt (see (4.87) for the definition of total variation distance). This mixing property of Markov

chains is crucial both for practical applications of MCMC sampling as well as our theoretical

analysis. For instance, a common practice of using MCMC sampling to obtain approximate

i.i.d. samples is to first obtaining a long Markov chain trajectory (Xt)t≥1 and then thinning

it to the subsequence (Xkτ )k≥1 [BGJM11, Sec. 1.11]. Due to the choice of mixing time τ ,

this forms an ε-approximate i.i.d. samples from π.

However, thinning a Markov chain trajectory does not necessarily produce truly indepen-

dent samples, so classical stochastic analysis that relies crucially on independence between

data samples is not directly applicable. For instance, if Xt is a reversible Markov chain

then the correlation within the subsequence is nonzero and at least of order ε (see Appendix

4.9.2 for the definition of reversibility and detailed discussion). In order to obtain truly

independent samples, one may independently re-initialize a Markov chain trajectory, run it
1For our analysis, it is in fact sufficient to have a sufficiently fast polynomial mixing of the Markov chain.

See (A1)’ in Appendix 4.9 for a relaxed assumption using countable state-space.
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for τ iterations, and keep the last samples in each run (e.g., see the discussion in [SSY18]).

However, in both approaches, only one out of τ Markov chain samples are used for opti-

mization, which could be extremely wasteful if the Markov chain converges to the stationary

distribution slowly so that the implied constant in τ(ε) = O(log ε−1) is huge.

Instead, our assumption on input signals in (A1) allows us to use every single sample in the

same MCMC trajectory without having to "burn" lots of samples. Such Markovian extension

of the classical OMF algorithm in [MBPS10] has recently been achieved in [LNB20], which

has applications in dictionary learning, denoising, and edge inference problems for network

data [LKVP21].

Assumption (A2) is also standard in the literature of dictionary learning (see [MBPS10,

Mai13b]). A particular instance of interest is when they are confined to having nonnegative

entries, in which case the learned dictionary components give a “parts-based” representation

of the input signals [LS99].

Assumption (A3) states that the sequence of weights wt ∈ (0, 1] we use to recursively

define the empirical loss (4.11) and surrogate loss (4.16) does not decay too fast so that∑∞
t=1wt =∞ but decay fast enough so that

∑∞
t=1w

2
t

√
t <∞. This is analogous to require-

ments for stepsizes in stochastic gradient descent algorithms, where the stepsizes are usually

required to be non-summable but square-summable (see, e.g., [SSY18]). The additioanl fac-

tor
√
t is used in our analysis to deduce the uniform convergence of the empirical loss ft to

the expected loss f (see Lemma 9 in Appendix 4.10), which was also the case in the literature

[MBPS10, Mai13b, MMTV17, LNB20]. Also, the condition w−1
t −w−1

t−1 ≤ 1 for all suficiently

large t is equivalent to saying the recursively defined weights wt
k in (4.12) are non-decreasing

in k for all sufficiently large k, which is required to use Lemma 9 in Appendix 4.10. We also

remark that (A3) is implied by the following simpler condition:

(A3’). The sequence of non-increasing weights wt ∈ (0, 1] in Algorithm 6 satisfy either

wt = t−1 for t ≥ 1 or wt = Θ(t−β(log t)−δ) for some δ ≥ 1 and β ∈ [3/4, 1).

For Assumption (A4), we remark that it follows from the uniqueness of the solution
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of (4.15) (see [MBPS10, Prop. 1]). This can be enforced for example by the elastic net

penalization [ZH05]. Namely, we may add a quadratic regularizer λ′∥H∥2F to the loss function

ℓ in (4.9) for some λ′ > 0. Then the resulting quadratic function is strictly convex and hence

it has a unique minimizer in the convex constraint set Ccode. (See [MBPS10, Sec. 4.1] and

[LNB20, Sec. 4.1] for more detailed discussion on this assumption).

The main result in this paper, which is stated below in Theorem 1, states that the

sequence Dt of CP-dictionaries produced by Algorithm 6 converges to the set of stationary

points of the expected loss function f defined in (4.13). To the best of our knowledge,

Theorem 1 is the first convergence guarantee for any online constrained dictionary learning

algorithm for tensor-valued signals or as an online unconstrained CP-factorization algorithm,

which have not been available even under the classical i.i.d. assumption on input signals.

Recall that ft and f̂t denote the empirical and surrogate loss function defined in (4.11) and

(4.16), respectively.

Theorem 1. Suppose (A1)-(A3) hold. Let (Dt)t≥1 be an output of Algorithm 6. Then the

following hold.

(i) limt→∞ E[ft(Dt)] = limt→∞ E[f̂t(Dt)] <∞.

(ii) ft(Dt)− f̂t(Dt)→ 0 and f(Dt)− f̂t(Dt)→ 0 as t→∞ almost surely.

(iii) Further assume (A4). Then the distance (measured by block-wise Frobenius distance)

between Dt and the set of all stationary points of f in Cdict converges to zero almost

surely.

We acknowledge that a similar asymptotic convergence result under Markovian depen-

dency in data samples has been recently obtained in [SSY18, Thm. 2] in the context of

stochastic gradient descent for nonconvex optimization problems. The results are not di-

rectly comparable since [SSY18, Thm. 2] only handles unconstrained problems.
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4.5.2 Key lemmas and overview of the proof of Theorem 1.

In this subsection, we state the key lemmas we use to prove Theorem 1 and illustrate our

contribution to techniques for convergence analysis.

As we mentioned in Section 4.4, there is a major difficulty in convergence analysis in the

multi-modal case n ≥ 2 as the surrogate loss function f̂t (see (4.16)) to be minimized for

updating the loading matrices is only multi-convex in n blocks. Note that we can view our

algorithm (Algorithm 6) as a multi-modal extension of stochastic majorization-minimization

(SMM) in the sense that it reduces to standard SMM in the case of vector-valued signals

(n = 1). We first list the properties of SMM that have been critically used in convergence

analysis in related works [MBPS10, Mai13b, MMTV17, LNB20]:

libel=0, leftmirgin=0.6cm (Surrogate Optimality) Dt is a minimizer of f̂t over Cdict.

liibel=0, leftmiirgiin=0.6cm (Forward Monotonicity) f̂t(Dt−1) ≥ f̂t(Dt).

liiibel=0, leftmiiirgiiin=0.6cm (Backward Monotonicity) f̂t−1(Dt−1) ≤ f̂t−1(Dt).

livbel=0, leftmivrgivn=0.6cm (Second-Order Growth Property) f̂t(Dt−1) − f̂t(Dt) ≥

c∥Dt −Dt−1∥2F for some constant c > 0.

lvbel=0, leftmvrgvn=0.6cm (Stability of Estimates) ∥Dt −Dt−1∥F = O(wt).

lvibel=0, leftmvirgvin=0.6cm (Stability of Errors) For ht := f̂t − ft ≥ 0, |ht(Dt) −

ht−1(Dt−1)| = O(wt).

For n = 1, it is crucial that f̂t is convex so that Dt is a minimizer of f̂t in the convex constraint

set Cdict, as stated in i. From this the monotonicity properties ii and iii follow immediately.

The second-order growth property iv requires additional assumption that the surrogates f̂t

are strongly convex uniformly in t. Then iii and iv imply v, which then implies vi. Lastly,

i is also crucially used to conclude that every limit point of (Dt)t≥1 is a stationary point of
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f over Cdict. Now in the multi-modal case n ≥ 2, we do not have i so all of the implications

mentioned above are not guaranteed. Hence the analysis in the multi-modal case requires a

significant amount of technical innovation.

Now we state our key lemma that handles the nonconvexity of the surrogate loss f̂t in

the general multi-modal case n ≥ 1.

Lemma 1 (Key Lemma). Assume (A1)-(A3). Let (Dt)t≥1 be an output of Algorithm 6. For

all t ≥ 1, the following hold:

(i) (Forward Monotonicity) f̂t(Dt−1) ≥ f̂t(Dt);

(ii) (Stability of Estimates) ∥Dt −Dt−1∥F = O(wt);

(iii) (Stability of Errors) |ht(Dt)− ht−1(Dt−1)| = O(wt), where ht := f̂t − ft.

(iv) (Asymptotic Surrogate Stationarity) Let (tk)k≥1 be any sequence such that Dtk and

f̂tk converges almost surely. Then D∞ := limk→∞Dtk is almost surely a stationary

point of f̂∞ := limk→∞ f̂tk over Cdict.

We show Lemma 1 (i) using a monotonicity property of block coordinate descent. One of

our key observations is that we can directly ensure the stability properties v and vi (Lemma

1 (ii) and (iii)) by using a search radius restriction (see (4.17) in Algorithm 6). In turn,

we do not need the properties iii and iv. In particular, our analysis does not require strong

convexity of the surrogate loss f̂t in each loading matrices as opposed to the existing analysis

(see, e.g., [MBPS10, Assumption B] and [Mai13b, Def. 2.1]). Lastly, our analysis requires

that estimates Dt are only asymptotically stationary to the limiting surrogate loss function

along convergent subsequences, as stated in Lemma 1 (iv). The proof of this statement

is nontrivial and requires a substantial work. On a high level, the argument consists of

demonstrating that the effect of search radius restriction by O(wt) vanishes in the limit, and

the negative gradient −∇f̂∞(D∞) is in the normal cone of Cdict at D∞.

The second technical challenge is to handle dependence on input signals, as stated in

(A1). The theory of quasi-martingales [Fis65, Rao69] is a key ingredient in convergence
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analysis under i.i.d input in [MBPS10, Mai13b, APM19]. However, dependent signals do

not induce quasi-martingale since conditional on the information Ft at time t, the following

signal Xt+1 could be heavily biased. We use the recently developed technique in [LNB20]

to overcome this issue of data dependence. The essential fact is that for irreducible and

aperiodic Markov chains on finite state space, the N -step conditional distribution converges

exponentially in N to the unique stationary distribution regardless of the initial distribution

(exponential mixing). The key insight in [LNB20] was that in the analysis, one can condition

on “distant past” Ft−
√
t, not on the present Ft, in order to allow the underlying Markov chain

to mix close enough to the stationary distribution π for
√
t iterations. This is opposed to

a common practice of thinning Markov chain samples in order to reduce the dependence

between sample points we mentioned earlier in Subsection 4.5.1. We provide the estimate

based on this technique in Lemma 2.

For the statement of Lemma 2, recall that under (A1), the data tensor at time t is given

by Xt = φ(Yt), where Yt is an irreducible and aperiodic Markov chain on a finite state space

Ω with transition matrix P . For y, y′ ∈ Ω and k ∈ N, P k(y, y′) equals the k-step transition

probability of Yt from y to y′, and P k(y, ·) equals the distribution of Yk conditional on Y0 = y.

We also use the notation a+ = max(0, a) for a ∈ R.

Lemma 2 (Convergence of Positive Variation). Let (Dt)t≥1 be an output of Algorithm 6.

Suppose (A1)’, (A2), and (A3) hold.

(i) Let (at)t≥0 be a sequence of non-decreasing non-negative integers such that at = o(t).

Then there exists absolute constants C1, C2, C3 > 0 such that for all sufficiently large

t ≥ 0,

E

[
E
[
wt+1

(
ℓ(Xt+1,Dt)− ft(Dt)

) ∣∣∣∣Ft−at

]+]
(4.19)

≤ C1w
2
t−at

√
t+ C2w

2
t at + C3wt sup

y∈Ω
∥P at+1(y, ·)− π∥TV . (4.20)

(ii)
∞∑
t=0

(
E
[
f̂t+1(Dt+1)− f̂t(Dt)

])+
≤

∞∑
t=0

wt+1 (E [(ℓ(Xt+1,Dt)− ft(Dt))])
+ <∞.
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We give some remarks on the statement of Lemma 2. According to Proposition 3 in

Section 4.6, one of the main quantities we would like to bound is E[ℓ(Xt+1,Dt) − f̂t(D)]+,

which is the expected positive variation of the one-step difference between the one-point error

ℓ(Xt+1,Dt) of factorizing the new data Xt+1 using the current dictionary Dt and the empirical

error f̂t(Dt). According to the recursive update of the empirical and surrogate losses in (4.11)

and (4.16), we want the weighted sum of such expected positive variations in Lemma 2 (ii) is

finite. This follows from the bound in Lemma 2 (i), as long as
∑∞

t=1w
2
t

√
t <∞, at = O(

√
t),

and the Markov chain Yt modulating the data tensor Xt mixes fast enough (see (A1)). Such

conditions are satisfied from the assumptions (A1) and (A3).

4.6 Proof of the main result

In this section, we prove our main convergence result, Theorem 1. Throughout this section,

we assume the code matrices Ht and loading matrices U (i)
t belong to convex and compact

constraint sets Ht ∈ Ccode ⊆ RR×b, U (i)
t ∈ C(i) ⊆ RIi×R as in (A2) and denote Cdict =

C(1) × · · · × C(n) ⊆ RI1×R × · · · × RIn×R.

4.6.1 Deterministic analysis

In this subsection, we provide some deterministic analysis of our online algorithm (Algorithm

6), which will be used in the forthcoming stochastic analysis.

First, we derive a parameterized form of Algorithm 6, where the surrogate loss function

f̂t is replaced with ĝt, which is a block-wise quadradtic function with recursively updating

parameters. This will be critical in our proof of Lemma 1 (iv) as well as deriving the

bounded-memory implementation of Algorithm 6 stated in Algorithm 7 in Appendix 4.11.
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Consider the following block optimization problem

Upon arrival of Xt:



Ht = argminH∈Ccode⊆RR×b ℓ(Xt,Dt−1, H)

At = (1− wt)At−1 + wtHtH
T
t

Bt = (1− wt)Bt−1 + wt(Xt ×n+1 H
T
t )

Dt = argmin
D=[U(1),...,U(n)]∈Cdict

∥U(i)−U
(i)
t−1∥F≤c′wt ∀i

ĝt(D)

, (4.21)

where for each D = [U1, . . . , Un] ∈ Cdict (here we use subscripts to denote modes for taking

their transpose) and ĝt in (4.21) is defined as

ĝt(D) := tr(At (U
T
n Un ⊙ . . .⊙ UT

1 U1))− 2 tr
(
B

(n+1)
t (Un ⊗kr . . .⊗kr U1)

T
)
, (4.22)

where B
(n+1)
t ∈ RI1···In×R denotes the mode-(n + 1) unfolding of Bt ∈ RI1×···×In×R, and

A0 ∈ RR×R and B0 ∈ RI1×···×In×R are tensors of all zero entries. The following proposition

shows that minimizing f̂t in (4.16) is equivalent to minimizing ĝt in (4.21). This shows that

f̂t, which requires the storage of all past tensors X1, . . . ,Xt for its definition, can in fact be

parameterized by an aggregate matrix At ∈ RR×R and an aggregate tensor Bt ∈ RI1×···×In×R,

whose dimensions are independent of t. This implies that Algorithm 6 can be implemented

using a bounded memory, without needing to store a growing number of full-dimensional

data tensors X1, . . . ,Xt. See Appendix 4.11 for more details.

Proposition 2. The following hold:

(i) Let f̂t be as in (4.16) and ĝt be in (4.22). Then

f̂t(D) = ĝt(D) +
t∑

s=1

tr
(
MAT(Xs)MAT(Xs)

T
)
+ λ

t∑
s=1

∥Hs∥1, (4.23)

(ii) For each 1 ≤ j ≤ n and t ≥ 1, let At;j ∈ RR×R, Bt;j ∈ RIj×R be the output of Algorithm

8 with input At,Bt, U1, . . . , Un, and j. Then can rewrite ĝt(D) = ĝt(U1, . . . , Un) in

(4.22) as

ĝt(U1, . . . , Un) = tr
(
UiAt;jU

T
i

)
− 2 tr

(
UiB

T

t;j

)
. (4.24)
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Proof. Let MAT(Xs) = [vec(Xs;1), . . . , vec(Xs;b)] ∈ R(I1...In)×b denote the matrix whose ith

column is the vectorization vec(Xs;j) of the tensor Xs;j ∈ RI1×···×In . The first assertion

follows easily from observing that, for each [U1, . . . , Un] ∈ Cdict and H ∈ RR×b,

∥Xs − Out(U1, . . . , Un)×n+1 H∥2F

= ∥MAT(Xs)− (Un ⊗kr . . .⊗kr U1)H∥2F

= tr
(
(Un ⊗kr . . .⊗kr U1)HH

T (Un ⊗kr . . .⊗kr U1)
T
)

− 2 tr
(
MAT(Xs)H

T (Un ⊗kr . . .⊗kr U1)
T
)
+ tr

(
MAT(Xs)MAT(Xs)

T
)
,

and also note that

tr
(
(Un ⊗kr . . .⊗kr U1)HH

T (Un ⊗kr . . .⊗kr U1)
T
)

= tr(HHT (Un ⊗kr . . .⊗kr U1)
T (Un ⊗kr . . .⊗kr U1))

= tr(HHT (UT
n Un ⊙ . . .⊙ UT

1 U1)).

Then the linearity of trace show

f̂t(U1, . . . , Un) = tr(At (U
T
n Un ⊙ . . .⊙ UT

1 U1))− 2 tr
(
B̃t(Un ⊗kr . . .⊗kr U1)

T
)

(4.25)

+
t∑

s=1

tr
(
MAT(Xs)MAT(Xs)

T
)
+ λ

t∑
s=1

∥Hs∥1,

where At is recursively defined in (4.21) and B̃t ∈ R(I1×···×In)×b is defined recursively by

B̃s = (1− wt)B̃s−1 + wt MAT(Xs)H
T
s .

By a simple induction argument, one can show that B̃t equals the mode-(n + 1) unfolding

B
(n+1)
t of Bt defined recursively in (4.21), as desired.

For (ii), first note that

tr(A (UT
n Un ⊙ . . .⊙ UT

1 U1))

= tr((A⊙ UT
1 U1 ⊙ . . . UT

i−1Ui−1 ⊙ UT
i+1Ui+1 ⊙ . . .⊙ UT

n Un) U
T
j Uj)

= tr(Uj (A⊙ UT
1 U1 ⊙ . . . UT

i−1Ui−1 ⊙ UT
i+1Ui+1 ⊙ . . .⊙ UT

n Un) U
T
j )
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= tr(Uj At;j U
T
j ).

Also, recall that B
(n+1)
t and Un ⊗kr . . . ⊗kr U1 are (

∏n
i=1 Ij) × R matrices. Let Bt(, r) ∈

RI1×···×In denote the rth mode-(n+ 1) slice of Bt. We note that

tr
(
B

(n+1)
t (Un ⊗kr . . .⊗kr U1)

T
)

=
R∑

r=1

tr (Bt(, r)×1 U1(:, r)×2 · · · ×i−1 Ui−1(:, r)×i Ui(:, r)×i+1 Ui+1(:, r)×i+2 · · · ×n Un(:, r))

= tr

(
R∑

r=1

[Bt(, r)×1 U1(:, r)×2 · · · ×i−1 Ui−1(:, r)×i+1 Ui+1(:, r)×i+2 · · · ×n Un(:, r)]Ui(:, r)
T

)

= tr
(
UiB

T
t;j

)
,

where BT

t;j is as in the assertion. Then the assertion follows.

Proof. of Lemma 1 (i)-(iii). First, we show (i). Write Dt−1 = [U1, . . . , Un] and Dt =

[U ′
1, . . . , U

′
n] (here we use subscripts to denote modes). Using Proposition 2 (i), we write

f̂t(Dt−1)− f̂t(Dt) (4.26)

= f̂t([U1, . . . , Un])− f̂t([U ′
1, . . . , U

′
n]) (4.27)

=
n∑

i=1

f̂t([U
′
1, . . . , U

′
i−1, Ui, Ui+1, . . . , Un])− f̂t([U ′

1, . . . , U
′
i−1, U

′
i , Ui+1, . . . , Un]). (4.28)

Recall that U ′
i is a minimizer of the function U 7→ f̂t([U

′
1, . . . , U

′
i−1, U, Ui+1, . . . , Un]) (which is

convex by Proposition 2) over the convex set Ci defined in Algorithm 6. Also, U ′
i belongs to

Ci. Hence each summand in the last expression above is nonnegative. This shows f̂t(Dt−1)−

f̂t(Dt) ≥ 0, as desired. Also note that (ii) is trivial by the search radius restriction in

Algorithm 6.

Lastly, we show (iii). Both f̂t and ft are uniformly bounded and Lipschitz by Lemma 6

in Appendix 4.10. Hence ht = f̂t−ft is also Lipschitz with some constant C > 0 independent

of t. Then by the recursive definitions of f̂t and ft (see (4.16) and (4.11)) and noting that

ℓ(Xt,Dt−1, Ht) = ℓ(Xt,Dt−1), we have

|ht(Dt)− ht−1(Dt−1)| (4.29)
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≤ |ht(Dt)− ht(Dt−1)|+ |ht(Dt−1)− ht−1(Dt−1)| (4.30)

≤ C∥Dt −Dt−1∥F +
∣∣∣(f̂t(Dt−1)− f̂t−1(Dt−1)

)
− (ft(Dt−1)− ft−1(Dt−1))

∣∣∣ (4.31)

= C∥Dt −Dt−1∥F + wt|f̂t−1(Dt−1)− ft−1(Dt−1)|. (4.32)

Hence this and (ii) show |ht(Dt)− ht−1(Dt−1)| = O(wt), as desired.

Next, we establish two elementary yet important inequalities connecting the empirical

and surrogate loss functions. This is trivial in the case of vector-valued signals, in which

case we can directly minimize f̂t over a convex constraint set Cdict to find Dt so we have the

‘forward monotonicity’ f̂t(Dt) ≤ f̂t(Dt−1) immediately from the algorithm design. In the

tensor case, this still holds since we use block coordinate descent to progressively minimize

f̂t in each loading matrix.

Proposition 3. Let (Dt)t≥1 be an output of Algorithm 6. Then for each t ≥ 0, the following

hold:

(i) f̂t+1(Dt+1)− f̂t(Dt) ≤ wt+1 (ℓ(Xt+1,Dt)− ft(Dt)).

(ii) 0 ≤ wt+1

(
f̂t(Dt)− ft(Dt)

)
≤ wt+1 (ℓ(Xt+1,Dt)− ft(Dt)) + f̂t(Dt)− f̂t+1(Dt+1).

Proof. We begin by observing that

f̂t+1(Dt) = (1− wt+1)f̂t(Dt) + wt+1ℓt+1(Xt+1,Dt, Ht+1) (4.33)

= (1− wt+1)f̂t(Dt) + wt+1ℓt+1(Xt+1,Dt) (4.34)

for all t ≥ 0. The first equality above uses the definition of f̂t in (4.16) and the second

equality uses the fact that Ht+1 is a minimizer of ℓ(Xt+1,Dt, H) over Ccode. Hence

f̂t+1(Dt+1)− f̂t(Dt) (4.35)

= f̂t+1(Dt+1)− f̂t+1(Dt) + f̂t+1(Dt)− f̂t(Dt)

= f̂t+1(Dt+1)− f̂t+1(Dt) + (1− wt+1)f̂t(Dt) + wt+1ℓ(Xt+1,Dt)− f̂t(Dt)

= f̂t+1(Dt+1)− f̂t+1(Dt) + wt+1(ℓ(Xt+1,Dt)− ft(Dt)) + wt+1(ft(Dt)− f̂t(Dt)).
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Now note that ft ≤ f̂t by definition. Furthermore, f̂t+1(Dt+1) − f̂t+1(Dt) ≤ 0 by Lemma 1

(i), so the inequalities in both (i) and (ii) follow.

4.6.2 Stochastic analysis

In this subsection, we develop stochastic analysis on our online algorithm, a major portion

of which is devoted to handling Markovian dependence in signals as stated in assumption

(A1). The analysis here is verbatim as the one developed in [LNB20] for the vector-valued

signal (or matrix factorization) case, which we present some of the important arguments in

detail here for the sake of completeness. However, the results in this subsection crucially rely

on the deterministic analysis in the previous section that was necessary to handle difficulties

arising in the tensor-valued signal case.

Recall that under our assumption (A1), the signals (Xt)t≥0 are given as Xt = φ(Yt) for

a fixed function φ and a Markov chain (Yt)t≥0. Note that Proposition 3 gives a bound on

the change in surrogate loss f̂t(Dt) in one iteration, which allows us to control its positive

variation in terms of difference ℓ(Xt+1,Dt) − ft(Dt). The core of the stochastic analysis in

this subsection is to show that wt+1E[ℓ(Xt+1,Dt) − ft(Dt)]
+ is summable. In the classical

setting when Yt’s are i.i.d., our signals Xt = φ(Yt) are also i.i.d., so we can condition on the

information Ft up to time t so that

E
[
ℓ(Xt+1,Dt)− ft(Dt)

∣∣∣∣Ft

]
= f(Dt)− ft(Dt). (4.36)

Note that for each fixed D ∈ Cdict, ft(D) → f(D) almost surely as t → ∞ by the strong

law of large numbers. To handle time dependence of the evolving dictionaries Dt, one can

instead look that the convergence of the supremum ∥ft − f∥∞ over the compact set Cdict,

which is provided by the classical Glivenko-Cantelli theorem. This is the approach taken in

[MBPS10, Mai13b] for i.i.d. input.

However, the same approach is not applicable for dependent signals, for instance, when

(Yt)t≥0 is a Markov chain. This is because, in this case, conditional on Ft, the distribution

of Yt+1 is not necessarily the stationary distribution π. In fact, when Yt’s form a Markov
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chain with transition matrix P , Yt given Yt−1 has distribution P (Yt−1, ·), and this conditional

distribution is a constant distance away from the stationary distribution π. (For instance,

consider the case when Yt takes two values and it differs from Yt−1 with probability 1 − ε.

Then π = [1/2, 1/2] and the distribution of Yt converges exponentially fast to π, but P (Yt−1, ·)

is either [1− ε, ε] or [ε, 1− ε] for all t ≥ 1.)

To handle dependence in data samples, we adopt the strategy developed in [LNB20]

in order to handle a similar issue for vector-valued signals (or matrix factorization). The

key insight in [LNB20] is that, while the 1-step conditional distribution P (Xt−1, ·) may be

far from the stationary distribution π, the N -step conditional distribution PN(Xt−N , ·) is

exponentially close to π under mild conditions. Hence we can condition much early on – at

time t − N for some suitable N = N(t). Then the Markov chain runs N + 1 steps up to

time t+ 1, so if N is large enough for the chain to mix to its stationary distribution π, then

the distribution of Yt+1 conditional on Ft−N is close to π. The error of approximating the

stationary distribution by the N +1 step distribution can be controlled using total variation

distance and Markov chain mixing bound. This is stated more precisely in the proposition

below.

Proposition 4. Suppose (A1) hold. Fix a CP-dictionary D. Then for each t ≥ 0 and

0 ≤ N < t, conditional on the information Ft−N up to time t−N ,(
E
[
ℓ(Xt+1,D)− ft(D)

∣∣∣∣Ft−N

])+

≤ |f(D)− ft−N(D)|+Nwtft−N(D) (4.37)

+ 2∥ℓ(·,D)∥∞ sup
y∈Ω
∥PN+1(y, ·)− π∥TV . (4.38)

Proof. The proof is identical to that of [LNB20, Prop. 7.5].

Proof. of Lemma 2. Part (i) can be derived from Proposition 4 and Lemma 9 in Appendix

4.10. See the proof of [LNB20, Prop. 7.8 (i)] for details. Next, part (ii) can be derived from

part (i) with Proposition 3 (i). See the proof of [LNB20, Prop. 7.8 (ii)] for details.

Lemma 3. Let (Dt)t≥1 be the output of Algorithm 6. Suppose (A1)-(A3) hold. Then the

following hold.
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(i)
∞∑
t=0

E [wt+1 (ℓ(Xt+1,Dt)− ft(Dt))]
+ <∞;

(ii) E[f̂t(Dt)] converges as t→∞;

(iii) E

[
∞∑
t=0

wt+1

(
f̂t(Dt)− ft(Dt)

)]
=

∞∑
t=0

wt+1

(
E[f̂t(Dt)]− E[ft(Dt)]

)
<∞;

(iv)
∞∑
t=0

wt+1

(
f̂t(Dt)− ft(Dt)

)
<∞ almost surely.

Proof. Part (i) can be derived from Proposition 4 and Jensen’s inequality. See the proof of

[LNB20, Lem. 12 (ii)] for details. Parts (ii)-(iv) can be shown by using Propositions 3, 4,

and part (i). See the proof of [LNB20, Lem. 13] for details.

4.6.3 Asymptotic surrogate stationarity

In this subsection, we prove Lemma 1 (iv), which requires one of the most nontrivial argu-

ments we give in this work. Throughout this subsection, we will denote by (Dt)t≥1 the output

of Algorithm 6 and Λ := {Dt | t ≥ 1} ⊆ Cdict. Note that by Proposition 2, f̂tk converges

almost surely if and only if Atk ,Btk ,Xtk , Htk converge a.s. as k → ∞. In what follows, we

say D∞ ∈ Cdict a stationary point of Λ if it is a limit point D∞ of Λ and there exists a

sequence tk → ∞ such that Dtk → D∞ and f̂∞ := limk→∞ f̂tk exists almost surely and D∞

is a stationary point of f̂∞ over Cdict. Our goal is to show that every limit point of Λ is

stationary.

The following observation is key to our argument.

Proposition 5. Assume (A1)-(A3) hold. Let (Dt)t≥1 be an output of Algorithm 6. Then

almost surely,

∞∑
t=1

∣∣∣(∇f̂t+1(Dt+1)
T (Dt −Dt+1)

)∣∣∣ <∞.
Proof. Since Cdict is compact by (A2) and the aggregate tensors At,Bt are uniformly bounded

by Lemma 5 in Appendix 4.10, we can see from Proposition 2 that∇f̂t+1 over Cdict is Lipschitz
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with some uniform constant L > 0. Hence by Lemma 4 in Appendix 4.10, for all t ≥ 1,∣∣∣f̂t+1(Dt)− f̂t+1(Dt+1)− tr
(
∇f̂t+1(Dt+1)

T (Dt −Dt+1)
)∣∣∣ ≤ L

2
∥Dt −Dt+1∥2F .

Also note that f̂t+1(Dt) ≥ f̂t+1(Dt+1) by Lemma 1 (i). Hence it follows that∣∣∣tr(∇f̂t+1(Dt+1)
T (Dt −Dt+1)

)∣∣∣ ≤ L

2
∥Dt −Dt+1∥2F + f̂t+1(Dt)− f̂t+1(Dt+1) (4.39)

On the other hand, (4.35) and f̂t ≥ ft yields

0 ≤ f̂t+1(Dt)− f̂t+1(Dt+1) ≤ f̂t(Dt)− f̂t+1(Dt+1) + wt+1(ℓ(Xt+1,Dt)− ft(Dt)).

Hence using Lemma 3, we have
∞∑
t=1

E
[
f̂t+1(Dt)− f̂t+1(Dt+1)

]
<∞.

Then from (4.39) and noting that ∥Dt−Dt+1∥2F = O(w2
t+1) and

∑∞
t=1w

2
t <∞ (see (A3)), it

follows that
∞∑
t=1

E
[∣∣∣tr(∇f̂t+1(Dt+1)

T (Dt −Dt+1)
)∣∣∣] = L

2

∞∑
t=1

E
[
∥Dt −Dt+1∥2F

]
+

∞∑
t=1

E
[
f̂t+1(Dt)− f̂t+1(Dt+1)

]
<∞.

Then the assertion follows by Fubini’s theorem and the fact that E[|X|] <∞ implies |X| <∞

almost surely for any random variable X, where | · | denotes the largest absolute value among

the entries of X.

Next, we show that the block coordinate descent we use to obtain Dt+1 should always

give the optimal first-order descent up to a small additive error.

Proposition 6 (Asymptotic first-order optimality). Assume (A1)-(A3) and wt = o(1).

Then there exists a constant c1 > 0 such that for all t ≥ 1,

tr

(
∇f̂t+1(Dt+1)

T (Dt+1 −Dt)

∥Dt+1 −Dt∥F

)
≤ inf

D∈Cdict
tr

(
∇f̂t+1(Dt)

T (D −Dt)

∥D − Dt∥F

)
(4.40)

+ c1∥Dt+1 −Dt∥2F . (4.41)
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Proof. Fix a sequence (bt)t≥1 such that 0 < bt ≤ c′wt for all t ≥ 1. Write Dt = [U
(1)
t , . . . , U

(n)
t ]

for t ≥ 1 and denote

f̂t+1;i : U 7→ f̂t+1(U
(1)
t+1, . . . , U

(i−1)
t+1 , U, U

(i+1)
t , . . . , U

(n)
t ) (4.42)

for U ∈ RIi and i = 1, . . . , n. Recall that U (i)
t+1 is a minimizer of f̂t+1;i over the convex set

C(i)t+1 defined in (4.17). Fix arbitrary D = [U (1), . . . , U (n)] ∈ Cdict such that ∥D−Dt∥F ≤ bt+1.

Then ∥U (i) − U
(i)
t ∥F ≤ bt+1 for all 1 ≤ i ≤ n. By convexity of C(i), note that for each

U (i) ∈ C(i), U (i)
t + a(U (i) − U (i)

t ) ∈ C(i) for all a ∈ [0, 1]. Then by the definition of C(i)t+1 and

the choice of U (i)
t+1, we have that for all t ≥ 1,

f̂t+1;i(U
(i)
t+1)− f̂t+1;i(U

(i)
t ) ≤ f̂t+1;i

(
U

(i)
t + a(U (i) − U (i)

t )
)
− f̂t+1;i(U

(i)
t ). (4.43)

Recall that ∇f̂ = [∇f̂t+1;1, . . . ,∇f̂t+1;n] is Lipschitz with uniform Lipschitz constant L > 0.

Hence by Lemma 4 in Appendix 4.10, there exists a constant c1 > 0 such that for all t ≥ 1,

tr
(
∇f̂t+1;i(U

(i)
t )T (U

(i)
t+1 − U

(i)
t )
)
− L

2
∥U (i)

t+1 − U
(i)
t ∥2 (4.44)

≤ a tr
(
∇f̂t+1;i(U

(i)
t )T (U (i) − U (i)

t )
)
+
La2∥U (i) − U (i)

t ∥
2

. (4.45)

Adding up these inequalities for i = 1, . . . , n, we get

tr

([
∇f̂t+1;1(U

(1)
t ), . . . ,∇f̂t+1;n(U

(n)
t )
]T

(Dt+1 −Dt)

)
(4.46)

≤ a tr

([
∇f̂t+1;1(U

(1)
t ), . . . ,∇f̂t+1;n(U

(n)
t )
]T

(D −Dt)

)
(4.47)

+
L

2
∥Dt+1 +Dt∥2F +

La2

2
∥D − Dt∥2F . (4.48)

Since ∇f̂t+1 is L-Lipschitz, using Cauchy-Schwarz inequality,

tr
(
∇f̂t+1(Dt+1)

T (Dt+1 −Dt)
)

(4.49)

≤ a tr
(
∇f̂t+1(Dt)

T (D −Dt)
)
+ a∥Dt+1 −Dt∥F ∥D − Dt∥F (4.50)

+
3L

2
∥Dt+1 −Dt∥2F +

La2

2
∥D − Dt∥2F (4.51)

≤ a tr
(
∇f̂t+1(Dt)

T (D −Dt)
)
+ a∥Dt+1 −Dt∥F ∥D − Dt∥F (4.52)
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+
3L

2
∥Dt+1 −Dt∥2F + ca2∥D − Dt∥2F (4.53)

for some constant c > 0 for all t ≥ 1. Recall that the above holds for all a ∈ [0, 1]. Note

that since ∥∇f̂t∥ is uniformly bounded and Ddict is compact (see (A2)), the last expression

above, viewed as a quadratic function in a, is strictly increasing in a for all t ≥ 1 when

c > 0 is sufficiently large. We make such choice for c3. Hence, the above holds for all a ≥ 0.

Now we may choose a = bt+1/∥D − Dt∥ and bound the last expression by its first term

plus c1(∥Dt+1 − Dt∥F + bt+1)
2 for some constant c1 > 0. Finally, by the radius restriction

∥Dt+1 −Dt∥F ≤ c′wt+1, we may choose bt+1 = ∥Dt+1 −Dt∥F . Then the assertion follows by

dividing both sides of the resulting inequality by ∥Dt+1 −Dt∥.

Proposition 7. Assume (A1)-(A3). Suppose there exists a subsequence (Dtk)k≥1 such that

either
∞∑
k=1

∥Dtk −Dtk+1∥F =∞ or lim inf
k→∞

∣∣∣∣tr(∇f̂tk+1(Dtk+1)
T Dtk −Dtk+1

∥Dtk −Dtk+1∥F

)∣∣∣∣ = 0.

(4.54)

There exists a further subsequence (sk)k≥1 of (tk)k≥1 such that D∞ := limk→∞Dsk exists and

is a stationary point of Λ.

Proof. By Proposition 5, we have
∞∑
k=1

∥Dtk −Dtk+1∥F
∣∣∣∣tr(∇f̂tk+1(Dtk+1)

T Dtk −Dtk+1

∥Dtk −Dtk+1∥F

)∣∣∣∣ <∞. (4.55)

Hence the former condition implies the latter condition in (4.54). Thus it suffices to show

that this latter condition implies the assertion. Assume this condition, and let (sk)k≥1 be a

subsequence of (tk)k≥1 for which the liminf in (4.54) is achieved. By taking a subsequence,

we may assume that D′
∞ = limk→∞Dsk and f̂∞ := limk→∞ f̂sk exist.

Now suppose for contradiction that D∞ is not a stationary point of f̂∞ over Cdict. Then

there exists D⋆ ∈ Cdict and δ > 0 such that

tr
(
∇f̂∞(D∞)T (D⋆ −D∞)

)
< −δ < 0. (4.56)
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By triangle inequality, write

∥∇f̂sk+1(Dsk)
T (D⋆ −Dsk)−∇f̂∞(D∞)T (D⋆ −D∞)∥F (4.57)

≤ ∥∇f̂sk+1(Dsk)−∇f̂∞(D∞)∥F · ∥D⋆ −Dsk∥F + ∥∇f̂∞(D∞)∥F · ∥D∞ −Dsk∥F .

(4.58)

Noting that ∥Dt − Dt−1∥F = O(wt) = o(1), we see that the right hand side goes to zero as

k →∞. Hence for all sufficiently large k ≥ 1, we have

tr
(
∇f̂sk+1(Dsk)

T (D⋆ −Dsk)
)
< −δ/2. (4.59)

Then by Proposition 6, denoting ∥Cdict∥F := supD,D′∈Cdict∥D − D′∥F <∞,

lim inf
k→∞

tr

(
∇f̂sk+1(Dsk+1)

T Dsk −Dsk+1

∥Dsk −Dsk+1∥F

)
≤ − c1δ

2∥Cdict∥F
< 0, (4.60)

which contradicts the choice of the subsequence (Dsk)k≥1. This shows the assertion.

Recall that during the update Dt−1 7→ Dt in (4.18) each factor matrix of Dt−1 changes

by at most wt in Frobenius norm. For each t ≥ 1, we say Dt is a long point if none of the

factor matrices of Dt−1 change by wt in Frobenius norm and short point otherwise. Observe

that if Dt is a long point, then imposing the search radius restriction in 4.17 has no effect

and Dt is obtained from Dt−1 by a single cycle of block coordinate descent on f̂t over Cdict.

Proposition 8. Assume (A1)-(A3) hold. If (Dtk)k≥1 is a convergent subsequence of (Dt)t≥1

consisting of long points, then the D∞ = limk→∞Dsk is stationary.

Proof. For each A ∈ RR×R, B ∈ RI1×···×In×b, D = [U (1), . . . , U (n)] ∈ RI1×R × · · · × RIn×R,

define

ĝ(A,B,D) = tr(A ((U (n))TU (n) ⊙ . . .⊙ (U (1))TU (1))) (4.61)

− 2 tr
(
B(n+1)(U (n) ⊗kr . . .⊗kr U

(1))T
)
, (4.62)

where B(n+1) denotes the mode-(n + 1) unfolding of B (see also (4.22)). By taking a sub-

sequence of (tk)k≥1, we may assume that A∞ := limk→∞Atk and B∞ := limk→∞Btk exist.
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Hence the function ĝ∞ := limk→∞ ĝtk = ĝ(A∞,B∞, ·) is well-defined. Noting that since

∇f̂t = ∇ĝt for all t ≥ 1 by Proposition 2, it suffices to show that D∞ is a stationary point

of ĝ∞ over Cdict almost surely.

The argument is similar to that of [Ber97, Prop. 2.7.1]. However, here we do not need to

assume uniqueness of solutions to minimization problems of f̂t in each block coordinate due

to the added search radius restriction. Namely, write D∞ = [U
(1)
∞ , . . . , U

(n)
∞ ]. Then for each

k ≥ 1,

ĝtk+1(U
(1)
tk+1, U

(2)
tk
, . . . , U

(n)
tk

) ≤ ĝtk+1(U
(1), U

(2)
tk
, . . . , U

(n)
tk

) (4.63)

for all U (1) ∈ C(1) ∩ {U : ∥U − U
(1)
tk
∥F ≤ c′wtk+1}. In fact, since Dtk is a long point by

the assumption, (4.63) holds for all U (1) ∈ C(1). Taking k → ∞ and using the fact that

∥U (1)
tk+1 − U

(1)
tk
∥F ≤ c′wtk+1 = o(1),

ĝ∞(U (1)
∞ , U (2)

∞ , . . . , U (n)
∞ ) ≤ ĝ∞(U (1), U (2)

∞ , . . . , U (n)
∞ ) for all U1 ∈ C(1). (4.64)

Since C(1) is convex, it follows that

∇1ĝ∞(D∞)T (U1 − U (∞)
1 ) ≥ 0 for all U1 ∈ C(1), (4.65)

where ∇1 denotes the partial gradient with respect to the first block U (1). By using a similar

argument for other coordinates of D∞, it follows that ∇ĝ∞(D∞)T (D − D∞) ≥ 0 for all

D ∈ Cdict. This shows the assertion.

Proposition 9. Assume (A1)-(A3) hold. Suppose there exists a non-stationary limit point

D∞ of Λ. Then there exists ε > 0 such that the ε-neighborhood Bε(D∞) := {D ∈ Cdict | ∥D−

D∞∥F < ε} with the following properties:

(a) Bε(D∞) does not contain any stationary points of Λ.

(b) There exists infinitely many Dt’s outside of Bε(D∞).

Proof. We will first show that there exists an ε-neighborhood Bε(D∞) of D∞ that does not

contain any long points of Λ. Suppose for contradiction that for each ε > 0, there exists a
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long point Λ in Bε(D∞). Then one can construct a sequence of long points converging to

D∞. But then by Proposition 8, D∞ is a stationary point, a contradiction.

Next, we show that there exists ε > 0 such that Bε(D∞) satisfies (a). Suppose for

contradiction that there exists no such ε > 0. Then we have a sequence (D∞;k)k≥1 of

stationary points of Λ that converges to D∞. Denote the limiting surrogate loss function

associated with D∞;k by f̂∞;k. Recall that each f̂∞;k is parameterized by elements in a

compact set (see (A1), Proposition 2, and Lemma 6) in Appendix 4.10. Hence by choosing

a subsequence, we may assume that f̂∞ := limk→∞ f̂∞;k is well-defined. Fix D ∈ Cdict and

note that by Cauchy-Schwarz inequality,

∇f̂∞(D∞)T (D −D∞) ≥ −∥∇f̂∞(D∞)−∇f̂∞;k(D∞;k)∥F · ∥D − D∞∥F (4.66)

− ∥∇f̂∞;k(D∞;k)∥F · ∥D∞ −D∞;k∥F (4.67)

+∇f̂∞;k(D∞;k)
T (D −D∞;k). (4.68)

Note that ∇f̂∞;k(D∞;k)
T (D − D∞;k) ≥ 0 since D∞;k is a stationary point of f̂∞;k over Cdict.

Hence by taking k →∞, this shows∇f̂∞(D∞)T (D−D∞) ≥ 0. Since D ∈ Ddict was arbitrary,

this shows that D∞ is a stationary point of f̂∞ over Cdict, a contradiction.

Lastly, from the earlier results, we can choose ε > 0 such that Bε(D∞) has no long

points of Λ and also satisfies (b). We will show that Bε/2(D∞) satisfies (c). Then Bε/2(D∞)

satisfies (a)-(b), as desired. Suppose for contradiction there are only finitely many Dt’s

outside of Bε/2(D∞). Then there exists an integer M ≥ 1 such that Dt ∈ Bε/2(D∞) for

all t ≥ M . Then each Dt for t ≥ M is a short point of Λ. By definition, it follows that

∥Dt − Dt∥F≥ wt for all t ≥ M , so
∑∞

t=1∥Dt − Dt∥F≥
∑∞

t=1wt = ∞. Then by Proposition

7, there exists a subsequence (sk)k≥1 such that D′
∞ := limk→∞Dtk exists and is stationary.

But since D′
∞ ∈ Bε(D), this contradicts (a) for Bε(D). This shows the assertion.

We are now ready to give a proof of Lemma 1 (iv).

Proof. of Lemma 1 (iv). Assume (A1)-(A3) hold. Suppose there exists a non-stationary

limit point D∞ of Λ. By Proposition 9, we may choose ε > 0 such that Bε(D∞) satisfies
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the conditions (a)-(b) of Proposition 9. Choose M ≥ 1 large enough so that c′wt < ε/4

whenever t ≥ M . We call an integer interval I := [ℓ, ℓ′) a crossing if Dℓ ∈ Bε/3(D∞),

Dℓ′ /∈ B2ε/3(D∞), and no proper subset of I satisfies both of these conditions. By definition,

two distinct crossings have empty intersection. Fix a crossing I = [ℓ, ℓ′). Then it follows

that by triangle inequality,

ℓ′−1∑
t=ℓ

∥Dt+1 −Dt∥F ≥ ∥Dℓ′ −Dℓ∥F ≥ ε/3. (4.69)

Note that since D∞ is a limit point of Λ, Dt visits Bε/3(D∞) infinitely often. Moreover, by

condition (a) of Proposition 9, Dt also exits Bε(D∞) infinitely often. It follows that there

are infinitely many crossings. Let tk denote the kth smallest integer that appears in some

crossing. By definition, Dtk ∈ B2ε/3(D∞) for k ≥ 1. Then tk →∞ as k →∞, and by (4.69),

∞∑
k=1

∥Dtk+1 −Dtk∥F ≥ (# of crossings)
ε

3
=∞. (4.70)

Then by Proposition 7, there is a further subsequence (sk)k≥1 of (tk)k≥1 such that D′
∞ :=

limk→∞Dsk exists and is stationary. However, since Dtk ∈ B2ε/3(D∞) for k ≥ 1, we have

D′
∞ ∈ Bε(D∞). This contradicts the condition (b) of Proposition 9 for Bε(D∞) that it

cannot contain any stationary point of Λ. This shows the assertion.

4.6.4 Proof of the main result

Now we prove the main result in this paper, Theorem 1.

Proof. of Theorem 1. Suppose (A1)-(A3) hold. We first show (i). Recall that E[f̂t(Dt)]

converges by Lemma 3. Jensen’s inequality and Lemma 1 (iv) imply

|E[ht+1(Dt+1)]− E[ht(Dt)]| ≤ E [|ht+1(Dt+1)− ht(Dt)|] = O(wt+1). (4.71)

Since E[f̂t(Dt)] ≥ E[ft(Dt)], Lemma 3 (ii)-(iii) and Lemma 7 in Appendix 4.10 give

lim
t→∞

E[ft(Dt)] = lim
t→∞

E[f̂t(Dt)] + lim
t→∞

(
E[ft(Dt)]− E[f̂t(Dt)]

)
(4.72)
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= lim
t→∞

E[f̂t(Dt)] ∈ (1,∞). (4.73)

This shows (i).

Next, we show (ii). Triangle inequality gives

|f(Dt)− f̂t(Dt)| ≤
(

sup
D∈Cdict

|f(D)− ft(D)|
)
− ht(Dt). (4.74)

Note that |ht+1(Dt+1) − ht(Dt)| = O(wt+1) by Lemma 1 (iii). Hence Lemma 3 (iv) and

Lemma 7 in Appendix 4.10 show that ht(Dt) → 0 almost surely. Furthermore, (4.74) and

Lemma 9 in Appendix 4.10 show that |f(Dt) − f̂t(Dt)| → 0 almost surely. This completes

the proof of (ii).

Lastly, we show (iii). Further assume (A4). Let D∞ ∈ Cdict be an arbitrary limit point

of the sequence (Dt)t≥1. Recall that Σt := (Dt, At,Bt, rt)t≥0 is bounded by Lemma 5(in

Appendix 4.10) and (A1) and (A2). Hence we may choose a random subsequence (tk)k≥1 so

that Dtk → D∞. By taking a further subsequence, we may also assume that Σtk converges

to some random element (D∞, A∞,B∞, r∞) a.s. as k → ∞. Then f̂∞ := limk→∞ f̂tk exists

almost surely. It is important to note that D∞ is a stationary point of f̂∞ over Cdict by

Lemma 1 (iv).

Recall that f̂t(Dt)−ft(Dt)→ 0 as t→∞ almost surely by part (ii). By using continuity

of f̂t, ft, f in parameters (see (A4)), it follows that∣∣∣f̂∞(D∞)− f(D∞)
∣∣∣ = lim

k→∞

∣∣∣f̂tk(Dtk)− ftk(Dtk)
∣∣∣ (4.75)

≤ lim
k→∞

(
sup

D∈Cdict
|f − ftk(D)| − htk(Dtk)

)
= 0, (4.76)

where the last equality also uses Lemma 9 in Appendix 4.10.

Fix ε > 0 and D ∈ RI1×R × · · · × RIn×R. Hence, almost surely,

f̂∞(D∞ +D) = lim
k→∞

f̂sk(Dsk +D) ≥ lim
k→∞

fsk(Dsk +D) = f(D∞ +D), (4.77)

where the last equality follows from Lemma 9. Since ∇f̂ and ∇f are both Lipschitz (see

(A4) for the latter), by Lemma 4 in Appendix 4.10, we have∣∣∣f̂∞(D∞ + εD)− f̂∞(D∞)− tr
(
∇f̂∞(D∞)T (εD)

)∣∣∣ ≤ c1ε
2∥D∥2F , (4.78)
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∣∣f(D∞ + εD)− f(D∞)− tr
(
∇f(D∞)T (εD)

)∣∣ ≤ c1ε
2∥D∥2F , (4.79)

for some constant c1 > 0 for all ε > 0. Recall that f̂∞(D∞) = f(D∞) a.s. by (4.75). Hence

it follows that there exists some constant c2 > 0 such that almost surely

tr

((
∇f̂∞(D∞)−∇f(D∞)

)T
(εD)

)
≥ −c2ε2∥D∥2F . (4.80)

After canceling out ε > 0 and letting ε↘ 0 in (4.80),

tr

((
∇f̂∞(D∞)−∇f(D∞)

)T
D
)
≥ 0 a.s. (4.81)

Since this holds for all D ∈ RI1×R · · · × RIn×R, it follows that ∇f̂∞(D∞) = ∇f(D∞) almost

surely. But since D∞ is a stationary point of f̂∞ over Cdict by Lemma 1 (iv), it follows that

∇f̂∞(D∞) is in the normal cone of Cdict at D∞ (see., e.g., [BBV04]). The same holds for

∇f(D∞). This means that D∞ is a stationary point of f over Cdict. Since D∞ is an arbitrary

limit point of Dt, the desired conclusion follows.

4.7 Experimental validation

In this section, we compare the performance of our proposed online CPDL algorithm (Al-

gorithm 6) for the standard (offline) NCPD problem (4.8) against the two most popular

algorithms of Alternating Least Squares (ALS), which is a special instance of Block Coor-

dinate Descent, and Multiplicative Update (MU) (see [SH05]) for this task. See Algorithms

11 and 12 for implementations of ALS and MU.

We give a more precise statement of the NCPD problem we consider here. Given a 3-

mode data tensor X ∈ Rd1×d2×d3
≥0 and an integer R ≥ 1, we want to find three nonnegative

factor matrices U (k) ∈ Rdk×R
≥0 , k = 1, 2, 3, that minimize the following CP-reconstruction

error:

min
[U(1),U(2),U(3)]∈Cdict

M

∥∥∥∥∥X−
R∑
i=1

3⊗
k=1

U (k)(:, i)

∥∥∥∥∥
F

, (4.82)
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where Cdict
M is the subset of Rd1×R

≥0 ×Rd2×R
≥0 ×Rd3×R

≥0 consisting of factor matrices of Frobenius

norm bounded by a fixed constant M ≥
√
R∥X∥1/3F . Note that the constraint set Cdict

M

is convex and compact, as required in (A2) for Theorem 1 to apply. We claim that the

additional bounded norm constraint on the factor matrices does not lose any generality, in

the sense that an optimal solution of (4.82) with M ≥
√
R∥X∥1/3F has the same objective

value as the optimal solution of (4.82) with M =∞:(
optimal value of (4.82) for M ≥

√
R∥X∥1/3F

)
= (optimal value of (4.82) for M =∞) .

(4.83)

In order to maintain the flow, we justify this claim at the end of this section.

We consider one synthetic and three real-world tensor data derived from text data and

that were used for dynamic topic modeling experiments in [KKL+21]. Each document is

encoded as a 5000 or 7000 dimensional word frequency vector using tf-idf vectorizer [RU11].

1. Xsynth ∈ R100×100×100
≥0 is generated by Xsynth = 0.01 ∗ Out(V1, V2, V3), where the loading

matrices V1, V2, V3 ∈ R100×50
≥0 are generated by sampling each of their entries uniformly

and independently from the unit interval [0, 1].

2. X20News ∈ R40×5000×26
≥0 (41.6MB) is a tensor representing semi-synthetic text data based

on 20 Newsgroups dataset [Ren08] synthesized in [KKL+21] for dynamic topic model-

ing, consisting of 40 stacks of 26 documents encoded in 5000 dimensional word space.

3. XTwitter ∈ R90×5000×1000
≥0 (3.6GB) is an anonymized Twitter text data related to the

COVID-19 pandemic from Feb. 1 to May 1 of 2020. The three modes correspond to

days, words, and tweets, in order. Each day, the top 1000 most retweeted English

tweets are collected. The original data was collected in [KKL+21].2

4. XHeadlines ∈ R203×7000×700
≥0 (8.0GB) is a tensor derived in [KKL+21] from news headlines

published over a period of 17 years sourced from the Australian news source ABC
2For code repository, see https://github.com/lara-kassab/dynamic-tensor-topic-modeling
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[Kul18]. The three modes correspond to months, words, and headlines, in order. In

each month, 700 headlines are chosen uniformly at random.

 

 

  

(𝑎) 

(𝑏) (𝑐) 

(𝑏) (𝑐) (𝑑) 

(𝑒) (𝑓) (𝑔) (ℎ) 

Figure 4.2: Comparison of performance of online CPDL for the nonnegative tensor factorization problem

against Alternating Least Squares (ALS) and Multiplicative Update (MU). For each data tensor, we apply

each algorithm to find nonnegative loading matrices U (1), U (2), U (3) of R = 5 columns. We repeat this mul-

tiple times (50 for synthetic, 20 for 20Newsgroups, and 10 for the other two) and the average reconstruction

error with 1 standard deviation are shown by the solid lines and shaded regions of respective colors.

For all datasets, we used all algorithms to learn the loading matrices U (1), U (2), U (3) with

R = 5 columns, that evolve in time as the algorithm proceeds. The choice of R = 5 is

arbitrary and is not ideal especially for the real data tensors, but it suffices for the purpose

of this experiment as a benchmark of our online CPDL against ALS and MU. We plot the

reconstruction error ∥X−Out(U (1), U (2), U (3))∥F against elapsed time in both cases in Figure

4.2. Since these benchmark algorithms are also iterative (see Algorithms 11 and 12), we can

measure how reconstruction error drops as the three algorithms proceed. In order to make

a fair comparison, we compare the reconstruction error against CPU times with the same

machine, not against iteration counts, since a single iteration may have different computa-
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tional costs across different algorithms. For ALS and MU, we disregarded the bounded norm

constraint in (4.82), which makes it only favorable to those benchmark methods so it is still

a fair comparison of our method.

We give some implementation details of online CPDL (Algorithm 6) for the offline NCPD

problem in (4.82). From the given data tensor X, we obtain a sequence of tensors X1, . . . ,XT

obtained by subsampling 1/5 of the coordinates from the last mode. Hence while ALS and

MU require loading the entire tensors into memory, only 1/5 of the data needs to be loaded

to execute online CPDL. In Figure 4.2, OCPDL (β) for for β ∈ {0.75, 1} denotes Algorithm

6 with weights wt = c′t−β/ log t (with w1 = c′), where 0.75 and 1 for β correspond to the two

extreme values that satisfy the assumption (A3) (see also (A3’)) of Theorem 1; the case of

β = None uses c′ = ∞ and wt ≡ t−1/(log t) (with w1 = 1). In all cases, the weights satisfy

(A3) so the algorithm is guaranteed to converge to the stationary points of the objective

function almost surely by Theorem 1. The constant c′ is chosen from {1, 10, 100, 1000} for

β ∈ {0.75, 1}. Initial loading matrices for Algorithm 6 are chosen with i.i.d. entries drawn

from the uniform distribution on [0, 1].

Note that since the last mode of the full tensors is subsampled, the loading matrices we

learn from online CPDL have sizes (d1 × R), (d2 × R), and (d′3 × R), where d′3 < d3 equals

the size of the last mode of the subsampled tensors. In order to compute the reconstruction

error for the full d1 × d2 × d3 tensor, we recompute the last factor matrix of size d3 × R by

using the first two factor matrices with the sparse coding algorithm (Algorithm 9). This last

step of computing a single loading matrix while fixing all the others is equivalent to a single

step of ALS in Algorithm 11.

In Figure 4.2, each algorithm is used multiple times (50 for Synthetic, 20 for 20News-

groups, and 10 for Twitter and Headlines) for the same data, and the plot shows the average

reconstruction errors together with their standard deviation (shading). In all cases except

the smallest initial radius c′ = 1 on the densest tensor X20News, online CPDL is able to obtain

significantly lower reconstruction error much more rapidly than the other two algorithms and

maintains low average reconstruction accuracy.
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For X20News with c′ = 1 (Figure 4.2 (e)), we observe some noticible difference in the

performance of online CPDL depending on β, where larger values of β (faster decaying radii)

give slower convergence. This seems to be due to the fact that X20News is the densest among

the four tensors by orders of magnitude and c′ = 1 gives too small of an initial radius. Namely,

the average Frobeinus norm, ∥X∥F/(d1d2d3) equals 6.26 × 10−5 for XSynthetic, 1.10 × 10−3

for X20News, 6.65 × 10−7 for XTwitter, and 3.78 × 10−7 and XHeadlines. However, we did not

observe any significant difference in all other cases. In general, when c′ is large enough,

it appears that the radius restriction in Algorithm 6 enables the theoretical convergence

guarantee in Theorem 1 without any compromise in practical performance, which did not

depend significantly on the decay rate paramter β. In our experiments, c′ = ∥X∥F was

sufficiently large, where ∥XSynthetic∥F = 62.61, ∥X20News∥F = 32.74, ∥XTwitter∥F = 299.37,

and ∥XSynthetic∥F = 376.38.

Proof. of claim (4.83). Suppose D∞ := [U (1), U (2), U (3)] is an optimal solution of (4.82)

without norm restriction (i.e., M = ∞). Fix a column index i ∈ {1, . . . , R} and positive

scalars α1, α2, α3 such that α1α2α3 = 1. The objective in (4.82) is invariant under rescaling

the three respective columns: U (k)(:, i) 7→ αkU
(k)(:, i) for k ∈ {1, 2, 3}. At the optimal factor

matrices, the objective in (4.82) should be at most ∥X∥F . Since all factors are nonnegative,

it follows that
3∏

k=1

∥αkU
(k)(:, i)∥F =

∥∥∥∥∥
3⊗

k=1

αkU
(k)(:, i)

∥∥∥∥∥
F

≤ ∥X∥F . (4.84)

Then we can choose αk’s in a way that ∥αkU
(k)(:, i)∥F is constant in k3, in which case

∥αkU
(k)(:, i)∥F ≤ ∥X∥1/3F . This argument shows that we can rescale the ith columns of the

optimal factor matrices in D∞ in a way that the objective value does not change and the

columns have norms bounded by ∥X∥1/3F . This holds for all columns i, so we can find a tuple

of factor matrices [V (1), V (2), V (3)] in Cdict
M that has the same objective value as D∞ as long

as M ≥ R∥X∥1/3F .
3e.g., αk = ajal/a

2
k, where ak := ∥U (k)(:, i)∥F and j, k, l ∈ {1, 2, 3} are distinct
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4.8 Applications

For all our applications in this section, we take the constraint sets Ccode and Cdict in Algorithm

6 to consists of nonnegative matrices so that the learned CP-dictionary gives a ”parts-based

representation" of the subject data as in classical NMF (see [LS99, LS01, LYC09]). In all

our experiments in this section, we used the balanced weight wt = 1/t, which satisfies the

assumption (A3).

4.8.1 Reshaping tensors before CP-decomposition to preserve joint features

Before we discuss our real-world applications of the online CPDL method, we first give

some remarks on reshaping tensor data before factorization and why it would be useful in

applications.

One may initially think that concatenating some modes of a tensor into a single mode

before applying CP-decomposition loses joint features corresponding to the concatenated

modes. In fact, if we undo the unfolding after the decomposition, it actually preserves the

joint features. Hence in practice, one can exploit the tensor structure in multiple ways

before CP-decomposition to disentangle a select set of features in the desired way, which we

demonstrate through analyzing a diverse set of examples from image, video, and time-series

in Section 4.8.

To better illustrate our point, suppose we have three discrete random variablesX1, X2, X3,

where Xi takes ni distinct values for 1 ≤ i ≤ 3. Denote their 3-dimensional joint dis-

tribution as a 3-mode tensor X ∈ Rn1×n2×n3 . Suppose we have its CP-decomposition

X ≈ Out(U (1), U (2), U (3)). We can interpret this as the sum of R product distributions

of the marginal distributions given by the respective columns in the three factor matrices.

In an extreme case of a R = 1 CP-decomposition, any kind of joint features among multiple

random variables will be lost in the single product distribution.

On the other hand, consider combining the first two random variables (X1, X2) into a

single random variable, say, Y1, which takes n1n2 distinct values. Then the joint distribution
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of (Y1, X3) will be represented as a 2-dimensional tensor X(12) ∈ Rn1n2×n3 , which corresponds

to the tensor obtained by concatenating the first two modes of X. Suppose we have its CP-

decomposition X(12) ≈ Out(V (1), V (2)), where V (1) ∈ Rn1n2×R and V (2) ∈ Rn3×R. Then we

can reshape each column V (1)(:, i) to a 2-dimensional tensor V (1)
n1×n2

(:, i) ∈ Rn1×n2 by using

the ordering of entries in [n1]×[n2] we used to concatenate X1 and X2 into Y1. In this way, we

have approximated the full joint distribution X as the sum of the product between two- and

one-dimensional distributions V (1)
n1×n2

(:, i)⊗ V (2)(:, i). In this factorization, the joint features

of X1 and X2 can still be encoded in the 2-dimensional joint distributions V (1)
n1×n2

(:, i), and

only the joint features between (X1, X2) and X3 are disentangled.

For instance, the tensor for the mouse brain activity video in Subsection 4.8.3 has four

modes (time, horizontal, vertical, color). There is almost no change in the shape of the

brain in the video and only the color changes indicate neuronal activation in time. Hence, we

do not want to disentangle the horizontal, vertical, and color modes, but instead, concatenate

them to maintain the joint feature of the spatial activation pattern (see Figure 4.4). See

also Figures 4.3 and 4.5 for the effect of various tensor reshaping before factorization in the

context of image and time-series data.

4.8.2 Image processing applications

We first apply our algorithm to patch-based image processing. A workflow for basic patch-

based image analysis is to extract small overlapping patches from some large images, vectorize

these patches, apply some standard dictionary learning algorithm, and reshape back. Dic-

tionaries obtained from this general procedure have a wide variety of uses, including image

compression, denoising, deblurring, and inpainting [Ela10, DLZS11, PRSE17, MMYZ13].

Although this procedure has produced countless state-of-the-art results, a major draw-

back to such methods is that vectorizing image patches can greatly slow down the learning

process by increasing the effective dimension of the dictionary learning problem. Moreover,

by respecting the natural tensor structure of the data, we find that our learned dictionary
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   x, y, color (x, y), color (x, y, color) 

CP-dictionaries learned from i.i.d. 20 x 20 patches 

(𝑐) (𝑑) (𝑒) (𝑎) (𝑏) 

 x, y, color (x, y), color (x, y, color) 

 

(𝑎) (𝑏) (𝑐) (𝑑) 

Figure 4.3: Color image reconstruction by online CPDL. The original image is shown in the top left of

(a). The top right reconstruction in (a) is derived from the dictionary learned from the unmodified tensor

decomposition of color image patches, which is exemplified in (b). The bottom left reconstruction in (a)

uses the dictionary in (c) learned by tensor decomposition of color image patches whose spatial modes are

vectorized. The bottom right reconstruction in (a) uses the dictionary learned by a tensor decomposition of

fully vectorized color image patches, which is shown in (d).

atoms display a qualitative difference from those trained on reshaped color image patch data.

We illustrate this phenomenon in Figure 4.3. Our experiment is as follows. Figure 4.3 (a)

top left is a famous painting (Van Gogh’s Café Terrace at Night) from which we extracted

1000 color patches of shape (vertical× horizontal× color) = (20× 20× 3). We applied

our online CPDL algorithm (Algorithm 6 for 400 iterations with λ = 1) to various reshapings

of such patches to learn three separate dictionaries, each consisting of 24 atoms.

The first dictionary, displayed in Figure 4.3 (b), is obtained by applying online CPDL

without reshaping the patches. Due to the rank-1 restriction on the atoms as a 3-mode tensor,

the spatial features are parallel to the vertical or horizontal axes, and also color variation

within each atom is only via scalar multiple (a.k.a. ‘saturation’). The second dictionary,

Figure 4.3 (c), was trained by vectorizing the color image patches along the spatial axes,

applying online CPDL to the resulting 2-mode data tensors of shape (space × color) =

(400×3) , and reshaping back. Here, the rank-1 restriction on the atoms as a 2-mode tensor
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separates the spatial and color features, but now the spatial features in the atoms are more

‘generic’ as they do not have to be parallel to the vertical or horizontal axes. Note that the

color variation within each atom is still via a scalar multiple. Lastly, the third dictionary,

Figure 4.3 (d), is obtained by applying our online CPDL to the fully vectorized image patch

data. Here the features in the atoms do not have any rank-1 restriction along with any

mode so that they exhibit ‘fully entangled’ spatial and color features. Although dictionary

(b) requires much less storage, the reconstructed images from all three dictionaries shown in

Figure 4.3 (a) show that it still performs adequately for the task of image reconstruction.

4.8.3 Learning spatial and temporal activation patterns in cortex

In this subsection, we demonstrate our method on video data of brain activity across a mouse

cortex, and how our online CPDL learns dictionaries for the spatial and temporal activation

patterns simultaneously. The original video is due to Barson et al. [BHS+20] by using

genetically encoded calcium indicators to image brain activity transcranially. Simultaneous

cellular-resolution two-photon calcium imaging of a local microcircuit as well as mesoscopic

widefield calcium imaging of the entire cortical mantle in awake mice are used to capture

the video (see [BHS+20] for more details.)

 

  

(𝑎) (𝑏) (𝑐) 

Spatial Activation Atom # 9 Temporal activation Spatial Activation 

 
0 sec 

2 sec 

Figure 4.4: Learning 20 CP-dictionary atoms from video frames on brain activity across the mouse cortex.

The original video frame is a tensor of shape ((1501, 360, 426, 3) corresponding to the four
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modes (time, horizontal, vertical, color), where frames are 0.04 sec apart, which spans

total 60.04 seconds. We intend to learn weakly periodic patterns of spatial and temporal

activation patterns of duration at most 2 seconds. To this end, we sample 50-frame (2

sec. long) clips uniformly at random for 200 times. Each sampled tensor is reshaped into

(time, space ∗ color) = (50, 360∗426∗3) matrix, and then sequentially fed into the online

CPDL algorithm with wt = c′/t, λ = 2, and c′ = 105. Note that we vectorize the horizontal,

vertical and color modes into a single mode before factorization in order to preserve the

spatial structure learned in the loading matrix. Namely, for spatial activation patterns, we

desire dictionary atoms of the form of Figure 4.3 (d) rather than (b) or (c).

Our algorithm learns a CP-dictionary in the space-color mode that shows spatial activa-

tion patterns and the corresponding time mode shows their temporal activation pattern, as

seen in Figure 4.4. Due to the nonnegativity constraint, spatial activation atoms represent-

ing localized activation regions in the cortex are learned, while the darker ones represent the

background brain shape without activation. On the other hand, the activation frequency is

simultaneously learned by the temporal activation atoms shown in Figure 4.4 (right). For

instance, the spacial activation atom # 9 (numbered lexicographically) activates three times

in its corresponding temporal activation atom in the right, so such activation pattern has an

approximate period of 2/3 sec.

4.8.4 Joint time series dictionary learning

A key advantage of online algorithms is that they are well-suited to applications in which

data are arriving in real-time. We apply our algorithm to a weather dataset obtained from

[Ben17]. Beginning with a (36× 2998× 4) tensor where the first mode corresponds to cities,

the second mode to time in hours, and the third mode to weather data such that the frontal

slices correspond to temperature, humidity, pressure, and wind speed. We regularized the

data by taking a moving average over up to four hours (in part to impute missing data values),

and by applying a separate rescaling of each frontal slice to normalize the magnitudes of the

entries.
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(𝑎) (𝑏) (𝑐) 

Figure 4.5: Display of one atom from three different dictionaries of 25 atoms which were obtained from

online CPDL on weather data: (a) no reshaping, (b) data which was reshaped to 36× (24× 4), and (c) data

which was reshaped to (36 × 24) × 4. For each subplot, the four subplots represent the evolution of four

measurements (temperature (top left), humidity (bottom left), pressure (top right), and wind speed (bottom

right)) in time for 24 hours (horizontal axis) in 36 cities (in different colors).

From this large data tensor, we sequentially extracted smaller (36× 24× 4) = (cities×

time×measurements) tensors by dividing time into overlapping segments of length 24 hours,

with overlap size 4 hours. Our experiment consisted of applying the online CPDL (Algorithm

6) to this dataset to learn a single CP-dictionary atom (R = 1), say D ∈ R36×24×4, with

three different reshaping schemes to preprocess the input tensors of shape (36 × 24 × 4):

no reshaping (cities × time × measurements) (Figure 4.5 (a)); concatenating time and

measurements (cities× (time ∗ measurements)) (Figure 4.5 (b)); and concatenating cities

and time ((cities ∗ time) × measurements) (Figure 4.5 (c)). (See Subsection 4.8.1 for

a discussion on reshaping and CP-dictionary learning). Roughly speaking, the single CP-

dictionary atom we learn is a 3-mode tensor of shape (36×24×4) that best approximates the

evolution of four weather measurements during a randomly chosen 24-hour period from the

original 2998-hour-long data subject to different constraints on the three modes depending

how we reshape the input tensors.

In Figure 4.5, for each atom, the top left corner represents the first frontal slice (tem-

perature), the bottom left the second frontal slice (humidity), the top right the third frontal

slice (pressure), and the bottom right the fourth frontal slice (wind speed). The horizontal
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axis corresponds to time (in hours), each individual time series to a “row" in the first mode,

and the vertical axis to the value of the corresponding entry in the CP-dictionary atom.

We emphasize the qualitative difference in the corresponding learned dictionaries. In the

first example in Figure 4.5 (a), the CP-constraint is applied between all modes, so the single

CP-dictionary atom D ∈ R36×24×4 is given by the outer product of three marginal vectors,

one for each of the three mode (analogous to Figure 4.3 (a)). Namely, let D = u1⊗ u2⊗ u3,

where u1 ∈ R36, u2 ∈ R24, and u3 ∈ R4. Then u2 represents a 24-hour long time series, and

for example, the humidity of the first city is approximated by (u1(1)u3(2))u2. This makes the

variability of the time-series across different cities and measurements restrictive, as shown

in Figure 4.5 (a).

Next, in the second example in Figure 4.5 (b), the CP-constraint is applied only between

cities and the other two modes combined, so the single CP-dictionary atom D ∈ R36×24×4

is given by D = u1 ⊗ U23, where u1 ∈ R36 and U23 ∈ R24×4. Thus, for each city, the

24-hour evolution of the four measurements need not be some scalar multiple of a single

time evolution vector as before, as we can use the full 24 × 4 entries in U23 to encode such

information. On the other hand, the variability of the joint 24-hour evolution of the four

measurements across the cities should only be given by a scalar multiple, as we can observe

in Figure 4.5 (b).

Lastly, in the third example in Figure 4.5 (c), the CP-constraint is applied only be-

tween the measurements (last mode) and the other two modes combined, so the single CP-

dictionary atom D ∈ R36×24×4 is given by D = U12 ⊗ u3, where U12 ∈ R36×24 and u3 ∈ R4.

Thus, the 24-hour evolution of a latent measurement of the 36 cities can be encoded by the

36 × 24 matrix U12 without rank restriction. For each of the four measurements, this joint

evolution pattern encoded in U12 is multiplied by a scalar. For example, the temperature

evolution across 36 cities is modeled by u3(1)U12.
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4.9 Background on Markov chains and MCMC

4.9.1 Markov chains

Here we give a brief account on Markov chains on countable state space (see, e.g., [LP17]).

Fix a countable set Ω. A function P : Ω2 → [0,∞) is called a Markov transition matrix

if every row of P sums to 1. A sequence of Ω-valued random variables (Xt)t≥0 is called a

Markov chain with transition matrix P if for all x0, x1, . . . , xn ∈ Ω,

P(Xn = xn |Xn−1 = xn−1, . . . , X0 = x0) = P(Xn = xn |Xn−1 = xn−1) = P (xn−1, xn). (4.85)

We say a probability distribution π on Ω a stationary distribution for the chain (Xt)t≥0 if

π = πP , that is,

π(x) =
∑
y∈Ω

π(y)P (y, x). (4.86)

We say the chain (Xt)t≥0 is irreducible if for any two states x, y ∈ Ω there exists an integer

t ≥ 0 such that P t(x, y) > 0. For each state x ∈ Ω, let T (x) = {t ≥ 1 |P t(x, x) > 0} be

the set of times when it is possible for the chain to return to starting state x. We define the

period of x by the greatest common divisor of T (x). We say the chain Xt is aperiodic if all

states have period 1. Furthermore, the chain is said to be positive recurrent if there exists

a state x ∈ Ω such that the expected return time of the chain to x started from x is finite.

Then an irreducible and aperiodic Markov chain has a unique stationary distribution if and

only if it is positive recurrent [LP17, Thm 21.21].

Given two probability distributions µ and ν on Ω, we define their total variation distance

by

∥µ− ν∥TV = sup
A⊆Ω
|µ(A)− ν(A)|. (4.87)

If a Markov chain (Xt)t≥0 with transition matrix P starts at x0 ∈ Ω, then by (4.85), the dis-

tribution of Xt is given by P t(x0, ·). If the chain is irreducible and aperiodic with stationary

distribution π, then the convergence theorem (see, e.g., [LP17, Thm 21.14]) asserts that the
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distribution of Xt converges to π in total variation distance: As t→∞,

sup
x0∈Ω
∥P t(x0, ·)− π∥TV → 0. (4.88)

See [MT12, Thm 13.3.3] for a similar convergence result for the general state space chains.

When Ω is finite, then the above convergence is exponential in t (see., e.g., [LP17, Thm

4.9])). Namely, there exists constants λ ∈ (0, 1) and C > 0 such that for all t ≥ 0,

max
x0∈Ω
∥P t(x0, ·)− π∥TV ≤ Cλt. (4.89)

Markov chain mixing refers to the fact that, when the above convergence theorems hold,

then one can approximate the distribution of Xt by the stationary distribution π.

Remark 1. Our main convergence result in Theorem 3.1 assumes that the underlying

Markov chain Yt is irreducible, aperiodic, and defined on a finite state space Ω, as stated in

(A1). This can be relaxed to countable state space Markov chains. Namely, Theorem 3.1

holds if we replace (A1) by

(A1)’. The observed data tensors Xt are given by Xt = φ(Yt), where Yt is an irreducible,

aperiodic, and positive recurrent Markov on a countable and compact state space Ω and

φ : Ω → Rd×n is a bounded function. Furthermore, there exist constants β ∈ (3/4, 1] and

γ > 2(1− β) such that

wt = O(t−β), sup
y∈Ω
∥P t(y, ·)− π∥TV = O(t−γ), (4.90)

where P and π denote the transition matrix and unique stationary distribution of the chain

Yt.

Note that the polynomial mixing condition in (A1)’ is automatically satisfied when Ω is

finite due to (4.89). Polynomial mixing rate is available in most MCMC algorithms used in

practice.
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4.9.2 Markov chain Monte Carlo Sampling

Suppose we have a finite sample space Ω and probability distribution π on it. We would like

to sample a random element ω ∈ Ω according to the distribution π. Markov chain Monte

Carlo (MCMC) is a sampling algorithm that leverages the properties of Markov chains

we mentioned in Subsection 4.9.1. Namely, suppose that we have found a Markov chain

(Xt)t≥0 on state space Ω that is irreducible, aperiodic4, and has π as its unique stationary

distribution. Denote its transition matrix as P . Then by (4.89), for any ε > 0, one can find

a constant τ = τ(ε) = O(log ε−1) such that the conditional distribution of Xt+τ given Xt

is within total variation distance ε from π regardless of the distribution of Xt. Recall such

τ = τ(ε) is called the mixing time of the Markov chain (Xt)t≥1. Then if one samples a long

Markov chain trajectory (Xt)t≥1, the subsequence (Xkτ )k≥1 gives approximate i.i.d. samples

from π.

We can further compute how far the thinned sequence (Xkτ )k≥1 is away from being

independent. Namely, observe that for any two nonempty subsets A,B ⊆ Ω,

|P(Xkτ ∈ A, Xτ ∈ B)− P(Xkτ ∈ A)P(Xτ ∈ B)| (4.91)

= |P(Xkτ ∈ A)− P(Xkτ ∈ A |Xτ ∈ B)| |P(Xτ ∈ B)| (4.92)

≤ |P(Xkτ ∈ A)− P(Xkτ ∈ A |Xτ ∈ B)| (4.93)

≤ |P(Xkτ ∈ A)− π(A)|+ |π(A)− P(Xkτ ∈ A |Xτ ∈ B)| ≤ λkτ + λ(k−1)τ . (4.94)

Hence the correlation between Xkτ and Xτ is O(λ(k−1)τ ).

For the lower bound, let us assume that Xt is reversible with respect to π, that is,

π(x)P (x, y) = π(y)P (y, x) for x, y ∈ Ω (e.g., random walk on graphs). Then τ(ε) =

Θ(log ε−1) (see [LP17, Thm. 12.5]), which yields supx∈Ω∥P t(x, ·) − π∥TV = Θ(λt). Also,

P(Xτ ∈ B) > δ > 0 for some δ > 0 whenever τ is large enough under the hypothesis. Hence

|P(Xkτ ∈ A, Xτ ∈ B)− P(Xkτ ∈ A)P(Xτ ∈ B)| (4.95)

4Aperiodicity can be easily obtained by making a given Markov chain lazy, that is, adding a small
probability ε of staying at the current state. Note that this is the same as replacing the transition matrix
P by Pε := (1 − ε)P + εI for some ε > 0. This ‘lazyfication’ does not change stationary distributions, as
πP = π implies πPε = π.
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≥ δ−1 |P(Xkτ ∈ A)− P(Xkτ ∈ A |Xτ ∈ B)| (4.96)

≥
∣∣ |P(Xkτ ∈ A)− π(A)| − |π(A)− P(Xkτ ∈ A |Xτ ∈ B)|

∣∣ ≥ cλ(k−1)τ (4.97)

for some constant c > 0. Hence the correlation between Xkτ and Xτ is Θ(λ(k−1)τ ). In

particular, the correlation between two consecutive terms in (Xkτ )k≥1 is of Θ(λτ ) = Θ(ε).

Thus, we can make the thinned sequence (Xkτ )k≥1 arbitrarily close to being i.i.d. for π, but

if Xt is reversible with respect to π, the correlation within the thinned sequence is always

nonzero.

In practice, one may not know how to estimate the mixing time τ = τ(ε). In order to

empirically assess that the Markov chain has mixed to the stationary distribution, multiple

chains are run for diverse mode exploration, and their empirical distribution is compared to

the stationary distribution (a.k.a. multistart heuristic). See [BGJM11] for more details on

MCMC sampling.

4.10 Auxiliary lemmas

Lemma 4 (Convex Surrogate for Functions with Lipschitz Gradient). Let f : Rp → R be

differentiable and ∇f be L-Lipschitz continuous. Then for each θ, θ′ ∈ Rp,∣∣f(θ′)− f(θ)−∇f(θ)T (θ′ − θ)∣∣ ≤ L

2
∥θ − θ′∥2F . (4.98)

Proof. This is a classical Lemma. See [Nes98, Lem 1.2.3].

For each X ∈ RI1×···×In×b and D ∈ RI1×R × . . .RIn×R, denote

H⋆(X ,D) ∈ argmin
H∈Ccode

ℓ(X ,D, H). (4.99)

Recall Assumption (A1)’. For each subset S of a Euclidean space, denote ∥S∥F = supx∈S∥x∥F .

The following boundedness results for the codes Ht and aggregate tensors At,Bt are easy to

derive.

Lemma 5. Assume (A1)’ and (A2). Then the following hold:
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(i) For all X ∈ RI1×···×In×b and D ∈ Cdict,

∥H⋆(X ,D)∥2F ≤ λ−2∥φ(Ω)∥4F <∞. (4.100)

(ii) For any sequences (Xt)t≥1 in RI1×···×In×b and (Dt)t≥1 in C, define At and Bt recursively

as in Algorithm 6. Then for all t ≥ 1, we have

∥At∥F ≤ λ−2∥φ(Ω)∥4F , ∥Bt∥F ≤ λ−1∥φ(Ω)∥3F . (4.101)

Proof. Omitted. See [LNB20, Prop. 7.2].

The following lemma shows Lipschitz continuity of the loss function ℓ(φ(·), ·) defined in

(4.10). Since Ω and Ccode are both compact, this also implies that D 7→ f̂t(D) and D 7→ ft(D)

are L-Lipschitz for some L > 0 uniformly for all t ≥ 0.

Lemma 6. Suppose (A1)’ and (A2) hold, and let M = 2∥φ(Ω)∥F + 2∥Cdict∥F∥φ(Ω)∥2F/λ.

Then for each Y1, Y2 ∈ Ω and D1,D2 ∈ Cdict,

|ℓ(φ(Y1),D1)− ℓ(φ(Y2),D2)| ≤M
(
∥Y1 − Y2∥F + λ−1∥φ(Ω)∥F∥D1 −D2∥F

)
. (4.102)

Proof. Omitted. See [LNB20, Prop. 7.3].

The following deterministic statement on converging sequences is due to [MBPS10].

Lemma 7. Let (an)n≥0 and (bn)≥0 be non-negative real sequences such that
∞∑
n=0

an =∞,
∞∑
n=0

anbn <∞, |bn+1 − bn| = O(an). (4.103)

Then limn→∞ bn = 0.

Proof. Omitted. See [Mai13b, Lem. A.5].

Lemma 8. Under the assumptions (A1)’ and (A2),

E

[
sup

W∈Cdict

√
t

∣∣∣∣∣f(D)− 1

t

t∑
s=1

ℓ(Xs,D)

∣∣∣∣∣
]
= O(1). (4.104)

Furthermore, supW∈C
∣∣f(D)− 1

t

∑t
s=1 ℓ(Xs,D)

∣∣→ 0 almost surely as t→∞.
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Proof. Omitted. See [LNB20, Lem. 7.8].

In the following lemma, we generalize the uniform convergence results in Lemma 8 for

general weights wt ∈ (0, 1) (not only for the ‘balanced weights’ wt = 1/t). The original lemma

is due to Mairal [Mai13b, Lem B.7], which originally extended the uniform convergence

result to weighted empirical loss functions with respect to i.i.d. input signals. A similar

argument gives the corresponding result in our Markovian case (A1)’, which was also used

in [LNB20]. In Lemma 8 below, we also generalize the statement for the weights wt satisfy

the required monotonicity property w−1
t+1 − w−1

t ≤ 1 only asymptotically. See Remark 2 for

more discussion.

Lemma 9. Suppose (A1)’-(A2) hold, and assume that there exist an integer T ≥ 1 such

that w−1
t+1 − w−1

t ≤ 1 for all t ≥ T . Also assume that there are some constants c > 0 and

γ ∈ (0, 1] such that wt ≥ ct−γ for all t ≥ 1. Further assume that if T ≥ 1 and γ = 1, then

c ≥ 1/2. Then there exists a constant C = C(T ) > 0 such that

E
[

sup
W∈Cdict

|f(D)− ft(D)|
]
≤ Cwt

√
t. (4.105)

Furthermore, if
∑∞

t=1wt = ∞,
∑∞

t=1w
2
t

√
t < ∞, then supD∈Cdict |f(D)− ft(D)| → 0 almost

surely as t→∞.

Proof. Fix t ∈ N. Recall the weighted empirical loss ft(D) defined recursively using the

weights (ws)s≥0 in (4.11). For each 0 ≤ s ≤ t, denote wt
s = ws

∏t
j=s(1 − wj) and set

wt
0 = 0. Then for each t ∈ N, we can write ft(D) =

∑t
s=1 ℓ(Xs,W )wt

s. Moreover, note that

wt
1, . . . , w

t
t > 0 and wt

1 + · · · + wt
t = 1. Define Fi(D) = (t− i + 1)−1

∑t
j=1 ℓ(Xi,W ) for each

1 ≤ i ≤ t. By Lemma 8, there exists a constant c1 > 0 such that

E
[
sup
W∈C
|Fi(D)− f(D)|

]
≤ c1√

t− i+ 1
(4.106)

for all t ≥ 1 and 1 ≤ i ≤ t. Noting that [wt
1, . . . , w

t
t] is a probability distribution on {1, . . . , t},

a simple calculation shows the following important identity

ft − f =
t∑

i=1

(wt
i − wt

i−1)(t− i+ 1)(Fi − f), (4.107)
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with the convention of wt
0 = 0. Also, suppose T ≥ 1 is such that w−1

k −w
−1
k−1 ≤ 1 for k ≥ T .

Note that for i ≥ 2, wt
i−1 ≤ wt

i if and only if wi−1(1−wi) ≤ wi if and only if w−1
i −w−1

i−1 ≤ 1.

Hence for each n > T and k ≥ T , we have wt
k ≤ wt

k+1 ≤ · · · ≤ wt
t = wt. Then observe that

E
[

sup
D∈Cdict

|ft(D)− ψ̄(D)|
]
≤ E

[
t∑

i=1

|wt
i − wt

i−1|(t− i+ 1) sup
W∈Cdict

|fi(D)− f(D)|

]
(4.108)

=
t∑

i=1

|wt
i − wt

i−1|(t− i+ 1)E
[

sup
D∈Cdict

|fi(D)− f(D)|
]

(4.109)

≤
t∑

i=1

|wt
i − wt

i−1|c1
√
t− i+ 1 (4.110)

≤ c1
√
t

(
T∑
i=1

|wt
i − wt

i−1|+
t∑

i=T

(ŵt
i − ŵt

i−1)

)
(4.111)

≤ c1
√
t

(
wt +

T∑
i=1

wt
i

)
. (4.112)

By using Lemma 10, we have
∑T

i=1w
t
i = O(1/n). Furthermore, since w−1

t+1 − w−1
t ≤ 1 for

all t ≥ T , we deduce w−1
t − w−1

T ≤ t − T for all t ≥ T , so wt ≥ 1
t−T+w−1

T

. Thus for some

constant c > 0, we have wt ≥ 1
t+c

for all t ≥ T . Thus the last displayed expression above

is of O(wt

√
t). This shows (4.105). We can show the part by using Lemma 7 in Appendix

4.10, following the argument in the proof of [Mai13b, Lem. B7]. See the reference for more

details.

The following lemma was used in the proof of Lemma 9.

Lemma 10. Fix a sequence (wn)n≥1 of numbers in (0, 1]. Denote wn
k := wk

∏n
i=k+1(1− wi)

for 1 ≤ k ≤ n. Suppose w−1
n − w−1

n−1 ≤ 1 for all sufficiently large n ≥ 1. Fix T ≥ 1. Then

for all n ≥ T ,

T∑
i=1

wn
i = O(1/n). (4.113)

Proof. Suppose w−1
n −w−1

n−1 ≤ 1 for all n ≥ N for some N ≥ 1. It follows that w−1
n −w−1

N ≤

n−N , so wn ≥ 1
n−N+w−1

N

. Hence for some constant c > 0, wn ≥ 1
n+c

for all n ≥ N . Denote
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a ∨ b = max(a, b). Then note that

wn
k = wk exp

(
n∑

i=k+1

log(1− wi)

)
≤ exp

(
−

n∑
i=k+1

wi

)
(4.114)

≤ exp

(
−
∫ n

N∨(k+1)

1

x+ c
dx

)
=

[N ∨ (k + 1)] + c

n+ c
,

(4.115)

where the second inequality uses wk ≤ 1 and the following inequality uses log(1 − a) ≤ −a

for a < 1. Hence for each fixed 1 ≤ T ≤ n, we have

T∑
k=1

wn
k ≤ T ((N ∨ (T + 1)) + c)

1

n+ c
. (4.116)

This shows the assertion.

Remark 2. In the original statement of [Mai13b, Lem B.7], the assumption that w−1
t+1 −

w−1
t ≤ 1 for sufficiently large t was not used, and it seems that the argument in [Mai13b]

needs this assumption. To give more detail, the argument begins with writing the empirical

loss ft(·) =
∑t

k=1w
t
k ℓ(Xk, ·), where wt

k := wk(1 − wk−1) · · · (1 − wt), and proceeds with

assuming the monotonicity wt
1 ≤ · · · ≤ wt

t, which is equivalent to wk ≥ wk−1(1 − wk) for

2 ≤ k ≤ t. In turn, this is equivalent to w−1
k − w−1

k−1 ≤ 1 for 2 ≤ k ≤ t. Note that

this condition implies w−1
k ≤ (k − 1) + w−1

1 , or wk ≥ 1
k−1+w−1

1

, where w1 ∈ [0, 1] is a fixed

constant. This means that, asymptotically, wk cannot decay faster than the balanced weight

1/k, which gives wt
k ≡ 1/t for k ∈ {1, . . . , t}. Note that we proved Lemma 10 with requiring

w−1
t+1 − w−1

t ≤ 1 for all sufficiently large t.

Next, we will argue that (A3’) implies (A3). It is clear that if the sequence wt ∈ (0, 1]

satisfies (A3’), then
∑∞

t=1wt =∞ and
∑∞

t=1w
2
t

√
t <∞. So it remains to verify w−1

t −w−1
t−1 ≤

1 for sufficiently large t. Suppose wt = Θ(t−β(log t)−δ) for some β ∈ [0, 1] and δ ≥ 0. Let

c1, c2 > 0 be constants such that wtt
β(log t)δ ∈ [c1, c2] for all t ≥ 1. Then by the mean value

theorem,

w−1
t+1 − w−1

t ≤ c2
(
(t+ 1)β(log(t+ 1))δ − tβ(log t)δ

)
(4.117)
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≤ c2 sup
t≤s≤t+1

(
βsβ−1(log s)δ + δsβ−1(log s)δ−1

)
(4.118)

≤ c2 sup
t≤s≤t+1

sβ−1(log s)δ−1 ((log s) + δ) . (4.119)

Since t ≥ 1, the last expression is of o(1) if β < 1. Otherwise, wt = t−1 for t ≥ 1 by (A3’).

Then w−1
t+1 − w−1

t ≡ 1 for all t ≥ 1.

4.11 Bounded memory implementation of Algorithm 6

In this section, we introduce an alternative implementation of Algorithm 6 that uses bounded

memory that is independent of the number T of minibatches of data tensors being processed.

This will be done by replacing the step for computing the surrogate loss function f̂t with

computing two ‘aggregate tensors’ based on our deterministic analysis in Proposition 2. The

total amount of information fed in to the algorithm is O(T
∏n

i=1 In) and T → ∞, whereas

Algorithm 7 stores only O(R
∏n

i=1 In) (recall that R is the number of dictionary atoms to

be learned and T is the number of minibatches of data tensors that have arrived). This is

an inherent memory efficiency of online algorithms against non-online algorithms (see, e.g.,

[MBPS10]).

We describe how Algorithm 7 is derived and why it is equivalent to Algorithm 6. By

the time that the new data tensor Xt arrives, the algorithm have computed previous loading

matrices U (1)
t−1, . . . , U

(n)
t−1 and two aggregate tensors At−1 ∈ RR×R and Bt−1 ∈ RI1×···×In×R.

Then one computes the code matrix Ht ∈ Ccode ⊆ RR×b by solving the convex optimization

problem in (4.120), and then updates the aggregate tensors At ← At−1 and Bt ← Bt−1.

In order to perform the block coordinate descent to update the loading matrices U (t)
i in

eq. (4.18) of Algorithm 6, we appropriately recompute intermediate aggregate matrices Ai

and Bi using Algorithm 8 so that we are correctly minimizing the surrogate loss function f̂t

in (4.21) marginally according to Proposition 2 (ii).
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Algorithm 7 Online CP-Dictionary Learning (Bounded Memory Implementation)

0: Input: (Xt)1≤t≤T (minibatches of data tensors in RI1×···×In×b
≥0 ); [U (1)

0 , . . . , U
(n)
0 ] ∈ RI1×R

≥0 ×

· · · × RIn×R
≥0 (initial loading matrices); c′ > 0 (search radius constant);

0: Constraints: C(i) ⊆ RIi×R, 1 ≤ i ≤ n, Ccode ⊆ RR×b (e.g., nonnegativity constraints)

0: Parameters: R ∈ N (# of dictionary atoms); λ ≥ 0 (ℓ1-regularizer); (wt)t≥1 (weights

in (0, 1]);

0: Initialize aggregate tensors A0 ∈ RR×R, B0 ∈ RI1×···×In×R;

0: For t = 1, . . . , T do:

0: Coding : Compute the optimal code matrix

Ht ← argmin
H∈Ccode⊆RR×b

ℓ(Xt, U
(1)
t−1, . . . , U

(n)
t−1, H); (using Algorithm 9) (4.120)

0: Update aggregate tensors :

At ← (1− wt)At−1 + wtHtH
T
t ∈ RR×R; (4.121)

Bt ← (1− wt)Bt−1 + wt(Xt ×n+1 H
T
t ) ∈ RI1×···×In×R; (4.122)

0: Update dictionary:

0: For i = 1, . . . , n do:

0: At;i ∈ RR×R, Bt;i ∈ RIi×R

← Algorithm 8 with input At,Bt, U
(1)
t , . . . , U

(i−1)
t , U

(i)
t , U

(i+1)
t−1 , . . . , U

(n)
t−1, i;

0: C(i)t ←
{
U ∈ C(i)

∣∣∣∣ ∥U − U (i)
t−1∥F ≤ c′wt

}
; (Restrict the search radius by wt)

0: U
(i)
t ← argmin

U∈C(i)
t

[
tr(UAt;iU

T )− 2 tr(U B
T

t;i)
]
; (Using Algorithm 10)

0: End for

0: End for

0: Return: [U
(1)
T , . . . , U

(n)
T ] ∈ C(1) × · · · × C(n); =0
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Algorithm 8 Intermediate Aggregation
0: Input: A ∈ RR×R, B ∈ RI1×···×In×R, [U1, . . . , Un] ∈ RI1×R × . . .× RIn×R, 1 ≤ j ≤ n

0: Do:

Ai = A⊙ UT
1 U1 ⊙ . . .⊙ UT

i−1Ui−1 ⊙ UT
i+1Ui+1 ⊙ . . .⊙ UT

n Un ∈ RR×R (4.123)

0: For r = 1, . . . , R do:

B(, r) := mode-(n+ 1) slice of B at coordinate r (4.124)

bi;r = B(, r)×1 U1(:, r)×2 · · · ×i−1 Ui−1(:, r)×i+1 Ui+1(:, r)×i+2 · · · ×n Un(:, r) ∈ RIi

(4.125)

Bt;i = Ii ×R matrix whose rth column is bi;r (4.126)

0: End for

0: Return:

Ai = Ai(A,U1, . . . , Ui−1, Ui+1, . . . , Un)

Bi = Bi(B,U1, . . . , Ui−1, Ui+1, . . . , Un)

=0

4.12 Auxiliary Algorithms

In this section, we give auxiliary algorithms that are used to solve convex sub-problems in

coding and loading matrix updates for the main algorithm (Algorithm 1 for online CPDL).

We denote by ΠS the projection operator onto the given subset S defined on the respective

ambient space. For each matrix A, denote by [A]•i (resp., [A]i•) the ith column (resp., row)

of A.
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Algorithm 9 Coding

0: Input: X ∈ RM×b: data matrix, W ∈ RM×R: dictionary matrix

0: λ ≥ 0: sparsity regularizer

0: Ccode ⊆ RR×b: constraint set of codes

0: Repeat until convergence:

0: Do

H ← ΠCcode

(
H − 1

tr(W TW )
(W TWH −W TX + λJ)

)
, (4.127)

where J ⊆ RR×b is all ones matrix.

0: Return H ∈ Ccode ⊆ RR×b =0

Algorithm 10 Loading matrix update
0: Variables:

0: U ∈ C(i) ⊆ RIi×R: previous jth loading matrix

0: (Ai, Bt;j) ∈ RR×R ×RR×(I1...In): intermediate loading matrices computed previously

0: Repeat until convergence:

0: For i = 1 to R:

[U ]•i ← ΠC(i)

(
[U ]•i −

1

[At]ii + 1
(U [Ai]•i − [B

T

t;j]•i)

)
(4.128)

0: Return U ∈ C(i) ⊆ RIi×R =0
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Algorithm 11 Alternating Least Squares for NCPD

0: Input: X ∈ RI1×···×Im
≥0 (data tensor); R ∈ N (rank parameter); D0 = (U

(1)
0 , · · · , U (m)

0 ) ∈

RI1×R
≥0 × · · · × RIm×R

≥0 (initial loading matrices); N (number of iterations);

0: for n = 1, . . . , N do:

0: Update loading matrices Dn = [U
(1)
n , · · · , U (m)

n ] by

0: For i = 1, · · · ,m do:

A← Out(U (1)
n−1, . . . , U

(i−1)
n−1 , U

(i+1)
n−1 , . . . , U

(m−1)
n−1 )(m) ∈ R(I1×···×Ii−1×Ii+1×···×Im)×R (4.129)

B ← unfold(A,m) ∈ R(I1···Ii−1Ii+1···Im)×R (4.130)

U (i)
n ∈ argmin

U∈RIi
≥0

∥unfold(X, i)−B(U (i))T ∥2 (4.131)

▷ (unfold(·, i) denotes the mode-i tensor unfolding (see [KB09])) (4.132)

0: end for

0: end for

0: output: DN =0
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Algorithm 12 Multiplicative Update for NCPD

0: Input: X ∈ RI1×···×Im
≥0 (data tensor); R ∈ N (rank parameter); D0 = (U

(1)
0 , · · · , U (m)

0 ) ∈

RI1×R
≥0 × · · · × RIm×R

≥0 (initial loading matrices); N (number of iterations);

0: for n = 1, . . . , N do:

0: Update loading matrices Dn = [U
(1)
n , · · · , U (m)

n ] by

0: For i = 1, · · · ,m do:

A← Out(U (1)
n−1, . . . , U

(i−1)
n−1 , U

(i+1)
n−1 , . . . , U

(m−1)
n−1 )(m) ∈ R(I1×···×Ii−1×Ii+1×···×Im)×R (4.133)

B ← unfold(A,m) ∈ R(I1···Ii−1Ii+1···Im)×R (4.134)

U (i)
n ← U

(i)
n−1 ⊙ (unfold(X, i))TB ⊘ (UBTB) (4.135)

▷ (unfold(·, i) denotes the mode-i tensor unfolding (see [KB09])) (4.136)

▷ (⊙ and ⊘ denote entrywise product and division) (4.137)

0: end for

0: end for

0: output: DN =0
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CHAPTER 5

Conclusion

This final chapter consists of a summary of the work that has been accomplished in this

thesis, as well as an extensive collection of future research directions.

5.1 Reflections

The enormity and multi-modality of modern data have made the task of extracting mean-

ingful insights extremely difficult. More often than not, a dataset of interest will consist of

data points of such high dimension, and consisting of so many samples, that it is impossible

to even store the dataset in memory. Additionally, many datasets are multi-modal, being

composed of quite distinct data sources such as text, image, audio, and video. To address

the challenges presented by such data, we have introduced our algorithm Online Nonnegative

CP-Dictionary Learning (OCPDL). Being an online algorithm, OCPDL is adept at learning

latent patterns in large datasets by processing data in batches and aggregating information

derived from each batch so as to ensure that previously processed batches influence future

dictionary updates, without the need to store said batches. Additionally, the tensorial char-

acter of our learned dictionaries ensures that one can effectively handle multi-modal data. In

fact, given that a CP-dictionary is constructed in terms of individual factor matrices, each

corresponding to a different modality, our algorithm is capable of effectively separating the

different modalities.

Throughout this thesis, we have presented applications of online nonnegative matrix

factorization (ONMF) and our OCPDL which highlight the ability of online matrix and
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tensor dictionary learning algorithms to uncover latent structure in data. Our principle

method of encoding a given data point using our learned dictionary and computing the

normalized code weights allows us to determine which dictionary atoms contributed to the

given data point by determining the weights with the greatest magnitude.

On the theoretical side, we have established convergence guarantees for OCPDL in the

setting of Markovian data. This is a considerable extension of the original work of [MBPS10],

which proved analogous guarantees in the i.i.d. matrix setting, as opposed to our vastly more

encompassing Markovian, tensor setting.

5.2 Future Work

On the theoretical end, much work remains. Although we were able to establish convergence

guarantees for OCPDL which mirror those obtained in the ONMF with i.i.d. data first proved

in [MBPS10], even in this simplified setting it is unknown whether the limiting dictionary

achieves a local maximum or minimum of the expected loss; rather, it is only known that

one has convergence to the set of critical points of said loss.

An additional direction would be to develop and analyze hierarchical variants of our al-

gorithm. Such variants, like their matrix counterparts, are useful for uncovering additional

structure in data, with higher-level factors corresponding to “coarse-scale" features, lower

levels corresponding to “fine-scale" features. These might be compared to hierarchical fea-

tures obtained by training a deep neural network. In general, such networks obtain feature

vectors which are dense and thus difficult to interpret, especially when compared to the

generally sparse features obtained from nonnegative matrix and tensor dictionary learning

algorithms.

Our algorithm is quite general purpose; although we had to make some technical assump-

tions about the data stream in order to prove our theoretical guarantees, these assumptions

did not enforce any additional structure in the data. In practice, one often encounters

three-mode tensors such that (without loss of generality) the first mode corresponds to a
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“population" of data points, the second mode corresponds to features of members of said

population, and the third mode corresponds to time. The intrinsic properties of these distinct

modes invite us to consider several different specializations of our algorithm. For instance,

one can include an additional step in our algorithm which iteratively clusters members of the

population, obtains separate factor updates for each subpopulation, and concatenate these

to obtain a dictionary has learned atoms attuned to each cluster. For the feature mode, one

might consider dropping or appending additional features, applying OCPDL, and comparing

the first and third factor matrices for different feature selections. Alternatively, one could

include a “selection matrix" which multiplies the second factor, and is updated according

to an objective function which enforces that it be column-sparse. Finally, variants of our

algorithm which enforce that the learned atoms are reliable for making predictions (either by

the basic “restrict and predict" method discussed in chapter 2 or the more elaborate recursive

extrapolation technique) could be derived by modifying the original objective function and

following a derivation similar to that of OCPDL.
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