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ABSTRACT
We present the theory and implementation of a Poisson–Boltzmann implicit solvation model for electrolyte solutions. This model can be 
combined with arbitrary electronic structure methods that provide an accurate charge density of the solute. A hierarchy of approximations 
for this model includes a linear approximation for weak electrostatic potentials, finite size of the mobile electrolyte ions, and a  Stern-layer 
correction. Recasting the Poisson–Boltzmann equations into Euler–Lagrange equations then significantly s implifies th e de rivation of  the 
free energy of solvation for these approximate models. The parameters of the model are either fit directly to experimental observables—
e.g., the finite ion size—or optimized for agreement with experimental results. Experimental data for this optimization are available in the 
form of Sechenov coefficients that describe the linear dependence of the salting-out effect of solutes with respect to the electrolyte concen-
tration. In the final p art, w e r ationalize t he q ualitative d isagreement o f t he fi nite io n si ze mo dification to the  Poi sson–Boltzmann model 
with experimental observations by taking into account the electrolyte concentration dependence of the Stern layer. A route toward a revised 
model that captures the experimental observations while including the finite ion s ize effects i s then outlined. This implementation paves 
the way for the study of electrochemical and electrocatalytic processes of molecules and cluster models with accurate electronic structure 
methods.

I. MOTIVATION

In contrast to the ab initio calculation of chemical pro-
cesses in the gas phase, the investigation of such processes in
solution adds an additional layer of tremendous complexity. The
electrostatic interaction between solvent and solute directly alters
the enthalpic landscape, whereas osmotic pressure and reorienta-
tion of the solvent molecules based on the electrostatic interac-
tions has a profound influence on the free energy. Although these
effects can in principle be calculated with molecular dynamics

(MD) simulations, the amount of sampling required to con-
verge the free energy combined with the large number of struc-
tures involved in chemical processes for which such a sampling
would have to be performed renders this approach unfeasible at
present.

Hence, implicit solvation models, rather than explicit ones,
are usually the method of choice in computational quantum chem-
istry. Famous examples of the former are the polarizable continuum
model (PCM)1–4 or the conductor like screening model (COSMO)5

that exists in various flavors and specializations, are available in
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most multipurpose electronic structure packages, and have proven
suitable in countless applications.6,7

For the description of electrochemical processes, however,
the effect of the electrolyte ions needs to be taken into account.
In the realm of electrocatalysis, the phenomenological descrip-
tion of the solvent/electrolyte interaction with charged surfaces
has a long history. Helmholtz was the first to describe the forma-
tion of a layer of counterions in a certain distance to a charged
surface—the Helmholtz layer—which resembles a capacitor and
stores electrostatic energy.8 A little later, Gouy9 and independently
Chapman10 introduced the concept of a diffuse electrochemical
double-layer based on the notion of an exponential decay of the
electric potential away from the charged surface. A combination
of both approaches, a rigid inner layer close to the charged sur-
face, called the Stern layer, and the Gouy–Chapman type diffuse
layer, was introduced in 1924 by Stern.11 The Poisson–Boltzmann
(PB) model12–22 for implicit electrolyte solvation is a computational
realization of the Gouy–Chapman model with the possibility to
include a Stern-layer correction.23 In this model, the electrostatic
potential of the system is calculated from the Poisson equation
appended by an additional term describing the charge density of
the mobile electrolyte ions. The charge density of the mobile ions
is modeled by a Boltzmann distribution mediated by the electro-
static potential, hence the term Poisson–Boltzmann (PB) model.
Since the electrolyte charge density depends on the total electro-
static potential that is in turn determined by the PB equations,
a self-consistent solution, often on a real-space grid, is required.
The PB model is especially popular in MD simulations and bio-
chemical applications24–28 but has also found increasing interest
in the modeling of chemical processes on surfaces and electrode-
electrolyte interfaces,29–31 mostly in software packages for extended
solid systems employing periodic boundary conditions.23,32,33 We
would further like to mention that the “integral equation formalism”
of PCM (IEF-PCM)34–36 can account for electrolyte solutions but
assumes a linear approximation and does not include a finite-ion size
correction.37

In this article, we present a three-dimensional real-space grid
implementation in the general purpose electronic structure pack-
age Q-Chem.38 This implementation paves the way to investigate
chemical processes and reactions in electrolyte solutions for isolated
molecules or small cluster models. Especially for the study of elec-
trocatalytic reactions, such a solvent model is imperative in order to
calculate qualitatively meaningful free energy profiles.

We will first describe the details of the theory and the hier-
archy of approximations, before we analyze the choice of parame-
ters of the model and optimize those with respect to experimental
data. In Sec. V, we discuss the effect of an electrolyte concentration
dependent Stern-layer thickness on the PB model and suggest future
improvements on the model informed by either experiments or MD
simulations.

II. THEORY
The theory of the Poisson–Boltzmann implicit solvation model

has been introduced and reviewed in numerous publications (see,
e.g., Refs. 13, 19, 21–23, and 39). However, the specific parameteri-
zation of our implementation and the hierarchy of approximations

we introduce here requires some theoretical background that we
provide in Secs. II A–II D.

A. Derivation of the electrostatic energy
The total electrostatic potential ϕtot(r) of a molecular system

embedded in an electrolyte solution can be obtained as the solu-
tion to Poisson’s equation appended by a term describing the charge
density of the electrolyte ions ρions(r),

∇[ϵ(r)∇ϕtot(r)] + 4π[ρsol(r) + ρions(r)] = 0,

∇[ϵ(r)∇ϕtot(r)] + f (ϕtot(r), r) = 0,
(1)

where ϵ(r) is the spatially dependent dielectric permittivity, ρsol(r)
is the charge distribution of the solute, and the explicit expressions
for f (ϕtot(r), r) define the different approximations we will discuss in
the following. Following the implementation of the Poisson equation
solver in the Q-Chem program package by one of us,40 and equiva-
lent to the soft-sphere model by Fisicaro et al.,41 we define the spa-
tially dependent dielectric constant as a product of error functions
for each atom,

ϵ(r) = ϵ0 + (ϵsolv − ϵ0)
atoms

∏
α

sdiel
α (dα,Δ; ∣r − Rα∣), (2)

with the dielectric permittivity in vacuum ϵ0, the dielectric permit-
tivity of the solvent ϵsolv and

sdiel
α (dα,Δ; ∣r − Rα∣) =

1
2
[1 + erf( ∣r − Rα∣ − dα

Δ
)], (3)

where dα is a given atom-specific radius (vide infra) and Δ defines
the interpolation length between the vacuum permittivity in the sol-
vent region and the bulk solvent permittivity at larger distances. The
error function interpolates smoothly between these two values over
a region of about 4Δ.

If ρions(r) is assumed to be defined by a Boltzmann distribution
of the electrolyte charges, Eq. (1) becomes the nonlinear Poisson–
Boltzmann (PB) equation with

fPB(ϕ, r) = 4πρsol(r) + 4πλ(r)
m

∑
i
qicbi exp(−qiϕ

tot(r)
kBT

), (4)

where m is the number of electrolyte ion species, qi is the charge
of electrolyte i, cbi is its bulk concentration, kB is the Boltzmann
constant, and T is the absolute temperature. The ion exclusion func-
tion λ(r) ensures that the electrolyte ion concentration tends to zero
inside the solute cavity and is defined in a similar way to ϵ(r) with an
additional parameter a that corrects for the Stern layer by excluding
an even larger region around the solute,

λ(r) =
atoms

∏
α

1
2
[1 + erf( ∣r − Rα∣ − dα − a

Δ
)]. (5)

For a 1:1 electrolyte (q1 = e, q2 = −e, cb1 = cb2 = cb, with the ele-
mentary charge e), the charge density of the electrolyte ions can be
written as



ρions
PB (r) = λ(r)ecb[exp(− eϕ

tot(r)
kBT

) − exp( eϕ
tot(r)
kBT

)]

= − 2λ(r)ecb sinh( eϕ
tot(r)
kBT

). (6)

The function f PB(ϕtot(r), r) then reduces to

fPB(ϕtot(r), r) = 4πρsol(r) − 8πλ(r)ecb sinh( eϕ
tot(r)
kBT

). (7)

The Poisson–Boltzmann equation can be recast into an Euler–
Lagrange equation13 for a Lagrangian L(ϕtot, r, ϕx, ϕy, ϕz) (with
ϕα = ∂ϕ/∂α) that is still to be defined,

∂L
∂ϕ
− ∑

α∈{x,y,z}

∂

∂α
( ∂L
∂ϕα
) = 0. (8)

It follows from a theorem of the calculus of variations that the
solution to this set of differential equations defines the minimum
of the integral of L over the independent variables r = x, y, z.
Since the minimum condition defines the thermodynamic equilib-
rium state, this integral describes the electrostatic free energy of the
system,

Ges = ∫ L(ϕtot, r,ϕx,ϕy,ϕz)dr. (9)

In the case of the nonlinear Poisson–Boltzmann equation, integra-
tion gives the functional L for a 1:1 electrolyte as

LPB = 4πρsol(r)ϕtot(r) − 8πcbkBTλ(r) cosh( eϕ
tot(r)
kBT

)

− ϵ(∇ϕtot(r))2

2
. (10)

The second term describes the excess osmotic pressure due to the
presence of the electrolyte ions. The Euler-Lagrange equations are
fulfilled for all L′ = C1L + C0, with the constants C1 and C0 that can
be chosen to fulfill certain criteria for the units and boundary condi-
tion, respectively. We therefore fix C1 = (4π)−1 which is essentially a
transformation to MKS units and C0 = 0 such that in the absence of
ρsol(r) [and hence when ϕtot(r) = 0] only the excess osmotic pressure
term deviates from zero.

The electrostatic free energy can then be written as

Ges
PB = ∫ ρsol(r)ϕtot(r) − 2cbkBTλ(r) cosh( eϕ

tot(r)
kBT

)

− ϵ(r)(∇ϕtot(r))2

8π
dr

= ∫ ρsol(r)ϕtot(r) − ΔΠPB −
E ⋅D

8π
dr, (11)

whereΔΠPB is the excess osmotic pressure,E=∇ϕtot(r) is the electric
field, and D = ϵ(r)E is the electric displacement field.

Integrating Eq. (1) by parts, we obtain39

∫
E ⋅D

8π
dr = ∫

(ρsol(r) + ρions(r))ϕtot(r)
2

dr, (12)

and the electrostatic free energy can then be written in the more
common form,21

Ges
PB = ∫ (

1
2
ρsol(r)ϕtot(r) − 1

2
ρions(r)ϕtot(r) − ΔΠPB)dr. (13)

The electrostatic free energy expression is drastically simplified
in the linear Poisson–Boltzmann (LPB) equation where the expo-
nential term in the electrolyte ion charge density distribution is
approximated by the first two terms of the Taylor expansion,

ρions
LPB(r) = λ(r)

m

∑
i
qicbi [1 −

qiϕtot(r)
kBT

]. (14)

Restricting ourselves again to the case of a 1:1 electrolyte, this
reduces to

ρions
LPB(r) = −2λ(r) e

2cb

kBT
ϕtot(r). (15)

The functional LLPB in the linear case can then be written as

LLPB = 4πρsol(r)ϕtot(r) − 4πe2cb

kBT
λ(r)(ϕtot(r))2

− ϵ(∇ϕtot(r))2

8π

= 4πρsol(r)ϕtot(r) + 4π
ρions(r)ϕtot(r)

2

− ϵ(∇ϕtot(r))2

8π
. (16)

With the same arguments as above, we can fix the constants C0 = 0
and C1 = 1/4π. The electrostatic free energy for the linear Poisson–
Boltzmann equation then reads

Ges
LPB =∫ (ρsol(r)ϕtot(r) +

1
2
ρions(r)ϕtot(r) − E ⋅D

8π
)dr

=∫
1
2
ρsol(r)ϕtot(r)dr, (17)

which is the same expression as for a pure solvent without electrolyte
and only the electrostatic potential is modified by the presence of the
electrolyte ions.

B. Modified Poisson–Boltzmann equation
The standard Poisson–Boltzmann equation assumes point-like

ions, which leads to a charge accumulation of the electrolyte that is
unphysically large. Finite ion size can however be included in the
theory leading to the modified Poisson–Boltzmann (MPB) equa-
tion.17,21,23,42 This can be achieved by a modification of the expres-
sion for the ionic concentrations,

ci(r) =
λ(r)cbi exp(− qiϕtot

(r)
kBT
)

1 +∑m
j=1

cbj
cmax
j
[λ(r) exp(− qjϕtot(r)

kBT
) − 1]

. (18)

The highest possible concentration for electrolyte species j assuming
closest-packing cmax

j can be written as



cmax
j = p

4
3πNAR3

j
, (19)

with the closest-packing factor p = 0.74, the Avogadro number NA,
and the effective ion radius of the electrolyte ions Rj. Restricting our-
selves again to a 1:1 electrolyte, we obtain for the charge density of
the electrolyte ions

ρions
MPB(r) = −

2λ(r)ecb sinh( eϕ
tot
(r)

kBT
)

1 +∑m
j=1

cbj
cmax
j
[λ(r) exp(− qjϕtot(r)

kBT
) − 1]

= −
2λ(r)ecb sinh( eϕ

tot
(r)

kBT
)

1 − cb
c1+2

+ cb
c1+2

λ(r) cosh( eϕtot(r)
kBT
)

, (20)

with

c1+2 =
p

4
3πNA(R3

1 + R3
2)

. (21)

Integration with respect to ϕtot(r) gives the functional,

LMPB = 4πρsol(r)ϕtot(r) − ϵ(∇ϕtot(r))2

2
− 8πkBTc1+2

× ln[1 +
cb

c1+2
(λ(r) cosh( eϕ

tot(r)
kBT

) − 1)]. (22)

Proceeding in the same manner as above, we obtain the constants
C1 = 1/4π and C0 = 0 leading to the following expression for the
electrostatic energy:

Ges
MPB = ∫ ρsol(r)ϕtot(r) − ϵ(r)(∇ϕtot(r))2

8π

− 2kBTc1+2 ln[1 +
cb

c1+2
(λ(r) cosh( eϕ

tot(r)
kBT

) − 1)]dr

= ∫ ρsol(r)ϕtot(r) − ΔΠMPB −
ED
8π

dr (23)

or alternatively Eq. (13), where the excess osmotic pressure is now
replaced by ΔΠMPB.

The finite ion size also alters the expression for the electrolyte
charge density for the linearized version of the modified Poisson–
Boltzmann (LMPB) equation,

ρions
LMPB = −

2λ(r) e2cb
kBT

ϕtot(r)

1 − cb
c1+2
(1 − λ(r)) + eϕtot(r)

kBT
λ(r)cb( 1

cmax
2
− 1

cmax
1
)

≈ −
2λ(r) e2cb

kBT
ϕtot(r)

1 − cb
c1+2
(1 − λ(r))

. (24)

Note that the last term in the denominator in the first line is usually
very small and even vanishes for equal ionic radii. The second line
of Eq. (24) offers a simple interpretation of the finite size effect. The
charge density is scaled by the fraction of the maximum electrolyte
density (cb/c1+2) when the ion exclusion function λ(r) < 1 meaning

that far away from the solute, the charge density is unaffected by the
finite size effects. As the electrolyte charge density approaches zero
close to the solute anyway, the finite ion size effect is most important
close to the Stern layer.

The LMPB expression for the electrostatic energy [Eq. (17)],
however, is the same as for the LPB case.

C. Free energies of solvation
As the total electrostatic free energy is rarely of interest, we will

focus now on expressions for the electrostatic contribution to the
free energy of solvation in an electrolyte solution. In general, this
quantity can be expressed as

Gsolv(es) =Ges(ϵ, cb, ρsol
es (r)) −Ges(ϵ = 1, cb = 0, ρsol

es (r))
− Ges(ϵ, cb, ρsol(r) = 0), (25)

where the first term is the electrostatic free energy of the solute
density optimized in the electrolyte solution (ρsol

es ), the second term
describes the electrostatic free energy of the same solute density in
a vacuum environment and the last term corresponds to the pure
electrolyte solution. The absence of the charge density of the solute
[ρsol(r) = 0] in the last term results in ϕtot(r) = 0 and λ(r) = 1 such
that the individual terms of Eq. (25) can be written as

Gsolv(es) =∫ ρsol
es (r)ϕtot(r)dr − ∫ ΔΠPBdr − 1

2 ∫ (ρ
sol
es (r)

+ ρions(r))ϕtot(r)dr − ∫ ρsol
es (r)ϕsol(r)dr

+
1
2 ∫ ρsol

es (r)ϕsol(r)dr + ∫ ΔΠλ(r)=1,ϕtot
(r)=0

PB dr

= 1
2 ∫ ρsol

es (r)(ϕtot(r) − ϕsol(r))dr − 1
2 ∫ ρions(r)ϕtot(r)dr

+ ∫ ΔΠλ(r)=1,ϕtot
(r)=0

PB dr − ∫ ΔΠPBdr. (26)

Starting from Eq. (26), we can now write down the expressions for
the electrostatic contributions to the free energies of solvation for the
different approximations. In the case of the L(M)PB, the free energy
of solvation is simply

Gsolv(es)
L(M)PB =

1
2 ∫ ρsol

es (r)(ϕtot(r) − ϕsol(r))dr (27)

because ∫ ΔΠλ(r)=1,ϕtot
(r)=0

PB dr = 0 and ∫ ΔΠPBdr = 1
2 ∫ ρions(r)

ϕtot(r)dr. For the PB model without size modification of the ions,
we have

Gsolv(es)
PB = 1

2 ∫ ρsol
es (r)(ϕtot(r) − ϕsol(r))dr

− 1
2 ∫ ρions(r)ϕtot(r)dr

+ 2cbkBT ∫ (1 − λ(r) cosh( eϕ
tot(r)
kBT

))dr (28)

and finally the expression for the MPB solvation free energy reads



Gsolv(es)
MPB = 1

2 ∫ ρsol
es (r)(ϕtot(r) − ϕsol(r))dr

− 1
2 ∫ ρions(r)ϕtot(r)dr − cmaxkBT

× ∫ ln[1 +
2cb

cmax (λ(r) cosh( eϕ
tot(r)
kBT

) − 1)]dr. (29)

We note here that this expression is identical to the expression for
the electrostatic part of the free energy of solvation in Refs. 19, 23,
and 43 when the packing factor for a simple cubic lattice (p ≈ 0.52)
is assumed instead of the closest-packing factor. This corresponds to
the lattice-gas model assumed in that work.

In order to calculate the full free energy of solvation, the
electronic energy difference for the charge density distributions
optimized in vacuum and in implicit solvent has to be added,
as well as an additional term to account for nonelectrostatic
effects,

ΔGsolv = Gsolv(es) + EDFT[ρsol
es ] − EDFT[ρsol

vac] (30)

+ Gsolv(non-es). (31)

Correction terms for the nonelectrostatic part of the free energy of
solvation are usually calculated from the surface area and volume
of the solute cavity.7,44–47 Since the cavity is fixed in our implemen-
tation and we are only concerned in the following with differences
in the free energy of solvation for varying electrolyte ion concentra-
tions (ΔΔGion), the nonelectrostatic corrections cancel out and we
will not consider them.

D. Algorithm to solve for the total
electrostatic potential

In order to solve Eq. (1), we follow the algorithm described by
Andreussi et al. in Ref. 47 and solve iteratively for the electrostatic
potential with a multigrid solver as described in Ref. 40, rather than
applying a preconditioned conjugate gradient method as described
in Ref. 39. We first isolate the effect of the dielectric response into a
polarization charge density ρpol(r),

ALGORITHM 1. Self-consistent iterative procedure to converge ϕtot by converging
ρiter and ρions.

repeat k + 1 times until convergence

Calculate ρiter
k+1(r) [right part of Eq. (32)]

Damp ρiter
k+1(r) = ηρiter

k+1(r) + (1 − η)ρiter
k (r)

η = 0.6
Update ρtot

k+1(r) = ρsol(r) + ρions
k (r)

Calculate ϕtot
k+1(r) [with multigrid solver from Eq. (33)]

Update ρions
k+1 (r) [Eqs. (6), (15), and (20), or Eq. (24)]

Damp ρions
k+1 (r) = κρions

k+1 (r) + (1 − κ)ρions
k (r)

κ = 0.2

∇2ϕtot(r) = −4π
ρtot(r)
ϵ(r) −∇ ln ϵ(r)∇ϕtot(r)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ρiter(r)

(32)

= −4π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρtot(r) +
1 − ϵ(r)
ϵ(r) ρtot(r) + ρiter(r)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ρpol(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

with ρtot(r) = ρsol(r) + ρions(r). Starting from ρions(r) = 0 and
ϕtot(r) = 0, we converge the total electrostatic potential as shown
in Algorithm 1. We observed that a much stronger damping
(κ = 0.2) is necessary to converge ρions(r) than is necessary for ρiter(r)
(η = 0.6).

We will now discuss some of the properties of our parameter-
ization on the example of 4-nitroaniline in a 15 Å cubic box (see
Fig. 1). Figure 1(a) shows the error function for the dielectric per-
mittivity ϵ(r) (blue line, left y-axis) and the ion exclusion function
λ(r) (red line, right y-axis) for a hypothetical atom with dα = 1.0 Å
and a Stern-layer thickness a = 0.5 Å. In Fig. 1(b), these two func-
tions are displayed for a cut through the main σ symmetry plane
of 4-nitroanisole. Clearly, the solvent (blue)—characterized solely
by its dielectric permittivity—is closer to the solute molecule than

FIG. 1. Spatial distribution of the dielectric permittivity ϵ(r) Eq. (2) (blue) and the ion exclusion function λ(r) Eq. (5) (red). (a) displays both functions for a single atom with
dSAS
α = dvdW

α + dprobe
α = 1.0 Å, a Stern layer thickness of a = 0.5 Å, and an interpolation length of Δ = 0.265 Å. (b) displays ϵ(r) and λ(r) for a cut through the molecular

plane of 4-nitroaniline employing dα = 1.2rvdW and a Stern layer thickness of a = 1.0 Å. The polarization charge density ρpol(r) and the electrolyte ion charge density ρion(r)
are shown on the left and right hand side of (c), respectively.



the electrolyte ions (red) because of the Stern-layer. The converged
polarization charge density ρpol(r) and the ion charge density ρions(r)
are displayed in Fig. 1(c). As can be seen from Eq. (33), the polariza-
tion charge density resides in the domain where ϵ(r) varies, meaning
in the onset of the error function. For the electrolyte ion charge
density, a clear separation of the positively and negatively charged
ions is observed, resulting in an accumulation of positive charge
close to the negatively polarized part of the solute molecule and vice
versa.

III. COMPUTATIONAL DETAILS
All calculations were carried out in a development version of

Q-Chem 5.2.38 Unless otherwise noted, we employed the ωB97X-V
density functional48 with a def2-TZVPP basis set49 and standard
integration grids. Our implementation builds up on a previous
multigrid solver for the Poisson equation.40,50 Unlike the Poisson
solver that is reported in Ref. 40, we do not apply Gaussian blur-
ring to the nuclear contribution to the electrostatic potential. In
Sec. IV B, we place the molecule in a cubic box with an edge length
of 20 Å. With 97 grid points in each dimension, the grid spac-
ing amounts to 0.206 Å. After some initial tests, the convergence
threshold for the conjugate gradient step on each multigrid level
was set to 10−5 a.u., the convergence of the polarization charge den-
sity ρpol(r) was set to 10−3 a.u. and the convergence for the elec-
trolyte ion charge density ρion(r) was set to 10−4 a.u. for each grid
point.

The initial implementation described here is not yet as effi-
ciently parallelized as other highly optimized multigrid solver imple-
mentations described in Refs. 21, 22, and 42. Solving for the electro-
static potential hence takes considerably longer than the electronic
structure calculation. In the case of caffeine, the Poisson–Boltzmann
calculation takes roughly five times longer than the electronic struc-
ture calculation. The benefit of the real space grid implementation
is certainly the independence of the calculations for individual grid
points that enable excellent scaling over several threads. In future
work, we will hence focus on a more efficient message passing inter-
face (MPI) parallelization. The uniform Cartesian grid employed
here might also not be an optimal choice since the electrostatic
potential, as well as the charge density distributions vary more close
to the solute cavity then they do further away from the solute.
Adaptive grids21 or more generally adaptive mesh refinement meth-
ods51,52 might be a more economical choice and can be combined
with multigrid approaches53–55 and help to focus the computational
resources to the areas where they are needed most. For a moderate
number of grid points, typical schemes for convergence acceleration
of self-consistent approaches such as the direct inversion of the itera-
tive subspace (DIIS) method56,57 can further be applied to efficiently
reduce the number of iterations. This approach can be understood
as an advancement over the damping with the parameters η and κ in
our current algorithm.

IV. RESULTS
Having introduced the hierarchy of PB models with their

respective approximations, we will now analyze the numerical accu-
racy, find an optimal choice for the parameters of the model, and
discuss the implications upon inclusion of finite ion size.

A. The Debye–Hückel and Kirkwood–Onsager models
In order to assess the numerical accuracy we can expect from

our model, we first calculate the electrostatic free energies of solva-
tion for a singly charged cation with a radius of a = 2 Å. If the linear
Poisson–Boltzmann equation is to be employed, the result for the
free energy of solvation can be compared to the analytical solution
provided by the Debye–Hückel theory,37,58,59

ΔG(a) = 1
2a
( 1
ϵr
− 1
ϵ0
) − κ

2ϵr(1 + κa) , (34)

where a is the ion radius, ϵr is the dielectric permittivity of the
solvent, and κ is the inverse Debye screening length given by

κ =

¿
ÁÁÀ4π∑N

i z2
i e2cbi

ϵrkBT
, (35)

where zi is the integer charge of the electrolyte species i, cbi is its bulk
concentration, e is the elementary charge, kB is the Boltzmann con-
stant, and T is the absolute temperature. As in Ref. 37, we calculate
the effect of the mobile ions on the free energy of solvation,

ΔΔGion = ΔGsolv(cb) − ΔGsolv(cb = 0) (36)

for three dielectric constants (ϵr = 4, 20, 80) and Debye screening
lengths (λ = 25, 5, and 3 Å), with corresponding bulk concentrations
given in Table I.

The spherical cavity has an additional parameter, the interpola-
tion length l that defines a range of smooth interpolation between the
vacuum and solvent permittivity by means of a hyperbolic tangent
function50 and is hence similar to the Δ parameter of the error func-
tion in Eq. (3) that we will use for all molecular solutes. To obtain
converged solvation free energies, we solved the linear PB equation
for cubic boxes of eight different sizes ranging from 15 Å to 50 Å,
adjusting the grid points to a uniform grid spacing of l/3. We chose
the grid spacing after a set of preliminary test calculations where this
spacing proved to provide a proper interpolation in the transition
region between vacuum and solvent permittivity. The solute ion was
placed in the center of these boxes. Charge neutrality—cancellation
of the integrated charge of the electrolyte ions and the solute ion—
is not guaranteed for finite box sizes but serves as a criterion for
extrapolation. We extrapolate the solvation free energy to that of a
hypothetical box where charge neutrality is achieved. The explicit
extrapolation scheme differs slightly for each Debye length and is
detailed in the supplementary material.

The results are summarized in Table I. All in all, the mean abso-
lute error (MAE) decreases with decreasing interpolation length l
as expected, i.e., when the numerical model approaches the analyt-
ical model where no interpolation region is necessary. A charged
molecule in a solvent of low dielectric permittivity combined with
a low concentration of mobile ions is certainly the most challenging
case for our implementation and extrapolation procedure. Conse-
quently, relative errors of almost 25% are observed in these cases.
We note here that a spherical, charged solute is the worst case for
our Cartesian grid with necessarily finite simulation box size and we
expect the results obtained in this section to be an upper limit to the
inaccuracies we expect for our implementation.

https://doi.org/10.1063/1.5131020#suppl


TABLE I. Electrostatic free energies for the Debye–Hückel ion model with ion radius a = 2.0 Å. The values in the last three
columns were calculated from the linear Poisson–Boltzmann equation for three different interpolation lengths l.

λ cb ΔΔGexact
ion

ΔΔGLPBE
ion (kcal mol−1)

ϵr (Å) (mol l−1) (kcal mol−1) l = 0.50 (Å) l = 0.35 (Å) l = 0.25 (Å)

4 25 7.54 × 10−4 −1.537 −1.214 −1.271 −1.236
4 5 0.0189 −5.935 −5.750 −5.838 −5.869
4 3 0.0524 −8.303 −7.922 −8.000 −8.302
20 25 3.77 × 10−3 −0.307 −0.216 −0.323 −0.259
20 5 0.0943 −1.186 −1.141 −1.208 −1.230
20 3 0.261 −1.659 −1.548 −1.651 −1.691
80 25 0.0151 −0.077 −0.108 −0.063 −0.049
80 5 0.377 −0.296 −0.424 −0.379 −0.300
80 3 1.05 −0.415 −0.491 −0.474 −0.518

MAE 0.152 0.096 0.070
MRE (%) 19.0 10.1 14.2

Another model system that is more comparable to the
uncharged solutes that we discuss in the remainder of this arti-
cle is a point dipole in the spherical cavity that can analytically be
described by the Kirkwood–Onsager model. In the original article
by Onsager,60 only a point dipole in a spherical cavity surrounded
by a dielectric was considered but Kirkwood61 extended this model
to multipoles in electrolyte solution and provided analytical expres-
sions for the solvation free energy. The latter can be written as a sum
of an electrolyte independent termΔG0 and an electrolyte dependent
term ΔG(κ),

ΔG = ΔG0 + ΔG(κ). (37)

For a pure point dipole, these terms read

ΔG0 = −
μ2

a3
(ϵr − 1)
(2ϵr + 1) , (38)

which is the Onsager result with the electric dipole moment μ, and

ΔG(κ) = −3
2
μ2

ϵra
[ ϵr

2ϵr + 1
]

2 κ2

1 + κa + 1
3κ2a2 + ϵr−1

2ϵr+1
κ2a2

3

. (39)

We model the point dipole by two charges of ±8e separated by
d = 0.1 Å such that a ≫ d and μ = 1.512 D. Since the solute does
not contain charges, charge neutrality is fulfilled even for small box
sizes and we can calculate the free energy of solvation directly from
the largest box size considered (30 Å) without extrapolation. If no
convergence was achieved with the standard damping parameters
introduced above, results were taken from calculations with smaller
box size (20 Å or 15 Å).

Table II summarizes results for all combinations of the param-
eters ϵ = {20, 80}, cb = {0.5, 1.0} mol/l, and a = {1, 2} Å. Again,
the calculations converge to the analytic solution with decreasing
interpolation length, which brings the numerical model closer to the
analytical one where such a region is absent. Certainly, this comes
at the price of a denser grid which can be optimized in future work

by a more variable grid that is very fine in this interpolation region
and more coarse everywhere else. The need for a dense grid is more
pronounced for solvents with a large dielectric permittivity because
the electrolyte is more concentrated close to the boundary region
between solute and solvent. From the results for the Kirkwood–
Onsager model, we conclude that in our implementation the numer-
ical accuracy can be as accurate as 0.01 kcal/mol without the need for
extrapolation.

B. Parameters of the solvent models
We have examined the numerical accuracy we can expect from

our implementation on two cases for which analytical solutions
are known and will ignore the linear PB approximation from now
on and exclusively present results that were obtained with the full
nonlinear PB model.

The PB solvent models introduced above include a number of
parameters that need to be carefully adjusted in order to obtain accu-
rate results. These are the atom-specific radii dα that define the solute
cavity, the width parameter of the error function Δ, the finite ion
radii R, and the Stern-layer thickness a. Motivated by the result of
Sec. IV A that the interpolation width is not a crucial parameter as
long as it is not too small, we keep Δ = 0.265 Å as in previous work.39

We use experimental data on hydrated ions to set the finite ion radii
R. Since we are only concerned with sodium chloride solutions in
this study, we employ an ion size of R = 4.3 Å, which is the aver-
age of the hydrated sodium ion size (R = 4.7 Å)62 and that of the
hydrated chloride ion (R = 3.9) Å.62

As is the case for other implicit solvation models such as the
polarizable continuum model (PCM), the proper selection of atom-
specific radii dα to construct the solute cavity is crucial. This cavity
determines the fraction of space where the solvent, characterized
solely by its dielectric permittivity [Eq. (2)], resides, and, after inclu-
sion of the additional Stern-layer parameter a, also the location of
the mobile ions [Eq. (5)]. Two choices are commonly employed for
these atom-specific radii dα: van der Waals radii scaled by a factor of



TABLE II. Electrostatic free energies for the Kirkwood–Onsager point dipole model. The values in the last three columns were
calculated from the linear Poisson–Boltzmann equation for three different interpolation lengths l.

cb ΔGexact(κ) ΔGLPBE(κ) (kcal mol−1)

ϵr (mol l−1) (kcal mol−1) l = 0.50 Å l = 0.35 Å l = 0.25 Å

a = 1 Å
20 0.5 −0.514 −0.595 −0.508 −0.497
20 1.0 −0.866 −0.952 −0.887 −0.851
80 0.5 −0.042 −0.101 −0.049 −0.046
80 1.0 −0.076 −0.160 −0.099 −0.090
a = 2 Å
20 0.5 −0.173 −0.187 −0.181 −0.176
20 1.0 −0.257 −0.263 −0.262 −0.256
80 0.5 −0.017 −0.052 −0.018 −0.020
80 1.0 −0.021 −0.066 −0.032 −0.033

MAE 0.051 0.010 0.008
MRE (%) 88.3 14.3 13.6

1.2 (sVDW)5,63,64 and the solvent-accessible-surface (SAS),7,65 which
is constructed by adding a solvent-dependent probe radius to the van
der Waals radius,

dSAS
α = dvdW

α + dprobe
α , (40)

where in the case of water dprobe
α = 1.4 Å, being half the distance

to the maximum of the O-O radial distribution function of pure
water.66,67 The cavity created by the solvent-accessible surface is
therefore usually larger than that of the scaled van der Waals radii
which affects the total free energy of solvation but also its depen-
dence on the electrolyte concentration ΔΔGion. The results in Fig. 2
exemplify the differences observed for the two sets of atom-specific
radii on the example of the acetic acid molecule. As will be discussed
in detail below, a linear dependence of the solvation free energy with
the electrolyte concentration is observed experimentally, with the
slope being described by the so-called Sechenov coefficient. This lin-
ear behavior is observed for the standard nonlinear PB equation, but
finite ion size annihilates the linearity. Following previous authors,43

we concentrate on the standard PB equation in the following when
determining a suitable parameter for the Stern-layer thickness but
will discuss this in more detail in Sec. IV D. For both the SAS and the
sVDW cavity, hardly any difference is observed between the results
obtained from the full PB expression compared to that from the
osmotic pressure term only. In the following, we will employ the SAS
in all further calculations. We have now determined all parameters
of our model but one, the Stern-layer thickness a, which is optimized
in Sec. IV C.

C. Stern-layer thickness and Sechenov coefficients
Since there are scarce experimental data on the exact thickness

of the Stern-layer, especially around molecules rather than charged
surfaces, we optimize this parameter in order to obtain the best pos-
sible agreement of our implicit solvent model with reliable exper-
imental results.43 The experimental data we can compare to are

the Sechenov coefficients ks introduced above43,68,69 that are directly
calculated from the slope of the free energy of solvation with the
electrolyte concentration. The relation is simply

ks =
ΔΔGion

cb
log10(e)
kBT

. (41)

Experimental data frequently show a slight deviation from these lin-
ear data that are accounted for by an additional quadratic term.70

However, the corresponding second-order Sechenov coefficient is
usually two orders of magnitude smaller and is therefore of minor
importance for electrolyte concentrations in the range of up to
2 mol/l. Additionally, the temperature dependence of the Sechenov
coefficients is not accounted for in Eq. (41), as the experimental
data are obtained at around room temperature and the temperature
dependence of the Sechenov coefficients is negligible between 5 and
30 ○C.71 We discussed already in Sec. IV B that this linear relation
is only observed for the PB equation with point charges, whereas
finite ion size leads to more pronounced salting-out effects for larger
electrolyte concentrations.

In order to find an optimal Stern-layer thickness parameter a,
we calculated the Sechenov coefficients for 39 molecules for which
experimental data were available in Ref. 72. This set of molecule is
our training set, whereas the 43 molecules from Ref. 73 serve as our
validation set. The optimized molecular structures were taken from
Ref. 74.

While it is a general shortcoming of implicit solvent models that
they cannot capture explicit solute-solvent interaction, this is espe-
cially severe when electrolyte solutions are considered. Ion-pairing
with electrolyte ions in zwitterionic molecules, structural changes
upon cation-π interaction, and strong bonding to very polar groups
are either not at all or inadequately described. Since we calculate the
free energy of solvation for isolated molecules, any kind of solute-
solute interaction is also neglected. We therefore expect to observe
a number of outliers in our training set (and, less problematic, val-
idation set) that need to be identified and excluded to not bias the



FIG. 2. Effect of the electrolyte concentration on the free energy of solvation
ΔΔGion for acetic acid calculated for different electrolyte concentrations with the
standard nonlinear PB model (purple) and the size-modified MPB model (green).
The filled circles show the results obtained from the full expression, whereas the
triangles indicate results obtained solely from the osmotic pressure term. Dashed
and dotted lines are shown to guide the eye, whereas the solid lines are the results
of linear fits in order to obtain Sechenov coefficients. (a) shows the results for a
solvent-accessible surface cavity (a = 0.44 Å), whereas results for the same set
of calculations but with a scaled van der Waals cavity (a = 1.5 Å) are displayed
in (b).

optimization procedure. The random sample concensus (RANSAC)
method75 allows us to identify outliers and exclude them from
the linear regression. We used the SCIKIT-LEARN implementation76

of RANSAC in PYTHON with 1000 trials in order to ensure that all
combinations of two data points required for the linear regres-
sion model were included, effectively eliminating the randomness
of the sampling for our rather small dataset. The residual thresh-
old that defines the maximum residual for a data point to be
counted as an inlier is another crucial parameter of the algorithm.
We decided to scan several values for the threshold parameter (0.1,
0.075, 0.05, 0.025, 0.01, 0.005, and 0.001), where the loose thresh-
olds usually identified few or no outliers, whereas for the tight-
est thresholds, almost all data points were identified as outliers.
Figure 3(a) shows an example of the linear regression for the Stern-
layer thickness a = 0.5 Å. The black line indicates perfect correlation
between experimentally determined and calculated Sechenov coeffi-
cients, the light blue line is the result of an ordinary least squares
fit (OLS), and the dark blue line results from the RANSAC algo-
rithm with the threshold set to 0.075. Clearly, the identification of
four outliers significantly increases the coefficient of determination

FIG. 3. (a) Example of the linear regression for the correlation between the
experimental and calculated Sechenov coefficients ks for a Stern-layer thick-
ness of a = 0.5 Å. The curves correspond to ideal correlation (black), ordi-
nary least squares (OLS, light blue), and RANSAC with an error tolerance of
0.075 (dark blue), whereas the green crosses mark the inliers, and the purple
crosses mark the outlying data points as identified by the RANSAC algorithm. (b)
Dependence of the RMSE between the calculated and experimental Sechenov
coefficients with (blue) and without (red) exclusion of outliers. The minimum of
the curve where outliers are excluded corresponds to a Stern-layer thickness
of 0.44 Å.

(RANSAC: R2 = 0.79 and OLS: R2 = 0.48) and is also closer to ideal
correlation.

After some initial trial calculations, we decided on two criteria
for the final RANSAC threshold selection (and, hence, the outlier
detection):

1. The maximum number of outliers should not exceed one third
of the full training set to allow for a meaningful fit.

2. A new set of outliers identified with a tighter threshold is only
accepted if accompanied by a substantial increase in the coef-
ficient of determination R2. This is to avoid a large number
of outliers being identified with only a marginal increase in
the fit quality. We required ΔR2 = 0.02 per newly identified
outlier.

These criteria were applied for calculated sets of Sechenov coeffi-
cients for eight Stern-layer thicknesses (a = 1.4, 1.2, 1.0, 0.8, 0.6, 0.5,



0.4, 0.3 Å). In all cases, the same four outliers were detected: bisphe-
nol A, caffeine, 4-nitroanisole, and 4-nitroaniline. Bisphenol A was
identified as an outlier also in a previous study,74 where the devia-
tion was attributed to an explicit interaction of the π-system with a
sodium ion that induces structural changes. In the case of caffeine, a
(partial) dimerization might cause the large deviation between the
experimental and calculated Sechenov coefficient.77 Why the aro-
matic nitrocompounds are outliers is difficult to speculate, espe-
cially since the agreement is much better for the two nitroalkanes:
1-nitropentane and 1-nitrohexane.

We identified the optimal Stern-layer thickness parameter aopt,
corresponding to the minimal root mean squared error (RMSE),
by fitting a polynomial of fourth order to all data points obtained
from the calculations on the training set with varying a [see
Fig. 3(b)]. For the curve (red) without outlier detection—the OLS
results—no minimum can be observed, whereas for the curve
with outlier detection (blue)—the RANSAC results—a minimum at
aopt = 0.44 Å can be identified, corresponding to an RMSE of
0.027 l mol−1. We hence recommend the thus optimized Stern-layer
thickness in conjunction with the SAS for sodium chloride elec-
trolyte solutions but note that the experimental data on the Sechenov
coefficients are only of ml mol−1 accuracy such that an RMSE that
varies less than this contains no significant information. The range
of 0.4 < a < 0.5 Å is therefore of indistinguishable accuracy and an
equally suitable choice.

In Fig. 4, we show the results obtained with the PB model
employing the optimized Stern-layer thickness for the training
(green markers) and validation set (purple markers). The black line
again corresponds to perfect correlation between theory and experi-
ment, and the blue area indicates a deviation band of 0.1 l/mol. The
RMSE for the validation set alone is 0.047 l mol−1, and for the com-
bined training (without outliers) and validation data it amounts to
0.039 l mol−1.

In order to assess the quality of this result with other models, we
rely on previous studies that certainly include different datasets but
have substantial overlap with our data in all cases. The COSMO-RS

FIG. 4. Correlation between the experimental Sechenov coefficients and the cal-
culated values obtained with the optimized Stern-layer thickness. Green markers
indicate test data and purple markers indicate validation data. The black line
corresponds to ideal correlation, whereas the blue area marks a spread of 0.1
l/mol.

model78,79 shows a very high RMSE of 0.315 l mol−1,74 which is, how-
ever, due to a systematic overestimation because it can be reduced to
0.050 l mol−1 when the empirical correction

ks = 0.335ks(COSMO) + 0.060 (42)

is applied.72 The most meaningful comparison, however, is certainly
the work of Ringe et al.,43 since they use a similar PB model with a
slightly different parameterization. Their calculations with sodium
chloride as an electrolyte result in an RMSE of 0.068 l mol−1, but it
has to be noted that they do not employ any kind of outlier detec-
tion. Excluding outliers will certainly reduce the RMSE significantly
and bring their accuracy in the realm of our results. To put these
results into perspective, we compare to the polyparameter linear
free energy relationships (pp-LFER) model.80,81 These highly param-
eterized calculations result in an RMSE of 0.047 l mol−1 and are
therefore comparable in accuracy to our model and that of Ringe
et al. but of no use for quantum-chemical calculations because the
Sechenov coefficients are calculated directly without the electrostatic
potential.

D. Concentration dependence
of the Stern-layer thickness

For the optimization of the Stern-layer thickness parameter
in Sec. IV C, we compromised on the PB model with point-like
ions instead of considering the ion size or the influence of the
hydration shell. The linear dependence of the solvation free energy
with the electrolyte dependence was only retained in this approx-
imation and allowed us to fit to experimental data. This, how-
ever, is a disappointing result from a conceptual perspective: a
physically more involved model is abandoned in favor of a much
more coarse approximation because experimental relations are not
reproduced by the more elaborate model. This nonlinear behav-
ior cannot be explained by a quadratic term in Eq. (41) because
experimentally determined quadratic Sechenov coefficients are usu-
ally orders of magnitude smaller than the linear one and might
even have a negative sign.70 In this section, we argue that this
lack of agreement is likely due to a neglect of another effect:
the dependence of the Stern-layer thickness on the electrolyte
concentration.

In a recent study, the dependence of the Stern-layer thick-
ness on the electrolyte concentration was probed by X-ray photo-
electron spectroscopy on colloidal silica nanoparticles in sodium
chloride solution.82 The authors observed a steep decrease in the
Stern-layer thickness at low concentrations, followed by a domain
where it decreases linearly. Taking into account both an electrolyte-
concentration dependent Stern-layer thickness and finite size for
the electrolyte ions in the MPB model can then yet again result in
the linear Sechenov relation with the added benefit of less drastic
approximations.

In Fig. 5(a), we show the results of MPB calculations on 2-
octanone for seven electrolyte concentrations and eight Stern-layer
thicknesses between 0.1 Å and 0.8 Å. The data points are fitted to
a polynomial for proper interpolation (details on the polynomial
fit are described in the supplementary material). The correspond-
ing experimental curve (black line) obtained from the measured
Sechenov coefficient is also shown as the points (red) where the
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FIG. 5. (a) Electrolyte concentration dependence of the solvation free energy
ΔΔGion for 2-octanone calculated with the MPB equation for eight Stern-layer
thicknesses a ranging from 0.1 Å to 0.8 Å and corresponding experimental curve
(black). The lines are polynomial fits to sixth order (see text). The red dots mark
the intersections between the calculated and the experimental curves. (b) Linear
fit for the five intersection points between the experimental and calculated curves
for the intermediate regime. In the absence of mobile ions (left), there is no need
for a Stern-layer correction, whereas the linear dependence is lost for high ionic
concentrations (right) in line with experimental results.

calculated lines intersect with the experimental one. Assuming an
otherwise adequate model—most importantly an accurate parame-
ter for the finite ion size—these points mark the correct Stern-layer
thickness for a given electrolyte concentration. We then plot the
Stern-layer thicknesses of these points as a function of the elec-
trolyte concentration [see Fig. 5(b)] and obtain a very similar pat-
tern as the experimentally observed one. At very low concentra-
tions, the concept of a Stern-layer is invalid, but in the physiological
saline (∼0.15 mol l−1) and seawater regime (∼0.6 mol l−1), a linear
dependence is observed. For even higher concentrations, the linear
curve flattens out, which is to be expected because negative values
for the Stern-layer thickness would be unphysical. In conclusion,
our results obtained from the comparison of the MPB calculations
with the experimental curve are in line with the experimentally
observed electrolyte concentration dependence of the Stern-layer
thickness.

The slopes (m) and intercepts (amax) of these diagrams are com-
pared for five molecules in Table III. While the slopes roughly corre-
late with the intercepts as might be expected, a correlation with the
Sechenov constant or the size of the molecules is not evident.

TABLE III. Dependence of Stern-layer thickness a on electrolyte ion concentration cb

calculated from the intersections of the MPB curves with the experimental Sechenov
curve for five molecules.

ks expt.72 m = a/cb amax

Molecule (l mol−1) (Å l mol−1) (Å)

Acetanilide 0.197 −0.59 0.41
2-octanone 0.273 −0.67 0.61
111 333-hexafluoro-2-propanol 0.222 −0.90 1.02
n-propylbenzene 0.262 −1.24 1.12
di-n-dipropylphthalate 0.374 −1.42 0.80

The analysis of this section offers an explanation for the nonlin-
ear behavior of the MPB model. In practical calculations however,
the application of the MPB model is hampered by the additional
parameters that are hard to be determined from first principles.
These parameters are the electrolyte concentration dependence of
the Stern-layer thickness and the finite ion size (pure ions or inclu-
sion of some hydration). If one of these parameters can be deduced
from either experimental data (as for the Stern-layer thickness of
the silica nanoparticles) or from MD simulations, it will be possi-
ble to refit the remaining parameter with the aid of the experimental
Sechenov coefficients to arrive at a more accurate implicit solvation
model. For now, however, in the absence of either experimental or
MD data, we recommend the standard PB model with the optimized
parameters described above.

V. CONCLUSIONS
In this article, we introduced our multigrid implementation of

an implicit solvation model that includes the effect of electrolytes.
We describe the underlying Poisson–Boltzmann model with a hier-
archy of approximations, namely, linear vs nonlinear Poisson–
Boltzmann equations, inclusion of a Stern-layer correction and finite
ion-size corrections. Our derivation of the free energy of solvation
including the effect of the electrolyte is based on the notion that these
equations can be recast into an Euler-Lagrange equation.13 We then
challenged our implementation of the linear PB model by comparing
to analytical solutions for the Born ion model and the Kirkwood–
Onsager model and observed that the relative error for polar sol-
vents and moderate to high salt concentrations is below 20%.
We then discussed the parameters of the model and optimized the
Stern-layer thickness a based on a fit to an experimentally observed
linear relationship between the free energy of solvation and the elec-
trolyte ion concentration, which is described by so-called Sechenov
coefficients. For a cavity constructed as a solvent-accessible surface
with a probe radius of 1.4 Å for water, we arrived at aopt = 0.44 Å,
by fitting to experimental data for 39 molecules and identifying out-
liers with the RANSAC algorithm. The RMSE of 0.039 l/mol that
we obtained by including results for a validation set of 43 molecules
is comparable to that of previous work by Ringe et al. and as good
as that obtained with the highly parameterized pp-LFER model. In
the final section, we attributed the failure of the size-modified PB
model to a neglect of the electrolyte concentration dependence of
the Stern-layer thickness. We then demonstrated that in a certain



concentration range, knowledge about this linear dependence can
restore the experimentally observed linearity of the solvation free
energy with electrolyte concentration. We argued that this knowl-
edge might be obtained either from an experiment or from MD
simulations, where the latter can also be informative on the finite
ion size, i.e., the size of the hydration shell around the electrolyte
ions.

To our knowledge, this is the first implementation of an implicit
solvation model for electrolyte solutions in a Gaussian orbital based
multipurpose quantum chemistry program. A related implementa-
tion23 based on numeric atom-centered orbitals can be found in
the FHI-AIMS

83 package and for plane-wave basis sets, for example, in
VASPSOL (only linearized PB).33

This enables us to investigate electrochemical processes for
molecules or small cluster models with the inclusion of the effect of
electrolyte solutions. Future work will therefore focus on the imple-
mentation of nuclear gradients for the grid-based PB model so that
solvation induced structural changes can be analyzed in addition to
the change in the solvation free energy. This will then also allow
us to systematically study the effect of the linear vs nonlinear PB
model and the influence of the finite ion size on electrocatalytic
reactions.

SUPPLEMENTARY MATERIAL

See the supplementary material for a table demonstrating the
convergence with grid density and examples of the extrapolation
schemes for the Debye–Hückel model calculations.
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