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Intermediated Surge Pricing

Sushil Bikhchandani†

December 2016

Abstract

I study a market in which a profit-maximizing intermediary facilitates trade

between buyers and sellers. The intermediary sets prices for buyers and sellers,

and keeps the difference as her fee. Optimal prices increase with demand and,

under plausible conditions, the optimal percent fee decreases with demand.

However, if the intermediary keeps a constant percent fee regardless of demand,

as is the case for some intermediaries, the price paid by buyers during high (low)

demand increases (decreases) even further; that is, surge pricing is amplified.

∗I am grateful to Keith Chen, Mamero Kaneko, Vijay Krishna, Barry Nalebuff, Joe Ostroy, and

Asher Wolinsky for helpful comments.
†UCLA Anderson School of Management (sbikhcha@anderson.ucla.edu)
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1 Introduction

Intermediaries abound in markets, facilitating trade between buyers and sellers. The

services they provide include reduction in search costs, information exchange, access

to inventory, and diversification of risk. While the digital economy has diminished the

need for intermediaries in some areas it has also created new markets intermediated

by middlemen.

Some of these new intermediated markets are for goods or services for immediate

delivery. Uber, the online transportation company, provides a motivating example.

The firm is an intermediary between car drivers and passengers. Its superior matching

technology reduces search costs on both sides of the market. Uber sets a price (per

mile) that passengers pay and takes a fixed percent fee from each transaction it

mediates. Uber’s software system allows it to monitor local demand and supply

conditions in real time. While Uber responds to sharp increases in demand by raising

price, it keeps the same percent fee, usually 20% of revenue, at each demand level.

Thus, the payment that a car driver receives is a fixed percent of the payment made

by the passenger. Conceivably, if Uber were to reduce its percent fee during high

demand, it may increase profits by enticing more drivers to enter the supply pool.

Further, the flexibility afforded by not having the payment by a passenger and the

payment to a driver in lock step may moderate price increases during periods of high

demand.

These questions are explored in a simple market model with a monopolist inter-

mediary who sets prices for buyers and sellers. The focus is on how optimal prices

vary with changes in demand, especially when there is some inflexibility in the prices

set by the intermediary.

Consider a market with an intermediary who facilitates trade between a large

number of buyers and sellers. Search costs for buyers and sellers are larger than the

gains to trade; hence without the intermediary there is (essentially) no trade. This

is the case for several markets that have experienced extraordinary growth after the

advent of the internet and digital communication enabled intermediaries to reduce

search costs. In the model, each buyer’s value and each seller’s cost for the good are
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private information. Consequently, the intermediary does not have the ability to price

discriminate between buyers or between sellers. The intermediary sets a price for all

buyers and a price for all sellers to maximize her profit. As there are a large number

of buyers and sellers, it is optimal for each to act as a price-taker. The intermediary’s

profit is the difference between the buyer price and the seller price multiplied by the

number of units traded.

The technological advances that have reduced search costs and enabled better

matches between buyers and sellers have also made it easier for the intermediary to

monitor demand and supply and adjust prices accordingly. Changes in optimal prices

with changes in market conditions are a focus of this paper. Of particular interest is

the revenue share1 of the intermediary at optimal prices and changes in this optimal

share with changes in demand and supply. To capture changes in market conditions

in a tractable manner, in the model there is a continuum of buyers and a continuum

of sellers rather than a large finite number of each.2 An increase in the mass of buyers

corresponds to an increase in demand relative to supply.

It is shown that there exists a unique set of optimal prices at which the intermedi-

ary’s profit is maximized. As the mass of buyers increases, the optimal price charged

to buyers and paid to sellers increase – also known as surge pricing. However, the

optimal share (i.e., percent fee) of the intermediary may increase or decrease.

The intermediary’s role consists of two interlinked parts: it acts as a monopolist

in its interactions with buyers and as a monopsonist in its interactions with sellers.

The marginal cost of the intermediary monopolist is determined by the intermediary

monopsonist, while the marginal revenue of the intermediary monopsonist is deter-

mined by the intermediary monopolist. The change in the optimal percent fee of the

intermediary due to an increase in the mass of buyers depends on the elasticities of

demand and supply through their effect on the gross mark-up of the intermediary

monopolist and on the gross mark-down of the intermediary monopsonist. As de-

mand increases, the optimal percent fee of the intermediary decreases if and only if

the product of the gross mark-up and gross mark-down decreases.

1The percent of buyer price that is taken by the intermediary as fees.
2Myerson and Satterthwaite [12] obtain the optimal mechanism for a profit-maximizing interme-

diary with one buyer and one seller.
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Consequently, a constant percent fee is rarely optimal for the intermediary. For a

sufficiently large increase in buyer mass, the optimal percent fee of the intermediary

decreases. During periods of very high demand, reducing the intermediary’s percent

fee draws more sellers in, thereby increasing the number of trades and making it

optimal for the intermediary to capture a smaller fraction of this larger pie. However,

firms such as Uber and Lyft extract the same fraction, charging a constant percent

fee of 20% of buyer price, regardless of the level of demand. This inflexibility in

pricing results in a match between demand and supply that is less than optimal for

the intermediary.

Apart from being sub-optimal, a constant percent fee may also amplify the surge

in buyer prices when there is a sharp increase in demand. Recall that in the absence

of a constant percent fee constraint, it is optimal for the intermediary to reduce

its percent fee when the demand increase is large enough. In this scenario, under

a constant percent fee constraint the intermediary will charge a fee that is smaller

than optimal during low demand and greater than optimal during high demand.

This in turn increases the surge in buyer prices. Specifically, a constant percent fee

increases the buyer price during high demand and decreases the buyer price during low

demand, compared to optimal prices when the intermediary’s fee is flexible. Under

these conditions, a constant percent fee also diminishes the surge in seller prices which

leads to fewer sellers during high demand than is optimal for the intermediary.

There may be a legal rationale for Uber’s constant percent fee. Currently, the firm

is a defendant in lawsuits that question its standing as an intermediary. The plaintiffs

are sellers (Uber car drivers) who claim that they should be considered employees of

Uber and are entitled to various benefits under labor regulations. An important

consideration in the lawsuit is who controls the prices and fees.3 Plausibly, if Uber

were to exercise greater flexibility in its pricing, such as fine tune its percent fee to

changes in demand, then Uber’s legal claim that it acts as an intermediary may be

weakened. This imposes a constraint on its pricing decisions. Thus, while a constant

percent fee may strengthen Uber’s position in pending litigation, it is costly for two

reasons. Not only does a constant percent fee reduce profits, it also exacerbates surge

3See Douglas O’Connor et al. v. Uber Technologies et al., 2015 [8]. Similar lawsuits have been

filed against other intermediaries including Lyft, Postmates, Instacart, GrubHub, and Shyp.
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pricing leading to a loss in buyer goodwill.4

The question addressed in this paper – the impact of some rigidity in pricing

on surge pricing – has not been asked in the literature. Several papers, notably

Armstrong [1], Caillaud and Jullien [7], and Rochet and Tirole [14, 15], analyze

two-sided markets, where two types of agents interact on a platform provided by a

third party. Indirect network externalities play a significant role in such markets. In

particular, costs on one side of the market cannot be easily passed through to the

other side. Consequently, the terms of trade depend not only on the total amount

that the two parties to a transaction pay but also on the division of the payments.

An older literature investigates equilibrium and efficiency in markets with interme-

diaries. Rubinstein and Wolinsky [16] obtain a steady-state equilibrium in a market

with buyers, sellers, and intermediaries, highlighting the relationship between trading

rules and the endogenous terms of trade. Stahl [18], Spulber [17], and Yanelle [19] ex-

plore conditions under which competition between intermediaries leads to (in)efficient

outcomes. The welfare-improving role of a monopolist intermediary in a market with

search costs is examined in Yavas [20]. Biglaiser [4] shows that a fully-informed in-

termediary can overcome adverse selection between a buyer and a seller in a lemons

market, while Glode and Opp [9] show that one or more moderately-informed inter-

mediaries can also achieve efficiency in such a market.

Recent work in operations management investigates static and dynamic contracts

in intermediated markets. See Banerjee, Johari, and Riquelme [2], Cachon, Daniels,

and Lobel [6], and Bai et. al [3].

The paper is organized as follows. The model is presented in the next section. In

Section 3, optimal prices are derived and comparative statics for the optimal fee for

the intermediary with respect to changes in demand are investigated. Pricing under

a constant-fee constraint is examined in Section 4. Section 5 concludes. All proofs

are in an appendix.

4See Grubb [10], for instance.
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2 The model

There are (potential) gains to trade between buyers and sellers. Each buyer has utility

for one unit of a homogenous object and each seller has one unit of the object to sell.

I assume that there is a continuum of buyers and a continuum of sellers, with each

buyer and seller being infinitesimal. There is a mass µ of buyers and a unit mass of

sellers.5 Changes in demand are captured by changes in µ. Each buyer’s valuation v

has cumulative distribution function Fb with strictly positive and continuous density

function fb on support [0, 1]. Each seller’s cost c has cumulative distribution function

Fs with strictly positive and continuous density function fs on support [0, 1].

In the price-theoretic interpretation of mechanism design due to Bulow and Roberts [5],

the demand curve is q = µ(1 − Fb(pb)) and the supply curve is q = Fs(ps), where pb

is the buyer price and ps is the seller price.

The search costs for buyers and sellers are assumed to be prohibitively high.

An intermediary with superior matching technology enables trade between the two

sides. The intermediary in our model is a matchmaker who does not trade but simply

matches buyers with sellers. She is not a market maker who buys and holds inventory.

This role as a matchmaker but not a market maker is appropriate in markets for

immediate delivery of perishable goods.

The intermediary knows µ, Fb, and Fs. However, a buyer’s value or a seller’s

cost are not known to the intermediary. Thus, perfect price discrimination is not an

option for the intermediary. To simplify the notation, the intermediary’s fixed cost

and marginal costs per transaction are assumed to be zero.

An assumption that is maintained throughout is that the distributions Fb and

Fs are regular in the sense of Myerson [11]. That is, the virtual utility of buyers,

v− 1−Fb(v)
fb(v)

, is strictly increasing in v and the virtual cost of sellers, c+ Fs(c)
fs(c)

, is strictly

increasing in c.6

5The assumption of a unit mass of sellers is without loss of generality as µ may be viewed as the

mass of buyers per unit mass of sellers.
6Most of the results in the paper can be proved if the virtual utility and virtual cost functions are

weakly increasing. However, the proofs are simpler when these functions are assumed to be strictly

increasing.
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From earlier work, it follows that the intermediary cannot increase her profits by

using a randomized selling mechanism. In a general environment, Riley and Zeck-

hauser [13] showed that a seller’s best strategy is to charge a take-it-or-leave-it price

to buyers. Myerson and Satterthwaite [12] showed that it is optimal for a profit-

maximizing intermediary between one buyer and one seller to charge take-it-or-leave-

it prices. These papers imply that in the model with a continuum of buyers and sellers

considered here, we may restrict attention to deterministic selling mechanisms, i.e.,

to prices.

Proposition A: (Myerson and Satterthwaite [12], Riley and Zeckhauser [13])

The optimal strategy for the intermediary is to announce a take-it-or-leave-it price for

buyers and a take-it-or-leave-it price for sellers.

Hence, in order to maximize profits, the intermediary selects a price pb for buyers

and a price ps for sellers. Any buyer with value greater than pb will purchase a

unit and any seller with cost less than ps will sell a unit, through the intermediary.

Optimal prices are derived in the next section.

3 Optimal intermediation

At price pb = v, buyers demand µ(1 − Fb(v)) units and at price ps = c, sellers are

willing to supply Fs(c) units. Thus, q = min{µ(1−Fb(v), Fs(c)} is the amount traded.

If µ(1−Fb(v)) < Fs(c) then the intermediary can lower the seller price ps slightly below

c and still trade q units. Similarly, if µ(1− Fb(v)) > Fs(c) then the intermediary can

raise the buyer price pb slightly above v and still trade q units. Hence, intermediary

profit-maximization implies that optimal prices pb = v and ps = c are such that

demand equals supply:

q = µ[1− Fb(v)] = Fs(c) (1)

Thus, v = F−1
b (1− q

µ
), c = F−1

s (q) and the intermediary’s profit as a function of q is

ΠI(q) = q [v − c]

= q [F−1
b (1− q

µ
)− F−1

s (q)]
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=⇒ dΠI

dq
= F−1

b (1− q

µ
)− F−1

s (q) + q
dF−1

b (1− q
µ
)

dq
− qdF

−1
s (q)

dq

= F−1
b (1− q

µ
)− F−1

s (q)− q

µfb(F
−1
b (1− q

µ
))
− q

fs(F−1
s (q))

= v − c− 1− Fb(v)

fb(v)
− Fs(c)

fs(c)
(2)

The first-order condition, dΠI
dq

= 0, implies that at optimal prices pb = v and ps = c,

v − 1− Fb(v)

fb(v)
= c+

Fs(c)

fs(c)
(3)

Thus, a necessary condition for optimality is that the virtual utility of the marginal

buyer equals the virtual cost of the marginal seller. Following Bulow and Roberts [5],

this necessary condition may be interpreted as stating that marginal revenue equals

marginal cost.

Note that (3) is independent of µ. There are many solutions to (3), one for each

µ. As shown below, the demand equals supply condition (1) pins down a unique

solution.

As the densities fs and fb are strictly positive and continuous on their support the

locus of points (c, v) satisfying (3) is a continuous curve. This is the blue curve, labeled
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‘MR=MC,’ in Figure 1. This curve is a positively-sloped function in the regular case.

To see this, start at any point (c, v) on the ‘MR=MC’ curve. If the cost is increased

from c to c + ∆c, then the right-hand side of (3) increases by regularity. To restore

equality in (3) the buyer’s value must be increased from v, once again by regularity.

Hence, there is a ∆v > 0 such that (c+ ∆c, v + ∆v) is on the ‘MR=MC’ curve. The

points v0 > 0 and c1 < 1 are obtained from v0 − 1−Fb(v0)
fb(v0)

= 0 and c1 + Fs(c1)
fs(c1)

= 1,

respectively. Buyers with v < v0 and sellers with c > c1 do not trade. Note also that

MR = v − 1−Fb(v)
fb(v)

> c + Fs(c)
fs(c)

= MC above the ‘MR=MC’ curve and MR < MC

below this curve.

The two negatively-sloped brown curves, labeled demand equals supply, represent

the points (c, v) that satisfy (1) for buyer mass µ` and µh, respectively. In the figure,

µ` < 1 < µh. The intersection of the (blue) ‘MR=MC’ curve with a (brown) demand

equals supply curve corresponding to buyer mass µk, k = `, h yields the optimal

(c∗k, v
∗
k). This is proved next.

Proposition 1 Assume that Fb and Fs are regular and the mass of buyers is µ. There

exists a unique pair of optimal prices (c∗(µ), v∗(µ)) at which the intermediary’s profit

is maximized. Moreover, dc∗(µ)
dµ

> 0 and dv∗(µ)
dµ

> 0.

The following example illustrates the equilibrium.

Example 1: If Fb and Fs are uniformly distributed on [0, 1] then (1) and (3) are

µ(1− v∗) = c∗, 2v∗ − 1 = 2c∗

=⇒ v∗ = 1− 1

2(1 + µ)
, c∗ =

µ

2(1 + µ)
, ΠI =

µ

4(1 + µ)

The distributions in this example are regular. Proposition 1 implies that optimal

prices increase with µ. This can be verified directly as,

dv∗

dµ
=

1

2(1 + µ)2
> 0,

dc∗

dµ
=

1

2(1 + µ)2
> 0

The optimal percent fee of the intermediary (expressed as a fraction of the buyer

price), α∗ is

α∗ ≡ v∗ − c∗

v∗
=

1 + µ

1 + 2µ
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Note that for any µ, v∗ − c∗ = 0.5. Thus, as v∗ increases with µ, α∗ decreases

dα∗

dµ
= − 1

(1 + 2µ)2
< 0

�

In the example, as buyer mass µ increases, the intermediary’s optimal percent fee,

α∗, decreases. However, in general α∗ may increase or decrease with µ, depending on

the elasticities of the demand and supply curves.

The intermediary is both a monopolist and a monopsonist. It acts as a monopolist

in its interactions with buyers, with its marginal cost determined by the equilibrium

in the sellers’ market. The intermediary also acts as a monopsonist in its interactions

with sellers, with its marginal revenue from a unit of input determined by the equi-

librium in the buyers’ market. With this in mind, define price elasticities of demand

and supply

ηb(v) =
v

q

dq

dv
= −v fb(v)

1− Fb(v)

ηs(c) =
c

q

dq

dc
= c

fs(c)

Fs(c)

where we use q = µ(1− Fb(v)) and q = Fs(c).

Consider the intermediary in its role as a monopolist with constant marginal cost c.

From price theory we know that the price v charged by this monopolist satisfies

v

c
=

1

1 + 1
ηb(v)

Call 1
1+ 1

ηb(v)

the gross mark-up for our intermediary monopolist. Next, consider the

intermediary in its role as a monopsonist with constant marginal revenue product

from a unit of input equal to v. It will set price for the input at c such that

v

c
= 1 +

1

ηs(c)

Call 1 + 1
ηs(c)

the gross mark-down for our intermediary monopsonist.

The product of the gross mark-up and the gross mark-down determines whether

the intermediary’s optimal percent fee increases or decreases with µ.
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Proposition 2 The intermediary’s optimal percent fee, α∗(µ) = v∗(µ)−c∗(µ)
v∗(µ)

decreases

with µ if and only if the product of the gross mark-up of the intermediary monopolist

and the gross mark-down of the intermediary monopsonist

1 + 1
ηs(c∗)

1 + 1
ηb(v∗)

(4)

decreases with µ.

By Proposition 1, optimal prices c∗(µ) and v∗(µ) increase as µ increases. It is

reasonable that |ηb(v)| increases (i.e., demand becomes more elastic) as v increases;7

therefore the denominator of the expression in (4) increases. If, in addition, ηs(c)

either increases or does not decrease too fast as c increases, then α∗(µ) decreases

with µ.

Another necessary and sufficient condition for dα∗(µ)
dµ

< 0 is that c∗

v∗
dv∗

dc∗
, the elas-

ticity of v∗ with respect to c∗ along the locus of points satisfying equation (3), is less

than 1. This is established next.

Proposition 3 The intermediary’s optimal percent fee, α∗(µ) = v∗−c∗
v∗

decreases with

µ if and only if
dv∗

dc∗
<

v∗

c∗

In particular, if dv∗

dµ
≤ dc∗

dµ
then dα∗

dµ
< 0.

The necessary and sufficient condition in Proposition 3 admits a geometric in-

terpretation. This condition states that, at a specific value of µ, the slope of the

‘MR=MC’ curve in Figure 1 (the locus of points satisfying equation 3) is less than

the slope of the straight line from the origin to the point on the ‘MR=MC’ curve.

While Propositions 2 and 3 are stated for local changes in buyer mass µ, they are

readily adapted to large changes in µ. Let µh > µ`. Then α∗(µ`) > α∗(µh) if and

only if
1 + 1

ηs(c∗(µ`))

1 + 1
ηb(v∗(µ`))

>
1 + 1

ηs(c∗(µh))

1 + 1
ηb(v∗(µh))

7This is certainly true if the hazard rate fb(v)
1−Fb(v)

of Fb increases with v, i.e., 1 − Fb(v) is log

concave.
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if and only if
v∗(µh)− v∗(µ`)
c∗(µh)− c∗(µ`)

≤ v∗(µ`)

c∗(µ`)

The proof is omitted.

As shown next, when starting from a low buyer mass, the optimal percent fee

for the intermediary decreases for a sufficiently large increase in buyer mass. This is

regardless of the elasticities of supply and demand.

Proposition 4 There exist µ and µ, µ ≤ µ, such that for any µ` < µ and any

µh ≥ µ, we have α∗(µh) < α∗(µ`).

The intuition behind Proposition 4 is as follows. Observe that the intermediary

will never trade with a buyer with negative marginal revenue, v < v0, or a seller with

marginal cost greater than 1, c > c1. If µ is much smaller than 1, then the optimal

buyer price is v0 + ε where ε is small, positive. As µ << 1, demand from buyers

with value greater than v0 + ε can be satisfied by a small fraction of the unit mass of

sellers – those with costs less than ε′, where again ε′ is small and positive. Thus, the

intermediary’s fee is v0+ε−ε′
v0

, which is close to 1 as ε and ε′ become arbitarily small

as µ approaches 0. If instead, µ >> 1, then the optimal buyer price is 1− ε̂ and the

optimal seller price is c1 − ε̂′. The intermediary’s fee in this case is 1−ε̂−c1+ε̂′

1−ε̂ which

is substantially less than 1 as c1 ∈ (0, 1) is a fixed number while ε̂ and ε̂′ become

arbitarily small as µ increases. The continuity of α∗(µ) with respect to µ implies the

proposition.

That µ = µ is possible in Proposition 4 follows from Example 1 where it was

directly established that dα∗(µ)
dµ

< 0 for each µ. In this example, the locus of points

satisfying (3) is v∗ = c∗ + 0.5. Thus, d v∗

d c∗
= 1 < v∗

c∗
, verifying the necessary and

sufficient condition of Proposition 3. Alternatively, note that in Example 1,

ηb(v) = − v

1− v
ηs(c) = 1

=⇒
1 + 1

ηs(c∗)

1 + 1
ηb(v∗)

=
2

1− 1−v∗
v∗

=
2v∗

2v∗ − 1

which decreases with v∗ and hence with µ. This verifies the necessary and sufficient

condition of Proposition 2.
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Comparison with a benchmark monopolist

It is useful to compare pricing by the intermediary with pricing by a monopolist

who acquires the productive assets and services of all the sellers who contract with

the intermediary. I make this comparison under the assumption that the monopolist’s

total cost of providing goods remain unchanged.8

It is easy to show that the marginal cost of the monopolist at q = Fs(c) units is

c, which is less than c+ Fs(c)
fs(c)

, the marginal cost at q units for the intermediary. The

marginal revenue of the monopolist is the same as that of the intermediary. Conse-

quently, the benchmark monopolist’s optimal buyer price is lower and the quantity

higher than the corresponding optimal values for the intermediary. Monopoly prices,

(cm, vm), are less inefficient than intermediary prices, (c∗, v∗), as can be seen from

vm − cm =
1− Fb(vm)

fb(vm)
<

1− Fb(vm)

fb(vm)
+
Fs(cm)

fs(cm)

Thus, while (c∗, v∗) is on the ‘MR=MC’ curve in Figure 1, (cm, vm) is below this

curve. Moreover, it can be shown that v∗ > vm and c∗ < cm. Consequently, as

v∗− c∗ > vm− cm > 0, the monopoly outcome is more efficient than the intermediary

outcome.

Observe that if the hazard rate of Fb is increasing in v then 1−Fb(v)
fb(v)

decreases

with v. Therefore, vm − cm decreases as µ increases and so does the monopolist’s

percent fee αm = vm−cm
vm

.

4 Surge pricing under constrained intermediation

As mentioned earlier, intermediaries such as Uber and Lyft keep a constant percent of

the buyer price regardless of demand conditions. I show below that, under reasonable

conditions, if an intermediary operates under the constraint that its percent fee is

8From the resistance of some intermediaries to classify sellers as employees rather than as in-

dependent contractors it appears that this may not be a tenable assumption. That is, total costs

may be higher if the intermediary acquired the assets and services of the sellers. Nevertheless, it

is instructive to consider this benchmark monopolist with the same cost of providing service as the

sellers collectively.

12



constant then as demand increases the magnitude of surge in buyer price is amplified

and the magnitude of surge in seller price is diminished, compared to unconstrained

optimal prices.

It is sufficient to consider two possible levels of demand, high or low. The mass

of buyers is µh during high demand and µ` during low demand, with µh > µ`. The

fraction of time that demand is high is r. Alternatively, r may be viewed as the

probability that demand is high at any given moment. The constraint is that the

intermediary keeps the same fraction α of the buyer price regardless of the level of

demand.9 Thus, rather than choose any prices vh, ch during high demand and any

prices v`, c` during low demand, the intermediary is constrained to choose vh, v` and

α and set ch = (1− α)vh, c` = (1− α)v`. That is, prices must satisfy

1

1− α
=

vh
ch

=
v`
c`

(5)

for some α ∈ (0, 1). I refer to (5) as the constant-fee constraint.

Let (ĉ`, v̂`) and (ĉh, v̂h) be the optimal prices at µ` and at µh respectively under

the constant-fee constraint. Let

α̂ =
v̂` − ĉ`
v̂`

=
v̂h − ĉh
v̂h

be the optimal fee of the intermediary under this constraint.

As already mentioned, the object being sold is perishable and cannot be stored.

Thus, optimality implies that demand must equal supply under each of the two de-

mand scenarios. That is, (1) is satisfied at µ` and at µh. Therefore, (ĉk, v̂k) lies on

the demand equals supply curve for µk, k = `, h in Figure 2. A consequence is that

ĉh > ĉ` and v̂h > v̂` (6)

To see this, note that the constant-fee constraint states that the straight line through

(ĉ`, v̂`) and (ĉh, v̂h) passes through the origin and has slope 1
1−α̂ > 0. As the demand

equals supply curve for µh lies above the demand equals supply curve for µ` (see proof

of Proposition 1), (6) follows.

9Equivalently, the intermediary adds a constant mark-up of α
1−α% to the seller price to obtain

the buyer price.
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Let v∗k = v∗(µk), c
∗
k = c∗k(µk), and α∗k = α∗k(µk) be the (unconstrained) optimal

prices and percent fee at buyer mass µk, k = `, h. The next proposition says that the

constrained optimal fee for the intermediary is in between the unconstrained optimal

fees at µ` and µh.

Proposition 5 Under the constant-fee constraint, (5), the optimal fee for the inter-

mediary, α̂, satisfies

min{α∗` , α∗h} ≤ α̂ ≤ max{α∗` , α∗h}, (7)

with strict inequalities if α∗` 6= α∗h. Further, optimal prices (ĉ`, v̂`), (ĉh, v̂h) and an

optimal fee α̂ = v̂k−ĉk
v̂k

exist.

The necessity of (7) can be seen from Figure 2. As α∗` > α∗h in the figure, we

have 1
1−α∗`

> 1
1−α∗h

. That is, the line from the origin to (c∗` , v
∗
` ) is steeper than the

line from the origin to (c∗h, v
∗
h). According to Proposition 5, α∗` > α̂ > α∗h. Hence,

as depicted in Figure 2, the line from the origin to (ĉ`, v̂`) and (ĉh, v̂h)
10 is less steep

[steeper] than the line from the origin to (c∗` , v
∗
` ) [(c∗h, v

∗
h)]. If, say α̂ > α∗` (> α∗h),

then the line from the origin to the purported constrained optimal prices would be

steeper than the line from the origin to (c∗` , v
∗
` ); the constrained optimal prices would

lie on the portions of the demand equals supply curves for µ` and for µh that lie

10Both points lie on the same line due to the constant-fee constraint.
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above the ‘MR=MC’ curve. In this region, marginal revenue exceeds marginal cost.

Decreasing α̂ by lowering buyer prices and raising seller prices, while staying on the

demand equals supply curves, would increase the intermediary’s profit at µ` and at

µh. Thus, α̂ > max{α∗` , α∗h} cannot be optimal. A symmetric argument establishes

that α̂ < min{α∗` , α∗h} is not optimal.

The preceding analysis shows that if α∗` > α∗h then (ĉh, v̂h) is to the northwest

of (c∗h, v
∗
h) and (ĉ`, v̂`) is to the southeast of (c∗h, v

∗
h). This leads to the result that

the constant-fee constraint amplifies surge pricing for buyers while diminishing surge

pricing for sellers.

Proposition 6 If µ` < µh is such that α∗` > α∗h, then as the mass of buyers in-

creases from µ` to µh the surge in buyer prices is greater and the surge in seller prices

is smaller under the constant-fee constraint than at unconstrained optimal prices.

That is,

v̂h > v∗h > v∗` > v̂`

c∗h > ĉh > ĉ` > c∗`

From Proposition 4 we know that there exist µ ≤ µ such that α∗` > α∗h for any

µ` < µ and any µh ≥ µ. Together with Proposition 6 we have

Corollary 1 There exist µ and µ, µ ≤ µ, such that for any µ` < µ and any µh ≥ µ,

as the mass of buyers increases from µ` to µh the surge in buyer prices is greater

and the surge in seller prices is smaller under the constant-fee constraint than at

unconstrained optimal prices.

Similarly, from Propositions 2 and 6 we have

Corollary 2 If the product of the gross mark-up of the intermediary monopolist and

the gross mark-down of the intermediary monopsonist decreases as the mass of buyers

increases from µ` to µh the surge in buyer prices is greater and the surge in seller prices

is smaller under the constant-fee constraint than at unconstrained optimal prices.

The impact of a constant fee on efficiency is mixed. Under the constant-fee con-

straint, efficiency deteriorates (improves) in the demand condition with the lower

15



(higher) unconstrained percent fee. To see this, observe that at the efficient outcome

the intermediary’s profit is zero: the efficient outcome with buyer mass µk, k = `, h

is vek = cek obtained by the intersection in Figure 2 of the demand equals supply curve

for µk with the positive-sloped diagonal (not shown in the figure). The unconstrained

optimal prices are inefficient as v∗k > c∗k, i.e., (c∗k, v
∗
k) is above the diagonal. Any

movement from (c∗k, v
∗
k) towards (away from) the diagonal along the demand equals

supply curve increases (decreases) the gains from trade. In Figure 2, α∗h < α∗` , and

thus α∗h < α̂ < α∗` by Proposition 5. Consequently, the constrained optimal prices

(ĉh, v̂h) are further away from the diagonal than (c∗h, v
∗
h) and the constant-fee con-

straint decreases efficiency in the high demand setting. Similarly, α∗h < α∗` implies

that efficiency increases in the low demand setting under the constant-fee constraint.

A necessary condition for optimality under the constant-fee constraint is presented

below.

Lemma 1 Under the constant-fee constraint, (5), the optimal prices (ĉ`, v̂`) at µ`

and (ĉh, v̂h) at µh satisfy[
v̂h −

1− Fb(v̂h)
fb(v̂h)

]
−
[
ĉh +

Fs(ĉh)

fs(ĉh)

]
=

λĉ`
r

1− Fb(v̂h)
fb(v̂h)

+
λv̂`
r

Fs(ĉh)

fs(ĉh)

=
λ(1− α̂)v̂`v̂h

r

[ 1

|ηb(v̂h)|
+

1

ηs(ĉh)

]
(8)

[
v̂` −

1− Fb(v̂`)
fb(v̂`)

]
−
[
ĉ` +

Fs(ĉ`)

fs(ĉ`)

]
= − λĉh

1− r
1− Fb(v̂`)
fb(v̂`)

− λv̂h
1− r

Fs(ĉ`)

fs(ĉ`)

= −λ(1− α̂)v̂`v̂h
1− r

[ 1

|ηb(v̂`))|
+

1

ηs(ĉ`)

]
(9)

where λ is a Lagrangian multiplier.

As noted earlier, if α∗` > α∗h then MR>MC at (ĉh, v̂h) and MR<MC at (ĉ`, v̂`).

That is,

v̂h −
1− Fb(v̂h)
fb(v̂h)

> ĉh +
Fs(ĉh)

fs(ĉh)
and v̂` −

1− Fb(v̂`)
fb(v̂`)

< ĉ` +
Fs(ĉ`)

fs(ĉ`)

Thus, the Lagrange multiplier λ in (8) and (9) is positive when α∗` > α∗h and negative

if α∗` < α∗h. In either event, the divergence between the marginal revenue and marginal
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cost at (ĉk, v̂k) increases as (i) the absolute value of the elasticity of demand at v̂k

decreases or (ii) the elasticity of supply at ĉk decreases or (ii) the fraction of time

that buyer mass is µk decreases.

In the example below, constrained optimal prices are easily computed with the

necessary conditions in Lemma 1.

Example 2: Consider Example 1 under the constant-fee constraint. The buyer mass

is µ` = 1 half the time and µh = 2 half the time, i.e., r = 0.5. As Fb and Fs are

uniformly distributed on [0,1], ηb(v) = − v
1−v and ηs(c) = 1. Substituting in the

first-order conditions above, we obtain

2α̂v̂h − 1 = 2λ(1− α̂)v̂`

1− 2α̂v̂` = 2λ(1− α̂)v̂h

Moreover, the demand equals supply condition implies that

v̂k =
µk

1− α̂ + µk
, k = `, h

Substituting v̂k in the first-order conditions we have two equations in two unknowns:

α̂ and λ. For µ` = 1, µh = 2, the constrained optimal solution is

α̂ = 0.6316, (ĉ`, v̂`) = (0.2692, 0.7308), (ĉh, v̂h) = (0.3111, 0.8444)

The unconstrained optimal solutions at high and low demand are

α∗` = 0.6667, (c∗` , v
∗
` ) = (0.25, 0.75), α∗h = 0.6, (c∗h, v

∗
h) = (0.3333, 0.8333)

Note the amplification of the surge in buyer prices and the reduction of the surge in

seller prices under the constant-fee constraint, as established in Proposition 6.

As the quantity sold equals the seller price in this uniform distribution example, it

is easy to see from ĉh < c∗h that the quantity of trades completed during high demand

is less than optimal. Similarly, compared to the unconstrained optimal solution,

too many trades are completed during low demand. A direct computation shows

that change (increase) in efficiency (at constrained optimal prices in comparison to

unconstrained optimal prices) during low demand is

∆E` =
1

2
(ĉ` − c∗`)(v̂` − ĉ` + v∗` − c∗`) = +0.00923
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while the change (decrease) in efficiency during high demand is

∆Eh =
1

2
(ĉh − c∗h)(v̂h − ĉh + v∗h − c∗h) = −0.01146

As r = 0.5, the net effect of constrained pricing is a reduction in efficiency. �

5 Concluding Remarks

Optimal prices set by an intermediary are obtained and related to the intermediary’s

behavior as a monopsonist and as a monopolist in its interactions with sellers and

buyers, respectively. The model permits a simple analysis of the impact of changes in

relative demand and supply. Conditions under which the intermediary’s optimal share

of the pie decreases with demand are derived. It is shown that charging a constant fee

reduces intermediary profits and, surprisingly, may also magnify the surge in buyer

prices and attenuate the surge in seller prices during high demand periods.

In the model, the intermediary does not hold inventory, which is also the case

in several markets. Relaxing this assumption would reduce price swings, both in

the optimal prices and in the constrained prices, but would probably not change the

conclusion that a constant percent fee for the intermediary increases the surge in

buyer prices.

That the intermediary has market power in its interactions with buyers and sellers

has implications for anti-trust policy. One’s initial intuition might be that if an

intermediary hires its sellers, an issue in pending litigation, then its marginal costs

would decrease, thereby reducing the distortions of an intermediary monopsonist. The

comparison with a benchmark monopolist in Section 3 supports this view. However,

this argument assumes that the total cost and the value proposition to buyers would

remain unchanged if sellers were to become employees. This assumption may not be

tenable. First, many car drivers sell their services to both Uber and Lyft, switching

between the two depending on which intermediary provides a closer next passenger

pick-up. This practice reduces idle time and increases the efficiency of the sellers; it

would likely be curtailed if each seller were to become an employee of one of the two

firms. Second, the intermediary’s marginal cost might decrease only if it bought the

18



productive assets of the sellers along with their services; this would reduce the scale

of operations of the intermediary due to capital constraints which in turn may reduce

the value of the service to buyers. These considerations are also germane to anti-trust

policy.
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6 Appendix: Proofs

Proof of Proposition 1: First, it is shown that the necessary conditions for opti-

mality, (1) and (3), are satisfied at exactly one set of prices.

If (c, v), (c′, v′), satisfy (1) then v < v′ if and only if c > c′. That is, a demand

equals supply curve in Figure 1 has strictly negative slope. To see this, note that

v < v′ implies Fb(v) < Fb(v
′), as fb is strictly positive on its support. Thus, Fs(c) =

µ(1 − Fb(v)) > µ(1 − Fb(v′)) = Fs(c
′). Hence, c > c′. Reversing this argument we

have c > c′ implies v < v′.

It was argued earlier that the locus of points (c, v) that satisfy (3) has strictly

positive slope. Thus, as the locus of points that satisfy (1) has strictly negative

slope, there is a unique (c∗(µ), v∗(µ)) that satisfies the two necessary conditions for

optimality: the demand equals supply condition (1) and the marginal revenue equals

marginal cost condition (3).

As the intermediary’s profit function is maximized on a compact domain { 0 ≤
c ≤ 1, 0 ≤ v ≤ 1, v ≥ c }, a maximum exists. Further, this maximum must occur in

the interior of the domain because the intermediary profit is zero at any point on the

boundary of the domain while it is strictly positive at any point in the interior. As

the two necessary conditions are satisfied at this interior maximum, this maximum

must occur at the unique (c∗(µ), v∗(µ)) that satisfies (1) and (3).

As the locus of points (c, v) that satisfy (3) has strictly positive slope, either (i)
dc∗(µ)
dµ

> 0 and dv∗(µ)
dµ

> 0 or (ii) dc∗(µ)
dµ

< 0 and dv∗(µ)
dµ

< 0. To rule out (ii), it is enough

to show that the locus of points satisfying (1) at µ+ ∆µ is above the locus of points

satisfying (1) at µ, where ∆µ > 0. If µ(1−Fb(v)) = Fs(c) then (µ+∆µ)(1−Fb(v)) >

Fs(c). hence there exists a ∆v > 0 such that (µ+∆µ)(1−Fb(v+∆v)) = Fs(c). Hence,

if (c, v) satisfies (1) at µ then there exists ∆v > 0 such that (c, v + ∆v) satisfies (1)

at µ+ ∆µ. �

Proof of Proposition 2: Equation (3) may be written as

v∗
[
1− 1

v∗
1− Fb(v∗)
fb(v∗)

]
= c∗

[
1 +

1

c∗
Fs(c

∗)

fs(c∗)

]
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⇐⇒ v∗
[
1 +

1

ηb(v∗)

]
= c∗

[
1 +

1

ηs(c∗)

]
⇐⇒ 1

1− α∗(µ)
=

v∗

c∗
=

1 + 1
ηs(c∗)

1 + 1
ηb(v∗)

Observe that α∗(µ) decreases with µ if and only if 1
1−α∗(µ)

decreases with µ. �

Proof of Proposition 3: We have

dα∗

dµ
=

d

dµ

[v∗ − c∗
v∗

]
< 0

⇐⇒ v∗
[dv∗
dµ
− dc∗

dµ

]
− dv∗

dµ
[v∗ − c∗] = c∗

dv∗

dµ
− v∗dc

∗

dµ
< 0

⇐⇒ c∗

v∗
dv∗/dµ

dc∗/dµ
< 1

⇐⇒ c∗

v∗
dv∗

dc∗
< 1

⇐⇒ dv∗

dc∗
<

v∗

c∗

As c∗ < v∗, this inequality is satisfied if dv∗

dµ
≤ dc∗

dµ
. �

Proof of Proposition 4: As µ → 0, we have v∗(µ) → v0 > 0, c∗(µ) → 0 and thus,

α∗(µ)→ 1. Next, as µ→∞, v∗(µ)→ 1, c∗(µ)→ c1 and thus, α∗(µ)→ 1− c1.

Thus 1 = α∗(0) > 1− c1 = α∗(∞). By continuity of the (c∗, v∗) curve, there exist

µ ≤ µ for any µ` < µ and any µh ≥ µ, we have α∗(µh) < α∗(µ`).
11 �

Proof of Proposition 5: Because the good cannot be stored, at any optimal solution

the demand equals supply constraint must be met during both the high demand and

the low demand periods; the argument is the same as in the unconstrained case.

Hence, if quantity qk is sold at buyer mass µk then the buyer price is vk = F−1
b (1− qk

µk
)

and the seller price is ck = F−1
s (qk), k = `, h. The intermediary’s expected profit under

the constant-fee constraint is

ΠI(qh, q`) = r qh

[
F−1
b (1− qh

µh
)− F−1

s (qh)
]

+ (1− r) q`
[
F−1
b (1− q`

µ`
)− F−1

s (q`)
]

11Note that there are many selections of µ ≤ µ for which the lemma holds.

21



s.t.

F−1
s (q`)F

−1
b (1− qh

µh
) = F−1

s (qh)F
−1
b (1− q`

µ`
)

The profit may be written as the integral of its derivative obtained in (2)

r

∫ 1

vh

∫ ch

0

(
v − 1− Fb(v)

fb(v)
−
[
c+

Fs(c)

fs(c)

])
fs(c)fb(v) dc dv

+(1− r)
∫ 1

v`

∫ c`

0

(
v − 1− Fb(v)

fb(v)
−
[
c+

Fs(c)

fs(c)

])
fs(c)fb(v) dc dv

subject to the constant-fee constraint.

The argument below is followed in Figure 2. Note that if α̂ is the optimal fee,

then the optimal prices (ĉk, v̂k) are at the intersection of a straight line through the

origin with slope 1
1−α̂ and the demand equals supply curve for µk.

If α̂ < min{α∗` , α∗h} then, in Figure 2, the straight line through the origin with

slope 1
1−α̂ is less steep than each of the two straight lines from the origin to (c∗k, v

∗
k),

k = `, h.12 Each (ĉk, v̂k) lies below the ‘MR=MC’ curve, the region where MR=

v− 1−Fb(v)
fb(v)

< c+ Fs(c)
fs(c)

=MC. Thus, selling a little less by decreasing ck and increasing

vk slightly, while maintaining the constant-fee constraint and the two demand equals

supply conditions, will increase profit in each of the two states ` and h and thereby

increase ΠI(qh, q`). This contradicts the optimality of α̂.

Similarly, if α̂ > min{α∗` , α∗h} then each (ĉk, v̂k) is above the ‘MR=MC’ curve, the

region where MR>MC. Selling a little more will increase profit in each the two states.

Thus, (7) must hold.

Suppose that α∗` 6= α∗h and that it is optimal to set α̂ = α∗` . Therefore, (ĉ`, v̂`) =

(c∗` , v
∗
` ). Thus, at low demand the prices are unconstrained optimal but not at high

demand (as α∗` 6= α∗h). Consequently, marginal revenue equals marginal cost at low

demand but not at high demand. Because marginal revenue and marginal cost are

continuous functions, the intermediary’s profits are greater if the constant percent fee

is set at α̂ + ε rather than at α̂, where |ε| is small with ε > 0 if α∗h > α∗` and ε < 0 if

α∗h < α∗` . This contradicts the assumption that α̂ is optimal. An identical argument

12These lines have slope 1
1−α∗

k
, k = `, h. Further, 1

1−α̂∗
k
> 1

1−α̂ if and only if α∗k > α̂.
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implies that α̂ 6= α∗h. Thus, each of the two inequalities in (7) must be strict when

α∗` 6= α∗h.

To prove that an optimal fee and prices exist first note that for each α there exist a

unique set of prices (ck(α), vk(α)) that satisfies the demand equals supply constraint:

µk(1− Fb(vk)) = Fs(ck) = Fs((1− α)vk)

As vk is increased from 0, the left-hand side decreases from µk and the right-hand

side increases from 0, with equality at a unique point (ck(α), vk(α)) where ck(α) =

(1− α)vk(α). Hence, the profit function may be written as a function of α:

ΠI(α) = r

∫ 1

vh(α)

∫ ch(α)

0

(
v − 1− Fb(v)

fb(v)
− [c+

Fs(c)

fs(c)
]
)
fs(c)fb(v) dc dv

+(1− r)
∫ 1

v`(α)

∫ c`(α)

0

(
v − 1− Fb(v)

fb(v)
− [c+

Fs(c)

fs(c)
]
)
fs(c)fb(v) dc dv

where the constant-fee constraint is satisfied as ck(α) = (1 − α)vk(α). The domain

for continuous function ΠI(α) is a compact set [0, 1].13 Hence, there exists an α̂ at

which ΠI(α) is maximized. �

Proof of Proposition 6: As α∗` > α∗h, Proposition 5 implies that α̂ satisfies α∗h ≤
α̂ ≤ α∗` . Thus, the constrained optimal prices satisfy

1

1− α∗h
=
v∗h
c∗h
≤ v̂h

ĉh
=

1

1− α̂
=
v̂`
ĉ`
≤ v∗`

c∗`
=

1

1− α∗`

That is, (ĉ`, v̂`) is below the ‘MR=MC’ curve (and on the demand equals supply line

for µ`) and, similarly, (ĉh, v̂h) is above ‘MR=MC’ curve; this can be seen in Figure 2

where α∗` > α∗h. As the demand equals supply curve is negatively sloped (see proof of

Proposition 1), it follows immediately that v̂h > v∗h and v∗` > v̂`. That v∗h > v∗` follows

from Proposition 1.

A symmetric argument implies that c∗h > ĉh and ĉ` > c∗` . That ĉh > ĉ` follows

from (6). �

13In fact, the search for an optimal α may be restricted to the compact set

[ min{α∗` , α∗h},max{α∗` , α∗h} ].
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Proof of Lemma 1: As v∗ = F−1
b (1 − q∗

µ∗
) and c∗ = F−1

s (q∗), the intermediary’s

expected profit under the constant-fee constraint is

ΠI(qh, q`) = r qh

[
F−1
b (1− qh

µh
)− F−1

s (qh)
]

+ (1− r) q`
[
F−1
b (1− q`

µ`
)− F−1

s (q`)
]

s.t.
F−1
s (q`)F

−1
b (1− qh

µh
) = F−1

s (qh)F
−1
b (1− q`

µ`
)

The Lagrangian for the intermediary profit-maximization problem is

 LI(qh, q`, λ) = r qh

[
F−1
b (1− qh

µh
)− F−1

s (qh)
]

+ (1− r) q`
[
F−1
b (1− q`

µ`
)− F−1

s (q`)
]

+λ
[
F−1
s (q`)F

−1
b (1− qh

µh
)− F−1

s (qh)F
−1
b (1− q`

µ`
)
]

=⇒ ∂  LI
∂qh

= r
[
F−1
b (1− qh

µh
)− F−1

s (qh)
]

+ rqh
dF−1

b (1− qh
µh

)

dqh
− rqh

dF−1
s (qh)

dqh

+λ
[
F−1
s (q`)

dF−1
b (1− qh

µh
)

dqh
− F−1

b (1− q`
µ`

)
dF−1

s (qh)

dqh

]
= r

[
F−1
b (1− qh

µh
)− F−1

s (qh)
]
− r qh

µfb(F
−1
b (1− qh

µh
))
− r qh

fs(F−1
s (qh))

−λF−1
s (q`)

qh

µfb(F
−1
b (1− qh

µh
))
− λF−1

b (1− q`
µ`

)
qh

fs(F−1
s (qh))

= r(vh − ch)− (r + λc`)
1− Fb(vh)
fb(vh)

− (r + λv`)
Fs(ch)

fs(ch)

As ∂ LI

∂qh
= 0 at optimal prices (ĉ`, v̂`) and (ĉh, v̂h), we have

v̂h −
1− Fb(v̂h)
fb(v̂h)

− λĉ`
r

1− Fb(v̂h)
fb(v̂h)

= ĉh +
Fs(ĉh)

fs(ĉh)
+
λv̂`
r

Fs(ĉh)

fs(ĉh)
(10)

Similarly, ∂ LI

∂q`
= 0 at optimal prices (ĉ`, v̂`) and (ĉh, v̂h) implies

=⇒ v̂` −
1− Fb(v̂`)
fb(v̂`)

+
λĉh

1− r
1− Fb(v̂`)
fb(v̂`)

= ĉ` +
Fs(ĉ`)

fs(ĉ`)
− λv̂h

1− r
Fs(ĉ`)

fs(ĉ`)
(11)

Equations (10) and (11) imply (8) and (9). �
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