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This paper investigates the radiative properties of bubbles or particles

embedded in an absorbing medium. It aims first at determining the conditions

under which the absorption by the surrounding medium must be accounted

for in the calculation of the efficiency factors by comparing results from

the (1) Mie theory, (2) far-field, and (3) near-field approximations. Then, it

relates these approximations for a single particle to the effective radiation

characteristics required for solving the radiative transfer in an ensemble of

scatterers embedded in an absorbing medium. The results indicate that the

efficiency factors for a spherical particle can differ significantly from one

model to another, in particular for large particle size parameter and matrix

absorption index. Moreover, the effective scattering coefficient should be

expressed based on the far-field approximation. Also, the choice of the absorp-

tion efficiency factor depends on the model used for estimating the effective

absorption coefficient. However, for small void fractions, absorption by the

matrix dominates and models for the absorption coefficient and efficiency

factor are unimportant. Finally, for bubbles in water, the conventional Mie

theory can be used between 0.2 and 200 µm except at some wavelengths

where absorption by water must be accounted for. c© 2006 Optical Society

of America

OCIS codes: 290.0290,030.5620,260.2110,010.0010,290.4020
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NOMENCLATURE

a radius of particles or bubbles.

aj, bj, cj, dj Mie coefficients.

a′j, b′j, c′j, d′j coefficients in Equations (12) and (13).

C coefficient.

f1 size distribution function of particles.

fv volume void fraction or porosity.

Im imaginary part of a complex number.

j index number.

k absorption index of the continuous phase.

k′ absorption index of the scatterer.

m complex refractive index of the continuous phase, m = n− ik.

m′ complex refractive index of the scatterer, m′ = n′ − ik′.

n refractive index of the continuous phase.

n′ refractive index of the scatterer.

Q efficiency factor.

r distance to the particle center.

Re real part of a complex number.

x size parameter, 2πa/λ.

Greek symbols

κ absorption coefficient.

λ wavelength.

σ scattering coefficient.

φ scattering phase function of a single bubble.

Φ scattering phase function of the continuous phase containing polydispersed bubbles.

Θ angle between the incident and scattered radiations.

ζ, ϕ Riccati-Bessel functions.

ζ ′, ϕ′ derivatives of the Riccati-Bessel functions.
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Subscripts

eff refers to the effective properties.

sca scattering.

abs absorption.

ext extinction.

Superscripts

M refers to Mie theory.

FF refers to far field approximation.

NF refers to near field approximation.

NE refers to the non-exponential decay model (Ref.[41]).
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1. INTRODUCTION

Light and radiation transfer in non-absorbing media containing particles has long been a

subject of study. Applications range from combustion systems and packed or fluidized beds

to atmospheric science and astronomy. In all these cases, the conventional Mie theory1 which

ignores the absorption index of the continuous phase is used. However, when these scatterers

are embedded in semitransparent media the conventional Mie theory is no longer valid.

Radiation transfer through semitransparent media containing bubbles or particles is of

interest to many practical engineering applications ranging from remote sensing of the ocean

surface and fire fighting to materials processing and colloidal systems in liquids or in the

atmosphere. For example, thermal emission data from the ocean surface is used to retrieve

wind speed and direction assuming a smoothly varying surface profile.2,3 However, under

high wind conditions, the presence of breaking waves, foam patches, and bubbles affect the

emissivity of the ocean surface which can lead to errors in the retrieval of the wind speed

and directions. Moreover, the cost and quality of nearly all commercial glass products are

determined by the performance of the glass melting and delivery systems which strongly

depend on thermal radiation transfer through glass foam layer covering part of the molten

glass.4 Light scattering by bubbles has also been used as a mean to non-invasively monitor

the bubble dynamics in sonoluminescence.5,6, 7, 8 Finally, the performance of bubble sparged

photobioreactors can be strongly affected by light scattering and/or absorption by the bub-

bles and the bacteria or algae.9

Radiation transfer in heterogeneous medium containing bubbles or particles can be divided

in four different regimes whether one considers a single scatterer or an ensemble of scatterers

and whether the matrix is non-absorbing or absorbing at the wavelength of interest. A

detailed discussion of each regime is provided in the following sections. Special emphasis is

given to absorbing medium containing bubbles but unless otherwise mentioned the results

can be applied to absorbing spherical particles.
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2. CURRENT STATE OF KNOWLEDGE

2.A. Single Scatterer and EM Wave Theory

2.A.1. Mie Theory

Mie theory1 describes the absorption and scattering of radiation by a single spherical particle

surrounded by a non-absorbing medium with arbitrary index of refraction n. Then, the

absorption and scattering cross-sections or efficiency factors of a particle of radius a for

radiation with wavelength λ depend on (i) the size parameter x = 2πa/λ and on (ii) the

complex index of refraction of the particle m′ = n′ − ik′ and (iii) of the non-absorbing

surrounding medium m = n. The efficiency factors of scattering QM
sca(a), absorption QM

abs(a),

and extinction QM
ext(a) are expressed as1,10

QM
sca(a) =

2

n2x2

∞∑

j=1

(2j + 1)(|aj|2 + |bj|2), (1)

QM
ext(a) =

2

n2x2

∞∑

j=1

(2j + 1)Re(aj + bj), (2)

QM
abs(a) = QM

ext(a)−QM
sca(a). (3)

Here, Re refers to the real part of the complex number while the superscript M refers to the

Mie theory. The Mie coefficients aj and bj are expressed as11

aj =
m′ϕ′j(nx)ϕj(m

′x)− nϕj(nx)ϕ′j(m
′x)

m′ζ ′j(nx)ϕj(m′x)− nζj(nx)ϕ′j(m′x)
, (4)

bj =
m′ϕj(nx)ϕ′j(m

′x)− nϕ′j(nx)ϕj(m
′x)

m′ζj(nx)ϕ′j(m′x)− nζ ′j(nx)ϕj(m′x)
, (5)

where ζ(ρ), ϕ(ρ), ζ ′(ρ), and ϕ′(ρ) are the Riccati-Bessel functions and their derivatives with

respect to the argument ρ. Because the conventional Mie theory is valid only for a spherical

particle embedded in a non-absorbing medium, attempts were made to expand the theory

to absorbing matrix based on either the far-field approximation12,13,14,15 or the near-field

approximation.16,17,18,19
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2.A.2. Far-Field Approximation

The far-field approximation is based on the asymptotic form of the electromagnetic (EM)

field in the radiation zone far from the scatterer. Mundy et al.12 obtained the particle’s

efficiency factors by integrating the radiative fluxes over a large sphere whose radius r is

much larger than the particle radius a(i.e., r À a) and whose center coincides with that

of the particle. Thus, the integrating sphere includes both the particle and the absorbing

medium. The author showed that the formulae of the Mie theory [Equation (1) to (5)] and

the associated computer program must be adapted for particles in a refracting and absorbing

medium having an arbitrary complex index of refraction m = n − ik.12 More precisely, the

following changes must be made to the above equations,

(i) the variables m′ must be replaced by the complex quantities m̃ = m′/m.

(ii) the variables nx must be replaced by the complex quantities x̃ = mx.

(iii) the coefficient 2/(n2x2) in Equations (1) and (2) must be replaced by the coefficient

CFF =
4k2 exp[−2kx(r/a)]

(n2 + k2)[1 + (2kx− 1) exp(2kx)]
. (6)

where the superscript FF refers to the far-field approximation. Thus, the scattering, ab-

sorption, and extinction efficiency factors are functions of the sphere radius r. They do not

represent the efficiency factors of the particle alone.17 Indeed, when the host medium is ab-

sorbing, the scattered wave has not only been attenuated in magnitude but it has also been

modulated as it reaches the radiation zone.20 Thus, for an observer in the radiation zone,

the particle’s inherent efficiency factors are coupled with the absorption by the medium in

an inseparable manner. Note also that under certain conditions, the extinction efficiency

factor can be smaller than the scattering efficiency factor. Thus, if QFF
abs (a) can be defined as

QFF
abs (a) = QFF

ext (a)−QFF
sca (a) a negative absorption efficiency factor can be obtained.

Mundy et al.12 also defined the so-called “unattenuated” scattering and extinction effi-

ciency factors for a sphere in an absorbing medium by setting r = a in Equation (6) making

7



the coefficient C independent of r and equal to

CFF =
4k2 exp(−2kx)

(n2 + k2)[1 + (2kx− 1) exp(2kx)]
. (7)

On the other hand, when both kx ¿ 1 and k ¿ n, Equation (6) simplifies to21

CFF =
2

n2x2
. (8)

Then, under these conditions, the coefficient CFF is also independent of the radius r.

Alternatively, the inherent scattering and absorption properties of the particle can be

calculated when the local Poynting vector is integrated at the scattering particle’s surface

using the so-called near-field approximation.16,17,18,19

2.A.3. Near-Field Approximation

This approach is based on the information of the EM field at the particle surface. Fu and

Sun,17 Sudiarta and Chylek,18,19 and Lebedev16 derived analytical expressions for the effi-

ciency factors of absorbing spherical particle in an absorbing medium,17

QNF
sca (a) =

8πk2

λn[1 + (2kx− 1) exp(2kx)]

∞∑

j=1

(2j + 1)Im(Bj), (9)

QNF
abs (a) =

8πk2

λn[1 + (2kx− 1) exp(2kx)]

∞∑

j=1

(2j + 1)Im(Aj), (10)

QNF
ext (a) = QNF

abs (a) + QNF
sca (a). (11)

where Im refers to the imaginary part of a complex value and the superscript NF refers to

the near-field approximation. The complex coefficients Aj and Bj are expressed as17

Aj =
|c′j|2ϕj(m

′x)ϕ′∗j (m′x)− |d′j|2ϕ′j(m′x)ϕ∗j(m
′x)

2πm′/λ
, (12)

Bj =
|a′j|2ζ ′j(mx)ζ∗j (mx)− |b′j|2ζj(mx)ζ ′∗j (mx)

2πm/λ
. (13)

Here, the asterisk denotes the complex conjugate and the coefficients a′j, b′j, c′j and d′j are

expressed as17

a′j =
m′ϕ′j(mx)ϕj(m

′x)−mϕj(mx)ϕ′j(m
′x)

m′ζ ′j(mx)ϕj(m′x)−mζj(mx)ϕ′j(m′x)
, (14)
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b′j =
m′ϕj(mx)ϕ′j(m

′x)−mϕ′j(mx)ϕj(m
′x)

m′ζj(mx)ϕ′j(m′x)−mζ ′j(mx)ϕj(m′x)
, (15)

c′j =
m′ζj(mx)ϕ′j(mx)−m′ζ ′j(mx)ϕj(mx)

m′ζj(mx)ϕ′j(m′x)−mζ ′j(mx)ϕj(m′x)
, (16)

d′j =
m′ζ ′j(mx)ϕj(mx)−m′ζj(mx)ϕ′j(mx)

m′ζ ′j(mx)ϕj(m′x)−mζj(mx)ϕ′j(m′x)
. (17)

Note that when the matrix is non-absorbing, i.e., m = n, the above defined coefficients a′j

and b′j are identical to aj and bj defined in Equations (4) to (5) for the conventional Mie

theory.

Therefore, this approach eliminates the ambiguity in the definition of the extinction effi-

ciency factor since the formulae depend only on the complex refraction indices and on the

particle radius. The absorption, scattering, and extinction efficiency factors derived from

the near-field approximation have been called “inherent” efficiency factors.20 The adjectives

“inherent”, “true”20 or “actual”17 have been used interchangeably.

Finally, studies based on the near-field approximation17,18,19 showed that, in the limiting

case of spheres much larger than the wavelength of radiation and embedded in an absorbing

host medium, the spectral extinction efficiency factor QNF
ext (a) approaches unity as diffraction

can be neglected.19 These results contrast with the case of large spheres in a non-absorbing

matrix where the Mie theory predicts that QM
ext(a) approaches 2.18,11 In addition, the scat-

tering efficiency factor QNF
sca (a) of a large sphere in an absorbing medium approaches the

reflectivity of the flat interface at normal incidence.18 The convergence to these asymptotic

limits was found to be much faster for strongly absorbing matrices than for weakly absorbing

ones.17,18

2.B. Multiple Scatterers and Radiation Transfer

Several studies have been concerned with photon transport in non-absorbing media contain-

ing an ensemble of bubbles. Common approaches include: (1) the diffusion approximation,

(2) the Monte Carlo method, and (3) the radiation transfer equation (RTE).

First, radiation transfer has often been treated as a diffusion process accounting for multi-

ple scattering events.22,23,24,25,26 Durian and co-workers27,23,24,25,22 performed experimental,
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theoretical, and numerical studies on the angular distribution of the diffusely transmitted

and back-scattered light through various highly scattering media of thickness much larger

than the photon transport mean free path. The authors found very good agreement between

experimental data, the diffusion model, and random walk simulations. The diffusion approxi-

mation has also been used to simulate transient radiation transport in a non-absorbing foam

layer.26,28

Moreover, when the diffusion approximation is not valid and both diffraction and interfer-

ences can be neglected then, photons can be treated as particles and Monte-Carlo simulations

can be performed. For example, Wong and Mengüç29 simulated depolarization of a collimated

and polarized light through non-absorbing foams consisting of large spherical bubbles using

a combined Monte Carlo/ray tracing approach as means to characterize the foam morphol-

ogy. Finally, Tancrez and Taine30 simulated radiation transfer in porous media consisting of

overlapping (i) opaque particles embedded in a transparent fluid (e.g., packed beds) or (ii)

transparent spheres in an opaque solid (e.g., open-cell foams) using Monte Carlo simulations.

The authors proposed correlations for the effective radiation characteristics of such media.

An alternative approach consists of treating heterogeneous media as homogeneous and

solving the RTE using some effective radiation characteristics. The latter can be modeled

based on first principle and/or measured experimentally. Fedorov and Viskanta31,32 proposed

a model for the effective radiation characteristics of porous media with various bubble size

distributions and porosities and solved the RTE to obtain the transmittance and reflectance

of a layer of glass foams. The analysis was performed for bubbles much larger than the

wavelength of radiation in the limiting case of anomalous diffraction.10 Their model for the

radiation characteristics was discussed in details by Pilon and Viskanta33 for various porosi-

ties and bubble sizes. In brief, the following models for the effective absorption coefficient

was proposed,31

κeff = κ− π

∞∫

0

[QM
abs,m(a)−QM

abs,m′(a)]a2f1(a)da, (18)

where κ and κeff are the absorption coefficients of the matrix and of the two-phase medium,

respectively. The bubble size distribution is denoted by f1(a) and defined as the number of
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bubbles per unit volume having radius between a and a+da. The efficiency factors QM
abs,m(a)

and QM
abs,m′(a) are computed for a sphere of continuous phase (m) or dispersed phase (m′),

respectively. They are estimated using the asymptotic formulae (Ref.34 p.35) for anomalous

diffraction derived from the Mie theory for a sphere of radius a embedded in vacuum. On

the other hand, the scattering coefficient and the scattering phase function were modeled

following the conventional expressions used for particulate media with a non-participating

matrix,11,35

σeff = π

∞∫

0

QM
sca(a)a2f1(a)da, (19)

Φeff (Θ) =
π

σeff

∞∫

0

QM
sca(a)φ(a, Θ)a2f1(a)da, (20)

where φ and Φeff refer to the scattering phase functions of a single and of an ensemble of

scatterers, respectively. The angle between the incident and scattered radiations is denoted

by Θ. Here also, QM
sca(a) is calculated based on the anomalous diffraction approximation.

More recently, Dombrovsky21 questioned the validity of the above model on the basis that

Equation (18) had not been validated and that QM
sca(a) was estimated using the complex

index of refraction of the dispersed phase m′ instead of the ratio m′/m. To address this

issue, Dombrovsky21 suggested using the following model for the effective absorption and

scattering coefficients using the far-field efficiency factors,

κeff = κ + π

∞∫

0

QFF
abs (a)a2f1(a)da, (21)

σeff = π

∞∫

0

QFF
sca (a)a2f1(a)da. (22)

Moreover, the second term on the right-hand side of Equation (21) is “an additional ab-

sorption of radiation by particle” that should be positive for particles absorbing more than

the matrix (i.e., k′ > k) and negative in the contrary (e.g., bubbles).21 Therefore, the pres-

ence of the bubbles embedded in a semitransparent matrix reduces the effective absorption

coefficient of the medium, i.e., κeff ≤ κ.

Finally, two practical questions remain unanswered and are addressed in this manuscript:
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(1) among all the above mentioned theory, which one should be used to estimate the efficiency

factors of a spherical scatterer in an absorbing media? and (2) what would be the expressions

of the associated radiation characteristics needed to solve the RTE? The present study aims

first at determining the conditions under which the absorption by the surrounding medium

must be accounted for in the calculation of the efficiency factors by comparing results from the

Mie theory, the far-field, and the near-field approximations for specific absorbing media and

particle/bubble size parameters. Then, it relates the far-field and near-field approximations

for a single particle to models for the effective radiation characteristics required for solving

the radiative transfer in an ensemble of scatterers embedded in an absorbing medium.

3. ANALYSIS

The assumptions used in this study include (1) all particles or bubbles are spherical, (2)

the scattering behavior of a single particle or bubble is not affected by the presence of its

neighbors (independent scattering),36 (3) the radiation field within the continuous phase is

incoherent (i.e., scattering centers are randomly distributed with zero-phase correlation),

and(4) each phase is homogeneous and has uniform optical properties. Practically the as-

sumption of independent scattering by wavelength-sized and larger particles is satisfied when

the particles are randomly positioned and separated by distances larger than 4 times their

radius.37,38

3.A. Difference Between Far-Field and Near-Field Approximations

This section compares the results for the different efficiency factors obtained by (1) the Mie

theory, (2) the far-field, and (3) the near-field approximations. Results for the Mie theory

were computed based on the code provided by Bohren and Hoffman.39 The same code was

adapted for the far-field approximation following the suggestions by Mundy et al.12 reviewed

previously and using r = a. The code was successfully validated against the efficiency factors

reported by Mundy et al.12 and by Dombrovsky.21 Similarly, the code for the near-field

approximation was kindly provided by W. Sun and was validated against Fu and Sun’s
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results.17 Here, the same situations as those explored by Fu and Sun17 are investigated. In

all cases, the series in Equations (1), (2), (9), and (10) are truncated and terminated when

the summation index j is equal to the integer closest to x + 4x1/3 + 2.39

Figure 1 shows the scattering, extinction, and absorption efficiency factors as functions

of the size parameter x for a non-absorbing bubble (m′ = 1) embedded in an absorbing

medium of refractive index m = 1.34− ik with k equals to 0, 0.001, 0.01, and 0.05. First, for

non-absorbing matrix (k = 0), the Mie theory, the far-field, and near-field approximations

give identical results with Qabs(a) = 0 and Qsca(a) = Qext(a). In addition, the extinction

efficiency factor converges to 2 as the size parameter tends to infinity corresponding to the

well know diffraction paradox.11

Moreover, Figure 1 indicates that for bubbles in an absorbing matrix, the far-field efficiency

factors are always smaller than their near-field counterparts and the difference increases as

the matrix absorption index k increases. Then, QNF
abs (a) is equal to zero while QFF

abs (a) is

negative for all values of k and, as a result, QFF
ext (a) is smaller than QFF

sca (a) and sometimes

even negative. Using either approximation, both Qsca(a) and Qext(a) decrease as k increases.

In addition, as the size parameter tends to infinity, both QNF
sca (a) and QNF

ext (a) converge to

1. On the contrary, QFF
sca (a) and QFF

ext (a) converge to 0.5 and 0, respectively. Finally, as k

increases, the asymptotic values are reached for smaller size parameters.

The same comparison was performed for absorbing particles. Figure 2 shows the scattering,

extinction, and absorption efficiency factors as functions of size parameter for an absorbing

particle having m′ = 1.34−0.01i embedded in an absorbing medium such that m = 1.0− ik.

Similarly, Figure 3 shows results for different particle and matrix featuring m′ = 1.4− 0.05i

and m = 1.2 − ik. In both cases, k takes the values of 0.0, 0.001, 0.01, and 0.05. The same

conclusions as above can be drawn except for the scattering efficiency factors. Indeed, as the

size parameter tends to infinity, QNF
sca (a) and QFF

sca (a) converge to 1 for an absorbing particle

in a non-absorbing matrix while they both converge to zero when the matrix is absorbing.

In addition, one can note that the efficiency factors are always positive for the near-field

approximation. On the contrary, the absorption and extinction efficiency factors obtained by
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the far-field approximation can be negative if k is larger than k′ as shown in Figures 1 and

2 when k = 0.05 and k′ = 0.01. Note also that QNF
abs (a) is found to be nearly independent of

the matrix absorption index k.

Furthermore, the relative differences between the far-field and near-field approximations

for the efficiency factors are shown in Figure 4. It indicates that the relative difference in-

creases as the absorption index k increases. For a weakly absorbing matrix (k < 0.001)

and 1 < x < 100, the predictions of the scattering efficiency factor from the far-field ap-

proximation fall within 10% of that from the near-field approximation under the conditions

tested. However, for small size parameters (x < 1), the relative difference in the scattering

efficiency factor can be significant. Similar trend was observed by Yang and co-workers (see

Fig. 3 in Ref.20). This can be attributed to the fact that (1) the scattering efficiency factor

is small (less than 0.1 for x < 1) and therefore sensitive to numerical uncertainty and how

the summations are performed and/or (2) the computation of the Riccati-Bessel functions

by forward recurrence is unstable.39 In addition, when the absorption index of the medium is

larger than that of particles, the extinction and absorption efficiency factors predicted by the

far-field approximation can be negative while those predicted by the near-field approxima-

tion are always greater than zero. Note that (i) the relative differences in the extinction and

absorption efficiency factors can be larger than 100% when QFF
abs (a) and QFF

ext (a) are negative

and (ii) the relative differences of the absorption efficiency factor for bubbles (m′ = 1.0) are

always unity since QNF
abs (a) is always zero.

Finally, the relative differences between the Mie theory and the near-field approximation

for the efficiency factors are shown in Figure 5. It indicates that the relative difference in

the absorption efficiency factors between the Mie theory and the near-field approximation

is relatively small and less than 16%. However, there are large relative differences in the

scattering and extinction efficiency factors for matrix with large absorption index and/or for

large size parameters. Since the efficiency factors predicted by the far-field approximation

are always smaller than those predicted by the near-field approximation and sometimes can

be negative, the relative differences between the Mie theory and the far-field approximation

14



are much larger than those shown in Figure 5. Thus, one can see that the Mie theory deviates

significantly from the near-field and far-field approximations for matrix with large absorption

index and/or for large size parameter. Under these conditions, the matrix absorption index

cannot be ignored in computing the efficiency factors. On the other hand, for small values

of x, the large relative difference is due to numerical error but unimportant for all practical

purposes.

3.B. Application To Radiation Transfer

One of the main motivations in determining single particle efficiency factors is for radiative

transfer calculations which require both the cross sections and an accurate description of the

phase matrix. Moreover, predicting radiation transfer through heterogeneous media requires

the efficiency factors of the particle in the far field.40,20 Thus, the inherent scattering efficiency

factor obtained from the near-field approximation by considering the EM field at the particle

surface cannot be used for modeling the effective scattering coefficient.20 Indeed, it does not

have the conventional meanings in that the corresponding cross sections are not simply the

products of these factors and the projected area of the particle.20

Moreover, Fu and Sun17 derived the scattering, absorption, and extinction efficiency factors

based on the near-field approximation while they obtained the scattering phase function

using the far-field approximation. This approach appears to be conceptually inconsistent.

To address this inconsistency, Yang et al.20 used (i) the unattenuated scattering efficiency

factor QFF
sca (a) using Equation (7), (ii) the near-field inherent absorption efficiency factor

QNF
abs (a) since it represents absorption by the particle alone, and (iii) the apparent extinction

efficiency factor defined as Qext(a) = QFF
sca (a) + QNF

abs (a). Then, Qext(a) is larger than the

scattering efficiency factor QFF
sca (a) since QNF

abs (a) is always non-negative. This definition is

consistent with the scattering phase function and asymmetry factor derived by Fu and Sun17

based on the far-field scattered waves. It also overcomes the shortcoming of the far-field

approximation where QFF
ext (a) and/or QFF

abs (a) could be negative.12,13,14,15

Recently, Fu and Sun41 extended this approach by suggesting that an apparent absorption
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efficiency factor needs to be introduced to take into account the non-exponential decay

of the near-field scattered radiation in the absorbing matrix. This approach is referred by

the superscript NE. The non-exponential absorption can be quantified by the difference

between the actual and apparent scattering efficiency factors. Thus, they defined an apparent

absorption efficiency factor given by,41

QNE
abs = QNF

abs + (QNF
sca −QFF

sca ). (23)

The apparent extinction efficiency factor is then QNE
ext = QNE

abs + QFF
sca = QNF

ext . Thus, the

extinction of incident radiation remains the same as QNF
ext defined by Fu and Sun.17

Consequently, the unattenuated (i.e., r = a) far-field scattering efficiency factor and the

far-field phase function seem to be the preferred approach for radiation transfer calculations.

However, there are three alternatives for the apparent absorption efficiency factor namely,

(i) the unattenuated absorption efficiency factor QFF
abs (a) defined by Mundy et al.12 with the

constant CFF given by Equation (7), (ii) the near-field absorption efficiency factor QNF
abs (a)

given by Equation (10), and (iii) the absorption efficiency factor QNE
abs (a) given by Equation

(23).

The absorption efficiency factor to be used to estimate the effective absorption coefficient

will depend on the model selected [e.g., Equations (18) or (21)]. In Fedorov and Viskanta’s

model,31 QM
abs(a) and QM

abs,m(a) were calculated using the Mie theory in the anomalous dif-

fraction limit. This should be reconsidered and among the above three alternatives, QNF
abs (a)

should be used since it is always positive and nearly independent of the absorption of the

medium. Thus, when the absorption index of the medium is greater than that of the scat-

terer (i.e., k > k′) then, QNF
abs,m(a) > QNF

abs (a) and κeff < κ and vice-versa. Moreover, in

Dombrovsky’s model,21 the absorption efficiency factor is calculated using QFF
abs (a)21 as it

depends on the medium properties and can be negative. Thus, when the absorption index

of the medium is greater than that of the scatterer, QFF
abs (a) < 0 and κeff < κ otherwise

QFF
abs (a) > 0 and κeff > κ.

Finally, QNE
abs (a) is always positive since QNF

sca − QFF
sca (a) ≥ 0 and QNF

abs (a) ≥ 0 even for

bubbles. Thus, it cannot be used in combination with Equation (21). In addition, the term
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QNE
abs,m(a) − QNE

abs,m′(a) can be negative or positive depending not only on the absorption

index of both phases but also on the difference in scattering efficiency factors. For example,

it could be negative for bubbles and thus, appears also incompatible with Equation (18).

Then, a new model for κeff conceptually compatible with the definition of QNE
abs (a) should

be developed.

3.C. Application: Radiation Characteristics of Water Containing Bubbles

This section discusses the effective radiation characteristics of water containing bubbles pre-

dicted by the above models. The complex index of refraction of air bubbles is equal to unity

(m′ = 1). The refractive and absorption indices of water n and k over the spectral range

from 0.2 to 200 µm are given in the literature.42

3.C.1. Effective Scattering Coefficient

First, note that the expression for the effective scattering coefficient proposed by Fedorov and

Viskanta31 [Equations (19)] and by Dombrovsky21 [Equation (22)] differ only by the choice

of the model for the scattering efficiency factor. As previously discussed, QFF
sca (a) should be

used. To simplify the problem, we further assume that the air bubbles have the same radius.

Thus, the effective scattering coefficient simplifies as,

σeff =
3fv

4a
QFF

sca (a). (24)

Figure 6 compares the effective scattering coefficient predicted by Equation (24) (solid

line) with that predicted by the Mie theory (assuming k = 0) (dotted line) as a function of

wavelength for different void fractions and bubble radii. For given wavelength and bubble

radius, the effective scattering coefficient increases with increasing void fraction. For large

wavelengths (> 7µm), the effective scattering coefficient increases with increasing bubble

diameter. In addition, the relative error between these two approaches is independent of

void fraction. For wavelengths smaller than 2 µm, the relative error is less than 10% while it

can be larger than 50% for wavelengths around 3, 6, 13, and 20 µm corresponding to peaks
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in the optical properties n and/or k of water. Thus, for wavelengths beyond 2 µm, neglecting

absorption by water can cause large errors on the effective scattering coefficient.

3.C.2. Effective Absorption Coefficient

Moreover, based on the two different models for the effective absorption coefficients proposed

by Fedorov and Viskanta31 and Dombrovsky21 and different expressions of Qabs(a), the effec-

tive absorption coefficient accounting for the absorption by the matrix with monodispersed

bubbles can be calculated by two alternate ways,

κeff,1 = κ− 3fv

4a
[QNF

abs,m(a)−QNF
abs,m′(a)], (25)

κeff,2 = κ +
3fv

4a
QFF

abs (a), (26)

where κ = 4πk/λ is the absorption coefficient of water. Four different bubble radii, a=0.01,

0.1, 1.0, and 10 µm, and three different void fractions fv=0.05, 0.4, and 0.74 covering the

range from bubbly flow to maximum packing of spheres of uniform size are investigated over

the spectral range from 0.2 to 200 µm.

Figure 7 compares the effective absorption coefficient predicted by Equations (25) and

(26) for monodispersed bubbles of radius a=0.01 µm for different void fractions. For small

void fractions, such as fv = 0.05, the differences between these two models are small and

the predicted effective absorption coefficient is close to the absorption coefficient of water.

Thus, even though QNF
abs (a) and QFF

abs (a) are significantly different, absorption by the matrix

represented by κ dominates the overall absorption of the composite medium. In other words,

κeff ≈ κ for small void fraction and the model chosen for Qabs(a) is unimportant. This was

the case of the experimental measurements reported by Baillis and co-workers43,44 for fused

quartz containing bubbles of average radius 0.64 mm and void fraction of 4% in the spectral

region from 2.6 to 4 µm where quartz is weakly absorbing (k < 10−4) and κx << 1.

However, when the void fraction increases the differences become large (Figure 7). Then,

the second term on the right-hand side of Equations (25) and (26) dominates. Also, κeff,2

is much smaller than κeff,1. In addition, κeff,2 is negative for wavelengths around 3 and 11
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to 200 µm and void fraction of 0.74, which is physically unacceptable. Note that similar

results have been found for other bubble radii. Therefore, for large void fractions, the model

proposed by Dombrovsky21 may give unphysical results. On the other hand, κeff,1 was found

to be always positive even for large void fractions and various bubble radii as illustrated in

Figure 8. Thus, the model proposed by Fedorov and Viskanta31 using QNF
abs (a), tends to give

more physically acceptable results.

Moreover, the original model proposed by Fedorov and Viskanta31 using QM
abs(a) for

monodispersed bubbles was expressed as

κeff,3 = κ− 3fv

4a
[QM

abs,m(a)−QM
abs,m′(a)]. (27)

Considering the relative error between κeff,1 and κeff,3 defined as |κeff,3 − κeff,1|/κeff,3 as

a function of wavelength for different void fractions and bubble radii establishes that for

fv = 0.05 the relative error is less than 2% for all wavelengths. Increasing the void fraction

results in larger relative errors. For example, for fv = 0.4, the relative error reaches up to

20% at some wavelengths and for fv = 0.74, it may exceed 80% for some combinations

of wavelengths and bubble radius. In practice, when the wavelength is less than 1 µm, the

effective absorption coefficient is small and does not significantly affect the radiation transfer

calculations.

4. CONCLUSIONS

This paper has investigated (i) the efficiency factors of particles and bubbles embedded in

an absorbing medium and (ii) the effective radiation characteristics of two-phase mixture

consisting of bubbles in an absorbing medium. The efficiency factors predicted by the con-

ventional Mie theory, the far-field, and the near-field approximations were compared. The

best approach for the radiation characteristics to be used in the radiation transfer equation

was clarified and the following conclusions can be drawn:

1. Ignoring the absorption index of the matrix can results in significant error on the

scattering and extinction efficiency factors predicted by the conventional Mie theory
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except when the host medium is non-absorbing or weakly absorbing. This is particularly

true if the size parameter is large. Then, the near-field or far-field approximations offer

alternatives that should be used.

2. The efficiency factors for a spherical particle predicted by the far-field and near-field

approximations can be significantly different. This difference increases as the matrix

absorption index increases.

3. The effective scattering coefficient σeff should be expressed as a function of the far-field

scattering efficiency factor QFF
sca (a).

4. The choice of the absorption efficiency factor depends on the model used for estimating

the effective absorption coefficient.

5. For small void fractions, absorption by the continuous phase dominates and the choices

of the model for absorption coefficient and the associated absorption efficiency factor

are unimportant.

6. For large void fractions, the models by Fedorov and Viskanta31 and by Dombrovsky21

differ significantly from one another. The model proposed by Fedorov and Viskanta31

gives physically acceptable results while that by Dombrovsky21 can yield negative ab-

sorption coefficient.

7. For most wavelengths between 0.2 and 200 µm, the absorption index of water can be

neglected and the conventional Mie theory for non-absorbing medium can be used.

However, at some wavelengths, neglecting the absorption of medium results in large

errors in the efficiency factors and in the associated radiation characteristics.

Finally, note that experimental data for medium with large volume fractions of scatter-

ers and/or for matrices with a relatively large absorption index is still needed to validate

the above effective radiation characteristic models. Alternatively, the rigorous approach de-

veloped by Mishchenko40 based on the Maxwell’s equations and the concept of statistical
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electromagnetics could be extended to particles in an absorbing medium and compared with

solutions of the RTE combined with one the above effective property models.
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29. B.T. Wong and M. P. Mengüç, “Depolarization of radiation by non-absorbing foams”,

Journal of Quantitative Spectroscopy and Radiative Transfer, 73 273–284 (2002).

24



30. M. Tancrez and J. Taine, “Direct identification of absorption and scattering coefficients

and phase function of a porous medium by a Monte Carlo technique”, International

Journal of Heat and Mass Transfer, 47 373–383 (2004).

31. A. G. Fedorov and R. Viskanta, “Radiative transfer in a semitransparent glass foam

blanket”, Physics and Chemistry of Glasses, 41, 127–135 (2000).

32. A. G. Fedorov and R. Viskanta, “Radiative characteristics of glass foams”, Journal of

the American Ceramic Society, 83, 2769–2776 (2000).

33. L. Pilon and R. Viskanta, “Radiation characteristics of glass containing bubbles”, Journal

of the American Ceramic Society, 86, 1313–1320 (2003).

34. D. Deirmendjian, Electromagnetic scattering on spherical polydispersions, Elsevier, New

York, NY (1969).

35. R. Siegel and J.R. Howell, Thermal radiation heat transfer - Third Edition, Hemisphere

Publishing Co., New York, NY (2001).

36. C. L. Tien and B. L. Drolen, “Thermal radiation in particulate media with dependent

and independent scattering”, in Annual Review of Numerical Fluid Mechanics and Heat

Transfer, T.C. Chawla, Ed., vol. 1, pp. 1–32. Hemisphere, New York, NY (1987).

37. M. I. Mishchenko, D. W. Mackowski, and L. D. Travis, “Scattering of light by bispheres

with touching and separated components”, Applied Optics, 34 4589–4599 (1995).

38. M. I. Mishchenko, J. W. Hovenier, and D. W. Mackowski, “Single scattering by a small

volume element”, Journal of the Optical Society of America - A, 34 71–87 (2004).

25



39. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles,

John Wiley and Sons, New York (1983).

40. M. Mishchenko, “Vector radiative transfer equation for arbitrarily shaped and arbitrarily

oriented particles: A microphysical derivation from statistical electromagnetics”, Applied

Optics, 41 7114–7134 (2002).

41. Q. Fu and W.B. Sun, “Apparent optical properties of spherical particles in absorbing

medium”, Personal communications (2005).

42. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm

wavelength region”, Applied Optics, 12 555–563 (1973).

43. H. Randrianalisoa, D. Baillis, and L. Pilon, “Improved inverse method for determining

radiation characteristics of fused quartz containing bubbles”, Journal of Thermophysics

and Heat Transfer, (in press) (2006).

44. L.A. Dombrovsky, H. J. Randrianalisoa, D. Baillis, and L. Pilon, “The use of Mie the-

ory in analysis of experimental data on infrared properties of fused quartz containing

bubbles”, Applied Optics, 44, 7021–7031 (2006).

26



List of Figure Captions

Fig. 1. Scattering, extinction and absorption efficiency factors as functions of size parameters

for a spherical bubble (m′ = 1.0) embedded in a medium having m = 1.34− ik with k= 0.0,

0.001, 0.01, and 0.05.

Fig. 2. Scattering, extinction and absorption efficiency factors as functions of size parameters

for an absorbing spherical particle (m′ = 1.34−0.01i) embedded in a medium with refractive

index m = 1.0− ik with k = 0.0, 0.001, 0.01, and 0.05.

Fig. 3. Scattering, extinction and absorption efficiency factors as functions of size parameters

for an absorbing spherical particle (m′ = 1.4− 0.05i) embedded in a medium with refractive

index m = 1.2− ik with k = 0.0, 0.001, 0.01, and 0.05.

Fig. 4. Relative difference between near-field and far-field approximations for the scattering,

extinction and absorption efficiency factors as functions of size parameters.

Fig. 5. Relative difference between Mie theory and near-field approximation for the scattering,

extinction and absorption efficiency factors as functions of size parameters.

Fig. 6. Effective scattering coefficients accounting (far-field approximation) for or neglecting

(Mie theory) the matrix absorption of air bubbles in water as functions of wavelength and

bubble radius for void fractions fv=0.05, 0.4, and 0.74.

Fig. 7. Effective absorption coefficients of air bubbles of radius a=0.01 µm in water as

functions of wavelength for void fraction fv=0.05, 0.4, and 0.74.

Fig. 8. Effective absorption coefficients of monodispersed air bubbles in water as functions
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of wavelength predicted by Equation (25) for fv = 0.4, and 0.74 and various bubble radii.
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Fig. 6. Effective scattering coefficients accounting (far-field approximation)

for or neglecting (Mie theory) the matrix absorption of air bubbles in water

as functions of wavelength and bubble radius for void fractions fv=0.05, 0.4,

and 0.74.
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Fig. 7. Effective absorption coefficients of air bubbles of radius a=0.01 µm in

water as functions of wavelength for void fraction fv=0.05, 0.4, and 0.74.
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Fig. 8. Effective absorption coefficients of monodispersed air bubbles in water

as functions of wavelength predicted by Equation (25) for fv = 0.4, and 0.74

and various bubble radii.
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