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Objective—Immune-mediated inflammatory diseases (IMIDs) are heterogeneous and complex
conditions with overlapping clinical symptoms and elevated familial aggregation, which suggests
the existence of a shared genetic component. In order to identify this genetic background in a
systematic fashion, we performed the first cross-disease genome-wide meta-analysis in systemic
seropositive rheumatic diseases, namely: systemic sclerosis, systemic lupus erythematosus,
rheumatoid arthritis and idiopathic inflammatory myopathies.

Methods—We meta-analyzed ~6.5 million single nucleotide polymorphisms (SNPs) in 11,678
cases and 19,704 non-affected controls of European descent populations. The functional roles of
the associated variants were interrogated using publicly available databases.

Results—Our analysis revealed five shared genome-wide significant independent /oci/ that had
not been previously associated with the diseases: NABI1, KPNA4-ARL 14, DGQK, LIMK1, and
PRR12. All of these fociare related with immune processes such as interferon and epidermal
growth factor signaling, response to methotrexate, cytoskeleton dynamics, and coagulation
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cascade. Remarkably, several of the associated /ociare known key players in autoimmunity, which

supports the validity of our results. All the associated variants showed significant functional
enrichment in DNase hypersensitivity sites, chromatin states and histone marks in relevant
immune cells, including shared expression quantitative trait /oci. Additionally, our results were
significantly enriched in drugs that are being tested for the treatment of the diseases under study.

Conclusions—We have identified shared new risk /oc/ with functional value across diseases and

pinpoint new potential candidate /oc/that could be further investigated. Our results highlight the
potential of drug repositioning among related systemic seropositive rheumatic IMIDs.

Introduction

Autoimmunity occurs when the mechanisms related to immune self-tolerance fail, leading to
an inappropriate destruction of normal tissue by the immune system. Genetic factors play an
important role in the development of more than 80 immune-mediated inflammatory diseases
(IMIDs) identified so far.[1] Comorbidity of these diseases, increased familial clustering,
and shared risk variants have been widely documented.[2] However, to date, these shared
loci have been identified by simple comparison between studies, and just recently they have
been determined by rigorous and systematic analysis.[3] In this sense, combining genome-
wide association studies (GWAS) across several diseases has proven to be a very useful tool
for the identification of new genetic risk variants simultaneously associated with several
IMIDs, and to expose shared pathways involved in the pathophysiology of these conditions.
[4-7] To date, two large studies combining several diseases were recently published
following this strategy. One of them was a meta-GWAS across 10 pediatric autoimmune
diseases with shared population-based controls that revealed new candidate /oci with
immunoregulatory functions.[8] In the other study, the authors identified new shared
associations by combining immunochip data across five chronic inflammatory diseases.[9]

Systemic seropositive rheumatologic IMIDs, such as systemic sclerosis (SSc), systemic
lupus erythematosus (SLE), rheumatoid arthritis (RA) and idiopathic inflammatory
myopathies (1IM), are heterogeneous diseases of the connective tissue that share clinical and
epidemiological manifestations, as well as life-threatening complications.[10] The common
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genetic component of these conditions has not been previously assessed systematically,
although the overlap of associated genes is elevated when performing a pairwise
comparison.[8] Autoantibody production is the main feature of these diseases, comprising
additionally a broad deregulation of the innate and adaptive immune response. However, the
low prevalence of most of these diseases hinders the collection of large datasets that makes
possible to attain sufficient statistical power. Therefore, our study aimed to combine
previously published GWAS datasets — all from European descent populations— to identify
shared genetic etiologies among systemic seropositive rheumatologic IMIDs in a systematic
fashion.

Subjects and Methods

Study population

A total of 12,132 affected subjects with four systemic seropositive rheumatic IMIDs (SSc,
SLE, IIM, and RA) and 23,260 controls were included in this study from previously
published GWAS [11-16] (Table S1).

Data quality control and imputation

Unified quality control (QC) of the 18 case-control collections was conducted separately,
based on stringent criteria using PLINK v.1.07.[17] Given that related and/or duplicated
subjects may have been recruited for different studies, genome-wide relatedness was
assessed and one individual from each pair was removed. Samples with <95% of
successfully called genotypes were removed.

Further, single nucleotide polymorphisms (SNPs) with genotyping call rate <98%, minor
allele frequencies (MAF) <1% and deviating from Hardy-Weinberg equilibrium (HWE) with
a p-value <0.001 in the control group were removed. To control for possible population
stratification, we performed principal component (PC) analysis using GCTA64 and R-base
software under GNU Public license v.2.

Imputation of autosomal SNPs was conducted in the Michigan Imputation Server using
Minimac3.[18] The software SHAPEIT[19] was used for haplotype reconstruction and the
Haplotype Reference Consortium rl.1 was used as the reference population.[20]

Statistical analyses

Disease-specific association testing. Association testing for allele dosages was performed by
logistic Wald test using EPACTS software,[21] adjusting by the first two or five PCs as
appropriate to control for the genomic inflation factor in European population (A.<1.05)
(Table S1). SNPs with a MAF >1% and squared correlation (Rsq) =0.3 were maintained in
the analyses as suggested by the imputation software. Additionally, we calculated a
concordance rate by comparing imputed and true genotypes.

Cross-phenotype meta-analysis. to identify shared /oc/, the summary-level statistics were
meta-analyzed using METASOFT.[22] A fixed-effects model was applied for those SNPs
without evidence of heterogeneity (Cochran’s Q test p-value Q > 0.05), and random-effects
model was applied for SNPs displaying heterogeneity of effects between studies (Q < 0.05).
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Genome-wide significance was established at a p-value<5 x 10798, SNP independence was
assessed with the software GCTA-COJO (Table S2).[23, 24] To annotate the independent
signals SNPnexus[25] was used to the build37 genomic coordinates.

Model search to identify the diseases contributing to the association:. to identify the diseases
most likely contributing to the association signals, we performed an exhaustive disease-
subtype model search with the R statistical package ASSET.[24] The contribution of a
disease was considered if at least two independent case-control collections from the same
disease were grouped with consistent effects.

Novelty of the variants: Our independent SNP associations were classified into “known” or
“new” associations based on the information retrieved from the NHGRI-EBI GWAS catalog
and the Phenopedia and Genopedia from HUGE Navigator.[26]

Functional enrichment analysis. in order to systematically characterize the functional,
cellular and regulatory contribution of the associated variants, a non-parametric enrichment
analysis implemented in GARFIELD was performed.[27] Furthermore, the online tools
HaploReg v.4.1[28] and the Genotype-Tissue Expression project (GTEx)[29] were queried
to determine whether any of the lead associated variants was an expression quantitative trait
locus (eQTL). The online tool Capture HiC plotter was used to assess physical interactions
between restriction fragments containing the variants and the promoter of genes in the three-
dimensional nuclear space.[30]

Drug Target Enrichment Analysis. the target genes of the eQTLs were used to model a
protein-protein interaction (PPI) network using String v10.[31] These protein products were
then used to query the OpenTargets Platform[32] for drug targets. Moreover, this platform
was used to search for drugs indicated or in different phases of drug development for the
treatment of SSc, SLE, 1IM and RA. The Fisher’s exact test was used to calculate if the
results of the meta-analysis were significantly enriched in pharmacologically active drug
targets.

Additional details of the Methods section are available in the online supplementary methods.

Cross-phenotype meta-analysis and disease contribution

Following sample QC and imputation, a total of 11,678 cases and 19,704 non-overlapping
controls were included in the genome-wide meta-analysis of 6,450,125 SNPs across the four
diseases. The mean concordance rate among imputed and true genotypes was 0.999+0.0003.
The final A showed minimal evidence of population stratification in the meta-abalysis
(A=1.025). Moreover, we calculated A1,000 with consistent results (A1,000=1.025).
Summary of sample/variant QC and QQ plots are shown in Table S1 and Figure S1,
respectively.

The global meta-analysis revealed 42 non-hla significantly associated /oc/. Subsequent
conditional analyses showed that 27 SNPs were independent (Figure 1 and Figure S2).
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Sixteen variants were meta-analyzed under a fixed effects model, whereas eleven with
random effects based on study heterogeneity.

To comprehensively explore the combinations of diseases contributing to the associations we
applied a subset-based meta-analysis implemented in ASSET.[24] Our model search yielded
26 SNPs associated with at least two IMIDs (Table 1). All of these variants were imputed in

at least one dataset.

Among these 26 associations we found several key players in autoimmunity; interestingly
ten of these associations (38%) have never been reported before for SSc, eight (31%) for
SLE and RA, respectively, and 20 (77%) for IIM. Remarkably, five SNPs have not been
reported previously for any of the diseases under study and thus constitute new shared risk
lociin systemic seropositive rheumatic IMIDs (Table 1). Amongst these five new
associations we found the SNP rs744600 in the 3’ region of the NGFI-A binding protein 1
(NMABI) (Odds ratio [OR] for the T allele 0.88, Confidence Interval [C1]=0.85-0.92), p-
value=7.07x10711), and the intronic SNP rs13101828 mapping in the gene Diacylglycerol
kinase theta (DGKQ) (OR for the G allele 1.11, 95%Cl: 1.07-1.16, p-value=1.32x1098). Of
note, both genes have been previously associated with a chronic autoimmune liver disease.
[33, 34] The intergenic SNP rs112846137, maps between the genes Karyopherin subunit
alpha 4 (KPNA4) and the ADP ribosylation factor like GTPase 14 (ARL14) (OR forthe T
allele 1.29, 95%Cl: 1.07-1.56, p-value=1.42x10798). Interestingly, the gene ARL 14 showed
a suggestive association in a pharmacogenomic GWAS of response to methotrexate in RA
patients.[35] In addition, we observe the associated SNP rs193107685 located in the 3’
region of the LIM domain kinase 1 (L/MKI) gene (OR for the C allele 1.52, 95%Cl: 1.27-
1.83,p-value=3.81x10799). The protein encoded by this gene regulates actin polymerization,
a critical process in the activation of T cells.[36] Finally, the SNP rs76246107 is located in
an intron of the gene Proline rich 12 (PRR12) (OR for the G allele 1.28, 95%Cl: 1.14-1.43,
p-value=3.36x10798), which was associated with fibrinogen concentration,[37] and is an
active regulator of the inflammatory response.[38]

Associated loci and their functional enrichment on regulatory elements

To assess whether the associated variants lie in coding and non-coding regulatory and cell-
type-specific elements of the genome, we performed an enrichment analysis with
GARFIELD.[39] The results obtained showed marked enrichment patterns mainly in blood
cells and skin cells, with 247 significant enrichments (p<5x1079%) (Figure S3 and Table S3).
Table 2 summarizes the main enrichment results. We found that the majority of associated
variants were enriched in DNase | hypersensitivity site (DHS) hotspots in blood, as depicted
in Figure 2. This functional category included a repertoire of cells from the immune system,
such as B-lymphocytes (Fold enrichment (FE)=11.68, empirical p (pemp) 1x10705)T-
lymphocytes (FE=10.42, pemp<1x10799), including T helper cells
(FE=7.81,pemp<1x10705), T CD8+ (FE=7.61, pemp<1x10-95), natural killer cells
(FE=11.36, pemp<1x10705), and monocytes (FE=8.99, pemp<1x10795). In line with this
enrichment, disease-associated SNPs were enriched in enhancers (FE=14.99,
pemp<1x10705), within TSS (FE=14.87, pemp<1x10-05), and on transcription factor
binding sites (FE=12.20, pemp<1x10799) in the B-lymphocyte cell line GM12878.
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Additionally, the highest enrichment was observed in the histone modification H3K9ac
(FE=14.02, pemp<1x1079%), and H3K27ac (FE=10.81, pemp<1x10-9%) in the B-
lymphocyte cell line, which are positively associated with gene activation. Although these
modifications are increased in the promoters of active genes, the latter has been shown to be
associated with active enhancers.[40] Moreover, enrichment was observed in H3K4me1,2,3
sites, which usually TSS and are also positively correlated with gene expression.[40]

Expression quantitative trait loci (eQTL) and associated variants

In silico analysis of eQTLs revealed the role of 16 of the lead SNPs as eQTLs in whole
blood, lymphoblastoid cell lines, transformed lymphocytes, skeletal muscle and transformed
fibroblasts derived from European individuals from HaploReg v.4.1[28] (Table 3 and Table
S4). Focusing on new associated variants, the SNP rs744600 modifies MABI gene
expression in lymphoblastoid cell lines (£=1.30x10734), whereas the T allele increases
HIBCH expression in skeletal muscles (p=8.09x10707). The G allele of rs13101828
increases DGKQ expression in whole blood (£p=3.29x1074%), lymphocytes (£=5.23x10719),
fibroblasts (p=4.44x1079%), lung cells (p=8.42x10728) and several other tissues. The A allele
of rs76246107 can reduce ALDHI6A1 expression in lung cells (0=6.45x1079), and the
protein encoded by this gene is involved in oxidoreductase activity. Reassuringly, 14 of the
16 (87%) reported eQTLs showed a physical interaction between the SNP and the promoter
of 15 of the genes affected by the eQTLs (Table 3), as suggested by Capture HiC (C-HiC)
data (Table S5). These independent evidences propose a mechanistic approach to understand
the modulation of gene expression.

Drug target enrichment analysis

Genetic associations have the potential to improve the rates of success in the development of
new therapies.[41] We assessed if the protein-products from disease associated eQTLs and
their direct protein-protein interaction (PPI) partners were enriched with pharmacologically
active targets (Table S6 and Table S7). We identified as eQTLs and PPIs 608 proteins for
SSc, 630 for SLE, 632 for I1M, and 413 for RA, based on data on drugs at any stage of
development collected from the Open Targets Platform (Table S8).[32] Using this
information, we found for SSc that 23 out of 73 (32%) proteins are targeted by drugs being
studied for the disease (OR=16.80, p-value=1.41x10718). Similarly, 7 out of 25 (28%)
proteins related to 1IM and 13 out of 146 (9%) proteins related to SLE are addressed by
drugs in consideration for 1IM and SLE (OR=13.40, p-value=4.62x1079, OR=3.38, p-
value=2.85x10704, respectively) (Table S9).

Discussion

In the present study we identified five unreported shared /oc/ associated with systemic
seropositive rheumatic IMIDs. This is the first large-scale meta-analysis, including more
than 11,000 cases and 19,000 non-overlapping controls aiming to improve our knowledge
regarding the genetic resemblances among these conditions.

Our results show that 85% of the associated variants were shared by at least three diseases.
Interestingly, for several known RA susceptibility /oc/the contribution of RA was limited. In
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this case, most of the associated variants were independent to the ones previously reported.
Among the new associated SNPs, the signals mapping to NABZ, DGKQ and KPNA4-

ARL 14 were associated to all of the diseases under study. NAB proteins are known to
interact with early growth response (EGR) family members and act as corepressors induced
by type I interferons (IFN).[42] The “IFN signature’—has been previously described in these
diseases.[43-46] Interestingly, two IFN regulatory factors —/RF5and /RF8- previously
associated to the conditions under study, were associated in the meta-analysis. Additionally,
the associated SNP is an eQTL in lymphoblastoid cell line, which evidences its role in
disease pathogenesis. The DGKQ protein mediates cell signal transduction and can
indirectly enhance the epidermal growth factor receptor (EGFR) signaling activity.[47] This
pathway regulates cell proliferation and migration, and its expression is augmented in the
vasculature of SSc patients with pulmonary involvement.[48] Moreover, the risk allele was
associated with an increased expression of the gene in lymphocytes, fibroblasts and lung. In
the same line, this gene was associated with Sjégren’s syndrome, a related connective tissue
disease.[49] The protein encoded by the gene ARL 14 is a GTPase involved in the
recruitment of MHC class Il containing vesicles and control the movement of dendritic cells
(DCs) along the actin cytoskeleton.[50] The protein LIMK1 regulates many actin-dependent
processes, including the assembly of the immune synapse between T cells and antigen
presenting cells, an expected biological process involved in seropositive IMIDs.
Remarkably, rs193107685 and rs112846137 interact physically with the promoters of the
genes L/IMK1 and ARL 14, respectively, in DCs (Figure S4). The gene PRR12has been
previously associated with fibrinogen concentrations.[37] Fibrinogen is considered a high-
risk marker for vascular inflammatory diseases and is considered an accurate predictor of
cardiovascular diseases.[38, 51] Moreover, this molecule is an active player in the
coagulation cascade, responsible for the spontaneous formation of fibrin fibrils.
Cardiovascular events and fibrosis are the most life-threatening complications described in
SSc, 1IM, and SLE.[52-54]

The associated SNPs are highly enriched in functional categories in B and T cells, natural
killer and monocytes, highlighting the relevance of these cells in systemic seropositive
rheumatic IMIDs. Beyond whole blood, the skin is the other tissue with significant
functional categories, which is not surprising given the nature of these connective tissue
diseases. Moreover, epithelial cells could transdifferentiate into mesenchymal cells and
eventually contribute in fibrotic processes.[55] Moreover, SSc patients are usually stratified
according to the extent of skin involvement.[43] On the other hand, the histone
modifications observed are consistent with the ones reported in previous studies, where
histone hyperacetilation have been described in synovial tissues in RA, in B cells in SSc, and
in CD4+ T cells in SLE.[40] Finally, the independent associated SNPs have significant
eQTLs in relevant tissues (Table 3) and /n silico data from promoter capture HiC
experiments showed the potential mechanisms in which most eQTLs modulate gene
expression. Interestingly, all new associated SNPs interact with the promoters of surrounding
genes, suggesting them as putative candidates with a role in the pathophysiology of these
conditions (Figure S4 and Table S5).

The prevalence of SSc, SLE, and IIM is low and there are no specific treatments for these
diseases in comparison with RA, therefore, given our current knowledge on the use of
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genetic findings in drug target validation and drug repurposing, we evaluated if drugs
currently indicated for RA had the potential to be used in any of the other IMIDs under
study. Our meta-analysis revealed that ten /oci overlap with known RA risk genes. For
instance, the gene-product of 7YKZis targeted directly by Tofacitinib, which inhibits janus
kinases (https://www.drugbank.ca/drugs/DB08895) or indirectly through the interleukin 6
(IL-6) family signaling pathway by targeting the IL6 receptor with Tocilizumab (https://
www.drugbank.ca/drugs/DB06273). Both drugs are currently indicated for moderate to
severe RA patients who respond poorly to disease-modifying anti-rheumatic drugs. As
TYK?Zis associated with SSc, SLE and 1M, it is a good candidate for therapy repositioning
in these diseases. As a proof of concept, Tofacitinib is currently on trial for SLE (clinical
trial identifier ), SSc () and Dermatomyositis (). Overall, we found that five of the /oc/
identified in our meta-analysis interact with 17 genes that are considered drug targets, six of
which are used for the treatment of these diseases (Table 4). Another interesting candidate
for drug repurposing is Imatinib, a kinase inhibitor that targets ABL1, which interacts with
the gene product of BLK, a known locus associated with SSc and RA (Table 4). Imatinib is
currently being tested for SSc () and RA ().

As compared to previous cross-phenotype studies of autoimmune diseases, our study has the
strength of analyzing systemic seropositive rheumatic diseases, which is a consistent clinical
phenotype than in the diseases investigated previously, where mixed seropositive and
seronegative diseases were analyzed, and combining systemic and organ-specific diseases.
[8, 9] The study of a more homogenous phenotype allowed us to determine that the type |
IFN signaling pathway and its regulation play a more prominent role in these conditions than
in others, based on the associations observed in NAB1, TYKZ, PTPN11, IRF5, and IRFS.
Additionally, we performed a genome-wide scan to identify shared genetic etiologies, as
opposed to the study performed by Ellinghaus ef al. whose analyses were limited to the 186
autoimmune disease-associated /oc/implemented in the Immunochip platform. The study
performed by Li et al. —which was also a meta-analysis of GWAS data— was focused on
pediatric autoimmune diseases, whereas our study was on a new combination of diseases in
adult population.

In summary, this is the first study to investigate shared common genetic variation in four
systemic seropositive rheumatic IMIDs in adults. We identified 26 genome-wide significant
independent /oci associated with at least two diseases, of which five /oc/had not been
reported before. The shared risk variants and their likely target genes are functionally
enriched in relevant immune cells and significantly enriched in drug targets, indicating that it
may assist drug repositioning among genetically related diseases based on genomics data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key messages

Systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis and
idiopathic inflammatory myopathies are systemic seropositive rheumatic
diseases that share symptoms, progressions, environmental risk factors, high
rates of familial aggregation, and susceptibility genes, pointing to a shared
genetic architecture.

The assessment of a shared genetic component among these conditions has
not been performed before in a systematic fashion.

We have identified five new shared /ociamong systemic seropositive
rheumatic immune-mediated inflammatory diseases. The rest of the observed
associations constitute firm susceptibility genes in autoimmunity, providing
validity to our findings.

The associated variants are enriched in marks related to gene activation in
immune cells and constitute shared expression quantitative trait /oc/.

For most of these diseases there are no specific treatments, therefore, therapy
repositioning could be possible among genetically related conditions.
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Figure 1. Meta-analysis results for the four systemic immune-mediated inflammatory diseases
(IM1Ds).

The Manhattan plot displays the -log10 transformed p-values (y-ax7s) by position on each
chromosome (x-ax/s). The red line depicts the genome-wide significance threshold (o~
value=5x1078). A total of 26 SNPs were independently associated with at least two systemic
IMIDs. Most of the signals map to known susceptibility /oc/in autoimmunity (e.g. PTPNZ22,
STAT4, TNPO3, FAM167A-BLK) and five /ocihave never been reported before.
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Figure 2. GARFIELD functional enrichment analyses in DHS hotspots.
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The wheel plot shows functional enrichment in systemic IMIDs within DHS hotspot regions

in ENCODE and Roadmap Epigenomics. The radial axis depicts the fold enrichment (FE)

calculated at different meta-analysis p-value thresholds. The font size is proportional to the

number of cell types from the tissue, mainly enriched in blood cell types including a
repertoire of immune cell lines.
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