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Abstract: Deficits in memory performance have been linked to a wide range of neurological and
neuropsychiatric conditions. While many studies have assessed the memory impacts of individ-
ual conditions, this study considers a broader perspective by evaluating how memory recall is
differentially associated with nine common neuropsychiatric conditions using data drawn from
55 international studies, aggregating 15,883 unique participants aged 15–90. The effects of dementia,
mild cognitive impairment, Parkinson’s disease, traumatic brain injury, stroke, depression, attention-
deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder on immediate, short-,
and long-delay verbal learning and memory (VLM) scores were estimated relative to matched healthy
individuals. Random forest models identified age, years of education, and site as important VLM
covariates. A Bayesian harmonization approach was used to isolate and remove site effects. Regres-
sion estimated the adjusted association of each clinical group with VLM scores. Memory deficits
were strongly associated with dementia and schizophrenia (p < 0.001), while neither depression
nor ADHD showed consistent associations with VLM scores (p > 0.05). Differences associated with
clinical conditions were larger for longer delayed recall duration items. By comparing VLM across
clinical conditions, this study provides a foundation for enhanced diagnostic precision and offers
new insights into disease management of comorbid disorders.

Keywords: verbal learning; memory; dementia; depression; Parkinson’s disease; schizophrenia;
stroke; traumatic brain injury; bipolar disorder; attention-deficit/hyperactivity disorder

1. Introduction

Memory performance is a core cognitive function and a key determinant of overall
health and quality of life [1,2]. Numerous neurological, neurodevelopmental, and neu-
ropsychiatric disorders have been linked to memory deficits, including, but not limited to,
dementia [3], mild cognitive impairment (MCI) [4], Parkinson’s disease (PD) [5], traumatic
brain injury (TBI) [6], stroke [7], depression [8], attention-deficit/hyperactivity disorder
(ADHD) [9], schizophrenia [10], and bipolar disorder (BD) [11]. However, comprehensive
evaluations of cognitive measures have typically been limited to meta-analyses of distinct
clinical groups. Little work has directly assessed the relative impact of various neurolog-
ical and neuropsychiatric disorders on verbal learning and memory (VLM) within one
unified framework, in part due to the complexities of examining heterogeneous clinical
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populations with distinct research priorities and treatment gaps [12,13]. Understanding the
differential impact(s) of clinical conditions on VLM could yield tangible benefits, including
enhanced diagnostic precision and new insights into disease management for individuals
with comorbid neurological and neuropsychiatric disorders [14,15].

1.1. Neurological Disorders and VLM

This study aggregated assessments of VLM based on single-word list learning tasks.
VLM assessments involve immediate, short-term, and long-term memory items, which
reflect different temporal stages or types of memory processing related to the encoding,
storage, and retrieval of verbal information [16]. These stages are governed by neurological
mechanisms with varying susceptibility to clinical conditions.

This study focused on VLM specifically because they are directly relevant to many
everyday activities, such as conversation and instruction, and they are also sensitive
measures of the cognitive impact of many diseases. Unlike disease-specific measures,
VLM tools are also versatile and can be used with validity across a range of distinct
clinical conditions. For example, Alzheimer’s disease and related dementias (AD/RD)
have profound and extensively studied effects on various aspects of VLM [17], particularly
impaired encoding abilities [18]. Amnestic MCI, which can be a prodromal phase of
AD/RD [19], also exerts well-documented effects on VLM [20]. Yet, even within these
well-characterized diseases, complex and heterogeneous memory performance is often
observed across individuals and disease subtypes [21,22], and some individuals with AD
have relatively preserved memory in the early disease stages [23]. Dementia subtypes, such
as vascular dementia (VaD) and frontotemporal dementia (FTD) can demonstrate variation
in VLM across affected individuals [24]. Some individuals with FTD may have difficulties
with the storage, consolidation, and later recall of verbal information [25,26], whereas VaD
associations with VLM can depend on the extent and location of vascular pathology [27].
PD and related neurodegenerative disorders often present with memory difficulties in the
later stages of disease progression [28], while some studies have found VLM changes in
newly diagnosed PD patients [29].

TBI along the severity spectrum has been linked to cognitive changes, including
VLM deficits [30,31]. Research also suggests an increased risk for dementia among TBI
survivors [32]. A wide range of conditions can emerge and persist after TBI, although the
cognitive effects of TBI depend on injury severity and recency [33,34]. VLM impairments
also occur in other acquired brain injury populations, such as stroke, in which various
aspects of memory are affected depending on the location and severity of injury [35].

1.2. Neuropsychiatric Disorders and VLM

Despite intensive research, the precise impacts of various common neuropsychiatric
disorders on cognitive functioning remain unclear [36]. For example, prior work found
that memory deficits were not consistently associated with depression [37], while other
studies found that major depressive disorder (MDD) and depression-related symptoms
negatively affect memory [38]. These findings are further complicated by the comorbid
relationship between depression and other conditions that may have confounding effects
on memory performance, such as TBI [39]. Impairments in working memory are a core
feature of ADHD, and individuals with ADHD may experience reduced performance on
long-term memory tasks, while short-term memory deficits, when detected, tend to be less
pronounced [40,41].

Schizophrenia is associated with decreased cognitive performance, and patients with
schizophrenia consistently show substantial deficits in VLM, which has been supported
by imaging studies [42–45]. Schizophrenia has also been associated with disproportion-
ate episodic memory impairments [46]. Similarly, impaired relational memory (recall of
concept and object associations) is considered a core deficit in schizophrenia [47] and has
been linked to the early stages of psychosis [48]. BD has also been associated with VLM
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impairments [49], particularly in late-stage BD [50], which is likely due to its relation to the
number of previous manic episodes and psychiatric hospitalizations [51].

The heterogeneous pathologies, disease courses, and consequences of these neuro-
logical and neuropsychiatric disorders strongly suggest a differential effect among patient
populations on VLM scores. To date, comprehensive evaluations of cognitive measures
have typically been limited to meta-analyses of single clinical groups. This study considered
a broader perspective by quantifying item-level VLM disruptions across a range of com-
mon neurological and neuropsychiatric disorders in a large sample using a standardized
analysis. This was achieved by taking advantage of new methods for the harmonization
of distinct VLM assessments [52], as well as methods to isolate and remove the influence
of site on VLM scores. We hypothesized that neurological and neuropsychiatric disorders
would display differential relationships with VLM performance. Score declines per group
were further broken out into age- and sex/gender-stratified models. By aggregating a
large sample of item-level assessments drawn from diverse settings, this study reveals both
absolute and comparative insights across neurological and neuropsychiatric disorders.

2. Materials and Methods
2.1. Data Source

Following prior work [53], we aggregated secondary de-identified data, drawing
from 55 studies of adults contributed by collaborators in the Psychiatric Genomics Consor-
tium (PGC), the Enhancing NeuroImaging Genetics through Meta-Analysis Consortium
(ENIGMA) working groups (including the ENIGMA Brain Injury working group), and
the Long-term Impact of Military-relevant Brain Injury Consortium–Chronic Effects of
Neurotrauma Consortium (LIMBIC-CENC). A world map of the locations of participating
institutions is shown in Figure 1.
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Figure 1. World map showing the locations of participating collaborator institutions (triangles).
Details for each sub-study are provided in Supplementary Table S1.

2.2. Clinical Disorders

The inclusion of clinical disorders was based on available samples with clear diagnostic
classifications. Comprehensive details for the exclusion and inclusion criteria for each group
per site are detailed in Supplementary Table S1, including pharmacological considerations.
AD/RD, MCI, PD, TBI, stroke, MDD, ADHD, schizophrenia/psychosis, and BD were
included. Each clinical condition group was aggregated by including participants who had
the same primary diagnoses across studies. For example, the ‘Schizophrenia/Psychosis’
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group was defined to include any participants who had a primary diagnosis listed as
one of the following eight terms: Schizophrenia, Psychosis, Clinical High Risk for Psychosis,
Early Course Schizophrenia, First Episode Psychosis, SCZ Patient, SZ, Schizoaffective, and Ultra
High Risk of Psychosis. Similarly, TBI included individuals with primary diagnosis terms
that included Concussion, mild TBI, moderate/severe TBI, and penetrating TBI. Controls were
defined as those with a primary classification listed as one of the following: Healthy control,
Control, Unexposed, Negative, HN controls, and HC. This process excluded 727 individuals
with ambiguous diagnoses.

2.3. Measures

The California Verbal Learning Test, 2nd edition (CVLT-II) [54] is a validated tool for
assessing VLM performance. The CVLT-II uses a 16-word list drawn from 4 categories that
is presented verbally over 5 consecutive learning trials. The CVLT-II includes an assessment
of verbal learning using immediate (no delay), short- (following a distractor task), and long-
(20 min) delay free verbal recall trials and a distractor list. Free recall scores range from 0 to
16 on each of the five immediate recall/learning trials, as well as the short- and long-delay
trials. A total score across the five learning trials (Trials 1–5) ranges from 0 to 80 words
recalled. Raw scores from the first immediate recall trial (T1), Trials 1–5, short-delay free
recall (SDFR), and long-delay free recall (LDFR) were chosen as the four primary outcomes
of interest. While some studies administered measures at multiple visits, only data collected
during initial assessments were included.

Prior to analysis, we performed a harmonization of scores across the CVLT-II, Rey
Auditory Verbal Learning Task (RAVLT) [55], and Hopkins Verbal Learning Task–Revised
(HVLT-R) [56,57] using a previously validated score conversion table tool (available at
https://verbal-learning.halfpipe.group, accessed on 25 June 2024) [53]. This process en-
sured assessments were aligned to CVLT-II item scales; therefore, all measures were har-
monized prior to analysis. To briefly describe the two underlying measures, the HVLT-R
is a validated and relatively short measure of VLM deficits. The HVLT-R uses 12-word
lists, which are drawn from three semantic categories, and it uses a small (N = 24) total
pool of words for scoring. HVLT-R does not use a distractor list for immediate recall, and it
does not assess short-delay recall performance. The HVLT-R has three consecutive learning
trials. The RAVLT is a validated measure of VLM deficit. The RAVLT draws from random,
semantically unrelated words and employs a 15-word list length and a distractor list, along
with short- and 30-min delay recall trials.

2.4. Data Processing

Datasets from all sources were cleaned, standardized, and aggregated. Nearest neigh-
bor imputation was used to infer missing data, and overall missingness was low (< 5%). In
a study involving many data sources, individual source-specific effects can reduce statistical
power and lead to inaccurate results. Therefore, following prior work, an empirical Bayes
method was used to isolate and remove source-specific effects from scores while preserving
covariate effects [53]. Using harmonization, we can assure uniformity above that of any
single study by aggregating and comparing many datasets. This process allowed us to
identify and remove biases inherent in each single data source, e.g., due to the influence of
specific inclusion criteria on scores. Only controls were used to estimate site effects.

2.5. Design

Participants were assigned to clinical groups by primary clinical diagnosis. Imbalance
across clinical groups was mitigated using a two-step design that included both matching
and covariate adjustment [58]. Using a nearest neighbor algorithm, each clinical group
was matched 1:1 with healthy controls using covariates of age, sex/gender, years of edu-
cation, and geographic region. This was required because the total control group was not
representative of all clinical groups. For example, controls were on average younger than

https://verbal-learning.halfpipe.group
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participants in the AD/RD cohort. After matching, linear regression was used to estimate
group differences in T1, Trials 1–5, SDFR, and LDFR scores, adjusting for covariates.

2.6. Covariates

Covariates included age, sex/gender, years of education, geographical region, lan-
guage of assessment, and site/study source. The raw demographic information available
varied across sites. For example, some studies recorded sex while others recorded gender;
these data were aggregated into a single sex/gender variable. The data included eight
languages (Czech, English, German, Italian, Korean, Norwegian, Portuguese, and Spanish)
that were tested for relative impact on scores. Prior research in this sample found no
significant racial differences associated with VLM scores [53], so we elected to not include
race variables in our analysis.

2.7. Statistical Analysis

All analyses were conducted in Python 3. Geographical region, language of assessment,
and site are highly interrelated factors. Therefore, to preliminarily screen for important
covariates that may require subsequent adjustment, random forest models were used
due to their robustness against collinearity [59]. The sklearn python package was used to
estimate variable importances with random forest models. Linear regression was used to
test for significance across groups after adjusting for the covariates identified with high
feature importances in random forest models. Percentage differences in words recalled
between clinical groups and matched controls were calculated by converting adjusted
coefficients to percentages of words recalled. In age- and sex/gender-stratified models,
confidence bounds for significance were estimated by random sampling and averaging
effects, comparing within control groups.

3. Results

The total dataset consisted of 15,883 participants drawn from 55 sites; 36.8% were
female, and the median age was 42 years. At the time of assessment, the cohort had
received an average of 13.7 ± 3.0 years of education. As shown in Table 1, the clinical
groups with the largest sample sizes were TBI (n = 4867), schizophrenia (n = 1962), and
MDD (n = 1063), while the MCI (n = 233) and ADHD (n = 126) groups had the smallest
sample sizes. Controls (n = 5713) were drawn from 43 out of 55 studies. Table 1 shows clear
trends across groups, but additional adjustments were required. The AD/RD, MCI, and
PD clinical groups tended to be older and had a higher percentage of females. The TBI and
SZ groups were younger and included more males. The TBI, BD, and ADHD groups were
the most educated clinical groups, on average.

Table 1. Characteristics and average CVLT-II scores for the nine clinical groups and controls. Av-
erage VLM performance of each group (i.e., mean score) is shown as raw scores and as percentage
differences with respect to (% w.r.t.) the control group.

Clinical Group Control AD/RD MCI PD TBI Stroke MDD ADHD SZ BD

N 5713 276 233 628 4867 273 1063 126 1962 742
# Studies 43 5 4 3 23 3 7 3 19 12

Age, %
16–35 43.5 0.0 0.9 0.0 25.7 3.3 49.8 56.3 64.6 40.5
35–65 42.1 9.1 12.9 36.3 67.0 31.1 49.2 42.9 34.9 56.5
65+ 14.4 90.1 86.2 63.7 7.3 65.6 1.0 0.8 0.5 3.0

Sex/Gender, %
Male 49.0 38.8 49.8 32.6 90.3 71.1 48.0 48.4 61.7 42.7

Female 51.0 61.2 50.2 67.4 9.7 28.9 62.0 51.6 38.3 57.3
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Table 1. Cont.

Clinical Group Control AD/RD MCI PD TBI Stroke MDD ADHD SZ BD

Region, %
Americas 54.8 79.7 70.8 0.0 100.0 0.0 3.2 40.5 17.9 39.2
Europe 41.5 18.1 21.5 37.7 0.0 51.3 96.8 58.7 79.6 60.8

Asia 3.7 2.2 7.7 62.3 0.0 58.7 0.0 0.8 2.5 0.0

Education, %
Primary 10.0 50.2 42.5 51.6 0.7 30.6 7.6 15.9 25.4 21.3

Secondary 25.3 34.0 37.8 18.1 27.0 26.4 46.1 22.2 25.4 27.8
Tertiary 64.7 15.6 19.7 30.3 72.3 43.0 46.3 61.9 42.0 50.9

Mean score
T1 6.5 3.0 4.1 4.2 5.8 4.6 7.2 6.4 5.4 6.2

% w.r.t. controls 0% −54% −37% −35% −11% −29% 11% −2% −17% −5%
Trials 1–5 52.4 21.6 31.7 29.4 47.7 41.3 55.8 53.2 43.8 48.9

% w.r.t. controls 0% −59% −40% −44% −9% −21% 6% −2% −16% −7%
SDFR 11.5 1.2 3.9 6.7 9.9 8.5 12.2 11.8 8.9 10.2

% w.r.t. controls 0% −90% −66% −42% −14% −26% 6% −3% −12% −11%
LDFR 11.8 1.2 3.8 6.4 10.2 8.9 12.8 12.2 9.1 10.7

% w.r.t. controls 0% −90% −68% −46% −14% −25% 8% 3% −23% −9%

AD/RD = Alzheimer’s disease and related dementias. MCI = mild cognitive impairment. PD = Parkinson’s disease.
TBI = traumatic brain injury. MDD = major depressive disorder. ADHD = attention-deficit/hyperactivity disorder.
SZ = schizophrenia/psychosis. BD = bipolar disorder. T1 = first immediate recall trial. SDFR = short-delay free
recall. LDFR = long-delay free recall.

Determining the influence of language, study, and covariates on scores is challenging
due to collinearity. To address this issue, Figure 2a shows a stem plot of random forest
model feature importances predicting VLM scores averaged across items. The model
achieved 80.7% explained variance, with age (45.6%), education (8.5%), and origin study
(8.4%) estimated as the three most important features. By contrast, the eight language
variables (Czech, English, German, Italian, Korean, Norwegian, Portuguese, and Spanish)
were minimally predictive of scores. This analysis suggested that source correction followed
by regression on covariates was sufficient to accurately estimate performance associations
with clinical conditions. Correction for site effects was performed using ComBat-GAM [60],
an empirical Bayes method that was specified to tolerate nonlinearities in score responses as
a function of age. The fits used to correct for each site are shown as gray lines in Figure 2b.
The harmonization process was performed for each item.

After site correction, linear regression was used to estimate covariates (Table 2). The
model comparators used were: age, 16–35; sex/gender, male; geographic region, Americas;
and education, primary level. Age-related differences in scores were significant across all
VLM items (p < 0.001). Compared to those aged 16–35 years, the number of words recalled
on both SDFR and LDFR declined by more than 20% for those aged 65+. Age-related
differences were also significant for the immediate recall items, T1, and Trials 1–5 (p < 0.001).
Women showed higher VLM performance across all measures compared to men, ranging
from +2.9% to +7.6% (p < 0.001 for all items). Geographic region showed inconsistent
associations and mixed significance across items. Education level was positively associated
with VLM performance across all items (p < 0.001).
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Figure 2. Preliminary screening of covariates by random forest models. In (a), feature importances
identified age, education, and site as the most important variables for adjustment. In (b), raw Trials
1–5 scores are plotted against Trials 1–5 scores after source correction (color indicates origin study).
Gray lines show the fits used to correct for each site.

Table 2. Blocked linear regressions estimating scores on immediate, short-, and long-delay verbal
learning items for the whole cohort after site correction. Coefficients are shown as percentage
associations with each item score.

Regression T1 Trials 1–5 SDFR LDFR

N 15,883 15,883 15,883 15,883
Adj. R2 19.2% 37.7% 32.9% 34.0%

Age, % (CI)
16–35 – – – –
35–65 −3.5 (−3.9, −3.1) † −6.0 (−6.5, −5.5) † −9.2 (−10.0, −8.5) † −9.7 (−10.5, −8.9) †

65+ −8.2 (−8.9, −7.6) † −13.6 (−14.4, −12.8) † −21.8 (−23.1, −20.5) † −22.2 (−23.5, −20.9) †

Sex/Gender, % (CI)
Male – – – –

Female 2.9 (2.5, 3.3) † 4.9 (4.4, 5.3) † 7.0 (6.2, 7.8) † 7.6 (6.9, 8.4) †

Region, % (CI)
Americas – – – –
Europe −0.6 (−1.7, 0.5) −7.0 (−8.3, −5.8) † −9.1 (−11.2, −7.0) † −8.5 (−10.6, −6.4) †

Asia 1.3 (0.7, 1.8) † 1.6 (1.0, 2.1) † 0.7 (−0.3, 1.6) 1.4 (0.4, 2.4)

Education, % (CI)
Primary – – – –

Secondary 3.2 (2.6, 3.8) † 4.7 (3.9, 5.4) † 6.2 (5.0, 7.5) † 5.8 (4.6, 7.0) †

Tertiary 4.5 (3.9, 5.1) † 7.1 (6.4, 7.8) † 10.5 (9.3, 11.6) † 9.3 (8.1, 10.4) †

T1 = immediate recall trial 1. Trials 1–5 = total score across immediate recall/learning trials 1–5. SDFR = short-delay
free recall. LDFR = long-delay free recall. CI = confidence interval. † indicates significance at p < 0.001
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Percentage differences in words recalled between clinical groups and matched controls
were estimated from regression coefficients (Figure 3). The disorder with the largest score
difference relative to controls was AD/RD (T1: −14.8%, SDFR: −45.6%, LDFR: −51.6%),
while ADHD and MDD showed the smallest effects overall on the percentage of words
recalled. All clinical groups were significantly different from controls across all VLM items
(p < 0.001), except for ADHD and MDD, which did not exhibit consistently different recall
from matched controls (p > 0.05). The strength of association varied across items and
delay durations. In Figure 3, a consistent pattern emerged where declines in LDFR (purple
diamonds) exceeded T1 deficits (blue circles). This association was most pronounced for
AD/RD, which exhibited a 37% difference between the percentage of words recalled on T1
and LDFR items compared to controls.
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impairment. AD/RD = Alzheimer’s disease and related dementias. T1 = immediate recall trial 1.
Trials 1–5 = total score across immediate recall/learning trials 1–5. SDFR = short-delay free recall.
LDFR = long-delay free recall. * significant at p < 0.01 for all four items.

We additionally tested for sex/gender- and age-related differences in percentage
change in VLM scores for each clinical group relative to matched controls. In Figure 4,
declines for each clinical group relative to controls are shown with additional age and
sex/gender stratification across older/younger and female/male groups. Median age per
group was used as the stratification cutoff. Relative to matched controls, older patients with
schizophrenia show greater declines than younger patients with schizophrenia. Females
with stroke, MCI, and AD/RD showed worse declines than males with the same diagnoses.
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4. Discussion

Neurological and neuropsychiatric disorders have heterogeneous impacts on cogni-
tive functioning [12,13]. Even in clinical diseases with well-established mechanisms of
memory disruption, appreciable variations have been observed across studies and popu-
lations [8,10,17,18,21,26,36,40,49]. Understanding the differential impacts of clinical condi-
tions on VLM performance may have tangible benefits, including new insights into disease
management for individuals with comorbid neurological concerns with compounding
memory effects. Drawing from a large repository of 15,883 unique participant assessments
aggregated across 55 studies from multiple international consortia, this study investigated
the impact of nine common neurological and neuropsychiatric disorders on VLM. We used
existing harmonization tools to align scores drawn from different geographical regions and
VLM assessments within a single unified analysis.

Our findings suggest that some, but not all, conditions were associated with abnormal-
ities in VLM, confirming our a priori hypothesis. A pattern emerged in which the impact of
clinical conditions on scores tended to increase with recall delay duration. This association
was most pronounced for AD/RD, which exhibited a 37% difference in words recalled
between the immediate and long-delay assessments. These data recapitulate that LDFR
is an effective differentiator of disorders, particularly for medial temporal lobe pathology
and hippocampal-dependent disorders. Our findings revealed that AD/RD, MCI, and
schizophrenia were most strongly associated with VLM differences relative to controls,
even after adjusting for covariates, including age. Although AD/RD and MCI are broad
diagnostic categories, both have profound and heterogeneous effects on memory. Complex
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and heterogeneous memory performance is often observed across individuals and disease
subtypes, such as amnestic MCI and non-amnestic MCI, amongst others [21].

Participants with TBI of any severity scored 5.1–5.5% lower on the VLM compared
to controls, and while AD/RD showed large differences across items of different delay
duration, TBI was associated with a narrower range of deficits across items. In the current
analyses, all TBI severities were grouped together, and findings could vary across injury
severity.

Relative to controls, individuals with ADHD showed lower VLM scores on all items,
but these differences were not consistently significant. Similarly, MDD effects were small
(1–2%) compared to the associations of AD/RD and MCI (30–50%), and MDD was not
consistently significantly associated with VLM. These mixed findings are consistent with
the mixed literature on the impacts of MDD and ADHD on cognitive functioning [41].

Age and education have well-established associations with memory performance,
and this study identified both as important covariates of VLM. Random forest models
also identified origin site of assessment as the third most important determinant of VLM
scores. Site effects cannot be observed or mitigated in single-site studies, but in this study,
data were aggregated from a large number of studies so that harmonization models could
isolate and remove individual site effects. In a secondary analysis stratifying clinical group
associations with VLM by age and sex/gender, older patients with schizophrenia showed
greater declines than younger patients with schizophrenia. Females with stroke, MCI, and
AD/RD showed worse declines than males with the same diagnoses.

The strengths of this study include a large sample size of more than 15,000 participants
drawn from 55 diverse international data sources of VLM assessment. Random forest
models that are robust against collinearity were used to identify key covariates requiring
further adjustment. A large and diverse sample of over 5000 healthy control participants
facilitated a good comparison pool for each clinical group.

This study also had several limitations. While 13 countries and 8 languages were
represented in our dataset, our data were skewed toward English-speaking samples from
the Western hemisphere. Our ability to tease out the influence of disorders on VLM scores
may also be confounded by unmeasured considerations, such as substance use disorder
and other diseases that are highly comorbid in patients with neurocognitive disorders.
We elected to frame the study using primary diagnosis groups and a matched design,
but common comorbid concerns for TBI and depression, such as post-traumatic stress
disorder, may contribute to the association between clinical conditions and VLM deficits.
The effects of comorbidities on VLM is a standing limitation that would require deeper
medical histories not consistently documented in each underlying study. Future work
could explore whether there are meaningful interaction effects observed for patients with
overlapping clinical conditions. While recognition test items are an important part of
VLM testing, the harmonization of recognition memory indices was not implemented in
existing harmonization models [53], and therefore, recognition memory items were not
considered. Harmonization models, although previously validated, might introduce some
bias for sources with low sample sizes. The data were aggregated from multiple sources
with different instruments, settings, inclusion criteria, and assessment procedures [53].
However, a detailed understanding of study effects was not necessary to remove these
effects in aggregate using Bayesian harmonization procedures. Data were largely drawn
from studies of mild TBI, and the magnitude of associations with VLM may not reflect
findings for more severe forms of TBI.

5. Conclusions

This study highlights the benefit of aggregating large sample sizes to determine how
VLM deficits vary across the spectrum of neurological and neuropsychiatric disorders. Our
findings suggest that some, but not all, conditions were associated with abnormalities in
VLM. A pattern emerged suggesting that the impact of clinical conditions on scores tended
to increase with recall delay duration. VLM performance was not consistently associated
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with a diagnosis of depression or ADHD on all items relative to matched controls, but it
was significantly associated with all other conditions assessed. In a secondary analysis
stratifying clinical group associations with VLM by age and sex/gender, older patients with
schizophrenia showed greater declines than younger patients with schizophrenia. Females
with stroke, MCI, and AD/RD showed worse declines than males with the same diagnoses.
Beyond cognitive assessment, these findings may provide a means to identify novel diag-
nostic and mechanistic neuroimaging biomarkers of cognitive performance from large-scale,
global open neuroscience initiatives with greater sensitivity and statistical power.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci14070669/s1, Table S1: Inclusion/exclusion criteria for
each data source; Table S2: Deficit in words recalled for each clinical condition relative to matched
controls. Refs. [61–100] are cited in the Supplementary Materials.
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